
  

 

  

 

Technical Pre-study for the ExMS project 
Fredrik Bromée, HUMLE laboratory, fbr@sics.se 

Supervisor: Per Persson, HUMLE, perp@sics.se 

2001-03-19 

SICS Technical Report T2001:03 

ISSN 1100-3154  

ISRN: SICS-T-- 2001:03 

 

 

 

 

 

 

 

 

 

 



  

 

 

 Abstract 
This report aims to give an overview of software and hardware platforms 
available now or in the near future for building a prototype of an ExMS 
application (for an overview of the ExMS project, see Appendix). The report also 
gives an overview of the different technologies for building third-party mobile 
client software applications that are in use today. 

The report is composed of three sections. The first section is a general 
discussion on mobile client software and the different technologies that can be 
used to develop third-party mobile client software. The next section continues 
with a specific discussion on ExMS and answers the following questions: What 
is the general architecture of the ExMS application? What alternatives exist for 
implementing the ExMS prototype? The final section of the report is a 
recommendation of hardware and software platform for building the ExMS 
prototype. 

Recommended reading: 

� If you are interested only in the recommendation for the ExMS prototype, 
read section 3. 

� If you are interested in the different alternatives for the ExMS prototype, read 
from section 2 onwards. 

� If you want more background information on any of the technical terms read 
from section 1 onwards. 

 

Revision history 
Date Version Author Comments 

2001-03-06 0 Fredrik Bromee Document created 

2001-03-09 1 Fredrik Bromee First version finished 

    
 

 



  

 

 

Table of Contents 
Abstract...............................................................................................................0 

1 Technologies for mobile client software development.............................1 
1.1 Hardware platforms...............................................................................1 

1.1.1 GSM phone 1 
1.1.2 Personal Digital Assistant (PDA) 1 
1.1.3 J2ME phone 1 

1.2 Network access protocols .....................................................................2 
1.3 Software platforms ................................................................................2 

1.3.1 Java – specifications and runtime environments 2 
1.3.2 Native software platforms 4 

2 ExMS prototype.............................................................................................6 
2.1 Generic ExMS architecture ...................................................................6 

2.1.1 Community / Configuration 7 
2.1.2 Sending 8 

2.2 Alternatives .........................................................................................10 
2.2.1 GSM phone 10 
2.2.2 PDA combined with PC-Card GSM or GPRS phone 10 
2.2.3 GSM J2ME phone 11 
2.2.4 PDA with separate GPRS or GSM phone 11 

2.3 Product availability ..............................................................................11 

3 Recommendation........................................................................................13 

4 References...................................................................................................15 

5 Appendix: Project Plan Expressive SMS (ExMS) ....................................17 
5.1 Introduction .........................................................................................18 
5.2 SMS, avatars and emoticons ..............................................................18 
5.3 The MobiPal demonstrator..................................................................19 
5.4 Research Questions............................................................................20 
5.5 References..........................................................................................21 

 

 



  

 

 1(21) 

1 Technologies for mobile client software 
development 
When developing a third-party application for a mobile client, three things that 
have to be evaluated for a target platform are these: 

What hardware platform do we want the application run on? Which protocols 
shall be used to access the network? What software platforms exist for third-
party applications? This section will try to list different answers to these 
questions in order. 

1.1 Hardware platforms 
This is a list of features that are critical for the hardware platform. If a platform 
does not have all of these features, it cannot be a candidate for the ExMS 
prototype: 

� Possibility to add third-party applications 

� Network access (for telephony of course, but also some kind of data access 
for the delivery of the ExMS) 

� Some graphics capability for the ExMS animations 

� Some persistent memory (to store ExMS configuration and messages) 

Apart from these features good CPU and main memory resources are also 
desired but not vital. 

1.1.1 GSM phone 
Unfortunately most GSM phones of today have limited, if any, capabilities for 
third-party applications since they run on proprietary locked operating systems. 
This makes the normal GSM phone a virtually impossible choice for an 
application prototype with more than trivial features. 

1.1.2 Personal Digital Assistant (PDA) 
A modern PDA has all of the features above but one - the network access. 
There are different ways to add this feature. Some PDAs connect to a separate 
mobile phone or computer via serial or infrared interface, while others have PC-
card slots for GSM phonecards or wireless-LAN. PDAs have excellent CPU and 
main memory resources – for instance the Compaq Ipaq 3630 has a stunning 
206 MHz Strongarm processor, not far behind a stationary computer. 

1.1.3 J2ME phone 
This is a normal GSM phone with a ‘sandbox’ for third-party applications written 
in the Java language compliant with the Java 2 Micro Edition or the 
PersonalJava specification (see following sections). Since the unability to add 
third-party applications was the only disadvantage noted with the GSM phone, 
this seems to be an attractive alternative. One question remains, though. It is 
availability – even though Java phones have been commercially available for 



  

 

 2(21) 

months in Asia we have yet to see a product reach the market in Europe. 
Motorola and Nokia both claim to release products within the next few months.  

1.2 Network access protocols 
How can the mobile client connect to a network to fetch data and communicate 
with other clients? This is a list of the most common protocols: 

� SMS (Short Message Service) - can be used to send text messages to GSM 
phones. Pushes data to the client. If the client is not online, the SMS server 
stores the message and delivers it when the client goes online. 

� MMS (Multimedia Messaging Service) – successor to SMS which can 
contain video clips, sound etc. No products support this yet. 

� TCP/IP - this is the network protocol of the Internet, used by web browsers, 
e-mail applications, news servers, and all applications that access the 
Internet. When you use a GSM phone as a modem to open a data 
connection you can access the TCP/IP protocol stack. 

� HTTP (HyperText Transfer Protocol) - stateless protocol used for fetching 
web pages. It has been tweaked to support different functionality. Why?  
Because it is let through most firewalls and is thus available from most 
locations. Runs generally on top of TCP/IP. 

� WAP (Wireless Application Protocol) – stateless protocol used for fetching 
WML pages to wireless clients.  

� GPRS (General Packet Radio Service) – brings immediate data access to 
the GSM phone. 

1.3 Software platforms 
There are two basic types of software platforms: the native platforms and the 
different Java platforms. When using a native platform the application code is 
compiled into machine code specific for the processor and operating system of 
the target device. The Java approach is instead to use a virtual machine (VM) 
that interprets standardized byte code specific for the VM. The basic goal of VM 
technology is to provide application software with an interface that stays 
constant regardless of the processor and the operating system on the target 
device. In this architecture, the application code is isolated from the target 
device and its particular requirements. 

There are advantages and disadvantages to both approaches. The most 
obvious advantage of the native approach is performance – since the virtual 
machine always adds an extra layer of abstraction on top of the physical 
machine, native code will always run faster than equivalent interpreted VM 
code. The biggest advantage of the VM approach is portability.  

1.3.1 Java – specifications and runtime environments 
Java is a program language that uses a virtual machine and the VM interprets 
bytecode. So why are Java programs written for different VMs similar? Because 
they use the same syntax, and also to a certain extent the same APIs. Why are 
not Java programs written for different VMs exactly the same? Because the 



  

 

 3(21) 

APIs that the VM support are not exactly the same. (some graphics library may 
be missing, for instance). 

Why not use the same JVM that I have on my computer on my cell phone? 
Because the J2SE JVM is too heavy. A modern JVM needs several Mb of RAM 
and around even more Mb of persistent memory to work properly. The idea is to 
use a slimmed-down version of a standard JVM that supports a subset of the 
APIs that the standard JVM supports. This means that you do not have to port 
much of your application to make it run on different target platform. 

1.3.1.1 J2ME – Java 2 Micro Edition 
J2ME is a collection of specifications aimed for the embedded and handheld 
market. The different J2ME specifications are built up using ‘Configurations’ and 
‘Profiles’. Roughly speaking, configurations define runtime environments and 
profiles define the API scope. 

The Connected Limited Device Configuration (CLDC) is the first J2ME 
configuration and uses a very limited version of the JVM called the KVM. It is 
aimed for devices with limited resources, like mobile phones or set-top smart 
boxes. One of its corresponding profiles is the Mobile Information Device Profile 
(MIDP). The CLDC-MIDP is the profile implemented by the coming Motorola 
Java phones. 

The Connected Device Configuration is expected to be next configuration to be 
released. Combined with the also-to-come Personal profile it will be aimed for 
more potent devices like PDAs and feature a full JVM implementation. 

More information: 

http://java.sun.com/j2me/  

1.3.1.2 PersonalJava 
PersonalJava is another specification from Sun. Sun also provides beta 
reference implementations of this specification for some target platforms, like 
Windows CE. No further work is being done on this specification and Sun has 
announced that this specification will be replaced with the Personal profile of 
J2ME. 

More information: 

http://java.sun.com/products/personaljava/index.html - general info 

http://developer.java.sun.com/developer/earlyAccess/personaljava/ - download 
of runtime environment 

1.3.1.3 J9 – Visual Age Micro Edition (VAME) 
J9 is a virtual machine from IBM that has been ported to several embedded 
platforms, including WinCE and PalmOS. It has a reputation of being fast and 
very stable. GUI support is at the moment restricted to the IBM proprietary GUI 
API called MicroView. This is not compliant with the AWT from J2SE or any 
other GUI library but has been ported to all target platforms that J9 has been 
ported to. Beta support has been announced for the CLDC configuration of 



  

 

 4(21) 

J2ME, and IBM claim that VAME will soon support more parts of the J2ME. J9 
comes as a part of IBM Visual Age Micro Edition (VAME). 

More information: 

http://www.embedded.oti.com/ - general site for VAME 

news: news.software.ibm.com – IBM’s VAME newsgroup 

1.3.1.4 Waba 
Waba is a virtual machine ported to some embedded platforms. It can interpret 
a subset of the J2SE specification. Examples of what cannot be interpreted by 
the Waba VM is threading and exception handling. More information can be 
found at: 

http://www.wabasoft.com  

1.3.1.5 Jbed 
JBed is a virtual machine from Esmertec. It comes with different APIs compliant 
with PersonalJava or the J2ME CLDC. It is however limited to PalmOS only at 
the moment. More information: 

http://www.esmertec.com/p.html  

1.3.1.6 JMS – A helper API 
Java Message Service (JMS) is a helper API which is not part of the J2ME 
specification but it is mentioned here because it would suit the ExMS application 
very well. JMS could be used to mimic the store-and-forward functionality of 
SMS and would make it very easy to write a messaging application. A company 
called Softwired claims to have an implementation of JMS for mobile devices, 
the iBus Mobile. However due to shortage of time no further investigation has 
been made to find out exactly what they mean by this. 

More information: 

http://www.softwired-inc.com/  

1.3.2 Native software platforms 

1.3.2.1 PalmOS 
PalmOS has good support for third-party application development with a 
relatively large body of developers and a good emulator, the POSE. 

1.3.2.2 Microsoft Embedded (Windows CE) 
Windows CE is the operating system shipped with the PocketPC devices. It has 
good support for third-party applications written in languages like C, C++ or 
VisualBasic. 

More information: 



  

 

 5(21) 

� http://www.microsoft.com/windows/embedded/default.asp  

1.3.2.3 Symbian (Crystal, Quartz, etc) 
Symbian is an operating system for PDAs and advanced phones. It is being 
developed by the organisation with the same name – Symbian – that was 
founded and is still owned by a number of telephony companies, Nokia and 
Ericsson included. The OS comes in several different flavors (Qrystal, Quartz, 
etc) and provides some possibilities for third-party applications. The to-be-
released Nokia Communicator 9210 is built on Symbian Crystal and provides a 
native C++ API as well as a Java API based on the PersonalJava specification. 

More information: 

� http://www.symbian.com   

� http://www.symbiandevnet.com - developer’s perspective 

� http://forum.nokia.com/symbianforum/main/1,6668,1_49_1,00.html - Nokia 
9210 specific 

 



  

 

 6(21) 

2 ExMS prototype 
Before going into the discussion of the architecture and the different alternative 
platforms let us review the different abstraction levels on which one can choose 
target platform. 

First, one can choose target platform based on hardware. Example: The 
application will run on this processor. Secondly one can choose target platform 
based on operating system, thereby saying that the application will run on all 
devices that have this operating system. Finally one can choose target platform 
based on virtual machine (VM), thus saying that the application can run on all 
devices to which this VM has been ported. For each level you win some and 
you lose some. For each level ‘up’ on the abstraction level you can target more 
types of devices and the application becomes somewhat easier to develop. At 
the same time, performance may decrease and native APIs and functionality 
might not be available. 

2.1 Generic ExMS architecture 
This section assumes some knowledge about the ExMS project. 

From an architectural viewpoint it is rewarding to divide the ExMS application 
into two parts, one community / configuration part and one composing and 
sending part. In the community / configuration part users can choose and 
download skins and moods to their terminals (configuration) and also add user-
developed skins to the community. In the composing and sending part users 
compose and preview their ExMS on their terminals, send them to another user 
who in turn can ‘play back’ the ExMS on his/her own terminal. 

The reason for dividing the application into these two parts is because they can 
be developed independently from each other and that they do not to a great 
extent depend on each other. The community / configuration part would be a 
straightforward web application, even including the part where the user can add 
skins, since these could be restricted to be bitmap images of a certain size. 
These bitmap images could be imported via the HTTP put method on to the 
web server. Bitmapped images means that users could use most any drawing 
programs to create their own skins. 

 

 

 

 

 

 

 

 

 

 



  

 

 7(21) 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 Community / Configuration 
 The only vague part of the community / configuration part is where the ExMS 
configuration is downloaded to the terminal, the mobile device. How this should 
be done depends on how the sending part will be implemented. Choices for the 
configuration download include SMS, HTTP and TCP/IP sockets. It would also 
be possible to make the whole prototype simpler just by simply cutting 
functionality. The question is, how important is the community function for the 
user study? If there would be no functionality for adding user-defined skins, all 
possible skins (say 20) could be preloaded into each terminal that will 
participate in the tests. In this case there would be no need for sending raw 
image data, it could suffice with MoodML scripts both for messages and 
configuration, with image number id:s referring to the actual images. However, 
as soon as this functionality is needed (users adding their own skins), the need 
for sending raw image data will arise. It is a question about what is important for 
the user study. Please note however that even if the community / configuration 
part does not pose any greater technical problems it will take some time to 
develop given all functions needed. 

Recap: Community / configuration part is not technically difficult to implement, 
except for the downloading of the ExMS configuration to the mobile device. How 
this should be done depends on what mobile device will be chosen and how 
ExMSs will be sent and delivered. 

Figure 1. Community / Configuration 

Web server 

ExMS configuration 

Choose skin 

Add user-developed 
skins 

Browsers 



  

 

 8(21) 

 

2.1.2 Sending 
The sending part of the ExMS application is where the technical challenges of 
this project lie. These are the desired characteristics that we want from the 
ExMS application’s sending part: 

� Graphical display to compose, preview and watch ExMS animations on. 

- One of the most challenging obstacles of  the ExMS project is to create 
an interface that is easy enough to use for the clients -  it has to be as 
easy (rather easier) to use as normal SMS. This implies that we should 
choose platform based on the GUI capabilities. Is it easy to create GUIS 
on this platform? Is it easy to change the GUI for this platform? Could we 
develop several different GUIs for the users to try? Requirements for 
animators depend on what device is chosen and cannot be specified 
here. Since animations should be kept at a few frames a piece, no 
standard is needed for these. Connected bitmapped images with timing 
information should be enough. 

� One device.  

- It would be best if this device would be the participant’s normal GSM 
phone, but this is unfortunately not possible. The second best option 
would be a device that can replace the participant’s normal GSM phone, 
which provides the telephony and SMS capability of the old device plus 
the new functionality of the ExMS application. 

� Low cost 

- Money is always an issue and if the devices are cheap one can do a 
larger user study. 

� Asynchronicity of SMS 

- An important characteristic of SMS is that it is asynchronous, that the 
data is pushed to the client. It is vital that the ExMS prototype keeps this 
characteristic, so that it at least appears as if data is pushed to the client. 

Figure 2. Composing and sending 

1. Compose 
and preview 

2. When satisfied, 
send message 

ExMS store-and-
forward server

3. Deliver message 
to recipient

4. Read / watch 
ExMS



  

 

 9(21) 

2.1.2.1 ExMS Carrier 
The ExMS carrier is the network access protocol used for: 

1 Sending ExMS from the device. 

2 Delivering the ExMS to the recipient device. 

3 Notifiying the recipient that a new ExMS has arrived. 

Implicitly the ExMS carrier is also used for downloading ExMS configurations. 
Please note that whichever carrier is chosen, MoodML, is always used for the 
encoding of the messages. There are three different options for ExMS carriers: 
SMS, HTTP or similar, and TCP/IP sockets. These can be combined in different 
ways to deal with all the the three steps above. See the following sections for a 
discussion on a few possible combinations suitable for the ExMS prototype. 

2.1.2.2 SMS for sending, delivering and notification 
In this option SMS is used for both sending, delivery and notification. 
Advantages with this option is that there would be no need to develop an ExMS 
store-and-forward server, since we would use the GSM network’s own SMS 
server for this. There are a few disadvantages with this approach, though. One 
is that the SMS functionality may not be accessible for third-party developers, 
and even if there exists an API for SMS functionality, using this API would bind 
the prototype to this platform only. There is also the matter of limited payload. 
SMS are limited to 160 characters a piece and this is not enough for an ExMS 
MoodML message. Concatenating SMS solves the problem, but only if the 
community option of adding skins is removed. If this option is not removed there 
has to be some way of sending skins to the client, i.e. sending bitmapped 
images. To send these over SMS would require many concatenated SMS, as 
well as some encoding algorithm. 

2.1.2.3 SMS for notification, HTTP or similar for sending and delivery 
This option mimics the asynchronicity of SMS by using an SMS to notify the 
user that he/she has received an ExMS. When the user tries to read the ExMS 
the application makes an HTTP request to the ExMS server and displays the 
result to the user. This means that a data connection has to be open when the 
user tries to read an ExMS, and in practice it means that the device has to be 
GPRS since waiting for a normal GSM data connection would probably be 
unacceptable. With this option there would be no problem sending new skins, 
since there would be no payload restrictions. Same goes for the configuration 
download, which would also be a HTTP request. 

2.1.2.4 TCP/IP Sockets for notification, HTTP or similar for sending and delivery 
This third option has the ’push’ characteristic of SMS, but puts high demands on 
the mobile device since it would need to be GPRS and also multi-threaded. If 
the mobile device is truly multithreaded an ExMS application could run in the 
background listening on a TCP/IP socket or similar socket if one exists on the 
platform. This implies that a data connection would always be open when the 
application is running. Unless it is a GPRS device this would mean that the 
device is blocked from incoming calls, not to mention the cost of keeping a 



  

 

 10(21) 

connection alive. So, this option is only feasible if the multi-threaded mobile 
device is also a GPRS device. Another thing to think about if choosing this way 
is that it is said that some GPRS networks do not allow mobile terminated data, 
i.e. that data is pushed to the client. The reasons for this being are two: billing, 
and lack of IP-addresses. Since the billing plan is to charge per megabyte sent 
or received from the terminal someone ‘spamming’ a terminal with unwanted 
data would generate unwanted costs for the client. The lack of IP-addresses 
arises since each terminal would be assigned a static IP-address. IPv6 would 
solve the address problem. The only GPRS operator in Sweden (Europolitan) 
does in fact support mobile terminated data. The only reservation  is that the 
user opens a GPRS session first, but after that the data connection session is 
open until you close it or turn the phone off. 

2.2 Alternatives 
These are the hardware and software alternatives that have been found 
reasonable or possible to implement the ExMS prototype on. 

2.2.1 GSM phone 
Comments: This first option is not possible to implement as a prototype but 
rather to give an idea how this application would be implemented in a 
production environment. 

Hardware platform GSM phone 

Software platform Proprietary or open 

Network access protocol:  

Sending / Delivery MMS 

Notification MMS 

Configuration download MMS 

Benefits  One device 

Disadvantages Device does not exist 
 

2.2.2 PDA combined with PC-Card GSM or GPRS phone 

Hardware platform PDA combined with PC-card GSM or GPRS 
phone 

Software platform WinCE or J2ME or PersonalJava 

Network access protocol:  

Sending / Delivery SMS or HTTP 

Notification SMS or HTTP 

Configuration download SMS or HTTP 

Benefits  One device, good display, extremely good 
processing power 

Disadvantages Device a bit clumsy, expensive 



  

 

 11(21) 

  

2.2.3 GSM J2ME phone 

Hardware platform GSM or GPRS J2ME phone 

Software platform J2ME or PersonalJava 

Network access protocol:  

Sending / Delivery HTTP 

Notification SMS or HTTP 

Configuration download HTTP 

Benefits  One device, true telephony device 

Disadvantages  

2.2.4 PDA with separate GPRS or GSM phone 

Hardware platform PDA connected to GSM/GPRS phone 

Software platform WinCE or PalmOS or Symbian or J2ME or 
PersonalJava 

Network access protocol:  

Sending / Delivery SMS or HTTP 

Notification SMS 

Configuration download SMS or HTTP 

Benefits  Relatively stable technologies, products on 
market now 

Disadvantages Two devices 

2.3 Product availability 
These are examples of the products mentioned above. Cost per unit in SEK, 
VAT excluded at Dustin (www.dustin.se) for products available now. Estimated 
availability by vendor otherwise. 

Description Product Price SEK Available 

PDA w/ PC-card 
slot 

Compaq’s IPAQ 3630 + 
expansion pack for PC-card. 

6 000 Yes 

PC-Card GSM 
phone 

Nokia CardPhone v2.0 3 000 Yes 

PC-Card 
GSM/GPRS 
phone 

Xircom GPRS CreditCard  2Q 2001 

J2ME GSM 
phone 

Nokia Communicator 9210  2001 

J2ME 
GSM/GPRS 
phone 

Motorola Accompli 008  1Q 2001 



  

 

 12(21) 

GSM/GPRS 
phone 

Motorola Timeport 4 000 Yes 

 



  

 

 13(21) 

3 Recommendation 
Prototyping for the future 

It is important to keep in mind that the ExMS prototype is exactly this – a 
prototype and not a commercial application. Even if the technical aspects are 
not the main objective of the ExMS project this is a real opportunity for the 
participants to learn and benefit from the prototype. These are arguments that 
clearly speak for the device-independent approach of Java and against using 
native APIs that binds the prototype to a specific device. 

Device unavailability 
Much will be decided in the nearest months. What device will come to the 
market? What will be their exact features? If the Motorola Accompli 008 is 
released first quarter 2001 as quoted on their website it would be very 
interesting to use it with its J2ME MIDP support. If it proves to be multithreaded 
it would be the ideal device, however the chances for this are slim. Another 
alternative would be the Communicator 9210. A PDA with GPRS card phone 
would also be interesting indeed. However, if you can afford to wait a few 
months it is best just to wait and see but not stay inactive. 

Commit to runtime environment 
 Commit to a technology that will fit on most platforms, with little changes. Java. 
With its large developer’s base and its huge industry support it is bound to 
succeed, even if it might not be the best technical solution. In one way, Java 
would be a ‘safe’ way. Choose Java now and you’re sure not to be wrong, at 
least. So, conclusion would be to choose Java and work with an emulator on 
the device that seems most promising. Try to keep application independent 
from target platform. Commit to platform sometime in summer.  

Tough choice 
OK, so Java it is. Then what runtime environment? If J9 had supported some 
other GUI library than its own MicroView it would have undoubtedly been a first 
choice. Now, it is not so certain. Using MicroView binds you to J9, which binds 
you hardware platforms that J9 is ported to. It would be much more attractive to 
use J9 as a development platform if they provided support for one of the J2ME 
profiles like Personal, Foundation or MID. They have beta support for CLDC 
right now and claim that they are working on other parts of the J2ME 
specification, so this wish might be answered. 

So, how about PersonalJava? Developing against this option would keep the 
door open for both the PDA + GPRS as well as the Nokia 9210. Both of these 
options provide a rich graphical interface and are reasonably attractive 
solutions.  

The MIDP is equally attractive, with the Accompli 008 as target platform. Good 
emulators are supplied both from Sun and Motorola until the device is released. 

Whatever road taken, care should be taken to keep the GUI as detached as 
possible from the rest of the application in order to make it as easy as possible 
to port the application to a different runtime environment if this becomes 
necessary. This would also make it possible to develop several GUIs to see 
how well they work. 

Alternative 



  

 

 14(21) 

If Java would not be an alternative the recommendation would be to use the 
PDA + GSM cardphone, specifically the Ipaq. The one disadvantage of this is 
the tight link to operating system and the device (both the PDA and the PC-
card) that would make the application. Hard to port the application, hard to learn 
from and benefit from it. 

Summary 
The recommendation is to develop the ExMS application according to one of 
the J2ME specifications, either the PersonalJava specification or the MID 
profile. Which one depends on which device is the most attractive, the Ipaq or 
the Nokia 9210 for PersonalJava, or the Accompli 008 for the MIDP. 



  

 

 15(21) 

4 References  
Please use the links below as a help to learn more about these technologies. 

J2ME 
� http://java.sun.com/j2me/ 

� http://developer.java.sun.com/developer/products/j2me/index.html 

� http://www.microjava.com/ 

� http://developer.java.sun.com/servlet/SessionServlet?url=http://developer.jav
a.sun.com/developer/earlyAccess/personaljava/ 

� http://www.onjava.com/wireless/ 

Other Java runtime environments 
� http://www.embedded.oti.com/  - J9 

� http://www.wabasoft.com - Waba 

� http://www.esmertec.com/p.html - JBed 

JMS 
� http://www.softwired-inc.com/ 

GPRS and GSM card phones 
� http://forum.nokia.com/cardphoneforum/main/1,6668,1_6_2_1,00.html 

� http://www.mobilegprs.com/developers.asp 

� http://www.xircom.com/ - GPRS Creditcard 

� http://www.wavecom.com/home.html - Wismo 2c-2 GPRS module 

� http://www.option.com/ - Triband GPRS pc-card 

Windows CE 
� http://www.microsoft.com/windows/embedded/default.asp 

PalmOS 
� http://www.palmos.com/dev/  

Symbian 
� http://www.symbiandevnet.com  

� http://forum.nokia.com/symbianforum/main/1,6668,1_49_1,00.html  



  

 

 16(21) 

 

 



  

 

 17(21) 

5 Appendix: Project Plan Expressive SMS 
(ExMS) 

Stockholm & Helsinki 

January, 2001 

 

Per Persson, Jussi Karlgren, Turkka Keinonen & Panu Korhonen 

 



  

 

 18(21) 

 

5.1 Introduction 
In the beginning of February 2000, the HUMLE laboratory initiated a small 
project with Nokia Research Center (Helsinki) called MobiPal. The objective 
was to investigate and develop some ideas about avatar-based expressive 
messaging in a mobile context, both from a technical as well as user 
perspective point of view. The project resulted in a conceptual framework for 
development of a prototype together with a mock-up demonstrator to illustrate 
the ideas. The project has been presented to Nokia’s business development 
departments, and a paper is currently under review for scientific publication.  

5.2 SMS, avatars and emoticons 
In some parts of the world, mobile phones are everywhere and used by 
everyone. Phones are not only used for synchronous and asynchronous voice 
communication, but also – increasingly – for written communication. In spite of 
complex and non-intuitive interfaces, Short Message Service (SMS) messages 
are sent and received by a huge number of customers, mostly young, in many 
European countries. In Finland, the mobile phone users sent in total 650 million 
text messages in 1999  (Ministry of Communication, Finland, 1999).  

SMS differs from voice communication in many respect, which has generated a 
fair amount of interest and research, mostly from an ethnographic perspective. 
First, it is not primarily used for serious and task-oriented communication, but 
for expressive, social and emotional functions, e.g. ‘how are you doing?’ and 
‘whatsup?’ messages. Humor, flirts, gags and play are central objectives of 
textual messaging. In spite of the low bandwidth (up to 160 characters, typically 
in low-resolution monochrome), there is a surprisingly high degree of 
expressivity in SMS communication, due to the systematic reliance on a rich 
and shared awareness of situation, preferences, sense of humor, and social 
context between sender and recipient. SMS messages are typically not sent to 
strangers, but used in peer-to-peer communication between friends, lovers, or 
family members. In addition, the composition and reception of SMS messages 
often take place in a collaborative setting with a group of people gathering 
around the device (Larsson, 2000; Weilenman, 2000). One of the objectives of 
the ExMS project is to build on our current understanding of SMS usage, and 
deepen it by studies of SMS text content and situational usage. In the 
continuation project we want to maintain the special features of SMS 
messaging, but expand it into other areas of interest. The basic research and 
design questions are: What is expressivity? How it can be enhanced? 

Many collaborative multi-user environments allow people to use an avatar – a 
virtual representation of personal presence and personal characteristics. The 
way people choose to represent themselves in a virtual world is not always 
straightforwardly predictable from their physical world appearance and 
character – the virtual world allows users to play with their identities (Turkle, 
1995). Our design project allows users to employ animated characters to 
enhance expressivity of SMS messaging. However, the synchronous nature of 
most virtual avatars makes fine-grained expressiveness difficult since users will 



  

 

 19(21) 

be unable to control the behavior of the avatar online over a simple numeric 
keyboard. In this project, we explore asynchronous avatar usage. 

In this respect, our project draws more from emoticons than from avatars. 
Combining a textual message with a semi-imagery representation of a face 
adds new layers of meaning (e.g. irony), guides the recipients’ interpretation of 
the message, and expresses the sender’s emotional state. Creating animated 
emoticons that move and transform over the temporal flow of the message will 
merge modalities in similar ways to cartoon and animated film. The efficiency of 
emoticons also shows that expressivity lies not in the realism of the imagery, 
but in the combination of modalities, and, again, the rich and shared context of 
sender and recipient. 

5.3 The MobiPal demonstrator 
We want to allow senders to express a basic emotional undertone in the 
message through the actions of their avatar. Users start composing a message 
by selecting from a palette of moods, e.g., happy, distressed, angry and busy. 
This makes the avatar perform some action to reflect the mood in a few 
seconds of animation, which will then be looped during the length of the 
message. In parallel, the textual message is shown as a cartoon balloon (Figure 
1). 

 

 

Figure 1. Example screen. 

In addition to mood animations, avatars should be able to perform simple 
events, e.g. jump, dance, smile, laugh and weep (possibly connected to sound 
effects). Events can be added at specific points in the message. In preview 
mode, the animation can be stopped between the looped mood animations and 
the user can choose between events in a list. Since all mood and event 
animations start and stop at a neutral position frame, continuity of movement 
can be ensured without involving the user. When the sender has inserted 
event(s) and previewed, the package is sent off. 

Events need to be paced to match the written message – timing is central in 
conveying punch lines or other emotional content. To this end, we have 
sketched a standard for encoding expressively enhanced messages: the Mood 
Markup Language or MoodML. 



  

 

 20(21) 

Expressivity lies, however, not only in the temporal composition of text, moods 
and events, but also in the graphical design of the skins and movements. Most 
users will probably make use of prefabricated skins. Some standard skins may 
be included in the service package. Others may be produced by professional 
firms for business marketing: just like product placement in films, users can get 
professional skins for free, if they allow their mobile avatar to wear a Budweiser 
T-shirt in all their messages.  

Some users, however, will want to design their own skins using their own 
graphical software. To this end, open standards and APIs are absolutely 
essential. No single organization will have the stamina to produce and uphold 
the interest of the potential user community: the creativity of the users must be 
tapped into. Thus, it is important to create a community in which sharing scripts 
and skins are encouraged and awarded.  

However, in order to ensure compatibility between skins, scripts, and users, 
there have to be some minimal requirements for any given skin. For instance, if 
you make a skin publicly available or start using it yourself, it has to perform a 
minimum list of mood and events.  

Configuring the interface and the characteristics of the skin, archiving message 
scripts, sharing scripts and skins, community building and other administrative 
aspects of the system are accessed by the user from a Web interface rather 
than over the mobile device: the mobile device is used solely for composing, 
transmission and receipt of messages.  

5.4 Research Questions 
The research issues we intend to address span over several subject areas. 
There are non-trivial system issues, which are not the focus of the project. We 
expect to choose a convenient solution over a stable one for the prototype 
phase. Examples include the continued design and formulation of MoodML, 
animation issues where realistic image quality must be traded off for real-time 
performance, design of the interaction dialogue, and trade-offs between 
competent and lightweight client software.  

Some of the interface issues cut deeper into the functions of the system, 
however. We must put serious thought into how we best can support users in 
constructing ExMSs. We must balance the competence of the web-based 
configuration tool, the mobile client, and the skin development kit. We must take 
into account the situational context of message composition. And in future 
releases of the system, we can envision complexity issues in configuring the 
actions of the interface, if the avatars are allowed some limited form of 
autonomy to act based on system understanding of the message. 

Expressivity and social issues are the focus of the current project. We must 
address a number of relatively vaguely understood notions, and first and 
foremost gain some provisional understanding of expressivity in a social 
context. How can embodied interface avatars enhance it? How does 
expressivity relate to role playing and an individual’s sense of self and personal 
and social identity? On a social level, we want the expressive messaging 
functionality to be a shared notion in a community of users. How can we support 
the growth and development of such a community? And on another level of 



  

 

 21(21) 

expressivity, as regards the message content, we need to understand the 
relation between discourse flow, gestures and situation. 

 

 

5.5 References 
1. Koskinen, Topi (2000) Mobile Asynchronous Communication: Exploring the Potential for 

Converged Applications, The Journal of Personal Technologies, 4:45-53. 
[http://www.sics.se/~perp/andraspublikationer/Koskinenr3.pdf] 

1. Larsson, C. (2000) En mobiltelefon är inte bara en mobil telefon. En studie i tonåringars 
användande av mobiltelefoner, Magisteruppsats, Department of Informatics, University of 
Gothenburg.  

2. Ling, R. (1999) “We release them little by little”: Maturation and gender identity as seen in the 
use of mobile Telephony, Telenor FoU report.  

3. Ministry of Transport and Communications, Finland (1999) "Suomen Tekstiviestimarkkinat", 
Edita, Helsinki. 

4. Weilenmann, A. (2000) Negotiating Use: Making Sense of Mobile Technology, The Journal of 
Personal Technologies, no. 4, Springer Verlag. 

5. Turkle, S. (1995) Life on the Screen. New York: Touchstone. 
 

 

 

 


