563 research outputs found

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Hybrid automata dicretising agents for formal modelling of robots

    No full text
    Some of the fundamental capabilities required by autonomous vehicles and systems for their intelligent decision making are: modelling of the environment and forming data abstractions for symbolic, logic based reasoning. The paper formulates a discrete agent framework that abstracts and controls a hybrid system that is a composition of hybrid automata modelled continuous individual processes. Theoretical foundations are laid down for a class of general model composition agents (MCAs) with an advanced subclass of rational physical agents (RPAs). We define MCAs as the most basic structures for the description of complex autonomous robotic systems. The RPA’s have logic based decision making that is obtained by an extension of the hybrid systems concepts using a set of abstractions. The theory presented helps the creation of robots with reliable performance and safe operation in their environment. The paper emphasizes the abstraction aspects of the overall hybrid system that emerges from parallel composition of sets of RPAs and MCAs

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Requirements, Formal Verification and Model transformations of an Agent-based System: A CASE STUDY

    Get PDF
    One of the most challenging tasks in software specifications engineering for a multi-agent system is to ensure correctness. As these systems have high concurrency, often have dynamic environments, the formal specification and verification of these systems along with step-wise refinement from abstract to concrete concepts play major role in system correctness. Our objectives are the formal specification, analysis with respect to functional as well as non-functional properties by step-wise refinement from abstract to concrete specifications and then formal verification of these specifications. A multi-agent system is concurrent system with processes working in parallel with synchronization between them. We have worked on Gaia multi-agent method along with finite state process based finite automata techniques and as a result we have defined the formal specifications of our system, checked the correctness and verified all possible flow of concurrent executions of these specifications. Our contribution consists in transforming requirement specifications based on organizational abstractions into executable formal verification specifications based on finite automata. We have considered a case study of our multi-agent system to exemplify formal specifications and verification.Comment: 16 pages; Computer Engineering and Intelligent Systems http://www.iiste.org - ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) - Vol.5, No.3, 201

    Requirements, Formal Verification and Model transformations of an Agent-based System: A CASE STUDY

    Get PDF
    One of the most challenging tasks in software specifications engineering for a multi-agent system is to ensure correctness. As these systems have high concurrency, often have dynamic environments, the formal specification and verification of these systems along with step-wise refinement from abstract to concrete concepts play major role in system correctness. Our objectives are the formal specification, analysis with respect to functional as well as non-functional properties by step-wise refinement from abstract to concrete specifications and then formal verification of these specifications. A multi-agent system is concurrent system with processes working in parallel with synchronization between them. We have worked on Gaia multi-agent method along with finite state process based finite automata techniques and as a result we have defined the formal specifications of our system, checked the correctness and verified all possible flow of concurrent executions of these specifications. Our contribution consists in transforming requirement specifications based on organizational abstractions into executable formal verification specifications based on finite automata. We have considered a case study of our multi-agent system to exemplify formal specifications and verification. Keywords: Multi-Agent System, Agent Models and Architecture, Gaia multi-agent method, Formal methods, Formal verification, Finite State Process (FSP), Labelled Transition System (LTS), Labelled Transition System Analyzer (LTSA), Safety property, Liveness propert
    corecore