7 research outputs found

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation

    Equational Reasonings in Wireless Network Gossip Protocols

    Get PDF
    Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout large-scale networks. In this paper, we propose a compositional analysis technique to study formal probabilistic models of gossip protocols expressed in a simple probabilistic timed process calculus for wireless sensor networks. We equip the calculus with a simulation theory to compare probabilistic protocols that have similar behaviour up to a certain tolerance. The theory is used to prove a number of algebraic laws which revealed to be very effective to estimate the performances of gossip networks, with and without communication collisions, and randomised gossip networks. Our simulation theory is an asymmetric variant of the weak bisimulation metric that maintains most of the properties of the original definition. However, our asymmetric version is particularly suitable to reason on protocols in which the systems under consideration are not approximately equivalent, as in the case of gossip protocols

    Unwinding biological systems

    Get PDF
    Unwinding conditions have been fruitfully exploited in Information Flow Security to define persistent security properties. In this paper we investigate their meaning and possible uses in the analysis of biological systems. In particular, we elaborate on the notion of robustness and propose some instances of unwinding over the process algebra Bio-PEPA and over hybrid automata. We exploit such instances to analyse two case-studies: Neurospora crassa circadian system and Influenza kinetics models

    Behavioral Metrics via Functor Lifting

    Full text link
    We study behavioral metrics in an abstract coalgebraic setting. Given a coalgebra alpha: X -> FX in Set, where the functor F specifies the branching type, we define a framework for deriving pseudometrics on X which measure the behavioral distance of states. A first crucial step is the lifting of the functor F on Set to a functor in the category PMet of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. Then a final coalgebra for F in Set can be endowed with a behavioral distance resulting as the smallest solution of a fixed-point equation, yielding the final coalgebra in PMet. The same technique, applied to an arbitrary coalgebra alpha: X -> FX in Set, provides the behavioral distance on X. Under some constraints we can prove that two states are at distance 0 if and only if they are behaviorally equivalent.Comment: to be published in: Proceedings of FSTTCS 201

    Compositionality of Approximate Bisimulation for Probabilistic Systems

    No full text
    Probabilistic transition system specifications using the rule format ntmuft-ntmuxt provide structural operational semantics for Segala-type systems and guarantee that probabilistic bisimilarity is a congruence. Probabilistic bisimilarity is for many applications too sensitive to the exact probabilities of transitions. Approximate bisimulation provides a robust semantics that is stable with respect to implementation and measurement errors of probabilistic behavior. We provide a general method to quantify how much a process combinator expands the approximate bisimulation distance. As a direct application we derive an appropriate rule format that guarantees compositionality with respect to approximate bisimilarity. Moreover, we describe how specification formats for non-standard compositionality requirements may be derived.Comment: In Proceedings EXPRESS/SOS 2013, arXiv:1307.690
    corecore