View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

A taxonomy of asymmetric requirements aspects

Conference or Workshop Item

How to cite:

Niu, Nan; Easterbrook, Steve and Yu, Yijun (2007). A taxonomy of asymmetric requirements aspects. In:
6th International Conference on Aspect-Oriented Software Development (AOSD'07), 12-16 Mar 2007, Vancouver,

Canada.

For guidance on citations see FAQs.

(© 2007 ACM
Version: Version of Record

Link(s) to article on publisher's website:
http://www.cs.toronto.edu/ sme/papers/2007 /Niu-EAQ7.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/5193138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.cs.toronto.edu/~sme/papers/2007/Niu-EA07.pdf
http://oro.open.ac.uk/policies.html

A Taxonomy of Asymmetric Requirements
Aspects

Nan Niuf, Steve Easterbrook’, and Yijun Yu?

"Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 3G4
{nn,sme}@cs.toronto.edu
tComputing Department, The Open University
Walton Hall, Milton Keynes, UK MK7 6AA
y.yuQ@open.ac.uk

Abstract. The early aspects community has received increasing atten-
tion among researchers and practitioners, and has grown a set of mean-
ingful terminology and concepts in recent years, including the notion
of requirements aspects. Aspects at the requirements level present stake-
holder concerns that crosscut the problem domain, with the potential for
a broad impact on questions of scoping, prioritization, and architectural
design. Although many existing requirements engineering approaches ad-
vocate and advertise an integral support of early aspects analysis, one
challenge is that the notion of a requirements aspect is not yet well es-
tablished to efficaciously serve the community. Instead of defining the
term once and for all in a normally arduous and unproductive concep-
tual unification stage, we present a preliminary taxonomy based on the
literature survey to show the different features of an asymmetric require-
ments aspect. Existing approaches that handle requirements aspects are
compared and classified according to the proposed taxonomy. In addition,
we study crosscutting security requirements to exemplify the taxonomy’s
use, substantiate its value, and explore its future directions.

1 Introduction

The many early aspects researchers and practitioners have grown a set of mean-
ingful terminology and concepts, of which the most prominent is the distinc-
tion made between code-level and early aspects. Early aspects are concerns that
crosscut an artifact’s dominant decomposition, or base modules derived from the
dominant separation-of-concerns criterion, in the early stages of the software life
cycle [5]. “Early” signifies occurring before implementation in any development
iteration, and embodies the key activities of requirements engineering, domain
analysis, and architecture design, as indicated in the early aspects Web por-
tal [12].

It is probably not a coincidence that one of the earliest descriptions of early
aspects appeared in the proceedings of the premier requirements engineering
(RE) conference in 1999 [14]. And the fact that the most recent RE conference

(RE’06) presented the best paper award to an early aspects paper [17] demon-
strates the strong connection between RE and early aspects communities. In
fact, many existing RE approaches advocate and advertise an integral support
of early aspects analysis, e.g., use cases [20], scenarios [3], viewpoints [28], and
goals [36].

Aspects at the requirements level present stakeholder concerns that crosscut
the problem domain, with the potential for a broad impact on questions of
scoping, prioritization, and architectural design. A thorough analysis of early
aspects in requirements offers a number of benefits:

— Explicit reasoning about interdependencies between stakeholder goals and
constraints;

— Improving the modularity of the requirements structure;

— Identification of the impact of early aspects on design decisions can improve
the quality of the overall architectural design and implementation;

— Conflicting concerns can be detected early and trade-offs can be resolved
more economically;

— Test cases can be derived from early aspects to enhance stakeholder satis-
faction; and

— Tracing stakeholder interests throughout software life cycle becomes easier
since crosscutting concerns are captured early on.

Despite the growing awareness of these benefits and the continuing endeavor
to achieve them, one challenge RE and early aspects communities currently face
is that the notion of a requirements aspect, i.e., aspect at the requirements
level, is not yet well established. We seek to explain and clarify the require-
ments aspects phenomena. The goal is to provide requirements analysts and
other stakeholders a foundation for discussing specific challenges they might face
in aspect-oriented RE projects. To this end, we conduct literature survey and
domain analysis, thus presenting a taxonomy to show the different features of a
requirements aspect. The sources of our survey focus mainly on asymmetric ap-
proaches and come primarily from the publications and reports in the literature,
which can be found in [12].

Reference models with the unifying taxonomy represent prototypical models
of some application domain, and have a time-honored status. One well-known
example is the OSI 7-layer reference model, which divides network protocols
into seven layers: physical, data link, network, transport, session, presentation,
and application. The taxonomy of protocol layers is in widespread use, and is
discussed in virtually every basic textbook on computer networks. The OSI 7-
layer model is successful because it draws on what was already understood about
the networks domain, thus codifying the core knowledge to be flexible.

Not every domain is sufficiently standardized to allow for a reference model
or a unified taxonomy. In a blooming research field such as early aspects, peo-
ple explore and tackle recognized problems complementarily, based on different
mindsets and traditions. Various perspectives may not converge in a short period
of time, which makes the conceptual unification process arduous and unproduc-
tive most of the time. As an example, the term “component” is used to describe

rather different concepts in software engineering: subsystems, JavaBeans, Ac-
tiveX controls, .NET assemblies, CORBA components, and more. As we shall
see in section 2, the term “requirements aspect” saliently resembles in this re-
spect the notion of a component.

Moreover, approaches like the one followed by the OSI 7-layer model are
not necessarily supportive of change, especially when this change goes beyond
the initially covered domain. However, at least experience on how to get to the
model and the taxonomy should be recorded and shared [29], as undeniably
a contribution to knowledge. Along this line, we present an initial attempt to
identify reusable resources in the domain of requirements aspects. In section 3,
We document our domain analysis results — a taxonomy of requirements aspects
— using feature diagrams [21], and then apply the taxonomy to compare existing
approaches that deal with aspects at the requirements level.

To exemplify the taxonomy’s use and substantiate its value, in section 4,
we present a reified requirements aspect — security, one of the most mentioned
crosscutting concerns in the current literature. We then review related work in
section 5, and conclude the paper with a summary and some directions for future
work in section 6.

2 A Teaser Description for Requirements Aspects

There exist several definitions and descriptions for the term “requirements as-
pect” one of them by the initiators of research in early aspects: Elisa Baniassad,
Paul Clements, Jodo Araijo, Ana Moreira, Awais Rashid, and Bedir Tekin-
erdogan:

“A requirements aspect, then, is a concern that cuts across other requirement-
level concerns or artifacts of the author’s chosen organization. It is
broadly scoped in that it’s found in and has an (implicit or explicit)
impact on more than one requirement artifact.” [5]

We will use it as a starting point for our further discussion. Let’s consider
some parts of this description in detail:

— “a concern”: Calling a requirements aspect a concern develops strong ties
with stakeholders of the intended software system. A requirements concern is
a matter of relevance that conveys the problem domain’s property of interest
to specific stakeholders. Therefore, any requirements aspect has its intent or
purpose of existence, and needs to be traced to some stakeholder interest.
Addressing requirements concerns thus enhances the stakeholder satisfaction
and the overall software quality.

— “cuts across”: No matter how stakeholder concerns are structured, a require-
ments aspect crosscuts the dominant decomposition, i.e., the author’s chosen
organization. This view assumes that the author has chosen some dominant
organizing decomposition structure at the requirements level first, and makes
the crosscutting concern a second-class object. Actually, aspect has become
an equivalent substitute for a crosscutting concern in the literature.

— “author’s chosen organization”: Current requirements techniques offer a vari-
ety of structures for organizing the requirements, such as (structured) natural
languages, use cases, scenarios, viewpoints, goal models, features, etc. [26].
The requirements analyst (author) develops a relatively well-organized set
of requirements based on some dominant decomposition criteria and chosen
structures. Requirements aspects emerge as a result of the lack of additional
decomposition dimensions of the author’s chosen organization.

— “broadly scoped”: The authors of the original article [5] stated that broadly
scoped properties can be quality attributes (nonfunctional requirements) as
well as functional concerns that the requirements engineer must describe
with relation to other concerns. These broadly scoped properties manifest
as scattered and tangled concerns in the author’s chosen organization of
requirements.

— “Impact on”: Requirements aspects do not exist in isolation. They need to
contact other requirement-level concerns or artifacts to provide some service
according to their purpose of existence. This service providing process, which
is also known as aspect weaving, is usually done in an oblivious fashion,
i.e., the service provider (aspect) is impelled toward the consumers without
them being aware of aspect’s existence. Recent work has pointed out that
obliviousness is neither an essential nor a desirable property of aspects [32].
Nevertheless, aspects need to explicitly specify the conditions, locations, and
implications of the intended interactions.

This description of the term “requirements aspect” is very generic and thus
it is not surprising that the term is used to describe rather different concepts:
a collaboration in requirements for software components [14], an extension in a
use case diagram [20], a softgoal in a goal model [36], an instance of terminolog-
ical interference in viewpoints-based requirements models [25], a non-functional
requirement (NFR) in a software requirements specification [17], and more.

The purpose of this paper is to try to clarify these different views by providing
a taxonomy for requirements aspects. We therefore do not try to give one concise,
closed definition. Instead, we will show the different features and characteristics
a requirements aspect must or can have, thereby classifying the different kinds
of requirements aspects as they are used today.

3 A Feature Diagram for Requirements Aspects

This section presents the results of applying domain analysis to existing ap-
proaches that tackle requirements aspects. Domain analysis is concerned with
analyzing and modeling the variabilities and commonalities of systems or con-
cepts in a given domain, thereby developing and maintaining an information
infrastructure to support reuse [11].

We document our domain analysis results — a taxonomy of requirements as-
pects — using feature diagrams [21]. Essentially, a feature diagram is a hierarchy

Requirements Aspect

Life Cycle

Base Weaving
(Dominant Mechanism
Decomposition) !

Intent
(Purpose)

‘ Source ‘ ‘Target ‘ ‘ Refinement

refer to Table 1 for
Observable detailed discussion
[)

Behavior
Form - -
(Author’s Chosen Functional Non-Functional /
Organization) (Tecfjmcal) (Quall‘ty) Mapping | | Influence
| |
(Structured) e.g., logging, e.g., security, Base Aspect
Use | | Goal | | ViewPoint Natural data validation, availability, -
Case Language buffering, etc. usability, etc.
Legend:

I
Optional Alternative Reference or
Feature Features Examples

Fig. 1. A feature diagram for asymmetric requirements aspects.

Mandatory
Feature

of common and variable features characterizing the set of instances of a con-
cept [9]. In our case, the features provide a taxonomy and representation of
design choices for approaches dealing with aspects at the requirements level.

We do not aim for this taxonomy to be normative and immune from change.
In fact, the relatively new area of early aspects has already experienced many
overloaded terms, and many of the terms we use in our taxonomy are often used
differently in descriptions of other approaches. Consequently, we provide minute
examinations of the terms and concepts as we use them. Furthermore, we expect
the taxonomy to evolve as our understanding of requirements aspects matures.
Our main goal is to show the vast range of available choices as represented by
the current approaches, from a reuse perspective.

Figure 1 depicts a feature diagram we use as a basis for our discussion on
requirements aspects. We deliberately restrict the diagrammatic notations in
Fig. 1 to conforming with those originally proposed in [21], with reference and
annotated examples provided to illustrate specific concepts. In particular, only
three types of lines (edges) connecting boxes (nodes) are presented: mandatory,
optional, and alternative (XOR-choice). This is because the notations in [21] are
free of ambiguities, whereas later modified feature diagram variants are neither
precise nor ambiguity-free [33]. While we will clarify the diagram semantics on

the fly, we refer the interested reader to [21,9,33] for detailed discussion on
feature modeling.

In Fig. 1, the features (denoted by the boxes) of the concept requirements
aspect are described, which is located at the top of the feature diagram. The
boxes directly connected to requirements aspect are the direct sub-features of a
requirements aspect. The little circles at the edges connecting the features define
the semantics of the edge. A filled circle means mandatory. Thus, every require-
ment aspect has an intent or purpose of existence, is of a certain kind, and cuts
across multiple base modules according to the dominant decomposition. Option-
ally (denoted by the outlined circle at the edge), a requirements aspect provides
life cycle information, and defines some weaving mechanism. Alternative fea-
tures means an exclusive-or choice. For example, analysts organize requirements
using one and only one base form in a particular RE stage like use cases, goals,
viewpoints, and so forth.

We elaborate sub-features presented in Fig. 1 in the following sub-sections,
and apply the taxonomy to compare different requirements aspects approaches.
As long as we organize the discussion by (sub-)features, “aspects” emerge and
crosscut this dominant decomposition structure. We therefore discuss these cross-
cutting properties in a separate sub-section.

3.1 Intent and Life Cycle

An aspect represents some concern, which only matters to specific stakeholders
of a software system. A requirements aspect represents stakeholder interest in the
problem domain, including high-level concerns like user satisfaction and happi-
ness, system qualities like security and efficiency, software capabilities like fault
tolerance and persistent storage, overall considerations like development time
and return on investment, and many others. Each requirements aspect, there-
fore, needs to have an intent to help justify its very existence with particular
stakeholder interest.

In many cases, the intent is further formulated and elaborated through ob-
servable behaviors to reflect what the stakeholder has in mind to expect the
software to do or bring about. For example, to ensure security, the software
system shall disable user accounts after the wrong password is entered three
times. These observable behaviors are what make the intent operationalizable
and measurable. Naturally, test cases can be derived to check whether the result-
ing software meets the intent, addresses the stakeholder concern, and guarantees
the desired behavior.

Test cases present an instance of the life cycle feature, which supports trace-
ability of requirements aspects throughout the software development life cycle.
Requirements traceability is defined by Gotel and Finkelstein [13] as the ability
to describe and follow the life of a requirement in both a forwards and backwards
direction, i.e., from its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of on-going refinement
and iteration in any of these phases.

Tracing a requirements aspect backwards to its origins helps uncover its in-
tent and the source of stakeholder interest: whether the aspect is a concern
relating to business, technology, organization, process, etc. From the standpoint
of aspect-oriented program analysis and evolution, this source information about
requirements aspects provides a baseline to validate code aspects against stake-
holder relevance: are they merely refactored based on particular implementations
or originally required by specific stakeholders?

Tracing a requirements aspect forwards to its subsequent development in-
volves systematic decision making. An aspect identified at the requirements level
can be designed as a coherent module conforming with the author’s chosen dom-
inant organization structure. For example, synchronization can be mapped to a
single class in an object-oriented implementation. Alternatively, a requirements
aspect can be mapped to an architectural-, code-, or test-level aspect, following
the aspect-oriented software development paradigm. This preserves the concern’s
crosscutting nature throughout the software development life cycle. Other than
being modularized definitively in design and implementation, a requirements as-
pect can be recorded as a tentative issue to influence ensuing development and
decision making.

This tentative tracing strategy allows requirements aspects to be refined so
that nobody is forced to make premature design decisions. Refinement supports
iterations of analysis and interactions with stakeholders. The goal is to elaborate
requirements and architecture in parallel within the system context, ! better
determine what crosscuts what, and tease out the implications of the identified
crosscuttings.

3.2 Base and Weaving

Traditional waterfall development process produces artificially frozen require-
ments documents for use in the next step in the development life cycle. Alterna-
tively, this process creates systems with constrained architectures that restrict
users and handicap developers by resisting inevitable and desirable changes in
requirements. It would be imprudent to assume that one could fully understand
and document system requirements up-front. In practice, key requirements are
not fully understood until the architecture is baselined at the conclusion of the
refinement and elaboration phase.

The Twin Peaks model presented by Bashar Nuseibeh [27] vividly depicts
this iterative and progressive process, and strongly emphasizes the concurrent
interplay between requirements and architecture: candidate architecture can con-
strain designers from meeting particular requirements, and the choice of re-
quirements can influence the architecture that designers select or develop [27].
Although the Twin Peaks model develops requirements and architectural specifi-
cations concurrently, it continues to separate problem structure and specification
from solution structure and specification, in an iterative process that produces

1 'We will discuss the Twin Peaks model of weaving together requirements and archi-
tecture [27] in more detail in the next sub-section.

Independent Implementation Dependence Dependent

-

General
Path of exploration
Level
of
Detail
] Problem Implementation
Detailed Statement Statement

Fig. 2. The Twin Peaks model (Adpated from [27]).

progressively more detailed requirements and design specifications, as Fig. 2
suggests.

The Twin Peaks model further suggests an agenda “from early aspects to late
requirements”, because identifying aspects too early is counterproductive [28].
Following this school of thought, we can safely assume an asymmetric, base-
aspect separation approach to tackling requirements aspects. That is, progres-
sively exploring crosscutting aspects is built upon a relatively well-structured set
of requirements of the author’s chosen base organization, with the form varies
over a wide range: such as (structured) natural languages, use cases, viewpoints,
goal models, etc. [26].

On the contrary, a symmetric approach does not separate base from aspects.
There is no core system, and only one type of concern development process exists
to create designs that realize crosscutting and non-crosscutting concerns [16].
Requirements are decomposed in a uniform fashion, which makes it possible to
project any particular set of requirements on a range of other requirements [23],
hence supporting a multi-dimensional separation of concerns [34].

In an asymmetric approach, parallel concern development processes coexist:
one that creates and expands the base model and another that creates aspects
that crosscut the base. An early identification of requirements aspects improves
the base structure’s modularity since scattered and tangled stakeholder interests
are clarified. A requirements aspect does not exist in isolation. It needs to be
progressive, as suggested by the Twin Peaks model in Fig. 2, and interact with
base requirements in order to provide some service according to its intent. This
service providing process is specified by certain weaving mechanisms.

Table 1. Comparison and classification of asymmetric requirements aspects approaches

Base Form Requirements Advices Join Points Pointcuts Weaving Sample
Aspects Approach
use case extensions extens_ion exter_lsion Ii§t of _ extensi_o_n [20]
behaviors points extension points | composition
goal model softgoals advising goals and contr_ibution compqsing [36]
tasks tasks links algorithm
multi-stakeholder| terminological | vocabulary conflicts and requirements reconciling [24,25]
description interferences mappings correspondences discordances concepts
viewpoint concerns stakeholder viewpoints contribution resolving [30,31]
requirements table conflicts
problem security vulnerabilities functional threat composition [15]
frame requirements descriptions process
natural non—functional | ..\ rrences requirements indicator information
language terms statements terms retrieval [17]

It should be noted that, depending on how requirements aspects are mod-
eled and traced in the software life cycle, one may not define a specific weaving
mechanism for every requirements aspect. That is why weaving mechanism is
an optional feature shown in Fig. 1. Nevertheless, requirements approaches that
support early aspects analysis unexceptionally treat weaving as a crucial com-

ponent.

We use AspectlJ-like terminologies to compare and classify existing aspect-
oriented requirements analysis approaches according to their base forms. To
define the terms used in the comparison, we follow the metaphor that every
requirements aspect acts as a service provider to some base modules. 2

— Advice defines the body or the content of the service that a specific require-
ments aspect provides. It describes what the service is about.
— Join points are points in the base which a requirements aspect interacts
with. They describe where the service is provided.
— Pointcut represents a set of join points. It describes the situational patterns
of the service that an aspect provides.
— Weaving is the process of coordinating service providers (requirements as-
pects) and consumers (base requirements). It describes when and how the

service takes place.

2 The following interpretations of the concepts may depart from the traditional expla-
nations developed from the aspect-oriented programming perspective, which can be
found in [1], for example.

In addition, the mandatory feature “intent” of a requirements aspect de-
scribes why the service is needed in the first place. We interpret the above con-
cepts from a requirements engineering perspective, as part of the primary contri-
bution of this paper. Table 1 summarizes the comparison of requirements aspects
approaches based on our proposed taxonomy and terminologies. We classify the
asymmetric approaches according to their base forms, and provide sample ref-
erences for each category. This examination and classification were performed
independently by the first author and the third author following a pre-defined
artifact analysis protocol [8], and the differences were reconciled.

Note that the comparison presented in Table 1 is not intended to be exhaus-
tive or complete by any means. What we desire is a way of framing our surveyed
representative approaches under the umbrella of our conceptual framework, so
that Table 1 both exemplifies the taxonomy’s use and substantiates its value.
One of our future research areas is to extend the comparison results in Table 1
to cover all the features presented in Fig. 1.

3.3 Kind

Aspects at the requirements level can be classified according to their kind, i.e.,
the matter they concern. Requirements standards and textbooks typically clas-
sify requirements into functional requirements on one hand, and non-functional
requirements or attributes on the other hand. In this classification, requirements
given in terms of required operations or data are considered to be functional,
while quality requirements, such as performance, security, reliability, maintain-
ability, are classified as non-functional.

A functional requirement can pertain to a function or to data. In mathemat-
ical terms, given any element, say x, in the domain, a function assigns exactly
one element in the co-domain to z. Thus, a widespread function that a system
shall perform, such as logging and tracking memory usage, is a functional re-
quirements aspect. A functional aspect can also describe the data item or data
structure that shall be part of a system’s state, e.g., data integrity for multicast
overlay networks. Besides, functional aspects can address crosscutting architec-
tural and technical concerns like buffering and caching, as the Twin Peaks model
in Fig. 2 shows.

Non-functional requirements address system qualities. They are typically
broad in scope in that they have impacts on multiple requirements modules.
Sample non-functional aspects include: performance in terms of time (points in
time, reaction time, time intervals), speed, volume, throughput, or rates (vol-
ume per time unit), and properties of product management, such as availability,
testability, interoperability, portability, etc. Security — one of the most mentioned
non-functional requirements aspects — will be further discussed in section 4.

Note that there exist many requirements classification frameworks other than
the functional versus non-functional one. For example, the satisfaction of re-
quirements can be hard or soft, the representation of requirements can be op-
erational, quantitative, qualitative, or declarative, and so forth. Discussion of
specific schemes to classify requirements into different kinds is beyond the scope

of this paper. What we want to emphasize here is that requirements aspects give
rise to a separate dimension for stakeholders to concentrate on requirements
crosscutting properties. And we have used the de facto classification scheme to
show that both functional and non-functional requirements can be considered
as aspects, provided that the concerns they address cut across other concerns of
the base requirements structure.

3.4 Crosscutting Properties

In explaining and elaborating the proposed taxonomy, we use the feature dia-
gram shown in Fig.1 as a baseline to present diverse characteristics a require-
ments aspect must or can have. As we choose features to organize our discussion,
“aspects” that crosscut more than one feature emerge. We now discuss some of
these crosscutting properties as follows:

— Constraints. A constraint is a limitation of possibilities. For example, a com-
mon constraint to the identification and modularization of aspects is the
amount of time available for early requirements engineering activities.

— Dependencies. Determining a particular feature may rely on other features.
For example, weaving mechanism highly depends on requirements base forms
and related aspect concepts, as manifested in Table 1.

— Trade-offs. Trade-offs involve determining the optimum balance among cer-
tain factors. A trade-off analysis is a systematic examination of the advan-
tages and disadvantages of the alternatives. For example, choosing between
mapping and influence as target for an identified requirements aspect in the
software life cycle invokes detailed trade-off analyses.

— Rationale. A rationale records an underlying reason or an explanation of con-
trolling principles of opinion, choice, or practice. For example, the rationale
of using natural language as the base form is to facilitate the contractual
process for requirements procurement.

— Consistency. Maintaining consistency helps achieve harmony of features to
one another and as a whole. For example, resolving conflicts is crucial for
viewpoint-based frameworks to weave requirements aspects, as indicated in
Table 1.

The above is only a partial list of interplays between features shown in the
taxonomy. Nevertheless, it illustrates the necessity and importance of under-
standing these interplays for effectively managing requirements aspects.

4 A Reified Requirements Aspect — Security

To further explore the usefulness of the taxonomy, we study one of the most
discussed requirements aspects in the literature — security, which tends to be
stated as a crosscutting concern that impacts many requirement-level concerns
and artifacts.

advising
tasks

base
modules

join |,
points |’

AND

Shopping

Contribution
—_—

Link

Impact
—_—

Fig. 3. Security aspects in requirements goal models (Adpated from [25]).

L egend:
/ Display { ;eQUi remﬁ;nfz}
Info rmati
Display ENtdata(KeylnfData} Info on
. Etdata(Keylnfbaca) hi
Machine Encr. Addr Info Z‘Oi“n;?f
l MNet
N \ Sal & Ben givetj
. EIBP‘OY% Info domain
l . P shared
. -~ .t
. Wt » phenomena
F L 4
. . Restiots domaip mepbershiv "2}
-t v, - ,-'o--:w-—-q..‘“ .t '.'q.‘- .
S Keysare N o BuildingSec. -, " Keysrestrict °, gj{:ﬂg?
y secure L. N, System N access g reference

Fig. 4. Security aspects in problem frames (Adpated from [15]).

x

Driver

.

Car Theft

TS
14 mISUSE/'
. Case -

/(>\ actor

Fig. 5. Security aspects in (mis)use cases.

Security requirements are concerned with how assets are to be protected from
harm [22]. An asset is something in the context of the system, tangible or not,
that is to be protected [18]. A threat is the potential for abuse of an asset that
will cause harm in the context of the problem. A vulnerability is a weakness
in the system that an attack exploits. Security requirements are constraints on
functional requirements intended to reduce the scope of vulnerabilities. Thus,
security requirements stipulate the elimination of vulnerabilities that an attacker
can exploit to carry out threats on assets, thereby causing harm [15].

In many practices, the security needs of a given system are often not de-
termined until well into the implementation, resulting in late and expensive
attempts to shoehorn security into the work in progress [15]. This leads to the
situation that security requirements are often stated in terms of how (e.g., the
system shall use cryptography), and not in terms of what problems to be solved
in the first place, leaving it unclear how the security requirements affect other
stakeholder concerns.

Treating security as a requirements aspect helps first determine what cross-
cuts what, and then tease out the implications of this crosscutting. We demon-
strate the applicability and competence of the taxonomy described in section 3
by delineating sample aspect approaches that deal with security requirements.
The discussions are structured by the base forms of the authors’ chosen organiza-
tions: goal models, problem frames, and use cases. A more detailed investigation
that aims to cover all features in Fig. 1 is currently under planning.

The context of Fig. 3 are goal models developed for a media shop to inves-
tigate requirements for new on-line services [25]. In Fig. 3, security is expressed
as a softgoal to suggest that intended software is expected to satisfy the security
requirements within acceptable limits, rather than absolutely [7]. As Table 1
indicates, softgoals in a goal model are requirements aspects, and concrete tasks
such as SSL[protocol] are advices which are to be weaved into proper join points
(hard goals and functional tasks). Composing algorithms are defined in [36] to
guide the weaving procedure.

Figure 4 illustrates the work on deriving security requirements from crosscut-
ting threat descriptions [15]. Problem frames are used as requirements base form
to provide a shape of a solution for various problem classes [19]. In Fig. 4, func-
tional requirements, such as “salary and benefits information shall be available
to each managerial employee for perusal”, are represented by problem frames
and give vulnerabilities. Threat descriptions like “releasing salary information
to unauthorized individuals could damage the company’s reputation” help deter-
mine which functional requirements are exposed to specific vulnerabilities. Vul-
nerabilities are then ameliorated by security requirements, which are expressed
as frames’ constraints like “keys restrict access” and “restricts domain mem-
bership”. Details of the composition process of weaving threat descriptions into
problem frames are discussed in [15].

A misuse case is a use case from the point of view of an actor hostile to the
system under design. Its goal is not a system function, but a threat posed by that
hostile actor. One of the applications of misuse cases is to elicit security require-

ments [2]. Figure 5 shows a scenario in which malign agents and misuse cases are
explicitly modeled. This helps to focus attention on the struggle against exposed
threats. For example, in Fig. 5, the car theft’s intention is to break into the car
and to short the ignition, thus stealing the car, possible mitigating approaches
are to set the car alarm, or lock the transmission. According to Jacobson [20],
extensions in UML share much of the spirit of aspects in aspect-oriented soft-
ware development: they both allow developers to slice a system over all life cycle
models. It is important to keep the extension mechanism nonintrusive, i.e., as-
pects extend the base use case with more behavior without having to change the
base. The goal is to achieve modular design and code by structuring them from
a base and let the system grow without cluttering the base with statements that
have nothing to do with the base, even if the statements are important for the
additional behavior [20].

Discussion of the above approaches shows that our proposed taxonomy of
requirements aspects indeed serves as an umbrella for a variety of ideas. The
non-functional security requirements intend to protect assets from harm. They
cut across many author’s chosen base structures: goal models, problem frames,
and use cases. They are modularly represented, successively refined, and system-
atically composed with functional requirements in order to guide development
throughout the entire software life cycle.

5 Related Work

The early aspects Web portal [12] remains one of the most comprehensive re-
sources for investigating current challenges and exploring future directions on
aspect-oriented requirements engineering and architecture design. Two early as-
pects landscape reports are available in the Web portal.

In [4], the authors lay out a conceptual landscape for how the concept of
early aspects pertains to domain analysis, requirements engineering, and archi-
tectural design. The report distills all the concepts special to each, and provides
a conceptually unified view of early aspects in general. An extensive survey of
aspect-oriented requirements engineering approaches is provided. An aspect at
the requirements level is defined as a broadly-scoped property, represented by
a single requirement or a coherent set of requirements (e.g., security require-
ments), that affects multiple other requirements in the system so that: 1). it
may constrain the specified behavior of the affected requirements; 2). it may
influence that affected requirements in order to alter their specified behavior [4].
Our taxonomy of requirements aspects enhances this view with emphasis on the
intent behind this constraining and influence. Besides the behavioral view, our
proposed taxonomy also captures requirements aspects’ structural and life cycle
properties.

The authors of [6] provide a survey of contemporary aspect-oriented analysis
and design approaches, considering their origins, aims, and contributions. A very
general description is given for requirements aspects: “if some requirements are
not effectively modularized, . . . such requirements are termed crosscutting (or as-

pectual) requirements” [6]. In order to compare existing aspect-oriented analysis
and design approaches, the authors define some metrics: traceability, compos-
ability, evolvability, and scalability. While our taxonomy clearly fine-tunes the
description about requirements aspects provided in this survey, the comparison
criteria characterized in [6] supplement our work in quality issues of requirements
aspects approaches.

Requirements aspects often recur in the literature. For instance, security is
the most prevalent requirements aspect discussed in nearly all aspect-oriented
requirements engineering approaches. Orthogonal to the taxonomy proposed in
this paper, catalogue or ontology-based approaches attempt to collate, from
a wide range of sources, verifiable information in specific domains. Along this
line, the most relevant work to requirements aspects is the non-functional re-
quirements catalogue devised by Chung and his colleagues [7]. Non-functional
requirements are hard to be allocated into independent modules, therefore have
huge potential to become candidate early aspects [25]. One of the main motiva-
tions of catalogue or ontology building is the possibility of knowledge sharing and
reuse: as soon as a particular domain is fixed (e.g., security of a media shop as
shown in Fig. 3), it seems reasonable to expect a large part of domain knowledge
to be the same for a variety of applications (e.g., security of information display
in Fig. 4 and of car antitheft in Fig. 5), so that the high costs of knowledge
acquisition can be better justified. Non-functional requirements or requirements
aspects catalogue building could benefit from our work since the taxonomy helps
filter out feature nuggets one needs to consider when cataloguing requirements
aspects.

The idea of using feature diagrams to depict a concept has become popular in
software engineering, since feature modeling overcomes the drawback of present-
ing domain knowledge in a flat and coarse form. Recent work has been carried
out in understanding both familiar and relatively new concepts. For example, the
notion of components is investigated by Voelter [35], and a feature-based survey
of model transformation approaches is provided by Czarnecki and Helsen [10].
These pieces of work greatly inspired us to explore the notion of requirements as-
pects. The taxonomy proposed in this paper is, to the best of our knowledge, the
first attempt to characterize the concept of requirements aspects using feature
diagrams in order to efficaciously serve the early aspects community.

6 Summary and Future Directions

Maintaining a clear separation of concerns throughout the software life cycle has
long been a goal of the software community. Aspects provide the mechanism
that enables the source code to be structured to facilitate the representation
of multiple perceptions and to alleviate tangling and scattering concerns. Many
of these concerns often arise in the problem domain [28], and, therefore, it is
important to identify and represent concerns that arise during the early phases
of software development, and to determine how these concerns interact. The
Twin Peaks model [27] suggests that at the stage when requirements need to be

mapped onto elements of a software solution, identifying aspects may become
much more worthwhile.

In this paper, we have presented a preliminary attempt to structure the
requirements aspects domain with a taxonomy, characterizing mandatory, op-
tional, and alternative features of a requirements aspect as it is used today in
the literature. We then use the taxonomy to compare and classify existing re-
quirements engineering approaches that handle aspects. We have also studied
crosscutting security requirements to exemplify the taxonomy’s use, substanti-
ate its value, and demonstrate its applicability and usefulness.

The work reported here can be continued in many directions. Obviously,
the literature study we based the taxonomy could be expanded, either within
the published work or by consulting researchers and practitioners in the com-
munity. Also of interest would be extending the taxonomy to cope with sym-
metric, multi-dimensional concern separation, approaches. Moreover, the future
research agenda includes investigating the taxonomy’s applicability to handle
architectural-, code-, and test-level aspects. Furthermore, it is necessary to es-
tablish comparison criteria and metrics in order to conduct a more critical exam-
ination that is intended to clarify what is better and/or worse in every considered
approach. Finally, experience from practical applications will have to be evalu-
ated with respect to the taxonomy’s usefulness: should it be modified, simplified,
or extended with additional features?

The area of early aspects continues to be a subject of intense research. The
time is ripe for consolidating early aspects knowledge into a set of polished best
practices and patterns. We hope the proposed generic, feature-based taxonomy of
requirements aspects can be an important contribution to existing knowledge,
advance the current state of the art, and serve as a basis for more rigorous
investigations in this area.

Acknowledgments. We would like to thank Awais Rashid for helpful remarks,
and Krzysztof Czarnecki for help with feature modeling. Financial support was
provided by NSERC.

References

1. Aspect-oriented software development community wiki: http://www.aosd.net /wiki/
Last accessed on April 16, 2007.

2. 1. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In
Intl. RE Conf., pages 61-68, 2002.

3. J. Aratjo, J. Whittle, and D-K. Kim. Modeling and composing scenario-based re-
quirements with aspects. In Intl. RE Conf., pages 58-67, 2004.

4. J. Araidjo, E. Baniassad, P. C. Clements, A. Moreira, A. Rashid, and B. Tekin-
erdogan. Early aspects: the current landscape. Technical Report COMP-001-2005,
Lancaster Univ., 2005.

5. E. Baniassad, P. C. Clements, J. Araijo, A. Moreira, A. Rashid, and B. Tekin-
erdogan. Discovering early aspects. IEEE Software, 23(1):61-70, 2006.

6. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Alarcon, J. Bakker, B. Tekin-
erdogan, S. Clarke, and A. Jackson. Survey of aspect-oriented analysis and design
approaches. AOSD-Europe-ULANC-9, AOSD Europe, 2005.

7. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

8. Course Website — Empirical Research Methods in Software Engineering:
http://www.cs.toronto.edu/ "sme/CSC2130 Last accessed on April 16, 2007.

9. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

10. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621-645, 2006.

11. R. P.-Diaz. Domain analysis: an introduction. ACM SIGSOFT Softw. Eng. Notes,
15(2):47-54, 1990.

12. Early aspects portal: http://www.early-aspects.net/ Last accessed on April 16,
2007.

13. O. Gotel and A. Finkelstein. An analysis of the requirements traceability problem.
In Intl. Conf. on RE, pages 94-101, 1994.

14. J. Grundy. Aspect-oriented requirements engineering for component-based software
systems. In Intl. Symp. on RE, pages 84-91, 1999.

15. C. B. Haley, R. C. Laney, and B. Nuseibeh. Deriving security requirements from
crosscutting threat descriptions. In Intl. Conf. on AOSD, pages 112-121, 2004.

16. W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically vs. symmetrically
organized paradigms for software composition. RC22685, IBM Thomas J. Watson
Research Center, 2002.

17. J. Cleland-Huang and R. Settimi and X. Zou and P. Solc. The detection and
classification of non-functional requirements with application to early aspects. In
Intl. RE Conf., pages 3948, 2006.

18. ISO/ICE: information technology — security techniques — evaluation criteria for IT
security. Geneva Switzerland: ISO/TEC, 1999.

19. M. Jackson. Problem Frames. Addison Wesley, 2001.

20. I. Jacobson. Use cases and aspects — working seamlessly together. Journal of Object
Technology, 2(4):7-28, 2003.

21. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon Univ., 1990.

22. J. D. Moffett and B. Nuseibeh. A framework for security requirements engineering.
YCS368, Dept. of Computer Science, Univ. of York, 2003.

23. A. Moreira, J. Aratjo, and A. Rashid. A concern-oriented requirements engineering
model. LNCS, 3520:293-308, 2005.

24. N. Niu and S. Easterbrook. Analysis of early aspects in requirements goal models:
a concept-driven approach. Trans. on AOSD, 2007 (to appear).

25. N. Niu and S. Easterbrook. Discovering aspects in requirements with repertory
grid. In Early Aspects Wkshp at ICSE, pages 35-41, 2006.

26. B. Nuseibeh and S. M. Easterbrook. Requirements Engineering: A Roadmap. In
The Future of Software Engineering. IEEE Computer Society Press. 2000.

27. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115-117, 2001.

28. B. Nuseibeh. Crosscutting requirements. In Intl. Conf. on AOSD, pages 3—4, 2004.

29. B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng., 27(1):58-93, 2001.

30. A. Rashid, P. Sawyer, A. Moreira, and J. Aratjo. Early aspects: a model for aspect-
oriented requirements engineering. In Intl. RE Conf., pages 199-202, 2002.

31. A. Rashid, A. Moreira, and J. Aradjo. Modularisation and composition of aspectual
requirements. In Intl. Conf. on AOSD, pages 11-20, 2003.

32. A. Rashid, and A. Moreira. Domain models are not aspect free. In Intl. Conf. on
MoDELS/UML, pages 155-169, 2006.

33. P-Y. Schobbens, P. Heymans, and J-C. Trigaux. Feature diagrams: a survey and
a formal semantics. In Intl. RE Conf., pages 139-148, 2006.

34. P.L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N degrees of separation:
multi-dimensional separation of concerns. In ICSF, pages 107-119, 1999.

35. M. Voelter. A taxonomy of components. Journal of Object Technology, 2(4):119-
125, 2003.

36. Y. Yu, J. C. S. do Prado Leite, and J. Mylopoulos. From goals to aspects: dis-
covering aspects from requirements goal models. In Intl. RE Conf., pages 38-47,
2004.

