26 research outputs found

    Specifying message passing and time-critical systems with temporal logic

    Get PDF

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    A methodology for hardware-software codesign

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 150-156).Special purpose hardware is vital to embedded systems as it can simultaneously improve performance while reducing power consumption. The integration of special purpose hardware into applications running in software is difficult for a number of reasons. Some of the difficulty is due to the difference between the models used to program hardware and software, but great effort is also required to coordinate the simultaneous execution of the application running on the microprocessor with the accelerated kernel(s) running in hardware. To further compound the problem, current design methodologies for embedded applications require an early determination of the design partitioning which allows hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic because often a good hardware-software decomposition is not known until deep into the design process. Fixed interfaces and the burden of reimplementation prevent the migration of functionality motivated by repartitioning. This thesis presents a two-part solution to the integration of special purpose hardware into applications running in software. The first part addresses the problem of generating infrastructure for hardware-accelerated applications. We present a methodology in which the application is represented as a dataflow graph and the computation at each node is specified for execution either in software or as specialized hardware using the programmer's language of choice. An interface compiler as been implemented which takes as input the FIFO edges of the graph and generates code to connect all the different parts of the program, including those which communicate across the hardware/software boundary. This methodology, which we demonstrate on an FPGA platform, enables programmers to effectively exploit hardware acceleration without ever leaving the application space. The second part of this thesis presents an implementation of the Bluespec Codesign Language (BCL) to address the difficulty of experimenting with hardware/software partitioning alternatives. Based on guarded atomic actions, BCL can be used to specify both hardware and low-level software. Based on Bluespec SystemVerilog (BSV) for which a hardware compiler by Bluespec Inc. is commercially available, BCL has been augmented with extensions to support more efficient software generation. In BCL, the programmer specifies the entire design, including the partitioning, allowing the compiler to synthesize efficient software and hardware, along with transactors for communication between the partitions. The benefit of using a single language to express the entire design is that a programmer can easily experiment with many different hardware/software decompositions without needing to re-write the application code. Used together, the BCL and interface compilers represent a comprehensive solution to the task of integrating specialized hardware into an application.by Myron King.Ph.D

    On the Security of Software Systems and Services

    Get PDF
    This work investigates new methods for facing the security issues and threats arising from the composition of software. This task has been carried out through the formal modelling of both the software composition scenarios and the security properties, i.e., policies, to be guaranteed. Our research moves across three different modalities of software composition which are of main interest for some of the most sensitive aspects of the modern information society. They are mobile applications, trust-based composition and service orchestration. Mobile applications are programs designed for being deployable on remote platforms. Basically, they are the main channel for the distribution and commercialisation of software for mobile devices, e.g., smart phones and tablets. Here we study the security threats that affect the application providers and the hosting platforms. In particular, we present a programming framework for the development of applications with a static and dynamic security support. Also, we implemented an enforcement mechanism for applying fine-grained security controls on the execution of possibly malicious applications. In addition to security, trust represents a pragmatic and intuitive way for managing the interactions among systems. Currently, trust is one of the main factors that human beings keep into account when deciding whether to accept a transaction or not. In our work we investigate the possibility of defining a fully integrated environment for security policies and trust including a runtime monitor. Finally, Service-Oriented Computing (SOC) is the leading technology for business applications distributed over a network. The security issues related to the service networks are many and multi-faceted. We mainly deal with the static verification of secure composition plans of web services. Moreover, we introduce the synthesis of dynamic security checks for protecting the services against illegal invocations

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    A Compositional Approach to Embedded System Design

    Get PDF
    An important observable trend in embedded system design is the growing system complexity. Besides the sheer increase of functionality, the growing complexity has another dimension which is the resulting heterogeneity with respect to the different functions and components of an embedded system. This means that functions from different application domains are tightly coupled in a single embedded system. It is established industry practice that specialized specification languages and design environments are used in each application domain. The resulting heterogeneity of the specification is increased even further by reused components (legacy code, IP). Since there is little hope that a single suitable language will replace this heterogeneous set of languages, multi-language design is becoming increasingly important for complex embedded systems. The key problems in the context of multi-language design are the safe integration of the differently specified subsystems and the optimized implementation of the whole system. Both require the reliable validation of the system function as well as of the non-functional system properties. Current cosimulation-based approaches are well suited for functional validation and debugging. However, these approaches are less powerful for the validation of non-functional system properties. In this dissertation, a novel compositional approach to embedded system design is presented which augments existing cosimulation-based design flows with formal analysis capabilities regarding non-functional system properties such as timing or power consumption. Starting from a truly multi-language specification, the system is transformed into an abstract internal design representation which serves as basis for system-wide analysis and optimization.Ein wesentlicher Trend im Entwurf eingebetteter Systeme ist die steigende Komplexität der zu entwerfenden Systeme. Neben der zunehmenden Funktionalität hat die steigende Komplexität eine weitere Dimension: die resultierende Heterogenität bezüglich der verschiedenen Funktionen und Komponenten eines eingebetteten Systems. Dies bedeutet, daß Funktionen aus verschiedenen Anwendungsbereichen in einem einzelnen System eng miteinander kooperieren. Es ist in der industriellen Praxis etabliert, daß in jedem Anwendungsbereich spezialisierte Spezifikationssprachen zum Einsatz kommen. Da wenig Hoffnung besteht, daß eine einzige geeignete Sprache diesen heterogenen Mix von Sprachen ersetzen wird, gewinnt der mehrsprachige Entwurf für komplexe eingebettete Systeme an Bedeutung. Die Hauptprobleme im Bereich des mehrsprachigen Entwurfs sind die sichere Integration der verschieden spezifizierten Teilsysteme und die optimierte Implementierung des gesamten Systems. Beide Probleme verlangen eine zuverlässige Validierung der Systemfunktion sowie der nichtfunktionalen Systemeigenschaften. Heutige cosimulationsbasierte Ansätze aus Forschung und Industrie sind gut geeignet für die funktionale Validierung und Fehlersuche, haben aber Schwächen bei der Validierung nichtfunktionaler Systemeigenschaften. In der vorliegenden Arbeit wird ein neuartiger kompositionaler Ansatz für den Entwurf eingebetteter Systeme vorgestellt, der existierende cosimulationsbasierte Entwurfsflüsse um Fähigkeiten zur Analyse nichtfunktionaler Systemeigenschaften ergänzt. Ausgehend von einer mehrsprachigen Spezifikation, wird das System in eine abstrakte homogene interne Darstellung transformiert, die als Grundlage für die systemweite Analyse und Optimierung dient
    corecore