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Abstract

Unwinding conditions have been fruitfully exploited in Information Flow Security to define persistent security proper-
ties. In this paper we investigate on their meaning and possible uses in the analysis of biological systems. In particular,
we elaborate on the notion of robustness and propose some instances of unwinding over the process algebra Bio-PEPA
and over hybrid automata. We exploit such instances to analyse two case-studies: Neurospora Crassa circadian system
and Influenza kinetics models.
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Introduction

Systems Biology aims at defining techniques for modelling and formally analyse the behaviours of
biological entities such as genetic networks, regulatory networks, but also diseases and epidemics. Problems
of interests in this context range from stability analysis to dynamics identification and parameter estimation.

Different languages have been proposed for modelling biological systems. As noticed in [1] we can
distinguish two main categories: mathematical models (e.g., differential equations) and computational
models (e.g., process algebras). Mathematical models rely on denotational semantics, i.e., they describe
relationships among quantities. Algorithms for finding/approximating solutions of such models are not
part of the model itself. On the other hand, computational models are equipped with “natural” operational
semantics which describes the evolution of the system. Simulation algorithms for such models can be easily
defined.

Temporal Logics and Model Checking are standard tools for the analysis of computational models (e.g.,
see [2]). The former provide specification languages for formulating the properties of interest. The latter
brings algorithms for verifying properties on models. Two models are considered behaviourally equivalent
when they are indistinguishable with respect to the temporal logic formulæ.

Behavioural equivalences can then be used to both compare models and reduce their sizes. Their use as
reduction criteria is well known in Model Checking, where the state explosion problem is a major concern,
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and their importance for comparing models has been fruitfully exploited in other fields. In particular, in
Information Flow Security behavioural equivalences are at the basis of unwinding conditions which allow
one to establish whether the system would behave correctly in hostile environments (see [3, 4]).

Many authors have proposed the use of Temporal Logics and Model Checking techniques for the
analysis of biological systems (e.g., see [5, 6, 7]). Unfortunately, in this field of application the high number
of involved variables make the state explosion problem even more dramatic and important efforts have
been made to define reduction techniques (e.g., see [8, 9]).

In this paper, we consider the problem of deciding whether a biological system is robust. Intuitively,
a system is robust if its behaviour is not dramatically affected by perturbations. Biological organisms are
always subject to perturbations due to changes in their living environments and robustness is the property
that distinguishes between an organism that can survive to changes and another that cannot. Of course
there is not just one notion of robustness, but as many possible notions as many meaning one can give
to “perturbations” and “dramatically affected”. We propose the use of unwinding conditions in Systems
Biology to define robustness. In order to achieve this goal we develop a framework, based on the notion of
labelled transition system, that exploits the unwinding conditions and we suggest how to instantiate this
framework to handle different computational formalisms, different notions of perturbations, and different
levels of behavioural changes. We will instantiate our framework to show that unwinding conditions allow
one to generalise notions of robustness based on formulæ satisfaction which have been introduced in the
literature, giving rise to robust notions of robustness where possibly infinite set of formulæ can be preserved
over possibly infinite sets of perturbations.

Our framework can be instantiated on each computational language equipped with an operational
semantics. In this work we instantiate it on the stochastic process algebra Bio-PEPA and on hybrid automata.
On Bio-PEPA one can define discrete operational semantics and build finite labelled transition systems.
Hence, Bio-PEPA can be considered in this paper as a representative of (Stochastic) Discrete Event Systems.
On the other hand, the most natural operational semantics for hybrid automata is the timed continuous-
discrete semantics. Hence, hybrid automata shift us from the classical Discrete Event Systems realm to the
timed models one.

The paper is organised as follows: Section 1 introduces Labelled Transition Systems and bisimulations
as standard operational semantics tools. Section 2 presents the unwinding framework in both Information
Flow Security and Systems Biology, showing how it can be used to formalise a robust notion of robustness. In
Section 3, we briefly recall the main features of Bio-PEPA process algebra and we instantiate our unwinding
framework on Bio-PEPA systems. In Section 3.1, we test it on the Bio-PEPA model of the Neurospora
crassa circadian network. In Section 4 we present two unwinding conditions over hybrid automata and
in Section 4.1 we exploit them on kinetic models of influenza virus. Sections 4 and 4.1 are completely
independent from Sections 3 and 3.1. Hence, the reader can safely skip either Bio-PEPA or hybrid automata.
Conclusions are drawn in Section 5.

1. Labelled Transition Systems and Equivalences

Labelled Transition Systems (latter on referred as LTS’s) are a general tool used to define the operational
semantics of wide variety of models. An LTS is a directed graph with labels on edges.

Definiton 1 (Labelled Transition System). An LTS is a tuple (V,VI,A,E) where:

- V is a set of nodes and VI ⊆ V is a set of initial nodes;

- A is the set of edge labels (alphabet);

- E ⊆ V × A × V is a set of edges.

We may write v α
−→ v′ to indicate that (v, α, v′) is an edge, i.e., (v, α, v′) ∈ E, and v −→ v′ to denote that there

exists some α ∈ A such that (v, α, v′) is an edge. In some cases, also labels on nodes can be introduced.
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Definiton 2 (LTS/R). Let L = (V,VI,A,E) be an LTS and R an equivalence relation over V. The quotient of L
w.r.t. R, denoted by L/R, is the LTS (V∗,V∗I ,A,E

∗) such that:

- V∗
def
= {[v]R | v ∈ V} where [v]R is the equivalence class of v w.r.t. R, i.e., [v]R

def
= {v′ | v′Rv};

- V∗I
def
= {[v]R | v ∈ VI};

- E∗
def
=

{(
[v]R , a, [v′]R

)
|

(
v, a, v′

)
∈ E

}
.

Well-known classes of models which are given in terms of LTS’s are Discrete Time Markov Chains (DTMCs)
and Continuous Time Markov Chains (CTMCs). Both DTMCs and CTMCs are used for modelling stochastic
memoryless processes in which the next state of the system only depends on the current state and on
a probability distribution over its out-going edges. While in DTMCs labels on the edges represent the
instantaneous crossing probability, in CTMCs they are the parameters of exponential distributions which
allow one to compute the crossing probability within a time interval.

Definiton 3 (Markov Chains). A DTMC is an LTS D = (VD,VD
I ,A

D,ED) such that AD = [0, 1] ⊆ R and the
sum of the labels of the edges leaving each node is equal to 1, i.e.,

(∑
(v,α,u)∈ED α

)
= 1 for each v ∈ VD.

A CTMC is an LTS C = (VC,VC
I ,A

C,EC) such that AC = R≥0.

As examples of the broad and heterogeneous use of LTS’s in modelling, we will consider later in this
paper two formalisms, having a quite different approach to the modelling problem, whose evolutions are
naturally described by means of LTS’s: the process algebra Bio-PEPA (see, e.g., [10]) and hybrid automata
(see, e.g., [11]).

Once an LTS representing a system has been obtained, behavioural equivalences can be used to reduce the
size of the LTS, prove properties over the system, and compare different systems. Behavioural equivalences
are equivalences over LTS’s that relate nodes having “similar behaviours”. Trace equivalence and bisimulation
are two of the most used behavioural equivalences in the literature.

Trace equivalence relates two nodes if and only if they generate the same sequences of node and edge
labels (traces). It produces a drastic reduction of the model size, but its computation is expensive (PSPACE-
complete) [12]. Moreover, in many applications, it equates models that are “different”. In particular,
it cannot distinguish models which differ because of “the time at which non determinism occurs” (see
Example 1).

Definiton 4 (Trace Equivalence). Given an LTS T = (V,VI,A,E), a path over T starting from u ∈ V is a sequence
ph of transitions of the form u = u0

α1
−→ u1

α2
−→ . . .

αn
−→ un. The trace underlying the path ph is the sequence tr defined

as α1α2 . . . αn. The set Tr(u) is the set of traces underlying paths starting from u. Two nodes u, v ∈ V are said to be
trace equivalent if Tr(u) = Tr(v).

On the contrary, bisimulation is a finer relation which is easier to compute. In its strong version
it equates models that satisfy exactly the same formulæ of modal and branching temporal logics (see,
e.g., [2]). Its co-inductive characterisation is at the basis of efficient polynomial time algorithms for its
computation [13, 14].

Definiton 5 (Strong Bisimulation). Given an LTS T = (V,VI,A,E), a strong bisimulation over T is a relation
R ⊆ V × V such that for each (u, v) ∈ R the following conditions hold:

- u ∈ VI if and only if v ∈ VI;

- if u α
−→ u′, then v α

−→ v′ and (u′, v′) ∈ R;

- if v α
−→ v′, then u α

−→ u′ and (u′, v′) ∈ R.
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Two nodes u, v ∈ V are said to be strongly bisimilar, denoted as u ∼ v, if there exists a strong bisimulation R such
that (u, v) ∈ R.

When also labels on nodes are considered two bisimilar nodes must share the same labels. The following
proposition states some well-known and appealing properties of bisimulation.

Proposition 1. Given an LTS T = (V,VI,A,E). The relation ∼ is an equivalence relation, it is the largest strong
bisimulation relation (i.e., it includes all the strong bisimulation relations over V), and Paige-Tarjan algorithm [14]
computes it in time O(|E| log |V|). Moreover, u ∼ v implies Tr(u) = Tr(v).

Example 1. Let q0 and p0 be two nodes of an LTS T. If we are interested in deciding whether q0 and p0 are
trace equivalent or bisimilar, it is sufficient to analyse the nodes reachable from q0 and p0. Let now the LTS’s
represented in Figure 1 be the ones that include the nodes reachable from q0 and p0, respectively, in which
none of the nodes belong to VI. It emerges that q0 and p0 are trace equivalent, since Tr(q0) = Tr(p0) = {αβ, αγ}.
On the other hand, q0 is not bisimilar to p0. As a matter of fact, p0

α
−→ p1, while q0

α
−→ q1 and q0

α
−→ q2. However,

p1 is not bisimilar to q1, since q1 cannot perform any γ-transition, and p1 is not bisimilar to q2, since q2 cannot
perform any β-transition. In this sense, bisimulation distinguishes between q0, which immediately performs
a non-deterministic choice, and p0, which delays the non-deterministic choice after the α-transition.

q0

q1 q2

q3 q4

α α

β γ

p0

p1

p2 p3

α

β γ

Figure 1: Trace equivalence vs strong bisimulation: the two nodes p0 and q0 are trace equivalent but not strongly bisimilar.

There exist many variant of bisimulation (e.g., weak and stuttering), depending on the modal/temporal
logic one wants to preserve. In the context of DTMCs and CTMCs bisimulations, which need to “preserve”
probabilities, are usually called lumpability relations (see, e.g., [15]).

Notice that all the definitions introduced in this section can be applied to both finite and infinite LTS’s,
as in the case of LTS built from hybrid automata (see Definition 26). However, in the case of infinite LTS’s
symbolic techniques have to be applied and the termination of the procedures is not always guaranteed.

2. Robustness through Non-interference and Unwinding

2.1. From Biology . . .
As observed in [16], “. . . robustness is one of the fundamental characteristics of biological systems

. . . Nevertheless, a mathematical foundation that provides a unified perspective on robustness is yet to be
established”. In [17], robustness is defined as a property ensuring that a system maintains its functions
against internal and external perturbations. A framework for analysing robustness should support the
definition of both functions to be preserved and admissible perturbations.

Robustness has not to be confused with stability. A robust system can exploit instability or even evolve
through new steady states in order to preserve its functionalities against perturbations.

In the following example we try to clarify these concepts.
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Example 2 (Research on Pathogens). Let us consider the case of a system infected by a pathogen agent. Of
course the pathogen stimulates the immune system and would probably affect some organs, i.e., the system
is not stable. Hence, the immune system and all the organs directly attacked by the pathogen will exhibit
a behaviour which could be very different from the standard one (at least in the acute phase). However,
if the system is robust against the pathogen, behaviour of critical organs (e.g., heart, lung, kidney, brain)
should not be dramatically affected.

A formalisation of “how much” a system is robust with respect to a pathogen is a fundamental question
in medicine both in the diagnosis process (to avoid expensive/invasive exams) and in the therapy phase.

On the other hand, if a system is stable with respect to a pathogen, this means that the pathogen has
almost no effects on the system. Hence, probably such pathogen has low medical interest: not even the
patient will notice that his immune system is interacting with the pathogen.

It is important to notice that robustness is not a local property. The “functions to be preserved” could
have no apparent relationship with the “admissible perturbations”. This is better shown by the following
example.

Example 3 (Drug Development). The case of different drugs for mitigating inflammations is described
in [18]. Cyclooxygenase 2 (COX2) is expressed in tissues with inflammation and its inhibition reduces
the inflammation process. Some drugs were designed to inhibit COX2, but since they also inhibit COX1
adverse gastrointestinal effects were observed. Hence, drugs with more selective inhibition of COX2 were
considered. These do not have gastrointestinal side-effects, but at high doses the risk of cardiovascular
problems increased. As Kitano pointed out, this example “highlights the fact that selectivity for a molecule
in the target cells does not eliminate the risk of side effects, as the target molecule might have an important
role in off-target cells. . . . Drug side effects can be caused by unwanted interactions with molecules that
expose the fragility of cellular or organ-level functions to specific interventions in both target cells and
off-target cells” [18].

In the next section we present an unwinding framework typical of information flow security. We will
take inspiration from such framework to define a general notion of robustness which tries to answer Kitano’s
requirements.

2.2. . . . To Security . . .
Information flow security deals with multilevel systems in which confidential and public data coexist. Its

main goal is to ensure that no information flow from a level to a lower one. Traditionally, only two security
levels are considered: high (H) and low (L). High level users have access to confidential information, while
low level users can only handle public data. The interaction between high level users and the system should
not influence the low level behaviours. In the case of deterministic systems, this was formalised in [19]
as the notion of non-interference. Such notion has been generalised in different non-deterministic settings
such as programming languages [20], process calculi [21, 22], probabilistic models [23], cryptographic
protocols [24].

In information flow security, unwinding conditions have been introduced as local properties on high level
actions aiming at ensuring non-interference [22, 3, 4]. We present here the notion of unwinding over LTS’s.
First we need to partition the edge labels into two sets: H, high level labels, corresponding to high level
actions and L, low level labels, associated with low level actions. We dub LTS’s with H and L edge labels
multilevel LTS’s. The unwinding condition is parametric with respect to two relations: a low level behavioural
equivalence, ∼L, and a transition relation, d. The former establishes which nodes should be considered
indistinguishable from a low level point of view. The latter identifies paths alternative to the execution of
a high action.

Definiton 6 (UnwindingW(∼L,d)). Let T = (V,VI,H∪L,E) be a multilevel LTS, ∼L
⊆ V×V be an equivalence

relation, and d⊆ V × V be a transition relation. We say that T satisfies the unwinding conditionW(∼L,d) if
for each h ∈ H and for each u,u′ ∈ V the following condition holds:

u h
−→ u′ implies ∃u′′(u d u′′ ∧ u′ ∼L u′′)

5
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h

u

u′ u′′

?

T

Figure 2: Intuitive representations of unwinding condition. The system T satisfies the unwinding conditionsW(∼L,d) if, whenever
a high action can lead the state from u to u′, d can lead T from u to u′′ and u′ and u′′ are indistinguishable by the low user.

In Figure 2 we give an intuitive representation of a generic unwinding condition.
Whenever the information included in the nodes is also important, generalised unwinding conditions

come into play. They are parametric on a further relation =L establishing which node information is low
level visible or, in other terms, when two nodes are locally low level indistinguishable, i.e., indistinguishable
without considering their outgoing edges.

Definiton 7 (Generalised UnwindingW(=L,∼L,d)). Let T = (V,VI,H ∪ L,E) be a multilevel LTS, =L,∼L
⊆

V ×V be two equivalence relations, and d⊆ V ×V be a transition relation. We say that T satisfies the generalised
unwinding conditionW(=L,∼L,d) if for each h ∈ H and for each u,u′ ∈ V the following condition holds:

u h
−→ u′ implies ∀v(u =L v implies ∃v′(v d v′ ∧ u′ ∼L v′))

Intuitively, this corresponds to say that the low level user is not even able to tell whether the system
before the high level transition was in u or in v. Generalised unwinding conditions have been used in [25]
to study information flows on a basic concurrent imperative language. Unwinding conditions are nothing
but generalised unwinding conditions in which the relation =L is the identity relation.

Surprisingly, in [4] it has been proved that some instances of the unwinding schema were equivalent
to well-known security properties defined in terms of high level attacker models. Intuitively, if a system
E satisfies the unwinding condition, then a high level malicious process Π interacting with any state E′

reachable from E (denoted by E′|Π) cannot send down to the low level user private information (i.e.,
E′|Π ∼L E′). In such context, the (generalised) unwinding framework is appealing for many reasons. It
provides a universal quantification over an infinite set of attackers. It characterises persistent security
properties, i.e., properties which hold also when the attack starts in the middle of the computation. It
localises the reasoning/computation over the system. In many cases it naturally suggests refinements and
correction policies.

2.3. . . . and Back: a Robust notion of Robustness
Our proposal is to use the notion of non-interference and its formalisation through unwinding conditions

to define a general framework for robustness. Informally a system is robust if, when it moves to a perturbed
state, the behaviours of its critical components remain almost unchanged. In other words, when a robust
system performs a “high level action” which leads to a perturbed state the “low level behaviours” of its
critical components are not influenced. Hence, in the biological setting high level actions play the role
of perturbations and they interfere only with some specific components of the system, while low level
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actions represent the functions to be preserved, where “preserved” means having a behaviour which is
“equivalent” to the standard one. We try to better understand this idea on the examples presented in
Section 2.1.

Example 4 (Research on Pathogens – part II). Let us consider again the system infected by a pathogen
agent. The immune system and all the organs directly attacked by the pathogen are high level components,
while the organs which we do not want to be dramatically affected are the low level ones (e.g., heart,
lung, kidney, brain). Some changes in the immune system (high actions) could slightly modify the usual
behaviour of the “low level” organs. To be acceptable such changes should be low level behaviourally
equivalent to the usual evolution. In other terms, the system is robust with respect to the pathogen if the
pathogen cannot interfere with its standard behaviour (i.e., if the system satisfies an unwinding condition).

Example 5 (Drug Development – part II). In the anti-inflammatory drugs example, COX1 and COX2 in-
hibition is the high level expected effect of the drugs, while gastrointestinal and cardiovascular problems
are the low level undesirable changes. The “unwanted interactions” mentioned by Kitano [18] are the
interference effects we intend to measure with low level observational equivalences. Hence, a drug can be
used only if it does not interfere in the above sense with the system.

The above examples point out that when we define a notion of robustness based on non-interference,
the low level actions are the ones we want to preserve and hence, they are the ones we are interested in
observing. So, in the biological setting we call them Exposed (Exp). On the other hand, high level actions
are perturbations usually coming from the environment and, of course, actions of the system in response
to such perturbations. Since, the system has limited (or possible none) control on external perturbations,
we will call them Imposed (Imp). So we get the following definition of robustness.

Definiton 8 (Robustness through Non-Interference). A biological system S which can both interact with the
behaviour through Imposed Imp actions and perform Exposed Exp actions is said to be robust through Non-
Interference if the Imposed behaviours do not influence the Exposed ones.

As in the field of Information Flow Security, Non-Interference has been formalised through (generalised)
unwinding conditions, in Systems Biology we can exploit them to characterise robustness.

Definiton 9 (Robustness through Unwinding). Let T = (V,VI, Imp ∪ Exp,E) be a multilevel LTS representing
a biological system, =Exp,∼Exp

⊆ V × V be two equivalence relations, and d⊆ V × V be a transition relation. We
say that T is unwinding robust, denoted as T ∈ W(=Exp,∼Exp,d), if for each i ∈ Imp and for each u,u′ ∈ V the
following condition holds:

u i
−→ u′ implies ∀v(u =Exp v implies ∃v′(v d v′ ∧ u′ ∼Exp v′))

Let us notice that we could have used “standard” unwinding condition from Definition 6 in place of
generalised unwinding condition in our definition of robustness. However, the former is a particular case
of the latter and, thus, it would have provided less instances of the framework. Moreover, as we will see in
Section 3, we exploit generalised unwinding condition to reduce the state spaces of investigated models.

In order to instantiate the unwinding framework in the biological context we need to choose the exposed
behavioural equivalences∼Exp and =Exp and the transition relationd. The exposed behavioural equivalences
∼

Exp and =Exp establish which variations in the behaviour of the system are considered acceptable. In
the literature comparisons between systems under different conditions are performed either observing
simulations of the systems or checking that some system properties are true in all cases. These are just
two possible cases of exposed behavioural equivalences. As we further explain in the rest of this section,
unwinding conditions generalise these approaches. The transition relation d has a less intuitive meaning.
We can view d as a possible delay between the behaviour of the system running in normal conditions and
the system after an imposed change. In the case of biological systems this is coherent with a situation in
which the imposed action speeds up a “reaction”. Consider for instance the case of a model representing
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the behaviour of a patient with a bacterial infection. The imposed action represents the decision of taking
an antibiotic and immediately reaching a recovery state, while the d relation slowly leads to the recovery
state without taking any drug. In this case d clearly represents a delay. On the other hand, when the
imposed action is a perturbation on a system at the steady-state, the perturbed system needs time to go
back to a steady-state. In the case d is the identity relation, i.e., no action is performed, while the “delay”
needed by the perturbed system has to be absorbed by the exposed observational equivalence ∼Exp.

Going back to Kitano’s requirements for a robustness framework [17], we can now say that in our general
notion of robustness based on unwinding conditions, the functions of a system are mainly defined through
the exposed observational equivalences =Exp and ∼Exp, while the perturbations are modelled through imposed
actions. Moreover, as far as the difference between stability and robustness is concerned, unwinding
conditions allow us to move inside a lattice of equivalences where, travelling from finer (qualitative)
relations to coarser (quantitative) ones, stability transits to robustness.

Let us explain in which sense our notion of robustness is robust. Recently many authors have proposed
models for robustness in the biological setting (see, e.g., [26, 27, 28, 29, 30, 31, 32]). We can distinguish two
main approaches: robustness as “sensitivity” and robustness as “properties preservation”.

Sensitivity analysis aims at explaining the uncertainty in the output of a mathematical model by means of
different sources of uncertainty in its inputs. It is based on statistical techniques and it has been successfully
applied in the area of control theory to ensure robustness of engineered controllers. More recently, it has
been proposed for the robustness analysis of biological systems (see e.g., [26]).

As far as properties preservation is concerned, Temporal Logics can be used as specification languages
for expressing the properties of interest. Such logics have been traditionally used by the computer science
community for the verification of real-time critical systems. Properties of system traces can be specified
by these formalisms and Model Checking algorithms verify them on a given system (see, e.g, [2] for a
general introduction). In [5] authors proposed to model biological systems through LTS’s and exploit these
well-established techniques in the biological setting. In such context robustness has been defined as a
way to “measure the distance” (or in other terms a “degree of satisfaction”) of a set of traces from a given
specification (see, e.g., [27, 28, 29, 30, 31, 32]). In particular, Fainekos and Pappas defined in [27], and Brim
et al. extended in [31], both a distance δ(s, s′) between two signals (i.e., functions that associate with any
time instant a tuple of values inRn) and a robustness degree Dist

(
s, ϕ

)
of the signal s on a Metric Temporal

Logics (MTL) formula ϕ. They prove that if δ(s, s′) ≤ Dist
(
s, ϕ

)
, then the evaluations of ϕ on both s and s′

give the same result. Hence, Dist
(
s, ϕ

)
represents the diameter of a maximal flow tube which includes s

and over which the value of ϕ is constant. In other terms, it represents the minimum distance between s
and signals over which ϕ has a different truth value. If Dist

(
s, ϕ

)
= 0, then s is not robust on ϕ. More in

general the following definition applies.

Definiton 10. [Robustness as property preservation [27]] A signal s is a function s : R≥0 → Rn which associates
with any time instant t ∈ R≥0 a tuple s(t) = (x1, . . . , xn) of values.

Let s be a signal, ϕ a MTL formula, and S a set of perturbations S, i.e., a set of signals. We say that s is robust
on ϕ with respect to S if

δ(s,S)
def
= sup

s′∈S
δ(s, s′) ≤ Dist

(
s, ϕ

)
.

We can embed such notion of robustness in our framework as follows.

Definiton 11 (Signals LTS). The timed LTS LT(s) associated with a signal s is the tuple (V, {vI}, Imp ∪ Exp,E)
where:

- V
def
= {(t, s(t)) | t ∈ R≥0};

- vI
def
= (0, s(0));

- Imp
def
= ∅ and Exp

def
= R≥0;

- E
def
=

{((
t1, s(t1)

)
, t2 − t1,

(
t2, s(t2)

))
| t1 ≥ t2

}
.

8
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The untimed LTS is obtained from LT(s) by removing edge labels.

Example 6. Let us consider the signal s1 defined as follows:

s1(t) def
=


(3,−2) if t ∈ [0, 3]
(3, 8.8) if t ∈ (3, 5]
(π, 7) if t > 5

.

The timed LTS LT(s1) = (V1, {vI,1},R≥0,E1) associated with s1(t) is such that:

- V1
def
=

{(
t, (3,−2)

)
| t ∈ [0, 3]

}
∪

{(
t, (3, 8.8)

)
| t ∈ (3, 5]

}
∪

{(
t, (π, 7)

)
| t > 5

}
;

- vI,1
def
=

(
0, (3,−2)

)
;

- E1
def
=

{((
t1, (3,−2)

)
, t2 − t1,

(
t2, (3, 8.8)

))
| t1 ∈ [0, 3] ∧ t2 ∈ (3, 5]

}
∪{((

t1, (3,−2)
)
, t2 − t1,

(
t2, (π, 7)

))
| t1 ∈ [0, 3] ∧ t2 > 5

}
∪{((

t1, (3, 8.8)
)
, t2 − t1,

(
t2, (π, 7)

))
| t1 ∈ (3, 5] ∧ t2 > 5

}
.

Given a signal s and a set of signals S we build a model containing s and all the signals of S in which s
is interpreted as the standard behaviour, while the elements of S are the perturbed behaviours which occur
after an Imposed action ι.

Definiton 12 (Set Signals LTS). Let s and S be a signal and a set of signals, respectively. Moreover, let (Vp, {vp
I }, Imp∪

Expp,Ep) be the LTS LT(p) for all p in S ∪ {s}. The set signals LTS LT(s,S) is the tuple (V, {vI}, Imp ∪ Exp,E) where:

- V
def
= {init} ∪ (Vs

× {s}) ∪
⋃

s′∈S(Vs′
× {s′});

- vI
def
= init;

- Imp
def
= {ι} and Exp

def
= R≥0 ∪ {ε} where ι and ε are two fresh symbols;

- E
def
= {(init, ε, (vs

I , s))} ∪ {(init, ι, (vs′
I , s
′)) | s′ ∈ S} ∪ lift (Es, s) ∪

⋃
s′∈S lift

(
Es′ , s′

)
;

and lift
(
F, q

) def
= {((u, q), α, (v, q)) | (u, α, v) ∈ F}.

From an intuitive point of view, LT(s,S) is the disjoint union of the LTS’s of s and of each of s′ ∈ S
together with a new distinguished node init which reaches all the nodes of the form (0, r). From the node
init, LT(s,S) can reach the LTS LT(s) by crossing an edge whose label is ε ∈ Exp; on the contrary, all the edges
that connect init to one of the LTS LT(s′), where s′ ∈ S, are labelled by ι ∈ Imp (see Figure 3).

We define an unwinding condition which embeds the robustness notion defined in [27] in our framework.

Definiton 13. The unwinding condition for the temporal formula ϕ isWϕ def
=W(id,≈ϕ, ε−→) where id is the identity

relation and ≈ϕ is the smallest equivalence relation such that:(
(0, s(0)), s

)
≈
ϕ

(
(0, s′(0)), s′

)
iff δ(s, s′) ≤ Dist

(
s, ϕ

)
Latter on, with a small abuse of notation, we may write (0, s′(0)) ≈ϕ (0, s(0)) in place of ((0, s′(0)), s′) ≈ϕ

((0, s(0)), s).

Proposition 2. Let s be a signal, S be a set of signals, and ϕ a temporal formula. It holds that s is robust on ϕ with
respect to S if and only if LT(s,S) satisfiesWϕ.

9
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...

init

vs
I LT(s)

vs1
I LT(s1)

vsn
I LT(sn)

ε

ι

ι

Figure 3: The set signals LTS(s,S) is the disjoint union of all the LTS associated with s̄ ∈ S∪ {s}. This LTS has one single initial node init
from which LTS(s,S) can reach the initial node vs̄

I of any LT(s̄) by crossing an edge es̄. If s̄ = s, then es̄ is labelled by ε; in the remaining
cases, es̄ is labelled by ι. Since some of the LTS may share some states, all the nodes of the same LT(s̄) are formally labelled by s̄.

Proof. ⇒) In LT(s,S) if u ι
−→ u′, then u = init and u′ is of the form ((0, s′(0)), s′) with s′ ∈ S. Hence,

init ε
−→ ((0, s(0)), s). Moreover, by Definition 10, it holds that δ(s, s′) ≤ δ(s,S) ≤ Dist

(
s, ϕ

)
and hence

((0, s′(0)), s′) ≈ϕ ((0, s(0)), s′). Since id is the identity relation, LT(s,S) satisfiesWϕ.
⇐) Since LT(s,S) satisfiesWϕ, for each s′ ∈ S we have that ((0, s′(0)), s′) ≈ϕ ((0, s(0)), s). By definition of

≈
ϕ this means that for each s′ ∈ S δ(s, s′) ≤ Dist

(
s, ϕ

)
. Hence, δ(s,S) = sups′∈Sδ(s, s′) ≤ Dist

(
s, ϕ

)
. �

Of course this is a trivial way to map the notion of robustness defined in [27] in our framework.
However, this embedding reveals that we can immediately generalise this robustness notion and consider
sets of formulæ by simply modifying≈ϕ. As a matter of fact, any set Φ of formulæ over a temporal language
L can be used to define an exposed observational equivalence ≈Φ as follows:

u ≈Φ v iff ∀ϕ ∈ Φ u ≈ϕ v.

In temporal and modal logics, bisimulations are the natural equivalences that establish which states are
indistinguishable with respect to the logic, i.e., whenever two states are bisimilar all the formulæ of the logic
have the same truth values on them. So, if we consider as exposed observational equivalence a bisimulation
equivalence over L, we are sure that the perturbed and unperturbed systems are indistinguishable with
respect to any formula of L. In this sense unwinding conditions based on bisimulation relations can be
seen as robust robustness definitions. Such intuition can be formalised as follows.

Definiton 14. Let ≈ be a bisimulation relation over L. The robust unwinding condition for L isW(id,≈, ε−→).

Proposition 3. Let s be a signal and S be a set of signals. If LT(s,S) satisfies the robust unwinding condition for L,
then s is robust on any formula ϕ over L with respect to S.

A strong objection against the use of bisimulation as exposed observational equivalence for unwinding
conditions characterising robustness concerns the fact that in the case of real time/space systems and
even more crucially in the case of probabilistic systems (e.g., DTMCs and CTMCs), bisimulation relations
could be too demanding. An answer to this objection comes from bisimulations notions which take into

10
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consideration continuous domain, probability, errors (see, e.g., [33, 34, 35, 36, 37, 38]). In particular, [33]
and [34] introduced a bisimulation distance δB(u, v) between states that can be used to define exposed
observational equivalences as u ≈k v iff δB(u, v) ≤ k, where k is a constant. The algorithm proposed in [39]
can be used to efficiently compute such relations on DTMC models.

Notice also that in our encoding we used LTS’s in the simplest possible way. In general, using LTS’s we
can finitely represent any regular infinite set S of perturbed signals. Moreover, with a clever use of exposed
actions we can exploit unwinding robustness also to compare perturbed signals and to analyse the effects
of applying more than one perturbation.

3. Bisimulation Based Unwinding Conditions on Bio-PEPA

As an example of a computational language for modelling biological systems, we consider in this
section the stochastic process algebra Bio-PEPA. Different process algebra for modelling biological systems
have been introduced in the literature (e.g., see [40, 41, 42, 43, 44]). We decided to consider here Bio-
PEPA since different semantics and behavioural equivalences have been proposed on it (e.g., see [45, 10])
and many biological systems have been modelled in Bio-PEPA and analysed through public available
tools [46, 47, 48, 49].

A detailed description of Bio-PEPA is out of the scope of our work and we refer the reader to Bio-PEPA
website1, where complete bibliography, implementations, and case-studies can be found. The following
definitions and notions mainly come from [10].

The main components of a Bio-PEPA system are the sequential components C and the model component
P. The former describe the evolutions of each species. The latter models the interactions among species
and define the initial values. Bio-PEPA also requires a context that specifies functional rates, compartments
(i.e., species constraints), and parameters.

Intuitively, populations of molecules are modelled as species. The sequential components are templates
of behaviours for a population and they describe all the possible reactions α involving it. The model
component represents the environment in which the populations interact.

Definiton 15 (Bio-PEPA [10]). A well-defined Bio-PEPA sequential component C is a recursive process of the
form:

C
def
= (α1, κ1)op1C + . . . (αq, κq)opqC sometime written as C

def
=

q∑
i=1

(αi, κi)opiC

where opi ∈ {↑, ↓,⊕,	,�}, αi is an action name, κi is a stoichiometric coefficient, and αi , α j for i , j.
A well-defined Bio-PEPA model component is a process of the form:

P
def
= C1(x1) BC

L1
. . . BC

Lp−1
Cp(xp)

where the Ci’s are well-defined sequential components which are pairwise different, the xi’s represent initial concen-
trations, and Li’s are sets of actions that appear in P.

We may interpret ↓ as a reactant, ↑ a product, ⊕ an activator, 	 as an inhibitor, and � as a generic
modifier. Bio-PEPA model components are used to rule the evolution of a Bio-PEPA system.

Definiton 16 (Bio-PEPA System [10]). A Bio-PEPA system P is a 6-tuple (V,N ,K ,F ,Comp,P) where V is
the set of compartments, N is the set of quantities describing each species, K is a set of parameters, F is the set of
functional rates, Comp is the set of well-defined sequential components, and P consists of a well-defined Bio-PEPA
model over Comp.

1http://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/biopepa.html
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prefixReac (α, κ) ↓ S(l)
(α,[S:↓(l,κ)])
−−−−−−−−→c S(l − κ)

N′S + κ ≤ l ≤ NS

prefixProd (α, κ) ↑ S(l)
(α,[S:↑(l,κ)])
−−−−−−−−→c S(l + κ)

N′S ≤ l ≤ NS − κ

prefixMod (α, κ) op S(l)
(α,[S:op(l,κ)])
−−−−−−−−−→c S(l)

N′S + κ ≤ l ≤ NS if op = ⊕
N′S ≤ l ≤ NS if op = {	,�}

choice1

S1(l)
(α,w)
−−−→c S′1(l′)

(S1 + S2) (l)
(α,w)
−−−→c S′1(l′) choice2

S2(l)
(α,w)
−−−→c S′2(l′)

(S1 + S2) (l)
(α,w)
−−−→c S′2(l′)

coop1

P1
(α,w)
−−−→c P′1

P1 BC
L

P2
(α,w)
−−−→c P′1 BCL P2

α < L
coop2

P2
(α,w)
−−−→c P′2

P1 BC
L

P2
(α,w)
−−−→c P1 BC

L

P′2
α < L

coop3

P1
(α,w1)
−−−−→c P′1 P2

(α,w2)
−−−−→c P′2

P1 BC
L

P2
(α,w1::w2)
−−−−−−→c P′1 BCL P′2

α ∈ L
constant

S(l)
(α,[S:op(l,κ)])
−−−−−−−−−→c S′(l′)

C(l)
(α,[C:op(l,κ)])
−−−−−−−−−→c S′(l′)

C def
= S

Table 1: The operational semantics of Bio-PEPA model components [10]

Final

P
(α,w)
−−−→c P′(

V,N ,K ,F ,Comp,P
) (α,rα[w,N ,K ])
−−−−−−−−−→s

(
V,N ,K ,F ,Comp,P′

)

Qual

P
(α,w)
−−−→c P′(

V,N ,K ,F ,Comp,P
) α
−→

(
V,N ,K ,F ,Comp,P′

)
Table 2: The operational semantics of Bio-PEPA systems [10]

The operational semantics of Bio-PEPA is defined through the rules reported in Table 1 and 2.
Each species is labelled by a value, called level, that denotes its abundance. For instance, the level

of a species A may represents the number of molecules of a substance or the number of individual of a
population depending on the meaning to A itself. In a generic Bio-PEPA system (V,N ,K ,F ,Comp,P), N
constrains the level of any species S and it ties it to an interval [N′S,NS]. N′S and NS are called minimum level
and minimum level of S, respectively.

The rules prefixProd, prefixReac, and prefixMod constrain the application of an action α and, at the
same time, detail their effects on a sequential component S. For instance, prefixReacmeans that, whenever
S is a reactant of a reaction α (i.e., ↓) with stoichiometric coefficient κ, any occurrence of α reduces the level,
l, of S to l − κ units. In order to maintain these values in the interval [N′S,NS], α can occurs if and only if
l is included in the interval between the minimum level of S (i.e., N′S) plus κ and the maximum level of S
(i.e., NS). Analogously, prefixProd rules that if S is a product of a reaction α (i.e., ↑) with stoichiometric
coefficient κ, α can occur only if the level of the species S is included in the interval between the minimum

12
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level and the maximum level plus κ. In such a case, when α occurs it increases the level of S from l to l + κ.
The rules choice1 and choice2 detail the behaviour of a system that chooses between two (or more)

sequential components (i.e., S1 + S2): if an action α brings S1 (S2) with level l to S′1 (S′2) with level l′, then the
same action can bring S1 + S2 with level l to S′1 (S′2, respectively) with level l′.

The rules coop1, coop2, and coop3 guide the evolution of model components: if the process P1 (P2) may
evolve in P′1 (P′2) because of an action α, but P1 and P2 do not synchronise on α (i.e., α < L), then P1 BC

L

P2

evolves in P1 BC
L

P′2 ( P′1 BCL P2, respectively) because of α. Otherwise, if P1 may evolve in P′1 because of α, P2

may evolve in P′2 because of α, and P1 and P2 synchronise on α (i.e., α ∈ L), then P1 BC
L

P2 evolves in P′1 BCL P′2
because of the same action.

In [50] these rules are at the basis of the construction of a Stochastic LTS representing a Bio-PEPA model.
In [51] such LTS’s are mapped into CTMCs with levels. In [10] LTS over Bio-PEPA systems are defined by
both discretising concentrations through compartments and abstracting the above mentioned rules from
quantitative aspects. The authors obtain LTS’s whose nodes are tuples of integers and whose edges have
the form α

−→, where α is a reaction name.

Example 7 (A simple Bio-PEPA model). Let us consider one of the examples presented in [10]. It represents
a system with 3 species interacting through 3 reactions.

A = (α1, 1) ↓ A + (α2, 1) ↑ A + (α3, 2) ↓ A

B = (α3, 1) ↑ B

C = (α1, 1) ↑ C + (α2, 1) ↓ C

P = A(xA) BC
∗

B(xB) BC
∗

C(xC)

where BC
∗

denotes the synchronisation on all actions.

The possibility of associating different semantics to Bio-PEPA systems allows modeller to exploit different
behavioural equivalences on them. While lumpability relations can be computed on the CTMCs associated
with Bio-PEPA systems [51], a qualitative notion of bisimulation has been introduced in [10], where LTS’s
are first abstracted from level quantities, then compared using strong bisimulation.

We introduce here a simple instance of our framework over Bio-PEPA process algebra. First we extend
the standard notation of Bio-PEPA systems. We partition the set of species into two sets Imp and Exp. As
a consequence we partition the set A of action names into two sets Imp and Exp of imposed and exposed
actions, respectively, as follows: each action which occurs in the definition of species of Imp is in Imp, all the
remaining actions are in Exp.

Example 8. Let us consider the Bio-PEPA model specified in Example 7. If Imp = {C} and Exp = {A,B}, then
Imp = {α1, α2} and Exp = {α3}. From now on we will use this system as illustrative example.

As observed in [10], given a system P we can denote the states of its LTS by using tuples of integers
representing the levels of the species (see Example 9). We use the same convention, but we distinguish
between species of Imp and Exp, i.e., our tuples have the form (i1, . . . im, e1, . . . en), where i1, . . . , im are the
levels of the species of Imp, while e1, . . . , en are the levels of the ones of Exp.

Definiton 17 (LTS of P [10]). The LTS L(P) of a Bio-PEPA system P is the LTS (P, {P}, Imp ∪ Exp,→) where:

- P is the set of all the possible Bio-PEPA systems;

- Imp ∪ Exp is the set of admissible actions;

- → is the relation associated with the rule Qual of the Table 2.
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Whenever P → P′, P′ differs from P only in the levels of some components. Hence, the state of L(P) can
be represented by a vector of levels. Moreover, since all the species range over a finite set of levels, the LTS
of a Bio-PEPA system is finite.

Example 9 (LTS of a Bio-PEPA system). Let us reconsider the Bio-PEPA system described in Example 8.
When the concentration level admitted for each species ranges in [0, 4] and the evolution begins from the
state xA = 4, xB = 0, and xC = 0, the LTS of it is the transition system P(4, 0, 0[4, 4, 4]) depicted in Fig. 4. We
recall that in this LTS we have Imp = {α1, α2} and Exp = {α3}.

(4, 0, 0)start

(2, 1, 0)

(0, 2, 0)

(3, 0, 1)

(1, 1, 1)

(2, 0, 2)

(0, 1, 2)

(1, 0, 3) (0, 0, 4)

α3

α3

α3 α3

α1

α2

α1

α2

α1

α2

α1

α2

α1

α2

α1

α2

Figure 4: The transition system P(4, 0, 0[4, 4, 4]) of Example 7.

We define the relations which equate nodes from an exposed point of view as follows. We use the
notation u→ u′ to denote u α

−→ u′ for some α ∈ A.

Definiton 18 (�Exp and ≈Exp). Let u, v be two states of L(P). We say u �Exp v if and only if the exposed variables
of u and v have the same values. A strong exposed bisimulation over L(P) is a symmetric binary relation R over
L(P) such that for each (u, v) ∈ R:

- u �Exp v;

- if u→ u′, then v→ v′ and (u′, v′) ∈ R.

Two states u and v are strongly exposed bisimilar, denoted by u ≈Exp v, if there exists a strong exposed bisimulation
R such that (u, v) ∈ R.

It is easy to prove that ≈Exp is the largest exposed bisimulation and it is an equivalence relation.
We are now ready to define our instance of the generalised unwinding framework.

Definiton 19 (Quantitative Unwinding). P satisfies the quantitative unwinding if L(P) ∈ W(�Exp,≈Exp,→).

Unwinding conditions can be introduced over any operational semantics based on LTS’s. The advan-
tages of considering unwinding conditions over process algebras such as Bio-PEPA are twofold. On the
one hand, we can prove properties over the systems satisfying the unwinding conditions in terms of their
interactions with other systems. In particular, we can prove that these systems are not critically affected
by hostile environments (see Theorem 1, hereafter). On the other hand, we can exploit compositionality
properties of the syntactic operators to both reduce the complexity of checking the unwinding condition
and to suggest corrections when unwinding is not satisfied.

Theorem 1. It holds that L(P) ∈ W(�Exp,≈Exp,→) if and only if for each u, v ∈ L(P) if u �Exp v, then u ≈Exp v.
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Proof. ⇒) Let S = {(u, v) | u, v ∈ L(P) and u �Exp v}. We prove that S is a strong exposed bisimulation up to
≈

Exp. Let (u, v) ∈ S, i.e., u �Exp v. If u ε
−→ u′ with ε ∈ Exp, then since u �Exp v and both the side-conditions

and the resultant of applying an ε transition only depend on Exposed quantities, it holds that there exists
v′ such that v ε

−→ v′ and u′ �Exp v′, i.e., (u′, v′) ∈ S. On the other hand, if u ι
−→ u′ with ι ∈ Imp, then, since

L(P) ∈ W(�Exp,≈Exp,→) and u �Exp v, there exists v′ such that v→ v′ and u′ ≈Exp v′.
⇐) Let u ι

−→ u′ with ι ∈ Imp and u �Exp v. Since u �Exp v implies u ≈Exp v, we get that v → v′ with
u′ ≈Exp v′. �

The above theorem states that changes in the imposed environment of a system satisfying the unwinding
condition do not affect the exposed behaviour of the system itself. Moreover, it suggests an efficient
algorithm for testing L(P) ∈ W(�Exp,≈Exp,→) as explicitly stated in the following corollary.

Corollary 1. It holds that L(P) ∈ W(�Exp,≈Exp,→) if and only if L(P)/ ≈Exp coincides with L(P)/ �Exp.

Proof. This is an immediate consequence of Theorem 1 and of the fact that u ≈Exp v implies u �Exp v. �

Hence, to test whether L(P) ∈ W(�Exp,≈Exp,→) one should simply start a partitioning bisimulation
algorithm, such as Paige-Tarjan algorithm [14], on L(P) to compute≈Exp. If the algorithm terminates without
performing any split, then L(P) satisfies the unwinding condition. On the other hand, if it performs a split,
we can immediately stop the computation and return L(P) < W(�Exp,≈Exp,→). Since such bisimulation
algorithms can work both symbolically and on-the-fly, they allow us to test the unwinding condition
without fully computing L(P) and avoid space-explosion problems.

Example 10. If we consider the system of Example 8, we get that it satisfies the quantitative unwinding,
since as shown by Figure 4 in this case both �Exp and ≈Exp are the identity relation.

Notice that if a system is inW(�Exp,≈Exp,→), then imposed species cannot produce/consume exposed
species, unless the same production/consumption can be also achieved exploiting only exposed species.
In the case of closed chemical systems satisfying the conservation mass law this corresponds to imposing
a complete separation between exposed and imposed species. However, this is not the case in biological
systems where the presence of degradation laws make systems non-conservative.

Example 11. Consider a simple system in which a species E ∈ Exp can be produced from a reaction which
involves a species I ∈ Imp. Moreover, both species can degrade.

E = (ε, 1) ↓ E + (ι1, 1) ↑ E
I = (ι1, 1) ↓ I + (ι2, 1) ↓ I

No matter which are the boundary levels defining such system, if its LTS includes one ι1 action, then the
system does not satisfy the unwinding condition. Intuitively, if I is a vaccine (or a pathogen), since it can
produce a species in Exp, it interferes with the system’s observable behaviour. We obtain the same result
also if ι1 would require the presence of other species of Exp.

On the other hand, let us consider a different system that contains, in addition to the reactions depicted
by the above rules, a further reaction δ that produces E.

E = (ε, 1) ↓ E + (ι1, 1) ↑ E + (δ, 1) ↑ E
I = (ι1, 1) ↓ I + (ι2, 1) ↓ I

Since≈Exp is qualitative with respect to the rates, this second system satisfies the unwinding condition for
each possible values of ι1 and δ. By imposing a more qualitative equivalence we would obtain constraints
on these values. See Figure 5 to have a graphical representation of the system when E ∈ [0, 3] and I ∈ [1, 3].
In such a case, the system satisfies the quantitative unwinding as both �Exp and ≈Exp are the identity relation
over E.
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(0, 3)start

(0, 2)

(0, 1)

(1, 3)

(1, 2)

(1, 1)

(2, 3)

(2, 2)

(2, 1)

(3, 3)

(3, 2)

(3, 1)

ι2

ι2

ι2

ι2

ι2

ι2

ι2

ι2

ι1

ι1

ι1

ι1

ι1

ι1

δ

ε

δ

ε

δ

ε

δ

ε

δ

ε

δ

ε

δ

ε

δ

ε

δ

ε

Figure 5: The transition system P(0, 3[4, 3]) of the second Bio-PEPA system of Example 11.

Let us now introduce a second unwinding condition, called quasi-quantitative on Bio-PEPA LTS’s. At a
first sight this could seem less demanding than quantitative unwinding however we will show that this is
not the case.

Definiton 20 (+Exp and uExp). Let u, v be two states of L(P). We say u +Exp v if and only if u and v have the same
sets of Exp labels on outgoing edges. A strong quasi-exposed bisimulation over L(P) is a symmetric binary relation
R over L(P) such that for each (u, v) ∈ R:

- u +Exp v;

- if u→ u′, then v→ v′ and (u′, v′) ∈ R.

Two states u and v are strongly quasi-exposed bisimilar, denoted by u uExp v, if there exists a strong exposed
bisimulation R such that (u, v) ∈ R.

Definiton 21 (Quasi-Quantitative Unwinding). P satisfies the quasi-quantitative unwinding if L(P) ∈ W(+Exp

,uExp,→).

Even if �Exp implies +Exp, the following examples show thatW(+Exp,uExp,→) +W(�Exp,≈Exp,→).

Example 12. Let us consider the Bio-PEPA model defined as follows:

A = (ε1, 2) ↓ A + (ε2, 3) ↓ A

B = (ε1, 5) ↑ B + (ε2, 6) ↑ B + (ι, 6) ↓ B

C = (ι, 1) ↑ C

P = A(xA) BC
∗

B(xB) BC
∗

C(xC)

where A and B are exposed species, while C is an imposed species.
The LTS P(3, 0, 0[6, 6, 6]) that is associated with the above model when the concentration level admitted

for each species ranges in [0, 6] and the evolution begins from the state xA = 3, xB = 0, and xC = 0 is depicted
in Figure 6. It is easy to see that P(3, 0, 0[6, 6, 6]) ∈ W(�Exp,≈Exp,→) because the states in P(3, 0, 0[6, 6, 6])
are pairwise distinct with respect to the exposed species. On the contrary, (1, 5, 0), (0, 6, 0), and (0, 0, 1) have
the same exposed actions and, thus, (1, 5, 0) +Exp (0, 6, 0). However, (0, 6, 0) ι

−→ (0, 0, 1), while there is no
transition leaving (1, 5, 0). It follows that P(3, 0, 0[6, 6, 6]) <W(+Exp,uExp,→).

Notice that also the system of Example 8 satisfies the quantitative unwinding (as proved in Example
10), but not the quasi-quantitative unwinding. In particular, (0, 0, 4) +Exp (0, 2, 0) and (0, 0, 4) reaches (1, 0, 3)
through an imposed action, but (0, 2, 0) does not reach any state equivalent to (1, 0, 3), since it does not reach
any state.
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(3, 0, 0)start

(1, 5, 0)

(0, 6, 0) (0, 0, 1)

ε1

ε2 ι

Figure 6: The LTS P(3, 0, 0[6, 6, 6]) of the Bio-PEPA model described in Example 12.

Given a systemP the LTS L(P) can be very large. Moreover, it distinguishes too precisely on the basis of
quantitative information also LTS’s which represent the same qualitative behaviours. The qualitative LTS
of P is obtained as a quotient of L(P) in which nodes having the same capabilities (outgoing actions) are
identified.

Definiton 22 (QLTS of P). Let P be a Bio-PEPA system. Given two states u, v of L(P) we say that u + v if and
only if u and v have the same sets of labels on outgoing edges.

The qualitative LTS QL(P) of a Bio-PEPA system is the LTS L(P)/ +.

Since all the states in any class of L(P)/ + share the same admissible actions, we can denote each node
of QL(P) by using the set of these actions. The qualitative semantics defined in [10] for Bio-PEPA systems is
close to our definition, with the difference that in [10] for each pair of classes [u]+, [v]+ in QL(P) there exists
at most one edge from [u]+ to [v]+ whose label is the set of actions which allow to move from [u]+ to [v]+.

Example 13 (QLTS of a Bio-PEPA system). Let us reconsider the Bio-PEPA system described by Example 7.
When the concentration level admitted for each species ranges in [0, 4] and the evolution begins from the
state xA = 4, xB = 0, and xC = 0, the QLTS of it is the transition system depicted in Figure 7.

{α1, α2, α3}{α1, α3}start

∅ {α2}{α1, α2}

α3

α3 α1

α2

α3

α2

α1

α2

α1

α1

α2

α1

α2

Figure 7: The qualitative transition system of the Bio-PEPA system described in Example 7.

In order to define a generalised unwinding condition over QL(P) we introduce the following relations.
With a slight abuse of notation we use the same symbols used for quasi-quantitative unwinding.

Definiton 23 (+Exp and uExp). Let [u]+ , [v]+ be two states of QL(P). We define the relation +Exp as follows: for
each [u]+ , [v]+ ∈ QL(P) it holds that [u]+ +Exp [v]+ if and only if [u]+ and [v]+ have the same sets of Exp labels on
outgoing edges.

We define the relation uExp as follows: for each [u]+ , [v]+ ∈ QL(P) it holds that [u]+ uExp [v]+ if and only if there
exist u′ ∈ [u]+ and v′ ∈ [v]+ such that u′ uExp v′ holds in L(P).
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Notice that [u] +Exp [v] in QL(P) if and only if u +Exp v in L(P). Both +Exp and uExp are equivalence
relations on QL(P). Exploiting such relations we obtain the following notion of qualitative unwinding.

Definiton 24 (Qualitative Unwinding). P satisfies the qualitative unwinding if QL(P) ∈ W(+Exp,uExp,→).

Example 14. The system of Example 8 does not satisfy the qualitative unwinding since as shown in Figure
7 {α1, α2} +Exp

∅ and {α1, α2} reaches other states through imposed actions, while ∅ does not reach any state.

This third instance of unwinding is an over-approximation of the previous one in the following sense.

Theorem 2. If L(P) ∈ W(+Exp,uExp,→), then QL(P) ∈ W(+Exp,uExp,→).

Proof. Let [u] ι
−→ [u′], with ι ∈ Imp, and [u] +Exp [v]. This means that there exists u ∈ [u] and u′ ∈ [u′] such

that u ι
−→ u′ and u +Exp u +Exp v. Hence, since L(P) ∈ W(+Exp,uExp,→) we have that v → v′ and u′ uExp v′.

Hence, by definition of uExp over QL(P) we have that [u′] uExp [v′]. �

So, since QL(P) is usually significantly smaller than L(P) this result can be fruitfully exploited when
L(P) is too large. We will do this in the next section on a real world case-study.

3.1. Neurospora Crassa circadian network in Bio-PEPA
The Neurospora crassa is a fungus whose circadian network has been widely investigated and almost

completely brought to light (e.g., see [52]). In total darkness this organism generates spores, a process called
conidiation, every 22 hours. Both light and temperature affect the rhythm of this cycle. The alternation
between day and night causes spore production in the middle of the night during all the year, independently
on the length of daylight. From the metabolic point of view, the conidiation period is ruled by the white
collar-1 gene and the rhythmic gene frequency frq. The protein associated with the white collar-1 gene, WC-1,
activates the transcription of frq, while the protein product of frq both interacts with frq-bound WC-1 (PW)
inhibiting the expression of frq and positively regulates the expression of WC-1. The light promotes the
binding between a flavin chromophore and WC-1 (PWL) which increases the transcription of frq.

Akman et al. presented in [46] a Bio-PEPA model of the Neurospora crassa circadian network accounting
22 actions and 9 species. The effects of light on the system are described by a rate change in the reaction that
produces the species PWL out of PW. We call this reaction PWtoPWL. The authors investigated the system
in two different light conditions: constant darkness (D) and light and dark 12-hour alternation (LD). We
considered this model to prove the effectiveness of our framework. We focused on constant darkness (D)
and constant light conditions (L) and we formally proved that Imp = {PWtoPWL} is relevant for the system.
While this result is not surprising, it is worth to notice that it was obtained by analysing exclusively the
(Q)LTS’s of the system and it does not rely on reaction rates.

The full LTS of the investigated Bio-PEPA model may contain up to 2103 nodes and, thus, it is not feasible
for the analysis. However, the corresponding QLTS has at most 2|A| nodes, where A is the set of all the
possible reactions, and we can compute it directly. We wrote a Python program to assemble the QLTS of any
Bio-PEPA system avoiding the LTS construction and we applied it to the system in both D and L conditions.
The program computes the set of species constraints corresponding to each node of the QLTS and reduces
the reachability of the region satisfying these constraints to a set of Interger Linear Programming problems
having the following form:

Objective: min
∑

i

ni


l0
...
ln

 −


b0
...

bn

 ≤∑
i

ni


ei,0
...

ei,n

 ≤


u0
...

un

 −


b0
...

bn

 (1)
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where the natural variable ni represents the number of repetitions of the action αi, ei, j is the effect of the
action αi on the species s j, and b j and [l j,u j] are the LTS starting value and the admissible interval for the
species s j, respectively. Whenever System (1) is not satisfiable, there is no way to reach the considered QLTS
state from the starting value. On the contrary, other tests are necessary to verify that the proposed path
does not cross the imposed boundaries.

By using the developed program, we built two QLTS’s, QLD and QLL, representing the Bio-PEPA model
in D and L conditions, respectively. The former has 3969 nodes and misses the PWtoPWL action, the latter
has 11529 nodes and uses that action. We know that if the PWtoPWL action is not relevant for the system
evolution, then, whenever a state u performs a PWtoPWL transition and reaches u′, then each other state v
such that u +Exp v should be able to perform an action and reaches a v′ such that u′ uExp v′.

We projected the QLL on PWtoPWL by joining all the nodes that differ exclusively for that label i.e., we
merged all the pairs of nodes of QLL, v and v′, such that v \ {PWtoPWL} = v′ \ {PWtoPWL}. The obtained
QLTS, named QL′L, has 8505 nodes and we observed that some of the nodes in QL′L are not present in QLD.
Moreover, both QLD and QLL are strongly connected (i.e., all the nodes are reachable from each other) and,
hence, whenever a node is reachable from the considered starting conditions, it is reachable also from any
other admissible value. It follows that there exist states in QL′L, and, as a consequence, in both QLL and
QLLD, that are not reachable if we avoid the action PWtoPWL (i.e., the model is in D condition). Thus, the
investigated system in LD conditions does not satisfy the qualitative unwinding and, by Theorem 2, does
not satisfy the quasi-quantitative unwinding too. As noticed above, this means that PWtoPWL is relevant
for the evolution of the Neurospora crassa model in LD conditions or in other terms Neurospora crassa is not
robust with respect to perturbations on PWtoPWL action.

4. Unwinding Conditions over Hybrid Automata

Many natural systems exhibit hybrid behaviours: from one hand, they evolve in a continuous way
according to a set of dynamical laws, but, from the other hand, the dynamical laws are ruled by a discrete
control. Because of their double nature, these systems are called hybrid systems.

Hybrid systems have raised the attention of both computational and systems biology community be-
cause of three main reasons. First of all, they combine continuous models, which are traditionally used to
represent timed evolutions of species concentrations, and discrete models, which can depict species inter-
actions. Moreover, they perfectly map biological phenomena due to the interactions between continuous
processes, such as gene expression, and discrete events, like the binding of a transcription factor. Finally,
control theory and computer science provide established techniques and tools for the specification, the
analysis, and the control of hybrid systems and computational and systems biology can benefit from them.

Hybrid automata model hybrid systems in a very natural way. In its simpler form, a hybrid automaton
can be seen as a “finite-state” automaton [53] equipped of continuous variables whose values are dubbed
continuous state. The discrete states are called locations. Each location is labelled by a dynamical law
which rules the continuous state when the automaton has reached that particular location and it is also
characterised by a set, called invariant, that define the admissible values for the continuous variables during
the automaton evolution. The automaton edges are dubbed discrete transitions and each of them is associated
to both a set of continuous values, called activation, and a map, called reset. The hybrid automaton can
cross an edge only if the values of its continuous variables lay in the activation and, after a crossing, it must
update the continuous state according to the reset.

Different definitions of hybrid automaton have been suggested in the literature so far [54, 55, 56, 57,
58, 59, 60]. In this paper, we rely on a definition which is close to the one given by Lynch et al. [11] as the
unwinding framework that we are proposing fits into it in a natural way.

The definition of hybrid automaton given by Lynch et al. differs from the classical one because of two
reasons: first of all, it omits to explicitly mention locations and the discrete transitions go from continuous
states to continuous states. Nevertheless, the automata proposed by Lynch et al. can encode locations
simply by using a new continuous variable to achieve this goal. Secondly, this definition distinguishes
two kinds of continuous variables and discrete transitions. Our definition fully inherits these properties,
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however, while Lynch et al. discriminate variables and actions in input ones and output ones, we emphasise
the difference between imposed and exposed as detailed in Section 2.3.

Definiton 25 (Hybrid Automata). A hybrid automaton (Imp,Exp,Q,Θ, Imp,Exp−,D,T ) consists of:

- Two disjoint sets of variables: a set Imp of imposed variables and a set Exp of exposed variables. Var
def
=

Imp ∪ Exp;

- A set Q ⊆ val(Var) of states, where val(Var) is the set of values that Var can assume;

- A nonempty set Θ ⊆ Q of start states;

- Two disjoint sets of actions: a set Imp of imposed discrete actions and a set Exp− of exposed discrete
actions. Act

def
= Imp ∪ Exp−;

- A set D ⊆ Q × Act × Q of discrete transitions. The action a is enabled in x if there exists an x′ such that
(x, a, x′) ∈ D;

- A set T of trajectories for Var. Each τ ∈ T is a function whose domain, dom(τ), is an initial subset of R≥0
and whose image set is a subset of Q, i.e., τ(t) ∈ Q, for all τ ∈ T and all t ∈ dom(τ). The following axioms
must hold:

T1 (Prefix closure)
If τ ∈ T , dom(τ′) ⊆ dom(τ), and τ′(t) = τ(t) for all t ∈ dom(τ′), then τ′ ∈ T ;

T2 (Suffix closure)
If τ ∈ T and t′ ∈ dom(τ), then τ′(t)

def
= τ(t + t′) belongs to T ;

T3 (Concatenation closure)
Let S = {τ0, τ1, τ2, . . .} be a subset of T such that dom(τi) has the form [0, tmax,i] and τi(tmax,i) = τi+1(0)
for all i + 1 < |S|. Then the trajectory:

(τ0 _ τ1 _ τ2 _ . . .)(t)
def
=

{
τ0(t) if t ∈ dom(τ0)
(τ1 _ τ2 _ . . .)(t − tmax,0) otherwise

belongs to T .

The trajectories can be given in implicit form, for instance, as a differential system: the set T contains
all the solutions of the provided differential system. In such cases, the computation of the trajectories
themselves is not always trivial and may be not even computable.

Alongside with imposed and exposed variables, imposed and exposed actions, a set of initial continuous
state Θ, and an invariant set Q, above definition of hybrid automata requires a set of discrete transitions,
labelled by actions, that map continuous values in continuous values. Moreover, it specifies the properties
required to the automaton continuous laws, called trajectories, through the axioms T1, T2, and T3. Axioms T1
and T2 ensure that any trajectory τ can be broken into two trajectories whose overall behaviour is equivalent
to τ itself. On the contrary, axiom T3 guarantees that any sequence of trajectories, whose boundaries are
pairwise the same, can be composed in a trajectory that is equivalent to the overall behaviour of all the
trajectories.

The semantics of hybrid automata are usually given in terms of LTS by associating a hybrid automaton

with an infinite LTS whose nodes are the states of the automaton and whose edges have the form t
−→C or

e
−→D. As the continuous transition relation t

−→C concerns, q t
−→C q′ holds if and only if there exists a τ ∈ T such

that dom(τ) = [0, tmax], τ(0) = q and τ(tmax) = q′. Regarding the discrete transition relation t
−→D, q a

−→D q′ holds if
and only if (q, a, q′) ∈ D.
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Definiton 26 (Hybrid Automata - Semantics). Given a hybrid automaton H = (Imp,Exp,Q,Θ, Imp,Exp−,D,T ),
the LTS associated with H is the tuple L(H) = (Q,Θ, Imp∪Exp,R), where Exp = Exp−∪R≥0 and R

def
= {(q, α, q′) |q α

−→C

q′ ∧ α ∈ R≥0 or q α
−→D q′ ∧ α ∈ Imp ∪ Exp−}.

In the above definition we consider all the actions associated with the continuous transitions, i.e.,
the positive real numbers labelling the transition relation −→C, as exposed actions. This is an arbitrary
choice. Intuitively we interpret all the continuous evolutions as internal transitions not influenced by the
environment. The imposed interactions with the environment are represented only through some discrete
transition labels. For those who are more familiar with the definition of hybrid automata given in [54, 55],
this corresponds to say that the imposed interactions cause a change of location in the automaton and hence
a possible change in the differential laws regulating the continuous evolution.

Example 15 (A Simple Thermostat Model). Let us model a simple thermostat by using a hybrid automa-
ton. The discrete variable mode represents the state of the heater (i.e., mode = 1 means “heater on” and
mode = 0 “heater off”), while the variable xT is associated with the temperature. Whenever the temperature
reaches 15 ◦C, the thermostat activates the heater (exposed action switchOn), while, if the temperature rises
up to 20 ◦C, the heater is turned off (exposed action switchOff ). The users can switch on and off the heater
independently from the thermostat status by using the imposed actions forceOn and forceOff, respectively.
The two constants kr and kh are the dispersion and heating coefficients, respectively, while the variable X
represents the room temperature. Initially, the heater is switched off and the temperature is 17 ◦C.

Meaning Actions
Turn off the heater switchOff
Turn on the heater switchOn
Force off the heater forceOff
Force on the heater forceOn

(a) Actions

Imp \ Exp Preconditions Action Effects
Exp (mode = 1) ∧ (xT ≥ 20) switchOff mode← 0
Exp (mode = 0) ∧ (xT ≤ 15) switchOn mode← 1
Imp mode = 1 forceOff mode← 0
Imp mode = 0 forceOn mode← 1

(b) Transitions

Trajectories
ẋT = kh ∗mode − kr ∗ xT

˙mode = 0

(c) Trajectories

Imp \ Exp Meaning Variables
Exp Temperature xT : R← 17,
Exp Heater state mode : {0, 1} ← 0

(d) Variables

Table 3: A formal specification of the hybrid automaton representing a simple thermostat.

Example 16 (Delta-Notch). Delta and Notch are transmembrane proteins [61]. They are at the basis of the
differentiation and signal mechanisms between neighbouring cells. Delta production in a cell is triggered
by low Notch concentrations in the cell itself, while Notch production is due to high Delta levels in
neighbouring cells. Delta concentration is directly connected to differentiation. A a matter of fact, high
Delta concentration produces differentiated cells, while low Delta levels cause undifferentiated ones. The
Delta-Notch mechanism is the core of biological pattern formation and because of that it has garnered the
attention of the scientific community. A mathematical model for Delta-Notch signalling was presented
in [61] and described in terms of hybrid automata in [62, 63].

We can model the one cell system in our framework by using a hybrid automaton having five continuous
variables, pD, pN, xD, xN, and x′D (see Table 4). The variables pD and pN represent Delta and Notch production
flags for the considered cell: pD = 1 (pN = 1) means that Delta (Notch) is in production in the cell, while
pD = 0 (pN = 0) means Delta (Notch) is not in production. The variables xD and xN characterise Delta and
Notch concentrations in the considered cell, respectively. Finally, x′D quantifies the level of Delta in the
neighbouring cells.

The hybrid automaton has four discrete transitions. Each of them models a status change in the
production of either Delta and Notch. Whenever Delta is not in production (i.e., pD = 0) and the level of
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Notch in the modelled cell xN decreases under hN, the production of Delta is triggered (i.e., pD ← 1). At the
same time, if the level of Delta in neighbouring cells x′D exceeds a bound hD and Notch is not in production,
then a transition may activates the expression of Notch (i.e., pN ← 1).

The trajectories of the hybrid automaton depends on four parameters: RD, RN, δD, and δN that model
the production rates of Delta and Notch and the degradation rates of Delta and Notch, respectively. Both
Delta and Notch are constantly degraded during system evolution (−δD ∗ xD and −δN ∗ xN terms of the
trajectories). However, if Delta production has been triggered (i.e., pD = 1), Delta level rises at rate RD
(pD ∗ RD term). Analogously, Notch increases at rate RN if and only if it is in production (i.e., pN = 1).

The values of the parameters RD, RN, δD, δN, hD, and hN were estimated, for instance, in [63].

Meaning Actions
Turn off Delta DeltaOff
Turn on Delta DeltaOn
Turn off Notch NotchOff
Turn on Notch NotchOn

(a) Actions

Imp \ Exp Preconditions Action Effects
Exp pD = 0 ∧ xN < hN DeltaOn pD ← 1
Exp pD = 1 ∧ xN ≥ hN DeltaOff pD ← 0
Exp pN = 0 ∧ x′D > hD NotchOn pN ← 1
Exp pD = 1 ∧ x′D ≤ hD NotchOff pN ← 0

(b) Transitions

Trajectories
ẋD = pD ∗ RD − λD ∗ xD
ẋN = pN ∗ RN − λN ∗ xN
ṗD = 0
˙pN = 0

(c) Trajectories

Imp \ Exp Meaning Variables
Exp Delta in production pD : {0, 1} ← 0,
Exp Notch in production pN : {0, 1} ← 0,
Exp Delta xD : R← 1,
Exp Notch xN : R← 0,
Imp Neighbouring Delta x′D : R← 1

(d) Variables

Table 4: A formal specification of the hybrid automaton representing the Delta-Notch signalling mechanism.

In the context of hybrid automata, (bi)simulation reductions [64, 65], series of abstractions [66], piecewise
linear approximations [67, 68] have been proposed in the literature to abstract the infinite LTS representing
the semantics of a hybrid automaton into finite ones.

In the remaining part of this section, we introduce an unwinding condition over hybrid automata. Let
us observe that the unwinding conditions defined over LTS’s generated from Bio-PEPA systems can be used
also on LTS’s generated from hybrid automata. As a matter of fact, one of the advantages of unwinding
conditions is that they are defined on LTS and hence they do not depend on the modelling language from
which the LTS has been inferred. However, we prefer to introduce here a further unwinding condition
to give to the reader an idea of the flexibility of the framework. In order to achieve this goal, we first
need to define a new equivalence relation (i.e., �Exp) and two transition relations (i.e.,→Exp and→>t) over
continuous states.

As done in the quantitative unwinding in the previous section, we consider two nodes of the LTS to
be “equal” if the have the same values on the exposed variables. We consider them to be “equivalent” if
using only exposed transitions they generate the same sequences of exposed variables values. Finally, the
transition relation d is a generic exposed transition.

Definiton 27 (�Exp,�Exp,→Exp and→>t). Let H be a hybrid automaton and L(H) = (Q,Θ, Imp∪Exp,R) be the LTS
associated with H. The relation �Exp

⊆ Q ×Q is defined as follows: u �Exp v if and only if the exposed variables have
the same values on u and v. A strong bi-exposed bisimulation over L(H) is a symmetric binary relation R over
L(H) such that for each (u, v) ∈ R:

- u �Exp v;

- if u e
−→ u′ with e ∈ Exp, then v e

−→ v′ and (u′, v′) ∈ R.
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Two states u and v are strongly bi-exposed bisimilar, denoted by u �Exp v if there exists a strong exposed
bisimulation R such that (u, v) ∈ R.

The relations→Exp
⊆ Q×Q and→>t

⊆ Q×Q, where t ∈ R≥0, are defined as follows: u→Exp v if and only if there

exists e ∈ Exp such that u e
−→ v and u→>t v if and only if there exists t′ > t such that u t′

−→ v.

Notice that �Exp is the same relation introduced on LTS’s of Bio-PEPA systems. We are now ready to
introduce two unwinding conditions. The first one is called bi-exposed since exposed actions are involved
in the definition of both the equivalence relation �Exp and the transition relation→Exp. Once the system has
moved from u to u′ through an imposed action if u �Exp v, then v has to reach v′ through an exposed action
and u′ and v′ are compared only on the basis of exposed values and exposed transitions. This unwinding
condition abstracts transitions on exposed actions by reducing all of them to →Exp and can be used to
highlight quantitative differences between states or systems on the reachable values of exposed variables.

The second unwinding condition is called delayed unwinding since the transition relation d is instan-
tiated as→>t which represents a delay of time greater than t. In this second instance u′ and v′ are compared
on the basis of all transitions through the relation ≈Exp introduced in the previous section. This condition
requires that any transitions spend a time greater than t causing a delay. It can reveal behaviours that are
equivalent aside from delays.

Definiton 28 (Bi-Exposed Unwinding and Delayed Unwinding). H satisfies the bi-exposed unwinding if L(H) ∈
W(�Exp,�Exp,→Exp). H satisfies the t-delayed unwinding if L(H) ∈ W(�Exp,≈Exp,→>t).

In the next section we apply bi-exposed unwinding in the analysis of influenza models, proving that,
as one could expect, influenza is not robust with respect to antiviral and interferons treatments. Moreover,
t-delayed unwinding allows to show that also if we refer to a single type of treatment (e.g., antiviral) the
result strongly depends on the time at which the treatment is imposed.

4.1. Influenza Kinetics Analysis through hybrid automata
Influenza is an infectious disease caused by a family of RNA viruses known as influenza viruses. Its

symptoms include fever, weakness, and coughing and, in the most acute form, it can bring a severe threat
to the respiratory system. Worldwide, 250,000 to 500,000 deaths per years are ascribed to the complications
of the seasonal influenza virus [69] and the infamous Spanish flu of the 1918 infected 500 million people
leading to the death of 20 to 100 million of them [70, 71].

Understanding the dynamics of infection plays a crucial role in avoiding or, at least, controlling possible
influenza pandemics. Many models have been suggested so far to achieve this goal [72, 73, 74, 75, 76, 77].

Handel et al. deal with the effects of the most effective drugs against influenza, the Neuraminidase
inhibitors (NI), and take into account the rise of virus strains resistant to this antiviral [74]. The model
distinguishes the load of viruses that are NI-sensitive (Vs) from that of viruses that are NI-resistant (Vr).
Uninfected cells (U) are infected by either NI-resistant virus or NI-sensitive virus at a rate proportional to
the correspondent virus load and became NI-resistant infected (Ir) or NI-sensitive infected (Is), respectively.
Both NI-resistant and NI-sensitive infected cells increase virus load of the respective strain. Moreover, due
to natural mutations, a fraction of the viruses released by NI-sensitive infected cells belongs to the NI-
resistant strain. Whatever is the strain of the viruses produced by NI-sensitive infected cells, NI represses
their release at a rate that is proportional to the efficiency of the antiviral itself. A natural immune response
(X) restrains the increase in viral load in all the strains too. As it occurs also to the virus strains, both the
kinds of infected cells share the same decay rate.

On the contrary, Saenz et al. consider the interactions between viral agents and immune system and
describe the antiviral response modulated by the type I interferon (IFN-α/β) which is triggered by infec-
tion [75]. In their model, uninfected cells (U) are infected at a rate proportional to the virus load (V). Newly
infected cells spend some time in an eclipse phase (E1) and then they move to a state (I), having a limited
span life, in which they increase the virus load. Infective cells produce IFN (F) which is able to bring
uninfected cells into a prerefractory state (W) and, possibly, in a refractory state (R) at a rate proportional to
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Meaning Variables
Uninfected cells U : R≥0 ← 4.0 ∗ 108

Cells infected by virus sensitive to NI in eclipse phase E1,s : R≥0 ← 0.0
Cells infected by virus resistant to NI in eclipse phase E1,r : R≥0 ← 0.0
Prerefractory cells infected by virus sensitive to NI in eclipse phase E2,s : R≥0 ← 0.0
Prerefractory cells infected by virus resistant to NI in eclipse phase E2,r : R≥0 ← 0.0
Cells in prerefractory state W : R≥0 ← 0.0
Refractory cells R : R≥0 ← 0.0
Cells infected by virus sensitive to NI Is : R≥0 ← 0.0
Cells infected by virus resistant to NI Ir : R≥0 ← 0.0
Virus sensitive to NI Vs : R≥0 ← 7.7 ∗ 10−3

Virus resistant to NI Vr : R≥0 ← 0.0
Interferons (IFN-α/β) F : R≥0 ← 0.0
Immune response X : R≥0 ← 3.4 ∗ 10−1

Elapsed time T : R≥0 ← 0.0
Antiviral injection mode (A = 1 injecting NI, A = 0 not injecting NI) A : {0, 1} ← 0
Model mode (M = 0 treatment to be selected, M : [0, 3]← 0

M = 1 NI-based treatment,
M = 2 IFN-based treatment,
M = 3 treatment concluded)

Table 5: Variables of the hybrid automaton modelling the influenza kinetics.

F itself. Whenever cells in the prerefractory state are infected, they move to an eclipse phase (E2), in which
they release IFN, and, eventually, become infective (I).

IFNs have been long used as a treatment for various autoimmune, viral, and tumour diseases [78, 79,
80, 81, 82, 83]. So, one may wonder if IFNs can be used as antiviral drugs and, in particular, whether IFNs
and NIs are equivalent or not with respect to the virus load, i.e., if IFNs can be used in place of NIs, and
vice versa, in influenza treatment. Notice that, whatever the answer is, the NI-based therapies will be still
preferable to the IFN-based ones in normal condition since the latter exhibit many serious side effects in
humans [84, 85, 86] and they are less cost-effective than the former. However, above questions maintain
some relevance in the case of a pandemic produced by a viral strain that is resistant to the antivirals.

We developed a model that takes into account the effects of both IFN and NI on the virus load. As done
in [74], we admit the existence of a NI-resistant strain and, analogously to [75], we represent the antiviral
response due to IFN. The trajectories, the actions, and the transitions of our model are reported in Table 7.
The values of their parameters are dependent on the virus strain and on the host species; we focused on
human hosts infected with influenza A/Texas/91 (H1N1) and we fit our model on the data produced by the
IR kinetic model described in [74] by minimising the cost function:

SSE def
=

∑
i

(
log Vs(i) − log V̂s(i)

log maxi V̂s(i)

)2

+
∑

i

(
log Vr(i) − log V̂r(i)

log maxi V̂r(i)

)2

+ (D − D̂)2, (2)

where Vs, Vr, and D are the number of NI-sensitive virus, the number of NI-resistant virus, the total dead
cells estimated by our model, respectively, while V̂s, V̂r, and D̂ are the same quantities evaluated by the IR
model suggested in [74]. In order to achieve this goal we used the open-source software Octave [87] and,
in particular, its built-in function fminunc. The resulting values of the parameters and their sources are
reported in Table 6.

Notice that the IR model does not take into account IFN and, thus, the value estimated for the parameters
that is directly connected with IFN, i.e., q and ψ, may need some scaling to match the real kinetics of
interferons in humans infected by H1N1. Nevertheless, our model exhibits the same IFN peek as the one
proposed by Saenz et al. in the case of an A/equine/Kildare/89 (H3N8) infection [75].
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Symbol Meaning Value Source
ki Eclipse phase period 2 Days−1 [88, 75]
a Prefactory period 4 Days−1 [89, 75]
µ Mutation rate 10−5 [74]
σ Fitness cost of resistance 0.1 [74]
n IFN-reduced production 1 [75]
m IFN-reduced infectivity 1 [75]
β Virus infectivity 1.18368 ∗ 10−1 Fitted
p Virus production per cell 5.96623 ∗ 10−4 Fitted
q IFN induction per cell 5.18653 ∗ 10−11 Fitted
ψ IFN efficiency 3.68109 Fitted
dI Infected cell death rate 1.23661 ∗ 10−1 Fitted
dV Virus death rate 0.80710 ∗ 10−1 Fitted
dF IFN clearance rate 1.80413 Fitted
r Immune response growth rate 1.14835 Fitted
εNI Antiviral efficacy 0.97647 Fitted

f IFN released per injection 6 Arbitrary

Table 6: Trajectory parameters of the hybrid automaton modelling the influenza kinetics.

Our hybrid model chooses one treatment between the IFN-based and the NI-based one by using either
the action treatIFN or the action treatNI, respectively. In the former case, the effect of the antiviral is assumed
to be constant along all the treatment; in the latter case, the host is injected with an arbitrary dose f of IFN
every ti days from the beginning of the treatment until the end of it. Figure 8 represents the evolution of
the two variables Vs (plain line) and Vr (dotted line) under both the considered treatments.

First of all, we may want to decide whether the effectiveness of two treatments depends or not on
the timing. We notice that the LTS associated with our hybrid model does not satisfy the 0.5-delayed
unwindingW(�Exp,≈Exp,→>0.5). As a matter of fact, the peek of the Vr load observable by starting the NI-
based treatment at the time of the infection can be obtained neither with different timing nor by using the
IFN-based treatment (see Figure 8). This proves that the effectiveness of the treatments are time-dependent.

Another question that deserves attention is whether IFN and NI are equivalent or not with respect to
the virus level. We consider treatNI being an imposed action and verify that the LTS associated with the
proposed influenza model does not satisfies the bi-exposed unwinding W(�Exp,�Exp,→Exp), i.e., it is not
possible to obtain the same virus load produced by the NI-treatment, whenever it has began, in the same
time.

More details about this example are given in [90].

5. Conclusions

We proposed a framework for the analysis of biological systems based on unwinding conditions. The
framework can be instantiated on all modelling languages which rely on operational semantics defined in
terms of LTS’s.

The finer and richer is the operational semantics that defines the LTS, the wider is the range of unwinding
conditions that one can define.

Within such a large variety we can find both fine unwinding conditions characterising very restrictive
notions of robustness and coarser ones allowing for more “fluctuations” around standard behaviours.

Not surprisingly, fine unwinding conditions are usually computationally harder to test (this is not always
the case, e.g., see bisimulation vs trace equivalence), but more amenable coarser ones can be exploited to
test them through some kind of necessary conditions.

The unwinding conditions over the process algebra Bio-PEPA, introduced in Section 3, fall in the
schema described above: quantitative unwinding is finer than the qualitative one, but computationally
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Trajectories
U̇ = −β(Vr + Vs)U − φFU

˙E1, j = βV jU − k1E1, j
˙E2, j = mβV jW − k2E2, j

Ẇ = φFU −mβ(Vr + Vs)W − aW
Ṙ = aW
İ j = k1E1, j + k2E2, j − dII j
V̇s = (1 − A ∗ εNI)(1 − µ)pIs − dVVs − XVs
V̇r = (1 − A ∗ εNI)µpIs + (1 − σ)pIr − dVVr − XVr
Ḟ = nq(E2,r + E2,s) + q(Ir + Is) − dFF
Ẋ = rX
Ṫ = 1
Ȧ = 0
Ṁ = 0

(a) Trajectories

Meaning Actions
Begin NI-based treatment treatNI
Begin IFN-based treatment treatIFN
End the treatment conclude
Inject IFN injectIFN

(b) Actions

Preconditions Action Effects
M = 0 treatNI A← 1 ∧M← 1
M = 0 treatIFN M← 2
M = 1 conclude A← 0 ∧M← 3
M = 2 conclude M← 3
M = 2 ∧ ti | T injectIFN F← F + f

(c) Transitions

Table 7: Trajectories, actions, and transitions of the hybrid automaton modelling the influenza kinetics.
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Figure 8: A comparison between the kinetics of the proposed model under NI-based treatment (first row) and IFN-based treatment
(second row). The plain and the dotted lines represent the number of NI-sensible virus (Vs) and the number of NI-resistant virus (Vr),
respectively. The first, the second, and the third columns depict the evolutions when the treatment, whatever it is, begins 0, 12, and
24 hours after the infection, respectively. All the treatments continue until the 7th day. Early inoculation of NI leads to a proliferation
of the NI-resistant strain, while interferons can be used in early stage of the infection to control the proliferation of both the virus
strains. On the contrary, NI maintains effectiveness throughout the course of the disease as opposed to IFN which seems to be useless
whenever the treatment begins after the peek in the number of virus, i.e., about 1.5 day after the infection.
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more demanding.
While operational semantics and behavioural equivalences have been largely used in the literature to

investigate computational languages such as process algebras, hybrid automata mix computational and
mathematical domains.

In Section 4, we showed that, despite of their double nature, unwinding conditions can be defined and
fruitfully exploited also over hybrid automata. In this case, we simply introduced two orthogonal notions
of unwinding and proved their effectiveness in the analysis of the influenza case of study.

As observed in [91] robustness in biology is strongly related with redundancy. This is exactly in the
spirit of our unwinding framework, where for each imposed transition we have to find an alternative path
leading to an equivalent situation.

From the modelling point of view, unwinding conditions have the advantage of clarifying which ques-
tions one has to answer in order to choose the right formalisation: (1) which are the exposed (observable)
actions/species and which are the imposed ones? (2) which are the relevant exposed observational equiva-
lences? (3) which are the alternative transitions (d)?

Many aspects of unwinding conditions on systems biology still have to be investigated.
In this paper, we proposed the use of “approximated” behavioural equivalences (e.g., see [33, 10])

to obtain flexible instantiations. As future work we intend to explore also the use of downgrading like
techniques (see [25]) to this aim.

The relationships with some communication notions in the context of hybrid automata has been con-
sidered in [90]. A deeper investigation of this aspect on different modelling languages is still lacking.
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