4,011 research outputs found

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Globally Intelligent Adaptive Finite-/Fixed- Time Tracking Control for Strict-Feedback Nonlinear Systems via Composite Learning Approaches

    Full text link
    This article focuses on the globally composite adaptive law-based intelligent finite-/fixed- time (FnT/FxT) tracking control issue for a family of uncertain strict-feedback nonlinear systems. First, intelligent approximators with new composite updating laws are developed to model uncertain nonlinear terms, which encompass prediction errors to enhance intelligent approximators' learning behaviors and fewer online learning parameters to diminish computational burden. Then, a novel smooth switching function coupled with robust controllers is designed to pull system states back when the transients are out of the approximators' active domain. After that, a modified FnT/FxT backstepping technique is constructed to render output to follow the reference trajectory, and an adaptive law is employed to alleviate the impact of external disturbances. It is theoretically confirmed that the proposed control strategies ensure globally FnT/FxT boundedness of all the closed-loop variables. Finally, the validity of theoretical results is testified via a simulation case.Comment: 6 pages,12 figure

    Neural Network-based Finite-time Control of Nonlinear Systems with Unknown Dead-zones: Application to Quadrotors

    Get PDF
    Over the years, researchers have addressed several control problems of various classes of nonlinear systems. This article considers a class of uncertain strict feedback nonlinear system with unknown external disturbances and asymmetric input dead-zone. Designing a tracking controller for such system is very complex and challenging. This article aims to design a finite-time adaptive neural network backstepping tracking control for the nonlinear system under consideration. In addition,  all unknown disturbances and nonlinear functions are lumped together and approximated by radial basis function neural network (RBFNN). Moreover, no prior  information about the boundedness of the dead-zone parameters is required in the controller design. With the aid of a Lyapunov candidate function, it has been shown that the tracking errors converge near the origin in finite-time. Simulation results testify that the proposed control approach can force the output to follow the reference trajectory in a short time despite the presence of  asymmetric input dead-zone and external disturbances. At last, in order to highlight the effectiveness of the proposed control method, it is applied to a quadrotor unmanned aerial vehicle (UAV)

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method
    • …
    corecore