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Tackling Uncontrollability in the Specification and
Performance of Manufacturing Systems

Berend Jan Christiaan van Putten
b.j.c.v.putten@gmail.com

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract—One of the challenges in the specification and
analysis of models for the design of manufacturing systems is
the occurrence of events outside the control of the supervisor.
Uncontrollable events are typically encountered in the description
of (user) inputs, external disturbances, and exceptional behavior.
This paper introduces an approach for the specification and
performance analysis of manufacturing systems with partially-
controllable behavior on two abstraction levels. Finite automata
in terms of system activities are used to model the high
abstraction level, where uncontrollability is modeled by the
presence of uncontrollable events. Uncontrollability on the lower
abstraction level is treated as an external disturbance to the
automata. This is modeled using variables, which are added to
the high-level automata in an extended finite automaton. For
performance analysis, game-theoretic methods are employed to
determine a guarantee to the lower-bound system performance.
This result is also used in a new method to automatically
compute a throughput-optimal controller which is robust to the
uncontrollable behavior.

I. INTRODUCTION

Over the past decades, increasing complexity of manufac-
turing systems has driven the development of model-based
systems engineering (MBSE) and supervisory control methods
to aid in the design process [1], [2]. Executable models
created by these methods allow engineers to test and adjust the
system before it is built. This increases design flexibility and
potentially improves system performance, and reduces time-
to-market. In controller design, the developed models can be
used for automatic generation of supervisory controllers using
controller synthesis techniques [3]. These controllers must
ensure functional correctness with respect to the specifications,
and provide optimal control decisions in terms of relevant
performance criteria. A major challenge in the specification
and analysis of models in these methods is the inclusion
of system behavior outside the influence of the controller.
For example, products may enter the manufacturing system
with varying time intervals, or actions on a different control
layer may require a response from the supervisor. In the
design phase, it is useful to assess functional correctness and
achievable performance under the influence of such behavior,
while it is desirable for a controller to make correct and
optimal control decisions when these events occur.

This paper introduces an approach, shown in Fig. 1, for
the specification and performance analysis of manufacturing
systems with partially-controllable behavior. It is based on
the recently developed Activity model formalism [4], which
enables the compositional specification of functionality and
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Fig. 1. Overview of the modeling approach to handle uncontrollability.
Changes compared to the Activity formalism of [4] are marked blue.

timing of manufacturing systems. Functionality in the Activity
formalism is specified on two abstraction levels: high-level
activities, and low-level actions. An activity expresses some
deterministic functionality, such as picking up and moving a
product, in terms of the individual actions and dependencies
between the actions. Resources provide the services to execute
actions; an activity consisting of multiple actions may require
more than one resource for its execution. Functional design
is carried out on the level of activities by the use of finite
automata (requirements), which describe the order in which
activities can be executed. The key benefit of this abstraction
is a much smaller state-space for controller design compared
to the case where all actions are modeled explicitly [4]. The
internal structure of activities allows timing expressed on the
level of actions to be collected into a (max,+) timing char-
acterization of each activity. By orthogonally adding timing
characterizations to the state space, a (max,+) state space
can be constructed for performance analysis. Existing optimal
cycle ratio algorithms [5] can be used to find a throughput-
optimal controller which dispatches activities in an optimal
ordering. The Activity modeling formalism is already in use
within ASML1, the world-leading manufacturer of lithography
machines for the semiconductor industry, to formalize the
specification of the product handling part of their machines.
It acts as the semantic underpinning of a domain-specific
language (DSL) which allows domain engineers to model a
complete system.

1www.asml.com
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Our modeling approach expands on the Activity formalism
in two fundamental ways. First, it defines explicit uncon-
trollability of system behavior by partitioning activities into
controllable and uncontrollable (to the supervisor) activities.
This is a common concept from supervisory control theory [6],
[7]. As uncontrollable activities may influence the performance
that can be achieved, performance can no longer be guaranteed
by looking at the controller alone. To overcome this, we use
game-theoretic methods [8] to determine a guarantee to the
lower bound system performance that can be achieved given
the occurrence of uncontrollable behavior. Further, we use this
result in a new method to automatically compute a throughput-
optimal controller which is robust to the uncontrollable behav-
ior.

The second fundamental change of our approach is the
inclusion of (uncontrollable) feedback from lower abstrac-
tion levels into the level of the supervisor. We do this by
augmenting the finite automaton with variables, obtaining
an extended finite automaton (EFA) [9], [10]. Timing from
the Activity formalism, captured by the resource timestamps
and their change upon the execution of an activity, can be
naturally expressed as variables and update functions in the
EFA. This approach enables the specification of functionality
based on information induced by the actions, including the
timed state of the system. It also provides for concise and
unified specification of functionality and timing in a single
model.

The remainder of the paper is structured as follows. In
Section II we introduce the Activity modeling formalism in
more detail and outline several concepts and definitions that
are used in our modeling approach. That approach is described
in Section III, where we present the methods that can be used
to express and model uncontrollability. We subsequently turn
to optimization of a partially-controllable system in Section
IV, where we describe methods to determine guarantees for
system performance and to automatically compute an optimal
controller that is robust to uncontrollable behavior. All intro-
duced modeling and optimization methods are put to use in
Section V, where we model and optimize an example Dice
Factory system. We discuss the similarities and differences
between our work and related works in Section VI. Section
VII concludes the paper and describes future extensions which
can be investigated.

II. PRELIMINARIES

In this section, several of the concepts and definitions that
are used in our modeling approach are introduced. We start by
outlining the concepts of the Activity language [4] to the extent
that is relevant for its application in the modeling concepts we
present in the next section. The reader is encouraged to explore
the details of the Activity language in its original publication.

A. Activity Modeling Formalism

The Activity formalism views a system as a set P of
peripherals which can execute actions from set A. Peripherals
are aggregated into resources in a set R, which can be
claimed or released for the execution of some task. Given

these semantics, activities are used to describe a determinis-
tic procedure of co-ordinated actions, essentially aggregating
them to describe a common functional operation. Activities
are modeled as directed acyclic graphs (DAGs) which define
the actions involved and the dependencies between them.

Definition 1 (Activity (From [4])). An activity is a DAG
(N,→), consisting of a set N of nodes and a set →⊆ N ×N
of dependencies. The mapping function M : N → A × P ∪
R×{cl, rl} associates a node to either a pair (a, p) referring
to an action executed on a peripheral, or to a pair (r, v) with
v ∈ {cl, rl}, referring to the claim or release of a resource.

A number of constraints exist on the activity structure to
ensure proper resource claiming, such as that each resource is
claimed and released no more than once, and that each action
on a resource is preceded by the claim of that resource and
succeeded by the release of it.

For the purpose of performance analysis, timing is added to
the static semantics. The execution time of a node is given by
the mapping function T : N → R≥0. For the execution time of
a node n with M(n) = (a, p) for some a ∈ A, p ∈ P , a fixed
execution time T (n) = T (a) is assumed. The execution time
of a node corresponding to the claim or release of a resource
is 0.

Given the execution time of nodes, he dynamic semantics
of an activity are concisely captured using (max,+) algebra.
(max,+) algebra uses two operators, max and addition, which
correspond conveniently to two essential characteristics of the
execution of an activity: synchronization while a node waits
for all its dependencies to finish, and delay as the node takes
an amount of time to execute. Since activities are executed
by the system resources, the timed state of the system can be
expressed by a set of clocks indicating the availability time of
the resources. These clock values are collected in the resource
availibility vector γR : R → R−∞, whose elements express
when each resource r ∈ R is available and can thus be claimed
for the execution of an activity. Here, we use R−∞ = R ∪
{−∞}.

Given a vector γR this allows the start and completion times
of the nodes of an activity to be uniquely defined.

Definition 2 (Start and completion time of a node (From [4])).
Given activity Act = (N,→) and resource availability vector
γR, the start time start(n) and completion time end(n) for
each node n ∈ N are given by

start(n) =


γR(r),

if M(n) = (r, cl)
for some r ∈ R,

max
nin∈Pred(n)

end(nin), otherwise,

end(n) = start(n) + T (n),

where Pred(n) = {nin ∈ N | nin → n} is the set of
predecessor nodes of node n.

As the dynamic semantics of an activity Act = (N,→) are
uniquely defined by N , → and timing function T , the step
change of timestamp vector γR when an activity is executed
can be defined.
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Definition 3 (Dynamics of an activity execution (From [4])).
Given activity Act = (N,→), timing function T , and resource
availability vector γR, the new resource availability vector
after execution of Act is given by γ′R whose elements are
given by

γ′R(r) =


γR(r), if r /∈ R(Act),

end(n), if r ∈ R(Act) ∧M(n) = (r, rl)

for some n ∈ N,

where R(Act) = {r ∈ R | (∃n ∈ N |M(n) = (r, cl))} is
the set of resources used by Act.

The dynamics of an activity can be equivalently expressed
using a (max,+) matrix multiplication of vector γR with an
activity matrix MAct, called the (max,+) characterization
of activity Act. An algorithm for automatically computing the
(max,+) characterizations can be found in [11]. The new
resource availability vector after execution of an activity is
computed in this way by γ′R = MAct ⊗ γR. Here, γ′i =
maxmk=1 (Mik + γk) is the new value of the i-th element of
γR after the update, where m is the size of γR. The dynamics
of the execution of a sequence of activities is then given by
repeated matrix multiplication.

Functional requirements of the system are expressed in
terms of the order in which activities can be executed, modeled
by compositional finite automata with transitions labeled with
activities. Supervisory control synthesis [6] can be used to
obtain an Activity-FSM, which contains all allowed activity
sequences. As the supervisor is not aware of the inner structure
of an activity, it may influence the order in which activities are
executed, but not the order of the actions within an activity.

Definition 4 (Activity-FSM (From [4])). An Activity-FSM F
on Act is a tuple 〈L,Act, δ, l0〉 where L is a finite, nonempty
set of locations, Act is a nonempty set of activities, δ ⊆ L×
Act×L is the transition relation, and l0 is the initial location.
Let l Act→ l′ be a shorthand for (l, Act, l′) ∈ δ.

From the Activity-FSM, a (max,+) state space can be
constructed which records the different timed configurations
of the system. The (max,+) state space can be used for
performance analysis of the system. As future behavior is
affected only by the relative timing differences of the re-
sources, and not by their absolute offset from the initial
configuration, the resource availability vector is normalized in
each configuration. This results in the normalized (max,+)
state space. Using ‖γ‖ = maxi γi to denote the maximum
element of a vector γ, the normalized resource availability
vector is given by γnormR = γR − ‖γR‖. We use 0 to denote
a vector with all zero-valued entries.

Definition 5 (Normalized (max,+) state space (From [4])).
Given Activity-FSM 〈L,Act, δ, l0〉, resource set R, and a
(max,+) matrix MAct for each Act ∈ Act, the normalized
(max,+) state space is defined as a 3-tuple

〈C, c0,∆〉 ,

where:

• C = L×R−∞|R| is a set of configurations consisting of
a location and a normalized resource availability vector,

• c0 = 〈l0,0〉 is the initial configuration,
• ∆ ⊆ C ×R×Act×C is the labeled transition relation

consisting of the transitions in the set

{〈〈l, γR〉, ‖γ′R‖, Act, 〈l′, γ′normR 〉〉 |

l
Act→ l′ ∧ γ′R = MAct ⊗ γR}

B. Extended Finite Automata

An extended finite automaton (EFA) [10] is a finite automa-
ton augmented with variables. Guard expressions and update
functions can be added which restrict behavior depending on
the variable values, and update the variable values during a
transition, respectively. An EFA can be viewed as a 7-tuple,

〈L,Σ, δ, V,G, U, 〈l0, v0〉〉,

where L is the location set, Σ is the alphabet, δ ⊆ L×G×Σ×
U × L is the state transition relation, V is a set of variables,
G is a collection of boolean expressions over the variables,
U is a collection of value assignments to the variables of the
form v := e, where e is an expression over the variables,
and 〈l0, v0〉 are the initial location and variable values. We
denote a valuation of the variables by v and the collection
of all valuations by Val(V ). Resolving the guard expressions
and update functions, the explicit transition relation [10] in an
EFA is given by

δ̂ = {(l, v, σ, l′, v′) ∈ L× Val(V )× Σ× L× Val(V ) |
(∃(l, g, σ, u, l′) ∈ δ | g(v) ∧ v′ = u(v))}.

C. Ratio Games

Ratio games have been proposed for the computation of ro-
bust controllers in supervisory control problems [8], [12]. We
will use these to compute a robust optimal supervisor which
is throughput-optimal given a partially-controllable system.

A ratio game is a two-player infinite game, played on a
finite double-weighted directed graph, where each edge has
two associated non-negative weights w1(e) and w2(e). Each
turn of the game constitutes a move by one of the players
of a pebble on a vertex in the game over an edge to an
adjacent vertex. The two players have opposite goals: whereas
one player wants to maximize the ratio of the sum of weights
w1 and w2 in the limit of an infinite play, the other player
wants to minimize it.

Definition 6 (Ratio game graph (From [8])). A ratio game
graph Γ is a 5-tuple 〈V,E,w1, w2, 〈V0, V1〉〉, where GΓ =
〈V,E,w1, w2〉 is a weighted directed graph and 〈V0, V1〉
partitions V in a set V0, belonging to player 0, and V1,
belonging to player 1. Weighted graph GΓ consists of a finite
set V of vertices, a set E ⊆ V × V of edges, and weight
functions w1, w2 : E → R≥0 which assign two nonnegative
real weights to edges.

GΓ is assumed to be total, meaning that for all v ∈ V , there
exists a v′ ∈ V such that (v, v′) ∈ E. Note that although V is
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partitioned in disjoint subsets V0 and V1 for players 0 and 1,
the game graph does not need to be bipartite. This means that
a player may sometimes make multiple consecutive moves,
i.e. there may exist (v, v′) ∈ E with both v and v′ in either
V0 or V1.

In an infinite game, two players move a pebble along the
edges of the graph for infinitely many rounds. Taking V ω as
the set of infinite sequences over V , a play π = v0v1... ∈ V ω
is an infinite sequence of vertices such that (vi, vi+1) ∈ E for
all i ≥ 0. A ratio game [12] is an infinite game played on a
ratio game graph. The ratio of a play π is defined as

Ratio(π) = lim
m→∞

lim
l→∞

∑l
i=m w1(vi, vi+1)

1 +
∑l
i=m w2(vi, vi+1)

.

A memoryless strategy σi for player i is a function σ : Vi →
V which defines a unique successor v′ for every vertex v ∈ Vi
such that (v, v′) ∈ E. A play is consistent with memoryless
strategy σ of player i if vj+1 = σ(vj) for all j ≥ 0∧ vj ∈ Vi.
Strategy σi of player i is considered optimal if it achieves
for all v ∈ V the highest (lowest) ratio of a play starting in
v that is consistent with σi given the worst-case strategy by
the opponent player. It is shown in [8] that in a ratio game
there exist strategies σ0 for player 0 and σ1 for player 1 for
which the ratios of consistent plays are equal and optimal.
The optimal (maximum) ratio that player 0 can achieve is
thus equal to the optimal (minimum) ratio that player 1 can
achieve.

III. MODELING FOR UNCONTROLLABILITY

In this section, the concepts which we use to model uncon-
trollability in the Activity formalism are addressed. First, we
show how the occurrence of activities outside the influence
of the controller can be expressed. We then introduce the
Activity-EFA, which extends an Activity-FSM with variables,
that is used to model functionality based on system feedback.

As a running motivating example, consider a paint robot
which paints products in a manufacturing line. Following an
initialization procedure, unpainted products enter the system.
They may occasionally do so at a misaligned position. When
this is the case, the paint robot must first make an alignment
move to the product before it can start painting. In what
follows, we will use this motivating example to highlight how
each of the introduced concepts can be used in a model. The
resulting automaton of this example is shown in Figure 2.

A. Controllability of activities

In supervisory control theory, a transition in a transition
system is typically labeled with an event from a nonempty
alphabet [6], [7]. To express events whose occurrence the
supervisor cannot influence, but can observe and may wish
to respond to, the alphabet is in these theories partitioned
into a set of controllable events, and a set of uncontrollable
events. An example of a controllable event is the command
to turn on the paint nozzle of the paint robot, while an
uncontrollable event may be a sensor signaling that a product
has arrived at the paint station. In the Activity formalism,
these events constitute actions, which are aggregated to form

deterministic activities. We consider uncontrollability at the
level of activities, so that we retain the deterministic nature of
an activity. Variations on the action level can be modeled on
the activity level as separate activities.

In the Activity-FSM, each transition is labeled with an
activity. We express uncontrollability in the same way as in
supervisory control theory. The nonempty set Act of activities
is partitioned into a set Actc of controllable activities, and a set
Actu of uncontrollable activities. An example of a controllable
activity in the paint robot example is the operation of painting
a product (Paint), while a product entering the system at either
an aligned (Enter OK) or a misaligned (Enter NOK) position
are uncontrollable activities.

A supervisory controller is said to be controllable with
respect to the system it acts on, if it does not attempt to
disable the occurrence of any uncontrollable event which is
otherwise admissible in the system. It may, however, disable
a controllable event leading up to the uncontrollable event,
effectively preventing the uncontrollable event from becoming
admissible in the system.

B. Activity-EFA

Timing analysis in the Activity formalism is achieved by
adding to the functional Activity-FSM a vector consisting
of resource availability times, and rules which describe their
change when a transition is taken, i.e. an activity is executed.
This bares a close resemblance to an EFA, which augments an
automaton with variables and update functions which operate
on the variables when a transition is taken. EFAs further
allow the definition of guards that describe conditions for the
execution of a transition based on the variable values. We gain
this expressivity by combining the components of the formal
model into an EFA.

Definition 7 (Activity-EFA). Given activity set Act,
an Activity-EFA is an extended finite automaton
〈L,Act, δ, V,G,U, 〈l0, v0〉〉 in which Act is the alphabet.

The Activity-EFA is an augmentation of an ordinary au-
tomaton, whose transitions are labeled with activities, with
guard expressions and update functions. Transitions in the
Activity-EFA are enabled only when the associated guard
expressions evaluate true. Upon taking a transition, the values
of the variables are updated in accordance with the associated
update function. As shorthand for a transition in the Activity-
EFA, we write l Act→ g/u l

′, where l, l′ ∈ L, Act ∈ Act, g ∈ G
and u ∈ U . In case g is absent, we take that g is true. If u is
absent, the value of the variables is carried over, i.e. v′ := v.

Variables. A finite set of variables can be defined in V
which augment the state of the system. In the timing analysis
of the Activity formalism, the timed state of the system is
expressed in terms of resource availability timestamps in a
vector γR. For each resource r ∈ R, we now assume a variable
τr representing the availability time of that resource, which we
do not normalize for now. This enables the specification of
functionality based on the timing information they provide.
As (max,+) algebra is used for the computation of the
availability times, all τr are defined on the domain R−∞.
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In addition to the timing variables, other variables can be
defined. These can be of a type that is useful to their applica-
tion. In the paint robot example, a useful variable may express
the real-valued position (Pos) at which a product entered the
manufacturing line. To distinguish between variables which
contain timing information and all other variables, we collect
the timing variables τr for all r ∈ R in the set V τ . All other
variables go in the set V o. The complete set of variables is
then given by V = V τ ∪̇ V o. When it is convenient to refer
to the timing variables in vector form, we will continue to
denote this by γR.

Updates. An update maps the values of variables to their
new values when a transition is taken. Updates are written as

v′ := u(v), where v, v′ ∈ Val(V ). (1)

The values of resource timestamps in V τ are updated
by (max,+) multiplication. Given a vector γR of timing
variables and some matrix M, a timing update is written
as uτ (γR) = M ⊗ γR. For any transition in the Activity-
EFA, multiplication matrix M is given by the (max,+)
characterization MAct of the corresponding activity. These can
be automatically computed from the structure of the activity
and timing function T on the nodes of the activity, as pointed
out in Section II-A.

Updates of variables in V o, on the other hand, are supplied
by the modeler. We denote these updates by uo(v). In the paint
robot example, two updates are defined for position variable
Pos. The first update assigns the coordinate of the aligned
position. This update is applied to the transition labeled with
Enter OK. The second update assigns the coordinate of the
misaligned position, and is applied to the transition labeled
with Enter NOK. Given the separate definitions of updates
for timing variables and other variables, an update in the
Activity-EFA always consists of two parts: the update of
timing variables, given by uτ , and the update of ordinary
variables, given by uo.

Guards. Guards are written as Boolean expressions g(v)
over the variables, which map a valuation v ∈ Val(V ) of the
variables to a Boolean value true or false. In the paint robot
example, guards expressed on the Paint and Align activities
ensure that the robot makes an alignment move whenever a
product enters at an insufficiently aligned position.

Guards affect the supervisory control properties of the EFA
as they have the power to disable a transition. Methods found
in the literature [13] can be used to verify controllability and
nonblockingness of the EFA. In case the Activity-EFA without
guards is known to be controllable, it is easily seen that a
sufficient condition for controllability is the absence of guards
on uncontrollable transitions.

As before, we use the Activity-EFA to construct a state
space in terms of the system configurations, which can be
used for performance analysis.

Definition 8 (Configuration space). Given an Activity-EFA
〈L,Act, δ, V,G,U, 〈l0, v0〉〉, the configuration space is defined
as a 3-tuple

〈C, c0,∆〉 , (2)

Init

Pos ≥ 0.5

Align
Pos ≤ 0.5

Paint

Paint

Enter OK

Pos := 0

Enter NOK

Pos := 1

Fig. 2. Automaton for a paint robot with controllable and uncontrollable
transitions, variable Pos, guards, and updates.

where:

• C = L×V is the (possibly infinite) set of configurations
consisting of a location and a collection of values;

• c0 = 〈l0, v0〉 is the initial configuration;
• ∆ ⊆ C×R×Act×C is the transition relation consisting

of the transitions in the set

{(〈l, v〉, θ, Act, 〈l′, v′〉) | (∃l Act→ g/u l
′ ∈ δ |

g(v) ∧ v′ = u(v) ∧ θ = ‖γ′R‖ − ‖γR‖)},

in which γR is a vector of the timing values in v, before the
transition, and γ′R is the corresponding vector in v′, after the
transition.

A configuration refers to both a location in the EFA and
a valuation of the variables. When a transition is taken, the
variable values in the new configuration are updated according
to the specified update function. The timing variables are used
in this definition to determine transit time θ of a transition,
which expresses by how much the largest resource availability
time has shifted by the execution of an activity. The transit
time is used in performance analysis to determine the duration
of activity sequences.

Variables in V may be defined on a possibly infinite domain,
potentially leading to an infinite configuration space L × V .
For example, consider a counter variable which is incremented
for each finished product in a cyclic production process. Many
performance analysis and optimization algorithms, including
the ratio games we wish to employ, require a finite solution
space to terminate [8], [14]. By instead defining variables on
a finite domain, we can ensure a finite configuration space
for performance analysis. This does not restrict our modeling
efforts in many practical situations. An infinite counter variable
may be replaced by a counter which can only go up to a
feasible number of products in a shift. Even values from
sensors can normally be expressed on a finite domain, as
sensors have a finite precision and their values are typically
discretized. We denote the set of variables defined on a finite
domain by V̂ .

Normalization of the timing variables, as used in the con-
struction of the normalized (max,+) state space (Definition
5), serves the same purpose. Using normalization, it has been
shown that the state space remains finite under the condition
that each cycle contains a dependency on each of the resources
at least once, i.e. no part of the system evolves completely
independently of another part [15]. We denote a valuation of
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the variables in V̂ before normalization of the timing variables
by v̂, and after normalization of the timing variables by v̂norm.

Normalization affects the expression of guards on timing
variables, as the meaning of their absolute values is no longer
clear. It is easily shown that the relative difference between
timing variables is invariant under normalization. Suppose
we take the difference between the values vτ,1 and vτ,2
of two timing variables in the same valuation v and apply
normalization using a value ‖γ‖, then

vnormτ,1 − vnormτ,2 = (vτ,1 − ‖γ‖)− (vτ,2 − ‖γ‖)
= vτ,1 − vτ,2.

A meaningful guard involving timing variables is therefore an
expression over the difference between two of these variables.
We define W τ = {vi − vj | vi, vj ∈ V τ} as the set of all
differences between the members of the set of timing variables.
A meaningful guard is then limited to expressions over the
extended set of variables W τ ∪ V̂ o. We designate the set of
such guards as Ĝ.

A finite state space can now be constructed for performance
analysis of the system.

Definition 9 (Normalized configuration space). Given an
Activity-EFA 〈L,Act, δ, V̂ , Ĝ, U, 〈l0, v̂0〉〉, the normalized con-
figuration space is defined as a 3-tuple

〈Ĉ, c0,∆〉, (3)

where:
• Ĉ = L × V̂ is the finite set of configurations consisting

of a location and a collection of values;
• ĉ0 = 〈l0, v̂0〉 is the initial configuration;
• ∆ ⊆ Ĉ×R×Act×Ĉ is the transition relation consisting

of the transitions in the set

{(〈l, v̂〉, θ, Act, 〈l′, v̂′norm〉) | (∃l Act→ ĝ/u l
′ ∈ δ |

ĝ(v) ∧ v̂′ = u(v̂) ∧ θ = ‖γ′R‖)},

in which γ′R is the non-normalized vector of timing values in
v′, after the transition.

Since we are interested in system descriptions with a finite
number of configuration, in what follows we will drop the
circumflex in our definitions and assume that each Activity-
EFA and configuration space is defined in accordance with
Definition 9.

Notice that the original Activity-FSM and its timing charac-
terization are embedded in the definition of an Activity-EFA.
To see this, given an Activity-FSM 〈L,Act, δ, l0〉, resource set
R, and (max,+) matrices MAct for each Act ∈ Act, con-
struct the Activity-EFA 〈L, V τ ,Act, ∅,U , δ′, 〈l0,0〉〉, where
• V = V τ contains the timing variables for each r ∈ R,
• U = {MAct ⊗ γR | Act ∈ Act},
• δ′ = {(l, true, Act, u, l′) | (l, Act, l′) ∈ δ ∧ u = MAct ⊗
γR},

Any Activity-FSM may thus equivalently be expressed as
an Activity-EFA and gain the ability to express functionality
based on timing or other variables.

IV. ROBUST OPTIMAL SUPERVISOR DESIGN

A reachable cycle in the configuration space relates to
the periodic execution of the system. Each transition in the
configuration space is assigned a transit time relating to the
duration of an activity. A second value is assigned to each
transition, which we call the reward of the transition. The
transit time of a cycle equals the sum of the transit times of
the transitions of the cycle, and the reward of a cycle equal
the sum of the rewards. We define the cycle ratio as its reward
divided by its transit time2. Optimal cycle ratio algorithms [5],
[15] can be used to find cycles in the system with the highest
value, or the lowest value for the cycle ratio. These cycles
relate to best-case, or worst-case system performance.

The partitioning of activities into controllable activities and
uncontrollable activities allows us to consider new scenarios.
It is likely that we wish to design a controller which attains the
highest achievable performance by directing system execution
to an optimal cycle. It may do so by determining the choice
of controllable activities. Uncontrollable activities act as a
disturbance, which may aid system performance if they lead to
a higher cycle ratio, or hurt performance if they lead to a lower
cycle ratio. Viewed this way, the highest cycle ratio that can
be achieved by the controller, given worst-case uncontrollable
disturbances, determines a guarantee to the lower bound of
periodic system performance.

The challenge is now to find a controller which makes
optimal choices. We are interested in two results: i) a guarantee
to the achievable lower-bound system performance, and ii) an
optimal controller which is robust to uncontrollable behavior,
i.e. it makes optimal choices regardless of the occurrence of
uncontrollable disturbances. The structure of this challenge
corresponds well to ratio games, as introduced in Section II-C.
Recall that the result of a ratio game are optimal strategies for
player 1 and player 2, given that one player aims to achieve
the highest ratio, and the other player aims to achieve the
lowest ratio. In our challenge, player 1 is the controller, who
controls the moves on edges with a controllable activity, and
whose aim is to achieve the highest cycle ratio. Player 2 is
the environment, who controls the moves on edges with an
uncontrollable activity and aims to achieve the lowest cycle
ratio. Optimal strategies then relate to the the best achievable
controller performance given worst-case disturbances.

A ratio games requires a graph whose vertices are parti-
tioned in vertices controller by player 1, and vertices controlled
by player 2. The graph structure of the configuration space is
typically not partitioned in this way, as from any location there
may exist both controllable and uncontrollable transitions to
another configuration. We must therefore introduce a parti-
tioning. Given that a characteristic property of uncontrollable
behavior is that it may not be blocked by a controller, we
assume a priority of uncontrollable behavior over controllable
behavior. In our game setting, this can be interpreted as the rule
that at each turn in which both players can make a move, the

2In a manufacturing system, throughput refers to the number of produced
products per unit of time. In this context, we can assign a reward of value 1
to each edge associated with an activity that delivers a finished product. The
cycle ratio then equals the throughput of the system when operating on that
cycle.
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Fig. 3. Partitioning of a transition system with competing controllable and
uncontrollable players. Fig. 3a shows the system before partitioning. Fig. 3b
shows the system after partitioning with the green arrow indicating the optimal
controller choice. Fig. 3c shows the resulting robust optimal controller.

player who commands the uncontrollable moves may make a
move first. He may equally choose to pass his turn to the other
player, at which point the player in charge of the controllable
moves may make a move.

We model this using the concept of forcible events [16] as
encountered in a supervisory control context, where forcible
events may momentarily prevent the occurrence of preemptible
events. Consider the example system of Fig. 3a, where from
state q there are two controllable transitions a and b, and an
uncontrollable transition c. We introduce a new uncontrollable
activity τ /∈ Act which is the ‘pass a turn’ activity. No update
function is assigned to this activity and variable values carry
over when it is executed. In the game graph, the reward and
transit time of τ are both 0. For a location q in which both a
controllable and an uncontrollable transition are possible, we
introduce a new location q̂ and transition (q, τ, q̂) so that it
can be reached via the ‘pass a turn’ move. Transitions from
location q labeled with a controllable activity are removed
from location q and added to location q̂. In the example,
transition (q, a, 1) becomes (q̂, a, 1) and transition (q, b, 2)
becomes (q̂, b, 2). Uncontrollable transitions are maintained at
the original location. We end up with the partitioned system
shown in Fig. 3b.

Ratio game algorithms [8] can be applied to the partitioned
configuration space where rewards and transit times are as-
signed as weights w1 and w2 to the transitions. A guarantee
to the achievable periodic system performance is given by
the ratio of a reachable cycle consistent with the computed
optimal strategies of both players. The absence of a reward or
transit time for τ ensure that its introduction does not affect
the computed ratio.

A play consistent with the strategies of both players gives
us one periodic sequence of activities. For our controller, we
are interested in all activity sequences in which the controller
follows an optimal strategy for any strategy of the uncontrol-
lable environment. To compute this controller, we start with
the partitioned configuration space S and optimal controller
strategy σc. Recall that σc defines a unique successor c′ = σ(c)
for each c ∈ Cctb, where Cctb contains the controllable
locations in the partitioned configuration space. From each
location in the partitioned configuration space, we remove
the outgoing controllable transitions that are not consistent
with the computed strategy, such that c′ = σ(c) for every

ExchMilMillIn/Out ExchPnt Paint

WaitHi

WaitLo

MIL z

R

z

NZ

PNT

CR1

xy

CR2

xy

LR

x
CL

Fig. 4. Top-down view of the Dice Factory example manufacturing system
with two carts (CR1 and CR2), two production stages (MIL and PNT) and a
load robot (LR). The resource names are shown in colored circles, peripheral
names are shown by orange labels, and the names of positions with a dashed
outline are shown below or above the position.

remaining transition (c, θ, Act, c′) ∈ ∆ of S where c ∈ Cctb.
All uncontrollable transitions are retained since we want keep
all possibilities of uncontrollable behavior. As we do not
observe the artificial activity τ in our original system, we
use the natural projection [16] P : Actτ → Act, where
Actτ = Act ∪ {τ}, to project out τ from the configuration
space. This effectively erases all transitions labeled with τ and
maps the remaining transitions of each artificially introduced
location q′ back to their original location q. Finally, we
can compute the reachable subautomaton [16] to obtain the
supervisory controller which is minimal, controllable, and
throughput-optimal. This result is shown in Fig. 3c. We call
this the robust throughput-optimal controller, as it determines
throughput-optimal controller choices while respecting the
occurrence of uncontrollable behavior.

V. EXAMPLE: DICE FACTORY

In this section we show how our approach is used for the
specification and performance analysis of a manufacturing
system. As an example we take the fictional dice factory
shown in Fig. 4, which produces high-grade game dice in two
stages. During the first stage, holes are milled in a side of an
unfinished die in a pattern corresponding to the value of that
side. The milled die is then transported to the second stage
via an exchange disc, where the milled holes are filled with
a colored paint. This system is a simplification of the product
processing within an ASML TWINSCAN machine, modeled
using similar resources and constraints.

We model the example system in two steps. First, the
nominal system is introduced which describes the system
components and a simple production cycle. To this we add two
refinements which introduce different forms of uncontrollable
behavior. This shows how we can easily adapt existing or new
models to include uncontrollability.

A. System description

Our example system contains five resources. Two carts (CR1
and CR2) are used to transport dice in the system. A load robot
(LR) is used to put an unfinished die from the input buffer onto
a waiting cart, and to pick a processed die from a cart and put
it in the output buffer. The final two resources are processing
stations. The mill station (MIL) mills a number of holes in a
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TABLE I
SET OF ACTIVITIES OF THE NOMINAL EXAMPLE SYSTEM

CartExchange Move ToMill ? Move ToInOut ?
Mill ? Move MillToExch ? PutOnOutput ?
Paint ? Move ToPaint ?
PickFromInput ? Move PaintToExch ?

(CR1,cl)

(PNT,cl)

(CR1,moveToPos1)

(PNT.Z,moveDown) (PNT.NZ,on) (PNT.NZ,off) (PNT.Z,moveUp) (PNT,rl)

(CR1,rl)

Fig. 5. Activity Paint CR1 showing nodes and dependencies. Release and
claim nodes are represented by a clear circle, while action nodes are colored
yellow. An incoming arrow represents a dependency on the source node of
the arrow.

side of a die, corresponding to the pattern on that side. The
paint station (PNT) fills the holes with a colored substance.

The two functionally equivalent carts have a single periph-
eral: an undercarriage (XY) which moves the cart to a position
in the XY-plane. The load robot has two peripherals: an arm
(X) which moves to and from a waiting cart, and a clamp
which grips the die when the arm is moving. The mill station
has two peripherals, an R-motor (R) which rotates the mill
cutter and a Z-motor (Z) which moves the mill cutter up and
down. The paint station has a nozzle (NZ) which turns on and
off to release paint and a Z-motor which moves the nozzle
to and from the die. Note that the mill and paint stations are
fixed in the XY-plane and the carts move during processing to
correctly position the die for a drill or paint operation.

Each die is processed in the system by following the same
life cycle. An unfinished die is put on either cart 1 or cart
2 by the load robot. We assume no preference to which cart
picks up a die. The cart then transports the die to the mill
station where it is milled. Upon finishing, the cart moves to
the exchange disc, on which it moves to the paint stage. The
cart then transports the die to the paint station where it is
painted. The cart subsequently moves to the exchange disc for
the reverse cart exchange operation. The cart exchange always
moves the two carts simultaneously; the cart on the mill side
is moved to the paint side, and vice-versa. Finally, the cart
transports the finished die to the In/Out position where it is
offloaded by the load robot.

B. Activities

In the nominal system, there are two production activities,
Mill and Paint, which operate on either cart 1 or cart 2. The
CartExchange activity works on both carts as they are moved
simultaneously. Finally, there are several Move activities by
cart 1 and cart 2 which move the respective cart from one
position to another. The labeled positions are shown in Fig. 4
as dashed cart outlines; the WaitHi and WaitLo positions are
not used in the nominal system.

Since the two carts are modeled as separate resources,
we define individual activities for each cart. As they are
functionally equivalent, we define their activities once and

atMill

atInOut

atExchMill atExchPaint

atPaint

Mill i

Move MillToExch i

CartExchangeMove ToInOut i

Move ToMill i

PickFromInput i
PutOnOutput i

CartExchange

Move ToPaint i

Paint i

Move PaintToExch i

Fig. 6. Plant automaton of cart i, where i can be 1 or 2. The initial locations
of carts 1 and 2 are marked by a blue and a red arrow, respectively.

use the following notation to refer to the activity executed by
cart 1 or cart 2. Given a cart activity Act and cart identifiers
I = {CR1,CR2}, the set Act ? = {Act i | i ∈ I} contains
activity Act executed by cart 1 and by cart 2.

All activities are defined by specifying the resources, ac-
tions, and dependencies between actions as outlined in section
II. As an example, consider activity Paint CR1 for cart 1,
shown in Fig. 5, which paints a die on cart 1. The full set
of activities of the nominal system is listed in Table I. The
individual activity structures can be found in Appendix A.

C. Allowed activity sequences

For the specification of allowed activity sequences, we
model the system as a set of automata with transitions labeled
with the activities. We first define a set of plant automata
which define all admissible, if not necessarily desired, be-
havior. These are complemented with requirements which
enforce the functional specification of our system. Multiparty
synchronization is used between the automata in the set so
that execution of shared events is synchronous.

The plant model of the nominal system consists of two
automata, for carts 1 and 2. These automata are equal except
for the initial locations. Cart 1 is initially on the mill stage at
location atMill , while cart 2 starts on the drill stage at location
atPaint . The automaton of a cart is shown in Fig. 6, where
the initial locations of carts 1 and 2 are highlighted.

The plant model is complemented by six requirements
which enforce the correct sequence of activities in the nominal
production cycle. These requirements are shown in Fig. 7.
Requirements 7a and 7b ensure that a die is processed by one
mill or paint operation before it is moved along. Requirements
7c and 7d ensure that the carts are not exchanged consecutively
before a mill or paint operation has taken place. Requirement
7e avoids product collisions by specifying that a die must be
put on the output buffer before a new die can be picked up
for processing. Requirement 7f ensures that the cart exchange
cannot take place before both carts are ready to be exchanged.

The components of the nominal system are now specified
and may be used to construct an Activity-FSM with all
nominal activity sequences, or a normalized (max,+) state
space for performance analysis. Because we are interested
in the specification and performance of a system including
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Mill ?

Move MillToExch ?

(a) Mill procedure.

Paint ?

Move PaintToExch ?

(b) Paint procedure.

CartExchange

Move ToInOut ?

(c) Exchange finish, mill
side.

CartExchange

Move ToPaint ?

(d) Exchange finish, paint
side.

PutOnOutput ?

PickFromInput ?

Move ToMill ?

(e) Input-output sequence.

Move MillToExch ?

Move PaintToExch ?

Move PaintToExch ?

Move MillToExch ?

CartExchange

(f) Exchange entry procedure.

Fig. 7. Requirement automata which enforce the nominal production life
cycle.

uncontrollable behavior, we will instead continue to model
these aspects.

D. Refining with uncontrollable behavior

For the first refinement, consider that the system must
produce multiple patterns depending on the value of the side
of a die that is processed. The pattern affects the duration
of the mill and paint operations, as well as the end position
of a cart which moves during these operations. We assume
that the choice of a value is unknown to the controller until a
mill or paint operation is executed, for instance because it is
determined by a different controller.

For the second refinement, we introduce a change to the
entry procedure to the exchange disc. As a motivation, a
systems engineer might want to increase the system lifetime
by reducing unnecessary load on the bearings of the exchange
disc. Because the mill and paint operations may finish at
different times, it is desirable that the cart which finishes first
waits away from the exchange disc until the other cart has
finished its operation. Two wait positions, WaitHi and WaitLo,
are appointed beside the exchange disc so that a cart may move
to the wait position to which it is closest, as indicated in Fig.
4.

For reasons of brevity, we consider two patterns, producing
a side with either value 1 or value 6. For the same reason,
we only consider the refinements on the Paint side; the mill
operation and exchange disc entry procedure on the Mill side
remain as in the nominal system. We model the refinements by
making changes to the activities and plants, defining variables
and corresponding updates, and by adding requirements, which
use guards in terms of the variables, to enforce the refined
system behavior.

readyToPaint

atPaint

atExchPaint

atWaitLo atWaitHi

Paint i

Move PaintToExch i

Move ToWaitLo i

Move ToWaitHi i

Move WaitToExch i

Move WaitToExch i

Move ToPaint i

Paint 1 i
Paint 6 i

CartExchange

CartExchange

Fig. 8. Refinement of the cart plant, showing only the refined Paint stage.
The remainder of the cart plant is unchanged from the nominal plant in Fig.
6. New locations and edges compared to the nominal plant are marked blue.

1) Plant and activities: The cart plant is modified on the
Paint side to allow for the new system behavior. The refined
Paint side of the cart automaton is shown in Fig. 8. We
model the first refinement, the uncontrollable choice of a
Paint 1 or Paint 6 operation, by splitting the paint operation
into controllable and uncontrollable parts. Controllable activity
Paint i starts the operation and is followed by one of two
uncontrollable activities, Paint 1 i or Paint 6 i, which finish
the operation. This way, the controller may choose when to
start a paint operation, but has no control over which paint
operation is subsequently executed. To reflect this, activity
Paint i contains no actions so that it does not affect the
resource availability times. Activities Paint 1 i and Paint 6 i
contain the actions which constitute the paint operation, where
Paint 6 i paints more holes and thus has a larger transit time.

For the second refinement, relating to the cart exchange
entry procedure, two wait positions are added as locations to
the plant, as also seen in Fig. 8. From the paint location, the
plant now allows a move immediately to the exchange disc,
a move to the high wait position, or a move to the low wait
position. We model the move from either wait location to the
exchange disc using a single activity, as the wait locations are
located at equal distance from the exchange disc and either
move therefore has the same duration. The newly introduced
activities can all be found in Appendix A; the full cart plant
automaton of the refined system can be found in Appendix B.

2) Variables and updates: Since the system contains five
resources, there are five (max,+) variables available with
timed information. We denote these by θMIL, θPNT, θCR1, θCR2

and θLR according to the respective resource identifiers. The
update of (max,+) variables after a transition is given by the
(max,+) matrix of the corresponding activity, as explained
in Section III-B.

We add two additional variables which represent the real-
valued y-coordinates of cart 1 and cart 2, which we denote
by y1 and y2. As the system is modeled using a finite number
of positions for the carts, these variables can taken on a finite
number of values. For their update functions, we consider the
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Mill ?
Paint ?

Mill ?
Paint ?

Move ToWaitHi i
Move ToWaitLo i

θMIL ≤ θPNT

Move PaintToExch i

(a) Paint side timed choice requirement with timed
guard.

yi ≥ 0

Move ToWaitHi i

yi ≤ 0

Move ToWaitLo i

(b) Paint side wait location requirement with
guards on the position of cart i.

Fig. 9. Refinement requirements.

activities on the Paint side which affect the y-coordinate of
a cart. As the new y-coordinate is determined solely by the
execution of an activity, we apply the corresponding value as
a fixed assignment to each transition labeled with the activity.
We assume the following values in cm: for Paint 1 i, yi =
0.0; for Paint 6 i, yi = −0.5; for Move ToWaitHi i, yi =
3.0; for Move ToWaitLo i, yi = −3.0; for all activities ending
with ToExch i, which move a cart to the exchange disc, yi =
0.0.

3) Requirements and guards: We specify two new re-
quirements to ensure the system behaves according to the
new exchange disc entry procedure. The first requirement,
shown in Fig. 9a, compares the clock values of the Mill and
Paint stations, encoded in θMIL and θPNT, to determine which
operation finishes first. If the paint operation finishes before
the mill operation, a direct move to the Paint side of the
exchange disc is disabled, leaving only a move via one of the
wait positions. If it finishes later than the Mill operation, no
preference for a move is specified. In Section V-F the optimal
choice for this move is determined.

To ensure that the clock values relate to the current cycle,
the comparison is preceded by two Paint or Mill operations,
in arbitrary order, before the clock comparison is made. This
additional ordering of activities does not affect timed system
behavior, as the mill and paint activities are executed in
parallel on separate resources. Requiring the mill activity to
take precedence does therefore not delay a subsequent move
on the Paint side.

In this case, the mill station and paint station resources
are used only once during a cycle. We may therefore access
their clocks at any later time during the cycle and consistently
receive the time at which their operation finished. In general,
this is not the case. For example, the cart resources are used
during several activities, and the meaning of the value of their
clocks for use in requirements can quickly become ambiguous.
In these cases, it is useful to introduce a new resource, which

we call a virtual resource, which can be claimed and released
during an activity where the availability time of a resource is
of interest. As the clock of the virtual resource is decoupled
from the original resource, we can access its value at a later
time, even if the clock of the original resource changes with
subsequent activities. This allows for concise and meaningful
requirements using clock values.

The second requirement, shown in Fig. 9b, ensures that a
cart moves to the correct wait position depending on the value
of its y-coordinate. This requirement specifies only which
wait position is allowed; it does not specify if a move to
a wait position is at all enabled. As the move to a wait
position is only available after a paint operation, the value
of the y-coordinate is determined by the end position of
the Paint 1 and Paint 6 activities. For the values of y given
earlier, this means that after activity Paint 6, a cart may only
move to the lower waiting position, whereas after activity
Paint 1, a cart may move to either wait position. Note that
we could have alternatively modeled this behavior explicitly
using event-based requirements, by disabling the move to
a disallowed wait position after the Paint 1 or the Paint 6
activity. However, we would have to add new requirements
each time we wanted to add a paint operation. We would
also need to remember to update these requirements if any of
the y-coordinate parameters changed. Using the guard-based
requirement, safe functionality is guaranteed for any paint
operation or parameter value as long as updates of variables
yi are correctly specified, which can be easily automated in
the implementation of a domain-specific language (DSL).

Finally, the existing requirements must be updated for
the newly introduced plant behavior. In the requirement
shown in Fig. 7b, we replace activity Move PaintToExch ?
by three activities Move PaintToExch ?, Move ToWaitLo ?
and Move ToWaitHi ?. In the requirement shown in Fig.
7f, the two transitions labeled with Move PaintToExch ?
are replaced by transitions labeled with two activities
Move PaintToExch ? and Move WaitToExch ?. The full set
of requirement automata of the refined system can be found
in Appendix B.

E. Constructing the Activity-EFA

Given the components, we construct the Activity-EFA in
two steps. We start by computing an intermediary FSM which
contains all allowed activity sequences without considering
variables. For this, we use supervisory controller synthesis
[6] on the plants and requirements which have been stripped
of guards and updates. The synthesized FSM acts as an
intermediary which we can augment to form the Activity-
EFA. We choose for this two-step approach as the interleaving
of states and variable values can quickly lead to state-space
explosion, leading to issues with scalability of the synthesis
algorithm [10], [17]. We add back the guards and updates
to the transitions of the synthesized FSM to construct the
Activity-EFA.

To compute the intermediary FSM, we strip guards and up-
dates from transitions in the plants and requirements (Figures 6
to 9) before synthesis. The use of synthesis guarantees that



11

s56
s59

Move_ToWaitLo_CR1

s57

Move_WaitLoToExch_CR1

s60
CartExchange_CR1P_CR2M

s62

Move_ToInOut_CR1

s61

Move_ToPaint_CR2

s63

Move_ToPaint_CR2

s64

PutOnOutput_CR1

s65

Cmd_Paint_CR2

Move_ToInOut_CR1

s68

Move_ToInOut_CR1

s69

Paint_6_CR2

s70
Paint_1_CR2

Cmd_Paint_CR2

s66

PutOnOutput_CR1

s73

PutOnOutput_CR1

s75 Paint_1_CR2

s74

Paint_6_CR2

Cmd_Paint_CR2

s71

PickFromInput_CR1

s77

PickFromInput_CR1

s78

Paint_6_CR2s79
Paint_1_CR2

s1

Move_ToMill_CR1

Cmd_Paint_CR2

s2

Cmd_Paint_CR2

s3

Mill_CR1

Move_ToMill_CR1

s81

Paint_6_CR2

s82

Paint_1_CR2

s7

Paint_1_CR2
s6

Paint_6_CR2

s4

Mill_CR1

Move_ToMill_CR1

Move_ToMill_CR1

s10

Mill_CR1

s13

Move_ToWaitLo_CR2

s14

Move_ToWaitHi_CR2

s12

Move_MillToExch_CR1

s16

Move_MillToExch_CR1

s15
Move_WaitLoToExch_CR2

s17

Move_MillToExch_CR1

Move_WaitHiToExch_CR2

Move_ToWaitHi_CR2

Move_ToWaitLo_CR2

s18

Move_WaitHiToExch_CR2

Move_WaitLoToExch_CR2
s19CartExchange_CR1M_CR2P

s20

Move_ToInOut_CR2

s21

Move_ToPaint_CR1

s22Move_ToPaint_CR1

s24

PutOnOutput_CR2

s23

Cmd_Paint_CR1

Move_ToInOut_CR2

s25

Move_ToInOut_CR2

s26

Paint_6_CR1 s27

Paint_1_CR1

Cmd_Paint_CR1

s28

PutOnOutput_CR2

s32

PutOnOutput_CR2

s31Paint_6_CR1

s30Paint_1_CR1

s33

PickFromInput_CR2

Cmd_Paint_CR1

s37

Cmd_Paint_CR1

s38

Move_ToMill_CR2

s35
Paint_1_CR1

PickFromInput_CR2

s36

Paint_6_CR1

s40

PickFromInput_CR2

s41

Paint_6_CR1 Paint_1_CR1

s42

Move_ToMill_CR2

PickFromInput_CR2

s46

Move_ToMill_CR2

s50

Mill_CR2

Move_MillToExch_CR2

s55

Move_PaintToExch_CR1

s53

Move_ToWaitLo_CR1

Move_MillToExch_CR2

Move_MillToExch_CR2

Move_WaitLoToExch_CR1

Move_ToPaint_CR2

s67

PickFromInput_CR1

PutOnOutput_CR1

PutOnOutput_CR1

PickFromInput_CR1

s9

Mill_CR1

Move_ToWaitLo_CR2
Move_PaintToExch_CR2

s11

Move_MillToExch_CR1

Move_MillToExch_CR1

Move_ToWaitLo_CR2
Move_ToInOut_CR2 Move_ToInOut_CR2

PutOnOutput_CR2

PutOnOutput_CR2

s45

Move_ToMill_CR2

s49

Mill_CR2

Move_ToWaitLo_CR1

s52

Move_MillToExch_CR2

s54

Move_ToWaitHi_CR1

Move_ToWaitLo_CR1

s58

Move_ToWaitHi_CR1

Move_WaitHiToExch_CR1

Move_MillToExch_CR2
Move_WaitHiToExch_CR1

Move_ToInOut_CR1

Move_ToInOut_CR1

PickFromInput_CR1

Paint_6_CR1

Paint_1_CR1

s47

Mill_CR2

Paint_6_CR1
Paint_1_CR1

s51

Move_MillToExch_CR2

Move_ToPaint_CR2

s72

Move_ToMill_CR1

Paint_1_CR2

Paint_6_CR2

s8

Move_MillToExch_CR1

Paint_1_CR2

Paint_6_CR2

Move_ToPaint_CR1

s29

PickFromInput_CR2

Move_ToPaint_CR1

s34

Move_ToMill_CR2

Move_ToPaint_CR1

s39

Mill_CR2

Cmd_Paint_CR1

s43

Mill_CR2

s44

Move_MillToExch_CR2

Move_ToPaint_CR1

s48

Move_ToPaint_CR1

Cmd_Paint_CR1

Move_MillToExch_CR2

Cmd_Paint_CR1

Paint_6_CR1
Paint_1_CR1

Cmd_Paint_CR2

s5

Move_MillToExch_CR1

Cmd_Paint_CR2

Move_ToPaint_CR2

s76

Mill_CR1

Move_ToPaint_CR2

s80

Move_MillToExch_CR1

Move_ToPaint_CR2

Fig. 10. Automaton representation of the constructed Activity-EFA (81
locations and 146 transitions). This representation focusses on the activity
sequences and omits guards and updates. Activity sequences consistent with
a cycle of the robust optimal controller are marked blue.

functional requirements are respected and that the synthesized
system is controllable and nonblocking. Controllability ensures
that the synthesized FSM does not disable uncontrollable
events from happening that could have occurred in the uncon-
trolled plants. Nonblockingness acts as a guarantee to system
progress, as there is an allowed activity sequence from every
reachable state to a marked (safe) state. The intermediary FSM
is more permissive compared to the modeled requirements,
since guards that were specified on requirements have been
disregarded. We must therefore add these components back.

The guards in Fig. 9 are specified on transitions of modular
automata, which were also used (without the guards) to
synthesize the intermediary FSM. It is not trivial to manually
find the corresponding transitions in this intermediary system.
Since we use multiparty synchronization, we can compute
the synchronous product [16] of the synthesized FSM and
the automata containing guards, which automatically adds the
guards to the corresponding transitions.

Updates in this example are defined on activities, which
facilitates application to the Activity-EFA. This is done by
applying each update to the transitions labeled with the
corresponding activity. In case updates should be defined
on transitions rather than activities, we can again compute
a synchronous product to find matching transitions. In that
case, care should be taken as multiple updates may attempt
to set different values to the same variable, for which several
solutions can be found in the literature [9], [10].

F. Performance analysis

Having constructed the Activity-EFA in two steps, we com-
pute the normalized configuration space and use the methods
of Section IV to compute a robust throughput-optimal con-
troller. The Activity-EFA is shown in Fig. 10 with the optimal
control strategy marked blue. Each uncontrollable transition
from a location in the controller is also in the controller, and
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Paint CR1

Mill CR2

Move ToWaitLo CR1

Move WaitToExch CR1

Move MillToExch CR2

CartExchange

Move PaintToExch CR1

Move MillToExch CR2

CartExchange

Paint 6 CR1 Paint 1 CR1

Paint 1 CR1Paint 6 CR1

Move MillToExch CR2

Move MillToExch CR2
Move MillToExch CR2

Move ToWaitLo CR1
Move ToWaitHi CR1

Move MillToExch CR2

Fig. 11. Subautomaton of the computed controller showing activity sequences
leading up to a cart exchange, overlayed on the normalized configuration space
(shown in grey). The vector next to a configuration denotes the timing values
of carts 1 and 2, [θCR1, θCR2]

ᵀ. The number in each final node denotes the
shortest transit time of a path through that node from the indicated initial
configuration to the cart exchange.

after each uncontrollable transition, there is an optimal control
strategy.

To illustrate robustness of the controller to uncontrollable
behavior, consider the choice on the Paint side to move either
directly, or via a wait position to the exchange disc. This
choice impacts performance in case the Paint side operation
finishes later than the Mill side operation. For this example,
we choose appropriate timing functions T of the actions, such
that a) Paint 1 i finishes 2 [s] before Mill i, b) Paint 6 i
finishes 1 [s] later than Mill i, and c) a move to the exchange
disc via a wait position takes 2 [s] longer than a move directly
onto the exchange disc.

The activity sequences leading up to a cart exchange on the
throughput-optimal cycle of the controller are shown in Fig.
11. Also shown are alternative sequences which were allowed
in the configuration space before optimization. We start from
a configuration where cart 1 is on the paint station and cart
2 is on the mill station. For both uncontrollable activities
Paint 1 CR1 and Paint 6 CR1, an optimal path is determined
by the controller. In case activity Paint 6 CR1 is executed, a
direct move onto the exchange disc from the paint side results
in a faster sequence. In case activity Paint 1 CR1 is executed,
there is no performance gain from choosing a move via either
of the wait positions, or a direct move.
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VI. RELATED WORK

Timed Petri nets are a commonly encountered modeling
mechanism for manufacturing systems, which also allow for
uncontrollable transitions [18]. Performance analysis of timed
Petri nets can be achieved by associating delay bounds with
each place in the net [19]. Petri nets are generally well suited
for the design and analysis of systems operating on multiple
resources, as they can naturally express concurrent execution
of system behavior. Studies which consider uncontrollable
transitions generally focus on finding minimally-restrictive
controllers [20] or deadlock-avoidance [21], rather than timed
performance. Recently, an effort was made in [22] to incre-
mentally compute an optimal control sequence using timed
Petri nets, with knowledge of the probability of occurrence
of some uncontrollable events. This makes it suitable for a
real-time control solution of a known system, but not as much
for performance analysis in the design phase. An alternative
approach which considers both uncontrollability and timed
performance is proposed in [23]. Here, uncontrollability is
replaced by a control cost of an event, and optimization aims
to minimize control cost and cycle time of the closed loop net
simultaneously.

Other approaches for specification or performance analysis
of partially-controllable systems include the use of probabilis-
tic automata and stochastic scheduling. In [24], probabilistic
automata are combined with extended finite automata to find
uncontrollable alternative working sequences with correspond-
ing occurrence probabilities. A version of the A* search algo-
rithm [25] is used to find the shortest cycle time. Stochastic
scheduling [26] considers uncertainty only in the duration of
activities by assuming stochastic operation times. Controller
synthesis methods can be found [27] to compute a controller
with an expected optimal performance. What these methods
have in common is the assumption of a priori knowledge of
the probabilities of duration or occurrence of uncontrollable
system behavior.

Game theory applied to timed automata [28] has been used
for the synthesis of a controller which ensures safe behavior,
as well reachability of a final (goal) state. Timed automata
have also been used in [29] to solve a scheduling problem
using shortest path algorithms. Using timed automata poses
challenges with respect to scaling for large systems, as timing
of individual actions must be considered during analysis. This
is avoided by the use of (max,+) timing characterizations of
activities.

VII. CONCLUSIONS

This paper introduces a new approach to model uncon-
trollability of functionality in manufacturing systems. It is
based on the recently developed Activity modeling formalism
[4], which is used to specify the functionality and timing of
manufacturing systems at a high level of abstraction using
deterministic activities. The Activity formalism allows for the
scheduling of desirable sequences of activities on multiple re-
sources by means of (max,+) algebra. Our approach extends
the specification by the introduction of uncontrollability at
the level of activities, as commonly found in a supervisory

control context [7]. Functional dependency at activity level
on feedback from lower abstraction levels is realized by
converting the formal specification into an Activity-EFA. The
Activity-EFA contains the allowed activity sequences along
with guard expressions which limit behavior depending on the
values of variables. We introduce a new performance analysis
method which employs game-theoretic methods to provide a
guarantee to system performance, and to automatically com-
pute a robust, throughput-optimal controller given a partially
controllable system. The methods are illustrated on an example
manufacturing system.

There are a number of directions in which our approach can
be extended. First, the use of extended finite automata could
be broadened to include the initial controller design, which
currently uses regular automata. By being able to refer to
variables and states of (other) automata, EFAs typically allow
a more concise specification [10], [30]. It may be possible
to devise a combined approach with the variables, guards and
updates which we add at a later stage in our approach. Second,
we want to investigate if data-based synthesis techniques [9]
can be used in the construction of the EFA. This would
provide automatic guarantees on important supervisory control
properties, such as controllability and nonblockingness. Third,
there are various other performance analysis and optimization
techniques that can be investigated which cope with uncon-
trollability in different ways. For batch production systems,
the use of finite two-player games and different performance
metrics, such as makespan, could be investigated. When the
probability of occurrence of uncontrollable behavior is known,
stochastic scheduling methods [26] can be employed which
may further optimize performance. Finally, we want to inves-
tigate the application of our approach on an industrial-size
case. The approach we present can easily be adopted in a
domain-specific language which already uses the semantics of
the Activity formalism.
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APPENDIX A
ACTIVITIES OF THE DICE FACTORY SYSTEM

The activity structures listed here are defined using cart 1
(CR1). The activities of cart 2 (CR2) are defined equivalently.

(CR1,cl)

(CR2,cl)

(CR1,moveHalfCircle)

(CR2,moveHalfCircle) (CR2,rl)

(CR1,rl)

Fig. 12. Activity CartExchange.

(CR1,cl)

(MIL,cl)

(CR1,moveToPos1)

(MIL.Z,moveDown) (MIL.R,on) (MIL.R,off) (MIL.Z,moveUp) (MIL,rl)

(CR1,rl)

Fig. 13. Activity Mill CR1.

(CR1,cl)

(PNT,cl)

(CR1,moveToPos1)

(PNT.Z,moveDown) (PNT.NZ,on) (PNT.NZ,off) (PNT.Z,moveUp) (PNT,rl)

(CR1,rl)

Fig. 14. Activity Paint CR1 (nominal system).

(CR1,cl)

(PNT,cl) (PNT,rl)

(CR1,rl)

Fig. 15. Activity Paint CR1 (refined system).

(CR1,cl)

(PNT,cl)

(CR1,moveToPos1)

(PNT.Z,moveDown) (PNT.NZ,on) (PNT.NZ,off) (PNT.Z,moveUp) (PNT,rl)

(CR1,rl)

Fig. 16. Activity Paint 1 CR1 (refined system).

(CR1,cl)

(PNT,cl)

(CR1,moveToPos6)

(PNT.Z,moveDown) (PNT.NZ,on) (PNT.NZ.delay) (PNT.NZ,off) (PNT.Z,moveUp) (PNT,rl)

(CR1,rl)

Fig. 17. Activity Paint 6 CR1 (refined system).

(CR1,cl)

(LR,cl) (LR.CL,clamp) (LR.X,extend) (LR.CL,unclamp) (LR.X,contract)

(CR1,rl)

(LR,rl)

Fig. 18. Activity PickFromInput CR1.

(CR1,cl)

(LR,cl)

(CR1,moveFromIO) (CR1,moveToMillEntry)

(LR,rl) (MIL,cl)

(CR1,moveToMill) (CR1,rl)

(MIL,rl)

Fig. 19. Activity Move ToMill CR1.

(CR1,cl)

(MIL,cl)

(CR1,moveFromMill)
(CR1,moveToExchMil)

(MIL,rl)

(CR1,rl)

Fig. 20. Activity Move MillToExch CR1.

(CR1,cl) (CR1,moveToPaintEntry)

(PNT,cl)

(CR1,moveToPaint)
(CR1,rl)

(PNT,rl)

Fig. 21. Activity Move ToPaint CR1.

(CR1,cl)

(PNT,cl)

(CR1,moveFromPaint)
(CR1,moveToExchPnt)

(PNT,rl)

(CR1,rl)

Fig. 22. Activity Move PaintToExch CR1.

(CR1,cl)

(PNT,cl)

(CR1,moveFromPaint)
(CR1,moveToWaitHi)

(PNT,rl)

(CR1,rl)

Fig. 23. Activity Move ToWaitHi CR1 (refined system).

(CR1,cl)

(PNT,cl)

(CR1,moveFromPaint)
(CR1,moveToWaitLo)

(PNT,rl)

(CR1,rl)

Fig. 24. Activity Move ToWaitLo CR1 (refined system).
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(LR,cl)

(CR1,cl) (CR1,moveToIO) (CR1,rl)

(LR,rl)

Fig. 25. Activity Move ToInOut CR1.

(CR1,cl)

(LR,cl) (LR.X,extend) (LR.CL,clamp) (LR.X,contract) (LR.CL,unclamp)

(CR1,rl)

(LR,rl)

Fig. 26. Activity PutOnOutput CR1.

APPENDIX B
PLANTS AND REQUIREMENTS OF THE REFINED DICE

FACTORY SYSTEM

The full set of plants and requirements of the refined Dice
Factory are shown in Figures 27 and 28, which include the
uncontrollable transitions, guards, and updates. They are the
refined versions of the plants and requirements, of Section
V-C, with the refinements of Section V-D. We only show
updates of ordinary variables on the edges as these are the
only updates that are manually defined on the requirements.

APPENDIX C
ASML ONLY - RELATION OF PRESENTED WORK TO ASML

USE CASE

The internal version of this document for ASML will
include details of how the presented work can be applied for a
use case of ASML, and how the work has been implemented
as prototype code in their DSL.

Mill ?

Move MillToExch ?

(a) Mill procedure.

Paint ?

Move PaintToExch ?
Move ToWaitHi ?
Move ToWaitLo ?

(b) Paint procedure.

CartExchange

Move ToInOut ?

(c) Exchange finish, mill
side.

CartExchange

Move ToPaint ?

(d) Exchange finish, paint
side.

PutOnOutput ?

PickFromInput ?

Move ToMill ?

(e) Input-output sequence.

Move MillToExch ?

Move PaintToExch ?
Move WaitToExch ?

Move PaintToExch ?
Move WaitToExch ?

Move MillToExch ?

CartExchange

(f) Exchange entry procedure.

Mill ?
Paint ?

Mill ?
Paint ?

Move ToWaitHi i
Move ToWaitLo i

θMIL ≤ θPNT

Move PaintToExch i

(g) Paint side timed choice requirement of cart i.

yi ≥ 0

Move ToWaitHi i

yi ≤ 0

Move ToWaitLo i

(h) Paint side wait location requirement of
cart i.

Fig. 27. Refined requirement automata which enforce the production life
cycle.
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readyToPaint

atPaint

atExchPaint

atWaitLo atWaitHi

atExchMill

atMill

atInOut

Paint i

Move PaintToExch i

Move ToWaitLo i

Move ToWaitHi i

Move WaitToExch i

Move WaitToExch i

Move ToPaint i

Mill i

Move MillToExch i

CartExchange
Move ToInOut i

Move ToMill i

PickFromInput i
PutOnOutput i

CartExchange

Paint 1 i
Paint 6 i

Fig. 28. Refined version of the cart plant of cart i. The initial locations of carts 1 and 2 are marked by a blue and a red arrow, respectively.


