266,598 research outputs found

    Locking-free two-layer Timoshenko beam element with interlayer slip

    Get PDF
    A new locking-free strain-based finite element formulation for the numerical treatment of linear static analysis of two-layer planar composite beams with interlayer slip is proposed. In this formulation, the modified principle of virtual work is introduced as a basis for the finite element discretization. The linear kinematic equations are included into the principle by the procedure, similar to that of Lagrangian multipliers. A strain field vector remains the only unknown function to be interpolated in the finite element implementation of the principle. In contrast with some of the displacement-based and mixed finite element formulations of the composite beams with interlayer slip, the present formulation is completely locking-free. Hence, there are no shear and slip locking, poor convergence and stress oscillations in these finite elements. The generalization of the composite beam theory with the consideration of the Timoshenko beam theory for the individual component of a composite beam represents a substantial contribution in the field of analysis of non-slender composite beams with an interlayer slip. An extension of the present formulation to the non-linear material problems is straightforward. As only a few finite elements are needed to describe a composite beam with great precision, the new finite element formulations is perfectly suited for practical calculations. (c) 2007 Elsevier B.V. All rights reserved

    Recent research and development in semi-rigid composite joints with precast hollowcore slabs

    Get PDF
    Composite structure incorporating steel beams and precast hollowcore slabs is a recently developed composite floor system for building structures. This form of composite construction is so far limited to simple beam-column connections. Although the concept of semi-rigid composite joints has been widely research in the past, most of the researches have been carried out on composite joints with metal deck flooring and solid concrete slabs. Research on composite joints with precast hollowcore slabs is rather limited. As the construction industry demands for rapid construction with reduction in cost and environmental impacts, this form of composite floor system, which does not require major onsite concreting, has become very popular among the designers and engineers in the UK. In this paper, full-scale tests of beam-to-column semi-rigid composite joints with steel beam and precast hollowcore slabs are reported. Based on the tests data; the structural behaviour of these semi-rigid composite joints is discussed together with numerical and finite element modelling. Through parametric studies, an analytical model for the semirigid composite joints is proposed and is verified by both the experimental data and finite element model; and good agreement is obtained

    Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure

    Get PDF
    Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames

    Development of a beam builder for automatic fabrication of large composite space structures

    Get PDF
    The composite material beam builder which will produce triangular beams from pre-consolidated graphite/glass/thermoplastic composite material through automated mechanical processes is presented, side member storage, feed and positioning, ultrasonic welding, and beam cutoff are formed. Each process lends itself to modular subsystem development. Initial development is concentrated on the key processes for roll forming and ultrasonic welding composite thermoplastic materials. The construction and test of an experimental roll forming machine and ultrasonic welding process control techniques are described

    Experimental Study of Ultra Shallow Floor Beams (USFB) with Perforated Steel Sections

    Get PDF
    ABSTRACT: In modern building construction design, floor spans are becoming longer. Hence, steel framed structures have become more competitive when compared with traditional reinforced concrete framed buildings. In order to minimise the structural section of the composite sections, and for economic reasons, steel perforated beams are designed to act compositely with the floor slab. When the concrete slab lies within the steel flanges, as in the Ultra Shallow Floor Beam (USFB), there is an additional benefit when considering fire resistance. The aim of this study is to investigate the contribution of the concrete in composite cellular beams in the case where the concrete slab lies between the beam flanges of a steel section, when resisting vertical shear forces. The concrete between the flanges enhances the load-carrying capacity by providing a load path to transfer the shear force. Four specimens of steel-concrete composite beams with web openings in the steel section were tested in this study. One bare steel section with web openings was also tested as a comparison. This is the first such investigation of the failure mode under shear resistance (Vierendeel action) of the Ultra Shallow Floor Beam. In the test specimens, the web opening diameter is 76% of the beam depth, which is the largest currently available. This represents the worst case in terms of Vierendeel bending forces generated in the vicinity of the web openings. The smaller the hole is, the easier it is for the trapped concrete between the flanges to transfer shear across the opening. The results from the composite beam tests show a significant increase in shear resistance. The percentage of the shear capacity improvement of the particular case is presented herein as well as the failure mode of the composite beams. The shear enhancement demonstrated in this study has been utilised software that is used in design practice

    Flexural–torsional behavior of thin-walled composite box beams using shear-deformable beam theory

    Get PDF
    This paper presents a flexural–torsional analysis of thin-walled composite box beams. A general analytical model applicable to thin-walled composite box beams subjected to vertical and torsional loads is developed. This model is based on the shear-deformable beam theory, and accounts for the flexural–torsional response of the thin-walled composites for an arbitrary laminate stacking sequence configuration, i.e. unsymmetric as well as symmetric. The governing equations are derived from the principle of the stationary value of total potential energy. Numerical results are obtained for thin-walled composites under vertical loading, addressing the effects of fiber angle and span-to-height ratio of the composite beam

    Vibration analysis of layered composite beam with variable section in terms of delamination and orientation angle in analytical and numerical methods

    Get PDF
    In this study, vibration analysis of layered composite beams with variable cross sections and delaminations was investigated analytically and numerically. In the analytical part, Bernoulli beam theory was used and the effect of shear force on the beam was neglected. The layered composite beam consists of eight layers and contains delaminations with various sizes. In the numerical part of the study, ansys program package was used for finite element analysis. Layered composite beams with the same geometry were created in the finite element model. In the numerical part, the contact element was also defined between the delaminated parts. Furthermore, it has been shown numerically and analytically that the slope angle of the beam influences the vibration of the layered composite beam. Moreover, as the delamination between the beams increases, the vibration of the beam is observed to decrease. The layered composite beam is shown in graphical form in which the vibration can be changed without changing the geometry of the beam, showing that the vibration can be changed by changing the fiber orientation angle. © 2018 Polish Academy of Sciences Institute of Physics. All rights reserved

    Flexural–torsional behavior of thin-walled composite space frames

    Get PDF
    A general analytical model based on the first-order shear deformable beam theory applicable to thin-walled composite space frames with arbitrary lay-ups under external loads is presented. This model accounts for all the structural coupling coming from the material anisotropy. The seven governing equations are derived from the principle of the stationary value of total potential energy. A displacement-based one-dimensional 14 degree-of-freedom space beam model which includes the effects of shear deformation, warping is developed to solve the problem. Numerical results are obtained to investigate the effects of fiber orientation on flexural–torsional responses of thin-walled composite space frame under vertical load
    corecore