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Chapter 1 

Introduetion 

This thesis is concerned with the development of specification methods that 

are applicable in the areas of message passing and time-critica! systems. The 

motivation to study these application areas stems from their importance in 

practice: 

• message passing is one of the most important means of interprocess 

communication in distributed systems, either on a high level (e.g. in 

telecommunication applic;:~.tions where programming could be done in 

a high-level concurrent language with asynchronous message passing 

such as CHILL [CHILL 80]) or on a lower level (such as in implemen­

tations of synchronous languages for distributed computing like Ada 

[Ada 83]), 

• among the growing number of real-time applications there are some 

highly critica! systems such as computer controlled chemica! plants 

and nuclear power stations. 

Because many of these systems belong to the most complex ever devel­

oped, adequate specification methods for them. are of vita! importance, a 

claim that is also supported by experience from practice: actual builders of 

systems see real-time as the most crucial area in which forma! support is 

necessary. 

1 



2 CHAPTER 1. INTRODUCTION 

This thesis reports on the application of temporallogic as a formalism for 

reasoning about message passing and time-critical systems. Such an enter­

prise was motivated by noticing that temporallogic had been applied very 

successfully for the specification and verification of a wide variety of sys­

tems, ranging from parallel programs (see e.g. [MP 82],[MP 83a],[MP 83b]) 

via communication protoeals (see e.g. [HO 83]) to hardwarefVLSI applica­

tions (see e.g. [Mos 83]). However, in the areasof message passing systems 

and of time-critical systems its application has been less successful. For mes­

sage passing systems this has a technical reason: it can be shown that many 

classes of message passing systems cannot be specified with standard tempo­

rallogic. Since time-critical systems heavily involve quantitative temporal 

requirements and standard temporal logic is concerned only with reason­

ing about qualitative temporal issues, the inaptness of its application to 

time-critical systems is obvious. This thesis shows how standard temporal 

logic can still be used for the specification of message passing systems by 

introducing the additional assumption that incoming messages are uniquely 

identifiable and it develops a special temporallogic, called metric temporal 

logic, for reasoning about quantitative temporal properties. The main ap­

plication area of this thesis can be found in the field of distributed real-time 

systems where message passing and time-critical features are combined. 

Before one can use an established mathematical theory in new applica­

tion areas, the fundamentals of this theory should be reinvestigated in the 

light of the peculiarities of these application areas and the objectives one 

strives to achieve. In fact, the development of a theory for a certain appli­

cation area should ideally go hand in hand with checking (e.g. by means of 

paradigmatic cases) whether the theory works out in practice as intended. 

In our case, apart from undertaking theoretical studies invalving possibili­

ties to apply temporallogic in the areasof message passing and time-critical 

systems, we check the results against several examples taken from these ap­

plication areas and against certain objectives one would like a specification 

method to have. 
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Historically, these ideas emerged in their preliminary form when the 

author was working in a project developing a digital telephone switching 

system at Philips Telecommunication Industries (Hilversum, the Nether­

lands) from September 1982 till June 1983. In telecommunication systems 

message passing aspects and time-critica! aspects are combined, e.g. in a 

time-out for the acknowledgment of a message when unreliable transmis­

sionmedia are involved (besides, current communication technology usually 

involves complex real-time software). The research in this period resulted 

(see [KVR 83]) in an axiomatic semantica forthereal-time communication 

fragment ofthe concurrent programming language CHILL (see [CHILL 80]). 

After this practice period at Philips, the author was employed at the Uni­

versity of Nijmegen (from July 1983 till May 1984) before getting involved 

in the Dutch N ational Concurrency Project ( acronym LPC) first at the Uni­

versity of Nijmegen (from May 1984 tillAugust 1985) and subsequently at 

the Eindhoven University of Technology (from August 1985 till May 1988). 

In this period the first variantsof a temporallogic for reasoning about reai­

time properties, called reai-time temporallogic, were developed and tested 

by means of examples from practice ( see [KR 85]). For the specification of 

message passing we introduced the assumption that the incoming messages 

could he uniquely identified. We comeback on this assumption below. 

Anot,her major research topic in this period, not reported upon in this 

thesis, was t~e workon a compositional semantica for real-time distributed 

computing taken up from September 1983 onwards. This research effort 

resulted (see [KSRGA 85]) in a denotational semantica for real-time dis­

tributed computing that is compositional in the context of process naming 

and nested paràJJ.elism. This semantica is based on a new class of real-time 

computation models varying from the interleaving model to the maximal 

parallelism model. These results were an important pillar for participation 

of the theoretica! computer science group of the Eindhoven University of 

Technologyin ESPRIT project 937: Debugging and Specification of Ada 

Real-Time Embedded Systems (DESCARTES). 
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The collaboration in the DESCARTES-project led to three more pa­

pers invalving the specification of reai-time systems: the first ([KKZ 87]) 

about another application of reai-time temporal logic, in this case to the 

paradigms of reai-time investigated in this project, the second ([KKZ 88]) 

a bout paradigms and a classification of real- time systems tagether with an 

informal account on requirements of a specification language for reai-time 

properties and the third ([KKZ 89]) about a formal framework for treating 

and camparing requirements of a specification language. In these years the 

chosen way of using standard temporallogic for the specification of message 

passing systems ( using the unique identification assumption) was supported 

by strengtherring theoretica! results a bout the (in )expressiveness of tempo­

ral logies for characterizing certain classes of message passing systems ( see 

[Koy 87]). These results imply that message passing systems can only he 

specified using very strong logies (unless unique identification is assumed). 

After recognizing that the nomendature real-time temporal logic was not 

fully justified since this logic was developed especially for reasoning about 

quantitative temporal properties only partially dealing withother important 

features of reai-time systems such as reliability and performance issues, the 

logic was renamed to metric temporallogic and its application domain to the 

more general class of time-critical systems (nevertheless, reai-time systems 

still remain the most prominent representatives of that class ). Ho wever, 

metric temporallogic is not just another name for reai-time temporallogic. 

Tagether with the renaming a theoretica! study was undertaken regarding 

the fundamental principles underlying this logic. This resulted in an ori­

entation towards the way temporallogic had been studied by philosophers 

for decades (in philosophy temporal logic is often called tense logic). In­

vestigations of metric temporallogic about the interplay of qualitative and 

quantitative operators led to an interesting additional operator for modai 

and temporallogic which enables several formerly inexpressible natural as­

sumptions about time to he expressed in the logic. 
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This thesis is organized as follows. Chapter 2 deals with requirements 

for a general specification language. After treating the embedding of a. 

system in its environment with the interface in between it investiga.tes how 

the beha.vior of a. system should be specified. 

Chapters 3 and 4 deal with severa.l variants of rnadal and temporallogic. 

First, Chapter 3 gives a short recapitula.tion of the basics of rnadal and 

temporal logic subdivided in da.ssical rnadal and temporal logic (as stuclied 

by philosophers for decades, see e.g. [Pri 67]), temporallogies with until and 

since operators (as studied by Kampand Sta.vi), and temporallogies used 

in computer science. Then, Chapter 4 extends dassical rnadal and temporal 

logic with an additional rnadal/temporal operator. The expressive power 

of the resulting logies and several other semantic issues a.re investigated, 

complete axiomatizations a.re given, and decidability is proven. 

Chapters 5 and 6 introduce the application domains of our interest and 

look a.t ways to specify these with temporal logic. Chapter 5 concerns 

message passing systems. First we describe whlch systems we consider to be 

message passing systems a.nd we specialize the requirements from Chapter 

2 to the specification of these systems. Next we prove inexpressiveness 

results of temporal logies for the speci:fication of message passing systems (it 

turns out that many classes of message passing systems cannot be specified 

in strong temporal logies) and show how these logical limitations may be 

overcome. We illustrate thls with three specification exa.mples among which 

is a hierarchlcal specification of a la.yered communication network a.nd end 

with some conclusions. Chapter 6 concerns time-critical systems. First we 

describe the characteristics of such systems and specialize the requirements 

of Chapter 2 to the specification of these systems. Next we introduce our 

special temporallogic for reasoning about quantitative temporal properties 

called metric temporallogic. Metric temporal logic is then illustrated by a 

series of examples in volving time-critical ( and aften also message passing) 

features such as time-out, a watchdog timer, the wait/delay statement of 

concurrent programming languages and an abstract transmission medium. 
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We end Chapter 6 with some conclusions. 

At last, Chapter 7 looks at the obtained results in retrospect, presents 

some conclusions, mentions related work and lists possibilities for future 

research. 



Chapter 2 

How to Specify 

A whole thesis could he devoted to the topic of requirements of a general 

specification language. In this chapter we restriet ourselves to a small set 

of desirabie properties for a specification language for general systems. In 

section 3 of Chapter 5 and section 3 of Chapter 6 we reconsider this topic for 

message passing, respectively time-critical systems. For a more extensive 

theoretical account on the subject of specification we refer the reader to 

[KKZ 89]. 

So, before we look at the systems of our special interest, viz. message 

passing systems and time-critical systems, and how to specify them in chap­

ters 5 and 6, we first study the issue of specifying systems in general. To 

start with, one of the main characteristics of a system is that it does not 

workin isolation but exchanges information withits environment. So, each 

system can he viewed as being embedded in some environment consisting 

of the external sourees and recipients of the data interchanged. The envi­

ronment may consist of computer systems, but also physical processes and 

humans. Pictorially this may be represented as in Figure 2.1. In this fig­

ure the environment surrounds the system residing inside some boundary 

that demarcates the scope of responsibility of the system. This boundary 

between the system and its environment, formed by the collection of data 

elements interchanged between them, constitutes what we will call the (ah-

7 
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ENVIRONMENT SYSTEM ENVIRONMENT 

Figure 2.1: System in its Environment 

stract) interface. The interface is all the environment sees of the system and 

the other way around. This use of the word interface relates to abstract en­

tities and indicates only what kind of data is interchanged and should not be 

confused with the physical interface where it is indicated how this exchange 

is achieved physically (the RS-232 serial interface for data communication 

is a typical example). We will see an example of an abstract interface in 

section 2 of Chapter 5 where we treat message passing systems. 

A data element of the interface is a primitive entity that is by definition 

observable since it is interchanged between the system and the outside world. 

The data elements can be partitioned into two categories: state variables 

and events. A state variabie is persistently present, i.e. it has a value at 

each moment (for example a temperature sensor) while an event represents 

an entity that is intermittently present, i.e. it occurs at discrete moments 

(e.g. the arrival of a message ). When some occurrences of an event are 

not instantaneous but can have some duration (e.g. the transmission of a 

message over a communication link) we call it an actionor extended event 

in order to distinguish it from an (instantaneous) event which only occurs 

at discrete points in time. Two events can be causally related toeach other 

such as the response of the system to a stimulus from the environment. 

A causal relationship between events implies a temporal ordering of these 

events, but not the other way around. For example, a response can never 
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occur befare the corresponding stimulus. As an abstract view it may be 

helpful to allow simultaneity of causally related events but it should be 

remembered that this cannot be implemented because that would involve 

the possibility of infinite speed. 

When specifying systems in general this should include a specification 

of the interface between the system and its environment. Although it is 

usually suflident to give the intuitive interpretation of the data elements 

involved (together with attributes f!UCh as responsibility and the direction 

of the information flow) this is an essen ti al part of the specification. 

Next the behavior of the system in its environment has to be specified. 

In order nat to restriet oneself a priori to a certain set of implementation 

possibilities, such a specification should only specify the requirements put 

on the system when operatingin a certain environment and nat any design 

details relating to the internal operation of the system (because such de­

tails would suggest certain ways to achleve the required behavior and hence 

would be implementation biased). For the representation of a system asem­

bedded in its environment this involves viewing the system from the outside, 

as a black box. Such a viewpoint leads to the notion of observable equiva­

lence: systems that behave the same as observed only from the outside are 

considered equivalent (although they may differ considerably internally). 

Hence, the specification of the required behavior should have exactly that 

level of abstraction which differentiates between unwanted and allowed im­

plementations, i.e. it should be sufliciently concrete to rule out unwanted 

implementations and su:fficiently abstract to cater for all ( allowed) possible 

implementations. This notion of the right level of abstraction is asemantic 

one since it is based on the semantic relation of satisfaction between an 

implementation and a specification (in the context of semantics it is often 

referred to by 'fully abstractness'). However, this semantic notion of the 

right level of abstraction is nat suflident for our purpose. We intend the 

specification of behavior to be completely free of any implementation bias 

whatsoever, implying that not even syntactically implementations should 
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be suggested. This relates to a common way to achleve the right level 

of abstraction semantically by hiding internal variables introduced in the 

speci:fication by means of some abstraction mechanism ( usually connected 

to some form of existential quanti:fication). For example, consider a spec­

ification that uses an internal variabie pc representing a program counter. 

This variabie is clearly implementation biased, but by prefixing the speci­

fication with 3 pc this 'ïnternal variabie has become semantically invisible. 

The result is that the meaning of the speci:fication indeed gives the desired 

set of implementation possibilities but that the form of the speci:fication 

suggests the use of certain extra internal variables. We intend to avoid 

such a syntactical implementation bias by demanding that the speci:fica­

tion is phrased only in terms of the elements of the interface (as observed 

above these correspond precisely to the observable entities ). We will call 

a speci:fication without any implementation bias (neither syntactically nor 

semantically) syntactically abstract. This notion of syntactical abstractness 

is also briefly touched upon in [Pnu 86] in the context of compositionality. 

When one classi:fies specification languages as being descriptive ( descrih­

ing which behavior is required) or prescriptive ( descrihing how the desired 

behavior can he achieved) it will he clear from the ahove that syntactical 

abstractness favors the descriptive ones. 

Of course, our specification language should be formal to ensure rigor­

ons analysis and verification of desired properties. Further advantages of a 

formal approach indude: 

• in the process of formalization ambiguities, omissions and contradie­

tions in the informal requirements can be detected, 

• a formally verified part can be embedded with more con:fidence that it 

will function correctly ( the formal modelleads to enhanced reliability ), 

• the formal model can be a foundation for (partly) automated design 

methods and tools such as simulators, 

• several designs can be compared. 
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Two further desirabie properties of a general specification language are 

in our opinion: 

1. conformity: similar systems have similar specifications, 

2. uniformity: the specification method is based on a single formalism 

covering allaspects of a specification. 

In section 5 of Chapter 5 we will review these properties in the context of 

message passing systems. This is done by contrasting specification meth­

ods that lack one or more of these properties with an approach that does 

incorporate all of them. In this process we also indicate which price has to 

be paid for attaining these properties. 

The next pair of requirements fora general specifica ti on language is sim­

plicity versus adequacy. On one hand simplicity increases understandability 

and usability, on the other hand the language should be powerful enough to 

describe all desired properties. For complex systems these two requirements 

are in conflict. In such a case the problem consists of finding a language 

that is as simple as possible but still has sufficient expressive power. 

If the specification language is also used for the design of complex sys­

tems, this can only be done in a structured fashion by using several layers 

of abstraction. In this context it is essential that the method supports 

both top-down and bottorn-up development techniques. This is tightly 

connected with the notions of compositionality and modularity (see e.g. 

[Zwi 88],[Pan 88],[Jon 87]). For top-down development the method should 

be compositional, i.e. to a chosen decomposition of the system there is al­

ways a conesponding decomposition of the specification. For bottorn-up 

development modularity is essential, i.e. it should always be possible to 

combine given components in a way that all properties of the resulting 

combination can be derived from the specifications of these components. 

Apart from the above more theoretica! requirements it makes sense to 

indude also requirements with respect to the practical usability of a spec­

ification language. Typkal examples of such requirements are easy under-
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standability, easy readability (by using a suitable representation) and easy 

maintainability. For more information on this topic we refer the reader to an 

extensive survey of such requirements that has been undertaken in RACE 

project 2039 'SPECS'. 



Chapter 3 

A Review of Modal and Temporal 
Logic 

3.1 Introduetion 

In this chapter we give a brief overview of notions and results from modal 

and temporal logies used in philosophy and/ or computer science that are 

needed as a background for later chapters. 

We start in section 2 with the way modal and temporal logies have 

been used in philosophy since decades (see e.g. [Pri 67]). We describe of 

course the syntax: and semantics of such logies and look at some issues of 

correspondence theory (see [Ben 84]), ax:iomatizations and decidability. 

In section 3 we look at temporallogies with until and/ or since operators 

as studied by Kamp (see [Kam 68]) and Stavi (see [Sta 79],[Gab 81]). Apart 

from syntax: and semantics of theselogies we look at expressive completeness 

results. 

At last, section 4looks at some specialized temporallogies used in com­

puter science such as linear time, branching time and interval temporal 

logies and how such logies can be used as a specification language. 

13 
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3.2 Classical Morlal and Temporal Logic 

In this section we recapitulate the basics of propositional modal and tempo­

rallogic. In this and the next chapter we will use the following notational 

conventions. By <p, <f>t, ••• , 'Ij;, '1/Jh ... , x, Xt, ... we denote formulas and by 

q>, q> 11 •.• , 'li, 'lib ..• sets offormulas. We start out from a propositionallan­

guage containing proposition letters (P,PbP2, ... , q, .. . ), two propositional 

constauts ..L (falsum) and T (verum), and the boolean operators ..., (not), 

A (and), V (or), -+ (if ... then ... ) and +-+ (if and only if). In our proof 

systems we use the following complete axiomatization of propositionallogic 

(here and in the sequel D indicates a definition, Ra rule, A an axiom schema 

and Pa propositional axiom schema): 

(Dl) •<p := <p-+ ..L 

(Rl) Modus Ponens: to infer 'Ij; from <p and <p -+ 'Ij; 

(Pl) <p-+('1/J-+~.p) 

(P2) (~.p-+('1/J-+x))-+ ((~.p-+'1/J)-+(<p-+X)) 

(P3) ( •<p -+ •'1/J) -+ ('Ij; -+ <p ). 

To this propositional language modal and temporal operators can be 

added. For modal logic we add two operators: L (necessarily) and M 

(possibly). Temporallogic (in philosophy also known as tense logic) adds 

four operators: G (it is always going to be the case), F (at least once in the 

future ), H (it has always been the case) and P (at least once in the past). 

For a unary operator 0 its dual 0 is defined by 

0 <p := -, 0 -, <p. 

(Then 0 1 02 equals 0 1 02 and 0 equals 0.) The pair L, M for modal 

logic and pairs G, F and H, P for temporallogic are duals of each other. 

The semantica of modal and temporallogic is based on frames and mod-

els: 
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Definition 3.2.1 A frame is a pair (W, R) where W is a non-empty set of 

'worlds' and R is a binary relation on W ('alternative' relation arrelation 

of 'accessibility'). 

A model is a triple (W, R, V) where (W, R) is a frame and V is a valuation 

on W, i.e., it maps proposition letters onto subsets of W (giving the set of 

worlds where this proposition holds ). 

Temporal frames are aften called point structures (T, <) where T is the set 

of 'moments' (points in time) and < is the 'precedence' ar 'earlier' relation. 

Usually one imposes at least the restrictions of transitivity and irreflexivity 

on < giving rise to a strict partial order. Unless stated otherwise we will, 

however, make na such assumptions and treat < as an arbitrary binary 

relation. Several notions of validity and semantica! consequence are defined 

as follows. 

Deflnition 3.2.2 A rnadal formula cp holds in M (W,R, V) at wE W, 

notation M, w I= cp, is defined by recursion: 

M,w I= P i:ff wE V(p) ( for any propaaition letter p) 
M,w I=J. for no Mand w 

M,w l=cp-+'1/1 iff M,w I= cp => M,w I= '1/1 
M,w I= Lep iff Vw' E W [wRw' => M, w' cp] 

For a temporal formula cp, M = (T, <,V) and t E T M, t I= cp is 

defined in the same way except forthereplacement of the clause for L by 

two clauses for G and H: 

M, t I= Gcp 

M, t I= Hcp 
iff Vt' ET [t < t' => M, t' I= cp] 
iff Vt' ET [t' < t => M, t' I= cp]. 

Furthermore, we define the following derived notions (bath for rnadal and 

temporallogic ): 
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M,w I=~ 

M I= cp 

l=cp 

MI=~ 

~ Fm cp 

if Vcp E ~ M, w I= cp 

if Vw E W M, w I= cp 

if V M M I= cp ( cp is 'universally valid ') 

if Vcp E ~ M I= cp 

if VM [M I= ~ => M I= cp]. 

Sirnilar notions can be defined for frames: 

:F,w I= cp 

:FI=cp 

:FI=~ 

~ I=J cp 

if VV (:F, V), w I= cp 

if Vw E W :F,w I= cp 

if Vcp E ~ :F I= cp 

if V:F [:F I= ~ => :F I= cp]. 

Modal (ternporal) forrnulas express certain constraints on the alternative 

(precedence) relation in frames where they are valid. When interpreted 

in models, rnadal (ternporal) formulas are equivalent to a special kind of 

formulas in the following first-order language. 

Definition 3.2.3 Lt is the first-order language containing one binary pred­

icate constant R and unary predicate constants P, Pt, P2 , ••• , Q, .... 

The binary predicate constant R in this definition corresponds to the al­

ternative relation while the unary predicate constants correspond to the 

proposition letters (P,PbP2, ... ,q, ... ). An exarnple of a rnadal forrnula 

and its first-order equivalent is given by the forrnula Lp --jo LLp and its 

L1-equivalent 

Vy(xRy --jo Py) --jo Vy(xRy --jo Vz(yRz --jo Pz)). 

The free variabie x refers to the current world of evaluation. The general 

translation r for rnodallogic is given in the following definition. 

Definition 3.2.4 Let x be a fixed variable. 
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(i) r(p) = Px 

(ii) r( ..,<p) = .., r( <p) 

(iii) r(<p 1\ '1/;) = r(<p) 1\ r('lf;) 

(iv) r(Lcp) = Vy(xRy-+ [yfx]r(cp)), where y does not occur in r(cp). 

The translation for temporal logic is similar. T gives the obvious equiva­

lences ( compare the de:finition of T with that of M, w I= <p in De:finition 

3.2.2) 

M,w <p 

M I= <p 

iff M I= [wfx]r(<p) 
iff MI=Vxr(cp). 

The condition in clause (iv) that y should be fresh is not needed. In fact, 

two variables suffice, e.g. the temporal formula GFHp can be translated 

into 

Vy(x < y -+ 3x(y <x 1\ Vy(y <x -+ Py))). 

For models we can look for truth-preserving operations, i.e. operations 

on models such that M, w I= <p is preserved. In the sequel, M 1 = 
(~,~~~)~dM2=(~,~~~). 

Deftnition 3.2.5 M1 is a submodel of M2 if 

(i) W1 ç w2, 

(ii) Rt = R2 restricted to Wt, 

(iii) Vt(P) = V2(p) n Wt, for all proposition letters p. 

If M 1 has the additional feature that 

(iv) W1 is closed under passing to R2-successors, 

then M 1 is a generated submodel of M2. 

The next result is the famous 'Generation Theorem' of (Seg 71]: 
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Theorem 3.2.1 1f M 1 is a generated submodel of M 2, then for all w E W1 

and all rnadal formulas <p: 

The above concerns connections insideone model. For camparing evaluation 

in different models, we have the following 

Definition 3.2.6 Arelation Z is a zigzag conneetion between M1 and M2 
if 

(i) domain(Z) = W~, range(Z) = W2, 

(ü) if wZv, then w, v verify the same proposition letters, 

(üia) if wZv, and w' E W1 with wR1w', then w'Zv' forsome v' E W2 with 

vR2v', 

(üib) if wZv, and v' E W2 with vR2v1, then w'Zv' forsome w' E W1 with 

wR1w'. 

This notion of zigzag conneetion is related to the notion of bisimulation ( see 

e.g. [Par 81]). Starting from the basic case (ü), clauses (iiia) and (iiib) ensure 

that evaluation of rnadalities in rnadal formulas yields the same results on 

either side as is formulated by the following Theorem (see [Seg 70]). 

Theorem 3.2 .2 If M 1 is zigzag-connected to M 2 by Z, then, for all w E 

wl, V E w2 with wZv, and all rnadal formulas <p: 

As we saw above, the standard translation T for modallogic ( see De:finition 

3.2.4) translates rnadal formulas into a :first-order language L1 • In fact, 

the translations of rnadal formulas belang to a smaller class of :first-order 

formulas, called m-formulas, invalving restricted quantification. The next 

result is Theorem 3.9 of [Ben 85]: 
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Theorem 3.2.3 An L1-formula a containing at least one free variabie is 

equivalent to an m-formula iff it is invariant for generated subroodels and 

zigzag connections. 

Another important technique, the flitration method (see e.g. [Seg 71]), 
relates truth of a formula in a model to truth of that formula in a finite 

model: 

Defi.nition 3.2. 7 Let M = (W, R, V) he a model and r.p a formula. W is 

defined to he the finite set consisting of r.p together with all its subformulas. 

For each wE W, set 

w(w) := {1P E q; I M,w I= -tP}. 

The filtrated model is the model M+ = (W+, R+, V..-) where 

w..- := {w(w) I wE W} (a finite set), 

W 1 R..- W 2 if, for all 1P such that L-tP E W: L-tP E W 1 => -tP E W 2, 

V..-(p) := {w(w) I p E w(w)}. 

Theorem 3.2.4 Let M = (W, R, V) he a model and r.p a formula. Define 

w, w(w) and M+ as in Definition 3.2.7. Then for all wE Wand all 'Ij; E W: 

M,w I= 1P if and only if M..-, w(w) I= 'Ij;. 

The filtration technique can berefined so that R..- preserves certain desirabie 

properties of the original relation R, such as transitivity. Using filtration it 

is easy to prove the finite model property: 

Proposition 3.2.1 Any formula which is not universally valid is falsi:fi.ed 

on some finite model. 

Proof: Suppose r.p is not universally valid. Then, for some model M 

(W,R, V) and some wE W M, w I= •r.p. Applying filtration to M and 

•<p yields a finite model in which r.p is falsified. • 
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For the role of modal (tempora!) formulas in expressing constraints on 

the alternative (precedence) relation in frames, the valuation as given in a 

particular model is not relevant. To abstract from particular valuations, 

one simply quanti:fies universally over the unary predicates in the above 

translation T for models. So, when interpreted in frames, modal ( temporal) 

formulas get second.order transcriptions, with equivalences ( say r.p contains 

proposition letters Pb ... ,pn): 

:F,w I= r.p 

:FI=r.p 

iff :F I= VPt ... VPn [wfx]r(r.p) 
iff :F I= VPt ... VPn Vx r(r.p). 

For frames we also can look at truth-preserving operations that are related 

to those for models. We start with the notions of generated subframe and 

disjoint union. In the sequel, :Ft= (Wt, Rt) and :F2 = (W2, R2). 

Definition 3.2.8 :F1 is a generated subframe of :F2 if 

(i) Wt ç w2, 
(ii) Rt = R2 restricted to W1 , 

(iii) Wt is R2-closed in W2. 

Definition 3.2.9 The disjoint union ffi{:Fi I i E I} of a family of frames 

:Fi = (Wi, Rï) is the disjoint union of the domains Wi, with the obvious 

coordinate relations Hï. 

Notice that each frame :Fi can be viewed as a generated subframe of 

ffi{:Fi I i E /}. The theorem about generated submodels (Theorem 3.2.1 

above) now gives the following two results, preservation under generated 

subframes and preservation under disjoint unions: 

Corollary 3.2.1 If :Ft is a generated subframe of :F2, then :F2 I= r.p implies 

:Ft I= r.p, for all modal formulas r.p. 

Corollary 3.2.2 lf :Fi I= r.p for all i E J, then ffi{:Fi I i E J} I= r.p, for all 

modal formulas r.p. 
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The second truth-preserving operation on models concerned zigzag connec­

tions. For frames this notion is adapted as follows. 

Definition 3.2.10 A zigzag morphism from :Fi to :F2 is a function 

f : wl -+ w2 satisfying 

(i) wR1w1 implies f(w)R2 f(w'), i.e. fis an ordinary R-homomorphism; 

which has the additional property that 

(ii) if J(w)R2v, then there exists u E W1 with wR1u and f(u) = v. 

The theorem above about zigzag connections (Theorem 3.2.2) now gives the 

nex:t result, preservation under zigzag morphisms: 

Corollary 3.2.3 If fis a zigzag morphism from :F1 onto :F2, then, for all 

modal formulas <p, :F1 I= <p implies :F2 I= <p. 

The last truth-preserving operation on frames is not related to those for 

models. For it we need the notions of ultrafilter and ultrafilter extension 

which we define next. 

Definition 3.2.11 An ultrafilter U on W is a set of subsets of W such that 

(i) XE U or Y EU if and only if X u Y EU, 

(ii) X(/. U ifand only if W- XE U. 

Remark 3.2.1 Ultrafilters are rather unconstructive objects: to provetheir 

existence one needs Zorn's Lemma (or equivalently, the Axiom of Choice). 

For more information on the esoterie notion of an ultrafilter the reader may 

consult [CK 73], Chapter 4. 

Definition 3.2.12 The ultrafilter extension of a frame :F = (W, R), de­

noted by ue(:F), is the frame (ue(W),ue(R)) with 

(i) ue(W) is thesetof all ultrafilters on W, 

(ii) U ue(R) U' if for each X Ç W such that XE U, 

:~r(X) :={wE W l3v EX wRv} E U'. 
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This leads tothelast preservation result: anti-preservation under ultrafilter 

extensions. 

Theorem 3.2.5 If ue(F) I= cp, then .r I= cp, for all modal formulas cp. 

For more details on these preservation results, the reader may consult 

[Ben 84], section 2.1. 

The above translation into second-order logic gives rise to two oppo­

site questions: which first-order relational conditions are definable by a 

modal (tempora!) formula, and which modal (tempora!) formulas define 

a first-order relational condition? To be precise, these questions are con­

cerned about modal (tempora!) formulas cp and sentences a in the first-order 

language containing one binary predicate constant R ( respectively <) and 

identity = such that 

.r I= <p iff .r, I= a, for all frames .r. 

The following is a list of common first-order conditions for the preeedenee 

relation (representing assumptions about time): 

TRANS: \:lxyz(x < y < z -+ x< z) ( transitivity) 

IRREF: \:/x .., x < x (irreflexivity) 

LIN: V xy( x < y V x = y V y < x) ( comparability) 

1-LIN: \:lxyz((y <x A z <x)-+ (y < z V y = z V z < y)) (left-linearity) 

BEGIN: 3x -,3y y <x (a beginning) 

END: 3x -,3y x< y (an end) 

SU C-P: \:/x 3y y <x ( Succession towards past) 

SU C-F: \:/x 3y x< y ( succession towards future) 

DENS: \:lxy(x < y -+ 3z x< z < y) (density) 
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A 

Vxy(x < y -+ 3z(x < z A -,3u x< u< z)) 
( discreteness ). 

Vxy(x < y -+ 3z(z < y A -,3u z <u< y)) 
DISC: 

Of these, the following are definable with temporallogic: 

TRANS by FFp -+ Fp, 

L-LIN by Pp -+ H(Pp V p V Fp), 

SUC-P by Hp -+ Pp, 

SUC-F by Gp -+ Fp, 

DENS by Fp -+ FFp. 

As an example how one proves such equivalences of first-order relational 

conditions and temporal formulas we prove here the equivalences forTRANS 

and DENS. 

First suppose that < is transitive and consider any valuation 

V on (T, <) verifying FFp int. By applying the definition of F 

twice there exist t' and t" such that t < t' < t" and t" verifies 

p (and t' verifies Fp). By transitivity t < t11
, so Fp is also 

verified int. Hence, FFp-+ Fp holds at arbitrary points for all 

valuations V. 

Conversely, suppose that FFp -+ Fp holds at t for all val­

uations V on (T, <). Consider t' and t" such that t < t' and 

t1 < t". Then, for the particular valuation V assigning precisely 

{ t"} to p, FFp is true at t. Consequently, by the assumption 

that FFp -+ Fp is true at t for V it follows that Fp must be 

true at t for V. This implies the existence of a t < t111 with t 111 

verifying p. As V(p) consistsof t" only, this means that t < t", 
so < is transitive. 

Next suppose that < is dense and consider any valuation V 

on (T, <) verifying Fp int. By the definition of F there exists t' 
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such that t < t1 and p is true at t1
• By density, then, there exists 

some t11 in between: t < t11 < t'. So, again by the definition of 

F, Fp is true at t11 and hence FFp holds at t. Thus, Fp _,. FFp 

holds at arbitrary points for all valuations V. 

Conversely, suppose that Fp _,. FFp holds at t for all val­

uations V on (T, <). Consicier any t1 such that t < t 1
• Then, 

for the partienlar valnation V assigning precisely { t'} to p, Fp 

is true at t. Consequently, by the assumption that Fp _,. FFp 

is true at t for V it follows that FFp must be true at t for V. 

This implies the existence of t < t11 < t111 with t111 verifying p. 

As V(p) consistsof t1 only, this means that t < t11 < t', so < is 

den se. 

That the others are not definable by a temporal formula can be proved 

using the above preservation results. To see how such a negative condusion 

is reached we prove as an example the cases of IRREF and LIN. For the 

case ofiRREF consider the map from 7l. ( the set of integers) to the refl.exive 

single element point structure which is a zigzag morphism from an irrefl.exive 

point structure onto a refl.exive one. For LIN we use the preservation result 

for disjoint unions: an irrefl.exive single element point structure is linear, 

but the disjoint union of two of its copies is not. For further details, see 

[Ben 83], section II.2.2. 

We now proceed with the second question: which modal (tempora!) 

formulas define a first-order condition? Here, we consider just one aspect 

of the general issue. Many examples of first-order definable formulas have 

a common syntactic pattern. A typical instanee is the following result from 

[Sah 75]. 

Definition 3.2.13 A modal formula is called a Sahlqvist-form when it is 

of the form <p _,. 'Ij; where 

(i) <p is constructed from p, Lp, LLp, ... , .L, T using only A, V and M, 
while 
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(ii) '1/J is constructed from proposition letters, J.., T using A, V, M and L. 

The basic restrictions imposed by Sahlqvist-forms forbid LM or L( ... V ••• ) 

combinations in the antecedent rp. 

Theorem 3.2.6 All Sahlqvist-forms de:fine :first-order conditions. 

Proof: In fact, if x is a Sahlqvist-form it is locally equivalent with a :first­

order condition a containing precisely one free variabie x (as in the standard 

translation r for modallogic in De:finition 3.2.4), i.e. 

V w E W ( :F, w I= X iff :F, w o: ),. för all frames :F. 

Earlier we only introduced global equivalence between a modal formula x 
and a :first-order sentence o: de:fined by 

:F I= x iff :F a, for all frames :F. 

Local equivalence is stronger than global equivalence: if x is locally equiva­

lent with a, then x is globally equivalent with V x o: as one easily checks. For 

the proof oflocal equivalence of a Sahlqvist-form with a :first-order condition 

and generalizations thereof we refer the interested reader to [Ben 85], Chap­

ter IX. Here we illustrate the procedure by means of an example. Consider 

the modal form ula 

L(Lp- q) V L(Lq- p) 

which is an axiom of the modaJ system 84.3. First we have totransfarm 

this into an equivalent formula that is a Sahlqvist-form. To that end rewrite 

the disjunction as an implication of the negation of the :first disjunct and 

the second disjunct: 

M(Lp A -,q) - L(M-,q V p). 

Next we have to get rid of the negations. Fortunately the only negations in 

this formula are the two occurrences of -,q. Therefore we can use a simple 

lemma stating that for all frames :F, worlds wE W and formulas rp: 

:F, w rp iff :F, w I= [-,pfp]rp for all proposition letters p. 
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(This lemma follows from a more general substitution lemma, see [Ben 85), 

Lemma 2.5.) Thus we may rewrite our example formula as 

M(Lp A q) -t L(Mq V p). 

Once we have obtained a formula that is a Sahlqvist-form we apply the 

standard translation T for modal formulas of Definition 3.2.4 in such a way 

that no two quantifiers have the same bound variable. In this case this 

yields the first-order formula 

3y(xRy A Y z(yRz -t Pz) A Qy) -t 

Y s (xRs -t (3 t (sRt A Qt) V Ps)). 

The (outer) existential quantification in the antecedent of this form ula is 

now rewritten as a universa! quantification over the whole formula yielding 

Y y ((xRy A Y z (yRz -t Pz) A Qy) -t 

Y s (xRs -t (3 t (sRt A Qt) V Ps))). 

At this stage the main problem, the presence of the unary predicate con­

stauts has to be tackled. This is done by the so-called method of substitu­

tions. Tostart with, fix a variabie not occurring in the :lirst-order formula; 

in this case we can take u. In the following we concentrate on proposition 

letters in the antecedent r.p ofthe Sahlqvist-form, in the example M(LpAq). 

Let p be an occurrence of p in r.p. By v(p) we denote the bound variabie in 

the standard translation of r.p corresponding to the innermost occurrence of 

M in r.p the scope of which contains p; or, if no such occurrence of M exists, 

v(p) = x. In our example the only proposition letters in r.p, pand q, occur 

only once and v(p) = v(q) = y since y is the bound variabie corresponding 

to the only occurrence of Min r.p. Now, for the greatest number j such that 

p occurs within a subformula of the form Op (i.e. p prefixed by j times an 

L), put 

CV (p, r.p) .- v(p) Ri u 
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( where R0 equals identity = ). CV (p, rp) is defined as the disjunction of all 

CV(p, rp ), where pis an occurrence of p in rp. In our example we obtain 

CV(p,rp): yRu 

CV(q,rp): y =u. 

Finally, the first-order equivalent of the original modal formula is obtained 

by substituting, for each proposition letterpand conesponding unary pred­

icate constant P, and each individual variabie z, [zfu]CV(p, rp) for Pz in 

the obtained standard translation of the original modal formula. So, in our 

example we substitute respectively inthelast first-order formula above: 

[z/u]CV(p, rp) for Pz, 
[yfu]CV(q, rp) for Qy, 

[tfu]CV(q,rp) for Qt, 

[sfu]CV(p,rp) for Ps. 

This yields the :first-order formula 

Vy ((xRy A V z (yRz -+ yRz) A y = y) -+ 

V s (xRs -+ (3 t (sRt A y = t) V yRs))). 

After simplification this yields the desired first-order equivalent: 

Vy (xRy -+ V s (xRs -+ (sRy V yRs))). • 

Remark 3.2.2 Sahlqvist-forms may at :first sight seem to be a rather re­

stricted syntactical class of formulas, but as the example in the proof above 

shows many formulas can be transformed into an equivalent Sahlqvist-form. 

We now turn to axiomatizations of modal and temporal logic. In the 

sequel, by 'I! l-ps rp we denote that rp is derivable from 'I! within the proof 

system PS. 
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Definition 3.2.14 The minimal modal logic proof system K consists of 

(Dl), Modus Ponens (Rl), (Pl)-(P3) and 

(D2) Mr.p := ., L..., r.p 

(Al) L( r.p ___.. 1/7) ___.. (Lr.p ___.. L,P) 

(R2) to infer Lr.p from r.p 

Kis called minimal because it precisely a.xiomatizes Fm: 

(Distribution) 

(N ecessitation ). 

Theorem 3.2.7 (Completeness of K) For all modal formulas r.p and sets 

of modal formulas \1!: 

\1! 1-K r.p if and only if 'li Fm r.p. 

Proof: The Henkin method for proving completeness is well known from 

the literature and we use techniques from [Ben 83], Theorem II.2.3.6 and 

[Ben 85], Theorem 6.1 for the proof. A simplified schema of the proof with 

the main lemmas and propositions is given in Figure 3.1. The easy side 

to a completeness theorem is usually the soundness part: a check whether 

the a.xioms and rules were chosen at least correctly. In this case a routine 

induction establishes that 

'li 1-K r.p implies 'li Fm r.p. 

The converse (adequacy) is more exciting. We will prove this by contrapo­

sition: 

\1! lfK <p implies 'li ~m r.p, 

i.e. we use the information that r.p cannot be derived from 'li within K to 

find a model for 'li in which r.p fails at some world. This may be done 

by reformulating this information more 'positively' through the following 

notion of consistency. 
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soundness 

completeness 

Truth 
Lemma 

adequacy 

Consistency 
Theorem 

Figure 3.1: Schema for Completeness Proof of K 

A set of formulas q> is called W -consistent if for no :fini te number 

of formulas f.Pl, ••• , f.Pn from 4.>, ~ 1-K ...,( f.Pl 1\ .•• 1\ f.Pn)· 
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Now, if W lfK t.p, then {•t.p} is obviously ~-consistent. So, it suffices to 

show that '»-consistent sets offormulas are satis:fiable in at least one model 

for W, as formulated in the following CONSISTENCY THEOREM: 

For each ~-consistent set of formulas q>, there ex:ists a model 

M = (W,R, V) for W with some wE W such that M, w I= 4.>. 

Such models may verify more formulas at w than just those in 4.>. Therefore 

we introduce the following additional notion: 

4.> is maximally W -consistent if it is W-consistent, while none of 

its proper extensions are. 
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Notice that maximally 'i.V-consistent sets always contain 'i.V. The following 

two observations on W-consistent sets enable us to obtain such sets: 

1. if é.P is W-consistent, and cp is any formula, then é.P U { cp} or é.P u { •cp} 
is 'i.V-consistent, 

2. the union of any ascending chain é.P1 Ç é.P2 Ç ... of 'i.V-consistent sets 

is itself 'i.V-consistent. 

This leads to the following result, LINDENBAUM'S LEMMA: 

Each 'i.V-consistent set of formulas is contained in some maxi­

mally W-consistent one. 

Maximally W-consistent sets exhibit a very useful decomposition behavior 

with respect to Boolean connectives: 

If é.P is maximally W-consistent, then 
•cp E é.P if and only if cp ~ é.P, 

cp _,. '1/J E é.P if and only if cp E é.P => '1/J E é.P. 

N ow we are ready to define the Henkin Model of 'i.V, notation H M ;rr. This 

canonical model consistsof the Henkin Frame of W, notation H F;rr, together 

with a valnation V;rr which are defined as follows. HF;rr = (W;rr,R;rr) where 

W;rr consistsof all maximally 'i.V-consistent sets offormulas and R;rr is defined 

by 

é.P1 R;rr é.P2 if, for all formulas cp, LepE é.Pt => cp E é.P2. 

V;rr(p) is defined as {é.P E W;rr I p E é.P}. 
The definition of the Henkin Model as above is guided by the target equiv­

alence of the TRUTH LEMMA: 

For all maximally W-consistent sets é.P, and all formulas cp, 

H M;rr, é.P I= <p if and only if cp E é.P. 

The Truth Lemma, together with Lindenbanm's Lemma, is suilleient to 

prove the Consistency Theorem: 



3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 

Let ~ he a 'li-consistent set of formulas. By Lindenbanm's 

Lemma ~ can he extended to a maximally 'li-consistent set 

~maz· Since ~ Ç ~maz the Truth Lemma gives the desired 

H Mv, ~maz I= ~. (H Mv is a model for -q; since every maxi­

mally 'li-consistent set contains 'li.) 
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Soit remains to prove the Truth Lemma. This is done by induction on the 

complexity of r.p. The basic step is taken care of by the definition of Vv(P ). 

The steps for the Boolean connectives follow from the above decomposition 

properties of maximally 'li-consistent sets. It remains to prove the Truth 

Lemma for the case that r.p = L'lj;. First, suppose L'lj; E ~ and let ~' E Wv 

such that ~ Rv ~1 • Then, by the definition of Rv, 'Ij; E ~'. Hence, by the 

induction hypothesis, H Mv, ~' I= 'Ij;. Therefore H Mv, ~ I= L'lj;. 

Finally, the converse direction. 

Suppose L'lj; ~ ~. A maximally 'li-consistent set ~'is to he found such that 

~ Rv ~' and H Mv, ~' ~ 'Ij;, i.e. by the induction hypothesis, 'Ij; ~ ~'. To 

get such a ~' it suffices to prove that the set {x I Lx E ~} U { •?/J} is 

'li-consistent. (For in that case, by Lindenbanm's Lemma, there exists some 

maximally 'li-consistent extension of this set which does not contain 'Ij; and 

is an Rv-successor of~ since it contains all x such that Lx E ~.) 

It is only to prove this statement that the axioms of K come into play in 

the following reductio ad absurdurn argument: 

Let Lx1 , ... , Lx~e E ~ and suppose that -q; r-K •(x1 A ... A X Ie A •?/J ), then 

by propositional reasoning -q; r-K (Xl A ... A X Ie) -+ 'Ij;. 

ByNecessitation weget -q; r-K L((x1 A ... Ax~e)-+ 'Ij;), whence byDistribution 

-q; r-K (LXl A ... A Lx~e) -+ L'lj;. 
Since ~ is maximally 'li-consistent, all formulas derivable from -q; within K 

belong to ~' in partienlar the latter formula. By applying Modus Ponens 

we conclude that L'lj; E ~'a contradiction. • 
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Definition 3.2.15 The minimal temporal logic proof system Kt consists 

of (Dl), Modus Ponens (Rl), (Pl)-(P3) and 

(D2) F1,0 .- .., G.., 1,0 

(D3) P1,0 := .., H.., 1,0 

(Al) G( 1,0 -r "P) -r (Gif' -r G"P) 

(A2) H(1,0 -r "P) - (H1,0 -r H"P) 

(A3) 1,0 - GP1,0 
(A4) 1,0 -r HF1,0 

(R2) to infer G1,0 from 1,0 

(R3) to infer H1,0 from 1,0 

( distri bution of tense) 

( tense mixing) 

( temporalization) 

Again, Kt is called minimal because it precisely axiomatizes l=m: 

Theorem 3.2.8 (Completeness of Kt) For all temporal formulas 1,0 and 

sets of temporal formulas W: 

W 1-Kt 1,0 if and only if W l=m lf'· 

Proof: The proof is very similar to that for the system K above, the main 

difference being the replacement of the defi.nition of Rft by <ft as follows: 

~1 <ft ~2 if, for all formulas 1,0, 

G1,0 E ~1 ::::} 1,0 E ~2 and H1,0 E 1)2 ::::} 1,0 E 1)1· • 

The above effective axiomatizations together with the finite model prop­

erty ( established via filtration, see Proposition 3.2.1) guarantee that these 

logies are decidable: for each formula 1,0, by simultaneously enumerating 

all theorems ( using the axiomatization) and all fini te models, we can check 

whether 1,0 is a theorem or not ( since in the latter case 1,0 is falsified on some 

finite model by the finite model property). For more details on methods of 

proving decidability, see e.g. [Bur 84] section 3. 
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For obtaining similar results about complete axiomatizations of I= 1 (in­

stead of l=m) we add the following rule of substitution to our proof systems 

(for an explanation, see [Ben 83], section II.2.3): 

(R4) to infer ["Pt/Pt, ... , "Pn/Pn] t.p from t.p. 

We eaU él> frame-complete if 

él> 1-• t.p iff él> I= 1 t.p for all t.p, 

where 1-• stands for one of the above proof systems with the additional rule 

of substitution. For Fm we obtained general completeness results, that is 

for all Cb. For I=J, however, this is not possible: there are Cb which are not 

frame-complete. So, apart from the general completeness theorems above, 

modal (temporal) completeness theorems are dealing with special Cb that 

are frame-complete. Many such results involve a slight generalization of 

frame-completeness, namely completeness with respect to a class of frames 

which is defined as follows. 

Definition 3.2.16 Let C be a class of frames. Cb is called complete with 

respect to C if 

Note that Cb frame-completereduces to Cb complete w.r.t. {.F I.F I= Cb }. 

3.3 Temporal Logic with until and since 

We first define the syntax of propositional temporal logic with until and 

since operators. 

Definition 3.3.1 L( until, since) is the language with 

vocabulary: atomie propositions P0 , P1 , ••• 

logical operators .., , A, until, since 
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formulas: Pi(i E IN) 
..,<pt, <f't A<p2, i.pt until <p2 and <ptsince <p2 (<pt, <p2 formulas). 

To give thesemantics of L( until, since) we can use the notions of frames, 

valuations and model~ introduced in section 2 (see Defi.nition 3.2.1). For 

languages with until and since we will suppose the temporal frames to be 

strict partial orders, i.e. < is transitive and irreflexive. In the defi.nition of 

M, t I= <p we have only to include the following clauses for the operators 

until and since: 

M, t i.pt until <p2 iff 3 t' E T[ t < ti and M, t1 I= <?'2 and 

V t" E T[t < t11 < t' => M, t 11 <pt]] 

M, t I= i.pt since <p2 iff 3 t 1 E T[t1 < t and M, t1 I= 'P2 and 

V t11 E T[t' < t 11 < t => M, t" I= <pt]]. 

Because of irreflexivity of < the operators until and since will also be 

irreflexive, i.e. they do not indude the present as part of the future. 

Kamp ( see [Kam 68]) proves that L( until, since) is expressively com­

plete with respect to the class of complete linear orders. For the class of 

w-models (obtained by allowing as the only temporal frame the natura! 

numbers with their usual ordering) it is shown in [GPSS 80] that only until 

as temporal operator already suffices for expressive completeness. The tem­

poral operators F, G, P, H of section 2 can be defi.ned easily in terms of 

until and since: 

F <p .- T until <p 

P <p .- T since <p 

where still G = F and H = P, of course. 

In an unpublished paper ([Sta 79]) Stavi introduced two additional oper­

ators ulrlil and sfn:Ce in order to improve the above expressive completeness 

result of Kamp to the class of alllinear orders. These operators are defi.ned 

by 
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M, t I= f.Pt u-;t"il cp2 iff 

3 t11[t < t11 and V t1[t < t1 < t11 => M, t1 I= f.Pt]] and 

Vt11[(t < t11 and Vt'[t < t' < t11 => M,t1 I= cp1]) => 
( M, t11 I= f.Pl and 
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3 t""[t11 < f 111 and V tm[t11 < tm < t1111 => M, t111 I= f.Pt]])] and 

3 t111 [t < t111 and M, t 111 I= •t.p1 and M, t 111 I= f.P2 and 

V t"[(t < f' < t111 and 3 t'[t < t1 < t11 and M, t' I= •cp1]) 

=> M, t" I= cp2]] 

M, t I= f.Pl s~e f.P2 iff 
3 t11[t11 < t and V t'[t" < t1 < t => M, t' I= f.Pt]] and 

Vt"[(t"<tandVt'[t11 <t1 <t => M,t' cp1]) => 
( M, t" I= cp1 and 

3 t1111 
[ t1111 < t11 and V t 111 

[ t1111 < t111 < t11 => M , t111 I= cp1]])] and 

3 t111 [t111 < t and M, t"' I= •f.Pt and M, t111 I= f.P2 and 

V t11 [(t111 < t11 < t and 3 t1[t11 < t' < t and M, t' I= •t.p1]) 
=> M, t" I= f.P2]]. 

Intuitively, u-;t"ii and s~e take care of closing the 'gaps' in incomplete 

linear orders. An informal explanation of the u-;t"il operator ( and similarly 

for s~e) is the following. cp1 u"irtllcp2 asserts the existence of a 'gap' ahead 

(i.e. in the future) in the ordering such that 

1. from the current moment up till that gap cp1 will be true ( this follows 

from the first two conjuncts of the definition), 

2. the gap is approached from the right (i.e. from the future) both by 

•cp1 and by f.P2, that is to say no matter how near we take a point after 

the gap, there will be a point where •t.p1 (and the same for cp2) holds 

in between that point and the gap (the part about cp2 follows from 

the third conjunct of the definition, while the part about •cp1 and the 

existence of the gap follow from all three conjuncts of the definition). 
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Similarly to the extension of propositional logic with the temporal op­

erators until and since one can extend predicate logic with these opera­

tors to get a first-order temporallogic. In fi.rst-order temporallogies prob­

Ieros arise because of the interplay between quantifi.cation and time ( see e.g. 

[Gar 84],[Coc 84]). One of these problems is the possibility that the quan­

tified variables ( and possibly even their value domains) change over time. 

We avoid this problem by only allowing quantification over variables that 

do not change over time ( often called 'global' variables in contrast with 'lo­

cal' variables). Even in this restricted case most first-order temporallogies 

are incomplete ( usually shown by proving that Peano Arithmetic can be 

encoded into them). 

3.4 Temporal Logic in Computer Science 

This section is not intended as a brief overview but serves as a background 

for the motivation of certain dedsions to adapt temporallogic in later chap­

ters. 

Since the seminal paper of Pnueli ([Pnu 77]) the use of temporal logic 

for reasoning about many types of computerized systems and programs has 

been steadily increasing. This can be explained by the fact that the under­

lying semantica of temporallogic fits well with the notion of computation as 

used in computer science as we will show now. Temporallogic is intended 

for reasoning about situations changing in time. lts semantics makes a clear 

distinction between the static aspect of a situation, represented by a state, 

and the dynamic aspect, the relation (in time) between states. This dis tinc­

tion is also reflected in the syntax: a state is described by the classica! part 

oftemporallogic while the temporal operators are used for the descrlption 

of the evolution of the situation over time. In this way states and time 

need not be introduced explicitly in the logic itself. The conneetion with 

the notion of computation is that a computation can be seen as a sequence 

of states where each transition from one state to the next state in the se-
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quence (each step of the computa.tion) can be thought of as a tickof some 

computation doek. In this view computer systems are described as gen­

erators of computations ( also called execution sequences ). Therefore, the 

applications of temporal logic in computer science are usually restricted to 

the class of discrete systems where an execution of a system can be viewed 

indeed as a sequence of state transitions. For that reason the temporal 

frames considered are also discrete. 

The two most common types of temporal frames used in computer sci­

ence are the natura! numbers with their usual ordering and tree-like struc­

tures where branching is allowed only towards the future, giving rise, re­

spectively, to what is commonly called linear (time) temporal logic and 

branching time temporal logic. Concerning the list of common :first-order 

conditions on the preeedenee relation repreaenting assumptions about time 

in seetion 2, we see then that the temporal frames of linear temporal logie 

obey TRANS, IRREF, LIN and DISC (and usually also BEGIN and SUC-F) 

while those of branehing time temporallogic obey TRANS, IRREF, 1-LIN 

and DISC (and again usually also BEGIN and SUC-F). Fora comparison 

between linear and branehing time temporal logic, see e.g. [Sti 87]. Apart 

from linear and branching time temporallogic there are temporal logies in 

use in computer science that are based on other types of temporal frames, 

e.g. the partial order temporallogic of [PW 84], the temporal logic for event 

structures of [Pen 88] and the interleaving set temporallogic (using a mix­

ture of branching time and partial order elements) of [KP 87], but these 

form only a minority. Another approach is the one where temporal frames 

are notbasedon points but on intervals instead. This approach is also rep­

resented in computer science (for an excellent overview of the interval-based 

approach vs. the point-based approach in philosophy see [Ben 83]), e.g. In­

terval Temporal Logic with its executable subset Tempura of Moszkowski 

(see (Mos 83],[MM 84],(Mos 86]) and the intervallogic of Schwartz et al. 

(see [SMV 83]). 

In this thesis we restriet our attention to temporallogies basedon tem-
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por al frames with a preeedenee relation that is linear, in other words we look 

only at linear time-like temporal logies. [Pnu 77] contains some deviations 

from classica! temporallogic (as treated insection 2), in particular: 

1. the present is considered as part of the future and correspondingly the 

basic temporal operators are reflexive, 

2. only future temporal operators are used. 

In the sequel we will denote the reflexive counterparts of the temporal opera­

tors F and G of classica! temporallogic as treated insection 2 by their usual 

representation in computer science 0, respectively D. In genera!, irreflex­

ive temporal operators have more expressive power than the corresponding 

reflexive ones (in section 2 of Chapter 4 the reflexi ve dosure of general 

roodal/temporal operators will he given ). Although not done in [Pnu 77] 

severallater papers have include$1 the operators X ( next) and Y (previous) 

for indicating the next, respectively previous, element in the preeedenee 

relation (remember that in this section this relation is supposed to he a 

discrete ordering). Over the natura! numbers the irreflexive operators can 

then he expressed, e.g. Ftp = X Otp. The operators X and Y also have 

their defi.ciencies, however. For example, these operators lack the ahstract­

ness needed to achieve a fully abstract semantics of concurrent programs 

(see [Lam 83a],[BKP 86]). 

Concerning the second deviation ahove, it can he shown (see the re­

sults about expressive completenessin section 3) that the temporal operator 

until already suffices for expressive completeness over the natura! numbers. 

Therefore, from the viewpoint of expressive power there is no need to in­

troduce past operators when working over the natura! numhers. Ho~ever, 

[KVR 83] showed the advantages of such operators for the elegant specifi.ca­

tion of message passing systems (see section 6 of Chapter 5) and [LPZ 85] 

contains many theoretica! results ahout the usefulness of past operators. 

We now come back on the topic of temporal logic as a specifi.cation 

language for computerized systems and programs. As we have seen ahove, 
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a computation of a computer system can he described as a (linear) sequence 

of states and associated events (state transitions). In linear temporallogic 

the approach is taken that the behavior of a system S is given by the set of 

its computations, say L:. A temporal formula <pis then defined to he valid 

for S ( <p is a valid property of S) if each 0' E L: satisfies <p, i.e. 0' <p in the 

sense of Definition 3.2.2 in section 2 (remember that the underlying time 

domain of linear temporal logic is the set of natural numbers so that the 

sequence 0' can function as a model). 

In Chapter 2 data elements were partitioned into two categories, namely 

state variables and events. For the description of data elements we need a 

first-order variant of linear temporal logic. This variant partitions the set 

of variables into so-called global and local variables where quantification is 

only allowed over global variables (so the local variables always occur as 

free variables). Global variables range over fixed data domains and serve 

to denote elements thereof while local variables model the state variables 

(such as variables occurring in a program). Events are modeled as predicates 

(where the parameters ofthe event become the arguments ofthe predicate). 

When using temporal logic for the specification of programs, a funda­

mental classification of program properties differentiates between safety­

and liveness-properties. For a syntactical classification of temporal proper­

ties into a hierarchy refining this safety-liveness classification, see [MP 87]. 

Characterizations and decidability of safety- and liveness-properties using 

connections with model theory, formallanguage theory and semigroup the­

ory are contained in [Tho 86]. 

To end our account of the application of temporallogic as a specifica­

tion language in computer science, we can test temporal logic against the 

requirements for a general specification language in Chapter 2. Syntactical 

abstractness can be achieved by restricting the local variables and predicates 

to the state variables and events, respectively, of the interface. Sections 2 

and 3 of this chapter witness the formality of temporallogic. Furthermore, 

temporallogic is clearly a uniform formalism. The conformity requirement 
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is illustrated in section 5 of Chapter 5 for message passing systems. Tempo­

rallogic is a simple and elegant extension of propositionallogic (predicate 

logic in case of :first-order temporallogic), yet powerful enough to express 

interesting properties of programs such as safety- and liveness-properties. 

At last, papers such as [Lam 83b],[BKP 84],[BK 85aMBK 85b] show that 

temporallogic can he used for hierarchical development in a compositional 

and modular style. 



Chapter 4 

Polymodal Logies with Inequality 

4.1 Introduetion 

As has been demonstrated in the previous ehapter, modal and temporal 

logie eannot define all the natura! assumptions one would like to make on 

the alternative and preeedenee relation, respectively. This state of a:ffairs 

provides the motivation for this chapter. 

The semantics of modal and temporallogic is based on one binary re­

lation, the alternative, respectively, preeedenee relation. A straightforward 

generalization of this is to allow several binary relations and eorresponding 

operators leading to polymodal logies ( cf. dynamic logic, see [Har 84]). In 

fact, temporallogic can he viewed as a bimodallogie with preeedenee rela­

tion < and its converse>. This chapter studies polymodallogics including 

the special relation of inequality (this immediately includes also the total 

relation on worlds). We adapt several results from modal and temporal 

logic to polymodal models and frames: we provide translations to classica! 

logic (first-order for models, second-order for frames) and adapt the usual 

zigzag-relation for models to a kind of enriched bisimulation. It turns out 

that most of the previous preservation results for frames beeome invalid. 

This indicates that the addition of operators for inequality considerably in­

creases the expressive power of modal and temporal logic, a faet that is 

41 
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substantiated by showing how several first-order conditions that were not 

definable in rnadal (tempora!) logic become definable when operators for 

inequality are added. In fact, all universa[ first-order conditions and sev­

eral more complicated properties become definable. However, we can still 

not define all first-order properties: by filtration we can show that the exis­

tence of a refl.exive world cannot be defined. Apart from conditions on the 

alternative (precedence) relation, the addition of operators for inequality 

also allows to express all finite cardinalities of thesetof worlds (moments). 

Conversely, for frames we transfer an existing syntactic characterization for 

rnadal (tempora!) formulas that can be defined by a first-order property to 

polymodal formulas. 

For three types of polymodal models (with only the inequality relation, 

with both the alternative and inequality relation, and with both the preee­

denee and inequality relation) we provide complete axiomatizations and 

show that the resulting polymodallogics are decidable. At last we look at 

completeness results for classes of frames. 

The rest of this chapter is structured as follows. Section 2 introduces 

our polymodallogics including inequality and investigates semantic issues. 

In section 3 we look at complete axiomatizations for these logies and show 

their decidability. Section 4 contains some conclusions. 

4.2 Semantics 

For the semantic definition of operators in polymodallogics we make the 

dependenee on a partienlar binary relation R explicit in the following way. 

For ease of presentation we assume a model M = (W, R, V) to be fixed. 

First we abbreviate M, w I= <p by t.p( w ). Relative to R the necessity and 

po:;sibility operators are defined respectively by 

LR t.p(w) := Vw' E W [wRw' ::} <p(w')] 
and 

MR<p(w) := 3w' E W [wRw' and <p(w')]. 
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For temporallogic with operators F, P ( and duals G ,H) we have F = M< 

and P = M>. By PML(Rt, ... , Rn) we denote the polymodallogic with 

operators MRt, ... ,MR,. and their duals LRt, ... ,LR... 

For the polymodal operators MR and LR there is a standard way to 

make these reflexive by reflexive dosure as follows: 

MR<p := <p V MR<p 

and 

iR <p := <p 1\ LR <p. 

The nomendature sterns from the observation that M R = M R and iR LR 

where R is the reflexive dosure of the relation R: 

wRw1 iff w = w1 or wRw1
• 

In this section we eonsider the special binary relation of inequality, first 

as the only binary relation and next as an additional relation besides the 

alternative and preeedenee relation of modal, respectively temporallogic. 

Syntactically wedefine a new operator D (at a different world/moment) 

corresponding to M;é: 

D <p(w) := 3w1 E W [w # w1 and <p(w')]. 

lts dual D corresponds of course to L;é. From D two very useful operators, 

E (there exists a world/moment) and its dual A (for all worlds/moments) 

are defined by reflexive closure: 

E <p := <p V D <p 

and 

A <p := <p 1\ D <p. 

Note that the semantica of E <p and A <p is independent of the world in 

whieh it is evaluated. In fact, E = Mwxw and A Lwxw. The following 

table summarizes the operators LR and M R for four special choices of R. 
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0 T .L 

= r.p r.p 

f; Dr.p Dr.p 

WxW Ar.p Er.p 

The last two rows cannot he represented without the D-operator. Notice 

that = and W x W are the reflexive dosure of 0 and f;, respectively. 

When modal (tempora!) formulas are interpreted in models, they are 

equivalent to a special kind of first-order formulas ( see section 2 of Chapter 

3). Adding operators for inequality does not change this picture. We can 

simply add a clause in the translation r for the D-operator: 

r(Dr.p) := 3y(x f; y A [yjx]r(r.p)), 

where y does not occur in r( r.p ). But again, two variables actually suffi.ce, 

e.g. GDHp can he translated into 

Vy(x < y -+ 3x(y f; x A Vy(y <x -+ Py))). 

Again r gives the equivalences 

M,w I= r.p 

M I= r.p 

iff M I= [wjx]r(r.p) 
iff M I= V x r( r.p ). 

A semantica! characterization on models can he obtained by giving re­

lations between models such that the special first-order formulas from the 

translation r above are invariant under these relations. In section 2 of Chap­

ter 3 we defined (Definition 3.2.5) the truth-preserving operations of gener­

ated submodels. Clearly these operations can no longer he truth-preserving 

in the presence of inequality. However, the other truth-preserving opera­

tions, zigzag connections, can he adapted as follows. 
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Definition 4.2.1 A relation Z is an extended zigzag conneetion between 

Mt = (Wt, Rt, VI) and M2 = (W2,R2, V2) if 

(i) domain(Z) = Wt, range(Z) = W2, 

(ii) if wZv, then w, v verify the same proposition letters, 

(iiia) if wZv, and w1 E wl with WRtw', then w'Zv' forsome v' E w2 with 

vR2v1
, 

(iiib) if wZv, and v' E W2 with vR2v', then w'Zv' forsome w1 E W1 with 

WRtW1
• 

(iva) if wZv, and w' E W1 with w f= w', then w'Zv' forsome v' E W2 with 

v :/; v', 

(ivb) if wZv, and v' E W2 with v f= v1
, then w1Zv' forsome w' E W1 with 

w f= w'. 

The only difference with De:finition 3.2.6 consists of the additional clauses 

(iva) and (ivb ). These additional dauses impose a strong conneetion be­

tween Mt and M2: 

(1) if Z :/; 0 then domain(Z) = Wt,range(Z) = W2, 

(2) if wZv, then either this is the only Z-connection for wand v, or both 

wand v have at least two Z-mates. 

So, if Z is non-empty it may be split up in one bijective part where w E W1 
has only one Z-related v E W2 (and vice versa) and several clusters of Z­

related worlds such that each world in such a cluster is Z-related to at least 

two worlds (of the other model) in that cluster. On top of this one still 

has conditions (i)-(iii) so that e.g. Z-related worlds must verify the same 

proposition letters. This adaptation of the notion of zigzag conneetion leads 

to a corresponding adaptation of Theorem 3.2.2: 
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Theorem 4.2.1 If Z is an extended zigzag conneetion between M1 and 

M2, then, for all w E Wt, V E w2 with wZv, and all formulas c.p from 

PML(R, ::fi): 
c.p i:ff M2, V I= e.p. 

Section 2 of Chapter 3 contains a theorem (Theorem 3.2.3) stating that 

the translations of modal formulas into first-order formulas are character­

ized by their invariance under generated submodels and zigzag connections. 

Since generated submodels are not truth-preserving operations anymore, 

the natural question for the ad dition of inequality is whether translations of 

formulas of PML(R, ::fi) (and similarly for PML( <, >, ::fi)) are characterized 

by their invariance under the above extended zigzag connections. In the 

meantime a positive answer to this question has been given in [Rijk 89]. 

When modal formulas are interpreted in frames, they become secoud­

order formulas (say c.p contains the proposition letters Pb ... ,pn): 

:F I= c.p iff :F I= V Pt ... V Pn V x r( <p ). 

For frames we can look at preservation results (see section 2 of Chapter 3) 

such as preservation under disjoint unions: 

If :Fi I= c.p for all i E I, then EB{ :Fi I i E I} I= c.p, for all e.p. 

Adding inequality destrays most of the previous preservation results: no 

preservation under generated subframes, nor under disjoint unions, nor 

under zigzag morphisms. For example, consider the single-world frame 

:F ( { w }, R). Then :F I= .., D T but the disjoint union of two copies 

of :F does not. This is an indication that adding operators for inequality 

considerably increases the expressive power of modal and temporal logic. 

However, anti-preservation under ultrafilter extensions is preserved as was 

proven recently by Maarten de Rijke ([Ben 89],[Rijk 89]). 

The next two questions concern the correspondence over frames between 

modal formulas and first-order formulas: which modal formulas are defined 

by a first-order formula and which first-order formulas can be defined by 
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a modal formula? To start with the latter question, section 2 of Chapter 

3 lists several common first-order properties of the preeedenee relation and 

states which of them are definable with temporal logic. We now show that 

the addition of operators for inequality allows also the remaining first-order 

conditions to be defined: 

IRREF: Fp ---+ Dp (irreflexivity) 

LIN: Dp ---+ (Pp V Fp) 

BEGIN: EH.l and END: EG.l 

( comparability) 

(a beginning and an end) 

DISC: 
(P(pA -,Dp) ---+ E(PpA -,PPp)) 

A (F(p A -,Dp) ---+ E(Fp A •FFp)) 
( discreteness). 

As examples we prove the equivalences for IRREF and BEGIN. 

First suppose that < is irreflexive and consider any valnation 

V on (T, <) verifying Fp int. By the definition of F there exists 

t' such that t < t1 and p is true at t'. By irreflexivity t' ::f t, so 

by the definition of D, Dp is true at t. Thus, Fp---+ Dp holds 

at arbitrary points for all valuations V. 

Conversely, suppose that Fp ---+ Dp holds at t for all valu­

ations V on (T, <). Consider any t1 such that t < t'. Then, 

for the partienlar valnation V assigning precisely { t'} to p, Fp 

is true at t. Consequently, by the assumption that Fp ---+ Dp 

is true at t for V it follows that Dp must be true at t for V. 
This implies the existence of t11 ::f t with t" verifying p. As V (p) 
consists of t1 only, this means that t' ::f t, so < is irreflexive. 

Next suppose that < has a beginning, say t0 • Then for all t 
it is the case that t < to is false. By the definition of Hit follows 

that H .l is true at t0 • Thus, by the definition qf E, EH .l holds 

at arbitrary points for all valuations V. 

Conversely, suppose that EH.l is true at t: By the definition 

of E there exists a point, say t0 , such that H .l holds at t0 • By 
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the definition of H this implies that there exists no t such that 

t < t0 since such a t would have to verify .L Thus, to is a 

beginning of <. 

The opposites of BEGIN and END (succession towards past, respectively 

future) are already de:finable in temporallogic (see section 2 of Chapter 3) 

but can now be defined as opposites of BEGIN and END indeed: 

SUC-P: APT 

and 

SUC-F: AFT. 

Irre:Hexivity and comparability are examples of univeraal first-order condi­

tions. In fact: 

Theorem 4.2.2 All universal first-order conditions on R, = are definable 

in PML(R, ;f). 

where the operator U (at a unique worldfmoment) is defined as 

Ucp := E(cp A -,Dep). • 
As a corollary it follows that for example 

asymmetry: 'V xy( x < y --+ .., y < x) and 

almost-connectedness: 'V xyz( x < y --+ (x < z V z < y)) 
are also definable. Also more complicated first-order properties such as 

discreteness ( see above) beoome definable. However, we can still not define 

all first-order properties as is witnessed by the following proposition. 

Proposition 4.2.1 The existence of a re:Hexive world (3w wRw) is not 

definable in PML( R, ;f ). 
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Proof: Although most previous preservation results are invalid now, we 

can use the flitration method (see Deflnition 3.2.7 in section 2 of Chapter 

3) as follows. Suppose that <p deflnes the existence of a refl.exive world, then 

<pis refuted on (IN,<) (IN is thesetof natural numbers). So we can flnd a 

valnation V such that 

M l;t: <p for M =(IN,<, V). 

We are going to apply flitration to M and <p. So, let W be the flnite set 

consisting of <p tagether withall its subformulas and deflne for each n E IN: 

w(n) := {1/J E w I M,n I= 1/J}. 

Since W is flnite the w( n) partition IN into a flnite number of classes. Hence, 

a certain number of these classes, say k (k > 0), occur inflnitely often and 

there exists N E IN such that from N onwards only these classes occur. 

Let us denote these classes that correspond to an inflnite subset of IN by 

W1, ... , 'il"~e. Now, our flitrated model M-. = (W-., R-., V-.) is not standard 

(see the remark after this proof) but has some special properties. It consists 

of N + 2 · k worlds with the following conneetion between the old and the 

new worlds. The flrst N worlds correspond to 0, ... , N - 1 without any 

change. For n ~ N, n corresponds with Wi, 1 ~i~ k, such that w(n) = Wi 

and with a duplicate w~ of Wi. The 2. k worlds wl, WL ... ' W~e, w~ forma 

cluster, i.e. they are all R-.-related. By induction one easily establishes (as 

for standard flitration) that for all n E IN and all'I/J E W: 1/J holds in M at 

n iff 1/J holds at the corresponding world(s) in M-.. But then it follows that 

<pis refuted on M-., a flnite model with refl.exive worlds, a contradiction. 

Hence, such a <p deflning the existence of a refl.exive world cannot exist. • 

Remark 4.2.1 The role of the duplicates w~, ... , w~ relates to the presence 

ofthe D-operator. Because ofthis operator the standard flitration technique 

does not work anymore. Take for example the formula DT, then standard 

flitration will collapse every inflnite model into a single world which obvi­

ously is not truth-preserving since DT will not hold in this flltrated model. 
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Therefore we need to double worlds which correspond to more than one 

world in the original model. The induction proof that conesponding ( dou­

bled) points verify the same formulas (in the above proof restricted to the 

set lJ!) will reappear in a more elaborate form in the completeness proofs of 

section 3. 

Apart from conditions on the alternative ( preeedenee) relation, the ad­

dition of operators for inequality also allows properties of the set of worlds 

(moments) to be defined as in the following proposition. 

Proposition 4.2.2 Every finite cardinality is definable in PML(:f:.). 

Proof: For all n E IN, IWI :::; n is a universal first-order condition 

on = and hence is definable in PML( :f:.) by the proof of Theorem 4.2.2. 

Furthermore, IWI >nis defined by 

n n 

A V Pi - E V (Pi A Dp,). 
i=l i=l 

We prove this equivalence as follows. 

First suppose that IWI > n. Then we can choose n + 1 dif­

ferent worlds w1 , ••. , Wn+l· Consider any valnation V verifying 

A V/=1 Pi, then for each j, 1 :::; j :::; n + 1, at least one of the 

Pi'S {1 :::; i :::; n) is true at w;. By the pigeonhole principle this 

implies that there exist j, 1:::; j:::; n + 1, and j', 1 :::; j':::; n + 1, 

such that Pi is true both at w; and at Wj' forsome i, 1 :::; i :::; n. 

So, Pi A Dp, is true at w; and hence E V/=1 (Pi A Dp,) holds at 

arbitrary worlds. Thus, A V/=1 Pi -+ E V"/=1 (Pi A Dpi) holds 
at arbitrary worlds for all valuations V. 

Con versely, suppose that A V/=1 Pi -+ E V/=1 (Pi A Dp,) holds 

for all valuations V but that lW I :::; n, say W Ç { w1, ••. , w,.}. 
Then, the particular valuation V assigning { wi} toPi for those i, 

1:::; i:::; n, such that WiEWand 0 to the other pi's (1:::; i:::; n), 
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veri:fies A V/=1 Pi· Consequently, V veri:fies also E V'/=1 (pii\Dpi), 

but this asserts the existence of j, 1:::; j:::; n, and jl, 1 :::; j':::; n, 

and i, 1 :::; i :::; n, such that w; E W and Wj' E W and j f:. j' 
and Pi holds both at Wj and at Wj'· Since IV(Pi)l :::; 1 for all i, 

1 :::; i :::; n, this is impossible. Hence it must he the case that 

JWJ>n. 
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JWJ = n + 1 can then be de:fined by a conjunction of JWI :::; n + 1 and 

IWJ >n. • 

Because of :filtration, infinity of W can obviously not be de:fined. In fach p.o 

essentially higher-order property of identity can he de:fined: 

Proposition 4.2.3 Allformulas from PML(f:.) de:fine :first-order conditions 

over identity =. 

Proof: Formulas from PML( f:.) translate into the manadie second-order 

logic over pure identity and all formulas of this second-order logic are equiv­

alent with :first-order formulas (see [Ack 62]). • 

On the other hand, all :first-order formulas over identity can be de:fined as a 

Boolean combination of formulas expressing the existence of at least a cer­

tain number of elements. Since the latter formulas are de:finable in PML(f:.) 

by the proof of Proposition 4.2.2 it follows that 

Corollary 4.2.1 Over frames PML( f:.) is equivalent with :first-order logic 

over=. 

Another interesting topic related to expressive power considerations con­

cerns the possibility to discriminate between special structures. For ex­

ample, ordinary modal logic cannot discriminate b~tween IN and 71.., the 

set of natural numbers and integers, respectively. Adding inequality again 

helps: for the formula I{) of PML(R, f:.) de:fined as p -+ DMp it holds that 

(71.., <) I= I{) but (IN,<) li: cp. For temporallogic examples will necessarily 
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be more difficult because the D-operator is expressible over linear orders: 

D<p = P<p V F<p. The topic of the characterization of special structures is 

an interesting one and deserves further investigation. 

The other question about the correspondence of modal and first-order 

formulas asked which modal formulas are definable by a first-order property 

over frames. Section 2 of Chapter 3 contains a theorem (Theorem 3.2.6) 

that states the first-order definability of all Sahlqvist-forms. This syntactical 

class can easily be redefined for polymodal logies such as PML( R, f=) as 

follows. 

Definition 4.2.2 A formula of PML( R, f=) is called a Sahlqvist-form when 

it is of the form <p-+ '1/J where 

(i) <p is constructed from p, Lp, LLp, ... , Dp, D Dp, ... ..L, T using only 

A, v,M and D, while 

(ii) '1/J is constructed from proposition letters, ..L, T using A, v,M,D,L 

and D. 

Thus, instead of M we mayalso use D, and similarly for L and D. The 

definition for other polymodallogics such as PML( <, >, f=) is similar. Again 

(see Remark 3.2.2 in section 2 of Chapter 3) this class of formulas is not 

as restrictive as it appears at first sight. For example, the translations 

of universa! first-order conditions in the proof of Theorem 4.2.2 can be 

rewritten as Sahlqvist-forms. Also for the new definition of Sahlqvist-forms 

we have: 

Theorem 4.2.3 All Sahlqvist-forms define first-order conditions. 

Proof: The corresponding theorem (Theorem 3.2.6) insection 2 of Chap­

ter 3 can easily be generalized to polymodallogics. Again we demonstrate 

by an example that all Sahlqvist-forms are locally equivalent with a first­

order condition containing precisely one free variabie x. For this purpose 

we use the formula of PML( <, >, #) defining comparability: 

Dp-+ (Pp V Fp). 
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This formula is already a Sahlqvist-form so that we do not need to trans­

form it into one. Application of the standard translation (with of course 

the adaptation for the D-operator as given earlier in this section) gives the 

fi.rst-order formula 

3 y (x :f. y A Py) ~ 

(3 z (z < x A Pz) V 3 z' (x < z' A Pz')). 

Again we rewrite the existential quantification of the antecedent as a uni­

versa! quantification over the whole formula: 

Vy ((x -:fi y A Py) ~ (3 z (z <x A Pz) V 3 z' (x< z' A Pz'))). 

Take u as a variabie that does not occur in this formula. The antecedent 

Dp of the Sahlqvist-form contains only one proposition letter, namely p. So 

we get for the method of substitutions: 

v(p) = y 

and 

CV(p,Dp): y =u. 

In the first-order formula above wethen have to apply the following substi­

tutions: 

[yju]CV(p, Dp) for Py, 
[zju]CV(p,Dp) for Pz, 
[z'fu]CV(p,Dp) for Pz'. 

This yields the first-order formula 

V y ((x :f. y A y = y) ~ (3 z (z <x A y = z) V 3 z' (x < z' A y = z'))). 

After simplification this becomes 

V y (x :f. y ~ (y <x V x< y)) 
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whose global version ( obtained by prefixing with V x) is indeed comparabil­

ity: 

V xy (x= y V y <x V x< y). 

We conclude our semantic survey by an observation relating E and A. 

Proposition 4.2.4 Let M = (T, <,V) be a (temporal) model. 

Then M I= E<p -+ A<p for all <p if and only if 

(i) < satisfies either 

• 

(a) both succession towards pastand succession towards future, or 

(b) all points are both a beginning and an end (i.e. there are only 

isolated points), 

(ii) V is uniform, i.e. for all -proposition letters p either V(p) = 0 or 

V(p) = T. 

Proof: The case ITI ~ 1 is trivial, so suppose ITI > 1. First we treat 

the only if case, so suppose M I= E<p -+ A<p for all <p. Then (ii) follows 

immediately by taking <p = p. (i) follows by observing that either 

(a) M I= EPT and hence also M I= EFT, so by taking <p :::PT and 

<p ::: FT we get M I= APT (SUC-P) and M I= AFT (SUC-F) or 

(b) M !ïi= EPT and hence also M !ïi= EFT, so M I= AH.l (all points 

are a beginning) and M I= AG.l (all points are an end). 

For the if case, suppose M satisfies (i) and (ii). That M I= E<p -+ A<p 

for all <p is proved by induction. (ii) gives the basic induction step for 

proposition letters. Case (ib) is easy (this case can also be proved by a 

symmetry argument). So suppose we have to deal with (ia). A typical case 

is <p = F'ljJ: ~. 

M I= EF'IjJ * M I= E'ljJ ::} M I= A'I/J * M I= AF'I/J 
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where the one but last step is justified by the induction hypothesis and the 

last step by SUC-F (M f= AFT). The case lP= D"P is similar but now 

the last step M f= A'lj; => M f= AD'Ij; is justified by ITI :f: 1 and hence 

M F ADT. • 

4.3 Proof Theory 

We now turn to axiomatizations o~ polymodal logies with inequality. First 

we present complete proof systems for the basic logies PML(:f;), PML(R, :f:) 

and PML( <, >, :f:). 

Definition 4.3.1 The proof system D consists of a complete axiomatiza­

tion of propositionallogic induding the rule of Modus Ponens ( see sec ti on 

2 of Chapter 3) and 

(D2) DIP := • D • <p 

(R2) to infer D<p from <p 

(Al) D(<p ~ "P) -+ (D<p ~ D"P) 

(A2) <p ~ DD<p 

(A3) DD<p -+ (<p V D<p) 

(symmetry) 

(pseudo-transitivity ). 

The completeness proof of D uses the following theorem of D. 

Proposition 4.3.1 1-D D( <p A 'Ij;) ~ D<p. 

Proof: This theorem of D can he derived as follows. 

1. -, <p ~ •('P A 1/J) (propositionallogic) 

2. D(• <p ~ •('P A "P)) (l,R2) 

3. D• lP -+ D•( lP A 'Ij;) (2,Al,Modus Ponens) 

(3,propositionallogic) 
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5. D( <p 1\ 'Ij;) --+ D<p (4,D2) 

• 

Theorem 4.3.1 (Completeness of D) For all <p E PML(;i:) and W Ç 

PML(;i:): 

W 1-v <p if and only if W l=m <p. 

Proof: Soundness is standard by induction on the length of derivations. 

As an example we show that the new rule (R2) preserves validity and that 

the new axiom schemas (Al)-(A3) are valid. Tostart with rule (R2), sup­

pose that <p is valid, then for all models M and all worlds w: M, w I= <p. 

We have to show that M,w I= D<p for all models M and all worlds w. 
So, taking w' ;i: w, we have to show M, w' I= <p which follows immediately 

from the hypothesis that <p is valid. 

To check axiom schema (Al), we have to show that for all formulas <p and 

'Ij;, all models M and worlds w: M,w I= D(<p--+ 'Ij;)--+ (D<p--+ D'lj;). 

This red u ces to: suppose M, w I= D( <p --+ 'Ij;) and M, w I= D<p, prove 

that M,w I= D'lj;. Well, M,w I= D(<p--+ 'Ij;) means that for all w' ;i: w: 

M, w' I= <p implies M, w' I= 'Ij;. The second hypothesis M, w I= D<p 

means that for all w' ;i: w M, w' I= <p. The condusion that for all 

w' ;i: w M, w' I= 'Ij; is immedia te. 

To check that axiom schema (A2) is valid, we have to show that for all 

formulas <p, all models M and all worlds w: M, w I= <p --+ DD<p. This 

red u ces to: if M, w I= <p then M, w I= DD<p. So, supposing M, w I= <p, 

take w' ;i: w. To prove that M, w' I= D<p, i.e. that there exists w" ;i: w' 

so that M, w" I= <p. By taking w" = w this follows immediately from the 

hypothesis. 

To check axiom schema (A3), we have to show that for all formulas <p, all 

models M and all worlds w: M,w I= DD<p--+ (<p V D<p). So, suppose 

that M, w I= DD<p. Then there exists w' ;i: w such that M, w' I= D<p 
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and furthermore w11 =F w' such that M, w11 I= r.p. Now either w11 = win 

which case M, w I= r.p, or w" =F w in which case M, w I= Dep. These two 

possibilities lead to the desired condusion M, w I= r.p V Dep. 

For the proof of adequacy we use the same techniques as in the complete­

ness proof of the minimal modallogic proof system K ( see Theorem 3.2. 7 

insection 2 of Chapter 3). So suppose W lfn 1/Jo. To prove that W ~m 1/Jo. 
Let Mo be the standard Henkin Model of all maximally W-consistent sets 

offormulas from PML(#) with arelation ':ft defined by 

In the sequel we also use the equivalent formulation 

This equivalence is easily shown as follows: 

for all form ulas r.p, Dep E q>l * 'P E (!)2 

iff 

for all formulas r.p, r.p lt (_[)2 ::} Dep \t q>l 

iff 

for all formulas r.p, •r.p E q>2 ::} D-.r.p E q>l 

iff 

for all formulas r.p, 'P E q>2 ::} Dep E q>l· 

In the same way as in the completeness proof for K we can prove the Truth 

Lemma for Mo (where the new rule R2 and axiom schema Al replace the 

Necessitation rule, respectively the Distribution axiom schema, both needed 

for the proof of the Truth Lemma). Now for arbitrary 1/J such that W lfn 1/J 
( so in particular for 'f/;0), { •1/J} is W-consistent, so by Lindenbaum 's Lemma 

we can find a maximally W-consistent set (!)0 containing -.1/J and M 0 , (!)0 ~ 1/J 
by the Truth Lemma. In the case of the proof system K, the proof of 
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adequacy was complete at this point, because the semantics of PML(R), 

i.e. ordinary modal logic, involves a binary relation R that is arbitrary. 

Consequently, the particular relation Rw as defîned for the Henkin Model 

in that completeness proof posed no problems. In the case of PML(jé) 

ho wever, we are confronted with the very special relation of inequality in the 

semantics. In the soundness proof we showed that the new rule and axiom 

schemas were at least valid when interpreted over inequality. Adequacy, 

ho wever, demands that whatever is valid for all models with inequality, can 

he derived in the proof system D. In the rest of the proof we mean by a 

standard model a model incorporating real inequality jé. So far, we only 

constructed the model Mo with relation fj:, such that 'I/Jo is refuted in Mo. 
Our taskis to construct a standard model out of Mo in which 'I/Jo is refuted. 

To this end, let us fîrst investigate which properties can already he ascribed 

to the relation fj:, of Mo because of the extra axiom schemas (A2) and (A3). 

These two schemas ensure that: 

(so fj:, is symmetrie and "pseudo-transitive"). 

We prove (i) and (ii) as follows: 

(i) Suppose ~~ fj:, ~2· We have to show ~2 fj:, ~1 or that for all formulas 

<p: <p E ~1 => D<p E ~2· So let <p E ~1· By axiom schema (A2) it 

follows (since ~1 is maximally ~-consistent) that DD<p E ~1 . By the 

definition of ~1 fj:, ~2 the desired condusion D<p E ~2 is immediate. 

(ii) Suppose ~1 f/; ~2, ~2 fj:, ~3 and ~1 # ~3· We have to show ~1 fj:, ~3 

or that for all formulas <p: <p E ~3 => D<p E ~1 . So let <p E ~3 . 

Because ~1 # ~3 and ~b ~3 are maximally ~-consistent there exists 

a formula X such that XE ~3 but X f/. ~1· Now, since <p E ~3,X E ~3 

and ~3 is maximally ~-consistent we have also <p 1\ x E ~3• So by 

~2 fj:, ~3 it follows that D( <p 1\ x) E ~2 and by ~1 fj:, ~2 furthermore 
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that DD( ep A X) E cl>1. By axiom schema (A3) it follows (since cl>1 is 

maximally 'li-consistent) that ep A X E cl>1 or D( ep A X) E cl>1. The first 

case is impossible because x ft cT>1 and cT>1 is maximally 'li-consistent. 

Thus, D( ep A x) E cl>1 and because D( ep A x) --+ Dep is a theorem of D 

(see Proposition 4.3.1 preceding this completeness theorem) and cT>1 is 

maximally 'li-consistent the desired condusion Dep E cT>1 is reached. 

Our first impravement on model Mo to get a standard model is the smallest 

submodel of Mo containing cT>o and being closedunder ~' denoted by M 1• 

Since M 1 is a generated submodel of Mo, it follows that ( cf. the Generation 

Theorem in section 2 of Chapter 3, Theorem 3.2.1) for all formulas ep and 

all worlds (i.e. maximally 'li-consistent sets) cT> from M 1: 

Mt, cT> I= ep if and only if Mo, cT> I= ep. 

Our next claim is that ~ holds between any two different points in M 1 : 

This follows from (i) and (ii) above: repetitive application of (ii) yields that 

cT>o~ncpl => ( cT>o = cl>1 or cT>o ~ cl>1) and similarly cT>o~mcp2 => ( cT>o = 
cl>2 or cT>o ~ cl>2). 

Differentiate between three cases: 

(1) cT>0 = cT>1: substituting this in the second implication above immedi­

ately gives the desired condusion cT>1 = cl>2 or cl>1 ~ cl>2 

(2) cT>0 = cT>2: substituting this in the first implication and applying (i) 

yièlds again the desired condusion cl>1 = cl>2 or cl>1 ~ cl>2. 

(3) cT>o ~ cl>1 and cT>o ~ cl>2: by (i) cl>1 ~ cT>o and tagether with cT>o ~ cl>2 it 

follows from (ii) that cl>1 = cl>2 or cl>1 ~ cl>2. 

So, at least we achieved in M 1 that 
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for all worlds ~1 and ~2· 

Therefore, the only 'non-standard' feature of ';fi left when compared to real 

inequality is the possibility of reflexive worlds iP, i.e. where ~ ';j; iP holds. 

Now, let M2 be the model that replaces each ';j;-reflexive point~ of M1 by 

two points ~1, iP11 such that ~~ ';fi ~11 and iP11 ';fi ~~ and all ';fi-connections to 

other points are maintained and iP1
, iP11 have the same valuation as ~. Our 

last claim is that for all formulas <pand all worlds Cl) of M 2 : 

<p if and only if Mb~ I= <p 

where ~ = ~ if ~ was not ';fi-reflexive and ~' = ~11 = ~ for (doubled) 

';fi-reflexive points ~. This claim is proved by induction on <p: 

(a) <p = p is immediate since Cl) and ~ have the same valuation 

(b) the cases <p = •<p1 and <p = <p1 A <p2 are immediate from the induction 

hypothesis 

(c) <p = D1/1: To prove: M2,~ D1/1 if and only if M 1 , ~ I= D1/1. 

(cl) only if: easy since each world ~1 of M 1 can be written as i; for 

a world ~2 of M2 

( c2) if: in case ~ was not ';fi-reflexive this follows immediately from 

the induction hypothesis; otherwise ~ ';j; ~' hence M 1 , ~ D1/1 
implies M~, ~ I= 1/1, so by the induction hypothesis M2, iP' 1/1 
and M2, ~~~ I= 1/1. 

M 2 is a standard model (with real inequality #) where 1/10 is refuted, as 

required. • 
Definition 4.3.2 The proof system Dm consists of the minimal modallogic 

proof system K (see Definition 3.2.14 in section 2 of Chapter 3) together 

with the above system D (see Definition 4.3.1) plus the axiom schema 

(relation Mand D). 
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Theorem 4.3.2 (Completeness of Dm) For all <p E PML(R, #) and 

'1' Ç PML(R, #): 

'1' i-Dm <p if and only if '1' Fm <p. 

Proof: The proof above can easily be adapted. The additional axiom 

schema ensures that 

V'~ V~' ( ~ R ~~ :::? ( ~~ = ~ or ~ 'f; <P') ). 

Therefore dosure under R remains within the dosure under 'f;, so we can 

use the previous construction. • 

Defl.nition 4.3.3 The proof system Dt consists of the minimal temporal 

logic proof system Kt (see Definition 3.2.15 in section 2 of Chapter 3) to­

gether with the proof system D plus the two axiom schemas 

F<p -+ (<p V D<p) 

P<p -+ (<p V D<p). 

Theorem 4.3.3 (Completeness of Dt) For all <p E PML( <, >, #) and 

'1' Ç PML( <, >, #): 

'1' i-De <p if and only if <P l=m <p. 

Proof: As in the previous proof. The additional axiom schemas now 

guarantee 

V~ V~' ( ~ < ~~ => ( ~~ = <P or <P 'f; if>')) and 

'Vil> V'~' ( ~' < <P => ( if>' = if> or if> 'f; <P')). • 
Remark 4.3.1 Notice that we did not impose special restrictions on tem­

poral frames, in particular we do not assume that < is irreflexive. In the 

case that we restriet ourselves to irreflexive frames the above axiom schemas 

should be strengthened into F<p -+ D<p and P<p -+ D<p. 
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Using filtration it follows that these logies satisfy the finite model prop­

erty and hence are decidabie (see section 2 of Chapter 3). 

After having presented these complete axiomatizations of l=m we now 

look for simHar results for I= 1. As for modal and temporallogic ( see section 

2 of Chapter 3) we can only obtain such results for special 4">. So we search 

for 4"> that are frame-complete, i.e. 4"> such that for all r.p 

where 1-• stands for one of the above proof systems with an additional rule 

of substitution that allows to infer any substitution instanee of a formula al­

ready obtained. 4"> containing only valnation-independent ( closed) formulas 

(i.e. formulas without any proposition letters) such as the formulas defining 

BEGIN, END, SUC-P and SUC-F insection 2 can easily be proved frame­

complete as follows. For a closed formula r.p we have for all frames :F and 

all valuations V: 

:F r.p .ç;. (:F, V) I= r.p. 

From this it is easy to prove for 4"> only containing closed formulas that for 

all'I/Y 

By the above completeness theorema for l=m it then follows that 4"> is frame­

complete. In this way combinations of BEGIN, END, SUC-P and SUC-F 

yield 8 completeness theorems (the pairs BEGIN, SUC-P and END, SUC-F 

are mutually exclusive). 

We can also obtain more general completeness results for frames, for 

example: 

Proposition 4.3.2 When r.p corresponds to a frame-condition a purely on 

< and a also holds in the underlying frame of the standard Henkin Model, 

then { r.p} is frame-complete ( this includes all <p that correspond to univers al 

conditions a). 
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Proof: The reason is this: when inspecting the completeness proofs above 

we observe that the doubling of ?é-reflexive points to get a model with real 

inequality gives a surjective function F from the new model to the old one 

that is a strong homomorphism: x < y iff F( x) < F(y ). The existence of 

such a function makes the new and old model elementary equivalent in the 

pure < -language. For these concepts from model theory the reader may 

consult [CK 73]. • 

For conditions involving < and = it is not so easy to get such complete­

ness results. For example, doubling ?é-reflexive points can disturb compa­

rability V xy(x < y V x= y V y <x). Nevertheless, we havearesult for 

this case also. 

Proposition 4.3.3 {Dep _,. (Pep V Fep) I ep E PML( <, >, #)} is frame­

complete. 

Proof: The given set is an axiom schema that enforces comparability 

on frames. Doubling ?é-reflexive points would disturb comparability. Fora 

?é-reflexive point x we use the following construction instead differentiating 

between two cases: 

1. x is <-irreflexive. In this case just remove the ?é-loop in x: there is 

no change in evaluation because of the extra axiom schema Dep _,. 

(Pep V Fep). 

2. x is <-reflexive. In this case replace x by (7l, <),i.e. the integers with 

their standard ordering, replacing ';fJ by real inequality # and using 

the same valnation everywhere. • 
Conjecture 4.3.1 The construction in the above proof is generalizable to 

a result stating completeness for all Sahlqvist-forms with respect to their 

corresponding :first-order conditions. 

A general question a bout completeness with respect to a class of frames ( see 

Definition 3.2.16 in section 2 of Chapter 3) is the following: ~uppose that 
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the pure temporal logic (i.e. hased on the operators F and P) of a class 

of frames is recursively axiomatizahle, does the same hold for the temporal 

logic where inequality is added (i.e. hased on the operators F, P and D)? 

And if so, can this he done via a uniform extension? 

4.4 Conclusions 

We end this chapter with some conclusions. We extended modal and tempo­

rallogic with operators for reasoning ahout inequality. This simple idea has 

interesting consequences: all the usual first-order properties of the alterna­

tive and preeedenee relation are now definahle. Furthermore, completeness 

and decidability results were given and several semantic results from modal 

and temporal logic could he adapted for the new logies. It is surprising 

that this simple idea has not been proposed before. However, ideas in a 

simHar direction were recently investigated independently in [Gor 88] and 

[Bla 89]. In our terminology, [Gor 88] is concerned with the base language 

PML(R, -R) where -R denotes the complement of R. As an extension also 

the case PML(R, -R, -:j;, =)is hriefly considered. Equality is easily axioma­

tized by L=p ~pand the axiomatization of inequality is then deriv~d from 

that given for complementary relations. 

Like our idea to add an extra operator to modal and temporal logic 

to make these more expressive, the logic introduced in [Bla 89] is also mo­

tivated ( although stemming from quite a different application area, viz. 

information systems) hy expressive power considerations. However, the ex­

tension proposed in that paper uses additional variables, called nominals, 

insteadof an additional operator for inequality. The resulting logic is called 

nominal tense logic. lts language consists of the Prioreau propositional 

temporal logic of section 2 of Chapter 3 ( with temporal operators G, F, H 

and P) extended with nominals, represented hy i, i1 , ••• ,j,j1, ... , which are 

considered as atoms. The crudal point about nominals is that they are in­

tended as propositions that are true at one and only one point. Therefore, 
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the extension of the notion of a valnation (see De:finition 3.2.1 insection 2 

of Chapter 3) stipulates that for all nominals i, V( i) is a singleton (instead 

of an arbitrary subset of the set of momentsin case of normal propositions ). 

So, nominals are so called because they name: they refer uniquely to points 

of time. Apart from this extension, the other semantic notions can he de­

:fined in the usual way. One of the main results of [Bla 89] is a complete 

axiomatization of nominal tense logic. 

How is the expressive power of temporallogic a:ffected by this addition 

of nominals? Like we did for PML( <, >, ::fi) in section 2 we give formulas 

de:fining :first-order conditions that were not de:finable before: 

IRREF: z ~ .., F i (irre:flexivity) 

LIN: z V P i V F i ( comparability ). 

Another indication of the obtained expressive power is given by the preser­

vation results. For nominal tense logic it can be shown that preservation 

under disjoint unions and preservation under zigzag morphisms is lost, but 

that preservation under generated subframes and anti-preservation under 

ultrafilter extensions is maintained. The preservation result for generated 

subframes means for example that the existence of an isolated point (i.e. 

a point that is both a beginning and an end) cannot be defined (a coun­

terexample is a frame with more than one point but exactly one isolated 

point: leaving out the isolated point gives a generated subframe). This is a 

di:fference with PML( <, >, ::fi): as is clear from the de:fining formulas for a 

beginning and an end (see section 2), the existence of an isolated point can 

he de:fined by 

E ( H .L A G .L ). 

Indeed, for PML( <, >, ::fi) also preservation under generated subframes is 

lost and only anti-preservation under ultrafilter extensions remains. This 

gives rise to the question whether PML( <, >, ::fi) is strictly more expressive 

than nominal tense logic. The answer is positive and can he proved using 
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the same techniques as for proving that all universal first-order conditions 

are definable (Theorem 4.2.2 insection 2): 

Let <p( i 1, ... , in) be a formula of nominal tense logic whose 

nominals are i 1 , ••• , in, then 

:F <p(it,•••,in) 

if and only if 

:F I= Upi1 A ••• A U pi,. - [pi1 /it, ... ,pi,./ in] <p, 

where Pi1 , ••• ,pi,. are propositions not occurring in <p. 

In other words: propositions that are true at one and only 

one point (the intended function of nominals) can already he 

expressed in PML( <, >, ::fi) by the use of the uniqueness operator 

u. 

The translation from nominal tense logic into PML( <, >, ::fi) also gives al­

ternative ways of defining first-order conditions, e.g. irrefl.exivity: the trans­

lation of i- •Fi is Up- (p- •Fp). 
Another idea for using the D-operator is to add it to temporal logic 

with until and since operators (see section 3 of Chapter 3). Consider for 

example the closed ( valnation-independent) formula 

A ( ..L until T ) . 

This formulaexpresses a combination of discreteness and succession towards 

future. 



Chapter 5 

Message Passing Systems 

5.1 Introduetion 

In this chapter we look at message passing systems and ways to specify 

them. First we descri he the requirements which systems must ful:fill in order 

to be quali:fied as a message passing system. Next we look at requirements 

for specification languages that are important in the context of message 

passing systems. 

We will use temporal logic as a formalism for specifying message pass­

ing systems. Therefore, we first investigate the suitability of the standard 

temporal logies like those treated in Chapter 3 for this purpose. To that 

end we examine (propositional and first-order) temporal logies with until 

and since (as studied by Kampand Stavi, see section 3 of Chapter 3) and 

their capability to specify certain classes of message passing systems. We 

prove that even such strong temporal logies (Kamp's logic is expressively 

complete with respect to the class of complete linear orders, and Stavi's ex­

tension makes it expressively complete with respect to the class of alllinear 

orders) cannot express a large number of natural classes of message pass­

ing systems. This extends aresult of Sistla et al. ([SCFG 82],(SCFM 84]) 

that unbounded buffers cannot be expressed in linear time temporallogic (a 

smaller class of message passing systems and a weaker logic). In our anal-

67 
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ysis the souree of this inexpressiveness is the impossibility to couple each 

message that is delivered by a message passing system to a unique message 

accepted by that system. This result seems to necessitate the enrichment of 

TL-based formalisms for the specification of message passing systems, e.g. 

with auxiliary data structures or histories as done, respectively, by Lam­

portand Hailpern. Observe that Lamport employs a hybrid formalism (TL 

+ Data Structures ), and that in Railpern's method similar systems, such 

as FIFO and LIFO, do not have similar specifications. We show that no 
' 

such enrichment is logically required by introducing an additional axiom 

within TL which formalizes the assumption that messages accepted by the 

system can be uniquely identified. In this way, no extraneous formalisms 

are introduced, and both FIFO and LIFO are expressible with equal ease. 

We illustrate our way of specifying message passing systems with tem­

porallogic by three examples (the third example concerns the hierarchical 

specification of a layered communication network) and drawsome conclu­

sions. 

This chapter is organized as follows. In section 2 we describe which 

systems we consider as message passing systems and specialize the require­

ments of Chapter 2 for these systems in section 3. In section 4 we prove 

inexpressiveness results for temporallogies with until and since and their 

consequence for the specification of message passing systems. Then, in sec­

tion 5 we review three solutions to overcome the previous logicallimitations. 

We end the chapter with a series of specification examples of message pass­

ing systems and draw some conclusions in section 6, respectively section 

7. 

5.2 What are Message Passing Systems? 

In this section we consider message passing systems from the very general 

and abstract viewpoint of Chapter 2. In particular, message passing sys­

tems are viewed as a black box and as long as the observed behavior of 
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in(m) I 
--------.;• Message Passing System 

out(m) 

Figure 5.1: Message Passing System as a Black Box 

two message passing systems is the same as seen from the outside (i.e. in 

terms of the elements of the interface) they are considered equivalent al­

though the systems may differ internally. A message passing system, then, 

is a system that gets messages and passes these messages on to their des­

tination. A simple everyday example is a mailbox. The message can be a 

letter (postcard etcetera) and the message passing system is supplied by the 

postal company. lf we denote the input of a message m by in( m) and the 

delivery of a messagem by out(m), Figure 5.1 represents a message pass­

ing system as a black box. So, in and out constitute the abstract interface 

(see Chapter 2) with the environment and out(m) is considered to be the 

system reaction on the environment action in( m ). Hence, since a message 

is given by the environment in( m) is the responsibility of the environment 

and since a message is delivered by the system out( m) is the responsibility 

of the system. In this representation the souree and destination of a mes­

sage are left implicit, i.e. in( m) means that there is a souree that gives m 

to the message passing system and out( m) means that the message passing 

system delivers m to its destination (note the asymmetry: the destination 

of a message must always be known, while this is not necessarily the case 

for the source). When sourees and destinations are explicitly represented 

we get in(s, m) and for symmetry reasans out(d, m) where, however, always 

d = destination( m ). 

The external behavior of a message passing system is characterized by 

its input sequence, its output sequence and their relation in time. Hence, 

only input, output and their relation determine the observable difference 

between several types of message passing systems. This means that quite 
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different message passing systems such as a simple buffer ( or transmission 

medium) and a complex communication network should he considered the 

same as long as they exhibit the same observable (external) behavior, i.e. 

the same relation in time between input and output. 

The following basic assumption about in, out and their relation in time 

is characteristic for all message passing systems: 

NC the message passing system does not create messages by itself neither 

NCl by creating new messages (a message is new when it has not 

been given to the message passing system before), nor 

NC2 by delivering duplicates of messages given to the message pass­

ing system. 

In other words: the bag of delivered messages is always some part of the 

bag of messages that have been g1ven to the message passing system. NC is 

an abbreviation for No Creation. All message passing systems are required 

to satisfy this assumption because they are intended to pass messages and 

not to modify fcreate or replicate messages. Although it is known that 

neither NCl nor NC2 can be guaranteed completely in practice it makes 

sense to make such slightly idealized assumptions. Anyway one always has 

the option of dropping one or both of them ( although in case of dropping 

NCl this would allow the system to exhibit almost any behavior). NC 

is the basic safety assumption for message passing systems in the sense 

that the system does not commit a bad thing ( see e.g. [Lam 83a] for this 

characterization of safety) by creating messages. Concerning liveness, the 

basic assumption is that at least some messages that have been given to the 

system will he delivered at their destination, as formulated in the following 

liveness assumption: 

LA if an infinite number of messages will be given to the message passing 

system, an infinite number of these will be delivered at their destina­

tion. 
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Stated informally, the system may lose an arbitrary number of messages in 

a row, but eventually it should deliver at least one message (and since time 

extends to infinity repeating this we get the delivery of a second message, 

a third message etcetera). 

In the above representation of message passing systems we assume that 

both in( m) and out( m) cause no blocking, i.e. the message passing system 

can never refuse a message that is given to it (it always accepts the message) 

and it is always able to deliver a message to its destination. In practice this 

is usually achieved by associating input and output queues at both ends of 

the message passing system (if we .do not make the unrealistic assumption 

of infinite queues, this implies that in(m) leads to the loss of m when the 

input queue is full and similarly for out( m) and the output queue). 

Because of the physicallimitations in the real world it makes sense to 

make also the following assumption of finite speed: 

FS the speed of the message passing system is fini te, i.e. there is a positive 

(infinite in case the message gets lost) delay between the acceptance 

of a message and its delivery. 

As we have seen above, the interface between the message passing system 

and its environment consists of in and out. Sametimes more information 

about the interface is available, for example that there is only a single input 

line or a single output line (a line is called single when at any time there 

can be at most one message present on the line) leading to the following 

assumptions no simultaneons input and no simultaneons output: 

SI at any moment of time, at most one message can be given to the 

system, 

SO at any moment of time, at most one message can be delivered to its 

destination. 

These assumptions apply in partienlar to the case of a single souree and a 

single destination or in case of explicit representation of sourees and desti­

nations for each souree and destination separately. Although there cannot 
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be two messages at the same time given to the system nor delivered by the 

system, it is perfectly possible that there is a message given to the system 

simultaneously with the delivery of a (different) message by the system. 

Apart from the assumptions SI and SO being enforced by the interface 

it is also possible that the environment, respectively the system, will en­

sure that no simultaneons inputs, respectively outputs, occur (in spite of 

the presence of severa1 input, respectively output, lines ). This is the rea­

son that the nomendature single input and single output is misleading for 

the above assumptions SI and SO; therefore we call them no simultaneons 

input and no simultaneons output, respectively. 

In the above description it is not stated whether in( m) and out( m) are 

considered events ( and hence are instantaneous) or actions ( and hence have 

a certain duration). Anyway, for message passing systems it can be assumed 

that they are events, because it is always possible to identify a unique mo­

ment of time at which a message can be said to be accepted, respectively 

delivered: take for example the case where a message consists of bytes, then 

one can let in( m) and out( m) correspond to the input ( respectively output) 

of the last byte of m (since we assumed that bytes are not observable but 

only messages, in( m) can beseen as instantaneous, although on a finer level 

of gran ulari ty the different bytes can be seen). 

An example of a message passing system aften occurring in practice that 

is subject to the above restrictions (NC, LA, FS, SI, SO) is a transmission 

medium with a probability between zero and one of a successful transmis­

sion. Such a message passing system exhibits only external behaviors that 

are allowed by these restrictions although the probability of the occurrence 

of certain behaviors may vary. 

Apart from the above restrictions, message passing systems can be dis­

tinguished by requiring additional properties. As we saw above the basic 

liveness requirement for a message passing system is that at least some of 

the accepted messages will be delivered. Sametimes we need the stronger 

requirement that all accepted messages will eventually bedelivered in which 
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case we will call the system perfect. In case messages may get lost ( an im­

perfect system) this notion of a 'lost' message must again be considered as 

a purely external one, i.e. whenever an accepted message is never delivered 

it is considered as being lost, although it may remain forever in the message 

passing system ( and is not lost in the internal view of that system; an ex­

ample is a network with a routing algorithm that does not guarantee that 

each message will eventually reach its destination). 

Another distinction can be made by requiring a certain order in which 

accepted messages are delivered (if at all). In the above we imposed no 

order at all (this corresponds to a bag-like behavior). As an additional 

requirement one can pose FIFO ordering (first-in first-out, like queues) or 

LIFO ordering (last-in first-out, like stacks). It should be noted, however, 

that the pure data structure view of queues and stacks is complicated by the 

fact that these can be operated upon in parallel in case of message passing 

systems by the input and output of messages ( for a stack a simultaneons pop 

and push, for example). An example of a FIFO message passing system is 

an ordinary buffer. An example of an unordered (that is, in noorder at all) 

message passing system is a communication networkin which each message 

is sent on to an intermediate node depending on some routing algorithm. 

Due to e.g. congestion on the chosen route, later messages may arrive earlier 

when sent via alternative routes. 

5.3 How to Specify Message Passing Systems 

Let us review the requirements for a general specification language in Chap­

ter 2 in case of the speci:fication of message passing systems. 

Our requirement of syntactical abstractness imposes that the specifica­

tion is phrased only in terms of in, out and messages. A common way 

to specify FIFO message passing systems violating this requirement intro­

duces a queue into the speci:fication and hides it by means of an existential 

quanti:fier ( see section 5 of this chapter). 
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Formal methods for the specification of message passing systems have 

been investigated since decades and the results are promising ( see e.g. 

[MCS 82],[SM 82]). 

Not all such methods conform to the requirement of conformity, for 

example in section 5 of this chapter we will encounter a method that is well 

suited for FIFO message passing systems but awkward for LIFO message 

passing systems. U nifcirmity is also not always guaranteed: a combination of 

a logic-based formalism for specifying control and abstract data type theory 

for specifying data is in conflict with this requirement. (Note: it may be 

that a hybrid formalism can sometimes not be avoided. Nevertheless, when 

possible a uniform formalism is to be preferred above a hybrid one.) 

Because message passing systems are often designed in a layered fashion 

(with severallevels of communication protocols) top-down and bottorn-up 

development are important features of a specification method for such sys­

tems. 

5.4 Inexpressiveness Results 

Our inexpressiveness results concern classes of message passing systems that 

cannot be characterized in temporallogies with until and since (see sec­

tion 3 of Chapter 3). For that purpose we first prove the following special 

preservation theorem for L( until, since). 

Definition 5.4.1 Let <p E L( until, since ), M be a model, t E T. Define 

[t]M,cp := {'IjlE SF(c.p) I M,t I= 'Ijl} 

where SF(c.p) is thesetof subformulas of <p (including <p itself). 

Definition 5 .4.2 Let M be a model and t 1 , t 2 E T such that t 1 < t 2 • 

Then M~~ is the rednetion of M to 
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Remark 5.4.1 M!~ is a submodel of M but not necessarily a generated 

submodel of M. 

Theorem 5.4.1 Let <p E L(until,since), M be a modeland t1,t2 ET 
such that t1 :::::; t2 and [tl]M,rp = [t2]M,rp· Then for all t E Tf

1
2

: 

M, t I= <p if and only if M!~, t I= <p. 

Proof: By structural induction on <p. We prove the theorem for one of 

the interesting cases. 

Let <p = <J'l until <p2, M be a model and t1, t2 ET such that t1 :::::; t2. 

Assume 

(i) [tt]M,rp = [t2]M,rp· 

We are going to show that M, t 

Herree assuming 

(ii) t :::::; t1 and 

(iii) M,t I= <J'1 until<p2, 

we prove that M!;, t I= <J'l until <J'2· 

From (i) and the induction hypothesis wededuce 

(iv) M, t l= <J'l implies M!~, t <J'l for all t E Tf?, 

(v) M,t I= <p2 implies M~~,t I= <p2 for all tE Tf;. 

From (iii) it follows that 

( vi) there exists a to E T such that t < to and M, to I= <J'2 and M, t1 I= <p1 

for all t1 E T such that t < t' and t1 < t0 • 

Distinguish between two cases: 

(a) t0 :::::; t1: The result follows in this case immediately from (iv),(v) and 

(vi) 
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(b) t1 < t0: In this case by (ii),(vi) wegetalso M,t1 <p1 until<p2. By 

(i) it follows that M, t2 I= <t'l until <t'2· Hence 

(vii) there exists a ta ET such that t2 < ta and M, ta I= <p2 

and M, t' I= <p1 for all t1 ET such that t2 < t' and ti < t3 • 

Because of t1 < t0 and (vi) we have also 

(viii) M, t' <p1 for all ti E T such that t < t' and ti ~ t1 . 

Then M~~,t I= <p1 until<p2 by (vii) and (viii). 

The reverse case M!~, t I= <p implies M, t 
similar arguments. 

<p for t ~ t 1 can be proved by 

• 
Remark 5.4.2 The result of Sistla et al. (see [SCFG 82]) is obtained by 

consiclering only w-models (see section 3 of Chapter 3) and noting that their 

operators next-time, until, last-time and since are all expressible in terms 

of until and since. 

Remark 5.4.3 The theorem can be strengthened to Stavi's language where 

u"irtil and s~e are added, i.e. the theorem is also valid for L( until, since, 

u"irtil,s~e). We can use simHar arguments as in the proof above. To 

illustrate this we now prove the same case as we treated in the proof above. 

Let <p = <t'l u"irtil <p2, M be a model and t1, t2 E T such that t1 ~ t2 and 

[h].M,rp = [t2].M,rp· We are going to show that M, t <p implies M!:, t I= <p 

for t ~ t1. Distinguish between two cases: 

(a) Vta(t < ta < t1 => M, ta I= <t't)· 
Our first aim is to show M, t1 <p. In case t = t 1 this follows 

immediately. So suppose t < t1. Since M, t I= <p1 u"irtil <p2, the 

second conjunct in the definition of u"irlil (see section 3 of Chapter 3) 

where t1 functions as ti' and t3 as t' leads to M, t1 I= <p1 and there 

exists to > t1 such that Vt4(h < t4 < to => M, t4 <t'l)· From this 

we may conclude M, t1 <p as desired. N ow, by [tt].M,rp = [t2]M,rp 
it follows that M, t2 I= <p and therefore M!:, t I= <p. 
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(b) Th ere exists a. ts such tha.t t < ts < t1 a.nd M, ta I= -, r.p1. 

We claim tha.t there also exists a. t4 such tha.t t < t4 < t3 a.nd 

M,t4 I= -, 'Pl· Otherwise Vto (t < to < ts ::::} M,to I= 'Pt), but 

then by M, t r.p it follows that M, t3 <pt, a contradiction. 

The next claim is tha.t we can fi.nd ts $ ts tha.t fulfills the role of t111 

in the third conjunct of the defi.nition of ulrlil. Suppose t 5 > t3 , then 

we can conclude M, ts I= 'P2 because t < ta < t5 and t < t 4 < t3 

and M, t4 I= .., 'Pl· Now, since M, ts I= ..,'Pl and M, t3 I= 1.()2 we 

ca.n a.s well take t5 = ta. Since ts < t1 this means tha.t a.ll moments 

involved in the semantics of M, t I= r.p preeede t 1 so the cut between 

t 1 a.nd t 2 has no influence upon this. Hence M:~, t I= r.p. 

We now apply this theorem to prove that ma.ny classes of message passing 

systems ca.nnot be specifi.ed in L( until, since ). 

Corollary 5.4.1 The class of a.ll message passing systems (i.e. those sys­

tems satisfying the No Creation a.nd basic liveness a.ssumptions NC a.nd 

LA of section 2) ca.nnot be specified in L( until, since ). 

Proof: Suppose there exists a formula r.p characterizing this class. The 

number of subformulae of c.p is bounded, say by N. Now choose n > N and 

consider the following model M: 

nx nx 

~n(m) in(m) out(m) out(m) 

where m E M essages. 

This is a possible behavior for this cla.ss. Hence r.p is satisfied in M. Beca.use 

n > N there are i,j such that 1 $ i < j $ n and [ti]M,rp = [ti]M,rp· 
Applying the theorem we conclude that r.p is also satisfied in a. model with 
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less than n inputs and exactly n outputs. This violates the No Creation 

assumption. Hence such a <p characterizing this class cannot exist. • 

Remark 5.4.4 Since the model M remains a possible behavior when we 

add any combination of further requirements from section 2 such as finite 

speed, perfectness and one ofthe ordering disciplines FIFO and LIFO (since 

M uses only one message it is not influenced by such an ordering property) 

also these classes cannot be specified in L( until, since ). 

Remark 5.4.5 The above proof may not come as a surprise since roodels 

like M represent the context-free language {in(m)nout(m)n In E IN} and 

propositional temporal logic corresponds to a subset of the w-regular lan­

guages ( see e.g. [Tho 86]). However, the above corollary can be strengthened 

to first-order temporallogic as follows. Because the model M uses only a 

finite number of different messages (in this case 1 ), allowing quantification 

(using global variables) over the message alphabet (which is here the un­

derlying domain of data) will not help; hence the result can be generalized 

to this first-order variant with until and since. 

Remark 5.4.6 Since the theorem is also valid for Stavi's language we can 

strengthen the Corollary and the previous two remarks to the logies where 

u'itil and sinèe are added. 

The essential problem in the specification of message passing systems 

is that we need both quantification ( to account for a possibly infinite mes­

sage alphabet) and, more importantly, the coupling of a reaction to the 

unique action that caused this reaction ( to account for the counting of an 

unbounded number of inputs of the samemessage ). Hence, we could not de­

mand that toeach out( m) in a row of n there corresponded a unique in( m ). 

To be even more specific, the problem is to specify assumption NC2 of 

section 2 forbidding the duplication of messages given to the system. This 

fact is obvious when inspecting the above proof of the Corollary: the model 

M in that proof is clearly involved with the problem of duplication. 
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5.5 Extensions of Temporal Logic 

In this section we consider three solutions to overcome the logicallimitations 

of the previous section. 

One possibility is the addition of special data structures to characterize 

the internal behavior of a system, e.g. queues for FIFO-behavior, stacks 

for LIFO-behavior etcetera. In the final specification these special data 

structures are bidden semantically by means of an existential quantifier. 

One advocate of this approach is Lamport ( see e.g. [Lam 85]). We feel that 

this approach is not in accordance with several of the desired properties for 

a specification methodology mentioned in Chapter 2: 

1. using an additional internal data structure is implementation biased 

and as such violates the syntactical abstractness requirement, 

2. the behavior ofthe additional component is described by an additional 

formalism such as abstract data types, and hence the method loses its 

uniformity, 

3. for different applications one has to plug in different additional com­

ponents which is in conflict with the conformity requirement. 

A second approach is to add special auxiliary variables and operations 

on them with fixed interpretations. One example of this is history variables 

with the prefix relation as in the work of Hailpern ( see e.g. [Hai 80]). In our 

opinion, a problem with this approach is that it is biased towards certain 

behaviors: for specifying FIFO this method is well suited, but awkward 

for other ordering disciplines such as LIFO. In general one then has to 

use projections on histories to access the individual elements. What one 

would like to have is a set of operations on histories such that one can 

specify each application in terms of this set ( such as done for specifying 



80 CHAPTER 5. MESSAGE PASSING SYSTEMS 

safety properties in [ZRE 85]). So in this case there is a conflict with the 

conformity requirement. 

Note that in these approaches incoming messages are implicitly made 

unique by their place in the data structure, respectively, the history. This 

resolves the coupling of a reaction to a unique action. In [KR 85] a third 

approach can be found in which the unique identification of incoming mes­

sages is explicitly assnmed on beforehand, e.g. hy means of conceptual 

time stamps. This assumption can he justified hy the notion of data­

independenee of [Wol86]. Informally, a system is called data-independent 

when the valnes of the supplied data do not influence the functional be­

havior of the system. Since message passing systems are intended to pass 

data, they can he viewed as being data-independent. One of the results of 

[Wol 86] implies that the correctness of a data-independent system does not 

depend on the nniqueness of the incoming data. Hence this assumption of 

unique identification is not really a restrictive one. 

Another look at the assumption of unique identification is provided hy 

seeing the message passing system as embedded in an additional interface 

handling the conceptual time stamps ( or counters for that matter) as in 

Figure 5.2. Here, unique identification transforms an old message m into 

in(m) supply in(m, i) Message out(m, i) strip out(m) 
unique Passing 
counter System counter 

. 

I 

Figure 5.2: Unique Identification by Using Counters 

a pair ( m, i) where i is a unique identification. As a si de remark, this 
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transformation also gives us the possibility to use unique identi:fication in the 

case when a system does nat only pass messages but also perfarms a certain 

operation, say j, on them (unique identi:fication might seem probiernatie 

in this context at :first sight since f need nat be injective). Now an old 

messagem will be transformed into the pair (f(m),i) whence the input of 

two messages will stilllead to the output of two different messages despite 

the fact that f may transfarm two different old messages into an identical 

result. 

Although the use of time stamps enforces in:finitely many messages even 

in the case of a :finite message alphabet, it is again data· independenee that 

still allows for propositional reasoning: [Wol 86] shows how for a data. 

independent system properties over an in:finite data domain may be reduced 

to properties over a :finite data domain. The advantages of assuming unique 

identi:fication are threefold: 

1. syntactical abstractness: the only predicates are in( m) and out( m ), 

2. uniformity: the speci:fications remain purely temporal, 

3. conformity: in [KR 85] it is demonstrated that by slight changes of 

the speci:fication we can descri he different properties of systems (e.g. 

whether it can lose messages or nat, whether the ordering is FIFO or 

LIFO etcetera, see section 6.1 ofthis chapter). 

As a consequence of our decision to describe the relation between events in 

a purely temporal way, the resulting specifications can become rather elabo­

rate. This might be alleviated by modularizing the specification of a system 

into groups of axioms descrihing a partienlar aspect (e.g. subcomponent) 

of this system. 
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5.6 Specifi.cation Examples 

In this section we illustrate the application of temporal logic to message 

passing systems by a series of examples. The first example treats pure 

message passing systems, example two is a two-way message passing sys­

tem with the possibility to close one or both sides of the system and the 

last example gives a hierarchical specification of a layered communication 

network. 

In our specifications we assume not only linearity of the ordering but 

also succession towards the future in order to reason a bout infinite behavior, 

e.g. message passing systems may opera te forever. In partienlar we think of 

standard roodels like the natura! numbers, the integers, the (non-negative) 

rational and real numbers. 

The priority of operators in the specification examples is as follows: 

unary operators have the highest priority foliowed by until and since­

like operators (including the unless-operator defined below ), then come 

A ( conjunction) and V ( disjunction) and the least priority is given to -+ 

(implication) and ..... (equivalence). With respect to priority, universa! and 

existential quantification are treated as unary operators. 

Weneed several additional temporal operators in our specifications. For 

unary temporal operators we showed in section 2 of Chapter 4 how to make 

these refiexive. Reeall from that section how the refiexive dosure of MR 

and LR was defined: 

MR<P := <P V MR<P 

and 

LR <P := <P A LR <P· 

In partienlar we will use P, the refiexive version of the P -operator and sirn­

ilady F and G ( for the latter two we will use instead their more usu al rep­

resentation in computer science <>, respectively o, see section 4 of Chapter 

3). Apart from these reflexive operators we also need a weak version of the 

until denoted by unless which does not require that its second argument 
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will become true eventually: 

I.J't unless <p2 := G I.J'l V I.J't until I.J'2· 

In the specifications we leave out universa! quantifications over the data 

domains ( so all free variables ranging over a data domain should be uni­

versally quantified by a series of univeraal quantifiers in front of the given 

axiom). 

In the following we only specify the required behavior of the system 

in its environment. The specification of the interface can be immediately 

derived from the informal description of the embedding of the system in 

its environment. For example, in case of message passing systems section 

2 gives all relevant information: in( m) is an event with parameter m ( an 

element from the message domain) for which the environment is responsible 

and which is directed from the environment to the system; similarly, out(m) 
is an event for which the system is responsible and which is directed from the 

system to the environment. When the interface is that simple, a separate 

specification becomes superfiuous. 

The numbering of the axioms of a specification obeys the following con­

ventions. Closely related axioms have the same number ending with a,b 

et cetera (e.g. axioms 4a and 4b ). 1 denotes replacement of the correspond­

ing axiom by another (e.g. axiom 3' replaces axiom 3). Whenever x is added 

to the numbering this involves an additional axiom for special cases (e.g. 

axiom 5x supplements axiom 5). 

5.6.1 Example 1: Pure Message Passing Systems 

We refer to sections 2 and 5 for the definition of message passing systems 

and the background on the application of temporallogic to the specification 

of these systems. Reeall from section 2 that in and out are considered as 

events (and hence are instantaneous) and that they do not cause blocking. 

These two features enable us to model in and out by (unary) predicates. 
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First we formulate our assumption about the uniqueness of incoming 

messages (the Unique Identification assumption): 

MPl in(m) -+ ,Din(m). 

Here and in the sequel, MP is an abbreviation for message passing. This 

axiom could be formulated in several equivalent ways such as A , in( m) V 

U in( m) or (in( m) 1\ D in( m1
)) -+ m1 ::j:: m, but in any case the most 

natural way of specifying that in( m) does not occur twice is by using the D­

operator insome form. Apart from the technical reasons for introducing it 

in Chapter 4, this gives also an indication for the practical usefulness of this 

operator. Under this Unique ldentification assumption the most important 

basic assumption of message passing systems, No Creation (see section 2) 

can be specified by: 

MP2a 

MP2b 

out(m) -+ P in(m) 

out(m) -+ , D out(m). 

The first of these two axioms represents the demand that a message passing 

system does not create new messages while the second axiom represents 

the absence of duplicate messages (since the input consists of unique mes­

sages by the Unique Identification assumption, the output must also consist 

of unique messages because no messages may be created by the message 

passing system). Of course these two axioms can hè combined into one: 

MP2 out(m) -+ P in(m) A ..., D out(m). 

N otice that the axioms MP2a and MPl taken tagether imply that in( m) -+ 

,Pout(m) because U<p and 1/J-+ P<p imply <p-+ ,p't/J. 
In general, when perfectness of the message passing system is not as­

sumed, the basic liveness assumption from section 2 is essential to ensure 

that at least some messages arrive ( otherwise the system that throws all 

messages away would satisfy all conditions for a message passing system ): 

MP3 GF3m in(m) -+ F3m out(m). 
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In section 2 aJso the assumption of fini te speed is mentioned for realistic 

purposes. Finite speed can he enforced by replacing the P-operator in axiom 

MP2a above by its strict (i.e. irreftexive) versionPand similarly for axiom 

MP2: 

MP2a' 
MP2' 

out(m) --+ P in(m) 

out(m) --+ Pin(m) A -,Dout(m). 

No simultaneous input and no simultaneous output can he specified respec­

tively by 

MP4a 
MP4b 

in(m) A in(m') --+ m' == m 

out( m) A out( m') --+ m' = m. 

This concludes the survey of the first set of assumptions for message passing 

systems. We now turn to the additionaJ assumptions about perfectness and 

ordering. The perfectness of a message passing system (which implies the 

basic liveness assumption above) can be expressed by 

MP3' in(m) --+ Oout(m). 

When finite speed is assumed, the 0 in the axiom above can he replaced by 

its strict version F. What remains is the specification of special orderings of 

the output with respect to the input. We look at the cases of FIFO (queue­

like) and LIFO (stack-like). First-in first-out requires the sameordering in 

the output as in the input: 

MP5 out( m) A P out( m') --+ P ( in(m) A P in( m1
) ). 

The above axiom suffices when no simultaneous output is assumed. Other­

wise aJso the case when two messages are output at the same time should 

be considered. This is reflected in the following axiom: 

MP5x out(m) A out(m') --+ P (in(m) A in(m')). 

This exception is caused by the following asymmetry between input and 

output when requiring FIFO-behavior: 
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in(m') 

in(m) out(m) out(m') 

is allowed ( when mand m' are input at the sametime none of these messages 

can be said to have come in fi.rst, so they may be output in an arbitrary 

order), but 

in(m) in(m') 

out(m') 

out(m) 

is not (when m is input before m1
, it should also come out first in the 

output). 

For last-in first-out we get similar specifications, although a bit more 

complicated because stack-like behavior allows apart from the reversal of 

the ordering from output and that from input also the possibility that a 

message has already been output by the system in the meantime so that 

a comparison with a message that has been input after that is not needed 

anymore: 

MP6 

Here we consider 

out( m) /1. P out( m') -+ 

P (in(m') /1. P in(m)) V P (out(m') /1. .., P in(m)). 

in(m') 

out(m') 

in(m) out(m) 
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as correct LIFO-behavior ( otherwise the last P in the axiom above should be 

replaced by its reflexive version P). This is comparable with a simultaneons 

pop and push (recall from section 2 that input and output on both sides 

of our queues and stacks can operate in parallel, e.g. the case in( m) 1\ 

out( m') is always possible, also when assuming no simultaneous input and 

no simultaneous output). Just as in the FIFO-case, when no simultaneous 

output is not assumed, an additional axiom is needed, in this case: 

MP6x out( m) 1\ out( m') ---+ 

(• (in(m) V in(m')) ---+ P (in(m) 1\ in(m'))). 

Again there is a little complication, this time because of the correct LIFO­

behavior ( unless we suppose finite speed): 

in(m) 

out(m') 

out(m) 

in(m1
) 

( although m' comes in last, m can be considered to have been already 

output). 

In the above account we mixed axioms repreaenting environment as­

sumptions (for example the unique identification assumption) and axioms 

repreaenting system requirements (for example no creation). A clearer dis­

tinetion between these two classes of axioma can be provided by writing the 

speci:fication in the form 

where At, ... , Am are the environment assumptions and Ai, . .. , A~ the sys­

tem requirements. As an example we give the specification of a perfect, finite 

speed message passing system with no simultaneous input and no simulta­

neons output in this form: 
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in(m) - -,Din(m), 

in(m) A in(m1
) - m 1 = m 

out(m) - P in(m) A .., D out(m), 

in(m) - F out(m), 

out(m) A out(m') - m' = m. 

This example made use of PML( <, >, #). 

5.6.2 Example 2: Channel with Disconneet 

In this example we consider a channel between two endpoints 'a' and 'b'. 

The original informal speci:fication is contained in [DHJR 85]: 

The 'channel' between endpoints 'a' and 'b' can pass messages 

in both directions simultaneously, until it receives a 'disconnect' 

message from one end, after which it neither delivers nor ac­

cepts messages at that end. It continnes to deliver and accept 

messages at the other end until the 'disconnect' message arrives, 

after which it can do nothing. The order of messages sent in a 

given direction is preserved. 

The channel can beseen as a two-way message passing system as in Figure 

5.3. Bye we denote one of the endpoints, i.e. e E {a,b}, and e will denote 

the other end point, i.e. ä = b and b = a. The pairs inc11 outb and inb, outa 

farm a message passing system with FIFO-ordering. Therefore we assume: 

the Unique Identi:fication assumption (MPl) for ine 

No Creation and :finite speed (MP21
) for ine, outë 

no simultaneons input and output (MP4a,b) for ine, oute 

:first-in nrst-out (MP5) for ine, outë. 
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ina(m) outb(m) 

outa(m) inb(m) 

Figure 5.3: Channel with Disconneet 

The only non-standard part of this double message passing system concerns 

the possibility of a disconneet message. By discon neet( m) we will denote 

that m is a disconneet message. Input of a disconneet message at one of 

the two sides causes the closing of that side (for the case of output of a 

disconneet message, see Remark 5.6.2 below). This can he described by 

CDl ine(m) 1\ disconnect(m) - G (..., 3 m [ine(m) V oute(m)]). 

So, after the input of a disconneet message at e the channel doesnotaccept 

nor deliver any message anymore at that side. The delivery of messages 

is indeed under control of the channel, but what about the input of mes­

sages? In section 2 we gave a representation of message passing systems 

that allowed no blocking of the input, i.e. the system always accepts a mes­

sage given to it. Also stated there is that this is usually achieved by the 

association of input and output queues. In normal cases the no blocking 

assumption makes sense because it abstracts from the subtie difference be­

tween the input of a message by the environment and the acceptance of that 

message by the system. Returning to our example, messages can still be 

given to a side after the input of a disconneet message but the channel will 

not accept such messages. In terms of the input queue the message can he 

put in the queue but the channel will not pass it to the other side. 

The remaining property of message passing systems that we did not 

consider so far is perfectness. In this case the two message passing systems 
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a.re conditionally perfect, viz. perfect unless disconnected. To describe the 

state of being disconnected define 

dis conneetede := P 3 m [ine( m) A discon neet( m )] . 

N ow, perfect unless disconnected ca.n be specified by 

CD2 ine(m) --+ <> (oute(m) V disconnectede)· 

In this. a.xiom we need not a.dditionally a.ssume ..., discon neetede in the an­

tecedent beca.use ine( m) A discon neetede ca.nnot occur a.ccording to a.xiom 

CDl. 

Remark 5.6.1 Axiom CD2 allows the cha.nnel to dela.y messages very long 

a.nd wa.it for a. disconneet message so tha.t no message needs to be delivered. 

Only if there will be no disconneet a.t a. si de, the cha.nnel is obliged to deliver 

the a.ccepted messages eventually. 

Remark 5.6.2 In the a.bove a. disconneet message is considered a.s a. normal 

messa.ge, but oute(m) A disconnect(m) doesnotlead to closing of tha.t 

side ( only input of a. disconneet message leads to closing). If a.lso the output 

of a. disconneet message should lead to closing, in a.xiom CDl a.bove the 

antecedent should he cha.nged into (ine(m) V oute(m)) A disconnect(m). 

Remark 5.6.3 When loss of messages is allowed, a.xiom CD2 must be 

repla.ced by the following conditiona.lliveness requirement: 

CD2' G F 3 m ine(m) --+ F (3 m oute(m) V disconnectede)· 

Even if the output of a. disconneet message leads to closing of tha.t side, 

the disconnectede is needed beca.use the disconneet message ca.n get lost 

( otherwise its a.rrival a.t e would lead to closing of endpointe a.nd the premiss 

G F 3 m i ne ( m) could never be fulfilled). 

In this exa.mple we made use of PML( <, >, =tf). 
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5.6.3 Example 3: Layered Communication Network 

Introduetion 

In this example we consider a communication network consisting of three 

levels and layers, see Figure 5.4. Although we are aware that the usual 

level 1 
layer 1 (end~to~end) in(n,m), out(n,m) 

level 2 

layer 2 ( packets) in(n,p), out(n,p) 
level 3 

layer 3 (intermediate nodes) transmit(p, n, i), arrive(p, n, i) 

Figure 5.4: Layered Communication Network 

numbering for layered networks is the other way around (lowest layer is 

numbered 1 as in the ISO OSI model), the given numbering is the most 

convenient for the current example. On level! there are messages and nodes 

and the service provided by layer 1 is end-ta-end reliable message passing 

using in(n,m) (noden sends message m) and out(n,m) (mis delivered 

at its destination node n ). This is a perfect message passing system with 

multiple sourees and destinations as treated insection 2 of this chapter. As 

is also given there, the relation between the delivery of a message and the 

destination of that message is given by 

out(n, m) --+- n = destination(m). 

On the second level the messages are decomposed into packets and 

the service provided by layer 2 is end-ta-end reliable packet passing using 

in( n, p) (node n sends pack et p) and out( n, p) (p is delivered at its destina­

tion node n ). This is a perfect packet passing system with multiple sourees 

and destinations. In general, the difference between a message and a packet 
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is that a packet usually has a fixed size while the length of a message can be 

arbitrary (and ofteneven unbounded). When all packets of a message have 

arrived at the destination the message will be delivered. For the delivery of 

a packet and the destination of that packet the same relation holds as for 

messages above: 

out(n,p) --l> n = de.stination(p). 

The relation between a message and the packets into which it is decomposed 

is as follows. This relation is characteristic (giving the minimal demands) 

for message segmenting protocols. By p E m we denote that p is amongst 

the packets into which m is decomposed. Each message consists of at least 

one packet: 

3p p Em. 

On the other hand, a message is decomposed only in a finite number of 

packets. Therefore, instead of V p [p E m --lo ••• ] we will henceforth write 

/\pEm ••. and similarly V pEm ••• instead of 3 p [p E m A ••. ] . In order to 

be able to decide at the destination of a packet to which message it belongs 

we assume that each packet belongs to at most one message: 

p E m 1\ p E m' --l> m' = m. 

Furthermore, the destination of a packet which belongs toa message must 

obviously he the same as the destination of that message: 

p E m --lo de.stination(p) = de.stination( m ). 

On level 3 a network of intermediate nodes is introduced via which 

packets are transmitted towards their destination. The service provided by 

layer 3 is point-to-point reliable transmission using transmit(p, n, i) (packet 

pis transmitted from node n to node i) and arrive(p, n, i) (packet p coming 

from noden arrives at node i). The transmission medium between two such 

nodes n and i provides a perfect packet passing system. A packet traveling 

on the way to its destination may traverse an intermediatenode more than 
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once: sametirnes a packet can corne back, e.g. because an interrnediate 

node in the network decides to reroute the packet ( and incidentally the new 

route traverses old interrnediate nodes) due to congestion of the networkin 

a certain direction. This entails a cornplication for the unique identification 

assurnption about packets at this level. 

Layer 3 assurnes the availability of perfect transmission media. The next 

layer in this hierarchical cornrnunication network could be the irnplernenta­

tion of such perfect transmission media by rneans of imperfect ones using 

acknowledgments and time-out for retransmission. Since such a layer in­

volves quantitative temporal properties the specification of such a fourth 

layer would belong to the next chapter. In example 6 of section 5 of that 

chapter we will specify ari imperfect transmission medium. 

Layer 1 

This layer provides a perfect message passing system with multiple sourees 

and destinations. Because there are multiple sourees and destinations the 

forrnulation of the unique identification assurnption about messages must 

also take into account messages that originate frorn different sourees as is 

done in the following two axiorns: 

in(n,m) -7 •Din(n',m) 

in(n, m) A in(n1
, m) -7 n1 n. 

The last axiorn could be viewed as the opposite of the no simultaneons input 

assumption (see Exarnple 1): two different sourees (nodes n and n') rnay not 

generate the samemessage at the sametime (for different rnoments in time 

this is ensured by the first axiorn ). In practice, this is norrnally anyway the 

case because a message usually includes a field for the souree of the rnessage. 

In order not to have to deal with the exceptional case of the input of a 

message at its destination in the sequel, we assurne for ease of presentation 

that this will not happen: 

..., in(destination(m), m). 
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As we have seen in Example 1, the assumptions of No Creation and finite 

speed can be taken together, in the case of multiple sourees and destinations 

as follows: 

out(n,m)----? P3n'in(n',m) A -,Dout(n,m). 

Remember from the Introduetion of this example that out obeys the 

requirement 

out( n, m) ----? n = destination( m ). 

The only remaining property left is perfectness: 

in( n, m) ----? <> out( destination( m), m). 

Layer 2 

This layer provides a perfect packet passing system with multiple sourees 

and destinations. The only difference with layer 1 is the sort of data that is 

passed: packets instead of messages. The following list of axioms is derived 

from that of layer 1 by substituting the packet variabie p for the message 

variabie m: 

in( n,p) -+ -, D in( n',p) 

in(n,p) A in(n',p) -+ n1 = n 

• in( destination(p ), p) 

out(n,p) -+ P 3 n' in(n',p) A -, D out(n,p) 

out( n, p) -+ n = destination(p) 

in(n,p) -+ Oout(destination(p),p). 
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Relating Layer 1 and Layer 2 

As we described in the Introduetion of this example, the second level first 

disassembles a message into packets, sends the packets through the packet 

passing system provided by layer 2 and finally reaasembles the packets into 

the message at the destination. So, pictorially layer 1 can he represented 

as in Figure 5.5. Reeall from the Introduetion of this example the relation 

disassemblei reassemble 

in(n,m) message in(n,p) layer out(n,p) packets out(n,m) 

into 2 into 

packets ~ message 

Figure 5.5: Representation of Layer 1 

between packets and messages obeying the following axioms: 

3p pE m 

p E m A p E m' - m 1 = m 

p E m - destination(p) = destination( m ). 

Furthermore, we write 1\pem ••• instead of V p [p E m - ... ] and V pEm ••• 

instead of 3 p [p E m A ••• ] because a message can only be disassembied 

into a finite number of packets. 

In order to describe the relation between layer 1 and layer 2 we have to 

specify the conneetion between in( n, m) and in( n, p) via the disassembling 
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of messages, respectively the conneetion between out( n, p) and out( n, m) 

via the reassembling of packets. 

First, the input of a message at a node leads to the sending of all its 

packets from that node into the packet passing system of layer 2: 

in(n,m) -+ 1\ 0 (in(n,p) A .., D in(n,p)). 
p€m 

The part .., D in( n, p) ensures that a pack et is sent only once and relies on 

the unique identification of messages. Reversely, a packet may only besent 

from a node into the packet passing system of layer 2 when it is part of a 

message that bas been input at that node before: 

in(n,p) -+ 3 m [p E m A P in(n, m)]. 

At the other side, the arrival of all packets that constitute a message 

leads to the output of that message: 

1\ Pout(n,p) A V out(n,p) -+ Oout(n,m). 
pEm pEm 

Reversely, a message may only be output when all its packets have arrived 

and it basnotbeen output before (in order to avoid duplication of messages ): 

out(n, m) -+ .., P out(n, m) A 1\ P out(n,p). 
pEm 

These four axioms describe precisely the relationship between in( n, m) 

and in(n,p), respectively out(n,p) and out(n, m). Having defined these 

relationships we can ask ourselves whether the second level is a correct 

refinement of the first level, i.e. whether we can prove from the specification 

of layer 2 and the above relationship between layer 1 and layer 2 that the 

specification of layer 1 is fulfilled. To this end we have to prove all axioms 

oflayer 1 except of course the assumptions oflayer 1 about its environment, 

namely the two axioms about the unique identification of messages and the 

axiom about not inputting a message at its destination. 

No creation of new messages is provedas follows. 
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Suppose out( n, m ). By the relation between out( n, m) and 

out( n, p) it then follows that Apem P out( n, p). Since 3 p p E m 

( the first axiom relating packets and messages) this certainly 

implies vpEm p out(n,p). The no creation of new packets ax­

iom for layer 2 gives US vpEm p 3 n' in(n',p). The relation 

between in( n, p) and in( n, m) then implies V pEm 3 n' P 3 m'[p E 

m' 1\ Pin( n', m')]. N ow, the second axiom relating packets and 

messages (p E m 1\ p E m' ~ m' = m) gives m' = m, so we 

may condude vpEm 3 n' p p in(n', m). By leaving out p (which 

plays no role anymore) and contracting the P and P we arrive 

at the desired condusion P 3 n' in( n', m ). 
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The second part ofthe No Creation requirement, no duplication of messages 

is easier: from the last axiom of the four axioms relating layer 1 and layer 2 it 

follows that out( n, m) ~ •Pout( n, m) and hence out( n, m) ~ •Dout( n, m) 

(since Dep = Pep V Fep for linear orderings). 

Next we have to show that out(n,m) ~ n = destination(m). 

As above we can derive from out( n, m) that V pEm P out( n, p ). The axiom 

out( n, p) ~ n = destination(p) of layer 2 then implies that V pEm n = 

destination(p). By the third axiom relating packets and messages (p E 

m ~ destination(p) = destination( m)) the desired condusion n = 
destination( m) follows. 

The final axiom of layer 1 to be proved is perfectness: 

in( n, m) ~ <>out( destination( m ), m ). 

We prove this as follows. 

Suppose in( n, m ). By the relation between in( n, m) and 

in(n,p) this implies Apem <> in(n,p). By the perfectness of 

layer 2 we get Apem <><>out(destination(p),p). Contracting <><> 

into a single <> and noting that the finite conjunction leads to 

a moment when all packets of m have reached their destination 
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we may conclude from this 0 (Apem P out( destination(p ), p) A 

Vpem out(destination(p),p)). By the third axiom relating pack­

ets and messages (p E m -+ destination(p) == destination( m)) 

this transfarms into 0 (Apem P out(destination(m),p) A 

Vpem out(destination(m),p)). Now, by the relation between 

out( n, p) and out( n, m) this implies 0 0 out( destination( m ), m) 

so that again contracting 0 0 into 0 yields the desired conclu­

sion. 

The above proof is given on a semantica! level. As an illustration we show 

how such an argument can he transformed into a forma! proof: 

1. in(n, m) 

2. in(n, m) -+ Apem 0 (in(n,p) A ., D in(n,p)) 

(relation in(n, m) and in(n,p)) 

3. 1\pem 0 (in(n,p) A ., D in(n,p)) 

4. 0 ( <p A 'Ij;) -+ 0 <p 

5. 1\pem 0 in(n,p) 

6. in( n, p) -+ 0 out( destination(p ), p) 

7. 1\pem 0 0 out( destination(p ), p) 

( assumption) 

(1,2,Modus Ponens) 

( temporal logic) 

(3,4) 

(perfectness layer 2) 

(5,6) 

8. 0 0 <p -+ 0 <p ( temporallogic over linear frames) 

9. 1\pem 0 out(destination(p),p) (7,8) 

10. 0 <J?1 A 0 <J?2 -+ 0(( <J?l A p <J?2) V ( <J?2 A p <J?I)) 

( temporallogic over linear frames) 

(repetition of 10) 

12. O(Ar,em Pout(destination(p),p)AVpem out(destination(p),p)) (9,11) 
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13. p E m --+ destination(p) = destination( m) 

( third axiom relating packets and messages) 
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14. 0 (/\pem P out(destination(m),p) 1\ Vpem out(destination(m),p)) 

(12,13) 

15. /\pem P out( n, p) 1\ V pEm out( n, p) --+ 0 out( n, m) 
( relation out( n, p) and out( n, m)) 

16. 0 0 out( destination( m ), m) 

17. 0 out( destination( m ), m) 

18. in( n, m) --+ 0 out( destination( m ), m) 

(14,15) 

(8,16) 

(1,17) 

Notice that we used twice in this proof that we are working over linear 

frames: we used transitivity in 8 and comparability in 10. 

Having proved that all axioms oflayer 1 except its environment assump­

tions are satisfied is not yet suflident to prove that the first level has been 

correctly re:fined. We also have to show that the environment assumptions 

made by layer 2 are met since the second level should take care of that. 

Firstly, suppose that in(n,p) 1\ D in(n',p). We have to show that this 

leads to a contradiction. By the relation between in( n, p) and in( n, m) and 

the second axiom relating packets and messages (p E m 1\ p E m' --+ m' = m) 

this assumption leads to 3 m[p E m 1\ P in(n, m) 1\ D P in(n', m)]. By the 

unique identification assumption about messages of layer 1 it follows that 

n' = n, but then the initial supposition transfarms into in( n, p) 1\ D in( n, p ). 

This, however, is impossible because of the relation between in( n, m) and 

in(n,p): in(n, m) implies 0 (in(n,p) 1\ --, D in(n,p)). 

Secondly, suppose in( n, p) 1\ in( n', p ). We have to show that n' = n. As 

above this assumption leads to 3 m[p E m 1\ Pin( n, m) 1\ Pin( n', m )]. Then 

indeed n' = n by the unique identification assumption about messages of 

layer 1. 

Thirdly and finally we have to show that -,in( destination(p ), p ). So sup­

pose in(n,p). By the relation between in(n,p) and in(n,m) it follows that 
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3 m(p E mA Pin( n, m )]. By the axiomabout not inputting a message at its 

destination oflayer 1 we may conclude 3m(p E mAn -:f destination( m )]. By 

the third axiom relating packets and messages (p E m --+ destination(p) = 
destination(m)) we reach the desired condusion n # destination(p). 

Layer. 3 and its relation to Layer 2 

On this layer the perfect pack et passing system of layer 2 is implemented by 

a networkof nodes through which the packets are senttotheir destination. 

This layer relies on a reliable transmission layer between each pair of ( adja­

cent) nodes and furthermore includes a routing algorithm at each node to 

determine where incoming packets should go next. Pictorially layer 2 can 

then be represented as in Figure 5.6. 

in(n,p) routing t(p, n, i) reliable a(p, n, i) routing routing out(d,p) trans-at mission at - at 
noden medium node i node d 

t(p, n, i)= transmit(p, n, i), a(p, n, i)= arrive(p, n, i), d = destination(p ). 

Figure 5.6: Representation of Layer 2 

As we described in the Introduetion of this example, a packet traveling 

on the way to its destination may traverse the same intermediate node 

more than once: a packet can return at a node because of a rerouting 
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decision at another node. This implies that we cannot take the ordinary 

unique identification assumption for transmit in this case. Before we go 

into the specification of the routing algorithm at the nodes and the reliable 

transmission medium between a pair of nodes we can at least restriet the 

way transmit handles a packet globally in the network, i.e. in relation to 

different nodes. In particular, at each moment a packet can only be in one 

place: 

transmit(p, n, i) /1. transmit(p, n', i') ~ n' = n /1. i' = i 

transmit(p, n, i) ~ -, 3 n' 3 i' transmit(p, n', i') unless arrive(p, n, i). 

The first axiom ensures this for the moment transmission starts while the 

second ax.iom ensures it during transmission (the next transmission can only 

occur after the transmission layer has delivered the packet). 

N ow we are going to look at the routing algorithm inside a node. First 

of all, it should transmit a packet that arrived and for which this node is 

an intermediate node to a chosen next node: 

arrive(p, n, i) /1. i I destination(p) ~ F 3 i' transmit(p, i, i'). 

Secondly, it may only transmit a packet when that packet arrived at this 

node ( or was input directly from above by in) and it may choose a next 

node only once: 

transmit(p, i, i') ~ 
-, 3 i' transmit(p, i, i') since (in( i, p) V 3 n arrive(p, n, i)). 

The first axiom guarantees that a packet will besent on to the next node but 

it does not guarantee that the packet will eventually reach its destination. 

This is, ho wever, not a local property (i.e. a property for a single node) 

but a global property which must be ensured by the routing algorithms in 

all nodes taken together. That a packet reaches its destination furthermore 

depends obviously on the reliability of the transmission media used between 

intermediate nodes. If these can he assumed to be perfect (which is indeed 
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the case) the collection of routing algorithms guarantees the arrival of a 

packet at its destination as follows: 

transmit(p, n, i) 1\ D (transmit(p, n', i') ........ F arrive(p, n', i1
)) 

........ F 3 n1 arrive(p,n1,destination(p)). 

This requirement is characteristic for routing protocols. 

Next we specify the reliable transmission media between pairs of nodes. 

Since the pair of nodes is fixed for each transmission medium we write 

simply transmit(p) and arrive(p) insteadof transmit(p, n, i), respectively 

arrive(p, n, i). All the transmission media are perfect packet passing sys­

tems. As we remarked already we cannot use the ordinary unique identifica­

tion assumption for transmit in this case because we allow packets to return 

at an intermediate node. Hence transmit(p) 1\ D transmit(p) is possible. 

However, as the new environment assumption we can at least demand that 

the environment can only provide the same packet for the next time when 

the previous one has arrived: 

transmit(p) ........ .., transmit(p) unless arrive(p). 

So, between two transmittals of the same packet there is at least one ar­

rival of that packet. Under this environment assumption the No Creation 

assumption (together with finite speed) is formulated as follows: 

arrive(p) ........ .., arrive(p) since transmit(p ). 

This implies arrive(p) ........ Ptransmit(p) taking care that no new packets 

are created. The other part of No Creation, no duplication of packets is also 

taken care of since the above axiom prohibits the possibility of two arrivals 

of the same packet after only one transmit ofthat packet. Perfectness can 

be formulated as usual: 

transmit(p) ........ F arrive(p ). 
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We can take the environment assumption and this axiom together (blurring 

the distinction between assumptions about the environment and require­

ments for the system) to get 

transmit(p) -+ .., transmit(p) until arrive(p ). 

So, the environment waits to transmit a packet again until this packet has 

arrived and that arrival is indeed guaranteed. Weneed the irreflexive oper­

ator F instead of 0 in the axiom for perfectness in this case to exclude the 

following illegal behavior: 

transmit(p) 

transmit(p) 

arrive(p) 

Takingalso the axiom for the No Creation assumption into account it follows 

that, when restricting attentiontoa single packet, transmit and arrive may 

happen only alternatingly starting with transmit and ending with arrive 

( where the next transmit together with the previous arrive is allowed, 

though). 

After ha ving specified the en ti ties on this level ( the routing algorithms, 

the transmission media and their global connection) we are ready to describe 

the relation between layer 2 and layer 3. This is done by specifying the 

conneetion between in and transmit, respectively arrive and out. 

First, the input of a packet at a node leads to the transmittal of this 

packet to a chosen node (remember that we assumed that a packet is not 

input at its destination): 

in(n,p) -+ F 3 i transmit(p, n, i). 

Reversely, each transmit must have its root with in: 

transmit(p, i, i') -+ P 3 n in( n, p ). 
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At the other side, arrival of a packet at its destination leads to output 

of that packet: 

arrive(p, i, destination(p)) - Fout( destination(p ), p ). 

Reversely, a packet may only be output when it arrived at its destination 

and it has not been output before (in order to avoid duplication of packets ): 

out( n, p) - -, P out( n, p) 1\ n = destination(p) 1\ P 3 i arrive(p, i, n ). 

Having defined the relationship between layer 2 and layer 3 by these 

four axioms we can ask whether the third level is a correct refinement of 

the secoud level. To this end we have to prove the axioms ( except the 

environment assumptions) of layer 2 and the environment assumption of 

layer 3. 

No creation of new packets is provedas follows. Suppose out(n,p). By 

the relation between out and arrive it follows that P 3 i arrive(p, i, n ). The 

No Creation assumption for the transmission medium between i and n leads 

now to P 3 i transmit(p, i, n ). The relation between transmit and in then 

gives the desired condusion P 3 n1 in(n',p). 

The secoud part ofthe No Creation assumption (no duplication of pack­

ets) is even easier: the last of the four axioms descrihing the relationship 

between layer 2 and layer 3 implies that out(n,p) - -, P out(n,p), hence 

out(n,p) - -, D out(n,p). 

The axiom out( n, p) - n = destination(p) of layer 2 follows directly 

from the last axiom descrihing the relationship between layer 2 and layer 3. 

Perfectnessis provedas follows. Suppose in(n,p). By the relation be­

tween in and transmit it follows that F 3 i transmit(p, n, i). The global re­

quirement on the collection of routing algorithms tagether with the perfect­

nessof the transmission media guarantee that p will arrive at its destination: 

F 3 n1 arrive(p, n1
, destination(p) ). By the relation between arrive and out 

this leads to Fout(destination(p),p), so certainly Oout(destination(p),p). 
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The only remaining axiom to he checked is the environment assumption 

of layer 3, namely transmit(p) -+ ..., transmit(p) unless arrive(p). This 

follows directly from the stronger restrietion 

transmit(p, n, i) -+ ..., 3 n1 3 i' transmit(p, n1
, i') unless arrive(p, n, i) 

for the way the network globally handles the transmittal of packets (at each 

moment the packet can he in transmission only in one place). 

By transitivity of the refinement relation we may also conclude that the 

third level is a correct refinement of the first level. 

This example made use of L( until, since). 

5.7 Conclusions 

In this chapter we proved severallimitations of temporallogies for the spec­

ification of message passing systems. The counterexamples indicate that a 

necessary ingredient for such a specification is the ability to trace back (in 

time) every delivered message to its unique moment of acceptance. With 

this in mind one can take one of two directions. Either one argues that, be­

cause it is not expressive enough, temporallogic should he enriched with an 

additional formalism for reasoning about such systems, or, having identified 

the trouble spot, one makes some general assumptions about these systems 

that are strong enough to enable a purely temporal specification. The first 

course is taken by most researchers in the field. This might he caused by 

lack of recognition of the essential missing ingredients. The second course 

is attractive since the general assumption about message passing systems, 

viz. that incoming messages can he uniquely identified, can he translated 

into the logic and hence can he reasoned with inside the formalism itself. 

We illustrated our approach to the specification and verification of mes­

sage passing systems by three examples. The first example showed how 

pure message passing systems can still he specified ( notwithstanding the in-
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expressiveness results of section 4) with the classical temporallogic treated 

in section 2 of Chapter 3 ( using only the temporal operators F and P since 

D is equivalent to the disjunction of these two operators when working over 

temporal frames with a linear ordering) in an elegant and easy way. The 

price we had to pay, the unique identification assumption on the incom­

ing data, was shown to he less high than might have been thought at first 

glance. The second example illustrated that complications such as a two­

way message passing system with possibilities to close either side can also 

be handled quite easily. In fact, the majority of message passing properties 

of this example could be derived directly and in a straightforward way from 

the pure message passing properties of Example 1 so that the specification 

only had to concentrate on non-standard features such as the treatment of 

the special disconneet message. This suggests that the standard part of our 

specifications can be 'modularized' in the sense that we can use certain sets 

of axioms ( such as those for a perfect FIFO message passing system) as 

parts that can he added toa specification maintaining the same restrictions 

on the required behavior as when imposed in isolation. In the third example 

we considered a system that was decomposed into subsystems. We showed 

how such a system can he specified in a hierarchical fashion and how the 

correctness of the refinement steps can he proved. 



Chapter 6 

Time-Critical Systems 

6.1 Introduetion 

This chapter is motivated by the need fora formal speci:fication method for 

time-critica! systems. The need for such a method is becoming acute since 

more and more vital applications such as nuclear power stations, computer 

controlled chemica! plants, flight control software for airplanes, etcetera, are 

of a time-critica! nature. Time-critica! systems are characterized by quan­

titative timing properties relating occurrences of events. Typical examples 

are: 

1. Maximal distance between an event and its reaction, e.g., every A is 

followed by a B within 3 time units (a typical promptness require­

ment). 

2. Exact distance between events, e.g., every A is followed by a B in 

exactly 7 time units (as with the setting of a timer and its time-out). 

3. Minimal distance between events, e.g., two consecutive A's are at least 

5 time units apart ( assumption a bout the ra te of input from the en­

vironment). 

4. Periodicity, e.g., event E occurs regularly with a period of 4 time units. 

107 
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5. Bounded response time, e.g., there is a maximal number of time units 

so that each occurrence of an event E is responded to within this 

bound. 

After the development of a characterization for time-critical systems 

we look at requirements for specification languages in the context of such 

systems. 

Like we did for message pa.Ssing systems we investigate the possibili­

ties of temporal logic for specifying time-critical systems. Because they 

only involve qualitative temporal operators it is obvious that the standard 

temporal logies of Chapter 3 cannot deal with quantitative temporal re­

quirements. Therefore, we extend the usual temporal frames by including 

a distance function to measure time and analyze what restrictions should 

he imposed on such a function. This distance function maps two points in 

timetoa value in a metric domain on which addition and a zero are defined. 

The specification method we propose, called metric temporallogic, is based 

on the polymodallogics of Chapter 4: our metric operators are obtained by 

indexing polymodal operators by parameters taken from the metric domain. 

Our philosophy is to extend the pure qualitative view of time of standard 

temporal logies in a faithful way in order to reason also about qualitative 

properties in a convenient way. We sneeeed in doing this by including also 

the preeedenee relation between points in time and showing how the metric 

parameters of operatorscan he 'quantified away' to obtain the co:rresponding 

qualitative versions. We show how the five quantitative timing properties 

above can he expressed in metric temporal logic. Concerning qualitative 

properties, the whole first-order language of linear order can he expressed 

in metric temporal logic. We also look at the issue of axiomatization. 

We illustrate metric temporallogic by means of seven examples involv­

ing time-critical ( and often also message passing) features amongst which 

are common real-time constructs such as a time-out and the wait/delay 

statement of some concurrent programming languages. 
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This chapter is organized as follows. Insection 2 we describe the charac­

teristics of time-critical systems and specialize the requirements of Chapter 

2 for these systems in section 3. Section 4 introduces metric temporallogic 

which is illustrated by means of a series of spedfication examples of time­

critical systems insection 5. At last we present some conclusions insection 

6. 

6.2 What are Time-Critica! Systems? 

The most important characteristic of a time-critical system is the demand 

to keep abreast with an autonomous environment by reacting properly and 

timely to events occurring in the environment asynchronously from the op­

eration of the system. Therefore, the environment-system interaction ( the 

reaction of the system on the external stimuli from the environment giving 

rise to a so-called stimulus-response mechanism) is subject to quantitative 

temporal requirements. These temporal requirements state a relation be­

tween occurrences of events and can be classified as follows: 

• response time: this relates the timing of the occurrence of an event 

and its response. The most usual cases are 

* maximal distance between an event and its response (e.g. time­

out) 

* exact di stance (e.g. delay) 

• frequency: this relates occurrences of the same event. The most usual 

cases are 

* minimal distance between two occurrences ( assumption a bout 

the rate of stimuli from the environment) 

* exact distance, also called periodicity ( e.g docks and samplers). 

The first four of the five examples in section 1 correspond directly to the 

classification above ( examples 1 and 2 concern maximal respectively exact 
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response time and examples 3 and 4 concern minimal respectively exact fre­

quency). All these temporal requirements have a quantitative nature and 

the quantitative elements involved are constauts expressed as a certain num­

ber of time units. The fifth example in section 1 is in fact the quantified 

equivalence of the first example. The other examples 2, 3 and 4 have also 

quantified equivalents, but example 5 is the most common one. The quan­

titative nature of these temporal requirements is typical for time-critical 

systems ( qualitative temporal requirements occur already in any concurrent 

system, think of fairness, and even sequential systems, e.g. termination). 

Another classifl.cation of quantitative temporal requirements relates to 

the distinction between relative and absolute temporal requirements. Ab­

solute temporal requirements calibrate all occurrences of events to a fixed 

reference point ( the start of the system or the first occurrence of a particular 

event) while relative temporal properties have no fixed reference point but 

depend on occurrences of events. In the above four cases periodicity is an 

absolute temporal requirement ( e:g. alllater samples can be related to the 

first sample by means of the sample rate ), the other three being relative ( the 

occurrence of an event triggers its response, so the timing of that response 

can only be related to that occurrence of the event ). As will be clear from 

the above, events play a very important role in time-critical systems. 

Since quantitative temporal requirements state a relation between an 

event in the environment and an event in the system ( or between events in 

differentcomponentsof a system), these requirements necessarily refer toa 

global notion of time. This global notion of time should not be identified 

with the introduetion of a global doek: the difference between time and real 

clocks is that clocks always drift (in other words: time can be considered as 

a perfect, idealized doek). 

Modeling parallel computation by interleaving is a suflident idealization 

if only qualitative temporal requirements are involved. As soon as quan­

titative temporal requirements come into play, however, as in the case of 

time-critical systems, such an execution model is usually notadequate any-
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more. For example, ensuring maximal d:istance between events is impossible 

if some processes can take an arbitrary number of steps while other processes 

are inactive. In such a case either all processes have their own processor 

(the maximal parallelism model as in [KSRGA 85]) or some processes share 

one processor and they are scheduled in such a way that each process gets 

its turn within bounded time. Furthermore, in some applications data can 

appear at different places in a truly concurrent way. With respect to the 

temporal requirements above an arbitrary sequentialization is not appropri­

ate anymore. Even stronger, it becomes more and more practice today to 

incorporate local (co )processors with dedicated tasks (e.g. sampling) into 

the system so that truly parallel computation is the only realistic model in 

such a distributed configuration. 

The most prominent examples of time-critical systems are real-time 

systems. Reai-time systems have additional aspects, however: they nat 

only deal with ( quantitative) temporal requirements, but also performance, 

safety and reliability are essential aspects. Nevertheless, a lot of the phenom­

ena occurring in real-time systems are relevant for the study of time-critical 

systems. As an example of this, in process control systems aften continuons 

physical entities are involved such as temperature and volume. When such a 

system conta.ins e.g. an analog circuit for monitoring the temperature, this 

has a time-continuons nature tagether with a continuons range of values 

(e.g. between 4 and 20 milliAmpère). In modeling such systems, the usual 

discrete view of time as taken for digital systems is therefore nat appropriate 

anymore. Hence, apart from viewing time as discrete one should also allow 

a view of time as continuons (ar at least dense) as in Newtonian physics. 

This has also its repercussion on the description of the execution of such a 

system ( or rather how it develops) and how it can be observed. For discrete 

systems, execution consists of a number of observable state changes or tran­

sitions leading toa state-transition sequence. In the case of time-continuons 

systems, however, variables can change infinitely fast ( think e.g. of pressure) 

and sequences cannot be used anymore. A partienlar execution can only be 
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described by recording a.t each moment the state of the system ( so, such a. 

generalized execution model considers functions from time to sta.tes). If one 

would ma.inta.in tha.t ohserva.tions ca.n he ma.de only a.t discrete moments, 

ea.ch ohserva.tion conta.ins only pa.rtial informa.tion. Only the whole set of 

possible observa.tions of a. pa.rticula.r execution ca.n restare all informa.tion 

on tha.t execution. 

Summa.rizing, for time-critical systems qua.ntita.tive temporal require­

ments pla.y a. dominant role. Furthermore, a. discrete view of time a.nd 

fa.milia.r execution models such a.s interlea.ving a.re not suftkient a.nymore to 

handle all cases. Consequently, time-continuous models, respectively real 

pa.rallelism or scheduling informa.tion should he incorpora.ted. 

6.3 How to Specify Time-Critical Systems 

Like we did for message passing systems in section 3 of Cha.pter 5 let us 

specialize the requirements for a. specifica.tion la.ngua.ge in Cha.pter 2 to the 

case of time-critical systems. 

Synta.ctical a.hstra.ctness requires tha.t the specifica.tion of temporal prop­

erties is sta.ted only in terms of the events involved a.nd the relevant qua.ntity 

of time units. 

The introduetion of formal methods for time-critical systems has la.gged 

behind tha.t for other a.pplica.tion a.reas. Most specifica.tion methods do 

not include constructs to express timing in a. qua.ntita.tive wa.y a.nd the few 

synta.ctical formalisros tha.t include timing, la.ck formal sema.ntics. Thus, 

only a. minority of suita.ble formal methods for time-critical systems ha.ve 

been developed a.nd most of them during the la.st few yea.rs. Same of these 

methods do not tackle all problems of time-critical systems but concentra.te 

e.g. on discrete event systems. Several reasans ca.n he given for the fa.ct 

tha.t formal methods for time-critical systems la.g behind tha.t for other 

a.pplica.tion a.rea.s: 
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• because the timing requirements are much stricter for time-critica! 

systems than for other systems, they impose more demands on the 

implementation technology; therefore, implementation concerns (e.g. 

processor speed) were dominant in the era before the explosive growth 

of computing power for microprocessors that started about ten years 

ago, 

• the intrinsic complexity of typical time-critica! systems makes it much 

more difficult to develop adequate formal methods, 

• most researchers in theoretica! computer science have considered reai­

time either as a special (though admittedly harder) case of concurrent 

systems, or as a topic whose study should be postporred until we un­

derstand basic concurrency better. 

Layered development is not as dominant for time-critica! systems as it 

is for message passing systems but still top-down and bottorn-up techniques 

are important for specifying these systems in order to manage their inherent 

complexity. 

6.4 Metric Temporal Logic 

In this section we look at ways of reasoning with temporal logic about 

quantitative timing properties such as those mentioned in section 1. The 

standard models for temporallogic basedon point structures involve a pure 

qualitative view of time. The question now is: what should be added to 

point structures to be able to handle also quantitative temporal properties? 

Because the evaluation of formulas is dependent on a partienlar point in 

time (re presenting the present), we suggest that apart from the preeedenee 

relation between the present and other points in time also the distance 

between points in time is needed. Therefore we add a distance function d 

with the idea that d( t, t1
) gives a measure as to how far t and t' are apart 
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in time. The next question is: what conditions should be put on < and d ? 

Because quantitative temporal properties relating different components of a 

system must necessarily refer to a global conception of time, we assume that 

thesetof time pointscan be ordered in a global way. So, we suppose that the 

preeedenee relation < is total (i.e., transitive, irreflexive and comparable). 

For the distance function d we suppose the usual topological conditions 

apart from the replacement of the triangular inequality by a conditional 

equality: 

(dl) d(t,t') = 0 <:} t = t' 

( d2) d( t' t') = d( t'' t) 

( d3) if t < t1 < t11 then 

d( t, t") = d( t, t') + d(t', t") and d( t11
, t) = d( t", t') + d( t', t). 

Next we should determine the range of d. There is no reason to choose 

the standard reals (in fact, the example below shows the usefulness of non­

archimedean ranges ford). As is apparent from the conditions (dl)-(d3) 

above we need a structure with addition and zero element. So, we suppose 

as range for d a structure (~, +, 0) where addition + and constant 0 are 

restricted by: 

{~1) 6 + 6' = 6' + 8 

(~2) (8 + 8') + 811 = ó + (6' + 6") 

( ~3) 6 + 0 = 6 = 0 + 6 

( ~4) 6 + 6' = 6 + 811 :::::> 6' = 611 

( commutativity) 

( associativity) 

(unit 0) 

and ( + injective in both arguments) 

ó + 8" = ó' + 611 :::::> 6 = 61 

(~5) 6 + 6' = 0 :::::> ó = 0 and 6' = 0 (no negative elements) 

(~6) 36" [ó = 6' + Ó11 or 8' = ó + 811
] (existence of absolute difference). 
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In these conditions the free variables should he universally quanti:fied (we 

left this out for the sake of concise presentation). One can easily check 

the independenee of these restrictions on ( 6., +, 0 ), i.e. that none of these 

restrictions follows from the others, by means of appropriate examples in 

which :five of these restrictions hold and the sixth fails. An example is 

6. = IN U { e} where we take over the standard ad dition for natural numbers 

supplemented by the following rul es for the extra element e ( which resembles 

1): 

e + e = 2, e + 0 = 0 + e = e and e + n = n + e = n + 1 for n E IN\ {0}. 

This structure ( 6., +, 0) obeys all restrictions ( .6.1 )-( .6.6) above except ( .6.4 ): 

e + e = e + 1, but e f= 1. 

In spite of their independenee these restrictions nevertheless contain some 

redundancy (e.g. the second equality in .6.3 is added although this already 

follows from .6.1) in order to state the intended restrietion fully also in 

the case when some of the other restrictions have been dropped. These 

conditions are motivated as follows. (6.1) is enforced by (d2) and (d3). 

One also needs to order .6. to campare different distauces ( think e.g. of the 

expression of maximal distance, see point 1 in section 1). To this end, first 

define 

Such a fJ" is unique because of (6.4). Furthermore, 6.2 (transitivity) and 

.6.3 (reflexivity) make ~ a preorder. The corresponding irreflexive relation 

defined by 

fJ --< 61 := 38" [ 8" f= 0 and 61 = fJ + 811 
is in fact a total order ( camparabie by 6.6) with 0 as its least element (by 

.6.5). 

This leads to the following notion. 
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Definition 6.4.1 

A metric point structure is a two-sorted strncture (T, 6., <, d, +, 0) with 

signature < Ç T x T, d: T x T -t 6., +: 6. X 6.- 6., 0 E 6. such that 

(i) < is total 

(ii) d is surjective and satisfies (dl)-( d3) 

(iii) (6., +, 0) satisfies (6.1)-(6.6). 

6. and d are called the metric domain and the temporal distance function, 

respecti vely. 

In (ii) surjectivity of dis demanded to get a nice correspondence betweenT 

and 6.. All these conditions on < and d were motivated either by practical 

reasous (having a certain application area in mind) or by our wish to obtain 

a nice mathematica! theory. Nevertheless, in some cases these conditions 

could be relaxed, for ex.ample it may he beneficia! to allow a cluster of points 

having distance 0 toeach other (deleting the only if case of condition dl). 

For the time being, we consider the above conditions as the most natural 

on es. 

Example 6.4.1 

Consider the following metric point structure. 

T := IN x IN 

6. := {0} x IN u IN+ x 7l 

where IN, IN+ and 7l represent the natural numbers, the positive natural 

numbers, respectively the integers. 

Define furthermore 

( n, n') < ( m, m') := n < m or ( n m and n' < m') 

{ 

{0, I n'- m' I) if n = m 

( m - n, m' n') if n < m 

( n - m, n1 
- m') if n > m 

(n,z) + (n1,z1
) .- (n+n1,z+z1

) 

0 := (0,0). 
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The following picture represents T tagether with its ordering < ( to be read 

from left to right ): 

I I I I I I . . . I I I • • • 
(0, 0) (0, 1) (0, 2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) 

The idea is that the fi.rst component of T represents a kind of macro-time 

while the second component represents micro-time. It is easy to check that 

this example satisfi.es all conditions for a metric point structure and that 

the given .6. is non-archimedean. 

Having determined what the new temporal roodels should be, we now 

must fi.nd appropriate temporal operators for reasoning about metric point 

structures. Before making such a choice we show how the modal operators 

Land M (see Chapter 3) can be transformed into metric operators: 

Lstp(w) \1w1 EW[(wRw1 and d(w,w')=ó) ::::>- tp(w')] 

Ms tp(w) .- 3w' E W[wRw' and d(w,w') = 8 and tp(w')]. 

Again Ms L.s. 

Now two obvious metric operators are F6 := Mj and Ps := Mi' with their 

duals Gs Lf and H6 = Li', respectively. For metric point structures 

other metric operatorscan be expressed with these two, e.g., D6 = Ps V F,s, 

but to be able to express the requirements on the distance function d in an 

independent fashion (later in this section) we also introduce 

Ds := Mf 
and 

E6 ·- MTxT .- 6 • 

Formally, we use the standard fi.rst-order language (including identity =) 
over (.6., +, 0) whose terms t are used to form the metric operators Ft, Pt, Dt 

and Et. In the qualitative case (see section 2 of Chapter 4) the relation 

between E and D was given by Etp = tp V Dtp. In the quantitative case, 
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the general semantic relation between E0 and D0 (following immediately 

from the definitions above) looks similarly: 

E0 r.p(t) {:} (d(t, t) = 8 and rp(t)) or D0 r.p(t). 

lf we assume d( t, t) = 0 ( which follows from dl) this red u ces to the syntactic 

equivalence 

Eo <p =: Do <p V ( 8 = .0 A <p). 

Now, in case /i I 0 we find that E0 = D0 • In case 15 = 0 and assuming 

d(t, t1
) = 0 ::} t = t1 (the other part of dl) we find that Do <p = j_ and 

E0 <p = <p. So, only in the case li = 0 the old equivalence E<p = <p V D<p 

is maintained. 
E 0 and D0 are not the only metric operators that are strongly related. 

A further pair is formed by F 0 and Gs ( and similarly for P 0 and H 0 ). lf we 

assume (dl}-(d3) and comparability of< (both are true for metric point 

structures) it is easy to see that F0 can indicate at most one point (i.e. 

V t-, 3 t1t11 [t < t1 and t < t11 and t' I t11 and d( t, t1
) = d( t, t11

) = 15]). Because 

G 0 is the dual of F0 it must indicate the samepoint (if it exists). In fact, 

the existence of this point is exactly the difference between Fs and G 0 (F0 

asserts its existence while G 0 does not) as is expressed by the syntactical 

equivalence 

Using the metric operators F 0 and P 0 the five quantitative temporal 

properties of section 1 can be expressed in the following way: 

1. maximal distance: A(p ---+ F <o q) 

2. exact distance: A(p ---+ F 0 q) 

3. minimal distance: A(p ---+ •F <o p) 

4. periodicity (with period 15): Ep A A(p ---+ ( •P unti4 p)) 
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5. bounded response time: 36 A(p ---+ F d q). 

The one but last of these five properties gives periodicity towards the future 

(the Episneerled tostart the sequence off). Periodidty both towards past 

and future can be expressed by 

Ep 1\ A(p ---+ (( •P until.s p) 1\ ( •P since6 p))). 

In these form:ulas the derived operators F <6, until.s and since6 are used 

which are defined by 

where Gd and H<6 are the duals of F d and P <6, respectively: 

G <6 cp := ..., F <6 ..., cp 

Note that the definition of F <6 uses quantification over 6. but this was 

already essentially neerled for the expression of bounded response time ( see 

5 above). As stated above, besides constants from À {the t5 in 1,2,3 and 

4 above) we incorporate the full first-order language over (À,+,O). Later 

on we will also consider a fragment of metric temporallogic in which only 

constants from À are allowed. The formula expressing maximal distance is 

strictly stronger than the formula for bounded response time which on its 

turn is strictly stronger than the formula A(p---+ Fq) expressing temporal 

implication in qualitative temporallogic. 

The ability to quantify over À gives metric temporallogic considerable 

expressive power. For example, from the metric version of an operator the 
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corresponding qualitative operator can easily be derived by 'quantifying 6 
away' as we will show below. Furthermore, for qualitative temporal logic 

the operators until and since add expressive power (see [Kam 68]) but 

as just shown their metric versions ( and hence by quantifying 6 away also 

their qualitative versions) are expressible in metric temporallogic. These 

reductions of the operators until and since in metric temporal logic deal 

with the equivalence of formulas over models. Like we did in Chapters 3 

and 4 for classica! modal and temporallogic, respectively polymodallogics 

with inequality, we can ask which first-order conditions are de:finable by a 

formula from metric temporallogic over frames. It turns out that all :first­

order conditions over linear orders are de:finable in metric temporallogic, as 

shown below in Theorem 6.4.1. Because quanti:fication over ö. contributes 

signi:ficantly to the expressive power of metric temporallogic, we now study 

the interplay between metric operators and quanti:fication over ö.. We start 

with the simple case of two existential quanti:fications (for the moment we 

return to the more general case of metric modal operators and subsequently 

use the results for metric temporal logic ): 

36 Ms tp(w) 3w' E W 36[wRw' and d(w,w') = 6 and tp(w')] 

3w' E W[wRw' and tp(w')] = M tp(w), 

so 36 Ms = M. By duality also V6 Ls = L. The presence of two identical 

( either existential or universa!) quanti:fiers is in itself not a suflident expla­

nation forthese equivalences. For example, for classica! temporallogic (see 

section 2 of Chapter 3) HGtp = GHtp is not valid because of the shifting 

of the reference point ( consider e.g. IN in the point 0 ). In the present case, 

however, identical quanti:fications over the metric domain and over the set 

of worlds do not influence each other and hence can be interchanged. 

More interesting are the cases of alternating quantifiers: 

't/6 Ms tp( w) = \;/Ij 3w' E W[wRw' and d( w, w1
) ó and tp( w')]. 
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For metric point structures <is comparable and (dl) and (d3) hold. As we 

have seen above this implies that F s and Gs are related by 

So, when universally quantifying over~ (excluding 8 = 0 because F 0 <p = ..l 
for all <p) we get 

(since V8[0-< 8 --1- G.s <p] = G <p). Dually we have 

38[0-< 6 1\ G6 <p] :: 36[0 -< 6 A G6 ..l] V F 'P· 

Note that Vé[O-< 6 ::::} Fs T (t)] expresses the requirement that there exists 

for each ti f:: 0 a point in the future with distance ti from t which is like 

surjectivity of d but now demanded locally (fort). 

Besides quantification over metric operators we can look at special values 

of ti in M.s and L.s such as 0: 

Assuming (dl) and taking 'P = T we get M 0 <p(w) = wRw. So, 

E MoT expresses 3w wRw (existence of a refiexive world) 

A MoT expresses Vw wRw (refiexivity) 

and dually 

E Lo ..l expresses 3w •wRw (existence of an irreflexive world) 

ALo ..l expresses Vw •wRw (irre:flexivity). 

This example shows that a qualitative property (the existence of a reflexive 

world) is definable when using metric modal operators while it is not in its 

qualitative version PML(R, f::), see Proposition 4.2.1 insection 2 of Chapter 

4. Turning again to metric temporallogic we can in fact prove: 

Theorem 6.4.1 All fi.rst-order conditions over linear orders are definable 

in metric temporal logic. 
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Proof: The main problem in translating fi.rst-order conditions on < into 

equivalent temporal formulas is caused by the possibility to campare in 

the first-order condition a 'new' variabie ( corresponding to a more recent 

reference point in time) with much 'older' variables such as the camparisans 

between z and x and between u and y in the example 

'v'x3y>x3z<x'v'u(z<u<y--+ u=x). 

Qualitative temporallogies only allow a comparison between a new refer­

ence point in time and the most recent reference point befare that. Like we 

did in the proofs in chapters 3 and 4 that Sahlqvist-forms define first-order 

conditions we are going to show the stronger property that each first-order 

condition is locally equivalent with a formula of metric temporallogic. So 

suppose that the first-order condition contains one free variable, say x0 , 

and n bound variables, say Xt, ••. , Xn· First rewrite the first-order condi­

tion such that it only contains the atomie formulas Xi < x; and Xi = x; 
(for 0 s i,j s n) and operators -,,A and 3. Purthermare take care that 

each atomie formula in the scope of 3xi indeed contains Xi ( otherwise get 

the atomie formula outside this scope). The resulting first-order formula 

is translated into a formula from metric temporallogic by the procedure J.t 

below. This procedure uses the following idea. For metric point structures 

the comparison of different reference points in time can be accomplished 

by using the distance function as follows. The free variabie x0 in the first­

order condition serves as a fixed referen:ce point in time. The remaining 

first-order variables x~, ... , Xn are translated intovariables 61 , .•• , c5n which 

represent the distance to the fixed reference point x0 taking into account 

camparisans with other variables using < and > by the appropriate future 

and past metric operators. To indicate these camparisans the procedure 

J.t uses additional variables St, ... Sn E { -, 0, +} (- indicates the past, 0 

the present and + the future ). Initially St, ... , Sn are all 0. J.t is defined 

recursively below. After this recursive definition has been applied the com­

plete metric temporallogic formula consistsof the resulting formula of this 
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recursive de:finition pre:fixed with (pA -,Dp) -+ to fix the reference point x0 

(by assuring that p is true in x0 and in x0 only ) . 

p,;( -,a) 

p,;( a 1\ (3) 

p,;(3xi a) 

p,;(x;. <x;.) 

p,;(x;. =x;.) 

.., p,;(a) 

.- p,;( a) 1\ p,;(f3) 

3ó;. E[(ó;. = 0 A p 1\ J.Lt[O/••J(a)) 

V (0-< ó;. 1\ F.s,P A J.Lt[-/••J(a)) 
V (0-< 6;. A Pé,P A J.L.ï[+/••J(a)) 

..L 

T 

{ = 
:= { = 

ifs;.=­

otherwise 

ifs;.=+ 
otherwise 

·- { = if s;. = 0 

otherwise 

if s. 
3 

.-
{ 

Fp 

FF.s;P if Sj 

FP.s;P if Sj 

if Sj 

{ 

Pp 

PF.s;P if Sj 

PPé;P if Sj 

{ 

p if Sj = 0 

·- F.s;P ~f Sj = 
Pé;P If Sj + 

0 

+ 

0 

+ 

where x;. inthelast eight cases (from x;. <x;. onwards) is the bound variabie 

belonging to the smallest enclosing existential quanti:fication ( x0 , if it is not 

in the scope of an existential quantifier ). Then, given a :first-order formula 

a with one free variabie x, a is locally equivalent with 
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(p A -., D p) -+ J.t(o, ... ,o) (a). • 
Finally, we look at axiomatizations for metric temporal logic. Com­

pleteness may be unattainable because of the very powerful quantification 

over 6.. By assuming an oracle for 6. relative completeness results might 

be obtained, however. Although completeness results are not so readily 

obtainable, all conditions in the definition of a metric point structure can 

easily be expressed: 

(i) totality of< is already expressible in PML( <, >, ~) 

(ii) d surjective: V6 E E6 T 

(d1):p+-+Eop 

(d2): '16 [(pA E6 q) -+ E6 (q A E6 p)] 

(d3): '16 '16' [(F6 F6' p -+ E6+6' p) A (P6 P6' p -+ E6+6' p)] 

(iii) (6.1)-(6.6) can he directly formulated in terros of+, 0 and quantifi­

cation over 6.. 

To give an example of the four equivalences in (ii) we prove the first one. 

First suppose d is surjective. This means that for all 6 E 6. 

there exist t, t' ET such that d(t, t') = 6. Hence t verifies E5 T. 

Thus, V6 E E., T is true. 

Conversely, suppose '16 E E6 T is true. Then for all 8 E 6. 

there exists at E T such that E5 T is true in t, implying the 

existence of a t 1 E T at distance 6 from t. Thus, d( t, t') = 6, so 

dis surjective. 

Instead of attempting to axiomatize metric temporal logic completely we 

can at least provide a sound axiomatization. A first proposal is: 

Definition 6.4.2 The metric temporallogic proof system M consists of 
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0. the definitions 

36 c,o( ê) ..., Vó •c,o, 
Gt c,o .- .., Ft ..,c,o, 

Ht c,o .- ..., p t •r.p, 

Fr.p .- 36 Fö r.p, 

Gr.p .- Vó Gs r.p, 

Pc,o .- 36 Ps c,o, 
Hc,o .- V6 Hs c,o, 

1. a complete axiomatization of predicate logic including MP (Modus 

Ponens) and the following two rul es (V-elimination, respectively V­

introduction): 

a. to infer c,o(t) from Vó r.p(ó), where c,o(t) is the result of stibstitut­

ing the term t from the first-order structure ( 6., +, 0) properly 

(i.e. avoiding that any free variabie of t becomes bound) for all 

occurrences of ó in c,o( ó), 

b. to infer r.p - Vó 1/J(ó) from r.p - 1/J(t), where t is a term from 

the first-order structure (6., +, 0) that does not appear in c,o -
Vó 1/J( 6), 

2. the distribution axiom schemas and temporalization rules of the min­

imal temporallogic proof system Kt (see Definition 3.2.15 in section 

2 of Chapter 3) for Gt and Ht: 

a. Gt(r.p- 1/J)- (Gti,O- Gtt/J)and 

Ht( c,o - 1/J) - (Ht r.p - Ht 1/J ), 

b. to infer Gt c,o from r.p, and to infer Ht c,o from r.p, 

3. the characterizations (i)-(iii) of the properties of a metric point struc­

ture above, 

4. the already mentioned additional relationships between metric opera­

tors: 
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5. axiom schemas relating to arithmetic over the metric domain: 

a. Fo <p <--+ .i <--+ Po <p 

b. Ftl Ft2 <p <--+ Ftt T A Ft1H2 <p, 

Ptl Pt2 <p <--+ Ptl T A Ptt+t2 <p, 

where metric operators are made refl.exive in a simHar way as for 

polymodal operators (see section 2 of Chapter 4), e.g. 

Ft <p := (t = 0 A <p) V Ft <p. 

c. Ftl PttH2 <p <--+ Ftl T A Pt2 <p, 

ph Ftt+t:~ <p <--+ Ptt T A Ft2 <p, 

Ftt+t2 Ptl <p - Ftt+t2 T A Ft2 <p, 

PttH2 Ftl <p - Ptt+t2 T A Pt2 <p. 

From this proof system several interesting properties can he derived such as 

(1) 'VoG<p(ó) <--+ G'Vó<p(8)andF'V/5<p(8)-+ 'VóF<p(ó)(thesefollowfrom 

predicate logic and the definitions G<p = 'Vf/Gs•t.p and F<p = 3ó'Fs•<p), 

(2) 'Vo Fs <p <--+ 'Vó Fs T A G <p by predicate logic and clause 4 in the 
definition of M above, 

( 3) Ft P t <p <--+ Ft T A <p by taking t2 = 0 in the first axiom schema of 

clause 5c in the definition of M above 

and similarly for the mirror images ( obtained by exchanging G with H and 

F with P). 
The next properties are important enough to derive them as theorems of 

M. In these derivations MP abbreviates Modus Ponens and M foliowed by 

a number indicates the corresponding clause in the definition of M above. 

Proposition 6.4.1 1-M Gt( <p A 'ljJ) <--+ Gt<p A Gt 'Ij; 
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Proof: This theorem of M can be derived as follows. 

l.cpA'if;-+ cp (propositionallogic) 

2. Gt('P A 'Ij; ---+ cp) (1,M2b) 

3. Gt('P A 'if;) ---+ Gtcp (2,MP,M2a) 

4. Gt('P A 'if;) ---+ Gt'I/J (analogous to 1-3) 

5. Gt('P A 'Ij;) ---+ Gtcp A Gt'I/J (3,4) 

6. cp ---+ ( 'if; ---+ cp A 'Ij;) (propositionallogic) 

7. Gt('P ---+ ('if; ---+ cp A 'Ij;)) (6,M2b) 

8. Gt cp ---+ Gt('lj; ---+ cp A 'Ij;) (7,MP,M2a) 

9. Gt cp ---+ (Gt 'if; ---+ Gt('P A '1/;)) (8,MP,M2a) 

10. Gt cp A Gt 'if; ---+ Gt('P A 'Ij;) (9,propositionallogic) 

11. Gt('P A 'Ij;) ~ Gtcp A Gt'I/J (5,10) 

• 
This was not very surprising since this holds also for the non-metric case: 

G( cp A 'Ij;) ~ Gcp A G'lj; ( and in deed the derivation above uses only clause 

2 of M which sterns from the minimal temporal logic proof system Kt)· 

However, in contrast with the non-metric case we have also the following: 

Proposition 6.4.2 1-M Ft('P A 'Ij;) ~ Ftcp A Ft 'Ij; 

Proof: This theorem of M can he derived as follows. 

1. Ft('P A 'Ij;) ~ Ft T A Gt('P A 'Ij;) 

2. Gt('P A 'if;) ~ Gtcp A Gt'I/J 

3.Ft(cpA'if;) ~ FtTAGtcpAGt'I/J 

(M4) 

(Proposition 6.4.1) 

(1,2) 
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(M4) 

(M4) 

(3,4,5) 

• 
The only part of Kt that we did not take over concerns the tense mixing 

axiom schemas <p -+ GP<p and cp -+ HFcp. These are however theorems of 

M, e.g. the first one: 

Proposition 6.4.3 1-M <p -+ GP<p 

Proof: This theorem of M can be derived as follows. 

l.cp 

2. Ft T V .., Ft T 

7. -,FtT-+ -,Ft-,Ptcp 

10. <p -+ Gt Pt <p 

( assumption) 

(propositionallogic) 

(M5c) 

(M4) 

(3,4) 

(M4) 

(6) 

(7,MO) 

(1,2,5,8) 

(1,9) 

(10,M1b) 

(11, 8' = 8) 
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13. cp ~ GPcp (12,MO) 

• 
Another possibility is to eliminate the quantification over Ll by only al­

lowing constants from Ll. Such a fragment of metric temporallogic could be 

basedon the following eight temporal operators: until<s, untils, until>s, 

until, since<s, sinces, since>s, since where ti may be any constant from 

.Ll. Notice that we now included the qualitative operators until and since 

because these can no longer be obtained by quantification over their met­

ric equivalents. Another way to look at these qualitative operators is to 

see them as special metric operators until<oo and since<oo as is done in 

[HW 89]. In this view oo is not an element of Ll but it is added to -< as its 

greatest element. 

Another look at the constants ti from Ll is to consider them as programs 

from a kind of dynamic logic ( see [Har 84]) by defining 

[ti] := {(t, t') 1 d(t, t') =ti} 

with the following additional program structure 

0 : the 'skip' program 

+ : sequentia! composition ; 

and the property that all programs are deterministic: 

( cf. Proposition 6.4.2 above ). This conneetion with dynamic logic deserves 

further investigation. 

In the same way as indicated in section 3 of Chapter 3 for L( until, since) 

we can introduce global variables and quantification over them in order to 

reason about (possibly infinite) data domains like that of messages. This 

will be illustrated in the next section. 
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6.5 Specification Examples 

In this section we illustrate the application of metric temporallogic to time­

critical systems by a series of examples. The fi.rst three examples treat 

some simple, but characteristic, purereal-time phenomena: pure time-out, a 

watchdog timer monitoring a processor and the wait/delay statement. The 

remairring four examples combine features of message passing and time­

critical systems. Example four concerns a terminabie adaptor where the 

speed of the incoming data is higher than the speed of the outgoing data. 

In example fi.ve a synchronous and an asynchronous input are mixed into one 

synchronous output. Example six treats an abstract transmission medium. 

Real-time communication constructs like send and receive with time-out are 

the subject of example seven. 

We use the same priority of operators as in section 6 of Chapter 5. 

Also (as we did in section 6 of Chapter 5) we assume in our specifications 

linearity of the ordering and succession towards future. This involves the 

qualitative part of metric temporal logic. For the quantitative part we 

assume local surjectivity of the temporal distance function d, i.e. we assume 

V6 [0 -< 6 -+ Fs T]. An important consequence of this is Fs = Gs for all 

6 ::f: 0 since Fs<p = F.s TA G.s r.p (see section 4). The standard metric point 
structures that we have in mind use respectively the natural numbers, the 

integers, the (non-negative) rational numbers and the (non-negative) real 

numbers for the time domain T and the non-negative part of T for A where 

<, + and 0 have the standard interpretation forthese number systems and 

d is the absolute difference. For example, one of the standard metric point 

structures is 

(il, IN,<, d, +, 0) 

where < is the standard ordering on il, + the standard addition on IN, 0 

the standard constant from IN and d is defined by 

d(z,z') := lz-z'l· 
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For the specification examples in this section we need two additional 

qualitative temporal operators above those introduced in section 6 of Chap­

ter 5. First we need a reflexive version of since which we will denote by 

since. Semantically it corresponds to replacing every < in the definition of 

since by ~· Syntactically this can he achieved by the definition 

Apart from this binary reflexive operator we also need a unary operator 

denoted by J representing that its argument has just become true: 

J<p := <p A (P<p ---+ -,~.p since <p A -,(..L since ~.p)). 

This definition can he explained as follows. For dense time domains the 

defini ti on <p A (P <p ---+ -, <p since <p) suffices. This farm ula descri bes that 

there was a peri ad immediately befare (how small i t may he) such that <p was 

false in that period. Note that fora formula <p that is true on the rationals 

and false on the irrational numbers J <p is never true ( this corresponds to 

our intuition that <p changesits truth value infinitely fast and herree cannot 

have become just true ). The above definition of the just-operator is a little 

bit complicated by also taking into account discrete time domains. In that 

case we should also exdude the possibility that <p was true on the previous 

moment. This can he dorre by the clause P<p ---+ -,( ..Lsince<p) sirree ..Lsince<p 

can only he true if <p was true on the previous moment. 

In our examples we will encounter periodicity requirements. Uncondi­

tional periodicity of an event e with period /i can he formulated by 

periodic( e, é) := e ---+ ...., e untiLs e. 

Furthermore, conditional periodicity can he defined by adding a condition 

c to the antecedent: 

periodic( e, li, c) := e A c ---+ -, e untiLs e. 

In applying metric temporal logic to practical examples the metric do­

main .ó. should he associated with a time unit relevant for that application, 
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usually secoud or a derivative thereof. However, in principle other time 

units such as number of shaft rotations are allowed too. Connected with 

this is the translation of elements of data domains that represent time units 

into elements of t:J.. We will represent this translation by a function 6. For 

example, when the data doma.in represents milliseconds and tJ. counts in 

secouds than we can take ó(t) = 1~. In case the data domain has more 

structure, one may want to impose additional conditions on 6, e.g. when the 

data domain is ordered monotonicity of 6 with respect to this ordering and 

when the data doma.in incorporates addition distributivity of ó with respect 

to this addition. The most simple case occurs when the data domain can 

be embedded in the metric doma.in. In such a case it suffices to take for 6 

simply the embedding mapping. 

In examples three and seven we look at statements from concurrent 

programming languages such as CHILL ([CHILL 80]) or Ada ([Ada 83]). 

For expressing the semantics of programming la.nguages we use location 

variables I and location predicates at and after. The first assumption on 

locations is that being simultaneously at and after the same location is 

impossible (being simultaneously at different locations in different processes 

or tasks is of course possible ): 

Ll .., (at(/) A after(l)). 

Locations are special data elements and as such we can impose on them 

the Unîque Identification assumption. However, being present at a certain 

location is not instantaneous, but has some duration (a.n extended event), 

so the uniqueness ofloca.tions is expressed by 

L2 at( I) --> at(l) unless (after(l) A G ~at( I)). 

As we did insection 6 of Cha.pter 5 we leave out universa! qua.ntifications 

over the data domains in the specifications. 

We take the same attitude as in section 6 of Chapter 5 with regard to 

the specificatien of the interface. 
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6.5.1 Example 1: Pure Time-out 

One of the most common and easiest real-time constructsis the time-out. A 

time-out is generated at the end of a period (whose length is determined by 

the value by which the timer was set) in which a certain event (think of the 

signal resetting the timer) has not occurred. Time-outs are widely used in 

real- time systems to safeguard one part of a system against malfunction of 

another part. Lettheevent be e and the time-out value ó, then the time-out 

on e after ó can be defined in metric temporallogic by 

time_out(e, ó) := , P <6 e. 

So, a time-out on e after ó is generated if and only if e has not occurred 

during the last ó time units. Notice that in this representation the setting of 

the timer is considered irrelevant. If we want to incorporate this, however, 

let setandreset be theevent setting, respectively resetting, the timer, then 

a time-out with period ó can be described by 

-, reset since.s set. 

6.5.2 Example 2: Watchdog Timer 

This example concerns a purereal-time system, a watchdog timer. A pro­

cessor is monitored by a timer, the watchdog. The processor sets the timer 

by a signal enable(t) and it should reset the timer by a reset signal each 

time before the timer expires ( cf. the previous example ). When the proces­

sor does not succeed in resetting the timer in time, the processor wiJl be 

stopped by a halt signal from the watchdog. At any time, the processor 

and the watchdog timer can be restarted by an initiate signal from the 

environment (e.g. an operator pushing a button). After an initiate signal 

a new period of enabling and resetting the timer starts. Once the timer 

is set with enable( t) after an initiate signal, the time-out period cannot be 

changed (and thus every subsequent enable(t') signalis ignored) until the 

next initiate signal. Figure 6.1 summarizes this state of affairs. We assume 



134 CHAPTER 6. TIME-CRITICAL SYSTEMS 

initiate 

enable(t) 

! processor 
! 

watchdog 
timer 

reset 
! i 

halt 

Figure 6.1: Watchdog Timer 

that the enahle-line oheys the no simultaneons input assumption ( otherwise 

the time-out period could he unknown): 

enable(t) A enable(t') -+ t' = t. 

To identify the first enable(t) after an initiate signal wedefine 

firstenable(t) := enable(t) A ( ~ 3 t1 enable(t')) since initiate. 

The only essen ti al thing to he specified is the generation of the halt signal. 

This is characterized hy a period hounded hy firstenable(t) (timer set) and 

a halt signal (timer stopped) in which: 

1. no initiate and no halt signal occurred during this whole period (no 

halt signal since we want at most one halt signal to occur between 

two initiate signals ), 

2. no reset occurred during the last t time units of this period. 

The generation of a halt signal can then he specified hy a nested sirree 

formula: 
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halt +-+ 3 t [ t > 0 1\ (.., initiate 1\ .., halt 1\ .., reset) sinces(t) 

((.., initiate 1\ .., halt) since firstenable(t))] 

135 

where h transfers an element from the data domain of enable to an element 

of the metric domain A (see the introduetion of this section). 

6.5.3 Example 3: Wait/delay Statement 

This example treats the wait statement or delay statement as occurring in 

concurrent programming languages such as CHILL ([CHILL 80]) or Ada 

([Ada 83]). See the introduetion of this section for the way we use locations 

to express thesemantics of programming languages. By wait(l) we denote 

that lis the location of a wait statementand waitvalue(l) denotes the spec­

i:fied waitvalue of that wait statement. The semantics of a wait statement 

is then speci:fied by 

J at(l) 1\ wait(l) ----> at(l) untils(waitvalue(l)) after(l). 

Remark 6.5.1 For the J-operator and the function é transferring elements 

from a data domain to elements of the metric domain A, see the introduetion 

of this section. 

Remark 6.5.2 Being present at a location takes some time so the wait 

statement cannot he passed in 0 time units. In other words, even if the 

waitvalue is 0 the function é will take care that this is mapped to a positive 

number to account for the time it takes to transfer control ( cf. Appendix A 

in (KSRGA 85] concerning this problem for the Ada delay statement). 

Remark 6.5.3 If also an in:finite waitvalue is allowed we add the following 

axiom for this special case: 

at(l) 1\ wait(l) 1\ waitvalue(l) oo ----> G at(l). 
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6.5.4 Example 4: Terminal Adaptor 

Thls example is a mixture of message passing and real-time. It concerns a 

simplified terminal adaptor. On one side bytes are received from a data link 

operating on 512 bytes/second. On the other side bytes are transmitted to 

a terminal with a rate of 300 bytes/second. The adaptor has a buffering 

capacity of N1 bytes and it prevents buffer overflow through sending stop 

and start signals to the data link as soon as the buffer becomes more than 

80% full, respectively more than 80% empty. It is assumed that after the 

sending of a stop signa! at most N2 bytes are sent by the data link (of course 

N2 should be smal! compared to Nl). The data link may resume sending 

bytes only afterit has received a start signa!. Let in(b) denote the reception 

of byte b from the high-speed data link and out(b) the transmission of byte 

b to the terminal. The above is summarized in Figure 6.2. The terminal 

start 

stop 
buffer 

in(b) 
(N1 places) 

out(b) 

Figure 6.2: Terminal Adaptor 

adaptor is a perfect FIFO message passing system, so we suppose: 

Unique Identification (MP1) for in, 

No Creation and fini te speed (MP2') for out with respect to in, 

perfectness (MP3'), 

no simultaneons input and output (MP4a,b) for in and out, 
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FIFO ordering (MP5). 

Additionally, the terminal adaptor obeys somereai-time restrictions. First 

define 

buffered(b) := P in(b) A --, P out(b) 

to express that byte b is at the moment contained in the buffer of th.e 

terminal adaptor. We assume that transmission of bytes to the terminal is 

irregular (i.e. aperiodic), but within 3~ of a second: 

buffered(b) -+ F < 3~0 3 b' out(b'). 

Because the buffer respects FIFO ordering th.is can he strengthened to 

buffered(b) A --,3 b'[buffered(b') A P(in(b) A P in(b'))] __,. 

--, 3 b1 out(b') until<....!.... out(b) 
300 

where r.p until<.s '1/J is of course defined by 

The strengthened axiom above can be derived as an instanee (taking r.p = 
3b1 out( b') and '1/J = out( b)) from 

--, r.p until '1/J A F <6 r.p __,. --, r.p until<.s '1/J 

(where -,r.p until '1/J sterns from the part about the FIFO ordering). 

We now proceed with the other side, the reception of bytes from the data 

link. Define 

stopped := (--,start) sincestop 

starLstop_interference := <><....!....(stop V start) 
512 

( where <> <6 r.p is defined by r.p V F <6 r.p) to indicate that the reception was 

stopped (a stop signal was issued and since then no start signal has been 

issued), respectively a period (of length 5i2 ) in which reception is interfered 
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by issuing a stop or start signal. We can now specify the regular reception 

of bytes from the data link with period 5~2 , unless reception was stopped 

or interfered by a stop or start signal: 

in(b) A -, stopped A -, start_stop_inter f erenee ~ 

-, 3 b1 in(b') until....L 3 b1 in(b'). 
1'>12 

Remark 6.5.4 This axiom represents a conditional periodicity require­

ment. Therefore, the above axiom can also be written as 

periodic(3 b' in(b'), 5~2 ,-, stopped A -, start_stop_inter ference ). 

(Recall from predicate logic that V x[(P(x) A Q) ~ R] is equivalent with 

(Q A 3 x P(x)) ~ R when Q and R do not contain x free.) 

Remark 6.5.5 Note that.., (..,start since stop) A -, 0 <....L (stop V start) 
612 

is equivalent with -, F ....L (..,start since stop) A .., 0 <....L start (the latter 
612 612 

formulation was used in [KKZ 87]). 

After a stop signal the data link need not immediately stop sending bytes 

(it can still send at most N 2 bytes). Nevertheless, the reception of bytes 

remains regular in such a period. To enforce this we also demand backward 

periodicity after the first byte after the last start signal: 

in(b) ~ -, 3 b' in(b') sincestart V -, 3 b1 in(b') since--L 3 b' in(b'). 
1'>12 

Aftera stop signal at most N 2 bytescan be sent by the data link: 

.., start since ~ stop ~ .., 3 b in(b) 
>612 

w here <p since>s '1/J is defined by 

381 [8 -< 8' A <p since6, '1/J]. 
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At last we should specify the generation of the start and stop signals. For 

convenience we assume that N1 is divisible by 5. To indicate the situation 

that the buffer is for at least 80% full, respectively at least 80% empty, we 

define 

tN1+l ~Nt+l 

almostfull .- 3 bt · · · 3 btNt +1 [ 1\ bi =I bj A 1\ buffered(bi)] 

almostempty 

i,j=l i=l 
i<j 

tNt 
. - .., 3 bt · · · 3 btNt [ 1\ 

iJ=l 
i<j 

tNt 

bi =I bj A 1\ buffered(bi)] . 
i=l 

Remark 6.5.6 N1 is a fixed (constant) parameter in this specification so 

that the sequence of existential quantifiers in front of these formulas can be 

replaced by a sequence of fixed length. 

Remark 6.5.7 When one allows the use of auxiliary data structures such 

as a queue, one simply could refer to the length of the queue representing 

the buffer. However, we consider the use of auxiliary data structures against 

the requirement of syntactical abstractness for specification languages (see 

Chapter 2 and section 5 of Chapter 5). When one decides to use only logical 

and temporal operators combined with quantification over and equality in 

the data domain (in this case bytes), a bit more complex definitions like the 

ones above are unavoidable. 

Now we should specify that the start and stop signals will be generated as 

soon as the buffer becomes (again) almost full, respectively almost empty. 

To express the as soon as aspect, we use the just-operator J (see the intro­

duetion of this section): 

start ~ J almostempty 

stop ~ J almostfull. 
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As one can see from these two axioms the start and stop signals are not 

essential and, using these two axioms, can be consequently replaced in the 

previous axioms by their equivalent right-hand sides. In other words, this 

specification can be given in a more abstract way only in terms of in and 

out without the implementation-oriented signals start and stop! This phe­

nomenon occurs because we see systems as black boxes and hence only 

specify the outside (see Chapter 2), but on the other hand overviewing this 

outside from all sides (seeing the whole environment). In case ofthe termi­

nal adaptor, the start and stop signals are essential from an implementation 

viewpoint because the data link cannot see from its position how the other 

side (the terminal) is doing, in partienlar how fast the terminal adaptor 

transmits bytes at that side. Because the data link does not have this in­

formation, it is not able to stop in right time and start sending bytes again 

when necessary by itself. 

6.5.5 Example 5: Mixing Synchronous and Asynchronous 
Input 

In this example we specify an object with two inputs and one output. The 

original informal specification is contained in [DHJR 85]: 

The object has two inputs and one output. The output and 

one of the inputs respectively send receive data in packets at 

regular intervals. The remaining input is asynchronous, i.e. data 

appears at undetermined times. 

The data packets which arrive at the synchronous input may 

be full or empty, and the object may only output data by for­

warding packets from the synchronous input or filling an empty 

packet with data from the asynchronous input. All packets have 

the same size. 

This is represented in Figure 6.3. The object, like the terminal adaptor 

of Example 4, has a mixture of message passing and real-time features. It 
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(period 1) 
in.(p) 

object 
(delay ó) 

(period 1) 
out(p) 

Figure 6.3: Mixing Synchronous and Asynchronous Input 
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seems the intention of the informal specification above that the periods of 

the output and the synchronous input are the same (in the picture repre­

sented by 1 > 0). lf the period of the output would heshorter than that of 

the synchronous input, the output will have to create packets at a certain 

moment and this violates the No Creation assumption for message passing 

systems. lf, on the other hand, the period of the output would he longer 

than that of the synchronous input, the output cannot keep pace and pack­

ets will he lost eventually. As we interpret the above informal specification 

this seems not intended because that specification suggests that the object 

functions as a perfect message passing system. Furthermore, we assume 

finite speed for the passing of packets. Because of the synchrony of the 

output and one of the inputs this leads to a fixed delay 6 > 0. This delay 

ó represents a kind of processing time to pass or possibly fill a packet. The 

message passing aspect of the object is somewhat unusual because only one 

output is coupled to two inputs. The most important input is, however, the 

synchronous one and the asynchronous one only functions in exceptional 

cases ( an empty packet on the synchronous input). Therefore, the following 

message passing properties hold between the two inputs and the output: No 

Creation and finite speed hold between the output and both inputs, FIFO 

holds for the output and the synchronous input while perfectness only holds 

for non-empty packets on the synchronous input. These message passing 
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properties will be a consequence of stronger reai-time properties given be­

low. We do assume no simultaneons input and output: 

in"(p) A in"(p') ~ p1 = p 

ina(P) A ina.(P1
) ~ p' = P 

out(p) A out(p') ~ p1 p. 

Also unique identification is supposed. Because the inputs are not separated 

like in Example 2 in section 6 of Chapter 5, but are mixed in this case, we 

must not only assume unicity for both inputs separately but also for the 

inputs between each other: 

in.(p) V ina(P) ~ .., D (in11(p) V ina(P)) 

.., (in 11(p) A ina.(P)). 

Reeall from section 2 of Chapter 5 that the No Creation assumption on 

message passing systems consisted of two parts: no new messages and no 

duplicates. The no new messages part will follow from the reai-time require­

ments below, but the no duplicates part is independent from the message 

passing relation between the output and the two inputs described above. 

So, wedemand for the output: 

out(p) ~ .., D out(p). 

We can now turn to the real-time requirements of the object. Using the 

abbreviation periodic( e, ó) defined in the introduetion of this section, regu­

larity of the output, respectively synchronousinput, is required by 

periodic(3 p' in11 (p'), 7) 
and 

periodic(3 p1 out(p'), 7 ). 
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The following two real- time requirements concern pèrfectness with a de­

lay of ó Qifferentiating the cases of a non-empty and empty packet on the 

synchronous input: 

in.(p) A ..., empty(p) -+ Fs out(p) 

in.(p) A empty(p) -+ F.s (out(p) V 3 p1 [out(p') A P in4 (p')]). 

Remark 6.5.8 The latter axiom allows that a packet arrives on the asyn­

chronous input at the very last moment. This is not quite in accordance 

with the idea that the delay ó represents a kind of processing time to pass 

or possihly fill a packet. More tailored towards this idea would he the axiom 

in,(p) A empty(p) -+ F.s out(p) V 3 p1 [P ina(P') A F.s out(p1
)], 

i.e. getting the P-operator out of the scope of the Fs. 

Remark 6.5.9 Both axioms together (with the ohvious change in case the 

alteration suggested in Remark 6.5.8 is taken into account) guarantee that 

in.(p) -+ F.s(out(p) V 3 p1[out(p1
) A Pin4 (p')]), 

so in partienlar 

in.(p) -+ F.s 3p1 out(p1
). 

Remark 6.5.10 Because of Remark 6.5.9 and regularity of the output with 

period 1, the axiom for regularity of the synchronous input with period 1 

can he weakened to 

in,(p) -+ F 7 3 p1 in,(p'). 

The reasou is that in.(p) A F <'Y 3 p' in,(p1
) implies hy Remark 6.5.9 

F.s(3 p1 out(p1
) A F <'Y 3 p' out(p1

)) 

which contradiets the regularity of the output with period 1. 
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Our last axiom ensures that output does not start too early, to he precise 

only after a delay ó after the first packet on the synchronous input: 

.., 3 p P in6 (p) ~ F6.., 3 p1 P out(p1
). 

An equivalent formulation of this axiom looks backwards: 

Now we can show that the remaining message passing properties are implied 

by the above real-time requirements. First, an obvious strengthening of 

Remark 6.5.9 gives 

in,(p) ~ F6((out(p) A P6 in.(p)) V 3p1[out(p') A Pina(P')]). 

So, each packet on the synchronous input leads after a delay ó to the output 

of either that packet or an earlier packet from the asynchronous input. Since 

the synchronous input and the output have the same period -r these packets 

caused by the synchronous input make up for all packets on the output from 

a delay ó after the first pack et on the synchronous input ( there can be no 

packets in between since the output is regular and there can be no packets 

simultaneously with those generated by the synchronous input because no 

simultaneons output is assumed). The last axiom ensures that before a delay 

ó after the first packet on the synchronous input there can be no packet on 

the output. Thus, the only packets on the output are those generated by 

a packet on the synchronous input as formulated by the above formula. 

Inspecting this form ula we immediately can conclude no creation of new 

packets and fini te speed since either out(p) A P 6 in,(p) or out(p1
) A 

Pina(p') holds. In fact, we showed that out(p) ~ P5in,(p) V Pina(P)· 

No duplication of packets was already formulated separately and takes care 

that a packet from the asynchronous input cannot be taken twice to fill an 

empty packet from the synchronous input. FIFO ordering for packets from 

the synchronous input follows because the above implies that a packet from 
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the synchronous input is output after a delay IJ or not at all as formulated 

by the formula 

in"(p) - F6 out(p) V A-, out(p). 

Perfectness for non-empty packets of the synchronous input follows already 

solely from the axiomabout non-empty packets at the synchronous input. 

6.5.6 Example 6: Abstract Transmission Medium 

A transmission medium can be considered as a message passing system 

where the input and output are called transmit, respectively arrive and 

the data consists of signal.s. We assume the following aspects of message 

passing systems: unique identi:fication of signal.s, no creation of signal.s and 

:finite transmission speed, basic liveness, no simultaneons input and output. 

As given in Example 1 of section 6 of Chapter 5 these can be formulated 

respectively by: 

tran8mit( 8) - -, D tran8mit( 8) 

arrive( 8) - P tran8mit( 8) A -, D arrive( 8) 

G F 3 8 tran8mit(8) - F 3 s arrive(8) 

transmit( 8) A transmit( s1) - s1 = s 

arrive( s) A arrive( s1) - s' = 8. 

The characteristic feature of the transmission medium on top of being a 

particular kind of message passing system is the requirement that it is not 

too la.zy, i.e. there exists a :fixed period 7 in which the transmission medium 

attempts to transmit at least one signal. (successfully or not). So, when there 

are no other signal.s to be transmitted, 7 represents the maximum time for 

which the attempt to transmit a signal. can be delayed. Such a requirement 

is needed to enable higher-level protoeals to time-out on signal.s sent but 

not yet received and start retransmission. This is formulated by 

31 A (3 s [P transmit(s) A -, P arrive(s)] -
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3 s' [P transmit( s') /\ -, P arrive( s') /\ G>.., -, arrive( s')]) 

where G>c5 <p is defined by 

In the a.xiom above s' represents one signal which has been attempted 

to transmit in a partienlar period I· If this transmission was successful, 

F 5'7 arrive(s1
) holds (where F $.6 <pis defined by Fö <p V F <c5 cp), otherwise 

A-, arrive( s1
) hol ds. To prove this we note the following. Since A <p IS. 

equivalent over linear orders with -, P <p /\ G-, <p and -, P arrive( s') is 

given, it is sufReient to prove 

G>..,-, arrive( s1
) ~ F $.'7 arriva( s') V G-, arrive( s'). 

Now, this is an instanee of G>..,-, 1/J ~ F $.7 1/J V G-, 1/J which is a theorem 

of M as is shown by the following derivation: 

1. G>-r -, 1/J ( assumption) 

2. V6 [/-< 6 ~ Gc5-, 1/;] (l,definition G>-r cp) 

3. 36 [0-< 6 ::5 1 /\ Fö 1/J] V V6 [0-< 6 ::5 1 ~ -, Fö 1/;] (predicate logic) 

4. 3<5 [0 -< <5 ::5 1 /\ Fö 1/;] +-t F $.-r '1/J ( definition F $.7 1/J) 

5. V6 [0-< 6 ::5 1 ~ -, F6 1/;] +-t V6 [0-< 6 ::5 1 ~ G6 -, 1/;] (MO) 

6. Vc5[1-< 6 ~ G.s•'I/Y]A Vó[O-< 6::51 ~ G.s•'t/J] ~ V6[0-< 6 ~ G.s•'I/J] 
(predicate logic) 

7. Go -, 1/J +-t T (M5a) 

8. V6 (0 -< 6 ~ Gs -, 1/;] +-t V6 G 6 ., 1/J (7 ,predicate logic) 

9. V6 [0 -< 6 ~ G.s -, '~/;] +-t G -, '1/J (8,MO) 
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11. F <,5;-y 'Ij; V G-, 'Ij; (2~3,4,10,predicate logic) 

12. G>'Y -, 'Ij; -!> F '.5'Y 'Ij; V G .., 'Ij; (1,11). 

In this example we needed quantification over the metric domain. 

6.5.7 Example 7: Reai-Time Communication Constructs 

In this example we describe asynchronous message passing by means of 

the send and receive constructs. Our specific form of the send and receive 

constructsis inspired by CHILL (see [CHILL 80]). The send construct has 

an associated signal which represents the data to he sent. Each signal has a 

unique destination and every signal sent will eventually reach its destination. 

The receive construct consists of a selection of signals that it may accept. 

The selection is between signals that have been sent to the process to which 

this receive construct belongs (that must he their destination), that have 

arrived and that have not been selected before. After a choice has been 

made, control transfers to the corresponding part of the receive construct. 

So, for a receive construct we can di:fferentiate two phases: 

1. wait (possibly forever) for a signal that can he accepted ( one of the 

listed selection possibilities ), 

2. choose one of the acceptable signals and take the branch of that ac­

cepted signal. 

In case of a timed receive construct the possibility of a time-out is added that 

restricts the time the receiving process is going to wait for a signal match­

ing one of its selection possibilities to arrive. For real-time applications the 

communication constructs of ( asynchronous) send and timed receive are 

the most useful choices because they do not lead to deadlock possibilities 

(the sender continnes and the receiver times out). The send and receive 

constructs are high-level communication primitives and are usually imple­

mented on a network providing reliable communication by using time-out 
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and retransmission for unreliable transmission media like those of Example 

6. Notice that send and receive resembie in, respectively out, of a perfect 

message passing system. The main difference, however, is that the receiver 

explicitly accepts signals at times chosen by itself. In other words: the pos­

sibility to output a message is under control of the environment instead of 

the system. We start by specifying the effect of a send statement: 

at(l) A send(l) ~ at(l) until after(l). 

We use similar conventions about locations as we used in Example 3. send(l) 

indicates that the location l contains a send statement. This axiom simply 

states that the send statement takes some :finite time, and this is exactly the 

essence of an asynchronous send: the sender just continnes in contrast with 

synchronous communication such as a rendezvous in Ada (see [Ada 83]). 

The signal that is the result of the send statement at location l will be 

represented by the function signal(l). An alternative for this would be 

to put this explicitly in the predicate send, but in that case it should he 

additionally stated that only one signalis generated for each send statement: 

send(l,s) A send(l,s') ~ s1 = s. 

We prefer the use ofthe predicate send(l) and the function signal(l) because 

then it is implicit that a send statement can generate only one signal. The 

fact that a signal s is sent can be expressed by 

sent(s) := 3l[J after(l) A send(l) A signal(l) = s]. 

Here we use the just-operator to indicate that the moment of sending co­

incides precisely with the moment that the send statement has just been 

passed. Because send statements can be executed simultaneously at differ­

ent places (locations in different processes) in the program, and similarly 

for receive statements, we cannot suppose the no simultaneons input as­

sumption. We want the data passed to be unique, so we must demand that 

simultaneously executed send statements generate different signals: 

send(l) A send(l') A signal(l) = signal(l') ~ l' = l. 
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We now turn to the receiving si de. As we indicated above, the message pass­

ing relation between thesender and the receiver is somewhat non-standard 

because the receiver chooses the time to make a selection between accept­

able signals. This selection process is also a special one: only certain signals 

can be accepted. This is expressed by the predicate selectable(s, l). There 

are several choices for the definition of this predicate depending on the in­

tended possibilities toselect signals, but the signal s should at least conform 

( either syntactically or semantically) to one of the possible choices of that 

particula.r receive statement (i.e. the one at location l) and the destination 

of s should be the processin which this receive statement (i.e. the location 

l) occurs. With a receive statement at location land a signal s we associate 

the speciallocation choice(s, 1) representing the location where control is 

transferred to when signal sis chosen to be accepted at l. Forthese special 

locations choice(s, l) we again impose a uniqueness assumption: 

choice( s, l) = choice( s', Z') -+ s' = s 1\ l' = l. 
A signal s can be chosen to be accepted at l if it is selectable, has been sent 

and was not chosen before. So define 

choosable( s, 1) := selectable( s, l) 1\ P sent( s) 1\ -, P 3 l' at( choice( s, 11
) ). 

The fact that we can model that a signa! s has been chosen before by 

P 31' at( choice( s, l')) depends crucially on the uniqueness assumption for 

the locations choice( s, l). To see this, consider the following program with 

three processes: 

P1:: SEND 0 TO Pa 

P2:: SEND 0 TO P3 

P3:: RECEIVE 

0: ... 

1: ... ; 

RECEIVE 

0: .. . 

1: .. . 
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Let s1 and sa be the signals sent from P1 and Pa respectively, and l one of 

the two receive statements in Ps, then 

choice( Si, l) = choice( ss-i, l) for 1 ~i~ 2. 

So, if s1 is accepted in P3 first, P 31' at( choice( sa, l')) will hold although sa 

has not been chosen yet. 

To arrive at alocation choice( s, l), s must have been choosable at l: 

J at( choice( s, l)) --+ choosable( s, l). 

The (non-timed) receive statement can now be described by the following 

two axioms: 

at(l) A receive(l) --+ at(l) unless 3 s at( choice( s, l)) 

at(l) A receive( l) A 3 s choosable( s, l) --+ F 3 s' at( choice( s', l) ). 

In the case of a timed receive statement there is the additional possibility to 

transfer control to the special else-location after timervalue ( cf. the waitvalue 

of a wait statement in Example 3) time units have elapsed. Combined with 

· the two axioms above for the non-timed case this leads to the axiom 

J at(l) A timedreceive(l) --+ 

at( l) unti4(timet't~alue(l)) at( else(l)) V 

at( l) until<ó( time,.t~alue(l)) 
((at(l) A 3schoosable(s,l)) until3s'at(choice(s',l))). 

Note that the choice to take the else-branch is always possible because it 

is not observable whether a signal has arrived at its destination or not. In 

other words, we know nothing a bout the speed of the reliable communication 

network. It would be realistic to impose an upper bound on the time for 

signals to arrive (the maximum transmission time). In that case the else­

branch can only be taken if we add that there could not have arrived a signal 
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within timervalue time units. This can be done by adding the following 

conjunct to the fi.rst clause of the disjunction in the axiom above ( maxtt 

represents the maximum transmission time): 

A--, 3 s[selectable(s,l) A --, P 311 at(choice(s,l1
)) A 

Fs(timervalue(l)) P>ma:~tt sent(s)] 

where P>.s <pis defined by 

3ê1 [ê -< ê' A P.s, c.p]. 

In the same way one can introduce a minimum transmission time by incor­

porating such a mintt in the definition of choosable( s, l): 

selectable( s, l) A P>mintt sent(s) A --, P 3 l' at( choice( s, l')). 

A (timed) receive statement can choose between several signals to accept. A 

fairness assumption can be added for these choices, relating to the locations 

choice( s, l). 

6.6 Conclusions 

We end this chapter with some conclusions. 

We extended temporal logic with metric operators derived from their 

qualitative polymodal versions described in Chapter 4. We showed how 

these metric operators could be usefully applied to the forma! specification of 

time-critica! systems. [Bur 84] section 6 contains an alternative proposal for 

metric temporallogic where time is structured as an ordered Abelian group. 

From a philosophical viewpoint, the idea that duration of time is expressed 

as an element of the time domain itself seems unnatural. Also technically, 

the natura! addition on a time domain may not be sufficient for determining 

the distance between any two points, as is exempli:fied by the points (0, 1) 

and (1, 0) in Example 6.4.1 of section 4. When only interested in qualitative 
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aspects of distances, however, Tarski's qualitative geometry ([Tar 69]) sug­

gests models (T, <, E) where Exyuv is the equidistance-predicate (x and y 

have the same distance as u and v ). An interesting question connecting this 

approach with metric temporal logic is: how shouid < and E be axioma­

tized to describe models (T, <, E) that allow a representation in terms of 

our metric point structures such that Exyuv {:} d( x, y) = d( u, v) ? An­

other alternative for expressing quantitative timing properties is dynamic 

logic (see [Har 84]) with one atomie program 'successor' S. But, already 

for the expression of bounded response time we need an infinitary dynamic 

logic ([Gol 82]): 

V[s*JCP _. V <si> q). 
n i<n 

This approach is oniy suitable for discrete structures, but our philosophy 

behind metric temporal logic required that the qualitative fragment con­

cerning all point structures should be nicely embedded. This makes sense 

in practice too, because time-critical systems may contain non-discrete ele­

ments such as analog devices for handling continuons physical entities like 

temperature (see section 2). 

The list of examples showed how several types of time-critica! systems 

can be specified with metric temporallogic, ranging from very simple reai­

time constructs and systems to combined message passing/real-time sys­

tems and semantics for real-time communication constructs of concurrent 

programming Ianguages. The resulting specifications are elegant and rather 

directly formalize our intuition abou~ the timing aspects of e.g. real-time 

systems. 

In the examples we concentrated on events since these are very important 

for time-critical systems. In case state variables also play an important role, 

e.g. in case of process control systems, it is still aften the case that not 

the variabie itself is the dominant feature but a certain event or condition 

invalving this state variable. A typical example is a continuous physical 

variabie like temperature. U sually we are not interested in the absolute 

value of this state variabie as such but more in the fact whether it stays 
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within certain bounds, e.g. the system should only react when the condition 

temperature < maxtemp becomes false. Suppose that reactime is the 

required reaction time and that closevalve is the required reaction, then 

such a requirement can be specified in metric temporallogic by 

J(temperature ~ maxtemp) -+ F <reactime closevalve. 

Here we use the just-operator to catch the exact moment when the condition 

temperafure < maxtemp changes from true to false. 



Chapter 7 

Summary and Concluding 

Remarks 

In this thesis we develop a temporal logic for reasoning about message 

passing and time-critica! systems and illustrate the resulting specification 

metbod by numerous examples. It is built on several papers that appeared 

between 1983 and 1989 ([KVR 83], [KR 85], [Koy 87], [KKZ 87], [KKZ 88], 

[KKZ 89]). This research started at the author's practice period at Philips 

Telecommunication Industries from September 1982 till June 1983. The 

result was a paper ([KVR 83]) descrihing how the CHILL real-time asyn­

chronous communication primitives SEND and RECEIVE could he de­

scribed axiomatically in temporal logic. Being a first attempt, it contained 

several misconceptions. One of them was that time was considered as (a 

distinguished) part of the state and that a state change could occur without 

increasing the time component. More successful contributions of [KVR 83] 

were the use of past operators to obtain elegant specifications and the in­

troduction of a powerful quantitative temporal operator ( corresponding to 

until.s of section 4 of Chapter 6). Examples 3 and 7 of section 5 of Chapter 

6 show how such an axiomatization of the CHILL primitives would look like 

in the current formalism. One month after the presentation ofthat paper, in 

September 1983, a workshop was held in Cambridge where several specifica-

155 
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tion formalisros (presented by Hoare, Lam port, Milner et cetera) were tested 

on the same set of ten examples (see the proceedings [DHJR 85]). In our 

contribution ([KR 85]) already some improvements were made: time was 

still part of the state, but now each state change necessarily increased time. 

The past operators and the quantitative until-operator again proved to be 

suitable, but on the other hand the next-operator (see section 4 of Chapter 

3) was used only for the purpose of obtaining irreflexive operators. How the 

three examples dealt with in this con tribution would look like in the current 

formalism, see Examples 2 and 3 of section 6 of Chapter 5 and Example 5 of 

section 5 of Chapter 6. At this workshop we promoted for the first time the 

idea to assume unique identification of messages in order to achleve a simple 

and elegant specification of message passing systems in temporallogic. At 

that time we were criticized for introducing such an assumption. Several 

years later (in [Koy 87]) we defended ourselves and showed not only that 

such a simple temporallogic specification could only be given under this as­

sumption (the alternative is to use much stronger logies), but also that this 

assumption was not as restrictive as it may look at first sight (see Example 

1 of section 6 of Chapter 5 for the specification of pure message passing 

systems in the current formalism). [KKZ 87] again demonstrated the pos­

sibility to apply the special temporal logic to specify message passing and 

time-critica! systems (see Examples 2 and 4 of section 5 of Chapter 6 for the 

specification in the current formalism). In this paper the logic was refined 

again: now the state sequence and time were completely decoupled. This 

is a more faithful representation of real time in real-time systems: the wall 

doek progresses independently from the system's execution. The quantita­

tive operators were defined by the two additional operations of addition and 

subtraction on time. In [KKZ 88] a study was made of the fundamentals 

of real-tîme by means of a classification of real-time systems by presence 

or absence of certain characteristics and several paradigms of reai-time sys­

tems were given. That paper also contained an initial and informal overview 

of requirements for specifica ti on languages for real-time. This was subse-
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quently worked out in a forma! frameworkin [KKZ 89]. In the meantime, 

the foundations of the spedal temporallogic were reexamined which led to 

two new ideas. The first idea took the quantitative element (represented by 

addition and subtraction in the time domain itself) out of the time domain 

by adding a distance function that indicates how far two points in time 

are apart. The range of this distance function is called the metric domain. 

The advantage of this representation is its flexibility: instead of measuring 

time in the time domain itsèlf different chokes for the metric domain pro­

vide different possibilities for measuring time. Furthermore, additiçm and 

subtradion do not always provide the means to define the distance func­

tion completely. Corresponding to this idea of posing a metric on time, 

the special temporallogic. was renamed metric temporallogic. The second 

idea emerged from our wish to separate qualitative and quantitative timing 

aspects already in our new temporal models (including apart from an order 

on time also a distance function). Since we allowed a pure qualitative view 

on time ( only in volving the order), it seemed natural to allow also a purely 

quantitative view, only invalving the distance function. From a semantic 

point of view, quantifying the metric elements away in operators combin­

ing the order and the distance function, gave back the purely qualitative 

operators of standard temporal logic. Applying the same to pure metric 

operators lead to the operators A, i.e. at every point in time and E, i.e. at 

some point in time. From there it was only a small step to the irreflexive 

version of E, the D-operator which proved to be very versatile. 

As stated in Chapter 1, the main objective of this thesis was to develop a 

specification method for message passing and time-critical systems. As was 

also mentioned there, the development of such a method should go hand in 

hand with checking whether the resulting theory really works in practice. In 

this respect this thesis on one hand incorporates pure fundamental studies 

(such as Chapter 4, section 4 of Chapter 5 and section 4 of Chapter 6) and 

on the other hand aims at real applications in practice as is witnessed by the 

specification examples in section 6 of Chapter 5 and section 5 of Chapter 6. 
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When applying the theory in these specification examples we strived more 

for clarity than for utmost formality: in most cases we presented informal 

arguments reasoning on an intuitive semantica! level. Ho wever, this intu­

ition corresponds exactly to the semantics of the temporallogies involved 

so that the presented arguments can readily be transformed into rigorous 

proofs in a straightforward way. Insome cases this has been demonstrated. 

In this thesis we did not consider several relevant and closely related 

issues of which we mention a few now. With respect to the application area, 

as already said, reai-time systems exhibit many more features besides that 

of time-critica! aspects, such as reliability, safety and performance. Part 

of these are covered by the current method, since these topics cannot be 

treated independently from time-critica! aspects, e.g. the coupling between 

response time and performance. As for the specification method, we did 

not pay much attention to the verification aspect in all its formal detail (as 

stated above, most of our reasoning wasdoneon a semantica! insteadof a 

proof theoreticallevel). Also hierarchical development was not treated in 

depth (it featured only in Example 3 of section 6 of Chapter 5). We envisage 

that such topics can be treated more extensively on the same footing as 

was done for standard temporallogic (see e.g. [MP 82],[MP 83a],[MP 83b] 

for verification methods and e.g. [Lam 83b],[BK 85a],[BK 85b],[BKP 84] for 

hierarchical development ). 

As far as we did not do so already in the previous chapters, we now look 

at some related work. Formal methods for message passing systems have 

been around for some time. For example, [MCS 82] describes safety and 

liveness properties of message passing networks by a hierarchical methad 

based upon a compositional specification method for component processes, 

[SS 82] uses inference rules for proving partial correctness of concurrent 

programs that use message passing for synchronization and communication, 

[SM 82] compares specification languages for communication protocols and 

[HO 83] treats modular verification of such protocols. 

Concerning real-time systems, a review of formal methods for describ-
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ing these systems is given in (JG 88]. As far as we know, [BH 81] was the 

first paper ( using temporal logic) to specify timing characteristics of reai­

time systems formally. Their approach differs at several points from ours. 

Firstly, they use only real-time operators related to temporal implication 

insteadof the more powerful operators of metric temporallogic. Secondly, 

they use the interteaving model. Consequently their methad is restricted 

to uniprocessor implementations. Thirdly, their methad is limited to spe­

cific safety properties. [PH 88) contains a brief account of some attempts to 

use temporallogic for the specification of reai-time systems. The computa­

tional model used is a timed interleaving model where enabled transitions 

have associated lower and upper bounds within which they must be taken. 

It considers two possible extensions of temporaliogic to deal with real-time. 

The first adds a global doek as an explicit variabie to which the specification 

may refer. The second approach introduces quantitative temporal operators 

and is very much akin to metric temporallogic. For specifying synchronous 

systems it recommends to use a discrete time domain ( such as the natura! 

numbers) and for asynchronous systems a dense time domain (such as the 

rationals ). One of the methods using the first approach is [Ost 87]. It intro­

duces a distinguished variabie t repreaenting the doek. A typical formula 

of his Iogic RTTL (Real-Time Temporal Logic) is the following: 

<p A t = T -+ () ( '1/J A t :5 T + 5) 

where T is a global variable. 

The semantica of this formula corresponds to the metric temporal logic 

formula 

As is obvious from this example, metric temporallogic provides a more con­

cise and natura! way of specifying real-time properties: the explicit doek 

variabie is against the original philosophy of temporallogic to abstract from 

time as much as possible ( and in the case of real-time it is su:fficient to add 
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only terms for expressing time units as in the metric temporal logic for­

mula above). On the other hand, RTTLis based on the workof Manna 

and Pnueli ( see the Bibliography) and a. sound proof system based on their 

work is immediately a.va.ilable. An exa.mple using the second approach is 

[GMM 89] incorporating a.n executable specification language. Another for­

ma! approach to the specification of real-time systems, not ba.sed on tem­

poral logic, is the Real-Time Logic (RTL) of Jahanian and Mok ([JM 86]). 

Events are central in RTL and reasoning about reai-time systems is based 

on a.ssertions about the occurrences of events which are mapped by the 'oc­

currence function' into the time doma.in of the na.turaJ numbers. The use of 

RTL is restricted to the specification of safety properties. 

As to directions for future research, the ideas underlying Chapter 4 are 

just one year old and many interesting questions remain such as the exact 

expressive power of the logies with inequality (e.g. obtained by a precise 

cha.ra.cterization in correspondence theory), decision procedures, general 

completeness results for frames a.nd axiomatizations of special structures 

such as the integers. Concerning Chapter 5 it would be interesting to find 

for each cla.ss of message passing systems a temporal logic that is sufficient 

to specify merely this class. In this way one would get a. correspondence 

between certa.in properties of message passing systems and the essentiaJ 

ingredients needed for (reasoning about) their temporal formaliza.tion. Re­

garding Chapter 6, one of the main remaining questions there is to find 

a suita.ble subset of metric temporallogic with a complete axioma.tization 

( and preferably decidabie) in order to get a.n associated verification theory 

( and possibly even mechanica! assistance from a. decision proeed ure). Fur­

thermore, it rema.ins to be seen how we can apply metric temporal logic to 

medium a.nd large scale exa.mples. Before this can be done it must be sorted 

out how we can embed such a. specifica.tion formalism into a. hiera.rchical de­

velopment method. 
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Samenvatting 
Toepassingen van de informatica in het dagelijkse leven zijn pas het laatste 

decennium echt aan hun opmars begonnen. Hierbij kan men denken aan 

reeds ingeburgerde toepassingen zoals de personal computer en eenvoudige 

chips in huishoudelijke apparaten en foto-~ audio- en videoapparatuur. In 

de nabije toekomst kunnen we nog revoluties verwachten op gebieden zo­

als telecommunicatie (overdracht van digitale informatie via bijvoorbeeld 

glasvezelkabels), automatische besturingssystemen (bijvoorbeeld voor een 

auto met ingebouwd routesysteem) enzovoorts. Ook krijgt men te maken 

met toepassingen in kritieke gebieden zoals lucht- en ruimtevaart, kern­

energie en defensie. In al deze toepassingen zijn real-time systemen van 

essentieel belang. Het fundamentele kenmerk van een real-time systeem 

is de tijdskritische natuur ervan: het systeem moet binnen een extern be­

paalde tijd (zoals enkele milliseconden) reageren op veranderingen in de 

omgeving. Een goed voorbeeld hiervan is het controleren van een chemisch 

proces: als de temperatuur te hoog oploopt moet het systeem een afkoe­

lingamechanisme in werking stellen en wel binnen een tijd bepaald door de 

wetten van het te controleren chemische proces. Reai-time systemen kun­

nen centraal of gedistribueerd geïmplementeerd zijn. In het geval van een 

gedistribueerde implementatie levert dit extra complicaties op vanwege de 

noodzakelijke communicatie tussen de afzonderlijke deelsystemen. De meest 

gebruikelijke vorm van deze communicatie tussen deelsystemen is het uit­

wisselen van boodschappen (message passing). Aangezien (gedistribueerde) 

real-time systemen behoren tot de meest complexe die ooit zijn ontwikkeld, 

zijn goede specificatie- en verificatiemethoden hiervoor van levensbelang. 

Dit proefschrift geeft een eerste aanzet voor een specificatieformalisme 

dat deze soort systemen kan beschrijven en erover kan redeneren. Hierbij is 

gekozen voor de temporele logica als basistheorie omdat dit formalisme reeds 

met veel succes is toegepast op zeer uiteenlopende gebieden in de filosofie, 

linguïstiek en informatica. Temporele logica is bedoeld om te redeneren over 

in de tijd veranderende (dynamische) situaties. Dit doel wordt bereikt door 



het invoeren van zogenaamde temporele operatoren. Voorbeelden van zulke 

operatoren zijn 'ooit', 'altijd', 'oneindig vaak' en 'sinds'. Aan deze voor­

beelden is nog te zien dat temporele logica oorspronkelijk werd ontwikkeld 

om het tijdsbegrip in natuurlijke talen te formaliseren. In de informatica 

wordt temporele logica vooral gebruikt voor de specificatie van kwalitatieve 

tijdseigenschappen van programma's en computersystemen zoals termina­

tie (het eindigen van een programma) en zogenaamde fairness-criteria (deze 

hebben te maken met een eerlijke keuze tussen verschillende alternatieven). 

In principe zou de mogelijkheid om zulke tijdseigenschappen uit te drukken 

voldoende moeten zijn om message passing systemen te kunnen beschrijven. 

Het blijkt echter dat een bepaald aspect van zulke systemen, namelijk het 

niet dupliceren van boodschappen, niet uitgedrukt kan worden in standaard 

temporele logica noch in zeer krachtige varianten ervan. Het lijkt daarom 

noodzakelijk om temporele logica essentieel te versterken voor de specifica­

tie van message passing systemen. Dit proefschrift toont aan dat zulk een 

versterking vermeden kan worden door extra aan te nemen dat binnenko­

mende boodschappen uniek identificeerbaar zijn, een aanname die minder 

beperkend is dan men op het eerste gezicht zou verwachten. 

Voor het beschrijven van tijdskritische systemen is standaard temporele 

logica van nature ongeschikt omdat deze logica tijd op een kwalitatieve ma­

nier beschrijft terwijl bij tijdskritische systemen vooral kwantitatieve tijds­

eigenschappen van belang zijn, zoals 'binnen 7 milliseconden' en 'regelma­

tig met een periode van 3 seconden'. In dit geval is een echte uitbreiding 

van standaard temporele logica onvermijdelijk. Dit proefschrift introduceert 

daartoe metrische temporele logica. Deze logica breidt standaard temporele 

logica met behulp van een afstandsfunctie uit met kwantitatieve elementen. 

Naast deze kwantitatieve uitbreiding voor de beschrijving van tijdskriti­

sche systemen introduceert dit proefschrift ook een uitbreiding van tempo­

rele logica die te maken heeft met het feit dat standaard temporele logica 

slechts een gedeelte van het scala van natuurlijke aannamen uitdrukt die men 

over tijd zou willen kunnen uitdrukken. Een eenvoudige toevoeging, seman-



tisch overeenkomend met de ongelijkheidsrelatie, blijkt wel alle natuurlijke 

aannamen te kunnen formuleren (zoals irreflexiviteit en het bestaan van een 

beginpunt) terwijl de resulterende logica desondanks volledig axiomatiseer­

baar en beslisbaar blijft. 

De bovenstaande theorieën worden geillustreerd aan de hand van di­

verse voorbeelden geïnspireerd door de praktijk van gedistribueerde en/ of 

reai-time systemen. In deze specificatievoorbeelden worden temporele ope­

ratoren gebruikt die verwijzen naar het verleden (bijvoorbeeld 'eerder') in 

plaats van alleen naar de toekomst. Het toevoegen van zulke operatoren 

levert weliswaar geen extra uitdrukkingskracht op, maar wel natuurlijkere 

en elegantere specificaties. 

Dit proefschrift is als volgt ingedeeld. 

Hoofdstuk 1 bevat een overzicht en een schets van de historische ontwik­

keling van het gedane onderzoek. 

Hoofdstuk 2 onderzoekt eisen die men aan een specificatiemethode voor 

systemen in het algemeen zou willen opleggen. 

Hoofdstuk 3 recapituleert basisbegrippen en resultaten op het gebied van 

modale en temporele logica's zoals ontwikkeld in de filosofie en informatica. 

Hoofdstuk 4 introduceert een uitbreiding van klassieke modale en tem­

porele logica met een extra operator D die de ongelijkheidsrelatie formali­

seert. De resulterende logica's hebben meer uitdrukkingskracht maar zijn 

nog steeds volledig axiomatiseerbaar en beslisbaar. 

Hoofdstuk 5 behandelt message passing systemen. Eerst wordt beschre­

ven wat we hieronder verstaan en worden de eisen uit hoofdstuk 2 toege­

spitst op deze systemen. Na onuitdrukbaarheidsresultaten van temporele 

logica's voor message passing systemen gegeven te hebben, laten we zien 

hoe we desalniettemin standaard temporele logica kunnen gebruiken voor 

de specificatie van deze systemen. Dit ondersteunen we door drie specifica­

tievoorbeelden waaronder een gelaagd communicatienetwerk. 



Hoofdstuk 6 betreft tijdskritische systemen. Eerst worden de karakteris­

tieken hiervan beschreven en worden de eisen uit hoofdstuk 2 gespecialiseerd 

tot deze systemen. Na de introductie van metrische temporele logica, een 

formalisme om over kwantitatieve tijdseigenschappen te redeneren, wordt 

deze logica geillustreerd aan de hand van een serie voorbeelden waaronder 

time-out, watchdog timer, wait/delay statement en een abstract transmis­

siemedium. 

Hoofdstuk 7 blikt terug op de verkregen resultaten, presenteert enkele 

conclusies, vermeldt aanverwant onderzoek, en schetst mogelijkheden voor 

verdere ontwikkelingen. 
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Nijmegen) en Rozenberg (Rijksuniversiteit te Leiden). Het onder profes­

sor de Roever ressorterende deelproject 'Bewijstheorie van reai-time syste­

men' werd van mei 1984 tot augustus 1985 aan de Katholieke Universiteit 

Nijmegen en na de overgang van professor de Roever naar de Technische 

Universiteit Eindhoven van augustus 1985 tot mei 1988 aldaar uitgevoerd. 



Sinds 1 mei 1988 is hij werkzaam als onderzoeker in tijdelijke dienst bij de 

vakgroep informatica van de Technische Universiteit Eindhoven in de sec­

tie theoretische informatica. In deze periode voltooide hij het onderzoek 

dat tot het onderhavige proefschrift heeft geleid. Tevens was hij van maart 

1986 tot mei 1989 betrokken bij het ESPRIT project 937: Debugging and 

Specification of Ada Real-Time Embedded Systems (DESCARTES). 



Stellingen 

behorend bij het proefschrift 

Specifying Message Passing 

and Time-Critical Systems 

with Temporal Logic 

van 

Ron Koymans 



1. De ongelijkheidsrelatie kan in de modale logica volledig worden geaxio­

matiseerd door aan het minimale modale bewijssysteem twee axioma­

schema's toe te voegen: een axiomaschema om de symmetrie van de 

ongelijkheid uit te drukken en het axiomaschema 

Zie stelling 4.3.1 van dit proefschrift. 

2. Beschouw de karakteristieke instantie DDp---+ (pv Dp) van het axioma­

schema uit stelling 1. Deze formule correspondeert over frames met het 

volgende equivalent in eerste-orde logica (verkregen via de procedure in 

stelling 4.2.3 van dit proefschrift): 

V xyz ((x=/= y A y =/= z) ---+ (x(= z V x=/= z)). 

Deze eerste-orde eis op frames noemen we pseudo-transitiviteit omdat 

het weglaten van de eerste disjunct x = zin de consequent echte transiti­

viteit van =/= zou eisen. Het opmerkelijke van de bovenstaande eerste-orde 

formule is dat de toevoeging van deze disjunct de hele eerste-orde eis tri­

viaal waar maakt. 

3. De in sectie 5.5 van dit proefschrift behandelde aanname van unieke 

identificatie van binnenkomende data is ook toepasbaar op systemen 

die de data niet alleen doorgeven maar er tevens een transformatie op 

toepassen. 

4. De kwalitatieve temporele operatoren until en since kunnen worden op­

gevat als speciale metrische operatoren until<oo, respectievelijk since<oo, 

waarbij oo als grootste element wordt toegevoegd aan de ordening <. 

Zie sectie 6.4 van dit proefschrift. 



5. De uitdrukking van fairness-eigenschappen in temporele logica maakt 

gebruik van implicaties met een antecedent van de vorm D<)<p. Over het 

tijdsdomein van de natuurlijke getallen correspondeert dit semantisch 

met het oneindig vaak waar zijn van <p. Dit verandert bij de overgang 

naar dichte tijdsdomeinen zoals de rationale en reële getallen: D<)<p im­

pliceert dan nog wel dat <p oneindig vaak waar is maar niet andersom. 

Desondanks blijft D<)<p de gewenste antecedent voor het uitdrukken van 

fairness-eigenschappen. 

6. Over het tijdsdomein van de reële getallen drukt de formule 

E p 1\ G (p --+ F p) 1\ FG.., p 

van de logica PML( <, >, :f:) uit sectie 4.2 van dit proefschrift het bestaan 

van een stijgende en begrensde rij punten waar p geldt uit. Dit kan 

worden gebruikt voor het ontzenuwen van Zeno's paradox over Achilles 

en de schildpad. 

7. Real-time programmeertalen met asynchrone communicatie zoals CHILL 

kunnen met behulp van een kwantitatieve temporele logica voorzien wor­

den van een axiomatische semantiek. 

R. Koymans, J. Vytopil, W.-P. de Roever. Real-Time Programming and 

Asynchronous Message Passing, Proceedings ofthe Second Annual ACM 

Symposium on Principlesof Distributed Computing, pp. 187-197, 1983. 

8. De essentièle toevoeging nodig voor het compositioneel modelleren van 

real-time in real-time programmeertalen met synchrone communicatie 

zoals Ada en Occam bestaat in de mogelijkheid het wachten op een com­

municatiepartner te beschrijven. 

R. Koymans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth, 

S. Arun-Kumar. Compositional Semantics for Real- Time Distributed 

Computing, Information and Computation, Volume 79, Number 3, pp. 

210-256, Academie Press, December 1988. 



9. De associativiteit van de parallelle compositie (Tt 11 Ta) in de denota­

tionele semantiek uit loc. cit. is terug te voeren op de volgende twee 

syntactische restricties voor deze parallelle compositie: 

T1 en Ta hebben geen gemeenschappelijke variabelen, 

- de processen voorkomend in T1 zijn verschillend van de processen 

voorkomend in Ta. 

10. De officiële semantiek van Ada maakt deze programmeertaal ten enen 

male ongeschikt voor real-time toepassingen. 

The Programming Language Ada, Reference Manual. Lecture Notes in 

Computer Science Vol. 155, Springer, Berlin, 1983. 

11. Specificatie- en ontwerpmethoden met de mogelijkheid specificaties te 

executeren of simuleren hebben de toekomst. 

R. Koymans. Finite-state methoden, syllabus, Ontwerpersopleiding Tech­

nische Informatica, Technische Universiteit Eindhoven, 1989. 

12. Wiskundige bewijzen bevatten nogal eens informatie die voor de be­

wijsvoering irrelevant is. Een typisch voorbeeld hiervan is een bewijs 

waarin de benodigde informatie het bestaan van een bovengrens is. Het 

aangeven van een concrete waarde voor deze bovengrens is overbodig en 

leidt de lezer slechts af van de echte bewijsvoering. 

13. Voor het schrijven van een proefschrift is een scheduling algoritme met 

dynamische prioriteiten (zoals earllest deadline first) een vereiste. 

14. Natuurlijke talen bevatten meer redundantie dan de taal van de muziek. 


