2,661 research outputs found

    Compositional specification of functionality and timing of manufacturing systems

    Get PDF
    In this paper, a formal modeling approach is introduced for compositional specification of both functionality and timing of manufacturing systems. Functionality aspects can be considered orthogonally to the timing. The functional aspects are specified using two abstraction levels; high-level activities and lower level actions. Design of a functionally correct controller is possible by looking only at the activity level, abstracting from the different execution orders of actions. Furthermore, the specific timing of actions is not needed. As a result, controller designcan be performed on a much smaller state space compared to an explicit model where timing and actions are present. The performance of the controller can be analyzed and optimizedby taking into account the timing characteristics. Since formal semantics are given in terms of a (max, +) state space, various existing performance analysis techniques can be used. Weillustrate the approach, including performance analysis, on an example manufacturing system

    Compositional specification of functionality and timing of manufacturing systems

    Full text link

    RTL2RTL Formal Equivalence: Boosting the Design Confidence

    Full text link
    Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) constraints force a faster design and validation closure. This in turn enforces novel ways of identifying and debugging behavioral inconsistencies early in the design cycle. Addition of incremental features and timing fixes may alter the legacy design behavior and would inadvertently result in undesirable bugs. The most common method of verifying the correctness of the changed design is to run a dynamic regression test suite before and after the intended changes and compare the results, a method which is not exhaustive. Modern Formal Verification (FV) techniques involving new methods of proving Sequential Hardware Equivalence enabled a new set of solutions for the given problem, with complete coverage guarantee. Formal Equivalence can be applied for proving functional integrity after design changes resulting from a wide variety of reasons, ranging from simple pipeline optimizations to complex logic redistributions. We present here our experience of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking the design sanity in a very short time, thus enabling faster and safer design churn. The techniques presented in this paper are applicable to any complex hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195

    Platform-based Plug and Play of Automotive Safety Features - Challenges and Directions

    Get PDF
    Optional software-based features are increasingly becoming an important cost driver in automotive systems. These include features pertaining to active safety, infotainment, etc. Currently, these optional features are integrated into the vehicles at the factory during assembly. This severely restricts the flexibility of the customer to select and use features on-demand and therefore, the customer will either have to be satisfied with an available set of feature options or pre-order a car with the required features from the manufacturer resulting in considerable delay. In order to increase flexibility and reduce the delay, it is necessary to provide the option to configure the vehicle on-demand at the dealership or remotely. In this paper, we present our vision and challenges involved in developing a platform infrastructure that allows on-demand deployment of automotive safety features and ensures their correct execution

    A Model-based Approach for Designing Cyber-Physical Production Systems

    Get PDF
    The most recent development trend related to manufacturing is called "Industry 4.0". It proposes to transition from "blind" mechatronics systems to Cyber-Physical Production Systems (CPPSs). Such systems are capable of communicating with each other, acquiring and transmitting real-time production data. Their management and control require a structured software architecture, which is tipically referred to as the "Automation Pyramid". The design of both the software architecture and the components (i.e., the CPPSs) is a complex task, where the complexity is induced by the heterogeneity of the required functionalities. In such a context, the target of this thesis is to propose a model-based framework for the analysis and the design of production lines, compliant with the Industry 4.0 paradigm. In particular, this framework exploits the Systems Modeling Language (SysML) as a unified representation for the different viewpoints of a manufacturing system. At the components level, the structural and behavioral diagrams provided by SysML are used to produce a set of logical propositions about the system and components under design. Such an approach is specifically tailored towards constructing Assume-Guarantee contracts. By exploiting reactive synthesis techniques, contracts are used to prototype portions of components' behaviors and to verify whether implementations are consistent with the requirements. At the software level, the framework proposes a particular architecture based on the concept of "service". Such an architecture facilitates the reconfiguration of components and integrates an advanced scheduling technique, taking advantage of the production recipe SysML model. The proposed framework has been built coupled with the construction of the ICE Laboratory, a research facility consisting of a full-fledged production line. Such an approach has been adopted to construct models of the laboratory, to virtual prototype parts of the system and to manage the physical system through the proposed software architecture

    A model checker for performance and dependability properties

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [8] and the continuous time setting [1], [3]. In this short paper, we describe the prototype model checker EāŠ¢MC2E \vdash M C^2 for discrete and continuous-time Markov chains, where properties are expressed in appropriate extensions of CTL.We illustrate the general benefits of this approach and discuss the structure of the tool

    Conversion of LSAT behavioral specifications to automata

    Get PDF
    The Logistics Specification and Analysis Tool (LSAT) is a model-based engineering tool used for manufacturing system design and analysis. Using a domain specific language, a system can be specified in LSAT. In this paper, a conversion method is presented to obtain the system behavior of an LSAT specification in automata structure.Comment: 10 pages, 6 figure

    Reconfigurable Timed Discrete-Event Systems

    Full text link
    In this paper, we present the first general solution to the automatic reconfiguration problem of timed discrete-event systems. We extend the recursive forcible backtracking approach which had been already solved the automatic reconfiguration problem of untimed discrete-event systems. In particular, we first solve the timed centralized reconfiguration problem using a specific timed eligibility set. Then, we study the identity between the solutions to an arbitrary timed centralized reconfiguration problem and its corresponding decentralized version. It turns out that the solutions to both cases are identical to each other. So, the solution obtained by the proposed theory is interestingly invariant to systematic distributions.Comment: 2020 24th International Conference on System Theory, Control and Computing (ICSTCC
    • ā€¦
    corecore