

Specifying message passing and time-critical systems with
temporal logic
Citation for published version (APA):
Koymans, R. L. C. (1989). Specifying message passing and time-critical systems with temporal logic. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR307508

DOI:
10.6100/IR307508

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR307508
https://doi.org/10.6100/IR307508
https://research.tue.nl/en/publications/55a75f5e-43b9-483c-ab3e-8b206d56d515

Specifying Message Passing

and Time-Critica! Systems

with Temporal Logic

Specificatie van gedistribueerde

en tijdskritische systemen

in temporele logica

Specifying Message Passing

and Time-Critical Systems

with Temporal Logic

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. ir. M. Tels,
voor een commissie aangewezen door het College van Dekanen

in het openbaar te verdedigen op
vrijdag 26 mei 1989 te 16.00 uur

door

RONALD LEO CHRISTIAAN KOYMANS

geboren op 3 juli 1959 te Heerlen

Dit proefschrift is goedgekeurd

door de promotoren

prof. dr. Willem-Paul de Roever

en

prof. dr. ir. Jan Vytopil.

Voor mijn ouders

IIávro: xwpêi K,D:t ov8èv J.lÉvet

(Alles ga.a.t en niets blijft)

Herakleitos, ±500 v. Chr. (geciteerd bij Plato: Kratylos 402a)

Acknowledgments

I thank Willem-Paul de Roever and Jan Vytopil fortheir stimulation and

guidance during the last seven years.

Thanks go to Amir Pnueli who provided numerous suggestions for improve­

ment of my work at many occasions and to Johan van Benthem who had a

major influence on Chapter 4 of this thesis.

From May 1984 till May 1988 I was involved in the Dutch N ational Concur­

rency Project (Dutch acronym LPC) which was supported by the Founda­

tion for Computer Science Research in the Netherlands (SION) with finan­

cial aid from the Netherlands Organization for Scienti:fic Research (NWO,

formerly ZWO).

Jacode Bakker, Grzegorz Rozenberg and Peter van Emde Boas are thanked

for their useful criticisms at several presentations of my work.

My colleagues in the theoretica! computer science group of the Eindhoven

University of Technology were of great help in many discussions. They also

contributed in creating a pleasant working atmosphere for which I especially

want to thank my roommate Ruurd Kuiper.

Karst has given invaluable assistance through all my studies since my child­

hood. I am indebted to my parents for their sympathy and encouragement.

Special thanks are due to Letty who provided the necessary support during

the last year.

Contents

1 Introduetion

2 How to Specify

3 A Review of Modal and Temporal Logic

3.1 Introduetion

3.2 Classica! Modal and Temporal Logic

3.3 Temporal Logic with until and since

3.4 Temporal Logic in Computer Science .

4 Polymodal Logies with Inequality

4.1 Introduetion .

4.2 Semantics . .

4.3 Proof Theory

4.4 Conclusions .

5 Message Passing Systems

5.1 Introduetion

5.2 What are Message Passing Systems?

5.3 How to Specify Message Passing Systems

5.4 Inexpressiveness Results . . .

5.5 Extensions of Temporal Logic

5.6 Specification Examples

1

7

13

13

14

33

36

41

41

42

55

64

67

67

68

73

74

79

82

5.6.1 Example 1: Pure Message Passing Systems 83

5.6.2 Example 2: Channel with Disconneet 88

5.6.3 Example 3: Layered Communication Network . 91

5.7 Conclusions . 105

CONTENTS

6 Time-Critical Systems

6.1 Introduetion

6.2 What are Time-Critica! Systems? ...

6.3 How to Specify Time-Critica! Systems

6.4 Metric Temporal Logic

6.5 Specification Examples

6.5.1 Example 1: Pure Time-out .

6.5.2 Example 2: Watchdog Timer

6.5.3 Example 3: Waitfdelay Statement

6.5.4

6.5.5

Example 4: Terminal Adaptor . .

Example 5: Mixing Synchronous and Asynchronous

107
. 107

. 109

. 112

. 113

. 130

. 133

. 133

. 135

. 136

Input . 140

6.6

6.5.6 Example 6: Abstract Transmission Medium

6.5.7 Example 7: Real-Time Communication Constructs

Conclusions

7 Summary and Concluding Remarks

Bibliography

Index

. 145

. 147

. 151

155

161

171

List of Figures

2.1 System in its Environment 8

3.1 Schema for Completeness Proof of K . 29

5.1 Message Passing System as a Black Box 69

5.2 Unique Identification by Using Counters 80

5.3 Channel with Disconneet 89

5.4 Layered Co~unication Network. 91

5.5 Representation of Layer 1 95

5.6 Representation of Layer 2 . 100

6.1 Watchdog Timer 134

6.2 Terminal Adaptor . . ' . . 136

6.3 Mixing Synchronous and Asynchronous Input . 141

Chapter 1

Introduetion

This thesis is concerned with the development of specification methods that

are applicable in the areas of message passing and time-critica! systems. The

motivation to study these application areas stems from their importance in

practice:

• message passing is one of the most important means of interprocess

communication in distributed systems, either on a high level (e.g. in

telecommunication applic;:~.tions where programming could be done in

a high-level concurrent language with asynchronous message passing

such as CHILL [CHILL 80]) or on a lower level (such as in implemen­

tations of synchronous languages for distributed computing like Ada

[Ada 83]),

• among the growing number of real-time applications there are some

highly critica! systems such as computer controlled chemica! plants

and nuclear power stations.

Because many of these systems belong to the most complex ever devel­

oped, adequate specification methods for them. are of vita! importance, a

claim that is also supported by experience from practice: actual builders of

systems see real-time as the most crucial area in which forma! support is

necessary.

1

2 CHAPTER 1. INTRODUCTION

This thesis reports on the application of temporallogic as a formalism for

reasoning about message passing and time-critical systems. Such an enter­

prise was motivated by noticing that temporallogic had been applied very

successfully for the specification and verification of a wide variety of sys­

tems, ranging from parallel programs (see e.g. [MP 82],[MP 83a],[MP 83b])

via communication protoeals (see e.g. [HO 83]) to hardwarefVLSI applica­

tions (see e.g. [Mos 83]). However, in the areasof message passing systems

and of time-critical systems its application has been less successful. For mes­

sage passing systems this has a technical reason: it can be shown that many

classes of message passing systems cannot be specified with standard tempo­

rallogic. Since time-critical systems heavily involve quantitative temporal

requirements and standard temporal logic is concerned only with reason­

ing about qualitative temporal issues, the inaptness of its application to

time-critical systems is obvious. This thesis shows how standard temporal

logic can still be used for the specification of message passing systems by

introducing the additional assumption that incoming messages are uniquely

identifiable and it develops a special temporallogic, called metric temporal

logic, for reasoning about quantitative temporal properties. The main ap­

plication area of this thesis can be found in the field of distributed real-time

systems where message passing and time-critical features are combined.

Before one can use an established mathematical theory in new applica­

tion areas, the fundamentals of this theory should be reinvestigated in the

light of the peculiarities of these application areas and the objectives one

strives to achieve. In fact, the development of a theory for a certain appli­

cation area should ideally go hand in hand with checking (e.g. by means of

paradigmatic cases) whether the theory works out in practice as intended.

In our case, apart from undertaking theoretical studies invalving possibili­

ties to apply temporallogic in the areasof message passing and time-critical

systems, we check the results against several examples taken from these ap­

plication areas and against certain objectives one would like a specification

method to have.

3

Historically, these ideas emerged in their preliminary form when the

author was working in a project developing a digital telephone switching

system at Philips Telecommunication Industries (Hilversum, the Nether­

lands) from September 1982 till June 1983. In telecommunication systems

message passing aspects and time-critica! aspects are combined, e.g. in a

time-out for the acknowledgment of a message when unreliable transmis­

sionmedia are involved (besides, current communication technology usually

involves complex real-time software). The research in this period resulted

(see [KVR 83]) in an axiomatic semantica forthereal-time communication

fragment ofthe concurrent programming language CHILL (see [CHILL 80]).

After this practice period at Philips, the author was employed at the Uni­

versity of Nijmegen (from July 1983 till May 1984) before getting involved

in the Dutch N ational Concurrency Project (acronym LPC) first at the Uni­

versity of Nijmegen (from May 1984 tillAugust 1985) and subsequently at

the Eindhoven University of Technology (from August 1985 till May 1988).

In this period the first variantsof a temporallogic for reasoning about reai­

time properties, called reai-time temporallogic, were developed and tested

by means of examples from practice (see [KR 85]). For the specification of

message passing we introduced the assumption that the incoming messages

could he uniquely identified. We comeback on this assumption below.

Anot,her major research topic in this period, not reported upon in this

thesis, was t~e workon a compositional semantica for real-time distributed

computing taken up from September 1983 onwards. This research effort

resulted (see [KSRGA 85]) in a denotational semantica for real-time dis­

tributed computing that is compositional in the context of process naming

and nested paràJJ.elism. This semantica is based on a new class of real-time

computation models varying from the interleaving model to the maximal

parallelism model. These results were an important pillar for participation

of the theoretica! computer science group of the Eindhoven University of

Technologyin ESPRIT project 937: Debugging and Specification of Ada

Real-Time Embedded Systems (DESCARTES).

4 CHAPTER 1. INTRODUCTION

The collaboration in the DESCARTES-project led to three more pa­

pers invalving the specification of reai-time systems: the first ([KKZ 87])

about another application of reai-time temporal logic, in this case to the

paradigms of reai-time investigated in this project, the second ([KKZ 88])

a bout paradigms and a classification of real- time systems tagether with an

informal account on requirements of a specification language for reai-time

properties and the third ([KKZ 89]) about a formal framework for treating

and camparing requirements of a specification language. In these years the

chosen way of using standard temporallogic for the specification of message

passing systems (using the unique identification assumption) was supported

by strengtherring theoretica! results a bout the (in)expressiveness of tempo­

ral logies for characterizing certain classes of message passing systems (see

[Koy 87]). These results imply that message passing systems can only he

specified using very strong logies (unless unique identification is assumed).

After recognizing that the nomendature real-time temporal logic was not

fully justified since this logic was developed especially for reasoning about

quantitative temporal properties only partially dealing withother important

features of reai-time systems such as reliability and performance issues, the

logic was renamed to metric temporallogic and its application domain to the

more general class of time-critical systems (nevertheless, reai-time systems

still remain the most prominent representatives of that class). Ho wever,

metric temporallogic is not just another name for reai-time temporallogic.

Tagether with the renaming a theoretica! study was undertaken regarding

the fundamental principles underlying this logic. This resulted in an ori­

entation towards the way temporallogic had been studied by philosophers

for decades (in philosophy temporal logic is often called tense logic). In­

vestigations of metric temporallogic about the interplay of qualitative and

quantitative operators led to an interesting additional operator for modai

and temporallogic which enables several formerly inexpressible natural as­

sumptions about time to he expressed in the logic.

5

This thesis is organized as follows. Chapter 2 deals with requirements

for a general specification language. After treating the embedding of a.

system in its environment with the interface in between it investiga.tes how

the beha.vior of a. system should be specified.

Chapters 3 and 4 deal with severa.l variants of rnadal and temporallogic.

First, Chapter 3 gives a short recapitula.tion of the basics of rnadal and

temporal logic subdivided in da.ssical rnadal and temporal logic (as stuclied

by philosophers for decades, see e.g. [Pri 67]), temporallogies with until and

since operators (as studied by Kampand Sta.vi), and temporallogies used

in computer science. Then, Chapter 4 extends dassical rnadal and temporal

logic with an additional rnadal/temporal operator. The expressive power

of the resulting logies and several other semantic issues a.re investigated,

complete axiomatizations a.re given, and decidability is proven.

Chapters 5 and 6 introduce the application domains of our interest and

look a.t ways to specify these with temporal logic. Chapter 5 concerns

message passing systems. First we describe whlch systems we consider to be

message passing systems a.nd we specialize the requirements from Chapter

2 to the specification of these systems. Next we prove inexpressiveness

results of temporal logies for the speci:fication of message passing systems (it

turns out that many classes of message passing systems cannot be specified

in strong temporal logies) and show how these logical limitations may be

overcome. We illustrate thls with three specification exa.mples among which

is a hierarchlcal specification of a la.yered communication network a.nd end

with some conclusions. Chapter 6 concerns time-critical systems. First we

describe the characteristics of such systems and specialize the requirements

of Chapter 2 to the specification of these systems. Next we introduce our

special temporallogic for reasoning about quantitative temporal properties

called metric temporallogic. Metric temporal logic is then illustrated by a

series of examples in volving time-critical (and aften also message passing)

features such as time-out, a watchdog timer, the wait/delay statement of

concurrent programming languages and an abstract transmission medium.

6 CHAPTER 1. INTRODUCTION

We end Chapter 6 with some conclusions.

At last, Chapter 7 looks at the obtained results in retrospect, presents

some conclusions, mentions related work and lists possibilities for future

research.

Chapter 2

How to Specify

A whole thesis could he devoted to the topic of requirements of a general

specification language. In this chapter we restriet ourselves to a small set

of desirabie properties for a specification language for general systems. In

section 3 of Chapter 5 and section 3 of Chapter 6 we reconsider this topic for

message passing, respectively time-critical systems. For a more extensive

theoretical account on the subject of specification we refer the reader to

[KKZ 89].

So, before we look at the systems of our special interest, viz. message

passing systems and time-critical systems, and how to specify them in chap­

ters 5 and 6, we first study the issue of specifying systems in general. To

start with, one of the main characteristics of a system is that it does not

workin isolation but exchanges information withits environment. So, each

system can he viewed as being embedded in some environment consisting

of the external sourees and recipients of the data interchanged. The envi­

ronment may consist of computer systems, but also physical processes and

humans. Pictorially this may be represented as in Figure 2.1. In this fig­

ure the environment surrounds the system residing inside some boundary

that demarcates the scope of responsibility of the system. This boundary

between the system and its environment, formed by the collection of data

elements interchanged between them, constitutes what we will call the (ah-

7

8 CHAPTER 2. HOW TO SPECIFY

ENVIRONMENT SYSTEM ENVIRONMENT

Figure 2.1: System in its Environment

stract) interface. The interface is all the environment sees of the system and

the other way around. This use of the word interface relates to abstract en­

tities and indicates only what kind of data is interchanged and should not be

confused with the physical interface where it is indicated how this exchange

is achieved physically (the RS-232 serial interface for data communication

is a typical example). We will see an example of an abstract interface in

section 2 of Chapter 5 where we treat message passing systems.

A data element of the interface is a primitive entity that is by definition

observable since it is interchanged between the system and the outside world.

The data elements can be partitioned into two categories: state variables

and events. A state variabie is persistently present, i.e. it has a value at

each moment (for example a temperature sensor) while an event represents

an entity that is intermittently present, i.e. it occurs at discrete moments

(e.g. the arrival of a message). When some occurrences of an event are

not instantaneous but can have some duration (e.g. the transmission of a

message over a communication link) we call it an actionor extended event

in order to distinguish it from an (instantaneous) event which only occurs

at discrete points in time. Two events can be causally related toeach other

such as the response of the system to a stimulus from the environment.

A causal relationship between events implies a temporal ordering of these

events, but not the other way around. For example, a response can never

9

occur befare the corresponding stimulus. As an abstract view it may be

helpful to allow simultaneity of causally related events but it should be

remembered that this cannot be implemented because that would involve

the possibility of infinite speed.

When specifying systems in general this should include a specification

of the interface between the system and its environment. Although it is

usually suflident to give the intuitive interpretation of the data elements

involved (together with attributes f!UCh as responsibility and the direction

of the information flow) this is an essen ti al part of the specification.

Next the behavior of the system in its environment has to be specified.

In order nat to restriet oneself a priori to a certain set of implementation

possibilities, such a specification should only specify the requirements put

on the system when operatingin a certain environment and nat any design

details relating to the internal operation of the system (because such de­

tails would suggest certain ways to achleve the required behavior and hence

would be implementation biased). For the representation of a system asem­

bedded in its environment this involves viewing the system from the outside,

as a black box. Such a viewpoint leads to the notion of observable equiva­

lence: systems that behave the same as observed only from the outside are

considered equivalent (although they may differ considerably internally).

Hence, the specification of the required behavior should have exactly that

level of abstraction which differentiates between unwanted and allowed im­

plementations, i.e. it should be sufliciently concrete to rule out unwanted

implementations and su:fficiently abstract to cater for all (allowed) possible

implementations. This notion of the right level of abstraction is asemantic

one since it is based on the semantic relation of satisfaction between an

implementation and a specification (in the context of semantics it is often

referred to by 'fully abstractness'). However, this semantic notion of the

right level of abstraction is nat suflident for our purpose. We intend the

specification of behavior to be completely free of any implementation bias

whatsoever, implying that not even syntactically implementations should

10 CHAPTER 2. HOW TO SPECIFY

be suggested. This relates to a common way to achleve the right level

of abstraction semantically by hiding internal variables introduced in the

speci:fication by means of some abstraction mechanism (usually connected

to some form of existential quanti:fication). For example, consider a spec­

ification that uses an internal variabie pc representing a program counter.

This variabie is clearly implementation biased, but by prefixing the speci­

fication with 3 pc this 'ïnternal variabie has become semantically invisible.

The result is that the meaning of the speci:fication indeed gives the desired

set of implementation possibilities but that the form of the speci:fication

suggests the use of certain extra internal variables. We intend to avoid

such a syntactical implementation bias by demanding that the speci:fica­

tion is phrased only in terms of the elements of the interface (as observed

above these correspond precisely to the observable entities). We will call

a speci:fication without any implementation bias (neither syntactically nor

semantically) syntactically abstract. This notion of syntactical abstractness

is also briefly touched upon in [Pnu 86] in the context of compositionality.

When one classi:fies specification languages as being descriptive (descrih­

ing which behavior is required) or prescriptive (descrihing how the desired

behavior can he achieved) it will he clear from the ahove that syntactical

abstractness favors the descriptive ones.

Of course, our specification language should be formal to ensure rigor­

ons analysis and verification of desired properties. Further advantages of a

formal approach indude:

• in the process of formalization ambiguities, omissions and contradie­

tions in the informal requirements can be detected,

• a formally verified part can be embedded with more con:fidence that it

will function correctly (the formal modelleads to enhanced reliability),

• the formal model can be a foundation for (partly) automated design

methods and tools such as simulators,

• several designs can be compared.

11

Two further desirabie properties of a general specification language are

in our opinion:

1. conformity: similar systems have similar specifications,

2. uniformity: the specification method is based on a single formalism

covering allaspects of a specification.

In section 5 of Chapter 5 we will review these properties in the context of

message passing systems. This is done by contrasting specification meth­

ods that lack one or more of these properties with an approach that does

incorporate all of them. In this process we also indicate which price has to

be paid for attaining these properties.

The next pair of requirements fora general specifica ti on language is sim­

plicity versus adequacy. On one hand simplicity increases understandability

and usability, on the other hand the language should be powerful enough to

describe all desired properties. For complex systems these two requirements

are in conflict. In such a case the problem consists of finding a language

that is as simple as possible but still has sufficient expressive power.

If the specification language is also used for the design of complex sys­

tems, this can only be done in a structured fashion by using several layers

of abstraction. In this context it is essential that the method supports

both top-down and bottorn-up development techniques. This is tightly

connected with the notions of compositionality and modularity (see e.g.

[Zwi 88],[Pan 88],[Jon 87]). For top-down development the method should

be compositional, i.e. to a chosen decomposition of the system there is al­

ways a conesponding decomposition of the specification. For bottorn-up

development modularity is essential, i.e. it should always be possible to

combine given components in a way that all properties of the resulting

combination can be derived from the specifications of these components.

Apart from the above more theoretica! requirements it makes sense to

indude also requirements with respect to the practical usability of a spec­

ification language. Typkal examples of such requirements are easy under-

12 CHAPTER 2. HOW TO SPECIFY

standability, easy readability (by using a suitable representation) and easy

maintainability. For more information on this topic we refer the reader to an

extensive survey of such requirements that has been undertaken in RACE

project 2039 'SPECS'.

Chapter 3

A Review of Modal and Temporal
Logic

3.1 Introduetion

In this chapter we give a brief overview of notions and results from modal

and temporal logies used in philosophy and/ or computer science that are

needed as a background for later chapters.

We start in section 2 with the way modal and temporal logies have

been used in philosophy since decades (see e.g. [Pri 67]). We describe of

course the syntax: and semantics of such logies and look at some issues of

correspondence theory (see [Ben 84]), ax:iomatizations and decidability.

In section 3 we look at temporallogies with until and/ or since operators

as studied by Kamp (see [Kam 68]) and Stavi (see [Sta 79],[Gab 81]). Apart

from syntax: and semantics of theselogies we look at expressive completeness

results.

At last, section 4looks at some specialized temporallogies used in com­

puter science such as linear time, branching time and interval temporal

logies and how such logies can be used as a specification language.

13

14 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

3.2 Classical Morlal and Temporal Logic

In this section we recapitulate the basics of propositional modal and tempo­

rallogic. In this and the next chapter we will use the following notational

conventions. By <p, <f>t, ••• , 'Ij;, '1/Jh ... , x, Xt, ... we denote formulas and by

q>, q> 11 •.• , 'li, 'lib ..• sets offormulas. We start out from a propositionallan­

guage containing proposition letters (P,PbP2, ... , q, .. .), two propositional

constauts ..L (falsum) and T (verum), and the boolean operators ..., (not),

A (and), V (or), -+ (if ... then ...) and +-+ (if and only if). In our proof

systems we use the following complete axiomatization of propositionallogic

(here and in the sequel D indicates a definition, Ra rule, A an axiom schema

and Pa propositional axiom schema):

(Dl) •<p := <p-+ ..L

(Rl) Modus Ponens: to infer 'Ij; from <p and <p -+ 'Ij;

(Pl) <p-+('1/J-+~.p)

(P2) (~.p-+('1/J-+x))-+ ((~.p-+'1/J)-+(<p-+X))

(P3) (•<p -+ •'1/J) -+ ('Ij; -+ <p).

To this propositional language modal and temporal operators can be

added. For modal logic we add two operators: L (necessarily) and M

(possibly). Temporallogic (in philosophy also known as tense logic) adds

four operators: G (it is always going to be the case), F (at least once in the

future), H (it has always been the case) and P (at least once in the past).

For a unary operator 0 its dual 0 is defined by

0 <p := -, 0 -, <p.

(Then 0 1 02 equals 0 1 02 and 0 equals 0.) The pair L, M for modal

logic and pairs G, F and H, P for temporallogic are duals of each other.

The semantica of modal and temporallogic is based on frames and mod-

els:

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 15

Definition 3.2.1 A frame is a pair (W, R) where W is a non-empty set of

'worlds' and R is a binary relation on W ('alternative' relation arrelation

of 'accessibility').

A model is a triple (W, R, V) where (W, R) is a frame and V is a valuation

on W, i.e., it maps proposition letters onto subsets of W (giving the set of

worlds where this proposition holds).

Temporal frames are aften called point structures (T, <) where T is the set

of 'moments' (points in time) and < is the 'precedence' ar 'earlier' relation.

Usually one imposes at least the restrictions of transitivity and irreflexivity

on < giving rise to a strict partial order. Unless stated otherwise we will,

however, make na such assumptions and treat < as an arbitrary binary

relation. Several notions of validity and semantica! consequence are defined

as follows.

Deflnition 3.2.2 A rnadal formula cp holds in M (W,R, V) at wE W,

notation M, w I= cp, is defined by recursion:

M,w I= P i:ff wE V(p) (for any propaaition letter p)
M,w I=J. for no Mand w

M,w l=cp-+'1/1 iff M,w I= cp => M,w I= '1/1
M,w I= Lep iff Vw' E W [wRw' => M, w' cp]

For a temporal formula cp, M = (T, <,V) and t E T M, t I= cp is

defined in the same way except forthereplacement of the clause for L by

two clauses for G and H:

M, t I= Gcp

M, t I= Hcp
iff Vt' ET [t < t' => M, t' I= cp]
iff Vt' ET [t' < t => M, t' I= cp].

Furthermore, we define the following derived notions (bath for rnadal and

temporallogic):

16 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

M,w I=~

M I= cp

l=cp

MI=~

~ Fm cp

if Vcp E ~ M, w I= cp

if Vw E W M, w I= cp

if V M M I= cp (cp is 'universally valid ')

if Vcp E ~ M I= cp

if VM [M I= ~ => M I= cp].

Sirnilar notions can be defined for frames:

:F,w I= cp

:FI=cp

:FI=~

~ I=J cp

if VV (:F, V), w I= cp

if Vw E W :F,w I= cp

if Vcp E ~ :F I= cp

if V:F [:F I= ~ => :F I= cp].

Modal (ternporal) forrnulas express certain constraints on the alternative

(precedence) relation in frames where they are valid. When interpreted

in models, rnadal (ternporal) formulas are equivalent to a special kind of

formulas in the following first-order language.

Definition 3.2.3 Lt is the first-order language containing one binary pred­

icate constant R and unary predicate constants P, Pt, P2 , ••• , Q,

The binary predicate constant R in this definition corresponds to the al­

ternative relation while the unary predicate constants correspond to the

proposition letters (P,PbP2, ... ,q, ...). An exarnple of a rnadal forrnula

and its first-order equivalent is given by the forrnula Lp --jo LLp and its

L1-equivalent

Vy(xRy --jo Py) --jo Vy(xRy --jo Vz(yRz --jo Pz)).

The free variabie x refers to the current world of evaluation. The general

translation r for rnodallogic is given in the following definition.

Definition 3.2.4 Let x be a fixed variable.

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 17

(i) r(p) = Px

(ii) r(..,<p) = .., r(<p)

(iii) r(<p 1\ '1/;) = r(<p) 1\ r('lf;)

(iv) r(Lcp) = Vy(xRy-+ [yfx]r(cp)), where y does not occur in r(cp).

The translation for temporal logic is similar. T gives the obvious equiva­

lences (compare the de:finition of T with that of M, w I= <p in De:finition

3.2.2)

M,w <p

M I= <p

iff M I= [wfx]r(<p)
iff MI=Vxr(cp).

The condition in clause (iv) that y should be fresh is not needed. In fact,

two variables suffice, e.g. the temporal formula GFHp can be translated

into

Vy(x < y -+ 3x(y <x 1\ Vy(y <x -+ Py))).

For models we can look for truth-preserving operations, i.e. operations

on models such that M, w I= <p is preserved. In the sequel, M 1 =
(~,~~~)~dM2=(~,~~~).

Deftnition 3.2.5 M1 is a submodel of M2 if

(i) W1 ç w2,

(ii) Rt = R2 restricted to Wt,

(iii) Vt(P) = V2(p) n Wt, for all proposition letters p.

If M 1 has the additional feature that

(iv) W1 is closed under passing to R2-successors,

then M 1 is a generated submodel of M2.

The next result is the famous 'Generation Theorem' of (Seg 71]:

18 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

Theorem 3.2.1 1f M 1 is a generated submodel of M 2, then for all w E W1

and all rnadal formulas <p:

The above concerns connections insideone model. For camparing evaluation

in different models, we have the following

Definition 3.2.6 Arelation Z is a zigzag conneetion between M1 and M2
if

(i) domain(Z) = W~, range(Z) = W2,

(ü) if wZv, then w, v verify the same proposition letters,

(üia) if wZv, and w' E W1 with wR1w', then w'Zv' forsome v' E W2 with

vR2v',

(üib) if wZv, and v' E W2 with vR2v1, then w'Zv' forsome w' E W1 with

wR1w'.

This notion of zigzag conneetion is related to the notion of bisimulation (see

e.g. [Par 81]). Starting from the basic case (ü), clauses (iiia) and (iiib) ensure

that evaluation of rnadalities in rnadal formulas yields the same results on

either side as is formulated by the following Theorem (see [Seg 70]).

Theorem 3.2 .2 If M 1 is zigzag-connected to M 2 by Z, then, for all w E

wl, V E w2 with wZv, and all rnadal formulas <p:

As we saw above, the standard translation T for modallogic (see De:finition

3.2.4) translates rnadal formulas into a :first-order language L1 • In fact,

the translations of rnadal formulas belang to a smaller class of :first-order

formulas, called m-formulas, invalving restricted quantification. The next

result is Theorem 3.9 of [Ben 85]:

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 19

Theorem 3.2.3 An L1-formula a containing at least one free variabie is

equivalent to an m-formula iff it is invariant for generated subroodels and

zigzag connections.

Another important technique, the flitration method (see e.g. [Seg 71]),
relates truth of a formula in a model to truth of that formula in a finite

model:

Defi.nition 3.2. 7 Let M = (W, R, V) he a model and r.p a formula. W is

defined to he the finite set consisting of r.p together with all its subformulas.

For each wE W, set

w(w) := {1P E q; I M,w I= -tP}.

The filtrated model is the model M+ = (W+, R+, V..-) where

w..- := {w(w) I wE W} (a finite set),

W 1 R..- W 2 if, for all 1P such that L-tP E W: L-tP E W 1 => -tP E W 2,

V..-(p) := {w(w) I p E w(w)}.

Theorem 3.2.4 Let M = (W, R, V) he a model and r.p a formula. Define

w, w(w) and M+ as in Definition 3.2.7. Then for all wE Wand all 'Ij; E W:

M,w I= 1P if and only if M..-, w(w) I= 'Ij;.

The filtration technique can berefined so that R..- preserves certain desirabie

properties of the original relation R, such as transitivity. Using filtration it

is easy to prove the finite model property:

Proposition 3.2.1 Any formula which is not universally valid is falsi:fi.ed

on some finite model.

Proof: Suppose r.p is not universally valid. Then, for some model M

(W,R, V) and some wE W M, w I= •r.p. Applying filtration to M and

•<p yields a finite model in which r.p is falsified. •

20 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

For the role of modal (tempora!) formulas in expressing constraints on

the alternative (precedence) relation in frames, the valuation as given in a

particular model is not relevant. To abstract from particular valuations,

one simply quanti:fies universally over the unary predicates in the above

translation T for models. So, when interpreted in frames, modal (temporal)

formulas get second.order transcriptions, with equivalences (say r.p contains

proposition letters Pb ... ,pn):

:F,w I= r.p

:FI=r.p

iff :F I= VPt ... VPn [wfx]r(r.p)
iff :F I= VPt ... VPn Vx r(r.p).

For frames we also can look at truth-preserving operations that are related

to those for models. We start with the notions of generated subframe and

disjoint union. In the sequel, :Ft= (Wt, Rt) and :F2 = (W2, R2).

Definition 3.2.8 :F1 is a generated subframe of :F2 if

(i) Wt ç w2,
(ii) Rt = R2 restricted to W1 ,

(iii) Wt is R2-closed in W2.

Definition 3.2.9 The disjoint union ffi{:Fi I i E I} of a family of frames

:Fi = (Wi, Rï) is the disjoint union of the domains Wi, with the obvious

coordinate relations Hï.

Notice that each frame :Fi can be viewed as a generated subframe of

ffi{:Fi I i E /}. The theorem about generated submodels (Theorem 3.2.1

above) now gives the following two results, preservation under generated

subframes and preservation under disjoint unions:

Corollary 3.2.1 If :Ft is a generated subframe of :F2, then :F2 I= r.p implies

:Ft I= r.p, for all modal formulas r.p.

Corollary 3.2.2 lf :Fi I= r.p for all i E J, then ffi{:Fi I i E J} I= r.p, for all

modal formulas r.p.

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 21

The second truth-preserving operation on models concerned zigzag connec­

tions. For frames this notion is adapted as follows.

Definition 3.2.10 A zigzag morphism from :Fi to :F2 is a function

f : wl -+ w2 satisfying

(i) wR1w1 implies f(w)R2 f(w'), i.e. fis an ordinary R-homomorphism;

which has the additional property that

(ii) if J(w)R2v, then there exists u E W1 with wR1u and f(u) = v.

The theorem above about zigzag connections (Theorem 3.2.2) now gives the

nex:t result, preservation under zigzag morphisms:

Corollary 3.2.3 If fis a zigzag morphism from :F1 onto :F2, then, for all

modal formulas <p, :F1 I= <p implies :F2 I= <p.

The last truth-preserving operation on frames is not related to those for

models. For it we need the notions of ultrafilter and ultrafilter extension

which we define next.

Definition 3.2.11 An ultrafilter U on W is a set of subsets of W such that

(i) XE U or Y EU if and only if X u Y EU,

(ii) X(/. U ifand only if W- XE U.

Remark 3.2.1 Ultrafilters are rather unconstructive objects: to provetheir

existence one needs Zorn's Lemma (or equivalently, the Axiom of Choice).

For more information on the esoterie notion of an ultrafilter the reader may

consult [CK 73], Chapter 4.

Definition 3.2.12 The ultrafilter extension of a frame :F = (W, R), de­

noted by ue(:F), is the frame (ue(W),ue(R)) with

(i) ue(W) is thesetof all ultrafilters on W,

(ii) U ue(R) U' if for each X Ç W such that XE U,

:~r(X) :={wE W l3v EX wRv} E U'.

22 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

This leads tothelast preservation result: anti-preservation under ultrafilter

extensions.

Theorem 3.2.5 If ue(F) I= cp, then .r I= cp, for all modal formulas cp.

For more details on these preservation results, the reader may consult

[Ben 84], section 2.1.

The above translation into second-order logic gives rise to two oppo­

site questions: which first-order relational conditions are definable by a

modal (tempora!) formula, and which modal (tempora!) formulas define

a first-order relational condition? To be precise, these questions are con­

cerned about modal (tempora!) formulas cp and sentences a in the first-order

language containing one binary predicate constant R (respectively <) and

identity = such that

.r I= <p iff .r, I= a, for all frames .r.

The following is a list of common first-order conditions for the preeedenee

relation (representing assumptions about time):

TRANS: \:lxyz(x < y < z -+ x< z) (transitivity)

IRREF: \:/x .., x < x (irreflexivity)

LIN: V xy(x < y V x = y V y < x) (comparability)

1-LIN: \:lxyz((y <x A z <x)-+ (y < z V y = z V z < y)) (left-linearity)

BEGIN: 3x -,3y y <x (a beginning)

END: 3x -,3y x< y (an end)

SU C-P: \:/x 3y y <x (Succession towards past)

SU C-F: \:/x 3y x< y (succession towards future)

DENS: \:lxy(x < y -+ 3z x< z < y) (density)

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 23

A

Vxy(x < y -+ 3z(x < z A -,3u x< u< z))
(discreteness).

Vxy(x < y -+ 3z(z < y A -,3u z <u< y))
DISC:

Of these, the following are definable with temporallogic:

TRANS by FFp -+ Fp,

L-LIN by Pp -+ H(Pp V p V Fp),

SUC-P by Hp -+ Pp,

SUC-F by Gp -+ Fp,

DENS by Fp -+ FFp.

As an example how one proves such equivalences of first-order relational

conditions and temporal formulas we prove here the equivalences forTRANS

and DENS.

First suppose that < is transitive and consider any valuation

V on (T, <) verifying FFp int. By applying the definition of F

twice there exist t' and t" such that t < t' < t" and t" verifies

p (and t' verifies Fp). By transitivity t < t11
, so Fp is also

verified int. Hence, FFp-+ Fp holds at arbitrary points for all

valuations V.

Conversely, suppose that FFp -+ Fp holds at t for all val­

uations V on (T, <). Consider t' and t" such that t < t' and

t1 < t". Then, for the particular valuation V assigning precisely

{ t"} to p, FFp is true at t. Consequently, by the assumption

that FFp -+ Fp is true at t for V it follows that Fp must be

true at t for V. This implies the existence of a t < t111 with t 111

verifying p. As V(p) consistsof t" only, this means that t < t",
so < is transitive.

Next suppose that < is dense and consider any valuation V

on (T, <) verifying Fp int. By the definition of F there exists t'

24 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

such that t < t1 and p is true at t1
• By density, then, there exists

some t11 in between: t < t11 < t'. So, again by the definition of

F, Fp is true at t11 and hence FFp holds at t. Thus, Fp _,. FFp

holds at arbitrary points for all valuations V.

Conversely, suppose that Fp _,. FFp holds at t for all val­

uations V on (T, <). Consicier any t1 such that t < t 1
• Then,

for the partienlar valnation V assigning precisely { t'} to p, Fp

is true at t. Consequently, by the assumption that Fp _,. FFp

is true at t for V it follows that FFp must be true at t for V.

This implies the existence of t < t11 < t111 with t111 verifying p.

As V(p) consistsof t1 only, this means that t < t11 < t', so < is

den se.

That the others are not definable by a temporal formula can be proved

using the above preservation results. To see how such a negative condusion

is reached we prove as an example the cases of IRREF and LIN. For the

case ofiRREF consider the map from 7l. (the set of integers) to the refl.exive

single element point structure which is a zigzag morphism from an irrefl.exive

point structure onto a refl.exive one. For LIN we use the preservation result

for disjoint unions: an irrefl.exive single element point structure is linear,

but the disjoint union of two of its copies is not. For further details, see

[Ben 83], section II.2.2.

We now proceed with the second question: which modal (tempora!)

formulas define a first-order condition? Here, we consider just one aspect

of the general issue. Many examples of first-order definable formulas have

a common syntactic pattern. A typical instanee is the following result from

[Sah 75].

Definition 3.2.13 A modal formula is called a Sahlqvist-form when it is

of the form <p _,. 'Ij; where

(i) <p is constructed from p, Lp, LLp, ... , .L, T using only A, V and M,
while

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 25

(ii) '1/J is constructed from proposition letters, J.., T using A, V, M and L.

The basic restrictions imposed by Sahlqvist-forms forbid LM or L(... V •••)

combinations in the antecedent rp.

Theorem 3.2.6 All Sahlqvist-forms de:fine :first-order conditions.

Proof: In fact, if x is a Sahlqvist-form it is locally equivalent with a :first­

order condition a containing precisely one free variabie x (as in the standard

translation r for modallogic in De:finition 3.2.4), i.e.

V w E W (:F, w I= X iff :F, w o:),. för all frames :F.

Earlier we only introduced global equivalence between a modal formula x
and a :first-order sentence o: de:fined by

:F I= x iff :F a, for all frames :F.

Local equivalence is stronger than global equivalence: if x is locally equiva­

lent with a, then x is globally equivalent with V x o: as one easily checks. For

the proof oflocal equivalence of a Sahlqvist-form with a :first-order condition

and generalizations thereof we refer the interested reader to [Ben 85], Chap­

ter IX. Here we illustrate the procedure by means of an example. Consider

the modal form ula

L(Lp- q) V L(Lq- p)

which is an axiom of the modaJ system 84.3. First we have totransfarm

this into an equivalent formula that is a Sahlqvist-form. To that end rewrite

the disjunction as an implication of the negation of the :first disjunct and

the second disjunct:

M(Lp A -,q) - L(M-,q V p).

Next we have to get rid of the negations. Fortunately the only negations in

this formula are the two occurrences of -,q. Therefore we can use a simple

lemma stating that for all frames :F, worlds wE W and formulas rp:

:F, w rp iff :F, w I= [-,pfp]rp for all proposition letters p.

26 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

(This lemma follows from a more general substitution lemma, see [Ben 85),

Lemma 2.5.) Thus we may rewrite our example formula as

M(Lp A q) -t L(Mq V p).

Once we have obtained a formula that is a Sahlqvist-form we apply the

standard translation T for modal formulas of Definition 3.2.4 in such a way

that no two quantifiers have the same bound variable. In this case this

yields the first-order formula

3y(xRy A Y z(yRz -t Pz) A Qy) -t

Y s (xRs -t (3 t (sRt A Qt) V Ps)).

The (outer) existential quantification in the antecedent of this form ula is

now rewritten as a universa! quantification over the whole formula yielding

Y y ((xRy A Y z (yRz -t Pz) A Qy) -t

Y s (xRs -t (3 t (sRt A Qt) V Ps))).

At this stage the main problem, the presence of the unary predicate con­

stauts has to be tackled. This is done by the so-called method of substitu­

tions. Tostart with, fix a variabie not occurring in the :lirst-order formula;

in this case we can take u. In the following we concentrate on proposition

letters in the antecedent r.p ofthe Sahlqvist-form, in the example M(LpAq).

Let p be an occurrence of p in r.p. By v(p) we denote the bound variabie in

the standard translation of r.p corresponding to the innermost occurrence of

M in r.p the scope of which contains p; or, if no such occurrence of M exists,

v(p) = x. In our example the only proposition letters in r.p, pand q, occur

only once and v(p) = v(q) = y since y is the bound variabie corresponding

to the only occurrence of Min r.p. Now, for the greatest number j such that

p occurs within a subformula of the form Op (i.e. p prefixed by j times an

L), put

CV (p, r.p) .- v(p) Ri u

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC 27

(where R0 equals identity =). CV (p, rp) is defined as the disjunction of all

CV(p, rp), where pis an occurrence of p in rp. In our example we obtain

CV(p,rp): yRu

CV(q,rp): y =u.

Finally, the first-order equivalent of the original modal formula is obtained

by substituting, for each proposition letterpand conesponding unary pred­

icate constant P, and each individual variabie z, [zfu]CV(p, rp) for Pz in

the obtained standard translation of the original modal formula. So, in our

example we substitute respectively inthelast first-order formula above:

[z/u]CV(p, rp) for Pz,
[yfu]CV(q, rp) for Qy,

[tfu]CV(q,rp) for Qt,

[sfu]CV(p,rp) for Ps.

This yields the :first-order formula

Vy ((xRy A V z (yRz -+ yRz) A y = y) -+

V s (xRs -+ (3 t (sRt A y = t) V yRs))).

After simplification this yields the desired first-order equivalent:

Vy (xRy -+ V s (xRs -+ (sRy V yRs))). •

Remark 3.2.2 Sahlqvist-forms may at :first sight seem to be a rather re­

stricted syntactical class of formulas, but as the example in the proof above

shows many formulas can be transformed into an equivalent Sahlqvist-form.

We now turn to axiomatizations of modal and temporal logic. In the

sequel, by 'I! l-ps rp we denote that rp is derivable from 'I! within the proof

system PS.

28 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

Definition 3.2.14 The minimal modal logic proof system K consists of

(Dl), Modus Ponens (Rl), (Pl)-(P3) and

(D2) Mr.p := ., L..., r.p

(Al) L(r.p ___.. 1/7) ___.. (Lr.p ___.. L,P)

(R2) to infer Lr.p from r.p

Kis called minimal because it precisely a.xiomatizes Fm:

(Distribution)

(N ecessitation).

Theorem 3.2.7 (Completeness of K) For all modal formulas r.p and sets

of modal formulas \1!:

\1! 1-K r.p if and only if 'li Fm r.p.

Proof: The Henkin method for proving completeness is well known from

the literature and we use techniques from [Ben 83], Theorem II.2.3.6 and

[Ben 85], Theorem 6.1 for the proof. A simplified schema of the proof with

the main lemmas and propositions is given in Figure 3.1. The easy side

to a completeness theorem is usually the soundness part: a check whether

the a.xioms and rules were chosen at least correctly. In this case a routine

induction establishes that

'li 1-K r.p implies 'li Fm r.p.

The converse (adequacy) is more exciting. We will prove this by contrapo­

sition:

\1! lfK <p implies 'li ~m r.p,

i.e. we use the information that r.p cannot be derived from 'li within K to

find a model for 'li in which r.p fails at some world. This may be done

by reformulating this information more 'positively' through the following

notion of consistency.

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC

soundness

completeness

Truth
Lemma

adequacy

Consistency
Theorem

Figure 3.1: Schema for Completeness Proof of K

A set of formulas q> is called W -consistent if for no :fini te number

of formulas f.Pl, ••• , f.Pn from 4.>, ~ 1-K ...,(f.Pl 1\ .•• 1\ f.Pn)·

29

Now, if W lfK t.p, then {•t.p} is obviously ~-consistent. So, it suffices to

show that '»-consistent sets offormulas are satis:fiable in at least one model

for W, as formulated in the following CONSISTENCY THEOREM:

For each ~-consistent set of formulas q>, there ex:ists a model

M = (W,R, V) for W with some wE W such that M, w I= 4.>.

Such models may verify more formulas at w than just those in 4.>. Therefore

we introduce the following additional notion:

4.> is maximally W -consistent if it is W-consistent, while none of

its proper extensions are.

30 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

Notice that maximally 'i.V-consistent sets always contain 'i.V. The following

two observations on W-consistent sets enable us to obtain such sets:

1. if é.P is W-consistent, and cp is any formula, then é.P U { cp} or é.P u { •cp}
is 'i.V-consistent,

2. the union of any ascending chain é.P1 Ç é.P2 Ç ... of 'i.V-consistent sets

is itself 'i.V-consistent.

This leads to the following result, LINDENBAUM'S LEMMA:

Each 'i.V-consistent set of formulas is contained in some maxi­

mally W-consistent one.

Maximally W-consistent sets exhibit a very useful decomposition behavior

with respect to Boolean connectives:

If é.P is maximally W-consistent, then
•cp E é.P if and only if cp ~ é.P,

cp _,. '1/J E é.P if and only if cp E é.P => '1/J E é.P.

N ow we are ready to define the Henkin Model of 'i.V, notation H M ;rr. This

canonical model consistsof the Henkin Frame of W, notation H F;rr, together

with a valnation V;rr which are defined as follows. HF;rr = (W;rr,R;rr) where

W;rr consistsof all maximally 'i.V-consistent sets offormulas and R;rr is defined

by

é.P1 R;rr é.P2 if, for all formulas cp, LepE é.Pt => cp E é.P2.

V;rr(p) is defined as {é.P E W;rr I p E é.P}.
The definition of the Henkin Model as above is guided by the target equiv­

alence of the TRUTH LEMMA:

For all maximally W-consistent sets é.P, and all formulas cp,

H M;rr, é.P I= <p if and only if cp E é.P.

The Truth Lemma, together with Lindenbanm's Lemma, is suilleient to

prove the Consistency Theorem:

3.2. CLASSICAL MODAL AND TEMPORAL LOGIC

Let ~ he a 'li-consistent set of formulas. By Lindenbanm's

Lemma ~ can he extended to a maximally 'li-consistent set

~maz· Since ~ Ç ~maz the Truth Lemma gives the desired

H Mv, ~maz I= ~. (H Mv is a model for -q; since every maxi­

mally 'li-consistent set contains 'li.)

31

Soit remains to prove the Truth Lemma. This is done by induction on the

complexity of r.p. The basic step is taken care of by the definition of Vv(P).

The steps for the Boolean connectives follow from the above decomposition

properties of maximally 'li-consistent sets. It remains to prove the Truth

Lemma for the case that r.p = L'lj;. First, suppose L'lj; E ~ and let ~' E Wv

such that ~ Rv ~1 • Then, by the definition of Rv, 'Ij; E ~'. Hence, by the

induction hypothesis, H Mv, ~' I= 'Ij;. Therefore H Mv, ~ I= L'lj;.

Finally, the converse direction.

Suppose L'lj; ~ ~. A maximally 'li-consistent set ~'is to he found such that

~ Rv ~' and H Mv, ~' ~ 'Ij;, i.e. by the induction hypothesis, 'Ij; ~ ~'. To

get such a ~' it suffices to prove that the set {x I Lx E ~} U { •?/J} is

'li-consistent. (For in that case, by Lindenbanm's Lemma, there exists some

maximally 'li-consistent extension of this set which does not contain 'Ij; and

is an Rv-successor of~ since it contains all x such that Lx E ~.)

It is only to prove this statement that the axioms of K come into play in

the following reductio ad absurdurn argument:

Let Lx1 , ... , Lx~e E ~ and suppose that -q; r-K •(x1 A ... A X Ie A •?/J), then

by propositional reasoning -q; r-K (Xl A ... A X Ie) -+ 'Ij;.

ByNecessitation weget -q; r-K L((x1 A ... Ax~e)-+ 'Ij;), whence byDistribution

-q; r-K (LXl A ... A Lx~e) -+ L'lj;.
Since ~ is maximally 'li-consistent, all formulas derivable from -q; within K

belong to ~' in partienlar the latter formula. By applying Modus Ponens

we conclude that L'lj; E ~'a contradiction. •

'

32 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

Definition 3.2.15 The minimal temporal logic proof system Kt consists

of (Dl), Modus Ponens (Rl), (Pl)-(P3) and

(D2) F1,0 .- .., G.., 1,0

(D3) P1,0 := .., H.., 1,0

(Al) G(1,0 -r "P) -r (Gif' -r G"P)

(A2) H(1,0 -r "P) - (H1,0 -r H"P)

(A3) 1,0 - GP1,0
(A4) 1,0 -r HF1,0

(R2) to infer G1,0 from 1,0

(R3) to infer H1,0 from 1,0

(distri bution of tense)

(tense mixing)

(temporalization)

Again, Kt is called minimal because it precisely axiomatizes l=m:

Theorem 3.2.8 (Completeness of Kt) For all temporal formulas 1,0 and

sets of temporal formulas W:

W 1-Kt 1,0 if and only if W l=m lf'·

Proof: The proof is very similar to that for the system K above, the main

difference being the replacement of the defi.nition of Rft by <ft as follows:

~1 <ft ~2 if, for all formulas 1,0,

G1,0 E ~1 ::::} 1,0 E ~2 and H1,0 E 1)2 ::::} 1,0 E 1)1· •

The above effective axiomatizations together with the finite model prop­

erty (established via filtration, see Proposition 3.2.1) guarantee that these

logies are decidable: for each formula 1,0, by simultaneously enumerating

all theorems (using the axiomatization) and all fini te models, we can check

whether 1,0 is a theorem or not (since in the latter case 1,0 is falsified on some

finite model by the finite model property). For more details on methods of

proving decidability, see e.g. [Bur 84] section 3.

3.3. TEMPORAL LOGIC WITHUNTIL AND SINCE 33

For obtaining similar results about complete axiomatizations of I= 1 (in­

stead of l=m) we add the following rule of substitution to our proof systems

(for an explanation, see [Ben 83], section II.2.3):

(R4) to infer ["Pt/Pt, ... , "Pn/Pn] t.p from t.p.

We eaU él> frame-complete if

él> 1-• t.p iff él> I= 1 t.p for all t.p,

where 1-• stands for one of the above proof systems with the additional rule

of substitution. For Fm we obtained general completeness results, that is

for all Cb. For I=J, however, this is not possible: there are Cb which are not

frame-complete. So, apart from the general completeness theorems above,

modal (temporal) completeness theorems are dealing with special Cb that

are frame-complete. Many such results involve a slight generalization of

frame-completeness, namely completeness with respect to a class of frames

which is defined as follows.

Definition 3.2.16 Let C be a class of frames. Cb is called complete with

respect to C if

Note that Cb frame-completereduces to Cb complete w.r.t. {.F I.F I= Cb }.

3.3 Temporal Logic with until and since

We first define the syntax of propositional temporal logic with until and

since operators.

Definition 3.3.1 L(until, since) is the language with

vocabulary: atomie propositions P0 , P1 , •••

logical operators .., , A, until, since

34 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

formulas: Pi(i E IN)
..,<pt, <f't A<p2, i.pt until <p2 and <ptsince <p2 (<pt, <p2 formulas).

To give thesemantics of L(until, since) we can use the notions of frames,

valuations and model~ introduced in section 2 (see Defi.nition 3.2.1). For

languages with until and since we will suppose the temporal frames to be

strict partial orders, i.e. < is transitive and irreflexive. In the defi.nition of

M, t I= <p we have only to include the following clauses for the operators

until and since:

M, t i.pt until <p2 iff 3 t' E T[t < ti and M, t1 I= <?'2 and

V t" E T[t < t11 < t' => M, t 11 <pt]]

M, t I= i.pt since <p2 iff 3 t 1 E T[t1 < t and M, t1 I= 'P2 and

V t11 E T[t' < t 11 < t => M, t" I= <pt]].

Because of irreflexivity of < the operators until and since will also be

irreflexive, i.e. they do not indude the present as part of the future.

Kamp (see [Kam 68]) proves that L(until, since) is expressively com­

plete with respect to the class of complete linear orders. For the class of

w-models (obtained by allowing as the only temporal frame the natura!

numbers with their usual ordering) it is shown in [GPSS 80] that only until

as temporal operator already suffices for expressive completeness. The tem­

poral operators F, G, P, H of section 2 can be defi.ned easily in terms of

until and since:

F <p .- T until <p

P <p .- T since <p

where still G = F and H = P, of course.

In an unpublished paper ([Sta 79]) Stavi introduced two additional oper­

ators ulrlil and sfn:Ce in order to improve the above expressive completeness

result of Kamp to the class of alllinear orders. These operators are defi.ned

by

3.3. TEMPORAL LOGIC WITHUNTIL AND SINCE

M, t I= f.Pt u-;t"il cp2 iff

3 t11[t < t11 and V t1[t < t1 < t11 => M, t1 I= f.Pt]] and

Vt11[(t < t11 and Vt'[t < t' < t11 => M,t1 I= cp1]) =>
(M, t11 I= f.Pl and

35

3 t""[t11 < f 111 and V tm[t11 < tm < t1111 => M, t111 I= f.Pt]])] and

3 t111 [t < t111 and M, t 111 I= •t.p1 and M, t 111 I= f.P2 and

V t"[(t < f' < t111 and 3 t'[t < t1 < t11 and M, t' I= •cp1])

=> M, t" I= cp2]]

M, t I= f.Pl s~e f.P2 iff
3 t11[t11 < t and V t'[t" < t1 < t => M, t' I= f.Pt]] and

Vt"[(t"<tandVt'[t11 <t1 <t => M,t' cp1]) =>
(M, t" I= cp1 and

3 t1111
[t1111 < t11 and V t 111

[t1111 < t111 < t11 => M , t111 I= cp1]])] and

3 t111 [t111 < t and M, t"' I= •f.Pt and M, t111 I= f.P2 and

V t11 [(t111 < t11 < t and 3 t1[t11 < t' < t and M, t' I= •t.p1])
=> M, t" I= f.P2]].

Intuitively, u-;t"ii and s~e take care of closing the 'gaps' in incomplete

linear orders. An informal explanation of the u-;t"il operator (and similarly

for s~e) is the following. cp1 u"irtllcp2 asserts the existence of a 'gap' ahead

(i.e. in the future) in the ordering such that

1. from the current moment up till that gap cp1 will be true (this follows

from the first two conjuncts of the definition),

2. the gap is approached from the right (i.e. from the future) both by

•cp1 and by f.P2, that is to say no matter how near we take a point after

the gap, there will be a point where •t.p1 (and the same for cp2) holds

in between that point and the gap (the part about cp2 follows from

the third conjunct of the definition, while the part about •cp1 and the

existence of the gap follow from all three conjuncts of the definition).

36 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

Similarly to the extension of propositional logic with the temporal op­

erators until and since one can extend predicate logic with these opera­

tors to get a first-order temporallogic. In fi.rst-order temporallogies prob­

Ieros arise because of the interplay between quantifi.cation and time (see e.g.

[Gar 84],[Coc 84]). One of these problems is the possibility that the quan­

tified variables (and possibly even their value domains) change over time.

We avoid this problem by only allowing quantification over variables that

do not change over time (often called 'global' variables in contrast with 'lo­

cal' variables). Even in this restricted case most first-order temporallogies

are incomplete (usually shown by proving that Peano Arithmetic can be

encoded into them).

3.4 Temporal Logic in Computer Science

This section is not intended as a brief overview but serves as a background

for the motivation of certain dedsions to adapt temporallogic in later chap­

ters.

Since the seminal paper of Pnueli ([Pnu 77]) the use of temporal logic

for reasoning about many types of computerized systems and programs has

been steadily increasing. This can be explained by the fact that the under­

lying semantica of temporallogic fits well with the notion of computation as

used in computer science as we will show now. Temporallogic is intended

for reasoning about situations changing in time. lts semantics makes a clear

distinction between the static aspect of a situation, represented by a state,

and the dynamic aspect, the relation (in time) between states. This dis tinc­

tion is also reflected in the syntax: a state is described by the classica! part

oftemporallogic while the temporal operators are used for the descrlption

of the evolution of the situation over time. In this way states and time

need not be introduced explicitly in the logic itself. The conneetion with

the notion of computation is that a computation can be seen as a sequence

of states where each transition from one state to the next state in the se-

3.4. TEMPORAL LOGIC IN COMPUTER SCIENCE 37

quence (each step of the computa.tion) can be thought of as a tickof some

computation doek. In this view computer systems are described as gen­

erators of computations (also called execution sequences). Therefore, the

applications of temporal logic in computer science are usually restricted to

the class of discrete systems where an execution of a system can be viewed

indeed as a sequence of state transitions. For that reason the temporal

frames considered are also discrete.

The two most common types of temporal frames used in computer sci­

ence are the natura! numbers with their usual ordering and tree-like struc­

tures where branching is allowed only towards the future, giving rise, re­

spectively, to what is commonly called linear (time) temporal logic and

branching time temporal logic. Concerning the list of common :first-order

conditions on the preeedenee relation repreaenting assumptions about time

in seetion 2, we see then that the temporal frames of linear temporal logie

obey TRANS, IRREF, LIN and DISC (and usually also BEGIN and SUC-F)

while those of branehing time temporallogic obey TRANS, IRREF, 1-LIN

and DISC (and again usually also BEGIN and SUC-F). Fora comparison

between linear and branehing time temporal logic, see e.g. [Sti 87]. Apart

from linear and branching time temporallogic there are temporal logies in

use in computer science that are based on other types of temporal frames,

e.g. the partial order temporallogic of [PW 84], the temporal logic for event

structures of [Pen 88] and the interleaving set temporallogic (using a mix­

ture of branching time and partial order elements) of [KP 87], but these

form only a minority. Another approach is the one where temporal frames

are notbasedon points but on intervals instead. This approach is also rep­

resented in computer science (for an excellent overview of the interval-based

approach vs. the point-based approach in philosophy see [Ben 83]), e.g. In­

terval Temporal Logic with its executable subset Tempura of Moszkowski

(see (Mos 83],[MM 84],(Mos 86]) and the intervallogic of Schwartz et al.

(see [SMV 83]).

In this thesis we restriet our attention to temporallogies basedon tem-

38 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

por al frames with a preeedenee relation that is linear, in other words we look

only at linear time-like temporal logies. [Pnu 77] contains some deviations

from classica! temporallogic (as treated insection 2), in particular:

1. the present is considered as part of the future and correspondingly the

basic temporal operators are reflexive,

2. only future temporal operators are used.

In the sequel we will denote the reflexive counterparts of the temporal opera­

tors F and G of classica! temporallogic as treated insection 2 by their usual

representation in computer science 0, respectively D. In genera!, irreflex­

ive temporal operators have more expressive power than the corresponding

reflexive ones (in section 2 of Chapter 4 the reflexi ve dosure of general

roodal/temporal operators will he given). Although not done in [Pnu 77]

severallater papers have include$1 the operators X (next) and Y (previous)

for indicating the next, respectively previous, element in the preeedenee

relation (remember that in this section this relation is supposed to he a

discrete ordering). Over the natura! numbers the irreflexive operators can

then he expressed, e.g. Ftp = X Otp. The operators X and Y also have

their defi.ciencies, however. For example, these operators lack the ahstract­

ness needed to achieve a fully abstract semantics of concurrent programs

(see [Lam 83a],[BKP 86]).

Concerning the second deviation ahove, it can he shown (see the re­

sults about expressive completenessin section 3) that the temporal operator

until already suffices for expressive completeness over the natura! numbers.

Therefore, from the viewpoint of expressive power there is no need to in­

troduce past operators when working over the natura! numhers. Ho~ever,

[KVR 83] showed the advantages of such operators for the elegant specifi.ca­

tion of message passing systems (see section 6 of Chapter 5) and [LPZ 85]

contains many theoretica! results ahout the usefulness of past operators.

We now come back on the topic of temporal logic as a specifi.cation

language for computerized systems and programs. As we have seen ahove,

3.4. TEMPORAL LOGIC IN COMPUTER SCIENCE 39

a computation of a computer system can he described as a (linear) sequence

of states and associated events (state transitions). In linear temporallogic

the approach is taken that the behavior of a system S is given by the set of

its computations, say L:. A temporal formula <pis then defined to he valid

for S (<p is a valid property of S) if each 0' E L: satisfies <p, i.e. 0' <p in the

sense of Definition 3.2.2 in section 2 (remember that the underlying time

domain of linear temporal logic is the set of natural numbers so that the

sequence 0' can function as a model).

In Chapter 2 data elements were partitioned into two categories, namely

state variables and events. For the description of data elements we need a

first-order variant of linear temporal logic. This variant partitions the set

of variables into so-called global and local variables where quantification is

only allowed over global variables (so the local variables always occur as

free variables). Global variables range over fixed data domains and serve

to denote elements thereof while local variables model the state variables

(such as variables occurring in a program). Events are modeled as predicates

(where the parameters ofthe event become the arguments ofthe predicate).

When using temporal logic for the specification of programs, a funda­

mental classification of program properties differentiates between safety­

and liveness-properties. For a syntactical classification of temporal proper­

ties into a hierarchy refining this safety-liveness classification, see [MP 87].

Characterizations and decidability of safety- and liveness-properties using

connections with model theory, formallanguage theory and semigroup the­

ory are contained in [Tho 86].

To end our account of the application of temporallogic as a specifica­

tion language in computer science, we can test temporal logic against the

requirements for a general specification language in Chapter 2. Syntactical

abstractness can be achieved by restricting the local variables and predicates

to the state variables and events, respectively, of the interface. Sections 2

and 3 of this chapter witness the formality of temporallogic. Furthermore,

temporallogic is clearly a uniform formalism. The conformity requirement

40 CHAPTER 3. A REVIEW OF MODAL AND TEMPORAL LOGIC

is illustrated in section 5 of Chapter 5 for message passing systems. Tempo­

rallogic is a simple and elegant extension of propositionallogic (predicate

logic in case of :first-order temporallogic), yet powerful enough to express

interesting properties of programs such as safety- and liveness-properties.

At last, papers such as [Lam 83b],[BKP 84],[BK 85aMBK 85b] show that

temporallogic can he used for hierarchical development in a compositional

and modular style.

Chapter 4

Polymodal Logies with Inequality

4.1 Introduetion

As has been demonstrated in the previous ehapter, modal and temporal

logie eannot define all the natura! assumptions one would like to make on

the alternative and preeedenee relation, respectively. This state of a:ffairs

provides the motivation for this chapter.

The semantics of modal and temporallogic is based on one binary re­

lation, the alternative, respectively, preeedenee relation. A straightforward

generalization of this is to allow several binary relations and eorresponding

operators leading to polymodal logies (cf. dynamic logic, see [Har 84]). In

fact, temporallogic can he viewed as a bimodallogie with preeedenee rela­

tion < and its converse>. This chapter studies polymodallogics including

the special relation of inequality (this immediately includes also the total

relation on worlds). We adapt several results from modal and temporal

logic to polymodal models and frames: we provide translations to classica!

logic (first-order for models, second-order for frames) and adapt the usual

zigzag-relation for models to a kind of enriched bisimulation. It turns out

that most of the previous preservation results for frames beeome invalid.

This indicates that the addition of operators for inequality considerably in­

creases the expressive power of modal and temporal logic, a faet that is

41

42 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

substantiated by showing how several first-order conditions that were not

definable in rnadal (tempora!) logic become definable when operators for

inequality are added. In fact, all universa[first-order conditions and sev­

eral more complicated properties become definable. However, we can still

not define all first-order properties: by filtration we can show that the exis­

tence of a refl.exive world cannot be defined. Apart from conditions on the

alternative (precedence) relation, the addition of operators for inequality

also allows to express all finite cardinalities of thesetof worlds (moments).

Conversely, for frames we transfer an existing syntactic characterization for

rnadal (tempora!) formulas that can be defined by a first-order property to

polymodal formulas.

For three types of polymodal models (with only the inequality relation,

with both the alternative and inequality relation, and with both the preee­

denee and inequality relation) we provide complete axiomatizations and

show that the resulting polymodallogics are decidable. At last we look at

completeness results for classes of frames.

The rest of this chapter is structured as follows. Section 2 introduces

our polymodallogics including inequality and investigates semantic issues.

In section 3 we look at complete axiomatizations for these logies and show

their decidability. Section 4 contains some conclusions.

4.2 Semantics

For the semantic definition of operators in polymodallogics we make the

dependenee on a partienlar binary relation R explicit in the following way.

For ease of presentation we assume a model M = (W, R, V) to be fixed.

First we abbreviate M, w I= <p by t.p(w). Relative to R the necessity and

po:;sibility operators are defined respectively by

LR t.p(w) := Vw' E W [wRw' ::} <p(w')]
and

MR<p(w) := 3w' E W [wRw' and <p(w')].

4.2. BEMANTICS 43

For temporallogic with operators F, P (and duals G ,H) we have F = M<

and P = M>. By PML(Rt, ... , Rn) we denote the polymodallogic with

operators MRt, ... ,MR,. and their duals LRt, ... ,LR...

For the polymodal operators MR and LR there is a standard way to

make these reflexive by reflexive dosure as follows:

MR<p := <p V MR<p

and

iR <p := <p 1\ LR <p.

The nomendature sterns from the observation that M R = M R and iR LR

where R is the reflexive dosure of the relation R:

wRw1 iff w = w1 or wRw1
•

In this section we eonsider the special binary relation of inequality, first

as the only binary relation and next as an additional relation besides the

alternative and preeedenee relation of modal, respectively temporallogic.

Syntactically wedefine a new operator D (at a different world/moment)

corresponding to M;é:

D <p(w) := 3w1 E W [w # w1 and <p(w')].

lts dual D corresponds of course to L;é. From D two very useful operators,

E (there exists a world/moment) and its dual A (for all worlds/moments)

are defined by reflexive closure:

E <p := <p V D <p

and

A <p := <p 1\ D <p.

Note that the semantica of E <p and A <p is independent of the world in

whieh it is evaluated. In fact, E = Mwxw and A Lwxw. The following

table summarizes the operators LR and M R for four special choices of R.

44 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

0 T .L

= r.p r.p

f; Dr.p Dr.p

WxW Ar.p Er.p

The last two rows cannot he represented without the D-operator. Notice

that = and W x W are the reflexive dosure of 0 and f;, respectively.

When modal (tempora!) formulas are interpreted in models, they are

equivalent to a special kind of first-order formulas (see section 2 of Chapter

3). Adding operators for inequality does not change this picture. We can

simply add a clause in the translation r for the D-operator:

r(Dr.p) := 3y(x f; y A [yjx]r(r.p)),

where y does not occur in r(r.p). But again, two variables actually suffi.ce,

e.g. GDHp can he translated into

Vy(x < y -+ 3x(y f; x A Vy(y <x -+ Py))).

Again r gives the equivalences

M,w I= r.p

M I= r.p

iff M I= [wjx]r(r.p)
iff M I= V x r(r.p).

A semantica! characterization on models can he obtained by giving re­

lations between models such that the special first-order formulas from the

translation r above are invariant under these relations. In section 2 of Chap­

ter 3 we defined (Definition 3.2.5) the truth-preserving operations of gener­

ated submodels. Clearly these operations can no longer he truth-preserving

in the presence of inequality. However, the other truth-preserving opera­

tions, zigzag connections, can he adapted as follows.

4.2. SEMANTICS 45

Definition 4.2.1 A relation Z is an extended zigzag conneetion between

Mt = (Wt, Rt, VI) and M2 = (W2,R2, V2) if

(i) domain(Z) = Wt, range(Z) = W2,

(ii) if wZv, then w, v verify the same proposition letters,

(iiia) if wZv, and w1 E wl with WRtw', then w'Zv' forsome v' E w2 with

vR2v1
,

(iiib) if wZv, and v' E W2 with vR2v', then w'Zv' forsome w1 E W1 with

WRtW1
•

(iva) if wZv, and w' E W1 with w f= w', then w'Zv' forsome v' E W2 with

v :/; v',

(ivb) if wZv, and v' E W2 with v f= v1
, then w1Zv' forsome w' E W1 with

w f= w'.

The only difference with De:finition 3.2.6 consists of the additional clauses

(iva) and (ivb). These additional dauses impose a strong conneetion be­

tween Mt and M2:

(1) if Z :/; 0 then domain(Z) = Wt,range(Z) = W2,

(2) if wZv, then either this is the only Z-connection for wand v, or both

wand v have at least two Z-mates.

So, if Z is non-empty it may be split up in one bijective part where w E W1
has only one Z-related v E W2 (and vice versa) and several clusters of Z­

related worlds such that each world in such a cluster is Z-related to at least

two worlds (of the other model) in that cluster. On top of this one still

has conditions (i)-(iii) so that e.g. Z-related worlds must verify the same

proposition letters. This adaptation of the notion of zigzag conneetion leads

to a corresponding adaptation of Theorem 3.2.2:

46 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

Theorem 4.2.1 If Z is an extended zigzag conneetion between M1 and

M2, then, for all w E Wt, V E w2 with wZv, and all formulas c.p from

PML(R, ::fi):
c.p i:ff M2, V I= e.p.

Section 2 of Chapter 3 contains a theorem (Theorem 3.2.3) stating that

the translations of modal formulas into first-order formulas are character­

ized by their invariance under generated submodels and zigzag connections.

Since generated submodels are not truth-preserving operations anymore,

the natural question for the ad dition of inequality is whether translations of

formulas of PML(R, ::fi) (and similarly for PML(<, >, ::fi)) are characterized

by their invariance under the above extended zigzag connections. In the

meantime a positive answer to this question has been given in [Rijk 89].

When modal formulas are interpreted in frames, they become secoud­

order formulas (say c.p contains the proposition letters Pb ... ,pn):

:F I= c.p iff :F I= V Pt ... V Pn V x r(<p).

For frames we can look at preservation results (see section 2 of Chapter 3)

such as preservation under disjoint unions:

If :Fi I= c.p for all i E I, then EB{ :Fi I i E I} I= c.p, for all e.p.

Adding inequality destrays most of the previous preservation results: no

preservation under generated subframes, nor under disjoint unions, nor

under zigzag morphisms. For example, consider the single-world frame

:F ({ w }, R). Then :F I= .., D T but the disjoint union of two copies

of :F does not. This is an indication that adding operators for inequality

considerably increases the expressive power of modal and temporal logic.

However, anti-preservation under ultrafilter extensions is preserved as was

proven recently by Maarten de Rijke ([Ben 89],[Rijk 89]).

The next two questions concern the correspondence over frames between

modal formulas and first-order formulas: which modal formulas are defined

by a first-order formula and which first-order formulas can be defined by

4.2. SEMANTICS 47

a modal formula? To start with the latter question, section 2 of Chapter

3 lists several common first-order properties of the preeedenee relation and

states which of them are definable with temporal logic. We now show that

the addition of operators for inequality allows also the remaining first-order

conditions to be defined:

IRREF: Fp ---+ Dp (irreflexivity)

LIN: Dp ---+ (Pp V Fp)

BEGIN: EH.l and END: EG.l

(comparability)

(a beginning and an end)

DISC:
(P(pA -,Dp) ---+ E(PpA -,PPp))

A (F(p A -,Dp) ---+ E(Fp A •FFp))
(discreteness).

As examples we prove the equivalences for IRREF and BEGIN.

First suppose that < is irreflexive and consider any valnation

V on (T, <) verifying Fp int. By the definition of F there exists

t' such that t < t1 and p is true at t'. By irreflexivity t' ::f t, so

by the definition of D, Dp is true at t. Thus, Fp---+ Dp holds

at arbitrary points for all valuations V.

Conversely, suppose that Fp ---+ Dp holds at t for all valu­

ations V on (T, <). Consider any t1 such that t < t'. Then,

for the partienlar valnation V assigning precisely { t'} to p, Fp

is true at t. Consequently, by the assumption that Fp ---+ Dp

is true at t for V it follows that Dp must be true at t for V.
This implies the existence of t11 ::f t with t" verifying p. As V (p)
consists of t1 only, this means that t' ::f t, so < is irreflexive.

Next suppose that < has a beginning, say t0 • Then for all t
it is the case that t < to is false. By the definition of Hit follows

that H .l is true at t0 • Thus, by the definition qf E, EH .l holds

at arbitrary points for all valuations V.

Conversely, suppose that EH.l is true at t: By the definition

of E there exists a point, say t0 , such that H .l holds at t0 • By

48 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

the definition of H this implies that there exists no t such that

t < t0 since such a t would have to verify .L Thus, to is a

beginning of <.

The opposites of BEGIN and END (succession towards past, respectively

future) are already de:finable in temporallogic (see section 2 of Chapter 3)

but can now be defined as opposites of BEGIN and END indeed:

SUC-P: APT

and

SUC-F: AFT.

Irre:Hexivity and comparability are examples of univeraal first-order condi­

tions. In fact:

Theorem 4.2.2 All universal first-order conditions on R, = are definable

in PML(R, ;f).

where the operator U (at a unique worldfmoment) is defined as

Ucp := E(cp A -,Dep). •
As a corollary it follows that for example

asymmetry: 'V xy(x < y --+ .., y < x) and

almost-connectedness: 'V xyz(x < y --+ (x < z V z < y))
are also definable. Also more complicated first-order properties such as

discreteness (see above) beoome definable. However, we can still not define

all first-order properties as is witnessed by the following proposition.

Proposition 4.2.1 The existence of a re:Hexive world (3w wRw) is not

definable in PML(R, ;f).

4.2. SEMANTICS 49

Proof: Although most previous preservation results are invalid now, we

can use the flitration method (see Deflnition 3.2.7 in section 2 of Chapter

3) as follows. Suppose that <p deflnes the existence of a refl.exive world, then

<pis refuted on (IN,<) (IN is thesetof natural numbers). So we can flnd a

valnation V such that

M l;t: <p for M =(IN,<, V).

We are going to apply flitration to M and <p. So, let W be the flnite set

consisting of <p tagether withall its subformulas and deflne for each n E IN:

w(n) := {1/J E w I M,n I= 1/J}.

Since W is flnite the w(n) partition IN into a flnite number of classes. Hence,

a certain number of these classes, say k (k > 0), occur inflnitely often and

there exists N E IN such that from N onwards only these classes occur.

Let us denote these classes that correspond to an inflnite subset of IN by

W1, ... , 'il"~e. Now, our flitrated model M-. = (W-., R-., V-.) is not standard

(see the remark after this proof) but has some special properties. It consists

of N + 2 · k worlds with the following conneetion between the old and the

new worlds. The flrst N worlds correspond to 0, ... , N - 1 without any

change. For n ~ N, n corresponds with Wi, 1 ~i~ k, such that w(n) = Wi

and with a duplicate w~ of Wi. The 2. k worlds wl, WL ... ' W~e, w~ forma

cluster, i.e. they are all R-.-related. By induction one easily establishes (as

for standard flitration) that for all n E IN and all'I/J E W: 1/J holds in M at

n iff 1/J holds at the corresponding world(s) in M-.. But then it follows that

<pis refuted on M-., a flnite model with refl.exive worlds, a contradiction.

Hence, such a <p deflning the existence of a refl.exive world cannot exist. •

Remark 4.2.1 The role of the duplicates w~, ... , w~ relates to the presence

ofthe D-operator. Because ofthis operator the standard flitration technique

does not work anymore. Take for example the formula DT, then standard

flitration will collapse every inflnite model into a single world which obvi­

ously is not truth-preserving since DT will not hold in this flltrated model.

50 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

Therefore we need to double worlds which correspond to more than one

world in the original model. The induction proof that conesponding (dou­

bled) points verify the same formulas (in the above proof restricted to the

set lJ!) will reappear in a more elaborate form in the completeness proofs of

section 3.

Apart from conditions on the alternative (preeedenee) relation, the ad­

dition of operators for inequality also allows properties of the set of worlds

(moments) to be defined as in the following proposition.

Proposition 4.2.2 Every finite cardinality is definable in PML(:f:.).

Proof: For all n E IN, IWI :::; n is a universal first-order condition

on = and hence is definable in PML(:f:.) by the proof of Theorem 4.2.2.

Furthermore, IWI >nis defined by

n n

A V Pi - E V (Pi A Dp,).
i=l i=l

We prove this equivalence as follows.

First suppose that IWI > n. Then we can choose n + 1 dif­

ferent worlds w1 , ••. , Wn+l· Consider any valnation V verifying

A V/=1 Pi, then for each j, 1 :::; j :::; n + 1, at least one of the

Pi'S {1 :::; i :::; n) is true at w;. By the pigeonhole principle this

implies that there exist j, 1:::; j:::; n + 1, and j', 1 :::; j':::; n + 1,

such that Pi is true both at w; and at Wj' forsome i, 1 :::; i :::; n.

So, Pi A Dp, is true at w; and hence E V/=1 (Pi A Dp,) holds at

arbitrary worlds. Thus, A V/=1 Pi -+ E V"/=1 (Pi A Dpi) holds
at arbitrary worlds for all valuations V.

Con versely, suppose that A V/=1 Pi -+ E V/=1 (Pi A Dp,) holds

for all valuations V but that lW I :::; n, say W Ç { w1, ••. , w,.}.
Then, the particular valuation V assigning { wi} toPi for those i,

1:::; i:::; n, such that WiEWand 0 to the other pi's (1:::; i:::; n),

4.2. SEMANTICS

veri:fies A V/=1 Pi· Consequently, V veri:fies also E V'/=1 (pii\Dpi),

but this asserts the existence of j, 1:::; j:::; n, and jl, 1 :::; j':::; n,

and i, 1 :::; i :::; n, such that w; E W and Wj' E W and j f:. j'
and Pi holds both at Wj and at Wj'· Since IV(Pi)l :::; 1 for all i,

1 :::; i :::; n, this is impossible. Hence it must he the case that

JWJ>n.

51

JWJ = n + 1 can then be de:fined by a conjunction of JWI :::; n + 1 and

IWJ >n. •

Because of :filtration, infinity of W can obviously not be de:fined. In fach p.o

essentially higher-order property of identity can he de:fined:

Proposition 4.2.3 Allformulas from PML(f:.) de:fine :first-order conditions

over identity =.

Proof: Formulas from PML(f:.) translate into the manadie second-order

logic over pure identity and all formulas of this second-order logic are equiv­

alent with :first-order formulas (see [Ack 62]). •

On the other hand, all :first-order formulas over identity can be de:fined as a

Boolean combination of formulas expressing the existence of at least a cer­

tain number of elements. Since the latter formulas are de:finable in PML(f:.)

by the proof of Proposition 4.2.2 it follows that

Corollary 4.2.1 Over frames PML(f:.) is equivalent with :first-order logic

over=.

Another interesting topic related to expressive power considerations con­

cerns the possibility to discriminate between special structures. For ex­

ample, ordinary modal logic cannot discriminate b~tween IN and 71.., the

set of natural numbers and integers, respectively. Adding inequality again

helps: for the formula I{) of PML(R, f:.) de:fined as p -+ DMp it holds that

(71.., <) I= I{) but (IN,<) li: cp. For temporallogic examples will necessarily

52 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

be more difficult because the D-operator is expressible over linear orders:

D<p = P<p V F<p. The topic of the characterization of special structures is

an interesting one and deserves further investigation.

The other question about the correspondence of modal and first-order

formulas asked which modal formulas are definable by a first-order property

over frames. Section 2 of Chapter 3 contains a theorem (Theorem 3.2.6)

that states the first-order definability of all Sahlqvist-forms. This syntactical

class can easily be redefined for polymodal logies such as PML(R, f=) as

follows.

Definition 4.2.2 A formula of PML(R, f=) is called a Sahlqvist-form when

it is of the form <p-+ '1/J where

(i) <p is constructed from p, Lp, LLp, ... , Dp, D Dp,L, T using only

A, v,M and D, while

(ii) '1/J is constructed from proposition letters, ..L, T using A, v,M,D,L

and D.

Thus, instead of M we mayalso use D, and similarly for L and D. The

definition for other polymodallogics such as PML(<, >, f=) is similar. Again

(see Remark 3.2.2 in section 2 of Chapter 3) this class of formulas is not

as restrictive as it appears at first sight. For example, the translations

of universa! first-order conditions in the proof of Theorem 4.2.2 can be

rewritten as Sahlqvist-forms. Also for the new definition of Sahlqvist-forms

we have:

Theorem 4.2.3 All Sahlqvist-forms define first-order conditions.

Proof: The corresponding theorem (Theorem 3.2.6) insection 2 of Chap­

ter 3 can easily be generalized to polymodallogics. Again we demonstrate

by an example that all Sahlqvist-forms are locally equivalent with a first­

order condition containing precisely one free variabie x. For this purpose

we use the formula of PML(<, >, #) defining comparability:

Dp-+ (Pp V Fp).

4.2. BEMANTICS 53

This formula is already a Sahlqvist-form so that we do not need to trans­

form it into one. Application of the standard translation (with of course

the adaptation for the D-operator as given earlier in this section) gives the

fi.rst-order formula

3 y (x :f. y A Py) ~

(3 z (z < x A Pz) V 3 z' (x < z' A Pz')).

Again we rewrite the existential quantification of the antecedent as a uni­

versa! quantification over the whole formula:

Vy ((x -:fi y A Py) ~ (3 z (z <x A Pz) V 3 z' (x< z' A Pz'))).

Take u as a variabie that does not occur in this formula. The antecedent

Dp of the Sahlqvist-form contains only one proposition letter, namely p. So

we get for the method of substitutions:

v(p) = y

and

CV(p,Dp): y =u.

In the first-order formula above wethen have to apply the following substi­

tutions:

[yju]CV(p, Dp) for Py,
[zju]CV(p,Dp) for Pz,
[z'fu]CV(p,Dp) for Pz'.

This yields the first-order formula

V y ((x :f. y A y = y) ~ (3 z (z <x A y = z) V 3 z' (x < z' A y = z'))).

After simplification this becomes

V y (x :f. y ~ (y <x V x< y))

54 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

whose global version (obtained by prefixing with V x) is indeed comparabil­

ity:

V xy (x= y V y <x V x< y).

We conclude our semantic survey by an observation relating E and A.

Proposition 4.2.4 Let M = (T, <,V) be a (temporal) model.

Then M I= E<p -+ A<p for all <p if and only if

(i) < satisfies either

•

(a) both succession towards pastand succession towards future, or

(b) all points are both a beginning and an end (i.e. there are only

isolated points),

(ii) V is uniform, i.e. for all -proposition letters p either V(p) = 0 or

V(p) = T.

Proof: The case ITI ~ 1 is trivial, so suppose ITI > 1. First we treat

the only if case, so suppose M I= E<p -+ A<p for all <p. Then (ii) follows

immediately by taking <p = p. (i) follows by observing that either

(a) M I= EPT and hence also M I= EFT, so by taking <p :::PT and

<p ::: FT we get M I= APT (SUC-P) and M I= AFT (SUC-F) or

(b) M !ïi= EPT and hence also M !ïi= EFT, so M I= AH.l (all points

are a beginning) and M I= AG.l (all points are an end).

For the if case, suppose M satisfies (i) and (ii). That M I= E<p -+ A<p

for all <p is proved by induction. (ii) gives the basic induction step for

proposition letters. Case (ib) is easy (this case can also be proved by a

symmetry argument). So suppose we have to deal with (ia). A typical case

is <p = F'ljJ: ~.

M I= EF'IjJ * M I= E'ljJ ::} M I= A'I/J * M I= AF'I/J

4.3. PROOF THEORY 55

where the one but last step is justified by the induction hypothesis and the

last step by SUC-F (M f= AFT). The case lP= D"P is similar but now

the last step M f= A'lj; => M f= AD'Ij; is justified by ITI :f: 1 and hence

M F ADT. •

4.3 Proof Theory

We now turn to axiomatizations o~ polymodal logies with inequality. First

we present complete proof systems for the basic logies PML(:f;), PML(R, :f:)

and PML(<, >, :f:).

Definition 4.3.1 The proof system D consists of a complete axiomatiza­

tion of propositionallogic induding the rule of Modus Ponens (see sec ti on

2 of Chapter 3) and

(D2) DIP := • D • <p

(R2) to infer D<p from <p

(Al) D(<p ~ "P) -+ (D<p ~ D"P)

(A2) <p ~ DD<p

(A3) DD<p -+ (<p V D<p)

(symmetry)

(pseudo-transitivity).

The completeness proof of D uses the following theorem of D.

Proposition 4.3.1 1-D D(<p A 'Ij;) ~ D<p.

Proof: This theorem of D can he derived as follows.

1. -, <p ~ •('P A 1/J) (propositionallogic)

2. D(• <p ~ •('P A "P)) (l,R2)

3. D• lP -+ D•(lP A 'Ij;) (2,Al,Modus Ponens)

(3,propositionallogic)

56 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

5. D(<p 1\ 'Ij;) --+ D<p (4,D2)

•

Theorem 4.3.1 (Completeness of D) For all <p E PML(;i:) and W Ç

PML(;i:):

W 1-v <p if and only if W l=m <p.

Proof: Soundness is standard by induction on the length of derivations.

As an example we show that the new rule (R2) preserves validity and that

the new axiom schemas (Al)-(A3) are valid. Tostart with rule (R2), sup­

pose that <p is valid, then for all models M and all worlds w: M, w I= <p.

We have to show that M,w I= D<p for all models M and all worlds w.
So, taking w' ;i: w, we have to show M, w' I= <p which follows immediately

from the hypothesis that <p is valid.

To check axiom schema (Al), we have to show that for all formulas <p and

'Ij;, all models M and worlds w: M,w I= D(<p--+ 'Ij;)--+ (D<p--+ D'lj;).

This red u ces to: suppose M, w I= D(<p --+ 'Ij;) and M, w I= D<p, prove

that M,w I= D'lj;. Well, M,w I= D(<p--+ 'Ij;) means that for all w' ;i: w:

M, w' I= <p implies M, w' I= 'Ij;. The second hypothesis M, w I= D<p

means that for all w' ;i: w M, w' I= <p. The condusion that for all

w' ;i: w M, w' I= 'Ij; is immedia te.

To check that axiom schema (A2) is valid, we have to show that for all

formulas <p, all models M and all worlds w: M, w I= <p --+ DD<p. This

red u ces to: if M, w I= <p then M, w I= DD<p. So, supposing M, w I= <p,

take w' ;i: w. To prove that M, w' I= D<p, i.e. that there exists w" ;i: w'

so that M, w" I= <p. By taking w" = w this follows immediately from the

hypothesis.

To check axiom schema (A3), we have to show that for all formulas <p, all

models M and all worlds w: M,w I= DD<p--+ (<p V D<p). So, suppose

that M, w I= DD<p. Then there exists w' ;i: w such that M, w' I= D<p

4.3. PROOF THEORY 57

and furthermore w11 =F w' such that M, w11 I= r.p. Now either w11 = win

which case M, w I= r.p, or w" =F w in which case M, w I= Dep. These two

possibilities lead to the desired condusion M, w I= r.p V Dep.

For the proof of adequacy we use the same techniques as in the complete­

ness proof of the minimal modallogic proof system K (see Theorem 3.2. 7

insection 2 of Chapter 3). So suppose W lfn 1/Jo. To prove that W ~m 1/Jo.
Let Mo be the standard Henkin Model of all maximally W-consistent sets

offormulas from PML(#) with arelation ':ft defined by

In the sequel we also use the equivalent formulation

This equivalence is easily shown as follows:

for all form ulas r.p, Dep E q>l * 'P E (!)2

iff

for all formulas r.p, r.p lt (_[)2 ::} Dep \t q>l

iff

for all formulas r.p, •r.p E q>2 ::} D-.r.p E q>l

iff

for all formulas r.p, 'P E q>2 ::} Dep E q>l·

In the same way as in the completeness proof for K we can prove the Truth

Lemma for Mo (where the new rule R2 and axiom schema Al replace the

Necessitation rule, respectively the Distribution axiom schema, both needed

for the proof of the Truth Lemma). Now for arbitrary 1/J such that W lfn 1/J
(so in particular for 'f/;0), { •1/J} is W-consistent, so by Lindenbaum 's Lemma

we can find a maximally W-consistent set (!)0 containing -.1/J and M 0 , (!)0 ~ 1/J
by the Truth Lemma. In the case of the proof system K, the proof of

58 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

adequacy was complete at this point, because the semantics of PML(R),

i.e. ordinary modal logic, involves a binary relation R that is arbitrary.

Consequently, the particular relation Rw as defîned for the Henkin Model

in that completeness proof posed no problems. In the case of PML(jé)

ho wever, we are confronted with the very special relation of inequality in the

semantics. In the soundness proof we showed that the new rule and axiom

schemas were at least valid when interpreted over inequality. Adequacy,

ho wever, demands that whatever is valid for all models with inequality, can

he derived in the proof system D. In the rest of the proof we mean by a

standard model a model incorporating real inequality jé. So far, we only

constructed the model Mo with relation fj:, such that 'I/Jo is refuted in Mo.
Our taskis to construct a standard model out of Mo in which 'I/Jo is refuted.

To this end, let us fîrst investigate which properties can already he ascribed

to the relation fj:, of Mo because of the extra axiom schemas (A2) and (A3).

These two schemas ensure that:

(so fj:, is symmetrie and "pseudo-transitive").

We prove (i) and (ii) as follows:

(i) Suppose ~~ fj:, ~2· We have to show ~2 fj:, ~1 or that for all formulas

<p: <p E ~1 => D<p E ~2· So let <p E ~1· By axiom schema (A2) it

follows (since ~1 is maximally ~-consistent) that DD<p E ~1 . By the

definition of ~1 fj:, ~2 the desired condusion D<p E ~2 is immediate.

(ii) Suppose ~1 f/; ~2, ~2 fj:, ~3 and ~1 # ~3· We have to show ~1 fj:, ~3

or that for all formulas <p: <p E ~3 => D<p E ~1 . So let <p E ~3 .

Because ~1 # ~3 and ~b ~3 are maximally ~-consistent there exists

a formula X such that XE ~3 but X f/. ~1· Now, since <p E ~3,X E ~3

and ~3 is maximally ~-consistent we have also <p 1\ x E ~3• So by

~2 fj:, ~3 it follows that D(<p 1\ x) E ~2 and by ~1 fj:, ~2 furthermore

4.3. PROOF THEORY 59

that DD(ep A X) E cl>1. By axiom schema (A3) it follows (since cl>1 is

maximally 'li-consistent) that ep A X E cl>1 or D(ep A X) E cl>1. The first

case is impossible because x ft cT>1 and cT>1 is maximally 'li-consistent.

Thus, D(ep A x) E cl>1 and because D(ep A x) --+ Dep is a theorem of D

(see Proposition 4.3.1 preceding this completeness theorem) and cT>1 is

maximally 'li-consistent the desired condusion Dep E cT>1 is reached.

Our first impravement on model Mo to get a standard model is the smallest

submodel of Mo containing cT>o and being closedunder ~' denoted by M 1•

Since M 1 is a generated submodel of Mo, it follows that (cf. the Generation

Theorem in section 2 of Chapter 3, Theorem 3.2.1) for all formulas ep and

all worlds (i.e. maximally 'li-consistent sets) cT> from M 1:

Mt, cT> I= ep if and only if Mo, cT> I= ep.

Our next claim is that ~ holds between any two different points in M 1 :

This follows from (i) and (ii) above: repetitive application of (ii) yields that

cT>o~ncpl => (cT>o = cl>1 or cT>o ~ cl>1) and similarly cT>o~mcp2 => (cT>o =
cl>2 or cT>o ~ cl>2).

Differentiate between three cases:

(1) cT>0 = cT>1: substituting this in the second implication above immedi­

ately gives the desired condusion cT>1 = cl>2 or cl>1 ~ cl>2

(2) cT>0 = cT>2: substituting this in the first implication and applying (i)

yièlds again the desired condusion cl>1 = cl>2 or cl>1 ~ cl>2.

(3) cT>o ~ cl>1 and cT>o ~ cl>2: by (i) cl>1 ~ cT>o and tagether with cT>o ~ cl>2 it

follows from (ii) that cl>1 = cl>2 or cl>1 ~ cl>2.

So, at least we achieved in M 1 that

60 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

for all worlds ~1 and ~2·

Therefore, the only 'non-standard' feature of ';fi left when compared to real

inequality is the possibility of reflexive worlds iP, i.e. where ~ ';j; iP holds.

Now, let M2 be the model that replaces each ';j;-reflexive point~ of M1 by

two points ~1, iP11 such that ~~ ';fi ~11 and iP11 ';fi ~~ and all ';fi-connections to

other points are maintained and iP1
, iP11 have the same valuation as ~. Our

last claim is that for all formulas <pand all worlds Cl) of M 2 :

<p if and only if Mb~ I= <p

where ~ = ~ if ~ was not ';fi-reflexive and ~' = ~11 = ~ for (doubled)

';fi-reflexive points ~. This claim is proved by induction on <p:

(a) <p = p is immediate since Cl) and ~ have the same valuation

(b) the cases <p = •<p1 and <p = <p1 A <p2 are immediate from the induction

hypothesis

(c) <p = D1/1: To prove: M2,~ D1/1 if and only if M 1 , ~ I= D1/1.

(cl) only if: easy since each world ~1 of M 1 can be written as i; for

a world ~2 of M2

(c2) if: in case ~ was not ';fi-reflexive this follows immediately from

the induction hypothesis; otherwise ~ ';j; ~' hence M 1 , ~ D1/1
implies M~, ~ I= 1/1, so by the induction hypothesis M2, iP' 1/1
and M2, ~~~ I= 1/1.

M 2 is a standard model (with real inequality #) where 1/10 is refuted, as

required. •
Definition 4.3.2 The proof system Dm consists of the minimal modallogic

proof system K (see Definition 3.2.14 in section 2 of Chapter 3) together

with the above system D (see Definition 4.3.1) plus the axiom schema

(relation Mand D).

4.3. PROOF THEORY 61

Theorem 4.3.2 (Completeness of Dm) For all <p E PML(R, #) and

'1' Ç PML(R, #):

'1' i-Dm <p if and only if '1' Fm <p.

Proof: The proof above can easily be adapted. The additional axiom

schema ensures that

V'~ V~' (~ R ~~ :::? (~~ = ~ or ~ 'f; <P')).

Therefore dosure under R remains within the dosure under 'f;, so we can

use the previous construction. •

Defl.nition 4.3.3 The proof system Dt consists of the minimal temporal

logic proof system Kt (see Definition 3.2.15 in section 2 of Chapter 3) to­

gether with the proof system D plus the two axiom schemas

F<p -+ (<p V D<p)

P<p -+ (<p V D<p).

Theorem 4.3.3 (Completeness of Dt) For all <p E PML(<, >, #) and

'1' Ç PML(<, >, #):

'1' i-De <p if and only if <P l=m <p.

Proof: As in the previous proof. The additional axiom schemas now

guarantee

V~ V~' (~ < ~~ => (~~ = <P or <P 'f; if>')) and

'Vil> V'~' (~' < <P => (if>' = if> or if> 'f; <P')). •
Remark 4.3.1 Notice that we did not impose special restrictions on tem­

poral frames, in particular we do not assume that < is irreflexive. In the

case that we restriet ourselves to irreflexive frames the above axiom schemas

should be strengthened into F<p -+ D<p and P<p -+ D<p.

62 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

Using filtration it follows that these logies satisfy the finite model prop­

erty and hence are decidabie (see section 2 of Chapter 3).

After having presented these complete axiomatizations of l=m we now

look for simHar results for I= 1. As for modal and temporallogic (see section

2 of Chapter 3) we can only obtain such results for special 4">. So we search

for 4"> that are frame-complete, i.e. 4"> such that for all r.p

where 1-• stands for one of the above proof systems with an additional rule

of substitution that allows to infer any substitution instanee of a formula al­

ready obtained. 4"> containing only valnation-independent (closed) formulas

(i.e. formulas without any proposition letters) such as the formulas defining

BEGIN, END, SUC-P and SUC-F insection 2 can easily be proved frame­

complete as follows. For a closed formula r.p we have for all frames :F and

all valuations V:

:F r.p .ç;. (:F, V) I= r.p.

From this it is easy to prove for 4"> only containing closed formulas that for

all'I/Y

By the above completeness theorema for l=m it then follows that 4"> is frame­

complete. In this way combinations of BEGIN, END, SUC-P and SUC-F

yield 8 completeness theorems (the pairs BEGIN, SUC-P and END, SUC-F

are mutually exclusive).

We can also obtain more general completeness results for frames, for

example:

Proposition 4.3.2 When r.p corresponds to a frame-condition a purely on

< and a also holds in the underlying frame of the standard Henkin Model,

then { r.p} is frame-complete (this includes all <p that correspond to univers al

conditions a).

4.3. PROOF THEORY 63

Proof: The reason is this: when inspecting the completeness proofs above

we observe that the doubling of ?é-reflexive points to get a model with real

inequality gives a surjective function F from the new model to the old one

that is a strong homomorphism: x < y iff F(x) < F(y). The existence of

such a function makes the new and old model elementary equivalent in the

pure < -language. For these concepts from model theory the reader may

consult [CK 73]. •

For conditions involving < and = it is not so easy to get such complete­

ness results. For example, doubling ?é-reflexive points can disturb compa­

rability V xy(x < y V x= y V y <x). Nevertheless, we havearesult for

this case also.

Proposition 4.3.3 {Dep _,. (Pep V Fep) I ep E PML(<, >, #)} is frame­

complete.

Proof: The given set is an axiom schema that enforces comparability

on frames. Doubling ?é-reflexive points would disturb comparability. Fora

?é-reflexive point x we use the following construction instead differentiating

between two cases:

1. x is <-irreflexive. In this case just remove the ?é-loop in x: there is

no change in evaluation because of the extra axiom schema Dep _,.

(Pep V Fep).

2. x is <-reflexive. In this case replace x by (7l, <),i.e. the integers with

their standard ordering, replacing ';fJ by real inequality # and using

the same valnation everywhere. •
Conjecture 4.3.1 The construction in the above proof is generalizable to

a result stating completeness for all Sahlqvist-forms with respect to their

corresponding :first-order conditions.

A general question a bout completeness with respect to a class of frames (see

Definition 3.2.16 in section 2 of Chapter 3) is the following: ~uppose that

64 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

the pure temporal logic (i.e. hased on the operators F and P) of a class

of frames is recursively axiomatizahle, does the same hold for the temporal

logic where inequality is added (i.e. hased on the operators F, P and D)?

And if so, can this he done via a uniform extension?

4.4 Conclusions

We end this chapter with some conclusions. We extended modal and tempo­

rallogic with operators for reasoning ahout inequality. This simple idea has

interesting consequences: all the usual first-order properties of the alterna­

tive and preeedenee relation are now definahle. Furthermore, completeness

and decidability results were given and several semantic results from modal

and temporal logic could he adapted for the new logies. It is surprising

that this simple idea has not been proposed before. However, ideas in a

simHar direction were recently investigated independently in [Gor 88] and

[Bla 89]. In our terminology, [Gor 88] is concerned with the base language

PML(R, -R) where -R denotes the complement of R. As an extension also

the case PML(R, -R, -:j;, =)is hriefly considered. Equality is easily axioma­

tized by L=p ~pand the axiomatization of inequality is then deriv~d from

that given for complementary relations.

Like our idea to add an extra operator to modal and temporal logic

to make these more expressive, the logic introduced in [Bla 89] is also mo­

tivated (although stemming from quite a different application area, viz.

information systems) hy expressive power considerations. However, the ex­

tension proposed in that paper uses additional variables, called nominals,

insteadof an additional operator for inequality. The resulting logic is called

nominal tense logic. lts language consists of the Prioreau propositional

temporal logic of section 2 of Chapter 3 (with temporal operators G, F, H

and P) extended with nominals, represented hy i, i1 , ••• ,j,j1, ... , which are

considered as atoms. The crudal point about nominals is that they are in­

tended as propositions that are true at one and only one point. Therefore,

4.4. CONCLUSIONS 65

the extension of the notion of a valnation (see De:finition 3.2.1 insection 2

of Chapter 3) stipulates that for all nominals i, V(i) is a singleton (instead

of an arbitrary subset of the set of momentsin case of normal propositions).

So, nominals are so called because they name: they refer uniquely to points

of time. Apart from this extension, the other semantic notions can he de­

:fined in the usual way. One of the main results of [Bla 89] is a complete

axiomatization of nominal tense logic.

How is the expressive power of temporallogic a:ffected by this addition

of nominals? Like we did for PML(<, >, ::fi) in section 2 we give formulas

de:fining :first-order conditions that were not de:finable before:

IRREF: z ~ .., F i (irre:flexivity)

LIN: z V P i V F i (comparability).

Another indication of the obtained expressive power is given by the preser­

vation results. For nominal tense logic it can be shown that preservation

under disjoint unions and preservation under zigzag morphisms is lost, but

that preservation under generated subframes and anti-preservation under

ultrafilter extensions is maintained. The preservation result for generated

subframes means for example that the existence of an isolated point (i.e.

a point that is both a beginning and an end) cannot be defined (a coun­

terexample is a frame with more than one point but exactly one isolated

point: leaving out the isolated point gives a generated subframe). This is a

di:fference with PML(<, >, ::fi): as is clear from the de:fining formulas for a

beginning and an end (see section 2), the existence of an isolated point can

he de:fined by

E (H .L A G .L).

Indeed, for PML(<, >, ::fi) also preservation under generated subframes is

lost and only anti-preservation under ultrafilter extensions remains. This

gives rise to the question whether PML(<, >, ::fi) is strictly more expressive

than nominal tense logic. The answer is positive and can he proved using

66 CHAPTER 4. POLYMODAL LOGICS WITH INEQUALITY

the same techniques as for proving that all universal first-order conditions

are definable (Theorem 4.2.2 insection 2):

Let <p(i 1, ... , in) be a formula of nominal tense logic whose

nominals are i 1 , ••• , in, then

:F <p(it,•••,in)

if and only if

:F I= Upi1 A ••• A U pi,. - [pi1 /it, ... ,pi,./ in] <p,

where Pi1 , ••• ,pi,. are propositions not occurring in <p.

In other words: propositions that are true at one and only

one point (the intended function of nominals) can already he

expressed in PML(<, >, ::fi) by the use of the uniqueness operator

u.

The translation from nominal tense logic into PML(<, >, ::fi) also gives al­

ternative ways of defining first-order conditions, e.g. irrefl.exivity: the trans­

lation of i- •Fi is Up- (p- •Fp).
Another idea for using the D-operator is to add it to temporal logic

with until and since operators (see section 3 of Chapter 3). Consider for

example the closed (valnation-independent) formula

A (..L until T) .

This formulaexpresses a combination of discreteness and succession towards

future.

Chapter 5

Message Passing Systems

5.1 Introduetion

In this chapter we look at message passing systems and ways to specify

them. First we descri he the requirements which systems must ful:fill in order

to be quali:fied as a message passing system. Next we look at requirements

for specification languages that are important in the context of message

passing systems.

We will use temporal logic as a formalism for specifying message pass­

ing systems. Therefore, we first investigate the suitability of the standard

temporal logies like those treated in Chapter 3 for this purpose. To that

end we examine (propositional and first-order) temporal logies with until

and since (as studied by Kampand Stavi, see section 3 of Chapter 3) and

their capability to specify certain classes of message passing systems. We

prove that even such strong temporal logies (Kamp's logic is expressively

complete with respect to the class of complete linear orders, and Stavi's ex­

tension makes it expressively complete with respect to the class of alllinear

orders) cannot express a large number of natural classes of message pass­

ing systems. This extends aresult of Sistla et al. ([SCFG 82],(SCFM 84])

that unbounded buffers cannot be expressed in linear time temporallogic (a

smaller class of message passing systems and a weaker logic). In our anal-

67

68 CHAPTER 5. MESSAGE PASSING SYSTEMS

ysis the souree of this inexpressiveness is the impossibility to couple each

message that is delivered by a message passing system to a unique message

accepted by that system. This result seems to necessitate the enrichment of

TL-based formalisms for the specification of message passing systems, e.g.

with auxiliary data structures or histories as done, respectively, by Lam­

portand Hailpern. Observe that Lamport employs a hybrid formalism (TL

+ Data Structures), and that in Railpern's method similar systems, such

as FIFO and LIFO, do not have similar specifications. We show that no
'

such enrichment is logically required by introducing an additional axiom

within TL which formalizes the assumption that messages accepted by the

system can be uniquely identified. In this way, no extraneous formalisms

are introduced, and both FIFO and LIFO are expressible with equal ease.

We illustrate our way of specifying message passing systems with tem­

porallogic by three examples (the third example concerns the hierarchical

specification of a layered communication network) and drawsome conclu­

sions.

This chapter is organized as follows. In section 2 we describe which

systems we consider as message passing systems and specialize the require­

ments of Chapter 2 for these systems in section 3. In section 4 we prove

inexpressiveness results for temporallogies with until and since and their

consequence for the specification of message passing systems. Then, in sec­

tion 5 we review three solutions to overcome the previous logicallimitations.

We end the chapter with a series of specification examples of message pass­

ing systems and draw some conclusions in section 6, respectively section

7.

5.2 What are Message Passing Systems?

In this section we consider message passing systems from the very general

and abstract viewpoint of Chapter 2. In particular, message passing sys­

tems are viewed as a black box and as long as the observed behavior of

5.2. WHAT ARE MESSAGE PASSING SYSTEMS? 69

in(m) I
--------.;• Message Passing System

out(m)

Figure 5.1: Message Passing System as a Black Box

two message passing systems is the same as seen from the outside (i.e. in

terms of the elements of the interface) they are considered equivalent al­

though the systems may differ internally. A message passing system, then,

is a system that gets messages and passes these messages on to their des­

tination. A simple everyday example is a mailbox. The message can be a

letter (postcard etcetera) and the message passing system is supplied by the

postal company. lf we denote the input of a message m by in(m) and the

delivery of a messagem by out(m), Figure 5.1 represents a message pass­

ing system as a black box. So, in and out constitute the abstract interface

(see Chapter 2) with the environment and out(m) is considered to be the

system reaction on the environment action in(m). Hence, since a message

is given by the environment in(m) is the responsibility of the environment

and since a message is delivered by the system out(m) is the responsibility

of the system. In this representation the souree and destination of a mes­

sage are left implicit, i.e. in(m) means that there is a souree that gives m

to the message passing system and out(m) means that the message passing

system delivers m to its destination (note the asymmetry: the destination

of a message must always be known, while this is not necessarily the case

for the source). When sourees and destinations are explicitly represented

we get in(s, m) and for symmetry reasans out(d, m) where, however, always

d = destination(m).

The external behavior of a message passing system is characterized by

its input sequence, its output sequence and their relation in time. Hence,

only input, output and their relation determine the observable difference

between several types of message passing systems. This means that quite

70 CHAPTER 5. MESSAGE PASSING SYSTEMS

different message passing systems such as a simple buffer (or transmission

medium) and a complex communication network should he considered the

same as long as they exhibit the same observable (external) behavior, i.e.

the same relation in time between input and output.

The following basic assumption about in, out and their relation in time

is characteristic for all message passing systems:

NC the message passing system does not create messages by itself neither

NCl by creating new messages (a message is new when it has not

been given to the message passing system before), nor

NC2 by delivering duplicates of messages given to the message pass­

ing system.

In other words: the bag of delivered messages is always some part of the

bag of messages that have been g1ven to the message passing system. NC is

an abbreviation for No Creation. All message passing systems are required

to satisfy this assumption because they are intended to pass messages and

not to modify fcreate or replicate messages. Although it is known that

neither NCl nor NC2 can be guaranteed completely in practice it makes

sense to make such slightly idealized assumptions. Anyway one always has

the option of dropping one or both of them (although in case of dropping

NCl this would allow the system to exhibit almost any behavior). NC

is the basic safety assumption for message passing systems in the sense

that the system does not commit a bad thing (see e.g. [Lam 83a] for this

characterization of safety) by creating messages. Concerning liveness, the

basic assumption is that at least some messages that have been given to the

system will he delivered at their destination, as formulated in the following

liveness assumption:

LA if an infinite number of messages will be given to the message passing

system, an infinite number of these will be delivered at their destina­

tion.

5.2. WHAT ARE MESSAGE PASSING SYSTEMS? 71

Stated informally, the system may lose an arbitrary number of messages in

a row, but eventually it should deliver at least one message (and since time

extends to infinity repeating this we get the delivery of a second message,

a third message etcetera).

In the above representation of message passing systems we assume that

both in(m) and out(m) cause no blocking, i.e. the message passing system

can never refuse a message that is given to it (it always accepts the message)

and it is always able to deliver a message to its destination. In practice this

is usually achieved by associating input and output queues at both ends of

the message passing system (if we .do not make the unrealistic assumption

of infinite queues, this implies that in(m) leads to the loss of m when the

input queue is full and similarly for out(m) and the output queue).

Because of the physicallimitations in the real world it makes sense to

make also the following assumption of finite speed:

FS the speed of the message passing system is fini te, i.e. there is a positive

(infinite in case the message gets lost) delay between the acceptance

of a message and its delivery.

As we have seen above, the interface between the message passing system

and its environment consists of in and out. Sametimes more information

about the interface is available, for example that there is only a single input

line or a single output line (a line is called single when at any time there

can be at most one message present on the line) leading to the following

assumptions no simultaneons input and no simultaneons output:

SI at any moment of time, at most one message can be given to the

system,

SO at any moment of time, at most one message can be delivered to its

destination.

These assumptions apply in partienlar to the case of a single souree and a

single destination or in case of explicit representation of sourees and desti­

nations for each souree and destination separately. Although there cannot

72 CHAPTER 5. MESSAGE PASSING SYSTEMS

be two messages at the same time given to the system nor delivered by the

system, it is perfectly possible that there is a message given to the system

simultaneously with the delivery of a (different) message by the system.

Apart from the assumptions SI and SO being enforced by the interface

it is also possible that the environment, respectively the system, will en­

sure that no simultaneons inputs, respectively outputs, occur (in spite of

the presence of severa1 input, respectively output, lines). This is the rea­

son that the nomendature single input and single output is misleading for

the above assumptions SI and SO; therefore we call them no simultaneons

input and no simultaneons output, respectively.

In the above description it is not stated whether in(m) and out(m) are

considered events (and hence are instantaneous) or actions (and hence have

a certain duration). Anyway, for message passing systems it can be assumed

that they are events, because it is always possible to identify a unique mo­

ment of time at which a message can be said to be accepted, respectively

delivered: take for example the case where a message consists of bytes, then

one can let in(m) and out(m) correspond to the input (respectively output)

of the last byte of m (since we assumed that bytes are not observable but

only messages, in(m) can beseen as instantaneous, although on a finer level

of gran ulari ty the different bytes can be seen).

An example of a message passing system aften occurring in practice that

is subject to the above restrictions (NC, LA, FS, SI, SO) is a transmission

medium with a probability between zero and one of a successful transmis­

sion. Such a message passing system exhibits only external behaviors that

are allowed by these restrictions although the probability of the occurrence

of certain behaviors may vary.

Apart from the above restrictions, message passing systems can be dis­

tinguished by requiring additional properties. As we saw above the basic

liveness requirement for a message passing system is that at least some of

the accepted messages will be delivered. Sametimes we need the stronger

requirement that all accepted messages will eventually bedelivered in which

5.3. HOW TO SPECIFY MESSAGE PASSING SYSTEMS 73

case we will call the system perfect. In case messages may get lost (an im­

perfect system) this notion of a 'lost' message must again be considered as

a purely external one, i.e. whenever an accepted message is never delivered

it is considered as being lost, although it may remain forever in the message

passing system (and is not lost in the internal view of that system; an ex­

ample is a network with a routing algorithm that does not guarantee that

each message will eventually reach its destination).

Another distinction can be made by requiring a certain order in which

accepted messages are delivered (if at all). In the above we imposed no

order at all (this corresponds to a bag-like behavior). As an additional

requirement one can pose FIFO ordering (first-in first-out, like queues) or

LIFO ordering (last-in first-out, like stacks). It should be noted, however,

that the pure data structure view of queues and stacks is complicated by the

fact that these can be operated upon in parallel in case of message passing

systems by the input and output of messages (for a stack a simultaneons pop

and push, for example). An example of a FIFO message passing system is

an ordinary buffer. An example of an unordered (that is, in noorder at all)

message passing system is a communication networkin which each message

is sent on to an intermediate node depending on some routing algorithm.

Due to e.g. congestion on the chosen route, later messages may arrive earlier

when sent via alternative routes.

5.3 How to Specify Message Passing Systems

Let us review the requirements for a general specification language in Chap­

ter 2 in case of the speci:fication of message passing systems.

Our requirement of syntactical abstractness imposes that the specifica­

tion is phrased only in terms of in, out and messages. A common way

to specify FIFO message passing systems violating this requirement intro­

duces a queue into the speci:fication and hides it by means of an existential

quanti:fier (see section 5 of this chapter).

74 CHAPTER 5. MESSAGE PASSING SYSTEMS

Formal methods for the specification of message passing systems have

been investigated since decades and the results are promising (see e.g.

[MCS 82],[SM 82]).

Not all such methods conform to the requirement of conformity, for

example in section 5 of this chapter we will encounter a method that is well

suited for FIFO message passing systems but awkward for LIFO message

passing systems. U nifcirmity is also not always guaranteed: a combination of

a logic-based formalism for specifying control and abstract data type theory

for specifying data is in conflict with this requirement. (Note: it may be

that a hybrid formalism can sometimes not be avoided. Nevertheless, when

possible a uniform formalism is to be preferred above a hybrid one.)

Because message passing systems are often designed in a layered fashion

(with severallevels of communication protocols) top-down and bottorn-up

development are important features of a specification method for such sys­

tems.

5.4 Inexpressiveness Results

Our inexpressiveness results concern classes of message passing systems that

cannot be characterized in temporallogies with until and since (see sec­

tion 3 of Chapter 3). For that purpose we first prove the following special

preservation theorem for L(until, since).

Definition 5.4.1 Let <p E L(until, since), M be a model, t E T. Define

[t]M,cp := {'IjlE SF(c.p) I M,t I= 'Ijl}

where SF(c.p) is thesetof subformulas of <p (including <p itself).

Definition 5 .4.2 Let M be a model and t 1 , t 2 E T such that t 1 < t 2 •

Then M~~ is the rednetion of M to

5.4. INEXPRESSIVENESS RESULTS 75

Remark 5.4.1 M!~ is a submodel of M but not necessarily a generated

submodel of M.

Theorem 5.4.1 Let <p E L(until,since), M be a modeland t1,t2 ET
such that t1 :::::; t2 and [tl]M,rp = [t2]M,rp· Then for all t E Tf

1
2

:

M, t I= <p if and only if M!~, t I= <p.

Proof: By structural induction on <p. We prove the theorem for one of

the interesting cases.

Let <p = <J'l until <p2, M be a model and t1, t2 ET such that t1 :::::; t2.

Assume

(i) [tt]M,rp = [t2]M,rp·

We are going to show that M, t

Herree assuming

(ii) t :::::; t1 and

(iii) M,t I= <J'1 until<p2,

we prove that M!;, t I= <J'l until <J'2·

From (i) and the induction hypothesis wededuce

(iv) M, t l= <J'l implies M!~, t <J'l for all t E Tf?,

(v) M,t I= <p2 implies M~~,t I= <p2 for all tE Tf;.

From (iii) it follows that

(vi) there exists a to E T such that t < to and M, to I= <J'2 and M, t1 I= <p1

for all t1 E T such that t < t' and t1 < t0 •

Distinguish between two cases:

(a) t0 :::::; t1: The result follows in this case immediately from (iv),(v) and

(vi)

76 CHAPTER 5. MESSAGE PASSING SYSTEMS

(b) t1 < t0: In this case by (ii),(vi) wegetalso M,t1 <p1 until<p2. By

(i) it follows that M, t2 I= <t'l until <t'2· Hence

(vii) there exists a ta ET such that t2 < ta and M, ta I= <p2

and M, t' I= <p1 for all t1 ET such that t2 < t' and ti < t3 •

Because of t1 < t0 and (vi) we have also

(viii) M, t' <p1 for all ti E T such that t < t' and ti ~ t1 .

Then M~~,t I= <p1 until<p2 by (vii) and (viii).

The reverse case M!~, t I= <p implies M, t
similar arguments.

<p for t ~ t 1 can be proved by

•
Remark 5.4.2 The result of Sistla et al. (see [SCFG 82]) is obtained by

consiclering only w-models (see section 3 of Chapter 3) and noting that their

operators next-time, until, last-time and since are all expressible in terms

of until and since.

Remark 5.4.3 The theorem can be strengthened to Stavi's language where

u"irtil and s~e are added, i.e. the theorem is also valid for L(until, since,

u"irtil,s~e). We can use simHar arguments as in the proof above. To

illustrate this we now prove the same case as we treated in the proof above.

Let <p = <t'l u"irtil <p2, M be a model and t1, t2 E T such that t1 ~ t2 and

[h].M,rp = [t2].M,rp· We are going to show that M, t <p implies M!:, t I= <p

for t ~ t1. Distinguish between two cases:

(a) Vta(t < ta < t1 => M, ta I= <t't)·
Our first aim is to show M, t1 <p. In case t = t 1 this follows

immediately. So suppose t < t1. Since M, t I= <p1 u"irtil <p2, the

second conjunct in the definition of u"irlil (see section 3 of Chapter 3)

where t1 functions as ti' and t3 as t' leads to M, t1 I= <p1 and there

exists to > t1 such that Vt4(h < t4 < to => M, t4 <t'l)· From this

we may conclude M, t1 <p as desired. N ow, by [tt].M,rp = [t2]M,rp
it follows that M, t2 I= <p and therefore M!:, t I= <p.

5.4. INEXPRESSIVENESS RESULTS 77

(b) Th ere exists a. ts such tha.t t < ts < t1 a.nd M, ta I= -, r.p1.

We claim tha.t there also exists a. t4 such tha.t t < t4 < t3 a.nd

M,t4 I= -, 'Pl· Otherwise Vto (t < to < ts ::::} M,to I= 'Pt), but

then by M, t r.p it follows that M, t3 <pt, a contradiction.

The next claim is tha.t we can fi.nd ts $ ts tha.t fulfills the role of t111

in the third conjunct of the defi.nition of ulrlil. Suppose t 5 > t3 , then

we can conclude M, ts I= 'P2 because t < ta < t5 and t < t 4 < t3

and M, t4 I= .., 'Pl· Now, since M, ts I= ..,'Pl and M, t3 I= 1.()2 we

ca.n a.s well take t5 = ta. Since ts < t1 this means tha.t a.ll moments

involved in the semantics of M, t I= r.p preeede t 1 so the cut between

t 1 a.nd t 2 has no influence upon this. Hence M:~, t I= r.p.

We now apply this theorem to prove that ma.ny classes of message passing

systems ca.nnot be specifi.ed in L(until, since).

Corollary 5.4.1 The class of a.ll message passing systems (i.e. those sys­

tems satisfying the No Creation a.nd basic liveness a.ssumptions NC a.nd

LA of section 2) ca.nnot be specified in L(until, since).

Proof: Suppose there exists a formula r.p characterizing this class. The

number of subformulae of c.p is bounded, say by N. Now choose n > N and

consider the following model M:

nx nx

~n(m) in(m) out(m) out(m)

where m E M essages.

This is a possible behavior for this cla.ss. Hence r.p is satisfied in M. Beca.use

n > N there are i,j such that 1 $ i < j $ n and [ti]M,rp = [ti]M,rp·
Applying the theorem we conclude that r.p is also satisfied in a. model with

78 CHAPTER 5. MESSAGE PASSING SYSTEMS

less than n inputs and exactly n outputs. This violates the No Creation

assumption. Hence such a <p characterizing this class cannot exist. •

Remark 5.4.4 Since the model M remains a possible behavior when we

add any combination of further requirements from section 2 such as finite

speed, perfectness and one ofthe ordering disciplines FIFO and LIFO (since

M uses only one message it is not influenced by such an ordering property)

also these classes cannot be specified in L(until, since).

Remark 5.4.5 The above proof may not come as a surprise since roodels

like M represent the context-free language {in(m)nout(m)n In E IN} and

propositional temporal logic corresponds to a subset of the w-regular lan­

guages (see e.g. [Tho 86]). However, the above corollary can be strengthened

to first-order temporallogic as follows. Because the model M uses only a

finite number of different messages (in this case 1), allowing quantification

(using global variables) over the message alphabet (which is here the un­

derlying domain of data) will not help; hence the result can be generalized

to this first-order variant with until and since.

Remark 5.4.6 Since the theorem is also valid for Stavi's language we can

strengthen the Corollary and the previous two remarks to the logies where

u'itil and sinèe are added.

The essential problem in the specification of message passing systems

is that we need both quantification (to account for a possibly infinite mes­

sage alphabet) and, more importantly, the coupling of a reaction to the

unique action that caused this reaction (to account for the counting of an

unbounded number of inputs of the samemessage). Hence, we could not de­

mand that toeach out(m) in a row of n there corresponded a unique in(m).

To be even more specific, the problem is to specify assumption NC2 of

section 2 forbidding the duplication of messages given to the system. This

fact is obvious when inspecting the above proof of the Corollary: the model

M in that proof is clearly involved with the problem of duplication.

5.5. EXTENSIONS OF TEMPORAL LOGIC 79

5.5 Extensions of Temporal Logic

In this section we consider three solutions to overcome the logicallimitations

of the previous section.

One possibility is the addition of special data structures to characterize

the internal behavior of a system, e.g. queues for FIFO-behavior, stacks

for LIFO-behavior etcetera. In the final specification these special data

structures are bidden semantically by means of an existential quantifier.

One advocate of this approach is Lamport (see e.g. [Lam 85]). We feel that

this approach is not in accordance with several of the desired properties for

a specification methodology mentioned in Chapter 2:

1. using an additional internal data structure is implementation biased

and as such violates the syntactical abstractness requirement,

2. the behavior ofthe additional component is described by an additional

formalism such as abstract data types, and hence the method loses its

uniformity,

3. for different applications one has to plug in different additional com­

ponents which is in conflict with the conformity requirement.

A second approach is to add special auxiliary variables and operations

on them with fixed interpretations. One example of this is history variables

with the prefix relation as in the work of Hailpern (see e.g. [Hai 80]). In our

opinion, a problem with this approach is that it is biased towards certain

behaviors: for specifying FIFO this method is well suited, but awkward

for other ordering disciplines such as LIFO. In general one then has to

use projections on histories to access the individual elements. What one

would like to have is a set of operations on histories such that one can

specify each application in terms of this set (such as done for specifying

80 CHAPTER 5. MESSAGE PASSING SYSTEMS

safety properties in [ZRE 85]). So in this case there is a conflict with the

conformity requirement.

Note that in these approaches incoming messages are implicitly made

unique by their place in the data structure, respectively, the history. This

resolves the coupling of a reaction to a unique action. In [KR 85] a third

approach can be found in which the unique identification of incoming mes­

sages is explicitly assnmed on beforehand, e.g. hy means of conceptual

time stamps. This assumption can he justified hy the notion of data­

independenee of [Wol86]. Informally, a system is called data-independent

when the valnes of the supplied data do not influence the functional be­

havior of the system. Since message passing systems are intended to pass

data, they can he viewed as being data-independent. One of the results of

[Wol 86] implies that the correctness of a data-independent system does not

depend on the nniqueness of the incoming data. Hence this assumption of

unique identification is not really a restrictive one.

Another look at the assumption of unique identification is provided hy

seeing the message passing system as embedded in an additional interface

handling the conceptual time stamps (or counters for that matter) as in

Figure 5.2. Here, unique identification transforms an old message m into

in(m) supply in(m, i) Message out(m, i) strip out(m)
unique Passing
counter System counter

.

I

Figure 5.2: Unique Identification by Using Counters

a pair (m, i) where i is a unique identification. As a si de remark, this

5.5. EXTENSIONS OF TEMPORAL LOGIC 81

transformation also gives us the possibility to use unique identi:fication in the

case when a system does nat only pass messages but also perfarms a certain

operation, say j, on them (unique identi:fication might seem probiernatie

in this context at :first sight since f need nat be injective). Now an old

messagem will be transformed into the pair (f(m),i) whence the input of

two messages will stilllead to the output of two different messages despite

the fact that f may transfarm two different old messages into an identical

result.

Although the use of time stamps enforces in:finitely many messages even

in the case of a :finite message alphabet, it is again data· independenee that

still allows for propositional reasoning: [Wol 86] shows how for a data.

independent system properties over an in:finite data domain may be reduced

to properties over a :finite data domain. The advantages of assuming unique

identi:fication are threefold:

1. syntactical abstractness: the only predicates are in(m) and out(m),

2. uniformity: the speci:fications remain purely temporal,

3. conformity: in [KR 85] it is demonstrated that by slight changes of

the speci:fication we can descri he different properties of systems (e.g.

whether it can lose messages or nat, whether the ordering is FIFO or

LIFO etcetera, see section 6.1 ofthis chapter).

As a consequence of our decision to describe the relation between events in

a purely temporal way, the resulting specifications can become rather elabo­

rate. This might be alleviated by modularizing the specification of a system

into groups of axioms descrihing a partienlar aspect (e.g. subcomponent)

of this system.

82 CHAPTER 5. MESSAGE PASSING SYSTEMS

5.6 Specifi.cation Examples

In this section we illustrate the application of temporal logic to message

passing systems by a series of examples. The first example treats pure

message passing systems, example two is a two-way message passing sys­

tem with the possibility to close one or both sides of the system and the

last example gives a hierarchical specification of a layered communication

network.

In our specifications we assume not only linearity of the ordering but

also succession towards the future in order to reason a bout infinite behavior,

e.g. message passing systems may opera te forever. In partienlar we think of

standard roodels like the natura! numbers, the integers, the (non-negative)

rational and real numbers.

The priority of operators in the specification examples is as follows:

unary operators have the highest priority foliowed by until and since­

like operators (including the unless-operator defined below), then come

A (conjunction) and V (disjunction) and the least priority is given to -+

(implication) and (equivalence). With respect to priority, universa! and

existential quantification are treated as unary operators.

Weneed several additional temporal operators in our specifications. For

unary temporal operators we showed in section 2 of Chapter 4 how to make

these refiexive. Reeall from that section how the refiexive dosure of MR

and LR was defined:

MR<P := <P V MR<P

and

LR <P := <P A LR <P·

In partienlar we will use P, the refiexive version of the P -operator and sirn­

ilady F and G (for the latter two we will use instead their more usu al rep­

resentation in computer science <>, respectively o, see section 4 of Chapter

3). Apart from these reflexive operators we also need a weak version of the

until denoted by unless which does not require that its second argument

5.6. SPECIFICATION EXAMPLES 83

will become true eventually:

I.J't unless <p2 := G I.J'l V I.J't until I.J'2·

In the specifications we leave out universa! quantifications over the data

domains (so all free variables ranging over a data domain should be uni­

versally quantified by a series of univeraal quantifiers in front of the given

axiom).

In the following we only specify the required behavior of the system

in its environment. The specification of the interface can be immediately

derived from the informal description of the embedding of the system in

its environment. For example, in case of message passing systems section

2 gives all relevant information: in(m) is an event with parameter m (an

element from the message domain) for which the environment is responsible

and which is directed from the environment to the system; similarly, out(m)
is an event for which the system is responsible and which is directed from the

system to the environment. When the interface is that simple, a separate

specification becomes superfiuous.

The numbering of the axioms of a specification obeys the following con­

ventions. Closely related axioms have the same number ending with a,b

et cetera (e.g. axioms 4a and 4b). 1 denotes replacement of the correspond­

ing axiom by another (e.g. axiom 3' replaces axiom 3). Whenever x is added

to the numbering this involves an additional axiom for special cases (e.g.

axiom 5x supplements axiom 5).

5.6.1 Example 1: Pure Message Passing Systems

We refer to sections 2 and 5 for the definition of message passing systems

and the background on the application of temporallogic to the specification

of these systems. Reeall from section 2 that in and out are considered as

events (and hence are instantaneous) and that they do not cause blocking.

These two features enable us to model in and out by (unary) predicates.

84 CHAPTER 5. MESSAGE PASSING SYSTEMS

First we formulate our assumption about the uniqueness of incoming

messages (the Unique Identification assumption):

MPl in(m) -+ ,Din(m).

Here and in the sequel, MP is an abbreviation for message passing. This

axiom could be formulated in several equivalent ways such as A , in(m) V

U in(m) or (in(m) 1\ D in(m1
)) -+ m1 ::j:: m, but in any case the most

natural way of specifying that in(m) does not occur twice is by using the D­

operator insome form. Apart from the technical reasons for introducing it

in Chapter 4, this gives also an indication for the practical usefulness of this

operator. Under this Unique ldentification assumption the most important

basic assumption of message passing systems, No Creation (see section 2)

can be specified by:

MP2a

MP2b

out(m) -+ P in(m)

out(m) -+ , D out(m).

The first of these two axioms represents the demand that a message passing

system does not create new messages while the second axiom represents

the absence of duplicate messages (since the input consists of unique mes­

sages by the Unique Identification assumption, the output must also consist

of unique messages because no messages may be created by the message

passing system). Of course these two axioms can hè combined into one:

MP2 out(m) -+ P in(m) A ..., D out(m).

N otice that the axioms MP2a and MPl taken tagether imply that in(m) -+

,Pout(m) because U<p and 1/J-+ P<p imply <p-+ ,p't/J.
In general, when perfectness of the message passing system is not as­

sumed, the basic liveness assumption from section 2 is essential to ensure

that at least some messages arrive (otherwise the system that throws all

messages away would satisfy all conditions for a message passing system):

MP3 GF3m in(m) -+ F3m out(m).

5.6. SPECIFICATION EXAMPLES 85

In section 2 aJso the assumption of fini te speed is mentioned for realistic

purposes. Finite speed can he enforced by replacing the P-operator in axiom

MP2a above by its strict (i.e. irreftexive) versionPand similarly for axiom

MP2:

MP2a'
MP2'

out(m) --+ P in(m)

out(m) --+ Pin(m) A -,Dout(m).

No simultaneous input and no simultaneous output can he specified respec­

tively by

MP4a
MP4b

in(m) A in(m') --+ m' == m

out(m) A out(m') --+ m' = m.

This concludes the survey of the first set of assumptions for message passing

systems. We now turn to the additionaJ assumptions about perfectness and

ordering. The perfectness of a message passing system (which implies the

basic liveness assumption above) can be expressed by

MP3' in(m) --+ Oout(m).

When finite speed is assumed, the 0 in the axiom above can he replaced by

its strict version F. What remains is the specification of special orderings of

the output with respect to the input. We look at the cases of FIFO (queue­

like) and LIFO (stack-like). First-in first-out requires the sameordering in

the output as in the input:

MP5 out(m) A P out(m') --+ P (in(m) A P in(m1
)).

The above axiom suffices when no simultaneous output is assumed. Other­

wise aJso the case when two messages are output at the same time should

be considered. This is reflected in the following axiom:

MP5x out(m) A out(m') --+ P (in(m) A in(m')).

This exception is caused by the following asymmetry between input and

output when requiring FIFO-behavior:

86 CHAPTER 5. MESSAGE PASSING SYSTEMS

in(m')

in(m) out(m) out(m')

is allowed (when mand m' are input at the sametime none of these messages

can be said to have come in fi.rst, so they may be output in an arbitrary

order), but

in(m) in(m')

out(m')

out(m)

is not (when m is input before m1
, it should also come out first in the

output).

For last-in first-out we get similar specifications, although a bit more

complicated because stack-like behavior allows apart from the reversal of

the ordering from output and that from input also the possibility that a

message has already been output by the system in the meantime so that

a comparison with a message that has been input after that is not needed

anymore:

MP6

Here we consider

out(m) /1. P out(m') -+

P (in(m') /1. P in(m)) V P (out(m') /1. .., P in(m)).

in(m')

out(m')

in(m) out(m)

5.6. SPECIFICATION EXAMPLES 87

as correct LIFO-behavior (otherwise the last P in the axiom above should be

replaced by its reflexive version P). This is comparable with a simultaneons

pop and push (recall from section 2 that input and output on both sides

of our queues and stacks can operate in parallel, e.g. the case in(m) 1\

out(m') is always possible, also when assuming no simultaneous input and

no simultaneous output). Just as in the FIFO-case, when no simultaneous

output is not assumed, an additional axiom is needed, in this case:

MP6x out(m) 1\ out(m') ---+

(• (in(m) V in(m')) ---+ P (in(m) 1\ in(m'))).

Again there is a little complication, this time because of the correct LIFO­

behavior (unless we suppose finite speed):

in(m)

out(m')

out(m)

in(m1
)

(although m' comes in last, m can be considered to have been already

output).

In the above account we mixed axioms repreaenting environment as­

sumptions (for example the unique identification assumption) and axioms

repreaenting system requirements (for example no creation). A clearer dis­

tinetion between these two classes of axioma can be provided by writing the

speci:fication in the form

where At, ... , Am are the environment assumptions and Ai, . .. , A~ the sys­

tem requirements. As an example we give the specification of a perfect, finite

speed message passing system with no simultaneous input and no simulta­

neons output in this form:

88 CHAPTER 5. MESSAGE PASSING SYSTEMS

in(m) - -,Din(m),

in(m) A in(m1
) - m 1 = m

out(m) - P in(m) A .., D out(m),

in(m) - F out(m),

out(m) A out(m') - m' = m.

This example made use of PML(<, >, #).

5.6.2 Example 2: Channel with Disconneet

In this example we consider a channel between two endpoints 'a' and 'b'.

The original informal speci:fication is contained in [DHJR 85]:

The 'channel' between endpoints 'a' and 'b' can pass messages

in both directions simultaneously, until it receives a 'disconnect'

message from one end, after which it neither delivers nor ac­

cepts messages at that end. It continnes to deliver and accept

messages at the other end until the 'disconnect' message arrives,

after which it can do nothing. The order of messages sent in a

given direction is preserved.

The channel can beseen as a two-way message passing system as in Figure

5.3. Bye we denote one of the endpoints, i.e. e E {a,b}, and e will denote

the other end point, i.e. ä = b and b = a. The pairs inc11 outb and inb, outa

farm a message passing system with FIFO-ordering. Therefore we assume:

the Unique Identi:fication assumption (MPl) for ine

No Creation and :finite speed (MP21
) for ine, outë

no simultaneons input and output (MP4a,b) for ine, oute

:first-in nrst-out (MP5) for ine, outë.

5.6. SPECIFICATION EXAMPLES 89

ina(m) outb(m)

outa(m) inb(m)

Figure 5.3: Channel with Disconneet

The only non-standard part of this double message passing system concerns

the possibility of a disconneet message. By discon neet(m) we will denote

that m is a disconneet message. Input of a disconneet message at one of

the two sides causes the closing of that side (for the case of output of a

disconneet message, see Remark 5.6.2 below). This can he described by

CDl ine(m) 1\ disconnect(m) - G (..., 3 m [ine(m) V oute(m)]).

So, after the input of a disconneet message at e the channel doesnotaccept

nor deliver any message anymore at that side. The delivery of messages

is indeed under control of the channel, but what about the input of mes­

sages? In section 2 we gave a representation of message passing systems

that allowed no blocking of the input, i.e. the system always accepts a mes­

sage given to it. Also stated there is that this is usually achieved by the

association of input and output queues. In normal cases the no blocking

assumption makes sense because it abstracts from the subtie difference be­

tween the input of a message by the environment and the acceptance of that

message by the system. Returning to our example, messages can still be

given to a side after the input of a disconneet message but the channel will

not accept such messages. In terms of the input queue the message can he

put in the queue but the channel will not pass it to the other side.

The remaining property of message passing systems that we did not

consider so far is perfectness. In this case the two message passing systems

90 CHAPTER 5. MESSAGE PASSING SYSTEMS

a.re conditionally perfect, viz. perfect unless disconnected. To describe the

state of being disconnected define

dis conneetede := P 3 m [ine(m) A discon neet(m)] .

N ow, perfect unless disconnected ca.n be specified by

CD2 ine(m) --+ <> (oute(m) V disconnectede)·

In this. a.xiom we need not a.dditionally a.ssume ..., discon neetede in the an­

tecedent beca.use ine(m) A discon neetede ca.nnot occur a.ccording to a.xiom

CDl.

Remark 5.6.1 Axiom CD2 allows the cha.nnel to dela.y messages very long

a.nd wa.it for a. disconneet message so tha.t no message needs to be delivered.

Only if there will be no disconneet a.t a. si de, the cha.nnel is obliged to deliver

the a.ccepted messages eventually.

Remark 5.6.2 In the a.bove a. disconneet message is considered a.s a. normal

messa.ge, but oute(m) A disconnect(m) doesnotlead to closing of tha.t

side (only input of a. disconneet message leads to closing). If a.lso the output

of a. disconneet message should lead to closing, in a.xiom CDl a.bove the

antecedent should he cha.nged into (ine(m) V oute(m)) A disconnect(m).

Remark 5.6.3 When loss of messages is allowed, a.xiom CD2 must be

repla.ced by the following conditiona.lliveness requirement:

CD2' G F 3 m ine(m) --+ F (3 m oute(m) V disconnectede)·

Even if the output of a. disconneet message leads to closing of tha.t side,

the disconnectede is needed beca.use the disconneet message ca.n get lost

(otherwise its a.rrival a.t e would lead to closing of endpointe a.nd the premiss

G F 3 m i ne (m) could never be fulfilled).

In this exa.mple we made use of PML(<, >, =tf).

5.6. SPECIFICATION EXAMPLES 91

5.6.3 Example 3: Layered Communication Network

Introduetion

In this example we consider a communication network consisting of three

levels and layers, see Figure 5.4. Although we are aware that the usual

level 1
layer 1 (end~to~end) in(n,m), out(n,m)

level 2

layer 2 (packets) in(n,p), out(n,p)
level 3

layer 3 (intermediate nodes) transmit(p, n, i), arrive(p, n, i)

Figure 5.4: Layered Communication Network

numbering for layered networks is the other way around (lowest layer is

numbered 1 as in the ISO OSI model), the given numbering is the most

convenient for the current example. On level! there are messages and nodes

and the service provided by layer 1 is end-ta-end reliable message passing

using in(n,m) (noden sends message m) and out(n,m) (mis delivered

at its destination node n). This is a perfect message passing system with

multiple sourees and destinations as treated insection 2 of this chapter. As

is also given there, the relation between the delivery of a message and the

destination of that message is given by

out(n, m) --+- n = destination(m).

On the second level the messages are decomposed into packets and

the service provided by layer 2 is end-ta-end reliable packet passing using

in(n, p) (node n sends pack et p) and out(n, p) (p is delivered at its destina­

tion node n). This is a perfect packet passing system with multiple sourees

and destinations. In general, the difference between a message and a packet

92 CHAPTER 5. MESSAGE PASSING SYSTEMS

is that a packet usually has a fixed size while the length of a message can be

arbitrary (and ofteneven unbounded). When all packets of a message have

arrived at the destination the message will be delivered. For the delivery of

a packet and the destination of that packet the same relation holds as for

messages above:

out(n,p) --l> n = de.stination(p).

The relation between a message and the packets into which it is decomposed

is as follows. This relation is characteristic (giving the minimal demands)

for message segmenting protocols. By p E m we denote that p is amongst

the packets into which m is decomposed. Each message consists of at least

one packet:

3p p Em.

On the other hand, a message is decomposed only in a finite number of

packets. Therefore, instead of V p [p E m --lo •••] we will henceforth write

/\pEm ••. and similarly V pEm ••• instead of 3 p [p E m A ••.] . In order to

be able to decide at the destination of a packet to which message it belongs

we assume that each packet belongs to at most one message:

p E m 1\ p E m' --l> m' = m.

Furthermore, the destination of a packet which belongs toa message must

obviously he the same as the destination of that message:

p E m --lo de.stination(p) = de.stination(m).

On level 3 a network of intermediate nodes is introduced via which

packets are transmitted towards their destination. The service provided by

layer 3 is point-to-point reliable transmission using transmit(p, n, i) (packet

pis transmitted from node n to node i) and arrive(p, n, i) (packet p coming

from noden arrives at node i). The transmission medium between two such

nodes n and i provides a perfect packet passing system. A packet traveling

on the way to its destination may traverse an intermediatenode more than

5.6. SPECIFICATION EXAMPLES 93

once: sametirnes a packet can corne back, e.g. because an interrnediate

node in the network decides to reroute the packet (and incidentally the new

route traverses old interrnediate nodes) due to congestion of the networkin

a certain direction. This entails a cornplication for the unique identification

assurnption about packets at this level.

Layer 3 assurnes the availability of perfect transmission media. The next

layer in this hierarchical cornrnunication network could be the irnplernenta­

tion of such perfect transmission media by rneans of imperfect ones using

acknowledgments and time-out for retransmission. Since such a layer in­

volves quantitative temporal properties the specification of such a fourth

layer would belong to the next chapter. In example 6 of section 5 of that

chapter we will specify ari imperfect transmission medium.

Layer 1

This layer provides a perfect message passing system with multiple sourees

and destinations. Because there are multiple sourees and destinations the

forrnulation of the unique identification assurnption about messages must

also take into account messages that originate frorn different sourees as is

done in the following two axiorns:

in(n,m) -7 •Din(n',m)

in(n, m) A in(n1
, m) -7 n1 n.

The last axiorn could be viewed as the opposite of the no simultaneons input

assumption (see Exarnple 1): two different sourees (nodes n and n') rnay not

generate the samemessage at the sametime (for different rnoments in time

this is ensured by the first axiorn). In practice, this is norrnally anyway the

case because a message usually includes a field for the souree of the rnessage.

In order not to have to deal with the exceptional case of the input of a

message at its destination in the sequel, we assurne for ease of presentation

that this will not happen:

..., in(destination(m), m).

94 CHAPTER 5. MESSAGEPASSING SYSTEMS

As we have seen in Example 1, the assumptions of No Creation and finite

speed can be taken together, in the case of multiple sourees and destinations

as follows:

out(n,m)----? P3n'in(n',m) A -,Dout(n,m).

Remember from the Introduetion of this example that out obeys the

requirement

out(n, m) ----? n = destination(m).

The only remaining property left is perfectness:

in(n, m) ----? <> out(destination(m), m).

Layer 2

This layer provides a perfect packet passing system with multiple sourees

and destinations. The only difference with layer 1 is the sort of data that is

passed: packets instead of messages. The following list of axioms is derived

from that of layer 1 by substituting the packet variabie p for the message

variabie m:

in(n,p) -+ -, D in(n',p)

in(n,p) A in(n',p) -+ n1 = n

• in(destination(p), p)

out(n,p) -+ P 3 n' in(n',p) A -, D out(n,p)

out(n, p) -+ n = destination(p)

in(n,p) -+ Oout(destination(p),p).

5.6. SPECIFICATION EXAMPLES 95

Relating Layer 1 and Layer 2

As we described in the Introduetion of this example, the second level first

disassembles a message into packets, sends the packets through the packet

passing system provided by layer 2 and finally reaasembles the packets into

the message at the destination. So, pictorially layer 1 can he represented

as in Figure 5.5. Reeall from the Introduetion of this example the relation

disassemblei reassemble

in(n,m) message in(n,p) layer out(n,p) packets out(n,m)

into 2 into

packets ~ message

Figure 5.5: Representation of Layer 1

between packets and messages obeying the following axioms:

3p pE m

p E m A p E m' - m 1 = m

p E m - destination(p) = destination(m).

Furthermore, we write 1\pem ••• instead of V p [p E m - ...] and V pEm •••

instead of 3 p [p E m A •••] because a message can only be disassembied

into a finite number of packets.

In order to describe the relation between layer 1 and layer 2 we have to

specify the conneetion between in(n, m) and in(n, p) via the disassembling

96 CHAPTER 5. MESSAGE PASSING SYSTEMS

of messages, respectively the conneetion between out(n, p) and out(n, m)

via the reassembling of packets.

First, the input of a message at a node leads to the sending of all its

packets from that node into the packet passing system of layer 2:

in(n,m) -+ 1\ 0 (in(n,p) A .., D in(n,p)).
p€m

The part .., D in(n, p) ensures that a pack et is sent only once and relies on

the unique identification of messages. Reversely, a packet may only besent

from a node into the packet passing system of layer 2 when it is part of a

message that bas been input at that node before:

in(n,p) -+ 3 m [p E m A P in(n, m)].

At the other side, the arrival of all packets that constitute a message

leads to the output of that message:

1\ Pout(n,p) A V out(n,p) -+ Oout(n,m).
pEm pEm

Reversely, a message may only be output when all its packets have arrived

and it basnotbeen output before (in order to avoid duplication of messages):

out(n, m) -+ .., P out(n, m) A 1\ P out(n,p).
pEm

These four axioms describe precisely the relationship between in(n, m)

and in(n,p), respectively out(n,p) and out(n, m). Having defined these

relationships we can ask ourselves whether the second level is a correct

refinement of the first level, i.e. whether we can prove from the specification

of layer 2 and the above relationship between layer 1 and layer 2 that the

specification of layer 1 is fulfilled. To this end we have to prove all axioms

oflayer 1 except of course the assumptions oflayer 1 about its environment,

namely the two axioms about the unique identification of messages and the

axiom about not inputting a message at its destination.

No creation of new messages is provedas follows.

5.6. SPECIFICATION EXAMPLES

Suppose out(n, m). By the relation between out(n, m) and

out(n, p) it then follows that Apem P out(n, p). Since 3 p p E m

(the first axiom relating packets and messages) this certainly

implies vpEm p out(n,p). The no creation of new packets ax­

iom for layer 2 gives US vpEm p 3 n' in(n',p). The relation

between in(n, p) and in(n, m) then implies V pEm 3 n' P 3 m'[p E

m' 1\ Pin(n', m')]. N ow, the second axiom relating packets and

messages (p E m 1\ p E m' ~ m' = m) gives m' = m, so we

may condude vpEm 3 n' p p in(n', m). By leaving out p (which

plays no role anymore) and contracting the P and P we arrive

at the desired condusion P 3 n' in(n', m).

97

The second part ofthe No Creation requirement, no duplication of messages

is easier: from the last axiom of the four axioms relating layer 1 and layer 2 it

follows that out(n, m) ~ •Pout(n, m) and hence out(n, m) ~ •Dout(n, m)

(since Dep = Pep V Fep for linear orderings).

Next we have to show that out(n,m) ~ n = destination(m).

As above we can derive from out(n, m) that V pEm P out(n, p). The axiom

out(n, p) ~ n = destination(p) of layer 2 then implies that V pEm n =

destination(p). By the third axiom relating packets and messages (p E

m ~ destination(p) = destination(m)) the desired condusion n =
destination(m) follows.

The final axiom of layer 1 to be proved is perfectness:

in(n, m) ~ <>out(destination(m), m).

We prove this as follows.

Suppose in(n, m). By the relation between in(n, m) and

in(n,p) this implies Apem <> in(n,p). By the perfectness of

layer 2 we get Apem <><>out(destination(p),p). Contracting <><>

into a single <> and noting that the finite conjunction leads to

a moment when all packets of m have reached their destination

98 CHAPTER 5. MESSAGE PASSING SYSTEMS

we may conclude from this 0 (Apem P out(destination(p), p) A

Vpem out(destination(p),p)). By the third axiom relating pack­

ets and messages (p E m -+ destination(p) == destination(m))

this transfarms into 0 (Apem P out(destination(m),p) A

Vpem out(destination(m),p)). Now, by the relation between

out(n, p) and out(n, m) this implies 0 0 out(destination(m), m)

so that again contracting 0 0 into 0 yields the desired conclu­

sion.

The above proof is given on a semantica! level. As an illustration we show

how such an argument can he transformed into a forma! proof:

1. in(n, m)

2. in(n, m) -+ Apem 0 (in(n,p) A ., D in(n,p))

(relation in(n, m) and in(n,p))

3. 1\pem 0 (in(n,p) A ., D in(n,p))

4. 0 (<p A 'Ij;) -+ 0 <p

5. 1\pem 0 in(n,p)

6. in(n, p) -+ 0 out(destination(p), p)

7. 1\pem 0 0 out(destination(p), p)

(assumption)

(1,2,Modus Ponens)

(temporal logic)

(3,4)

(perfectness layer 2)

(5,6)

8. 0 0 <p -+ 0 <p (temporallogic over linear frames)

9. 1\pem 0 out(destination(p),p) (7,8)

10. 0 <J?1 A 0 <J?2 -+ 0((<J?l A p <J?2) V (<J?2 A p <J?I))

(temporallogic over linear frames)

(repetition of 10)

12. O(Ar,em Pout(destination(p),p)AVpem out(destination(p),p)) (9,11)

5.6. SPECIFICATION EXAMPLES

13. p E m --+ destination(p) = destination(m)

(third axiom relating packets and messages)

99

14. 0 (/\pem P out(destination(m),p) 1\ Vpem out(destination(m),p))

(12,13)

15. /\pem P out(n, p) 1\ V pEm out(n, p) --+ 0 out(n, m)
(relation out(n, p) and out(n, m))

16. 0 0 out(destination(m), m)

17. 0 out(destination(m), m)

18. in(n, m) --+ 0 out(destination(m), m)

(14,15)

(8,16)

(1,17)

Notice that we used twice in this proof that we are working over linear

frames: we used transitivity in 8 and comparability in 10.

Having proved that all axioms oflayer 1 except its environment assump­

tions are satisfied is not yet suflident to prove that the first level has been

correctly re:fined. We also have to show that the environment assumptions

made by layer 2 are met since the second level should take care of that.

Firstly, suppose that in(n,p) 1\ D in(n',p). We have to show that this

leads to a contradiction. By the relation between in(n, p) and in(n, m) and

the second axiom relating packets and messages (p E m 1\ p E m' --+ m' = m)

this assumption leads to 3 m[p E m 1\ P in(n, m) 1\ D P in(n', m)]. By the

unique identification assumption about messages of layer 1 it follows that

n' = n, but then the initial supposition transfarms into in(n, p) 1\ D in(n, p).

This, however, is impossible because of the relation between in(n, m) and

in(n,p): in(n, m) implies 0 (in(n,p) 1\ --, D in(n,p)).

Secondly, suppose in(n, p) 1\ in(n', p). We have to show that n' = n. As

above this assumption leads to 3 m[p E m 1\ Pin(n, m) 1\ Pin(n', m)]. Then

indeed n' = n by the unique identification assumption about messages of

layer 1.

Thirdly and finally we have to show that -,in(destination(p), p). So sup­

pose in(n,p). By the relation between in(n,p) and in(n,m) it follows that

100 CHAPTER 5. MESSAGE PASSING SYSTEMS

3 m(p E mA Pin(n, m)]. By the axiomabout not inputting a message at its

destination oflayer 1 we may conclude 3m(p E mAn -:f destination(m)]. By

the third axiom relating packets and messages (p E m --+ destination(p) =
destination(m)) we reach the desired condusion n # destination(p).

Layer. 3 and its relation to Layer 2

On this layer the perfect pack et passing system of layer 2 is implemented by

a networkof nodes through which the packets are senttotheir destination.

This layer relies on a reliable transmission layer between each pair of (adja­

cent) nodes and furthermore includes a routing algorithm at each node to

determine where incoming packets should go next. Pictorially layer 2 can

then be represented as in Figure 5.6.

in(n,p) routing t(p, n, i) reliable a(p, n, i) routing routing out(d,p) trans-at mission at - at
noden medium node i node d

t(p, n, i)= transmit(p, n, i), a(p, n, i)= arrive(p, n, i), d = destination(p).

Figure 5.6: Representation of Layer 2

As we described in the Introduetion of this example, a packet traveling

on the way to its destination may traverse the same intermediate node

more than once: a packet can return at a node because of a rerouting

5.6. SPECIFICATION EXAMPLES 101

decision at another node. This implies that we cannot take the ordinary

unique identification assumption for transmit in this case. Before we go

into the specification of the routing algorithm at the nodes and the reliable

transmission medium between a pair of nodes we can at least restriet the

way transmit handles a packet globally in the network, i.e. in relation to

different nodes. In particular, at each moment a packet can only be in one

place:

transmit(p, n, i) /1. transmit(p, n', i') ~ n' = n /1. i' = i

transmit(p, n, i) ~ -, 3 n' 3 i' transmit(p, n', i') unless arrive(p, n, i).

The first axiom ensures this for the moment transmission starts while the

second ax.iom ensures it during transmission (the next transmission can only

occur after the transmission layer has delivered the packet).

N ow we are going to look at the routing algorithm inside a node. First

of all, it should transmit a packet that arrived and for which this node is

an intermediate node to a chosen next node:

arrive(p, n, i) /1. i I destination(p) ~ F 3 i' transmit(p, i, i').

Secondly, it may only transmit a packet when that packet arrived at this

node (or was input directly from above by in) and it may choose a next

node only once:

transmit(p, i, i') ~
-, 3 i' transmit(p, i, i') since (in(i, p) V 3 n arrive(p, n, i)).

The first axiom guarantees that a packet will besent on to the next node but

it does not guarantee that the packet will eventually reach its destination.

This is, ho wever, not a local property (i.e. a property for a single node)

but a global property which must be ensured by the routing algorithms in

all nodes taken together. That a packet reaches its destination furthermore

depends obviously on the reliability of the transmission media used between

intermediate nodes. If these can he assumed to be perfect (which is indeed

102 CHAPTER 5. MESSAGE PASSING SYSTEMS

the case) the collection of routing algorithms guarantees the arrival of a

packet at its destination as follows:

transmit(p, n, i) 1\ D (transmit(p, n', i') F arrive(p, n', i1
))

........ F 3 n1 arrive(p,n1,destination(p)).

This requirement is characteristic for routing protocols.

Next we specify the reliable transmission media between pairs of nodes.

Since the pair of nodes is fixed for each transmission medium we write

simply transmit(p) and arrive(p) insteadof transmit(p, n, i), respectively

arrive(p, n, i). All the transmission media are perfect packet passing sys­

tems. As we remarked already we cannot use the ordinary unique identifica­

tion assumption for transmit in this case because we allow packets to return

at an intermediate node. Hence transmit(p) 1\ D transmit(p) is possible.

However, as the new environment assumption we can at least demand that

the environment can only provide the same packet for the next time when

the previous one has arrived:

transmit(p), transmit(p) unless arrive(p).

So, between two transmittals of the same packet there is at least one ar­

rival of that packet. Under this environment assumption the No Creation

assumption (together with finite speed) is formulated as follows:

arrive(p), arrive(p) since transmit(p).

This implies arrive(p) Ptransmit(p) taking care that no new packets

are created. The other part of No Creation, no duplication of packets is also

taken care of since the above axiom prohibits the possibility of two arrivals

of the same packet after only one transmit ofthat packet. Perfectness can

be formulated as usual:

transmit(p) F arrive(p).

5.6. SPECIFICATION EXAMPLES 103

We can take the environment assumption and this axiom together (blurring

the distinction between assumptions about the environment and require­

ments for the system) to get

transmit(p) -+ .., transmit(p) until arrive(p).

So, the environment waits to transmit a packet again until this packet has

arrived and that arrival is indeed guaranteed. Weneed the irreflexive oper­

ator F instead of 0 in the axiom for perfectness in this case to exclude the

following illegal behavior:

transmit(p)

transmit(p)

arrive(p)

Takingalso the axiom for the No Creation assumption into account it follows

that, when restricting attentiontoa single packet, transmit and arrive may

happen only alternatingly starting with transmit and ending with arrive

(where the next transmit together with the previous arrive is allowed,

though).

After ha ving specified the en ti ties on this level (the routing algorithms,

the transmission media and their global connection) we are ready to describe

the relation between layer 2 and layer 3. This is done by specifying the

conneetion between in and transmit, respectively arrive and out.

First, the input of a packet at a node leads to the transmittal of this

packet to a chosen node (remember that we assumed that a packet is not

input at its destination):

in(n,p) -+ F 3 i transmit(p, n, i).

Reversely, each transmit must have its root with in:

transmit(p, i, i') -+ P 3 n in(n, p).

104 CHAPTER 5. MESSAGE PASSING SYSTEMS

At the other side, arrival of a packet at its destination leads to output

of that packet:

arrive(p, i, destination(p)) - Fout(destination(p), p).

Reversely, a packet may only be output when it arrived at its destination

and it has not been output before (in order to avoid duplication of packets):

out(n, p) - -, P out(n, p) 1\ n = destination(p) 1\ P 3 i arrive(p, i, n).

Having defined the relationship between layer 2 and layer 3 by these

four axioms we can ask whether the third level is a correct refinement of

the secoud level. To this end we have to prove the axioms (except the

environment assumptions) of layer 2 and the environment assumption of

layer 3.

No creation of new packets is provedas follows. Suppose out(n,p). By

the relation between out and arrive it follows that P 3 i arrive(p, i, n). The

No Creation assumption for the transmission medium between i and n leads

now to P 3 i transmit(p, i, n). The relation between transmit and in then

gives the desired condusion P 3 n1 in(n',p).

The secoud part ofthe No Creation assumption (no duplication of pack­

ets) is even easier: the last of the four axioms descrihing the relationship

between layer 2 and layer 3 implies that out(n,p) - -, P out(n,p), hence

out(n,p) - -, D out(n,p).

The axiom out(n, p) - n = destination(p) of layer 2 follows directly

from the last axiom descrihing the relationship between layer 2 and layer 3.

Perfectnessis provedas follows. Suppose in(n,p). By the relation be­

tween in and transmit it follows that F 3 i transmit(p, n, i). The global re­

quirement on the collection of routing algorithms tagether with the perfect­

nessof the transmission media guarantee that p will arrive at its destination:

F 3 n1 arrive(p, n1
, destination(p)). By the relation between arrive and out

this leads to Fout(destination(p),p), so certainly Oout(destination(p),p).

5.7. CONCLUSIONS 105

The only remaining axiom to he checked is the environment assumption

of layer 3, namely transmit(p) -+ ..., transmit(p) unless arrive(p). This

follows directly from the stronger restrietion

transmit(p, n, i) -+ ..., 3 n1 3 i' transmit(p, n1
, i') unless arrive(p, n, i)

for the way the network globally handles the transmittal of packets (at each

moment the packet can he in transmission only in one place).

By transitivity of the refinement relation we may also conclude that the

third level is a correct refinement of the first level.

This example made use of L(until, since).

5.7 Conclusions

In this chapter we proved severallimitations of temporallogies for the spec­

ification of message passing systems. The counterexamples indicate that a

necessary ingredient for such a specification is the ability to trace back (in

time) every delivered message to its unique moment of acceptance. With

this in mind one can take one of two directions. Either one argues that, be­

cause it is not expressive enough, temporallogic should he enriched with an

additional formalism for reasoning about such systems, or, having identified

the trouble spot, one makes some general assumptions about these systems

that are strong enough to enable a purely temporal specification. The first

course is taken by most researchers in the field. This might he caused by

lack of recognition of the essential missing ingredients. The second course

is attractive since the general assumption about message passing systems,

viz. that incoming messages can he uniquely identified, can he translated

into the logic and hence can he reasoned with inside the formalism itself.

We illustrated our approach to the specification and verification of mes­

sage passing systems by three examples. The first example showed how

pure message passing systems can still he specified (notwithstanding the in-

106 CHAPTER 5. MESSAGE PASSING SYSTEMS

expressiveness results of section 4) with the classical temporallogic treated

in section 2 of Chapter 3 (using only the temporal operators F and P since

D is equivalent to the disjunction of these two operators when working over

temporal frames with a linear ordering) in an elegant and easy way. The

price we had to pay, the unique identification assumption on the incom­

ing data, was shown to he less high than might have been thought at first

glance. The second example illustrated that complications such as a two­

way message passing system with possibilities to close either side can also

be handled quite easily. In fact, the majority of message passing properties

of this example could be derived directly and in a straightforward way from

the pure message passing properties of Example 1 so that the specification

only had to concentrate on non-standard features such as the treatment of

the special disconneet message. This suggests that the standard part of our

specifications can be 'modularized' in the sense that we can use certain sets

of axioms (such as those for a perfect FIFO message passing system) as

parts that can he added toa specification maintaining the same restrictions

on the required behavior as when imposed in isolation. In the third example

we considered a system that was decomposed into subsystems. We showed

how such a system can he specified in a hierarchical fashion and how the

correctness of the refinement steps can he proved.

Chapter 6

Time-Critical Systems

6.1 Introduetion

This chapter is motivated by the need fora formal speci:fication method for

time-critica! systems. The need for such a method is becoming acute since

more and more vital applications such as nuclear power stations, computer

controlled chemica! plants, flight control software for airplanes, etcetera, are

of a time-critica! nature. Time-critica! systems are characterized by quan­

titative timing properties relating occurrences of events. Typical examples

are:

1. Maximal distance between an event and its reaction, e.g., every A is

followed by a B within 3 time units (a typical promptness require­

ment).

2. Exact distance between events, e.g., every A is followed by a B in

exactly 7 time units (as with the setting of a timer and its time-out).

3. Minimal distance between events, e.g., two consecutive A's are at least

5 time units apart (assumption a bout the ra te of input from the en­

vironment).

4. Periodicity, e.g., event E occurs regularly with a period of 4 time units.

107

108 CHAPTER 6. TIME-CRITICAL SYSTEMS

5. Bounded response time, e.g., there is a maximal number of time units

so that each occurrence of an event E is responded to within this

bound.

After the development of a characterization for time-critical systems

we look at requirements for specification languages in the context of such

systems.

Like we did for message pa.Ssing systems we investigate the possibili­

ties of temporal logic for specifying time-critical systems. Because they

only involve qualitative temporal operators it is obvious that the standard

temporal logies of Chapter 3 cannot deal with quantitative temporal re­

quirements. Therefore, we extend the usual temporal frames by including

a distance function to measure time and analyze what restrictions should

he imposed on such a function. This distance function maps two points in

timetoa value in a metric domain on which addition and a zero are defined.

The specification method we propose, called metric temporallogic, is based

on the polymodallogics of Chapter 4: our metric operators are obtained by

indexing polymodal operators by parameters taken from the metric domain.

Our philosophy is to extend the pure qualitative view of time of standard

temporal logies in a faithful way in order to reason also about qualitative

properties in a convenient way. We sneeeed in doing this by including also

the preeedenee relation between points in time and showing how the metric

parameters of operatorscan he 'quantified away' to obtain the co:rresponding

qualitative versions. We show how the five quantitative timing properties

above can he expressed in metric temporal logic. Concerning qualitative

properties, the whole first-order language of linear order can he expressed

in metric temporal logic. We also look at the issue of axiomatization.

We illustrate metric temporallogic by means of seven examples involv­

ing time-critical (and often also message passing) features amongst which

are common real-time constructs such as a time-out and the wait/delay

statement of some concurrent programming languages.

6.2. WHAT ARE TIME-CRITICAL SYSTEMS? 109

This chapter is organized as follows. Insection 2 we describe the charac­

teristics of time-critical systems and specialize the requirements of Chapter

2 for these systems in section 3. Section 4 introduces metric temporallogic

which is illustrated by means of a series of spedfication examples of time­

critical systems insection 5. At last we present some conclusions insection

6.

6.2 What are Time-Critica! Systems?

The most important characteristic of a time-critical system is the demand

to keep abreast with an autonomous environment by reacting properly and

timely to events occurring in the environment asynchronously from the op­

eration of the system. Therefore, the environment-system interaction (the

reaction of the system on the external stimuli from the environment giving

rise to a so-called stimulus-response mechanism) is subject to quantitative

temporal requirements. These temporal requirements state a relation be­

tween occurrences of events and can be classified as follows:

• response time: this relates the timing of the occurrence of an event

and its response. The most usual cases are

* maximal distance between an event and its response (e.g. time­

out)

* exact di stance (e.g. delay)

• frequency: this relates occurrences of the same event. The most usual

cases are

* minimal distance between two occurrences (assumption a bout

the rate of stimuli from the environment)

* exact distance, also called periodicity (e.g docks and samplers).

The first four of the five examples in section 1 correspond directly to the

classification above (examples 1 and 2 concern maximal respectively exact

110 CHAPTER 6. TIME"CRITICAL SYSTEMS

response time and examples 3 and 4 concern minimal respectively exact fre­

quency). All these temporal requirements have a quantitative nature and

the quantitative elements involved are constauts expressed as a certain num­

ber of time units. The fifth example in section 1 is in fact the quantified

equivalence of the first example. The other examples 2, 3 and 4 have also

quantified equivalents, but example 5 is the most common one. The quan­

titative nature of these temporal requirements is typical for time-critical

systems (qualitative temporal requirements occur already in any concurrent

system, think of fairness, and even sequential systems, e.g. termination).

Another classifl.cation of quantitative temporal requirements relates to

the distinction between relative and absolute temporal requirements. Ab­

solute temporal requirements calibrate all occurrences of events to a fixed

reference point (the start of the system or the first occurrence of a particular

event) while relative temporal properties have no fixed reference point but

depend on occurrences of events. In the above four cases periodicity is an

absolute temporal requirement (e:g. alllater samples can be related to the

first sample by means of the sample rate), the other three being relative (the

occurrence of an event triggers its response, so the timing of that response

can only be related to that occurrence of the event). As will be clear from

the above, events play a very important role in time-critical systems.

Since quantitative temporal requirements state a relation between an

event in the environment and an event in the system (or between events in

differentcomponentsof a system), these requirements necessarily refer toa

global notion of time. This global notion of time should not be identified

with the introduetion of a global doek: the difference between time and real

clocks is that clocks always drift (in other words: time can be considered as

a perfect, idealized doek).

Modeling parallel computation by interleaving is a suflident idealization

if only qualitative temporal requirements are involved. As soon as quan­

titative temporal requirements come into play, however, as in the case of

time-critical systems, such an execution model is usually notadequate any-

6.2. WHAT ARE TIME-CRITICAL SYSTEMS? 111

more. For example, ensuring maximal d:istance between events is impossible

if some processes can take an arbitrary number of steps while other processes

are inactive. In such a case either all processes have their own processor

(the maximal parallelism model as in [KSRGA 85]) or some processes share

one processor and they are scheduled in such a way that each process gets

its turn within bounded time. Furthermore, in some applications data can

appear at different places in a truly concurrent way. With respect to the

temporal requirements above an arbitrary sequentialization is not appropri­

ate anymore. Even stronger, it becomes more and more practice today to

incorporate local (co)processors with dedicated tasks (e.g. sampling) into

the system so that truly parallel computation is the only realistic model in

such a distributed configuration.

The most prominent examples of time-critical systems are real-time

systems. Reai-time systems have additional aspects, however: they nat

only deal with (quantitative) temporal requirements, but also performance,

safety and reliability are essential aspects. Nevertheless, a lot of the phenom­

ena occurring in real-time systems are relevant for the study of time-critical

systems. As an example of this, in process control systems aften continuons

physical entities are involved such as temperature and volume. When such a

system conta.ins e.g. an analog circuit for monitoring the temperature, this

has a time-continuons nature tagether with a continuons range of values

(e.g. between 4 and 20 milliAmpère). In modeling such systems, the usual

discrete view of time as taken for digital systems is therefore nat appropriate

anymore. Hence, apart from viewing time as discrete one should also allow

a view of time as continuons (ar at least dense) as in Newtonian physics.

This has also its repercussion on the description of the execution of such a

system (or rather how it develops) and how it can be observed. For discrete

systems, execution consists of a number of observable state changes or tran­

sitions leading toa state-transition sequence. In the case of time-continuons

systems, however, variables can change infinitely fast (think e.g. of pressure)

and sequences cannot be used anymore. A partienlar execution can only be

112 CHAPTER 6. TIME-CRITICAL SYSTEMS

described by recording a.t each moment the state of the system (so, such a.

generalized execution model considers functions from time to sta.tes). If one

would ma.inta.in tha.t ohserva.tions ca.n he ma.de only a.t discrete moments,

ea.ch ohserva.tion conta.ins only pa.rtial informa.tion. Only the whole set of

possible observa.tions of a. pa.rticula.r execution ca.n restare all informa.tion

on tha.t execution.

Summa.rizing, for time-critical systems qua.ntita.tive temporal require­

ments pla.y a. dominant role. Furthermore, a. discrete view of time a.nd

fa.milia.r execution models such a.s interlea.ving a.re not suftkient a.nymore to

handle all cases. Consequently, time-continuous models, respectively real

pa.rallelism or scheduling informa.tion should he incorpora.ted.

6.3 How to Specify Time-Critical Systems

Like we did for message passing systems in section 3 of Cha.pter 5 let us

specialize the requirements for a. specifica.tion la.ngua.ge in Cha.pter 2 to the

case of time-critical systems.

Synta.ctical a.hstra.ctness requires tha.t the specifica.tion of temporal prop­

erties is sta.ted only in terms of the events involved a.nd the relevant qua.ntity

of time units.

The introduetion of formal methods for time-critical systems has la.gged

behind tha.t for other a.pplica.tion a.reas. Most specifica.tion methods do

not include constructs to express timing in a. qua.ntita.tive wa.y a.nd the few

synta.ctical formalisros tha.t include timing, la.ck formal sema.ntics. Thus,

only a. minority of suita.ble formal methods for time-critical systems ha.ve

been developed a.nd most of them during the la.st few yea.rs. Same of these

methods do not tackle all problems of time-critical systems but concentra.te

e.g. on discrete event systems. Several reasans ca.n he given for the fa.ct

tha.t formal methods for time-critical systems la.g behind tha.t for other

a.pplica.tion a.rea.s:

6.4. METRIC TEMPORAL LOGIC 113

• because the timing requirements are much stricter for time-critica!

systems than for other systems, they impose more demands on the

implementation technology; therefore, implementation concerns (e.g.

processor speed) were dominant in the era before the explosive growth

of computing power for microprocessors that started about ten years

ago,

• the intrinsic complexity of typical time-critica! systems makes it much

more difficult to develop adequate formal methods,

• most researchers in theoretica! computer science have considered reai­

time either as a special (though admittedly harder) case of concurrent

systems, or as a topic whose study should be postporred until we un­

derstand basic concurrency better.

Layered development is not as dominant for time-critica! systems as it

is for message passing systems but still top-down and bottorn-up techniques

are important for specifying these systems in order to manage their inherent

complexity.

6.4 Metric Temporal Logic

In this section we look at ways of reasoning with temporal logic about

quantitative timing properties such as those mentioned in section 1. The

standard models for temporallogic basedon point structures involve a pure

qualitative view of time. The question now is: what should be added to

point structures to be able to handle also quantitative temporal properties?

Because the evaluation of formulas is dependent on a partienlar point in

time (re presenting the present), we suggest that apart from the preeedenee

relation between the present and other points in time also the distance

between points in time is needed. Therefore we add a distance function d

with the idea that d(t, t1
) gives a measure as to how far t and t' are apart

114 CHAPTER 6. TIME-CRITICAL SYSTEMS

in time. The next question is: what conditions should be put on < and d ?

Because quantitative temporal properties relating different components of a

system must necessarily refer to a global conception of time, we assume that

thesetof time pointscan be ordered in a global way. So, we suppose that the

preeedenee relation < is total (i.e., transitive, irreflexive and comparable).

For the distance function d we suppose the usual topological conditions

apart from the replacement of the triangular inequality by a conditional

equality:

(dl) d(t,t') = 0 <:} t = t'

(d2) d(t' t') = d(t'' t)

(d3) if t < t1 < t11 then

d(t, t") = d(t, t') + d(t', t") and d(t11
, t) = d(t", t') + d(t', t).

Next we should determine the range of d. There is no reason to choose

the standard reals (in fact, the example below shows the usefulness of non­

archimedean ranges ford). As is apparent from the conditions (dl)-(d3)

above we need a structure with addition and zero element. So, we suppose

as range for d a structure (~, +, 0) where addition + and constant 0 are

restricted by:

{~1) 6 + 6' = 6' + 8

(~2) (8 + 8') + 811 = ó + (6' + 6")

(~3) 6 + 0 = 6 = 0 + 6

(~4) 6 + 6' = 6 + 811 :::::> 6' = 611

(commutativity)

(associativity)

(unit 0)

and (+ injective in both arguments)

ó + 8" = ó' + 611 :::::> 6 = 61

(~5) 6 + 6' = 0 :::::> ó = 0 and 6' = 0 (no negative elements)

(~6) 36" [ó = 6' + Ó11 or 8' = ó + 811
] (existence of absolute difference).

6.4. METRIC TEMPORAL LOGIC 115

In these conditions the free variables should he universally quanti:fied (we

left this out for the sake of concise presentation). One can easily check

the independenee of these restrictions on (6., +, 0), i.e. that none of these

restrictions follows from the others, by means of appropriate examples in

which :five of these restrictions hold and the sixth fails. An example is

6. = IN U { e} where we take over the standard ad dition for natural numbers

supplemented by the following rul es for the extra element e (which resembles

1):

e + e = 2, e + 0 = 0 + e = e and e + n = n + e = n + 1 for n E IN\ {0}.

This structure (6., +, 0) obeys all restrictions (.6.1)-(.6.6) above except (.6.4):

e + e = e + 1, but e f= 1.

In spite of their independenee these restrictions nevertheless contain some

redundancy (e.g. the second equality in .6.3 is added although this already

follows from .6.1) in order to state the intended restrietion fully also in

the case when some of the other restrictions have been dropped. These

conditions are motivated as follows. (6.1) is enforced by (d2) and (d3).

One also needs to order .6. to campare different distauces (think e.g. of the

expression of maximal distance, see point 1 in section 1). To this end, first

define

Such a fJ" is unique because of (6.4). Furthermore, 6.2 (transitivity) and

.6.3 (reflexivity) make ~ a preorder. The corresponding irreflexive relation

defined by

fJ --< 61 := 38" [8" f= 0 and 61 = fJ + 811
is in fact a total order (camparabie by 6.6) with 0 as its least element (by

.6.5).

This leads to the following notion.

116 CHAPTER 6. TIME-CRITICAL SYSTEMS

Definition 6.4.1

A metric point structure is a two-sorted strncture (T, 6., <, d, +, 0) with

signature < Ç T x T, d: T x T -t 6., +: 6. X 6.- 6., 0 E 6. such that

(i) < is total

(ii) d is surjective and satisfies (dl)-(d3)

(iii) (6., +, 0) satisfies (6.1)-(6.6).

6. and d are called the metric domain and the temporal distance function,

respecti vely.

In (ii) surjectivity of dis demanded to get a nice correspondence betweenT

and 6.. All these conditions on < and d were motivated either by practical

reasous (having a certain application area in mind) or by our wish to obtain

a nice mathematica! theory. Nevertheless, in some cases these conditions

could be relaxed, for ex.ample it may he beneficia! to allow a cluster of points

having distance 0 toeach other (deleting the only if case of condition dl).

For the time being, we consider the above conditions as the most natural

on es.

Example 6.4.1

Consider the following metric point structure.

T := IN x IN

6. := {0} x IN u IN+ x 7l

where IN, IN+ and 7l represent the natural numbers, the positive natural

numbers, respectively the integers.

Define furthermore

(n, n') < (m, m') := n < m or (n m and n' < m')

{

{0, I n'- m' I) if n = m

(m - n, m' n') if n < m

(n - m, n1
- m') if n > m

(n,z) + (n1,z1
) .- (n+n1,z+z1

)

0 := (0,0).

6.4. METRIC TEMPORAL LOGIC 117

The following picture represents T tagether with its ordering < (to be read

from left to right):

I I I I I I . . . I I I • • •
(0, 0) (0, 1) (0, 2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

The idea is that the fi.rst component of T represents a kind of macro-time

while the second component represents micro-time. It is easy to check that

this example satisfi.es all conditions for a metric point structure and that

the given .6. is non-archimedean.

Having determined what the new temporal roodels should be, we now

must fi.nd appropriate temporal operators for reasoning about metric point

structures. Before making such a choice we show how the modal operators

Land M (see Chapter 3) can be transformed into metric operators:

Lstp(w) \1w1 EW[(wRw1 and d(w,w')=ó) ::::>- tp(w')]

Ms tp(w) .- 3w' E W[wRw' and d(w,w') = 8 and tp(w')].

Again Ms L.s.

Now two obvious metric operators are F6 := Mj and Ps := Mi' with their

duals Gs Lf and H6 = Li', respectively. For metric point structures

other metric operatorscan be expressed with these two, e.g., D6 = Ps V F,s,

but to be able to express the requirements on the distance function d in an

independent fashion (later in this section) we also introduce

Ds := Mf
and

E6 ·- MTxT .- 6 •

Formally, we use the standard fi.rst-order language (including identity =)
over (.6., +, 0) whose terms t are used to form the metric operators Ft, Pt, Dt

and Et. In the qualitative case (see section 2 of Chapter 4) the relation

between E and D was given by Etp = tp V Dtp. In the quantitative case,

118 CHAPTER 6. TIME-CRITICAL SYSTEMS

the general semantic relation between E0 and D0 (following immediately

from the definitions above) looks similarly:

E0 r.p(t) {:} (d(t, t) = 8 and rp(t)) or D0 r.p(t).

lf we assume d(t, t) = 0 (which follows from dl) this red u ces to the syntactic

equivalence

Eo <p =: Do <p V (8 = .0 A <p).

Now, in case /i I 0 we find that E0 = D0 • In case 15 = 0 and assuming

d(t, t1
) = 0 ::} t = t1 (the other part of dl) we find that Do <p = j_ and

E0 <p = <p. So, only in the case li = 0 the old equivalence E<p = <p V D<p

is maintained.
E 0 and D0 are not the only metric operators that are strongly related.

A further pair is formed by F 0 and Gs (and similarly for P 0 and H 0). lf we

assume (dl}-(d3) and comparability of< (both are true for metric point

structures) it is easy to see that F0 can indicate at most one point (i.e.

V t-, 3 t1t11 [t < t1 and t < t11 and t' I t11 and d(t, t1
) = d(t, t11

) = 15]). Because

G 0 is the dual of F0 it must indicate the samepoint (if it exists). In fact,

the existence of this point is exactly the difference between Fs and G 0 (F0

asserts its existence while G 0 does not) as is expressed by the syntactical

equivalence

Using the metric operators F 0 and P 0 the five quantitative temporal

properties of section 1 can be expressed in the following way:

1. maximal distance: A(p ---+ F <o q)

2. exact distance: A(p ---+ F 0 q)

3. minimal distance: A(p ---+ •F <o p)

4. periodicity (with period 15): Ep A A(p ---+ (•P unti4 p))

6.4. METRIC TEMPORAL LOGIC 119

5. bounded response time: 36 A(p ---+ F d q).

The one but last of these five properties gives periodicity towards the future

(the Episneerled tostart the sequence off). Periodidty both towards past

and future can be expressed by

Ep 1\ A(p ---+ ((•P until.s p) 1\ (•P since6 p))).

In these form:ulas the derived operators F <6, until.s and since6 are used

which are defined by

where Gd and H<6 are the duals of F d and P <6, respectively:

G <6 cp := ..., F <6 ..., cp

Note that the definition of F <6 uses quantification over 6. but this was

already essentially neerled for the expression of bounded response time (see

5 above). As stated above, besides constants from À {the t5 in 1,2,3 and

4 above) we incorporate the full first-order language over (À,+,O). Later

on we will also consider a fragment of metric temporallogic in which only

constants from À are allowed. The formula expressing maximal distance is

strictly stronger than the formula for bounded response time which on its

turn is strictly stronger than the formula A(p---+ Fq) expressing temporal

implication in qualitative temporallogic.

The ability to quantify over À gives metric temporallogic considerable

expressive power. For example, from the metric version of an operator the

120 CHAPTER 6. TIME-CRITICAL SYSTEMS

corresponding qualitative operator can easily be derived by 'quantifying 6
away' as we will show below. Furthermore, for qualitative temporal logic

the operators until and since add expressive power (see [Kam 68]) but

as just shown their metric versions (and hence by quantifying 6 away also

their qualitative versions) are expressible in metric temporallogic. These

reductions of the operators until and since in metric temporal logic deal

with the equivalence of formulas over models. Like we did in Chapters 3

and 4 for classica! modal and temporallogic, respectively polymodallogics

with inequality, we can ask which first-order conditions are de:finable by a

formula from metric temporallogic over frames. It turns out that all :first­

order conditions over linear orders are de:finable in metric temporallogic, as

shown below in Theorem 6.4.1. Because quanti:fication over ö. contributes

signi:ficantly to the expressive power of metric temporallogic, we now study

the interplay between metric operators and quanti:fication over ö.. We start

with the simple case of two existential quanti:fications (for the moment we

return to the more general case of metric modal operators and subsequently

use the results for metric temporal logic):

36 Ms tp(w) 3w' E W 36[wRw' and d(w,w') = 6 and tp(w')]

3w' E W[wRw' and tp(w')] = M tp(w),

so 36 Ms = M. By duality also V6 Ls = L. The presence of two identical

(either existential or universa!) quanti:fiers is in itself not a suflident expla­

nation forthese equivalences. For example, for classica! temporallogic (see

section 2 of Chapter 3) HGtp = GHtp is not valid because of the shifting

of the reference point (consider e.g. IN in the point 0). In the present case,

however, identical quanti:fications over the metric domain and over the set

of worlds do not influence each other and hence can be interchanged.

More interesting are the cases of alternating quantifiers:

't/6 Ms tp(w) = \;/Ij 3w' E W[wRw' and d(w, w1
) ó and tp(w')].

6.4. METRIC TEMPORAL LOGIC 121

For metric point structures <is comparable and (dl) and (d3) hold. As we

have seen above this implies that F s and Gs are related by

So, when universally quantifying over~ (excluding 8 = 0 because F 0 <p = ..l
for all <p) we get

(since V8[0-< 8 --1- G.s <p] = G <p). Dually we have

38[0-< 6 1\ G6 <p] :: 36[0 -< 6 A G6 ..l] V F 'P·

Note that Vé[O-< 6 ::::} Fs T (t)] expresses the requirement that there exists

for each ti f:: 0 a point in the future with distance ti from t which is like

surjectivity of d but now demanded locally (fort).

Besides quantification over metric operators we can look at special values

of ti in M.s and L.s such as 0:

Assuming (dl) and taking 'P = T we get M 0 <p(w) = wRw. So,

E MoT expresses 3w wRw (existence of a refiexive world)

A MoT expresses Vw wRw (refiexivity)

and dually

E Lo ..l expresses 3w •wRw (existence of an irreflexive world)

ALo ..l expresses Vw •wRw (irre:flexivity).

This example shows that a qualitative property (the existence of a reflexive

world) is definable when using metric modal operators while it is not in its

qualitative version PML(R, f::), see Proposition 4.2.1 insection 2 of Chapter

4. Turning again to metric temporallogic we can in fact prove:

Theorem 6.4.1 All fi.rst-order conditions over linear orders are definable

in metric temporal logic.

122 CHAPTER 6. TIME-CRITICAL SYSTEMS

Proof: The main problem in translating fi.rst-order conditions on < into

equivalent temporal formulas is caused by the possibility to campare in

the first-order condition a 'new' variabie (corresponding to a more recent

reference point in time) with much 'older' variables such as the camparisans

between z and x and between u and y in the example

'v'x3y>x3z<x'v'u(z<u<y--+ u=x).

Qualitative temporallogies only allow a comparison between a new refer­

ence point in time and the most recent reference point befare that. Like we

did in the proofs in chapters 3 and 4 that Sahlqvist-forms define first-order

conditions we are going to show the stronger property that each first-order

condition is locally equivalent with a formula of metric temporallogic. So

suppose that the first-order condition contains one free variable, say x0 ,

and n bound variables, say Xt, ••. , Xn· First rewrite the first-order condi­

tion such that it only contains the atomie formulas Xi < x; and Xi = x;
(for 0 s i,j s n) and operators -,,A and 3. Purthermare take care that

each atomie formula in the scope of 3xi indeed contains Xi (otherwise get

the atomie formula outside this scope). The resulting first-order formula

is translated into a formula from metric temporallogic by the procedure J.t

below. This procedure uses the following idea. For metric point structures

the comparison of different reference points in time can be accomplished

by using the distance function as follows. The free variabie x0 in the first­

order condition serves as a fixed referen:ce point in time. The remaining

first-order variables x~, ... , Xn are translated intovariables 61 , .•• , c5n which

represent the distance to the fixed reference point x0 taking into account

camparisans with other variables using < and > by the appropriate future

and past metric operators. To indicate these camparisans the procedure

J.t uses additional variables St, ... Sn E { -, 0, +} (- indicates the past, 0

the present and + the future). Initially St, ... , Sn are all 0. J.t is defined

recursively below. After this recursive definition has been applied the com­

plete metric temporallogic formula consistsof the resulting formula of this

6.4. METRIC TEMPORAL LOGIC 123

recursive de:finition pre:fixed with (pA -,Dp) -+ to fix the reference point x0

(by assuring that p is true in x0 and in x0 only) .

p,;(-,a)

p,;(a 1\ (3)

p,;(3xi a)

p,;(x;. <x;.)

p,;(x;. =x;.)

.., p,;(a)

.- p,;(a) 1\ p,;(f3)

3ó;. E[(ó;. = 0 A p 1\ J.Lt[O/••J(a))

V (0-< ó;. 1\ F.s,P A J.Lt[-/••J(a))
V (0-< 6;. A Pé,P A J.L.ï[+/••J(a))

..L

T

{ =
:= { =

ifs;.=­

otherwise

ifs;.=+
otherwise

·- { = if s;. = 0

otherwise

if s.
3

.-
{

Fp

FF.s;P if Sj

FP.s;P if Sj

if Sj

{

Pp

PF.s;P if Sj

PPé;P if Sj

{

p if Sj = 0

·- F.s;P ~f Sj =
Pé;P If Sj +

0

+

0

+

where x;. inthelast eight cases (from x;. <x;. onwards) is the bound variabie

belonging to the smallest enclosing existential quanti:fication (x0 , if it is not

in the scope of an existential quantifier). Then, given a :first-order formula

a with one free variabie x, a is locally equivalent with

124 CHAPTER 6. TIME-CRITICAL SYSTEMS

(p A -., D p) -+ J.t(o, ... ,o) (a). •
Finally, we look at axiomatizations for metric temporal logic. Com­

pleteness may be unattainable because of the very powerful quantification

over 6.. By assuming an oracle for 6. relative completeness results might

be obtained, however. Although completeness results are not so readily

obtainable, all conditions in the definition of a metric point structure can

easily be expressed:

(i) totality of< is already expressible in PML(<, >, ~)

(ii) d surjective: V6 E E6 T

(d1):p+-+Eop

(d2): '16 [(pA E6 q) -+ E6 (q A E6 p)]

(d3): '16 '16' [(F6 F6' p -+ E6+6' p) A (P6 P6' p -+ E6+6' p)]

(iii) (6.1)-(6.6) can he directly formulated in terros of+, 0 and quantifi­

cation over 6..

To give an example of the four equivalences in (ii) we prove the first one.

First suppose d is surjective. This means that for all 6 E 6.

there exist t, t' ET such that d(t, t') = 6. Hence t verifies E5 T.

Thus, V6 E E., T is true.

Conversely, suppose '16 E E6 T is true. Then for all 8 E 6.

there exists at E T such that E5 T is true in t, implying the

existence of a t 1 E T at distance 6 from t. Thus, d(t, t') = 6, so

dis surjective.

Instead of attempting to axiomatize metric temporal logic completely we

can at least provide a sound axiomatization. A first proposal is:

Definition 6.4.2 The metric temporallogic proof system M consists of

6.4. METRIC TEMPORAL LOGIC 125

0. the definitions

36 c,o(ê) ..., Vó •c,o,
Gt c,o .- .., Ft ..,c,o,

Ht c,o .- ..., p t •r.p,

Fr.p .- 36 Fö r.p,

Gr.p .- Vó Gs r.p,

Pc,o .- 36 Ps c,o,
Hc,o .- V6 Hs c,o,

1. a complete axiomatization of predicate logic including MP (Modus

Ponens) and the following two rul es (V-elimination, respectively V­

introduction):

a. to infer c,o(t) from Vó r.p(ó), where c,o(t) is the result of stibstitut­

ing the term t from the first-order structure (6., +, 0) properly

(i.e. avoiding that any free variabie of t becomes bound) for all

occurrences of ó in c,o(ó),

b. to infer r.p - Vó 1/J(ó) from r.p - 1/J(t), where t is a term from

the first-order structure (6., +, 0) that does not appear in c,o -
Vó 1/J(6),

2. the distribution axiom schemas and temporalization rules of the min­

imal temporallogic proof system Kt (see Definition 3.2.15 in section

2 of Chapter 3) for Gt and Ht:

a. Gt(r.p- 1/J)- (Gti,O- Gtt/J)and

Ht(c,o - 1/J) - (Ht r.p - Ht 1/J),

b. to infer Gt c,o from r.p, and to infer Ht c,o from r.p,

3. the characterizations (i)-(iii) of the properties of a metric point struc­

ture above,

4. the already mentioned additional relationships between metric opera­

tors:

126 CHAPTER 6. TIME-CRITICAL SYSTEMS

5. axiom schemas relating to arithmetic over the metric domain:

a. Fo <p <--+ .i <--+ Po <p

b. Ftl Ft2 <p <--+ Ftt T A Ft1H2 <p,

Ptl Pt2 <p <--+ Ptl T A Ptt+t2 <p,

where metric operators are made refl.exive in a simHar way as for

polymodal operators (see section 2 of Chapter 4), e.g.

Ft <p := (t = 0 A <p) V Ft <p.

c. Ftl PttH2 <p <--+ Ftl T A Pt2 <p,

ph Ftt+t:~ <p <--+ Ptt T A Ft2 <p,

Ftt+t2 Ptl <p - Ftt+t2 T A Ft2 <p,

PttH2 Ftl <p - Ptt+t2 T A Pt2 <p.

From this proof system several interesting properties can he derived such as

(1) 'VoG<p(ó) <--+ G'Vó<p(8)andF'V/5<p(8)-+ 'VóF<p(ó)(thesefollowfrom

predicate logic and the definitions G<p = 'Vf/Gs•t.p and F<p = 3ó'Fs•<p),

(2) 'Vo Fs <p <--+ 'Vó Fs T A G <p by predicate logic and clause 4 in the
definition of M above,

(3) Ft P t <p <--+ Ft T A <p by taking t2 = 0 in the first axiom schema of

clause 5c in the definition of M above

and similarly for the mirror images (obtained by exchanging G with H and

F with P).
The next properties are important enough to derive them as theorems of

M. In these derivations MP abbreviates Modus Ponens and M foliowed by

a number indicates the corresponding clause in the definition of M above.

Proposition 6.4.1 1-M Gt(<p A 'ljJ) <--+ Gt<p A Gt 'Ij;

6.4. METRIC TEMPORAL LOGIC 127

Proof: This theorem of M can be derived as follows.

l.cpA'if;-+ cp (propositionallogic)

2. Gt('P A 'Ij; ---+ cp) (1,M2b)

3. Gt('P A 'if;) ---+ Gtcp (2,MP,M2a)

4. Gt('P A 'if;) ---+ Gt'I/J (analogous to 1-3)

5. Gt('P A 'Ij;) ---+ Gtcp A Gt'I/J (3,4)

6. cp ---+ ('if; ---+ cp A 'Ij;) (propositionallogic)

7. Gt('P ---+ ('if; ---+ cp A 'Ij;)) (6,M2b)

8. Gt cp ---+ Gt('lj; ---+ cp A 'Ij;) (7,MP,M2a)

9. Gt cp ---+ (Gt 'if; ---+ Gt('P A '1/;)) (8,MP,M2a)

10. Gt cp A Gt 'if; ---+ Gt('P A 'Ij;) (9,propositionallogic)

11. Gt('P A 'Ij;) ~ Gtcp A Gt'I/J (5,10)

•
This was not very surprising since this holds also for the non-metric case:

G(cp A 'Ij;) ~ Gcp A G'lj; (and in deed the derivation above uses only clause

2 of M which sterns from the minimal temporal logic proof system Kt)·

However, in contrast with the non-metric case we have also the following:

Proposition 6.4.2 1-M Ft('P A 'Ij;) ~ Ftcp A Ft 'Ij;

Proof: This theorem of M can he derived as follows.

1. Ft('P A 'Ij;) ~ Ft T A Gt('P A 'Ij;)

2. Gt('P A 'if;) ~ Gtcp A Gt'I/J

3.Ft(cpA'if;) ~ FtTAGtcpAGt'I/J

(M4)

(Proposition 6.4.1)

(1,2)

128 CHAPTER 6. TIME-CRITICAL SYSTEMS

(M4)

(M4)

(3,4,5)

•
The only part of Kt that we did not take over concerns the tense mixing

axiom schemas <p -+ GP<p and cp -+ HFcp. These are however theorems of

M, e.g. the first one:

Proposition 6.4.3 1-M <p -+ GP<p

Proof: This theorem of M can be derived as follows.

l.cp

2. Ft T V .., Ft T

7. -,FtT-+ -,Ft-,Ptcp

10. <p -+ Gt Pt <p

(assumption)

(propositionallogic)

(M5c)

(M4)

(3,4)

(M4)

(6)

(7,MO)

(1,2,5,8)

(1,9)

(10,M1b)

(11, 8' = 8)

6.4. METRIC TEMPORAL LOGIC 129

13. cp ~ GPcp (12,MO)

•
Another possibility is to eliminate the quantification over Ll by only al­

lowing constants from Ll. Such a fragment of metric temporallogic could be

basedon the following eight temporal operators: until<s, untils, until>s,

until, since<s, sinces, since>s, since where ti may be any constant from

.Ll. Notice that we now included the qualitative operators until and since

because these can no longer be obtained by quantification over their met­

ric equivalents. Another way to look at these qualitative operators is to

see them as special metric operators until<oo and since<oo as is done in

[HW 89]. In this view oo is not an element of Ll but it is added to -< as its

greatest element.

Another look at the constants ti from Ll is to consider them as programs

from a kind of dynamic logic (see [Har 84]) by defining

[ti] := {(t, t') 1 d(t, t') =ti}

with the following additional program structure

0 : the 'skip' program

+ : sequentia! composition ;

and the property that all programs are deterministic:

(cf. Proposition 6.4.2 above). This conneetion with dynamic logic deserves

further investigation.

In the same way as indicated in section 3 of Chapter 3 for L(until, since)

we can introduce global variables and quantification over them in order to

reason about (possibly infinite) data domains like that of messages. This

will be illustrated in the next section.

130 CHAPTER 6. TIME-CRITICAL SYSTEMS

6.5 Specification Examples

In this section we illustrate the application of metric temporallogic to time­

critical systems by a series of examples. The fi.rst three examples treat

some simple, but characteristic, purereal-time phenomena: pure time-out, a

watchdog timer monitoring a processor and the wait/delay statement. The

remairring four examples combine features of message passing and time­

critical systems. Example four concerns a terminabie adaptor where the

speed of the incoming data is higher than the speed of the outgoing data.

In example fi.ve a synchronous and an asynchronous input are mixed into one

synchronous output. Example six treats an abstract transmission medium.

Real-time communication constructs like send and receive with time-out are

the subject of example seven.

We use the same priority of operators as in section 6 of Chapter 5.

Also (as we did in section 6 of Chapter 5) we assume in our specifications

linearity of the ordering and succession towards future. This involves the

qualitative part of metric temporal logic. For the quantitative part we

assume local surjectivity of the temporal distance function d, i.e. we assume

V6 [0 -< 6 -+ Fs T]. An important consequence of this is Fs = Gs for all

6 ::f: 0 since Fs<p = F.s TA G.s r.p (see section 4). The standard metric point
structures that we have in mind use respectively the natural numbers, the

integers, the (non-negative) rational numbers and the (non-negative) real

numbers for the time domain T and the non-negative part of T for A where

<, + and 0 have the standard interpretation forthese number systems and

d is the absolute difference. For example, one of the standard metric point

structures is

(il, IN,<, d, +, 0)

where < is the standard ordering on il, + the standard addition on IN, 0

the standard constant from IN and d is defined by

d(z,z') := lz-z'l·

6.5. SPECIFICATION EXAMPLES 131

For the specification examples in this section we need two additional

qualitative temporal operators above those introduced in section 6 of Chap­

ter 5. First we need a reflexive version of since which we will denote by

since. Semantically it corresponds to replacing every < in the definition of

since by ~· Syntactically this can he achieved by the definition

Apart from this binary reflexive operator we also need a unary operator

denoted by J representing that its argument has just become true:

J<p := <p A (P<p ---+ -,~.p since <p A -,(..L since ~.p)).

This definition can he explained as follows. For dense time domains the

defini ti on <p A (P <p ---+ -, <p since <p) suffices. This farm ula descri bes that

there was a peri ad immediately befare (how small i t may he) such that <p was

false in that period. Note that fora formula <p that is true on the rationals

and false on the irrational numbers J <p is never true (this corresponds to

our intuition that <p changesits truth value infinitely fast and herree cannot

have become just true). The above definition of the just-operator is a little

bit complicated by also taking into account discrete time domains. In that

case we should also exdude the possibility that <p was true on the previous

moment. This can he dorre by the clause P<p ---+ -,(..Lsince<p) sirree ..Lsince<p

can only he true if <p was true on the previous moment.

In our examples we will encounter periodicity requirements. Uncondi­

tional periodicity of an event e with period /i can he formulated by

periodic(e, é) := e ---+, e untiLs e.

Furthermore, conditional periodicity can he defined by adding a condition

c to the antecedent:

periodic(e, li, c) := e A c ---+ -, e untiLs e.

In applying metric temporal logic to practical examples the metric do­

main .ó. should he associated with a time unit relevant for that application,

132 CHAPTER 6. TIME-CRITICAL SYSTEMS

usually secoud or a derivative thereof. However, in principle other time

units such as number of shaft rotations are allowed too. Connected with

this is the translation of elements of data domains that represent time units

into elements of t:J.. We will represent this translation by a function 6. For

example, when the data doma.in represents milliseconds and tJ. counts in

secouds than we can take ó(t) = 1~. In case the data domain has more

structure, one may want to impose additional conditions on 6, e.g. when the

data domain is ordered monotonicity of 6 with respect to this ordering and

when the data doma.in incorporates addition distributivity of ó with respect

to this addition. The most simple case occurs when the data domain can

be embedded in the metric doma.in. In such a case it suffices to take for 6

simply the embedding mapping.

In examples three and seven we look at statements from concurrent

programming languages such as CHILL ([CHILL 80]) or Ada ([Ada 83]).

For expressing the semantics of programming la.nguages we use location

variables I and location predicates at and after. The first assumption on

locations is that being simultaneously at and after the same location is

impossible (being simultaneously at different locations in different processes

or tasks is of course possible):

Ll .., (at(/) A after(l)).

Locations are special data elements and as such we can impose on them

the Unîque Identification assumption. However, being present at a certain

location is not instantaneous, but has some duration (a.n extended event),

so the uniqueness ofloca.tions is expressed by

L2 at(I) --> at(l) unless (after(l) A G ~at(I)).

As we did insection 6 of Cha.pter 5 we leave out universa! qua.ntifications

over the data domains in the specifications.

We take the same attitude as in section 6 of Chapter 5 with regard to

the specificatien of the interface.

6.5. SPECIFICATION EXAMPLES 133

6.5.1 Example 1: Pure Time-out

One of the most common and easiest real-time constructsis the time-out. A

time-out is generated at the end of a period (whose length is determined by

the value by which the timer was set) in which a certain event (think of the

signal resetting the timer) has not occurred. Time-outs are widely used in

real- time systems to safeguard one part of a system against malfunction of

another part. Lettheevent be e and the time-out value ó, then the time-out

on e after ó can be defined in metric temporallogic by

time_out(e, ó) := , P <6 e.

So, a time-out on e after ó is generated if and only if e has not occurred

during the last ó time units. Notice that in this representation the setting of

the timer is considered irrelevant. If we want to incorporate this, however,

let setandreset be theevent setting, respectively resetting, the timer, then

a time-out with period ó can be described by

-, reset since.s set.

6.5.2 Example 2: Watchdog Timer

This example concerns a purereal-time system, a watchdog timer. A pro­

cessor is monitored by a timer, the watchdog. The processor sets the timer

by a signal enable(t) and it should reset the timer by a reset signal each

time before the timer expires (cf. the previous example). When the proces­

sor does not succeed in resetting the timer in time, the processor wiJl be

stopped by a halt signal from the watchdog. At any time, the processor

and the watchdog timer can be restarted by an initiate signal from the

environment (e.g. an operator pushing a button). After an initiate signal

a new period of enabling and resetting the timer starts. Once the timer

is set with enable(t) after an initiate signal, the time-out period cannot be

changed (and thus every subsequent enable(t') signalis ignored) until the

next initiate signal. Figure 6.1 summarizes this state of affairs. We assume

134 CHAPTER 6. TIME-CRITICAL SYSTEMS

initiate

enable(t)

! processor
!

watchdog
timer

reset
! i

halt

Figure 6.1: Watchdog Timer

that the enahle-line oheys the no simultaneons input assumption (otherwise

the time-out period could he unknown):

enable(t) A enable(t') -+ t' = t.

To identify the first enable(t) after an initiate signal wedefine

firstenable(t) := enable(t) A (~ 3 t1 enable(t')) since initiate.

The only essen ti al thing to he specified is the generation of the halt signal.

This is characterized hy a period hounded hy firstenable(t) (timer set) and

a halt signal (timer stopped) in which:

1. no initiate and no halt signal occurred during this whole period (no

halt signal since we want at most one halt signal to occur between

two initiate signals),

2. no reset occurred during the last t time units of this period.

The generation of a halt signal can then he specified hy a nested sirree

formula:

6.5. SPECIFICATION EXAMPLES

halt +-+ 3 t [t > 0 1\ (.., initiate 1\ .., halt 1\ .., reset) sinces(t)

((.., initiate 1\ .., halt) since firstenable(t))]

135

where h transfers an element from the data domain of enable to an element

of the metric domain A (see the introduetion of this section).

6.5.3 Example 3: Wait/delay Statement

This example treats the wait statement or delay statement as occurring in

concurrent programming languages such as CHILL ([CHILL 80]) or Ada

([Ada 83]). See the introduetion of this section for the way we use locations

to express thesemantics of programming languages. By wait(l) we denote

that lis the location of a wait statementand waitvalue(l) denotes the spec­

i:fied waitvalue of that wait statement. The semantics of a wait statement

is then speci:fied by

J at(l) 1\ wait(l) ----> at(l) untils(waitvalue(l)) after(l).

Remark 6.5.1 For the J-operator and the function é transferring elements

from a data domain to elements of the metric domain A, see the introduetion

of this section.

Remark 6.5.2 Being present at a location takes some time so the wait

statement cannot he passed in 0 time units. In other words, even if the

waitvalue is 0 the function é will take care that this is mapped to a positive

number to account for the time it takes to transfer control (cf. Appendix A

in (KSRGA 85] concerning this problem for the Ada delay statement).

Remark 6.5.3 If also an in:finite waitvalue is allowed we add the following

axiom for this special case:

at(l) 1\ wait(l) 1\ waitvalue(l) oo ----> G at(l).

136 CHAPTER 6. TIME-CRITICAL SYSTEMS

6.5.4 Example 4: Terminal Adaptor

Thls example is a mixture of message passing and real-time. It concerns a

simplified terminal adaptor. On one side bytes are received from a data link

operating on 512 bytes/second. On the other side bytes are transmitted to

a terminal with a rate of 300 bytes/second. The adaptor has a buffering

capacity of N1 bytes and it prevents buffer overflow through sending stop

and start signals to the data link as soon as the buffer becomes more than

80% full, respectively more than 80% empty. It is assumed that after the

sending of a stop signa! at most N2 bytes are sent by the data link (of course

N2 should be smal! compared to Nl). The data link may resume sending

bytes only afterit has received a start signa!. Let in(b) denote the reception

of byte b from the high-speed data link and out(b) the transmission of byte

b to the terminal. The above is summarized in Figure 6.2. The terminal

start

stop
buffer

in(b)
(N1 places)

out(b)

Figure 6.2: Terminal Adaptor

adaptor is a perfect FIFO message passing system, so we suppose:

Unique Identification (MP1) for in,

No Creation and fini te speed (MP2') for out with respect to in,

perfectness (MP3'),

no simultaneons input and output (MP4a,b) for in and out,

6.5. SPECIFICATION EXAMPLES 137

FIFO ordering (MP5).

Additionally, the terminal adaptor obeys somereai-time restrictions. First

define

buffered(b) := P in(b) A --, P out(b)

to express that byte b is at the moment contained in the buffer of th.e

terminal adaptor. We assume that transmission of bytes to the terminal is

irregular (i.e. aperiodic), but within 3~ of a second:

buffered(b) -+ F < 3~0 3 b' out(b').

Because the buffer respects FIFO ordering th.is can he strengthened to

buffered(b) A --,3 b'[buffered(b') A P(in(b) A P in(b'))] __,.

--, 3 b1 out(b') until<....!.... out(b)
300

where r.p until<.s '1/J is of course defined by

The strengthened axiom above can be derived as an instanee (taking r.p =
3b1 out(b') and '1/J = out(b)) from

--, r.p until '1/J A F <6 r.p __,. --, r.p until<.s '1/J

(where -,r.p until '1/J sterns from the part about the FIFO ordering).

We now proceed with the other side, the reception of bytes from the data

link. Define

stopped := (--,start) sincestop

starLstop_interference := <><....!....(stop V start)
512

(where <> <6 r.p is defined by r.p V F <6 r.p) to indicate that the reception was

stopped (a stop signal was issued and since then no start signal has been

issued), respectively a period (of length 5i2) in which reception is interfered

138 CHAPTER 6. TIME-CRITICAL SYSTEMS

by issuing a stop or start signal. We can now specify the regular reception

of bytes from the data link with period 5~2 , unless reception was stopped

or interfered by a stop or start signal:

in(b) A -, stopped A -, start_stop_inter f erenee ~

-, 3 b1 in(b') until....L 3 b1 in(b').
1'>12

Remark 6.5.4 This axiom represents a conditional periodicity require­

ment. Therefore, the above axiom can also be written as

periodic(3 b' in(b'), 5~2 ,-, stopped A -, start_stop_inter ference).

(Recall from predicate logic that V x[(P(x) A Q) ~ R] is equivalent with

(Q A 3 x P(x)) ~ R when Q and R do not contain x free.)

Remark 6.5.5 Note that.., (..,start since stop) A -, 0 <....L (stop V start)
612

is equivalent with -, FL (..,start since stop) A .., 0 <....L start (the latter
612 612

formulation was used in [KKZ 87]).

After a stop signal the data link need not immediately stop sending bytes

(it can still send at most N 2 bytes). Nevertheless, the reception of bytes

remains regular in such a period. To enforce this we also demand backward

periodicity after the first byte after the last start signal:

in(b) ~ -, 3 b' in(b') sincestart V -, 3 b1 in(b') since--L 3 b' in(b').
1'>12

Aftera stop signal at most N 2 bytescan be sent by the data link:

.., start since ~ stop ~ .., 3 b in(b)
>612

w here <p since>s '1/J is defined by

381 [8 -< 8' A <p since6, '1/J].

6.5. SPECIFICATION EXAMPLES 139

At last we should specify the generation of the start and stop signals. For

convenience we assume that N1 is divisible by 5. To indicate the situation

that the buffer is for at least 80% full, respectively at least 80% empty, we

define

tN1+l ~Nt+l

almostfull .- 3 bt · · · 3 btNt +1 [1\ bi =I bj A 1\ buffered(bi)]

almostempty

i,j=l i=l
i<j

tNt
. - .., 3 bt · · · 3 btNt [1\

iJ=l
i<j

tNt

bi =I bj A 1\ buffered(bi)] .
i=l

Remark 6.5.6 N1 is a fixed (constant) parameter in this specification so

that the sequence of existential quantifiers in front of these formulas can be

replaced by a sequence of fixed length.

Remark 6.5.7 When one allows the use of auxiliary data structures such

as a queue, one simply could refer to the length of the queue representing

the buffer. However, we consider the use of auxiliary data structures against

the requirement of syntactical abstractness for specification languages (see

Chapter 2 and section 5 of Chapter 5). When one decides to use only logical

and temporal operators combined with quantification over and equality in

the data domain (in this case bytes), a bit more complex definitions like the

ones above are unavoidable.

Now we should specify that the start and stop signals will be generated as

soon as the buffer becomes (again) almost full, respectively almost empty.

To express the as soon as aspect, we use the just-operator J (see the intro­

duetion of this section):

start ~ J almostempty

stop ~ J almostfull.

140 CHAPTER 6. TIME-CRITICAL SYSTEMS

As one can see from these two axioms the start and stop signals are not

essential and, using these two axioms, can be consequently replaced in the

previous axioms by their equivalent right-hand sides. In other words, this

specification can be given in a more abstract way only in terms of in and

out without the implementation-oriented signals start and stop! This phe­

nomenon occurs because we see systems as black boxes and hence only

specify the outside (see Chapter 2), but on the other hand overviewing this

outside from all sides (seeing the whole environment). In case ofthe termi­

nal adaptor, the start and stop signals are essential from an implementation

viewpoint because the data link cannot see from its position how the other

side (the terminal) is doing, in partienlar how fast the terminal adaptor

transmits bytes at that side. Because the data link does not have this in­

formation, it is not able to stop in right time and start sending bytes again

when necessary by itself.

6.5.5 Example 5: Mixing Synchronous and Asynchronous
Input

In this example we specify an object with two inputs and one output. The

original informal specification is contained in [DHJR 85]:

The object has two inputs and one output. The output and

one of the inputs respectively send receive data in packets at

regular intervals. The remaining input is asynchronous, i.e. data

appears at undetermined times.

The data packets which arrive at the synchronous input may

be full or empty, and the object may only output data by for­

warding packets from the synchronous input or filling an empty

packet with data from the asynchronous input. All packets have

the same size.

This is represented in Figure 6.3. The object, like the terminal adaptor

of Example 4, has a mixture of message passing and real-time features. It

6.5. SPECIFICATION EXAMPLES

(period 1)
in.(p)

object
(delay ó)

(period 1)
out(p)

Figure 6.3: Mixing Synchronous and Asynchronous Input

141

seems the intention of the informal specification above that the periods of

the output and the synchronous input are the same (in the picture repre­

sented by 1 > 0). lf the period of the output would heshorter than that of

the synchronous input, the output will have to create packets at a certain

moment and this violates the No Creation assumption for message passing

systems. lf, on the other hand, the period of the output would he longer

than that of the synchronous input, the output cannot keep pace and pack­

ets will he lost eventually. As we interpret the above informal specification

this seems not intended because that specification suggests that the object

functions as a perfect message passing system. Furthermore, we assume

finite speed for the passing of packets. Because of the synchrony of the

output and one of the inputs this leads to a fixed delay 6 > 0. This delay

ó represents a kind of processing time to pass or possibly fill a packet. The

message passing aspect of the object is somewhat unusual because only one

output is coupled to two inputs. The most important input is, however, the

synchronous one and the asynchronous one only functions in exceptional

cases (an empty packet on the synchronous input). Therefore, the following

message passing properties hold between the two inputs and the output: No

Creation and finite speed hold between the output and both inputs, FIFO

holds for the output and the synchronous input while perfectness only holds

for non-empty packets on the synchronous input. These message passing

142 CHAPTER 6. TIME-CRITICAL SYSTEMS

properties will be a consequence of stronger reai-time properties given be­

low. We do assume no simultaneons input and output:

in"(p) A in"(p') ~ p1 = p

ina(P) A ina.(P1
) ~ p' = P

out(p) A out(p') ~ p1 p.

Also unique identification is supposed. Because the inputs are not separated

like in Example 2 in section 6 of Chapter 5, but are mixed in this case, we

must not only assume unicity for both inputs separately but also for the

inputs between each other:

in.(p) V ina(P) ~ .., D (in11(p) V ina(P))

.., (in 11(p) A ina.(P)).

Reeall from section 2 of Chapter 5 that the No Creation assumption on

message passing systems consisted of two parts: no new messages and no

duplicates. The no new messages part will follow from the reai-time require­

ments below, but the no duplicates part is independent from the message

passing relation between the output and the two inputs described above.

So, wedemand for the output:

out(p) ~ .., D out(p).

We can now turn to the real-time requirements of the object. Using the

abbreviation periodic(e, ó) defined in the introduetion of this section, regu­

larity of the output, respectively synchronousinput, is required by

periodic(3 p' in11 (p'), 7)
and

periodic(3 p1 out(p'), 7).

6.5. SPECIFICATION EXAMPLES 143

The following two real- time requirements concern pèrfectness with a de­

lay of ó Qifferentiating the cases of a non-empty and empty packet on the

synchronous input:

in.(p) A ..., empty(p) -+ Fs out(p)

in.(p) A empty(p) -+ F.s (out(p) V 3 p1 [out(p') A P in4 (p')]).

Remark 6.5.8 The latter axiom allows that a packet arrives on the asyn­

chronous input at the very last moment. This is not quite in accordance

with the idea that the delay ó represents a kind of processing time to pass

or possihly fill a packet. More tailored towards this idea would he the axiom

in,(p) A empty(p) -+ F.s out(p) V 3 p1 [P ina(P') A F.s out(p1
)],

i.e. getting the P-operator out of the scope of the Fs.

Remark 6.5.9 Both axioms together (with the ohvious change in case the

alteration suggested in Remark 6.5.8 is taken into account) guarantee that

in.(p) -+ F.s(out(p) V 3 p1[out(p1
) A Pin4 (p')]),

so in partienlar

in.(p) -+ F.s 3p1 out(p1
).

Remark 6.5.10 Because of Remark 6.5.9 and regularity of the output with

period 1, the axiom for regularity of the synchronous input with period 1

can he weakened to

in,(p) -+ F 7 3 p1 in,(p').

The reasou is that in.(p) A F <'Y 3 p' in,(p1
) implies hy Remark 6.5.9

F.s(3 p1 out(p1
) A F <'Y 3 p' out(p1

))

which contradiets the regularity of the output with period 1.

144 CHAPTER 6. TIME-CRITICAL SYSTEMS

Our last axiom ensures that output does not start too early, to he precise

only after a delay ó after the first packet on the synchronous input:

.., 3 p P in6 (p) ~ F6.., 3 p1 P out(p1
).

An equivalent formulation of this axiom looks backwards:

Now we can show that the remaining message passing properties are implied

by the above real-time requirements. First, an obvious strengthening of

Remark 6.5.9 gives

in,(p) ~ F6((out(p) A P6 in.(p)) V 3p1[out(p') A Pina(P')]).

So, each packet on the synchronous input leads after a delay ó to the output

of either that packet or an earlier packet from the asynchronous input. Since

the synchronous input and the output have the same period -r these packets

caused by the synchronous input make up for all packets on the output from

a delay ó after the first pack et on the synchronous input (there can be no

packets in between since the output is regular and there can be no packets

simultaneously with those generated by the synchronous input because no

simultaneons output is assumed). The last axiom ensures that before a delay

ó after the first packet on the synchronous input there can be no packet on

the output. Thus, the only packets on the output are those generated by

a packet on the synchronous input as formulated by the above formula.

Inspecting this form ula we immediately can conclude no creation of new

packets and fini te speed since either out(p) A P 6 in,(p) or out(p1
) A

Pina(p') holds. In fact, we showed that out(p) ~ P5in,(p) V Pina(P)·

No duplication of packets was already formulated separately and takes care

that a packet from the asynchronous input cannot be taken twice to fill an

empty packet from the synchronous input. FIFO ordering for packets from

the synchronous input follows because the above implies that a packet from

6.5. SPECIFICATION EXAMPLES 145

the synchronous input is output after a delay IJ or not at all as formulated

by the formula

in"(p) - F6 out(p) V A-, out(p).

Perfectness for non-empty packets of the synchronous input follows already

solely from the axiomabout non-empty packets at the synchronous input.

6.5.6 Example 6: Abstract Transmission Medium

A transmission medium can be considered as a message passing system

where the input and output are called transmit, respectively arrive and

the data consists of signal.s. We assume the following aspects of message

passing systems: unique identi:fication of signal.s, no creation of signal.s and

:finite transmission speed, basic liveness, no simultaneons input and output.

As given in Example 1 of section 6 of Chapter 5 these can be formulated

respectively by:

tran8mit(8) - -, D tran8mit(8)

arrive(8) - P tran8mit(8) A -, D arrive(8)

G F 3 8 tran8mit(8) - F 3 s arrive(8)

transmit(8) A transmit(s1) - s1 = s

arrive(s) A arrive(s1) - s' = 8.

The characteristic feature of the transmission medium on top of being a

particular kind of message passing system is the requirement that it is not

too la.zy, i.e. there exists a :fixed period 7 in which the transmission medium

attempts to transmit at least one signal. (successfully or not). So, when there

are no other signal.s to be transmitted, 7 represents the maximum time for

which the attempt to transmit a signal. can be delayed. Such a requirement

is needed to enable higher-level protoeals to time-out on signal.s sent but

not yet received and start retransmission. This is formulated by

31 A (3 s [P transmit(s) A -, P arrive(s)] -

146 CHAPTER 6. TIME-CRITICAL SYSTEMS

3 s' [P transmit(s') /\ -, P arrive(s') /\ G>.., -, arrive(s')])

where G>c5 <p is defined by

In the a.xiom above s' represents one signal which has been attempted

to transmit in a partienlar period I· If this transmission was successful,

F 5'7 arrive(s1
) holds (where F $.6 <pis defined by Fö <p V F <c5 cp), otherwise

A-, arrive(s1
) hol ds. To prove this we note the following. Since A <p IS.

equivalent over linear orders with -, P <p /\ G-, <p and -, P arrive(s') is

given, it is sufReient to prove

G>..,-, arrive(s1
) ~ F $.'7 arriva(s') V G-, arrive(s').

Now, this is an instanee of G>..,-, 1/J ~ F $.7 1/J V G-, 1/J which is a theorem

of M as is shown by the following derivation:

1. G>-r -, 1/J (assumption)

2. V6 [/-< 6 ~ Gc5-, 1/;] (l,definition G>-r cp)

3. 36 [0-< 6 ::5 1 /\ Fö 1/J] V V6 [0-< 6 ::5 1 ~ -, Fö 1/;] (predicate logic)

4. 3<5 [0 -< <5 ::5 1 /\ Fö 1/;] +-t F $.-r '1/J (definition F $.7 1/J)

5. V6 [0-< 6 ::5 1 ~ -, F6 1/;] +-t V6 [0-< 6 ::5 1 ~ G6 -, 1/;] (MO)

6. Vc5[1-< 6 ~ G.s•'I/Y]A Vó[O-< 6::51 ~ G.s•'t/J] ~ V6[0-< 6 ~ G.s•'I/J]
(predicate logic)

7. Go -, 1/J +-t T (M5a)

8. V6 (0 -< 6 ~ Gs -, 1/;] +-t V6 G 6 ., 1/J (7 ,predicate logic)

9. V6 [0 -< 6 ~ G.s -, '~/;] +-t G -, '1/J (8,MO)

6.5. SPECIFICATION EXAMPLES 147

11. F <,5;-y 'Ij; V G-, 'Ij; (2~3,4,10,predicate logic)

12. G>'Y -, 'Ij; -!> F '.5'Y 'Ij; V G .., 'Ij; (1,11).

In this example we needed quantification over the metric domain.

6.5.7 Example 7: Reai-Time Communication Constructs

In this example we describe asynchronous message passing by means of

the send and receive constructs. Our specific form of the send and receive

constructsis inspired by CHILL (see [CHILL 80]). The send construct has

an associated signal which represents the data to he sent. Each signal has a

unique destination and every signal sent will eventually reach its destination.

The receive construct consists of a selection of signals that it may accept.

The selection is between signals that have been sent to the process to which

this receive construct belongs (that must he their destination), that have

arrived and that have not been selected before. After a choice has been

made, control transfers to the corresponding part of the receive construct.

So, for a receive construct we can di:fferentiate two phases:

1. wait (possibly forever) for a signal that can he accepted (one of the

listed selection possibilities),

2. choose one of the acceptable signals and take the branch of that ac­

cepted signal.

In case of a timed receive construct the possibility of a time-out is added that

restricts the time the receiving process is going to wait for a signal match­

ing one of its selection possibilities to arrive. For real-time applications the

communication constructs of (asynchronous) send and timed receive are

the most useful choices because they do not lead to deadlock possibilities

(the sender continnes and the receiver times out). The send and receive

constructs are high-level communication primitives and are usually imple­

mented on a network providing reliable communication by using time-out

148 CHAPTER 6. TIME-CRITICAL SYSTEMS

and retransmission for unreliable transmission media like those of Example

6. Notice that send and receive resembie in, respectively out, of a perfect

message passing system. The main difference, however, is that the receiver

explicitly accepts signals at times chosen by itself. In other words: the pos­

sibility to output a message is under control of the environment instead of

the system. We start by specifying the effect of a send statement:

at(l) A send(l) ~ at(l) until after(l).

We use similar conventions about locations as we used in Example 3. send(l)

indicates that the location l contains a send statement. This axiom simply

states that the send statement takes some :finite time, and this is exactly the

essence of an asynchronous send: the sender just continnes in contrast with

synchronous communication such as a rendezvous in Ada (see [Ada 83]).

The signal that is the result of the send statement at location l will be

represented by the function signal(l). An alternative for this would be

to put this explicitly in the predicate send, but in that case it should he

additionally stated that only one signalis generated for each send statement:

send(l,s) A send(l,s') ~ s1 = s.

We prefer the use ofthe predicate send(l) and the function signal(l) because

then it is implicit that a send statement can generate only one signal. The

fact that a signal s is sent can be expressed by

sent(s) := 3l[J after(l) A send(l) A signal(l) = s].

Here we use the just-operator to indicate that the moment of sending co­

incides precisely with the moment that the send statement has just been

passed. Because send statements can be executed simultaneously at differ­

ent places (locations in different processes) in the program, and similarly

for receive statements, we cannot suppose the no simultaneons input as­

sumption. We want the data passed to be unique, so we must demand that

simultaneously executed send statements generate different signals:

send(l) A send(l') A signal(l) = signal(l') ~ l' = l.

6.5. SPECIFICATION EXAMPLES 149

We now turn to the receiving si de. As we indicated above, the message pass­

ing relation between thesender and the receiver is somewhat non-standard

because the receiver chooses the time to make a selection between accept­

able signals. This selection process is also a special one: only certain signals

can be accepted. This is expressed by the predicate selectable(s, l). There

are several choices for the definition of this predicate depending on the in­

tended possibilities toselect signals, but the signal s should at least conform

(either syntactically or semantically) to one of the possible choices of that

particula.r receive statement (i.e. the one at location l) and the destination

of s should be the processin which this receive statement (i.e. the location

l) occurs. With a receive statement at location land a signal s we associate

the speciallocation choice(s, 1) representing the location where control is

transferred to when signal sis chosen to be accepted at l. Forthese special

locations choice(s, l) we again impose a uniqueness assumption:

choice(s, l) = choice(s', Z') -+ s' = s 1\ l' = l.
A signal s can be chosen to be accepted at l if it is selectable, has been sent

and was not chosen before. So define

choosable(s, 1) := selectable(s, l) 1\ P sent(s) 1\ -, P 3 l' at(choice(s, 11
)).

The fact that we can model that a signa! s has been chosen before by

P 31' at(choice(s, l')) depends crucially on the uniqueness assumption for

the locations choice(s, l). To see this, consider the following program with

three processes:

P1:: SEND 0 TO Pa

P2:: SEND 0 TO P3

P3:: RECEIVE

0: ...

1: ... ;

RECEIVE

0: .. .

1: .. .

150 CHAPTER 6. TIME-CRITICAL SYSTEMS

Let s1 and sa be the signals sent from P1 and Pa respectively, and l one of

the two receive statements in Ps, then

choice(Si, l) = choice(ss-i, l) for 1 ~i~ 2.

So, if s1 is accepted in P3 first, P 31' at(choice(sa, l')) will hold although sa

has not been chosen yet.

To arrive at alocation choice(s, l), s must have been choosable at l:

J at(choice(s, l)) --+ choosable(s, l).

The (non-timed) receive statement can now be described by the following

two axioms:

at(l) A receive(l) --+ at(l) unless 3 s at(choice(s, l))

at(l) A receive(l) A 3 s choosable(s, l) --+ F 3 s' at(choice(s', l)).

In the case of a timed receive statement there is the additional possibility to

transfer control to the special else-location after timervalue (cf. the waitvalue

of a wait statement in Example 3) time units have elapsed. Combined with

· the two axioms above for the non-timed case this leads to the axiom

J at(l) A timedreceive(l) --+

at(l) unti4(timet't~alue(l)) at(else(l)) V

at(l) until<ó(time,.t~alue(l))
((at(l) A 3schoosable(s,l)) until3s'at(choice(s',l))).

Note that the choice to take the else-branch is always possible because it

is not observable whether a signal has arrived at its destination or not. In

other words, we know nothing a bout the speed of the reliable communication

network. It would be realistic to impose an upper bound on the time for

signals to arrive (the maximum transmission time). In that case the else­

branch can only be taken if we add that there could not have arrived a signal

6.6. CONCLUSIONS 151

within timervalue time units. This can be done by adding the following

conjunct to the fi.rst clause of the disjunction in the axiom above (maxtt

represents the maximum transmission time):

A--, 3 s[selectable(s,l) A --, P 311 at(choice(s,l1
)) A

Fs(timervalue(l)) P>ma:~tt sent(s)]

where P>.s <pis defined by

3ê1 [ê -< ê' A P.s, c.p].

In the same way one can introduce a minimum transmission time by incor­

porating such a mintt in the definition of choosable(s, l):

selectable(s, l) A P>mintt sent(s) A --, P 3 l' at(choice(s, l')).

A (timed) receive statement can choose between several signals to accept. A

fairness assumption can be added for these choices, relating to the locations

choice(s, l).

6.6 Conclusions

We end this chapter with some conclusions.

We extended temporal logic with metric operators derived from their

qualitative polymodal versions described in Chapter 4. We showed how

these metric operators could be usefully applied to the forma! specification of

time-critica! systems. [Bur 84] section 6 contains an alternative proposal for

metric temporallogic where time is structured as an ordered Abelian group.

From a philosophical viewpoint, the idea that duration of time is expressed

as an element of the time domain itself seems unnatural. Also technically,

the natura! addition on a time domain may not be sufficient for determining

the distance between any two points, as is exempli:fied by the points (0, 1)

and (1, 0) in Example 6.4.1 of section 4. When only interested in qualitative

152 CHAPTER 6. TIME-CRITICAL SYSTEMS

aspects of distances, however, Tarski's qualitative geometry ([Tar 69]) sug­

gests models (T, <, E) where Exyuv is the equidistance-predicate (x and y

have the same distance as u and v). An interesting question connecting this

approach with metric temporal logic is: how shouid < and E be axioma­

tized to describe models (T, <, E) that allow a representation in terms of

our metric point structures such that Exyuv {:} d(x, y) = d(u, v) ? An­

other alternative for expressing quantitative timing properties is dynamic

logic (see [Har 84]) with one atomie program 'successor' S. But, already

for the expression of bounded response time we need an infinitary dynamic

logic ([Gol 82]):

V[s*JCP _. V <si> q).
n i<n

This approach is oniy suitable for discrete structures, but our philosophy

behind metric temporal logic required that the qualitative fragment con­

cerning all point structures should be nicely embedded. This makes sense

in practice too, because time-critical systems may contain non-discrete ele­

ments such as analog devices for handling continuons physical entities like

temperature (see section 2).

The list of examples showed how several types of time-critica! systems

can be specified with metric temporallogic, ranging from very simple reai­

time constructs and systems to combined message passing/real-time sys­

tems and semantics for real-time communication constructs of concurrent

programming Ianguages. The resulting specifications are elegant and rather

directly formalize our intuition abou~ the timing aspects of e.g. real-time

systems.

In the examples we concentrated on events since these are very important

for time-critical systems. In case state variables also play an important role,

e.g. in case of process control systems, it is still aften the case that not

the variabie itself is the dominant feature but a certain event or condition

invalving this state variable. A typical example is a continuous physical

variabie like temperature. U sually we are not interested in the absolute

value of this state variabie as such but more in the fact whether it stays

6.6. CONCLUSIONS 153

within certain bounds, e.g. the system should only react when the condition

temperature < maxtemp becomes false. Suppose that reactime is the

required reaction time and that closevalve is the required reaction, then

such a requirement can be specified in metric temporallogic by

J(temperature ~ maxtemp) -+ F <reactime closevalve.

Here we use the just-operator to catch the exact moment when the condition

temperafure < maxtemp changes from true to false.

Chapter 7

Summary and Concluding

Remarks

In this thesis we develop a temporal logic for reasoning about message

passing and time-critica! systems and illustrate the resulting specification

metbod by numerous examples. It is built on several papers that appeared

between 1983 and 1989 ([KVR 83], [KR 85], [Koy 87], [KKZ 87], [KKZ 88],

[KKZ 89]). This research started at the author's practice period at Philips

Telecommunication Industries from September 1982 till June 1983. The

result was a paper ([KVR 83]) descrihing how the CHILL real-time asyn­

chronous communication primitives SEND and RECEIVE could he de­

scribed axiomatically in temporal logic. Being a first attempt, it contained

several misconceptions. One of them was that time was considered as (a

distinguished) part of the state and that a state change could occur without

increasing the time component. More successful contributions of [KVR 83]

were the use of past operators to obtain elegant specifications and the in­

troduction of a powerful quantitative temporal operator (corresponding to

until.s of section 4 of Chapter 6). Examples 3 and 7 of section 5 of Chapter

6 show how such an axiomatization of the CHILL primitives would look like

in the current formalism. One month after the presentation ofthat paper, in

September 1983, a workshop was held in Cambridge where several specifica-

155

156 CHAPTER 7. SUMMARY AND CON CL UDING REMARKS

tion formalisros (presented by Hoare, Lam port, Milner et cetera) were tested

on the same set of ten examples (see the proceedings [DHJR 85]). In our

contribution ([KR 85]) already some improvements were made: time was

still part of the state, but now each state change necessarily increased time.

The past operators and the quantitative until-operator again proved to be

suitable, but on the other hand the next-operator (see section 4 of Chapter

3) was used only for the purpose of obtaining irreflexive operators. How the

three examples dealt with in this con tribution would look like in the current

formalism, see Examples 2 and 3 of section 6 of Chapter 5 and Example 5 of

section 5 of Chapter 6. At this workshop we promoted for the first time the

idea to assume unique identification of messages in order to achleve a simple

and elegant specification of message passing systems in temporallogic. At

that time we were criticized for introducing such an assumption. Several

years later (in [Koy 87]) we defended ourselves and showed not only that

such a simple temporallogic specification could only be given under this as­

sumption (the alternative is to use much stronger logies), but also that this

assumption was not as restrictive as it may look at first sight (see Example

1 of section 6 of Chapter 5 for the specification of pure message passing

systems in the current formalism). [KKZ 87] again demonstrated the pos­

sibility to apply the special temporal logic to specify message passing and

time-critica! systems (see Examples 2 and 4 of section 5 of Chapter 6 for the

specification in the current formalism). In this paper the logic was refined

again: now the state sequence and time were completely decoupled. This

is a more faithful representation of real time in real-time systems: the wall

doek progresses independently from the system's execution. The quantita­

tive operators were defined by the two additional operations of addition and

subtraction on time. In [KKZ 88] a study was made of the fundamentals

of real-tîme by means of a classification of real-time systems by presence

or absence of certain characteristics and several paradigms of reai-time sys­

tems were given. That paper also contained an initial and informal overview

of requirements for specifica ti on languages for real-time. This was subse-

157

quently worked out in a forma! frameworkin [KKZ 89]. In the meantime,

the foundations of the spedal temporallogic were reexamined which led to

two new ideas. The first idea took the quantitative element (represented by

addition and subtraction in the time domain itself) out of the time domain

by adding a distance function that indicates how far two points in time

are apart. The range of this distance function is called the metric domain.

The advantage of this representation is its flexibility: instead of measuring

time in the time domain itsèlf different chokes for the metric domain pro­

vide different possibilities for measuring time. Furthermore, additiçm and

subtradion do not always provide the means to define the distance func­

tion completely. Corresponding to this idea of posing a metric on time,

the special temporallogic. was renamed metric temporallogic. The second

idea emerged from our wish to separate qualitative and quantitative timing

aspects already in our new temporal models (including apart from an order

on time also a distance function). Since we allowed a pure qualitative view

on time (only in volving the order), it seemed natural to allow also a purely

quantitative view, only invalving the distance function. From a semantic

point of view, quantifying the metric elements away in operators combin­

ing the order and the distance function, gave back the purely qualitative

operators of standard temporal logic. Applying the same to pure metric

operators lead to the operators A, i.e. at every point in time and E, i.e. at

some point in time. From there it was only a small step to the irreflexive

version of E, the D-operator which proved to be very versatile.

As stated in Chapter 1, the main objective of this thesis was to develop a

specification method for message passing and time-critical systems. As was

also mentioned there, the development of such a method should go hand in

hand with checking whether the resulting theory really works in practice. In

this respect this thesis on one hand incorporates pure fundamental studies

(such as Chapter 4, section 4 of Chapter 5 and section 4 of Chapter 6) and

on the other hand aims at real applications in practice as is witnessed by the

specification examples in section 6 of Chapter 5 and section 5 of Chapter 6.

158 CHAPTER 7. SUMMARY AND CONCLUDING REMARKS

When applying the theory in these specification examples we strived more

for clarity than for utmost formality: in most cases we presented informal

arguments reasoning on an intuitive semantica! level. Ho wever, this intu­

ition corresponds exactly to the semantics of the temporallogies involved

so that the presented arguments can readily be transformed into rigorous

proofs in a straightforward way. Insome cases this has been demonstrated.

In this thesis we did not consider several relevant and closely related

issues of which we mention a few now. With respect to the application area,

as already said, reai-time systems exhibit many more features besides that

of time-critica! aspects, such as reliability, safety and performance. Part

of these are covered by the current method, since these topics cannot be

treated independently from time-critica! aspects, e.g. the coupling between

response time and performance. As for the specification method, we did

not pay much attention to the verification aspect in all its formal detail (as

stated above, most of our reasoning wasdoneon a semantica! insteadof a

proof theoreticallevel). Also hierarchical development was not treated in

depth (it featured only in Example 3 of section 6 of Chapter 5). We envisage

that such topics can be treated more extensively on the same footing as

was done for standard temporallogic (see e.g. [MP 82],[MP 83a],[MP 83b]

for verification methods and e.g. [Lam 83b],[BK 85a],[BK 85b],[BKP 84] for

hierarchical development).

As far as we did not do so already in the previous chapters, we now look

at some related work. Formal methods for message passing systems have

been around for some time. For example, [MCS 82] describes safety and

liveness properties of message passing networks by a hierarchical methad

based upon a compositional specification method for component processes,

[SS 82] uses inference rules for proving partial correctness of concurrent

programs that use message passing for synchronization and communication,

[SM 82] compares specification languages for communication protocols and

[HO 83] treats modular verification of such protocols.

Concerning real-time systems, a review of formal methods for describ-

159

ing these systems is given in (JG 88]. As far as we know, [BH 81] was the

first paper (using temporal logic) to specify timing characteristics of reai­

time systems formally. Their approach differs at several points from ours.

Firstly, they use only real-time operators related to temporal implication

insteadof the more powerful operators of metric temporallogic. Secondly,

they use the interteaving model. Consequently their methad is restricted

to uniprocessor implementations. Thirdly, their methad is limited to spe­

cific safety properties. [PH 88) contains a brief account of some attempts to

use temporallogic for the specification of reai-time systems. The computa­

tional model used is a timed interleaving model where enabled transitions

have associated lower and upper bounds within which they must be taken.

It considers two possible extensions of temporaliogic to deal with real-time.

The first adds a global doek as an explicit variabie to which the specification

may refer. The second approach introduces quantitative temporal operators

and is very much akin to metric temporallogic. For specifying synchronous

systems it recommends to use a discrete time domain (such as the natura!

numbers) and for asynchronous systems a dense time domain (such as the

rationals). One of the methods using the first approach is [Ost 87]. It intro­

duces a distinguished variabie t repreaenting the doek. A typical formula

of his Iogic RTTL (Real-Time Temporal Logic) is the following:

<p A t = T -+ () ('1/J A t :5 T + 5)

where T is a global variable.

The semantica of this formula corresponds to the metric temporal logic

formula

As is obvious from this example, metric temporallogic provides a more con­

cise and natura! way of specifying real-time properties: the explicit doek

variabie is against the original philosophy of temporallogic to abstract from

time as much as possible (and in the case of real-time it is su:fficient to add

160 CHAPTER 7. SUMMARY AND CON CL UDING REMARKS

only terms for expressing time units as in the metric temporal logic for­

mula above). On the other hand, RTTLis based on the workof Manna

and Pnueli (see the Bibliography) and a. sound proof system based on their

work is immediately a.va.ilable. An exa.mple using the second approach is

[GMM 89] incorporating a.n executable specification language. Another for­

ma! approach to the specification of real-time systems, not ba.sed on tem­

poral logic, is the Real-Time Logic (RTL) of Jahanian and Mok ([JM 86]).

Events are central in RTL and reasoning about reai-time systems is based

on a.ssertions about the occurrences of events which are mapped by the 'oc­

currence function' into the time doma.in of the na.turaJ numbers. The use of

RTL is restricted to the specification of safety properties.

As to directions for future research, the ideas underlying Chapter 4 are

just one year old and many interesting questions remain such as the exact

expressive power of the logies with inequality (e.g. obtained by a precise

cha.ra.cterization in correspondence theory), decision procedures, general

completeness results for frames a.nd axiomatizations of special structures

such as the integers. Concerning Chapter 5 it would be interesting to find

for each cla.ss of message passing systems a temporal logic that is sufficient

to specify merely this class. In this way one would get a. correspondence

between certa.in properties of message passing systems and the essentiaJ

ingredients needed for (reasoning about) their temporal formaliza.tion. Re­

garding Chapter 6, one of the main remaining questions there is to find

a suita.ble subset of metric temporallogic with a complete axioma.tization

(and preferably decidabie) in order to get a.n associated verification theory

(and possibly even mechanica! assistance from a. decision proeed ure). Fur­

thermore, it rema.ins to be seen how we can apply metric temporal logic to

medium a.nd large scale exa.mples. Before this can be done it must be sorted

out how we can embed such a. specifica.tion formalism into a. hiera.rchical de­

velopment method.

Bibliography

[Ack 62]

[Ada 83]

[Ben 83]

[Ben 84]

[Ben 85]

[Ben 89]

[BH 81]

[BK 85a]

W. Ackermann. Solvable Cases ofthe Decision Problem. Stud­

ies in Logic and the Foundations of Mathematics, North­

Holland, Amsterdam, 1962.

The Programming Language Ada, Heferenee Manual. Lecture

Notes in Computer Science Vol. 155, Springer, Berlin, 1983.

J.F.A.K. van Benthem. The Logic of Time. Reidel, Dordrecht,

1983.

J.F.A.K. van Benthem. Correspondence Theory, in [GG 84],

pp. 167-247.

J.F.A.K. van Benthem. Modal Logic and Classica[Logic. Bib­

liopolis, Naples, 1985.

J.F.A.K. van Benthem, private correspondence, 1989.

A. Bernstein, P.K. Harter, Jr. Proving Real-Time Properties

of Programs with Temporal Logic, Proceedings of the Eighth

ACM Symposium on Operating System Principles, pp. 1-11,

1981.

H. Barringer, R. Kuiper. Hierarchical Development of Con­

current Systems in a Temporal Logic Framework, pp. 35-61 in

Proceedings of a Seminar on Concurrency, Carnegie Mellon

161

162

[BK 85b]

[BKP 84]

[BKP 86]

[Bla 89]

[Bur 84]

BIBLIOGRAPHY

University, Pittsburgh, July 1984, Lecture Notes in Computer

Science Vol. 197, Springer, Berlin, 1985.

H. Barringer, R. Kuiper. Towards the Hierarchical, Temporal

Logic Specification of Concurrent Systems, in [DHJR 85], pp.

156-183.

H. Barringer, R. Kuiper, A. Pnueli. Now You May Gompose

Temporal Logic Specifications, Proceedings of the Sixteenth

ACM Symposium on the Theory of Computing, pp. 51-63,

1984.

H. Barringer, R. Kuiper, A. Pnueli. A Really Abstract Concur­

rent Model and its Temporal Logic, Proceedings of the Thir­

teenth ACM Symposium on the Principles of Programming

Languages, pp. 173-183, 1986.

P. Blackburn. Nominal Tense Log~c. Centre for Cognitive Sci­

ence, University of Edinburgh, 1989.

J.P. Burgess. Basic Tense Logic, in [GG 84], pp. 89-133.

[CHILL 80] CHILL Recommendation Z.200 (CHILL Language Defini­

tion). C.C.I.T.T. Study Group XI, 1980.

[CK 73] C.C. Chang, H.J. Keisler. Model Theory, Studies in Logic and

the Foundation of Mathernaties Vol. 73, North-Holland, Am­

sterdam, 1973.

[Coc 84] N.B. Cocchiarella. Philosophical Perspectives on Quantifica­

tion in Tense and Modal Logic, in [GG 84], pp. 309-353.

[DHJR 85] T. Denvir, W. Harwood, M. Jackson, M. Ray. The Analysis

of Concurrent Systems. Proceedings of a Tutorial and Work­

shop, Cambridge University, September 1983, Lecture Notes

in Computer Science Vol. 207, Springer, Berlin, 1985.

BIBLIOGRAPHY 163

[Gab 81]

[Gar 84]

[GG 84]

D. Gabbay. Expressive Functional Completeness in Tense

Logic, pp. 91-117 in U. Mönnich (ed.) Aspectsof Philosophical

Logic, Reidel, Dordrecht, 1981.

J.W. Garson. Quantification in Modal Logic, in [GG 84], pp.

249-307.

D. Gabbay, F. Guenthner (eds.). Handhook of Philosophical

Logic, Vol. IJ. Reidel, Dordrecht, 1984.

[GMM 89] C. Ghezzi, D. Mandrioli, A. Morzenti. TRIO: A Logic Lan­

guage for Executable Specifications of Real-Time Systems. Re­

port 89-006, Dipartimento di Elettronica, Politecnico di Mi­

lano, 1989.

[Gol 82]

[Gor 88]

R. Goldblatt. Axiomatising the Logic of Computer Progmm­

ming. Lecture Notes in Computer Science Vol. 130, Springer,

Berlin, 1982.

V. Goranko. Modal Definability in Enriched Languages. Sec­

tion of Logic, Faculty of Mathematics, Sofia University, Bul­

garia, 1988.

[GPSS 80] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi. On the Tempo­

ral Analysis of Fairness, Proceedings of the Seventh ACM

Symposium on the Principlesof Programming Languages, pp.

163-173, 1980.

[Hai 80]

[Har 84]

[HO 83]

B.T. Hailpern. Verifying Concurrent Processes Using Tempo­

ral Logic. Ph.D. Thesis, Stanford University, 1980.

D. Harel. Dynamic Logic, in [GG 84], pp. 497-604.

B.T. Hailpern, S.S: Owicki. Modular Verification of Computer

Communication Protocols, IEEE Transactions on Communi­

cations, Vol. COM-31, No. 1, pp. 56-68, 1983.

164

[HW 89]

[JG 88]

[JM 86]

[Jon 87]

[Kam 68]

[KKZ 87]

[KKZ 88]

(KKZ 89]

BIBLIOGRAPHY

J. Hooman, J. Widom. A Temporal-Logic Based Composi­

tional Proof System for Real-Time Message Passing, to appear

in Proceedings of the Conference on Parallel Architectures and

Languages Europe (PARLE) '89, Lecture Notes in Computer

Science, Springer, 1989.

M. Joseph, A. Goswami. Formal Description of Real-Time

Systems: A Review. Research Report RR129, Department of

Computer Science, University of Warwick, 1988.

F. Jahanian, A. Mok. Safety Analysis of Timing Properties

in Real-Time Systems, IEEE Transactions on Software Engi­

neering 12, pp. 890-904, 1986.

B. Jonsson. Compositional Verification of Distributed Sys­

tems. Ph.D. Thesis, Department of Computer Systems, Upp­

sala University, 1987.

J.A.W. Kamp. Tense Logic and the Theory of Linear Order.

Ph.D. Thesis, University of California, Los Angeles, 1968.

R. Koymans, R. Kuiper, E. Zijlstra. Specifying Message Pass­

ing and Real-Time Systems with Real- Time Temporal Logic,

Proceedings of the Fourth Annual ESPRIT Conference, pp.

311-324, North-Holland, Amsterdam, 1987.

R. Koymans, R. Kuiper, E. Zijlstra. Paradigms for Real-Time

Systems, Proceedings of a Symposium on Fotmal Techniques

in Real-Time and Fault-Tolerant Systems (ed. M. Joseph),

University of Warwick, 22-23 September 1988, Lecture Notes

in Computer Science Vol. 331, pp. 159-174, Springer, Berlin,

1988.

R. Koymans, R. Kuiper, E. Zijlstra. Specification Specified,

chapter 1 of R. Kuiper, Combining Linear Time Temporal

BIBLIOGRAPHY 165

[Koy 87]

[KP 87)

[KR 85]

Logic Descriptions of Concurrent Computations, Ph.D. The­

sis, Eindhoven University of Technology, 1989.

R. Koymans. Specifying Message Passing Systems Requires

E:ctending Temporal Logic, Proceedings of the Sixth Annual

ACM Symposium on Principlesof Distributed Computing, pp.

191-204, 1987, updated version to appear in Proceedings of a

Colloquium on Temporal Logic and Speci:fication, University

of Manchester, April1987, Lecture Notes in Computer Sci­

ence, Springer, Berlin, 1989.

S. Katz, D. Peled. Interleaving Set Temporal Logic, Proceed­

ings of the Sixth Annual ACM Symposium on Principlesof

Distributed Computing, pp. 178-190, 1987.

R. Koymans, W .-P. de Roever. Examples of a Real- Time Tem­

poral Logic Specification, in [DHJR 85], pp. 231-251.

[KSRGA 85] R. Koymans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth,

S. Arun-Kumar. Compositional Bemantics for Real-Time Dis­

tributed Computing, Proceedings of the Workshop on Logies

of Programs '85, Lecture Notes in Computer Science Vol. 193,

pp. 167-189, Springer, Berlin, 1985, extended version appeared

in Information and Computation, Volume 79, Number 3, pp.

210-256, Academie Press, December 1988.

[KVR 83] R. Koymans, J. Vytopil, W.-P. de Roever. Real-Time Pro­

gramming and Asynchronous Message Passing, Proceedings

of the Second Annual ACM Symposium on Principles of Dis­

tributed Computing, pp. 187-197, 1983.

[Lam 83a] L. Lamport. What Good is Temporal Logic?, Proceedings of

Information Processing (IFIP) '83 (editor R. Mason), pp. 657-

668, North-Holland, Amsterdam, 1983.

166 BIBLIOGRAPHY

[Lam 83b] L. Lamport. Specifying Concurrent Program Modules, ACM

Transactions on Programming Languages and Systems

(TOPLAS), Volume 5, Number 2, pp. 190-223, 1983.

[Lam 85]

[LPZ 85]

[MCS 82]

[MM 84]

[Mos 83]

[Mos 86]

[MP 82]

L. Lamport. STL/SERC Problems, in [DHJR 85], pp. 252-270.

0. Lichtenstein, A. Pnueli, L. Zuck. The Glory of The Past,

Proceedings of the Workshop on Logies of Programs '85,

Lecture Notes in Computer Science Vol. 193, pp. 196-218,

Springer, Berlin, 1985.

J. Misra, K.M. Chandy, T. Smith. Proving Safety and Liveness

of Communicating Processes, with Examples, Proceedings of

the First ACM Symposium on Principles of Distributed Com­

puting, 1982.

B. Moszkowski, Z .. Manna. Reasoning in Interval Temporal

Logic, Proceedings of AMC/NSF/ONR Workshop on Logies

of Programs, Lecture Notes in Computer Science Vol. 164, pp.

371-383, Springer, Berlin, 1984.

B. Moszkowski. Reasoning about Digital Circuits. Ph.D. The­

sis, Department of Computer Science, Stanford University,

1983.

B. Moszkowski. Executing Temporal LogiC Programs. Cam­

bridge University Press, 1986.

Z. Manna, A. Pnueli. Verification of Concurrent Programs:

The Temporal Framework, pp. 215-273 in R. Boyer, J. Moore

(eds.) The Correctness Problem in Computer Science, Inter­

national Lecture Series in Computer Science, Academie Press,

London, 1982.

BIBLIOGRAPHY 167

[MP 83a]

[MP 83b]

[MP 87]

[Ost 87]

[Pan 88]

[Par 81]

[Pen 88)

[PH 88]

Z. Manna, A. Pnueli. How to Cook a Temporal Proof Sys­

tem for your Pet Language, Proceedings of the Tenth ACM

Symposium on the Principlesof Programming Languages, pp.

141-154, 1983.

Z. Manna, A. Pnueli. Verification of Concurrent Programs: A

Temporal Proof System, pp. 163-255 in J. de Bakker, J. van

Leeuwen (eds.) Foundations of Computer Science IV, Mathe­

matkal Center Tracts Vol. 159, CWI, Amsterdam, 1983.

Z. Manna, A. Pnueli. A Hierarchy of Temporal Properties.

Department of Computer Science, Stanford University, Report

No. STAN-CS-87-1186, October 1987.

J.S. Ostro:ff. Real-Time Computer Control of Discrete Event

Systems Modelled by Extended State Machines: A Temporal

Logic Approach. Ph.D. Thesis, Department of Electrical En­

gineering, University of Toronto, 1987.

P.K. Pandya. Compositional Verification of Distributed Pro­

grams. Ph.D. Thesis, Tata Institute of Fundamental Research,

Bombay, 1988.

D. Park. Concurrency and Automala on Infinite Sequences,

Proceedings of Fifth GI (Geselischaft für Informatik) Confer­

ence, Lecture Notes in Computer Science VoL 104, Springer,

Berlin, 1981.

W. Penczek. A Temporal Logic for Event Structures, Funda.­

menta Informaticae XI, pp. 297-326, 1988.

A. Pnueli, E. Harel. Applications of Temporal Logic to the

Specification of Real Time Systems, Proceedings of a Sympo­

sium on Formal Techniques in Real-Time and Fault-Tolerant

Systems (ed. M. Joseph), University of Warwick, 22-23

168

[Pnu 77]

[Pnu 86]

[Pri 67]

[PW 84]

[Rijk 89]

[Sah 75]

BIBLIOGRAPHY

September 1988, Lecture Notes in Computer Science Vol. 331,

pp. 84-98, Springer, Berlin, 1988.

A. Pnueli. The Temporal Logic of Programs, Proceedings of

the Eighteenth Symposium on the Foundations of Computer

Science, pp. 46-57, 1977.

A. Pnueli. Applications of Temporal Logic to the Specifica­

tion and Verification of Reactive Systems: A Survey of Cur­

rent Trends, pp. 510-584 in J.W. de Bakker, W.-P. de Roever,

G. Rozenberg (eds.) Current Trends in Concurrency, Lecture

Notes in Computer Science Vol. 224, Springer, Berlin, 1986.

A. Prior. Past, Present and Future. Oxford University Press,

1967.

S. Pinter, P. Wolper. A Temporal Logic for Reasoning about

Partially Ordered Computations, Proceedings of the Third An­

nual ACM Symposium on Principles of Distributed Comput­

ing, pp. 28-37, 1984.

M. de Rijke. The Modal Theory of Inequality. Master Thesis,

Faculty of Mathernaties and Computer Science, University of

Amsterdam, 1989.

H. Sahlqvist. Completeness and Correspondence in the First

and Second Order Bemantics for Modal Logic, pp. 110-143 in

S. Kanger (ed.) Proceedings of the Third Scandinavian Logic

Symposium, North-Holland, Amsterdam, 1975.

[SCFG 82] A.P. Sistla, E.M. Clarke, N. Francez, Y. Gurevich. Can Mes­

sage Buffers Be Characterized in Linear Temporal Logic?,

Proceedings of the First ACM Symposium on Principles of

Distributed Computing, pp. 148-156, 1982.

BIBLIOGRAPHY 169

[SCFM 84} A.P. Sistla, E.M. Clarke, N. Francez, A.R. Meyer. Can Mes­

sage Buffers Be Axiomatized in Linear Temporal Logic?, In­

formation and Control, Volume 63, pp. 88-112, 1984.

[Seg 70]

[Seg 71]

[SM 82}

[SMV 83]

[SS 82]

[Sta 79]

[Sti 87]

K. Segerberg. Modal Logies with Linear Alternative Relations,

Theoria, Volume 36, pp. 301-322, 1970.

K. Segerberg. An Essay in Classica[Modal Logic. Filosofika

Studier 13, Department of Philosophy, University of UppsaJ.a,

1971.

R.L. Schwartz, P.M. Melliar-Smith. From State Machines to

Temporal Logic: Specification Methods for Protocol Standards,

IEEE Transactions on Communications Vol. COM-30, No. 12,

pp. 2486-2496, 1982.

R.L. Schwartz, P.M. Melliar-Smith, F.H. Vogt. An Interval

Logic for Higher-Level Temporal Reasoning, Proceedings of

the Second AnnuaJ. ACM Symposium on Principles of Dis­

tributed Computing, pp. 173-186, 1983.

R.D. Schlichting, F.B. Schneider. Using Message Passing for

Distributed Programming: Proof Rules and Disciplines, Pro­

ceedings of the First ACM Symposium on Principles of Dis­

tributed Computing, 1982, also appeared in ACM Transac­

tions on Programming Languages and Systems (TOPLAS),

Volume 6, Number 3, pp. 402-431, July 1984.

J. Stavi. Functional Completeness Over the Rationals. Unpub­

lished, Bar-llan University, Ramat-Gan, Israel, 1979.

C. Stirling. Gomparing Linearand Branching Time Tempo­

ral Logies. ECS-LFCS-87-24, Laboratory for Foundations of

Computer Science, Department of Computer Science, Univer­

sity of Edinburgh, April1987.

170

[Tar 69]

[Tho 86]

[Wol86]

[ZRE 85]

[Zwi 88]

BIBLIOGRAPHY

A. Tarski. What is Elementary Geometry?, pp. 164-175 in J.

Hintikka (ed.) The Philosophy of Mathematics, Oxford Uni­

versity Press, London, 1969.

W. Thomas. Safety- and Liveness-Properties in Propositional

Temporal Logic: Characterizations and Decidability. Schriften

zur Informatik und Angewandten Mathematik, Bericht Nr.

116, Rheinisch-Westfálische Technische Hochschule Aachen,

April1986.

P. Wolper. E:xpressing Interesting Properties of Programs in

Propositional Temporal Logic, Proceedings of the Thirteenth

ACM Symposium on the Principles of Programming Lan­

guages, pp. 184-193, 1986.

J. Zwiers, W.-P. de Roever, P. van Emde Boas. Compositional­

ity and Concurrent Networks: Soundness and Completeness of

a Proofsystem, Proceedings of the Twelfth International Col­

loquium on Automata, Languages and Programming, Lecture

Notes in Computer Science Vol. 194, pp. 509-519, Springer,

Berlin, 1985.

J. Zwiers. Compositionality, Concurrency and Partial Cor­

rectness: Proof Theories for Networks of Processes, and their

Connection. Ph.D. Thesis, Eindhoven University of Technol­

ogy, 1988, also appeared as Lecture Notes in Computer Science

Vol. 321, Springer, Berlin, 1989.

Index

.L, 14 Ms, 117

T, 14 P, 14

A, 43 :P, 82

D, 43 Ps, 117

D, 43 P<s, 119

Ds, 117 P>s, 151

E,.43 U, 48

Es, 117 X, 38

F, 14 Y, 38

Fs, 117 o, 38

F <6, 119 0, 38

F ::;s, 146 O<s, 137
G, 14, 15 since, 34

Gs, 117 s~e, 35

G>s, 146 sinces, 119
H, 14, 15 since, 131

Hs, 117 since>s, 138
J, 131 unless, 82
L, 14, 15 until, 34
LR 42 --

' until, 35
LR, 43 untils, 119
L.5, 117 until<s, 137
M,14
MR 42

'
PML(Rt, ... , Rn), 43

:r\.{R, 43 --<, 115

171

172

abstract interface, 8

action, 8

alternative relation, 15

basic liveness assumption, 70, 84

black box representation, 9

branching time temporallogic, 37

causality,8

compositionality, 11

computation, 36

conformity, 11

Consistency Theorem, 29

data element, 8

data-independence, 80

decidability, 32

disjoint union of frames, 20

distance function, 113

Distribution axiom schema, 28

dual, 14

environment, 7

environment assumption, 87

event,8

execution, 37, 111

expressive completeness, 34

extended event, 8

extended zigzag connection, 45

FIFO ordering, 73, 85

filtrated model, 19 ·

filtration, 19

INDEX

finite model property, 19

finite speed assumption, 71, 85

first-order temporallogic, 36, 39

frame, 15

frame-complete, 33

frequency, 109

generated subframe, 20

generated submodel, 17

Generation Theorem, 17

global equivalence, 25

global variables, 36, 39

Henkin Frame, 30

Henkin Model, 30

interface, 8

interface specification, 9

interleaving model, 110

interval temporallogic, 37

irreflexive operator, 34

LIFO ordering, 73, 86

Lindenbaum's Lemma, 30

linear (time) temporallogic, 37

local equivalence, 25

local variables, 36, 39

location, 132

maximal parallelism model, 111

method of substitutions, 26

metric domain, 116

metric operators, 117

INDEX

metric point structure, 116

model, 15

modularity, 11

Modus Ponens, 14

N eeessitation rule, 28

No Creation assumption, 70, 84

no simultaneons input assumption,

71,85

no simultaneons output assump­

tion, 71, 85

perfectness assumption, 73, 85

periodidty, 109

periodicity requirements, 131

point structure, 15

polymodallogie, 43

preeedenee relation, 15

preservation results, 2Q-22

proof system D, 55

proof system Dm, 60

proof system Dt, 61

proof system K, 28

proof system Kt, 32

proof system M, 124

propositionallogie, 14

quantitative temporal requirements,

109

real-time temporallogie, 3, 4

refinement, 96, 105

refiexive dosure, 43

173

response time, 109

rule of substitution, 33

Sahlqvist-form, 24, 52

state variable, 8

stimulus-response meehanism, 109

strict partial order, 15

submodel, 17

syntactical abstractness, 10

system, 7

system requirement, 87

temporal distance function, 116

temporal frame, 15

time-out, 133

Truth Lemma, 30

truth-preserving operations, 17

ultrafilter, 21

ultrafilter extension, 21

uniformity, 11

unique identification assumption,

80, 84

universa! validity, 16

valua.tion, 15

zigzag connection, 18, 45

zigzag morphism, 21

w-models, 34

Samenvatting
Toepassingen van de informatica in het dagelijkse leven zijn pas het laatste

decennium echt aan hun opmars begonnen. Hierbij kan men denken aan

reeds ingeburgerde toepassingen zoals de personal computer en eenvoudige

chips in huishoudelijke apparaten en foto-~ audio- en videoapparatuur. In

de nabije toekomst kunnen we nog revoluties verwachten op gebieden zo­

als telecommunicatie (overdracht van digitale informatie via bijvoorbeeld

glasvezelkabels), automatische besturingssystemen (bijvoorbeeld voor een

auto met ingebouwd routesysteem) enzovoorts. Ook krijgt men te maken

met toepassingen in kritieke gebieden zoals lucht- en ruimtevaart, kern­

energie en defensie. In al deze toepassingen zijn real-time systemen van

essentieel belang. Het fundamentele kenmerk van een real-time systeem

is de tijdskritische natuur ervan: het systeem moet binnen een extern be­

paalde tijd (zoals enkele milliseconden) reageren op veranderingen in de

omgeving. Een goed voorbeeld hiervan is het controleren van een chemisch

proces: als de temperatuur te hoog oploopt moet het systeem een afkoe­

lingamechanisme in werking stellen en wel binnen een tijd bepaald door de

wetten van het te controleren chemische proces. Reai-time systemen kun­

nen centraal of gedistribueerd geïmplementeerd zijn. In het geval van een

gedistribueerde implementatie levert dit extra complicaties op vanwege de

noodzakelijke communicatie tussen de afzonderlijke deelsystemen. De meest

gebruikelijke vorm van deze communicatie tussen deelsystemen is het uit­

wisselen van boodschappen (message passing). Aangezien (gedistribueerde)

real-time systemen behoren tot de meest complexe die ooit zijn ontwikkeld,

zijn goede specificatie- en verificatiemethoden hiervoor van levensbelang.

Dit proefschrift geeft een eerste aanzet voor een specificatieformalisme

dat deze soort systemen kan beschrijven en erover kan redeneren. Hierbij is

gekozen voor de temporele logica als basistheorie omdat dit formalisme reeds

met veel succes is toegepast op zeer uiteenlopende gebieden in de filosofie,

linguïstiek en informatica. Temporele logica is bedoeld om te redeneren over

in de tijd veranderende (dynamische) situaties. Dit doel wordt bereikt door

het invoeren van zogenaamde temporele operatoren. Voorbeelden van zulke

operatoren zijn 'ooit', 'altijd', 'oneindig vaak' en 'sinds'. Aan deze voor­

beelden is nog te zien dat temporele logica oorspronkelijk werd ontwikkeld

om het tijdsbegrip in natuurlijke talen te formaliseren. In de informatica

wordt temporele logica vooral gebruikt voor de specificatie van kwalitatieve

tijdseigenschappen van programma's en computersystemen zoals termina­

tie (het eindigen van een programma) en zogenaamde fairness-criteria (deze

hebben te maken met een eerlijke keuze tussen verschillende alternatieven).

In principe zou de mogelijkheid om zulke tijdseigenschappen uit te drukken

voldoende moeten zijn om message passing systemen te kunnen beschrijven.

Het blijkt echter dat een bepaald aspect van zulke systemen, namelijk het

niet dupliceren van boodschappen, niet uitgedrukt kan worden in standaard

temporele logica noch in zeer krachtige varianten ervan. Het lijkt daarom

noodzakelijk om temporele logica essentieel te versterken voor de specifica­

tie van message passing systemen. Dit proefschrift toont aan dat zulk een

versterking vermeden kan worden door extra aan te nemen dat binnenko­

mende boodschappen uniek identificeerbaar zijn, een aanname die minder

beperkend is dan men op het eerste gezicht zou verwachten.

Voor het beschrijven van tijdskritische systemen is standaard temporele

logica van nature ongeschikt omdat deze logica tijd op een kwalitatieve ma­

nier beschrijft terwijl bij tijdskritische systemen vooral kwantitatieve tijds­

eigenschappen van belang zijn, zoals 'binnen 7 milliseconden' en 'regelma­

tig met een periode van 3 seconden'. In dit geval is een echte uitbreiding

van standaard temporele logica onvermijdelijk. Dit proefschrift introduceert

daartoe metrische temporele logica. Deze logica breidt standaard temporele

logica met behulp van een afstandsfunctie uit met kwantitatieve elementen.

Naast deze kwantitatieve uitbreiding voor de beschrijving van tijdskriti­

sche systemen introduceert dit proefschrift ook een uitbreiding van tempo­

rele logica die te maken heeft met het feit dat standaard temporele logica

slechts een gedeelte van het scala van natuurlijke aannamen uitdrukt die men

over tijd zou willen kunnen uitdrukken. Een eenvoudige toevoeging, seman-

tisch overeenkomend met de ongelijkheidsrelatie, blijkt wel alle natuurlijke

aannamen te kunnen formuleren (zoals irreflexiviteit en het bestaan van een

beginpunt) terwijl de resulterende logica desondanks volledig axiomatiseer­

baar en beslisbaar blijft.

De bovenstaande theorieën worden geillustreerd aan de hand van di­

verse voorbeelden geïnspireerd door de praktijk van gedistribueerde en/ of

reai-time systemen. In deze specificatievoorbeelden worden temporele ope­

ratoren gebruikt die verwijzen naar het verleden (bijvoorbeeld 'eerder') in

plaats van alleen naar de toekomst. Het toevoegen van zulke operatoren

levert weliswaar geen extra uitdrukkingskracht op, maar wel natuurlijkere

en elegantere specificaties.

Dit proefschrift is als volgt ingedeeld.

Hoofdstuk 1 bevat een overzicht en een schets van de historische ontwik­

keling van het gedane onderzoek.

Hoofdstuk 2 onderzoekt eisen die men aan een specificatiemethode voor

systemen in het algemeen zou willen opleggen.

Hoofdstuk 3 recapituleert basisbegrippen en resultaten op het gebied van

modale en temporele logica's zoals ontwikkeld in de filosofie en informatica.

Hoofdstuk 4 introduceert een uitbreiding van klassieke modale en tem­

porele logica met een extra operator D die de ongelijkheidsrelatie formali­

seert. De resulterende logica's hebben meer uitdrukkingskracht maar zijn

nog steeds volledig axiomatiseerbaar en beslisbaar.

Hoofdstuk 5 behandelt message passing systemen. Eerst wordt beschre­

ven wat we hieronder verstaan en worden de eisen uit hoofdstuk 2 toege­

spitst op deze systemen. Na onuitdrukbaarheidsresultaten van temporele

logica's voor message passing systemen gegeven te hebben, laten we zien

hoe we desalniettemin standaard temporele logica kunnen gebruiken voor

de specificatie van deze systemen. Dit ondersteunen we door drie specifica­

tievoorbeelden waaronder een gelaagd communicatienetwerk.

Hoofdstuk 6 betreft tijdskritische systemen. Eerst worden de karakteris­

tieken hiervan beschreven en worden de eisen uit hoofdstuk 2 gespecialiseerd

tot deze systemen. Na de introductie van metrische temporele logica, een

formalisme om over kwantitatieve tijdseigenschappen te redeneren, wordt

deze logica geillustreerd aan de hand van een serie voorbeelden waaronder

time-out, watchdog timer, wait/delay statement en een abstract transmis­

siemedium.

Hoofdstuk 7 blikt terug op de verkregen resultaten, presenteert enkele

conclusies, vermeldt aanverwant onderzoek, en schetst mogelijkheden voor

verdere ontwikkelingen.

Curriculum Vitae
De schrijver van dit proefschrift werd geboren op 3 juli 1959 te Heerlen. Van

1971 tot 1977 bezocht hij het Bernardinuscollege aldaar. Deze periode werd

afgesloten op 17 juni 1977 met het behalen van het diploma Gymnasium B.

In september 1977 begon hij zijn studie wiskunde aan de Rijksuniversiteit

te Utrecht. Op 10 maart 1980 behaalde hij het kandidaatsexamen met bijvak

natuurkunde, cum laude. Een half jaar daarvoor was reeds zijn belang­

stelling gewekt voor de informatica hetgeen resulteerde in een groot bijvak

informatica in de doctoraalfase. Het onderzoek van zijn doctoraalscriptie

betrof sterke normalisatiebewijzen voor systemen verwant aan de getypte

lambda calculus, en werd begeleid door dr. Henk Barendregt. Voor hem

ontwikkelde hij tevens een interpreter voor de ongetypte lambda calculus.

Op 30 augustus 1982 sloot hij zijn wiskundestudie af met het behalen van

het doctoraalexamen, cum laude. Hierna rondde hij tevens zijn informa­

ticastudie af middels een doctoraalscriptie (zie de referentie [KVR 83] in

de literatuurlijst) die hij schreef over zijn onderzoek als stagiaire bij Philips

Telecommunicatie Industrie B.V. te Hilversum van september 1982 tot juni

1983 onder begeleiding van dr. ir. Jan Vytopil en prof. dr. Willem-Pani de

Roever.

Van juli 1983 tot mei 1984 was hij in dienst van de Katholieke Uni­

versiteit Nijmegen bij de groep theoretische informatica onder leiding van

professor de Roever. Aansluitend werd hij onderzoekmedewerker van de

Nederlandse organisatie voor zuiver-wetenschappelijk onderzoek (Z.W.O.,

tegenwoordig N.W.O.) in het Landelijk Project Concurrency onder leiding

van de professoren de Bakker (Vrije Universiteit/Centrum voor Wiskunde

en Informatica, beide te Amsterdam), de Roever (Katholieke Universiteit

Nijmegen) en Rozenberg (Rijksuniversiteit te Leiden). Het onder profes­

sor de Roever ressorterende deelproject 'Bewijstheorie van reai-time syste­

men' werd van mei 1984 tot augustus 1985 aan de Katholieke Universiteit

Nijmegen en na de overgang van professor de Roever naar de Technische

Universiteit Eindhoven van augustus 1985 tot mei 1988 aldaar uitgevoerd.

Sinds 1 mei 1988 is hij werkzaam als onderzoeker in tijdelijke dienst bij de

vakgroep informatica van de Technische Universiteit Eindhoven in de sec­

tie theoretische informatica. In deze periode voltooide hij het onderzoek

dat tot het onderhavige proefschrift heeft geleid. Tevens was hij van maart

1986 tot mei 1989 betrokken bij het ESPRIT project 937: Debugging and

Specification of Ada Real-Time Embedded Systems (DESCARTES).

Stellingen

behorend bij het proefschrift

Specifying Message Passing

and Time-Critical Systems

with Temporal Logic

van

Ron Koymans

1. De ongelijkheidsrelatie kan in de modale logica volledig worden geaxio­

matiseerd door aan het minimale modale bewijssysteem twee axioma­

schema's toe te voegen: een axiomaschema om de symmetrie van de

ongelijkheid uit te drukken en het axiomaschema

Zie stelling 4.3.1 van dit proefschrift.

2. Beschouw de karakteristieke instantie DDp---+ (pv Dp) van het axioma­

schema uit stelling 1. Deze formule correspondeert over frames met het

volgende equivalent in eerste-orde logica (verkregen via de procedure in

stelling 4.2.3 van dit proefschrift):

V xyz ((x=/= y A y =/= z) ---+ (x(= z V x=/= z)).

Deze eerste-orde eis op frames noemen we pseudo-transitiviteit omdat

het weglaten van de eerste disjunct x = zin de consequent echte transiti­

viteit van =/= zou eisen. Het opmerkelijke van de bovenstaande eerste-orde

formule is dat de toevoeging van deze disjunct de hele eerste-orde eis tri­

viaal waar maakt.

3. De in sectie 5.5 van dit proefschrift behandelde aanname van unieke

identificatie van binnenkomende data is ook toepasbaar op systemen

die de data niet alleen doorgeven maar er tevens een transformatie op

toepassen.

4. De kwalitatieve temporele operatoren until en since kunnen worden op­

gevat als speciale metrische operatoren until<oo, respectievelijk since<oo,

waarbij oo als grootste element wordt toegevoegd aan de ordening <.

Zie sectie 6.4 van dit proefschrift.

5. De uitdrukking van fairness-eigenschappen in temporele logica maakt

gebruik van implicaties met een antecedent van de vorm D<)<p. Over het

tijdsdomein van de natuurlijke getallen correspondeert dit semantisch

met het oneindig vaak waar zijn van <p. Dit verandert bij de overgang

naar dichte tijdsdomeinen zoals de rationale en reële getallen: D<)<p im­

pliceert dan nog wel dat <p oneindig vaak waar is maar niet andersom.

Desondanks blijft D<)<p de gewenste antecedent voor het uitdrukken van

fairness-eigenschappen.

6. Over het tijdsdomein van de reële getallen drukt de formule

E p 1\ G (p --+ F p) 1\ FG.., p

van de logica PML(<, >, :f:) uit sectie 4.2 van dit proefschrift het bestaan

van een stijgende en begrensde rij punten waar p geldt uit. Dit kan

worden gebruikt voor het ontzenuwen van Zeno's paradox over Achilles

en de schildpad.

7. Real-time programmeertalen met asynchrone communicatie zoals CHILL

kunnen met behulp van een kwantitatieve temporele logica voorzien wor­

den van een axiomatische semantiek.

R. Koymans, J. Vytopil, W.-P. de Roever. Real-Time Programming and

Asynchronous Message Passing, Proceedings ofthe Second Annual ACM

Symposium on Principlesof Distributed Computing, pp. 187-197, 1983.

8. De essentièle toevoeging nodig voor het compositioneel modelleren van

real-time in real-time programmeertalen met synchrone communicatie

zoals Ada en Occam bestaat in de mogelijkheid het wachten op een com­

municatiepartner te beschrijven.

R. Koymans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth,

S. Arun-Kumar. Compositional Semantics for Real- Time Distributed

Computing, Information and Computation, Volume 79, Number 3, pp.

210-256, Academie Press, December 1988.

9. De associativiteit van de parallelle compositie (Tt 11 Ta) in de denota­

tionele semantiek uit loc. cit. is terug te voeren op de volgende twee

syntactische restricties voor deze parallelle compositie:

T1 en Ta hebben geen gemeenschappelijke variabelen,

- de processen voorkomend in T1 zijn verschillend van de processen

voorkomend in Ta.

10. De officiële semantiek van Ada maakt deze programmeertaal ten enen

male ongeschikt voor real-time toepassingen.

The Programming Language Ada, Reference Manual. Lecture Notes in

Computer Science Vol. 155, Springer, Berlin, 1983.

11. Specificatie- en ontwerpmethoden met de mogelijkheid specificaties te

executeren of simuleren hebben de toekomst.

R. Koymans. Finite-state methoden, syllabus, Ontwerpersopleiding Tech­

nische Informatica, Technische Universiteit Eindhoven, 1989.

12. Wiskundige bewijzen bevatten nogal eens informatie die voor de be­

wijsvoering irrelevant is. Een typisch voorbeeld hiervan is een bewijs

waarin de benodigde informatie het bestaan van een bovengrens is. Het

aangeven van een concrete waarde voor deze bovengrens is overbodig en

leidt de lezer slechts af van de echte bewijsvoering.

13. Voor het schrijven van een proefschrift is een scheduling algoritme met

dynamische prioriteiten (zoals earllest deadline first) een vereiste.

14. Natuurlijke talen bevatten meer redundantie dan de taal van de muziek.

