16,568 research outputs found

    An Analysis of Composability and Composition Anomalies

    Get PDF
    The separation of concerns principle aims at decomposing a given design problem into concerns that are mapped to multiple independent software modules. The application of this principle eases the composition of the concerns and as such supports composability. Unfortunately, a clean separation (and composition of concerns) at the design level does not always imply the composability of the concerns at the implementation level. The composability might be reduced due to limitations of the implementation abstractions and composition mechanisms. The paper introduces the notion of composition anomaly to describe a general set of unexpected composition problems that arise when mapping design concerns to implementation concerns. To distinguish composition anomalies from other composition problems the requirements for composability at the design level is provided. The ideas are illustrated for a distributed newsgroup system

    Technical pre-study for the ExMS project

    Get PDF
    This report aims to give an overview of software and hardware platforms available now or in the near future for building a prototype of an ExMS application (for an overview of the ExMS project, see Appendix). The report also gives an overview of the different technologies for building third-party mobile client software applications that are in use today. The report is composed of three sections. The first section is a general discussion on mobile client software and the different technologies that can be used to develop third-party mobile client software. The next section continues with a specific discussion on ExMS and answers the following questions: What is the general architecture of the ExMS application? What alternatives exist for implementing the ExMS prototype? The final section of the report is a recommendation of hardware and software platform for building the ExMS prototype

    Composing Aspects at Shared Join Points

    Get PDF
    Aspect-oriented languages provide means to superimpose aspectual behavior on a given set of join points. It is possible that not just a single, but several units of aspectual behavior need to be superimposed on the same join point. Aspects that specify the superimposition of these units are said to "share" the same join point. Such shared join points may give rise to issues such as\ud determining the exact execution order and the dependencies among the aspects. In this paper, we present a detailed analysis of the problem, and identify a set of requirements upon mechanisms for composing aspects at shared join points. To address the identified issues, we propose a general and declarative model for defining constraints upon the possible compositions of aspects at a shared join point. Finally, by using an extended notion of join points, we show how concrete aspectoriented programming languages, particularly AspectJ and Compose*, can adopt the proposed model

    Declarative Aspect Composition

    Get PDF
    Aspect-oriented languages provide means to attach certain program units (e.g. advice, filters) to a given set of join points. It is possible that not just a single , but several units need to execute at the same join point. Aspects that specify the insertion of these units are said to "share" the same join point. Such shared join points may give rise to several issues, such as determining the exact execution order and the dependencies among the aspects. In this position paper, we outline a declarative approach that addresses this problem. We evaluate it with respect to several software engineering properties, in particular comprehensibility, predictability and evolvability

    A taxonomy of asymmetric requirements aspects

    Get PDF
    The early aspects community has received increasing attention among researchers and practitioners, and has grown a set of meaningful terminology and concepts in recent years, including the notion of requirements aspects. Aspects at the requirements level present stakeholder concerns that crosscut the problem domain, with the potential for a broad impact on questions of scoping, prioritization, and architectural design. Although many existing requirements engineering approaches advocate and advertise an integral support of early aspects analysis, one challenge is that the notion of a requirements aspect is not yet well established to efficaciously serve the community. Instead of defining the term once and for all in a normally arduous and unproductive conceptual unification stage, we present a preliminary taxonomy based on the literature survey to show the different features of an asymmetric requirements aspect. Existing approaches that handle requirements aspects are compared and classified according to the proposed taxonomy. In addition,we study crosscutting security requirements to exemplify the taxonomy's use, substantiate its value, and explore its future directions

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen
    • …
    corecore