79 research outputs found

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data

    Intermediate Value Linearizability: A Quantitative Correctness Criterion

    Get PDF
    Big data processing systems often employ batched updates and data sketches to estimate certain properties of large data. For example, a CountMin sketch approximates the frequencies at which elements occur in a data stream, and a batched counter counts events in batches. This paper focuses on the correctness of concurrent implementations of such objects. Specifically, we consider quantitative objects, whose return values are from a totally ordered domain, with an emphasis on (e,d)(e,d)-bounded objects that estimate a quantity with an error of at most ee with probability at least 1d1 - d. The de facto correctness criterion for concurrent objects is linearizability. Under linearizability, when a read overlaps an update, it must return the object's value either before the update or after it. Consider, for example, a single batched increment operation that counts three new events, bumping a batched counter's value from 77 to 1010. In a linearizable implementation of the counter, an overlapping read must return one of these. We observe, however, that in typical use cases, any intermediate value would also be acceptable. To capture this degree of freedom, we propose Intermediate Value Linearizability (IVL), a new correctness criterion that relaxes linearizability to allow returning intermediate values, for instance 88 in the example above. Roughly speaking, IVL allows reads to return any value that is bounded between two return values that are legal under linearizability. A key feature of IVL is that concurrent IVL implementations of (e,d)(e,d)-bounded objects remain (e,d)(e,d)-bounded. To illustrate the power of this result, we give a straightforward and efficient concurrent implementation of an (e,d)(e, d)-bounded CountMin sketch, which is IVL (albeit not linearizable). Finally, we show that IVL allows for inherently cheaper implementations than linearizable ones

    STREAMING ALGORITHMS FOR MINING FREQUENT ITEMS

    Get PDF
    Streaming model supplies solutions for handling enormous data flows for over 20 years now. The model works with sequential data access and states sublinear memory as its primary restriction. Although the majority of the algorithms are randomized and approximate, the field facilitates numerous applications from handling networking traffic to analyzing cosmology simulations and beyond. This thesis focuses on one of the most foundational and well-studied problems of finding heavy hitters, i.e. frequent items: 1.We challenge the long-lasting complexity gap in finding heavy hitters with L2 guarantee in the insertion-only stream and present the first optimal algorithm with a space complexity of O(1) words and O(1) update time. Our result improves on Count Sketch algorithm with space and time complexity of O(log n) by Charikar et al. 2002 [39]. 2. We consider the L2-heavy hitter problem in the interval query settings, rapidly emerging in the field. Compared to well known sliding window model where an algorithm is required to report the function of interest computed over the last N updates,interval query provides query flexibility, such that at any moment t one can query the function value on any interval (t1,t2)⊆(t−N,t). We present the first L2-heavy hitter algorithm in that model and extend the result to estimation all streamable functions of a frequency vector. 3. We provide the experimental study for the recent space optimal result on streaming quantiles by Karnin et al. 2016 [85]. The problem can be considered as a generalization to the heavy hitters. Additionally, we suggest several variations to the algorithms which improve the running time from O(1/ε) to O(log 1/ε), provide twice better space vs. precision trade-off, and extend the algorithm for the case of weighted updates. 4. We establish the connection between finding "halos", i.e. dense areas, in cosmology N-body simulation and finding heavy hitters. We build the first halo finder and scale it up to handle data sets with up-to 10^12 particles via GPU boosting, sampling and parallel I/O. We investigate its behavior and compare it to traditional in-memory halo finders. Our solution pushes the memory footprint from several terabytes down to less than a gigabyte, therefore, make the problem feasible for small servers and even desktops

    Bridging the gap between algorithmic and learned index structures

    Get PDF
    Index structures such as B-trees and bloom filters are the well-established petrol engines of database systems. However, these structures do not fully exploit patterns in data distribution. To address this, researchers have suggested using machine learning models as electric engines that can entirely replace index structures. Such a paradigm shift in data system design, however, opens many unsolved design challenges. More research is needed to understand the theoretical guarantees and design efficient support for insertion and deletion. In this thesis, we adopt a different position: index algorithms are good enough, and instead of going back to the drawing board to fit data systems with learned models, we should develop lightweight hybrid engines that build on the benefits of both algorithmic and learned index structures. The indexes that we suggest provide the theoretical performance guarantees and updatability of algorithmic indexes while using position prediction models to leverage the data distributions and thereby improve the performance of the index structure. We investigate the potential for minimal modifications to algorithmic indexes such that they can leverage data distribution similar to how learned indexes work. In this regard, we propose and explore the use of helping models that boost classical index performance using techniques from machine learning. Our suggested approach inherits performance guarantees from its algorithmic baseline index, but at the same time it considers the data distribution to improve performance considerably. We study single-dimensional range indexes, spatial indexes, and stream indexing, and show that the suggested approach results in range indexes that outperform the algorithmic indexes and have comparable performance to the read-only, fully learned indexes and hence can be reliably used as a default index structure in a database engine. Besides, we consider the updatability of the indexes and suggest solutions for updating the index, notably when the data distribution drastically changes over time (e.g., for indexing data streams). In particular, we propose a specific learning-augmented index for indexing a sliding window with timestamps in a data stream. Additionally, we highlight the limitations of learned indexes for low-latency lookup on real- world data distributions. To tackle this issue, we suggest adding an algorithmic enhancement layer to a learned model to correct the prediction error with a small memory latency. This approach enables efficient modelling of the data distribution and resolves the local biases of a learned model at the cost of roughly one memory lookup.Open Acces

    Handling Tradeoffs between Performance and Query-Result Quality in Data Stream Processing

    Get PDF
    Data streams in the form of potentially unbounded sequences of tuples arise naturally in a large variety of domains including finance markets, sensor networks, social media, and network traffic management. The increasing number of applications that require processing data streams with high throughput and low latency have promoted the development of data stream processing systems (DSPS). A DSPS processes data streams with continuous queries, which are issued once and return query results to users continuously as new tuples arrive. For stream-based applications, both the query-execution performance (in terms of, e.g., throughput and end-to-end latency) and the quality of produced query results (in terms of, e.g., accuracy and completeness) are important. However, a DSPS often needs to make tradeoffs between these two requirements, either because of the data imperfection within the streams, or because of the limited computation capacity of the DSPS itself. Performance versus result-quality tradeoffs caused by data imperfection are inevitable, because the quality of the incoming data is beyond the control of a DSPS, whereas tradeoffs caused by system limitations can be alleviated—even erased—by enhancing the DSPS itself. This dissertation seeks to advance the state of the art on handling the performance versus result-quality tradeoffs in data stream processing caused by the above two aspects of reasons. For tradeoffs caused by data imperfection, this dissertation focuses on the typical data-imperfection problem of stream disorder and proposes the concept of quality-driven disorder handling (QDDH). QDDH enables a DSPS to make flexible and user-configurable tradeoffs between the end-to-end latency and the query-result quality when dealing with stream disorder. Moreover, compared to existing disorder handling approaches, QDDH can significantly reduce the end-to-end latency, and at the same time provide users with desired query-result quality. In this dissertation, a generic buffer-based QDDH framework and three instantiations of the generic framework for distinct query types are presented. For tradeoffs caused by system limitations, this dissertation proposes a system-enhancement approach that combines the row-oriented and the column-oriented data layout and processing techniques in data stream processing to improve the throughput. To fully exploit the potential of such hybrid execution of continuous queries, a static, cost-based query optimizer is introduced. The optimizer works at the operator level and takes the unique property of execution plans of continuous queries—feasibility—into account

    On the Power of Multiple Anonymous Messages

    Get PDF
    An exciting new development in differential privacy is the shuffled model, in which an anonymous channel enables non-interactive, differentially private protocols with error much smaller than what is possible in the local model, while relying on weaker trust assumptions than in the central model. In this paper, we study basic counting problems in the shuffled model and establish separations between the error that can be achieved in the single-message shuffled model and in the shuffled model with multiple messages per user. For the problem of frequency estimation for nn users and a domain of size BB, we obtain: - A nearly tight lower bound of Ω~(min(n4,B))\tilde{\Omega}( \min(\sqrt[4]{n}, \sqrt{B})) on the error in the single-message shuffled model. This implies that the protocols obtained from the amplification via shuffling work of Erlingsson et al. (SODA 2019) and Balle et al. (Crypto 2019) are essentially optimal for single-message protocols. A key ingredient in the proof is a lower bound on the error of locally-private frequency estimation in the low-privacy (aka high ϵ\epsilon) regime. - Protocols in the multi-message shuffled model with poly(logB,logn)poly(\log{B}, \log{n}) bits of communication per user and polylogBpoly\log{B} error, which provide an exponential improvement on the error compared to what is possible with single-message algorithms. For the related selection problem on a domain of size BB, we prove: - A nearly tight lower bound of Ω(B)\Omega(B) on the number of users in the single-message shuffled model. This significantly improves on the Ω(B1/17)\Omega(B^{1/17}) lower bound obtained by Cheu et al. (Eurocrypt 2019), and when combined with their O~(B)\tilde{O}(\sqrt{B})-error multi-message protocol, implies the first separation between single-message and multi-message protocols for this problem.Comment: 70 pages, 2 figures, 3 table

    Leveraging Watermarks to Improve Performance of Streaming Systems

    Get PDF
    Modern stream processing engines (SPEs) process large volumes of events propagated at high velocity through multiple queries. By continuously receiving watermarks, which are marker events injected into the stream to signify that no further events are expected beyond a designated timestamp, SPEs can infer stream progress to correctly process window operators. While stream progress is useful information for query execution, it is only utilized to ensure input completion. We argue that to improve performance, stream progress should be leveraged in the design of SPE subsystems. In this thesis, we demonstrate the significant advantages of leveraging stream progress to solve two important SPE problems: query scheduling, and query sample processing. First, existing SPE schedulers generally aim to minimize query output latency by minimizing, in turn, the mean propagation delay of events in query pipelines. However, for queries containing commonly used blocking operators such as windows, we show that a superior approach would be to prioritize the queries based on stream progress. Through the design and development of Klink, we leverage stream progress to unblock window operators and to rapidly propagate the events to output operators. Secondly, sample query processing limits input to only a subset of events such that the sample is statistically representative of the input while ensuring output accuracy guarantees. However, output latency can be significantly increased because relevant watermarks can suffer from large ingestion delay due to long or bursty network latencies. Window computations that account for stragglers can add significant latency while providing inconsequential accuracy improvement. We propose Aion, an algorithm that utilizes sampling to provide approximate answers with low latency by minimizing the effect of stragglers through leveraging control over stream progress. We integrate Klink and Aion into the popular open-source SPE Apache Flink. We demonstrate that Klink delivers hefty performance gains on benchmark workloads, reducing mean and tail query latencies by up to 60% over existing scheduling policies. Similarly, using different benchmark workloads, we demonstrate that Aion reduces stream output latency by up to 85% while providing 95% accuracy guarantees
    corecore