STREAMING ALGORITHMS
FOR MINING FREQUENT ITEMS

by

Nikita Ivkin

A dissertation submitted to Johns Hopkins University
in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland
October, 2018

(© 2018 by Nikita Ivkin

All rights reserved



Abstract

Streaming model supplies solutions for handling enormous data flows for over 20 years
now. The model works with sequential data access and states sublinear memory as its
primary restriction. Although the majority of the algorithms are randomized and ap-
proximate, the field facilitates numerous applications from handling networking traffic
to analyzing cosmology simulations and beyond. This thesis focuses on one of the most

foundational and well-studied problems of finding heavy hitters, i.e. frequent items:

1. We challenge the long-lasting complexity gap in finding heavy hitters with ¢, guar-
antee in the insertion-only stream and present the first optimal algorithm with a
space complexity of O(1) words and O(1) update time. Our result improves on
Count Sketch algorithm with space and time complexity of O(logn) by Charikar et
al. 2002 [39].

2. We consider the £;-heavy hitter problem in the interval query settings, rapidly emerg-
ing in the field. Compared to well known sliding window model where an algo-
rithm is required to report the function of interest computed over the last N updates,
interval query provides query flexibility, such that at any moment ¢ one can query
the function value on any interval (#1,f2) C (t — N, t). We present the first {,-heavy
hitter algorithm in that model and extend the result to estimation all streamable

functions of a frequency vector.

ii



3. We provide the experimental study for the recent space optimal result on streaming
quantiles by Karnin et al. 2016 [85]. The problem can be considered as a gener-
alization to the heavy hitters. Additionally, we suggest several variations to the
algorithms which improve the running time from O(1/¢) to O(log1/¢), provide
twice better space vs. precision trade-off, and extend the algorithm for the case of

weighted updates.

4. We establish the connection between finding "halos", i.e. dense areas, in cosmol-
ogy N-body simulation and finding heavy hitters. We build the first halo finder
and scale it up to handle datasets with up-to 10'? particles via GPU boosting, sam-
pling and parallel I/O. We investigate its behavior and compare it to traditional
in-memory halo finders. Our solution pushes the memory footprint from several
terabytes down to less than a gigabyte, therefore, make the problem feasible for

small servers and even desktops.

Primary reader: Vladimir Braverman, Alexander Szalay

Secondary reader: Raman Arora

1ii



Acknowledgements

I would like to thank my advisor Vladimir Braverman for all the support and guidance
during the entire Ph.D. program. I especially appreciate his effort in introducing me to
other researchers in the field and encouraging me to find new collaborations on my own.
I have gained a lot in the skill of controlling my time more efficiently and manage it mind-
tully, while going through several teaching assistantships during my Ph.D. I would like to
express my gratitude to all the researchers I had a chance to collaborate with: Tamas Bu-
davari, Mohammad Hajiaghayi, Michael Jacobs, Zohar Karnin, Kevin Lang, Edo Liberty,
Gerard Lemson, Morteza Monemizadeh, Muthu Muthukrishnan, Jelani Nelson, Mark
Neyrinck, Alex Szalay, David Woodruff, Sepehr Assadi, Stephen Chestnut, Hossein Es-
fandiari, Ruoyuan Gao, Srini Suresh Kumar, Zaoxing Liu, Teodor Marinov, Poorya Mi-
anjy, Jalaj Upadhyay, Xin Wang, Lin Yang, Zhengyu Wang. I owe a very important debt
to all the professors whose classes I had a chance to participate in and to learn a lot from
them. Each class was a big excitement for me thanks to Yanif Ahmad, Raman Arora,
Amitabh Basu, Vladimir Braverman, Michael Dinitz, Jim Fill and Rene Vidal. I would
like to offer my special thanks to Deborah DeFord, Cathy Thornton, Zachary Burwell,
Laura Graham, Tonette Harris, Shani McPherson, Joanne Selinski, and Javonnia Thomas
for all the help from administrative side of the department. I am deeply grateful to all
my family and all my friends who were there for me when I needed it the most. Special

thanks to all the readers of my thesis Raman Arora, Vladimir Braverman and Alex Szalay:.

iv



Finally, I would like to acknowledge that my work was financially supported by the fol-
lowing grants and awards: NSA-H98230-13-C-0265, NSF IIS -1447639, DARPA -111477,
Research Trends Det. HR0011-16-P-0014 NSF EAGER -16050041, ONR N00014-18-1-2364,
CISCO 90073352.



Contents

Abstract

Acknowledgements

1 Introduction

1.1 Streamingmodel . .. ... ... ... ... .. . Lo

1.2 Contribution . . . . . . . . e

1.2.1
1.2.2
1.2.3
1.24

¢ heavy hitters algorithm with fewerwords . . . . . ... ... ...
Streaming Algorithms for cosmological N-body simulations . . . . .
Monitoring the Network with Interval Queries . . . . . .. ... ...

Streaming quantiles algorithms with small space and update time

2 /{; heavy hitters algorithm with fewer words

2.1 Introduction . . . . . . . . . . . .

2.2 Beating CountSketch for Heavy Hitters

inInsertion Streams . . . . . . . . ... e

221
222
223
224

Introduction . . . . ... ... L
{5 heavy hitters algorithm . . . . . . ... ................
Chaining Inequality . . .. ... ... ... ... ...........

Reduced randomness . . . . . . . . . ...

vi

ii

iv



225 Fatallpoints. . . ... ...

2.3 BPTree: an /; heavy hitters algorithm using constant memory . ... .. ..
231 Introduction . . . . . . .. .. ...
23.2 Algorithmandanalysis . ... ......................
233 ExperimentalResults. . . . .. ... ... ... . ... . ...
24 Conclusion . . . . . ...

Monitoring the Network with Interval Queries

3.1 Introduction . . . ... ... ...
3.2 Preliminaries . . . . . . . . ...
3.3 Interval Algorithms . . . . . . ... .. ... ... .. o
34 Evaluation . .. ... ... ..
35 Conclusion . . . . . . ..

Streaming quantiles algorithms with small space and update time

4.1 Introduction . . ... ... ... .
42 A unified view of previous randomized solutions . . . ... ... ... ...
43 OurContribution . . . ... .. ... ... .
44 ExperimentalResults . . . .. ... ... .. ... ... 0 0oL
45 Conclusion . . . . . ...

Finding haloes in cosmological N-body simulations

51 Introduction . ... ... ... ...

52 Streaming Algorithms for Halo Finders . . . . . ... ... ... .......
521 Methodology . . ... ... ... ... ...
522 Implementation . .. ... ... ... ... ... ... .. ..

vii

80
80
82
87
104
108

116
116
119
123
134
140



523 Evaluation . . . . . . . . 156

5.3 Scalable Streaming Tools for Analyzing N-body Simulations . . . . . .. .. 165
531 Methodology . ... ... ... ... ... ... ... 165

532 Implementation . . . ... ... ... ... ... . .0 L. 173

533 Evaluation . ... .. ... ... . ... .. 182

54 Conclusion . . . . ... . e 196
Bibliography 206

viii



List of Figures

2.1

2.2

2.3

3.1
3.2
3.3
34

3.5
3.6

3.7

3.8

In this example of the execution of HH1, the randomized label i(H) of the
heavy hitter H begins with 01 and ends with 00. Each node in the tree

corresponds to a round of HH1, which must follow the path from H, to Hr

for the output tobe correct. . . . ... ... ... ... L oL

Success rate for HH2 on four types of streams with n = 10°® and heavy hitter

frequency av/m. . . .o

Update rate in updates/ms (e) and storage in kB (o) for HH2 and CountS-

ketch (w and o, respectively) with the CW trick hashing. . . . ... ... ...

Interval (bucket) structure for EHandSH. . . . . .. ... ... ........
Interval query in the prismof EH. . . . ... ... ... . ... .......

Average frequency estimation error for flows in 10-20k interval. . . . . . ..

Average frequency estimation error for flows for various suffix lengths on

the NY2018 dataset. . . . . . . . . .

Average L, norm estimation error for flows in 10-20k intervals. . . . .. ..

Average L, norm estimation error for flows for various suffix lengths on

the NY2018 dataset. . . . . . . . . . .

Quality of HH solution for 10k-20k interval (first experiment). Precision

and Recall. . . . . . .

Quality of HH solution for 10k-20k interval (first experiment). F; Measure. .

ix

76

77

105



3.9

3.10

3.11

3.12
3.13

4.1

4.2

4.3
44

4.5

4.6
4.7

Quality of HH solution for varying suffix lengths (second experiment). Pre-
CISION. . . . . . . . . 111
Quality of HH solution for varying suffix lengths (second experiment). Re-
call. . .. 112
Quality of HH solution for varying suffix lengths (second experiment). F;
Measure. . . . . .. ... 113
Average entropy relative error for 10-20k intervals. . . . . . . ... ... ... 114
Average entropy relative error for various suffix lengths on the NY2018

dataset. . . . . . . 115

One pair compression: initially each item has weight w, compression intro-
duces +w error for inner queries and no error for outer queries. . . . . . .. 119
Compaction procedure: rank error +w is introduced to inner queries ¢; 4,
no error to outer queries 4135 . . . . .. ... 120
Compactor saturation: vanilla KLL vs. lazy KLL . . . ... ... .... ... 124
Compaction with an equally spread error: every query gz 3 45 is either inner
or outer equiprobably. . . . ... ... . Lo Lo 125
Example of one full sweep in 4 stages, each stage depicts pair chosen for
the compaction, updated threshold 6 and new items arrived (shadow bars). 128
Intuition behind base2update algorithm . . . . . ... ... ... ... ... 129

Compressing pair in the weighted compactor . . . . ... ... ... ... .. 133



4.8

51
5.2
53
54
5.5
5.6
5.7

5.8

59

Figures 4.8a, 4.8b, 4.8¢c, 4.8e, 4.8f depict the trade-off between maximum
error over all queried quantiles and space allocated to the sketch: figures
4.8a, 4.8¢c, 4.8b shows the results on the randomly ordered streams but in
different axes, figure 4.8e shows the results for the sorted stream, stream
ordered according to zoom-in pattern, and stream with Gaussian distribu-

tion, 4.8f shows the approximation ratio for CAIDA dataset. Figure 4.8d

shows the trade-off between error and the length of the stream. . . . . ...

Count-Sketch Algorithm . . . . ... ... ... ... .. ... ... .. ..
Pick-and-Drop Algorithm . . . .. ... ... ... ... . ... .......
Halo mass distribution of various halo finders. . . . . ... ... .......
Count-Sketch Algorithm . . . .. ... ... ... .. ... ... ..
Pick-and-Drop Sampling . . . . ... ... ... ... .. 0oL

Halo Finder Procedure . . . . . . . . . . . .

Measures of the disagreement between PD and CS, and various in-memory

algorithms. The percentage shown is the fraction of haloes farther than a

half-cell diagonal (0.5v/3 Mpc/h) from PD or CS halo positions. . . . . . . .

The number of top-1000 FoF haloes farther than a distance d away from

any top-1000 halo from the algorithm of each curve. . . . . ... .. ... ..

Number of detected halos by our two algorithms. The solid lines corre-
spond to (CS) and the dashed lines to (PD). The dotted line at k = 1000
shows our selection criteria. The x axis is the threshold in the number of
particles allocated to the heavy hitter. The cyan color denotes the total

number of detections, the blue curves are the true positives (TP), and the

red curves are the false positives (FP). . . . . ... ... ... ... ....

xi

152

156



5.10

5.11

512

5.13

5.14

5.15

5.16
517

This ROC curve shows the tradeoff between true and false detections as a
function of threshold. The figure plots TPR vs FPR on a log-log scale. The

two thresholds are shown with symbols, the circle denotes 1000, and the

squareis900.. . . . . ... Lo

The top 1000 heavy hitters are rank-ordered by the number of their parti-
cles. We also computed a rank of the corresponding FoF halo. The linked

pairs of ranks are plotted. One can see that if we adopted a cut at k = 900,

it would eliminate a lot of the false positives. . . . .. ... ... .. ... ..

Each line on the graph represents the top 1000 halo centers found with
Pick-and-Drop sampling, Count-Sketch, and in-memory algorithms, as de-
scribed in section 5.2.2. The comparison with FOF is shown in Fig.5.8. The

shaded area (too small to be visible) shows the variation due to random-

Finding approximate dense areas with the help of a regular mesh and a
streaming solution for finding the top k most frequent items in the stream.
Count Sketch subroutine on an example stream: each non-heavy item ap-
pears twice, heavy hitter (5) appears 7 times, a random +1/ — 1 bit is as-
signed to each item, the algorithm maintains the sum of the random bits,

and the final sum is an unbiased estimator of the heavy hitter frequency

having the same sign asitsrandombit . . . . ... ... ... .. ... ....

Count Sketch algorithm scheme: bucket hash to identify the counter to

which we should add the sign hash. Repeat t times to recover the IDs.

Dependency of time performance on sampling rate. . . . .. ... ... ...

Cell density distribution for the top 0.5 - 10° cells found by Count Sketch

(in green) and the top 107 cells found by exact counting (in blue). . . . . . .

Xii

163

. 167

. 170

182



5.18

5.19

5.20

5.21

522

523

5.24

5.25

5.26

Relative error vs. rank for (a) cell size 0.1Mpc/h and (b) cell size IMpc/h. Each

experiment was carried 20 times. Dashed lines depict the maximum and

the minimum, while the solid line shows the average over those 20 runs

foreachrank value. . . . . . . . . . .
Relative error vs. d of thecell . . . . . . . . . . . . . . . ..

Distribution of absolute error for differentranks . . . . .. ... ... . ...

Count distortion for the cell size = 0.1 Mpc/h on the top and for the cell

size=1Mpc/h onthebottom. . .. ... ... .. ... ... .. ... ....

Relative error for the counts in the output of the Count Sketch algorithm

and Count Min Sketch algorithm, cell size = 0.1 Mpc/h . . . . .. ... ...

Relative error for the counts in the output of the Count Sketch algorithm

with different sampling rates, cell size=1Mpc/h . . . . ... .. ... ...

Relative error for the counts in the output of the Count Sketch algorithm

with different sampling rates, cell size=0.1Mpc/h . . .. ... ... ....

Relative error for the counts in the output of the Count Sketch algorithm
with different internal parameters, cell size = 0.1Mpc. Color is the height of

the CS table, and line type is the width of CS table: solid is 16 - 10°, dashed

is 8- 10°, dash-dotted is 4 - 10°, and dotted is 10® columns . . . . . . .. ...

Finding halos from heavy cells exactly by running any offline in-memory

algorithm on the subset of particles belonging to the top heaviest cells. . .

xiii

. 203



5.27 Comparison of the 2-point correlation functions of excursion sets deter-

5.28

529

5.30

mined using the exact counts and the Count Sketch results for 4 over-
density levels. The numbers in parentheses indicate the number of cells
that was found and used i the calculation of . Clearly the results of ap-
plying the spatial statistic to the Count Sketch result is equivalent to that

of the exact counts. The radius R is in the natural, co-moving units of the

simulations, Mpc/h. . . . .. ...

Two-point correlation functions of excursion sets, defined as sets of cells
with a certain lower limit on the over-density. In this plot the results of the
count-sketch algorithm for detecting heavy-hitters is used to determine the
excursion sets. The number next to the line segments in the legend gives
the over-density, the numbers in parentheses indicate the number of cells

at that over-density. The radius R is in the natural, co-moving units of the

simulations, Mpc/h. . . . . . ...

Relative error for the counts in output of Count Sketch algorithm for Mil-

lennium XXL dataset. . . . . . . . . .

Comparison of CS 2-pt correlation function for excursion sets in 0.2 Mpc
cells with § > 20000 for the XXL (dots) compared to the exact result for the
Millennium run. The two results are compatible with each other, with de-
viations explained by discreteness effects in the much sparser Millennium

result. The radius R is in the natural, co-moving units of the simulations,

Xiv



List of Tables

2.1
2.2

2.3

3.1

4.1

Notation and parameters used throughout the current section. . . . . . . .. 17
Random vectors for CountSieve. Each vector is independent of the others,
and Z = (Z;)c|y is sampled independently for every instance of JLBP. . . . 24

Average and maximum F, tracking error over 10 streams for different choices

ofbandr. ... ... 74
Space complexity, update and query time for all proposed algorithms. . . . 98
Possible outcomes for the rank queryg. . . .. .. .. .. ... .. .. ... 124

XV



Chapter 1

Introduction

The rates at which data is generated are growing tremendously. Among examples: daily
life (social media, fitness tracking, delivery vehicles tracking), infrastructure (network-
ing telemetry, cloud services), science (bioinformatics, astrophysics), etc. It is pushing
modern technology to deal with a large pool of new problems where data is too large to
be stored due to either storage absence, or storage hardware being too slow. Network
switch cannot store or keep in the memory trillions of packets going through it daily,
Twitter needs to mine the hot topics over the window of last 15 minutes, which cannot be
done offline, cosmology simulations are too big to fit into the memory of a regular size
server. These are just a couple of examples where the analysis cannot be done either of-
fline or in-memory, and data stream model naturally fits them and the numerous of other
problems. But the model is very restrictive and it was proven that many problems cannot

be solved in it. We describe the model in the following section.

1.1 Streaming model

Streaming model gained its fame after the seminal paper on estimating £, norms by Alon,

Matias, and Szegedy [6]. Authors consider the stream of updates S = {s1,...,5m}, where



Chapter 1. Introduction

s; can represent any object with respect to the problem to be solved: numbers, graph
edges, vectors in high dimensional space, etc. For simplicity we will set s; to be an integer:
s; € [n] ={1,...,n}. Algorithm reads the data items s; one at a time, it is allowed to make
only a single pass over the dataset, and at the end of the stream it should return the value
of the function of interest f(S). The algorithm is expected to optimize the time complexity
of an update and a final query, however minimizing the space complexity is at the first
priority. Streaming model requires algorithm’s memory footprint to grow sublinearly to
the size of the dataset. Under these strict limitations the majority of the problems were
proved not to have the solutions, but the compromise can be achieved, if one allows the
algorithm, first of all, to return only an approximation rather than the exact value, and
second of all, to be randomized, i.e. to be allowed to fail with some small probability.

In stated settings, streaming model found applications in a variety of fields: network-
ing [14, 15], bioinformatics [125], machine learning [60], astrophysics [102], security [127],
databases [129, 123], sensor networks [98], finance [38], optimization [5], etc. The mo-
tivation for each requirement of the model might seem to be too strict and unnatural,

therefore we explain further several relevant examples to see the roots and the origin:

1. Network switch processes up to a billion packets a day, but the memory available
for monitoring purposes can be as little as one hundred megabytes. At the same
time storing packets cannot be done at the rate of the flow. Widely spread denial
of service (DDoS) attack can be detected due to unusually high packet flow to the
server under attack. Without knowing the target of the attack switch have to main-
tain the flow size to each of them, which is impossible due to the high number of
servers and low memory allowance on the switch. However, in this problem, the
exact values for the flows are not critically important, and an approximation can be

used instead.



Chapter 1. Introduction

2. To perform distributed computation efficiently, one needs to balance out the load
among the computing machines (workers). Given the internal distribution of the
data, the problem becomes trivial. However, finding the distribution is challenging
and often done on a single machine in the dynamic settings, i.e. tasks coming one
by one to the controlling node and it should distribute the flow of tasks among the
computing nodes (workers). As in the previous example, data cannot be stored
on the controlling node, however exact balance is not required, therefore just an

approximate distribution is enough.

3. The analysis of the cosmological N-body simulations requires finding halos (dense
areas) in the dataset where 90% of particles are treated as noise. Simulations operate
with more than billion particles and this number is growing, while all conventional
approaches require to load entire dataset into a memory. Researchers without access
to the machines with terabytes of memory cannot work with the dataset. Alterna-
tively, streaming based solution let task to be performed on small servers with large
storage but low memory. This example depicts the existing gap between the cost of

storage and memory.

Due to the variety of applications streaming model was considered in different settings.
The definition given earlier corresponds to the cash-register model, where items can only
be “added”, also known as an additions-only model. Alternatively, one can allow ”“dele-
tions” in the stream, i.e. stream can be represented as a sequence of pairs (s;,d;) with
0; € {—1,+1}. Then, at the end of the stream, frequency of each item f; can be rep-
resented as f; = Zj:s]-:i (5]-. This model is often called turnstile. For example, the result
mentioned earlier [6] provide (1 + ¢) approximation of || f||, using only O(gl2 log? 1) bits

of space in turnstile model, where f is a vector defined by f;’s. Certain applications need



Chapter 1. Introduction

to work with infinite streams, however, the target function should be evaluated only on
the most recent items. Given an infinite stream S = {s1,...,5, ...} at any moment ¢ re-
port f({st—n,...,st}), where N is large, such that window {s;_y, ..., s:} cannot be stored
explicitly. Note, this model, called sliding windows, differs a lot from the turnstile one,
as in the latter an algorithm is always aware which item to “delete”, while in the former
an algorithm needs at each moment ¢ delete item s;_ 5 which might be not stored explic-
itly anywhere. For instance, Twitter shows the most discussed topics over the last hour,
rather than the entire time. In the current chapter we only aim to give a brief glance at the

model and the reader is encouraged to read more about the topic in [113, 3].

1.2 Contribution

1.2.1 /¢, heavy hitters algorithm with fewer words

Given a stream of updates S : sq,s),...s, with sj € {1,...,n} we consider the problem
of finding all (¢, /) heavy hitters in the cash-register model for p = 2. Formally, item i is
an (g /) heavy hitter in the stream S if f; > ¢[/f||,, where f; is the number of updates
with the id i: f; = [{j| s; = i}| and f is a frequency vector, i.e. i-th component of
this vector equals f;. Note, that ¢, guarantee is significantly stronger than ¢;. In 1996,
the seminal paper by Alon, Matias, and Szegedy [6] among other breakthrough results
introduced the first algorithm for estimating || f||, in the streaming model. Later in 2002,
Charikar, Chen, and Farach-Colton [39] presented Count Sketch, the algorithm which
used || f||2 estimation procedure from [6] as a subroutine to find all (g, £,) heavy hitters.
Count Sketch works in turnstile model and requires O(logn) words of memory. It is
known that Count Sketch algorithm is tight in memory requirement for turnstile model

[82, 10]. However, no better solution was proposed for cash-register model and the only

4



Chapter 1. Introduction

known lower bound is the naive one requiring ()(1) words, coming from the need to
store the identity of the heavy hitter. In Chapter 2, we present the algorithm CountSieve
capable of finding all ¢, heavy hitters in cash-register model with the space complexity of
O(loglog n) words; then we improve it further by presenting BPTree algorithm, working
with only O(1) words of space. Both algorithms take advantage of Dudley-like chaining

argument applied to ¢, norm estimator.

1.2.2 Streaming Algorithms for cosmological N-body simulations

Cosmological N-body simulations are essential for studies of the large-scale distribution
of matter and galaxies in the Universe. This analysis often involves finding clusters of
particles and retrieving their properties. Detecting such "halos" among a very large set
of particles is a computationally intensive problem, usually executed on the same super-
computers that produced the simulations, requiring terabytes of memory. Working with
the simulation output in streaming settings can potentially make the problem of finding
halos and other postprocessing analytical tasks feasible for the smaller machines or even
desktops. In Chapter 5 we present a novel connection between the N-body simulations
and the streaming algorithms. In particular, we investigate a link between halo finders
and the problem of finding heavy hitters in a data stream, that should greatly reduce the
computational resource requirements, especially the memory needs. Based on this con-
nection, we can build a new halo finder by running efficient heavy hitter algorithms as a
black-box. We implement two representatives of the family of heavy hitter algorithms, the
Count-Sketch algorithm (CS) and the Pick-and-Drop sampling (PD), and evaluate their

accuracy and memory usage. Comparison with other halo-finding algorithms from [92]



Chapter 1. Introduction

shows that our halo finder can locate the largest halos using significantly smaller mem-
ory space and with comparable running time. This streaming approach makes it possi-
ble to run and analyze extremely large data sets from N-body simulations on a smaller
machine, rather than on supercomputers. Our findings demonstrate the connection be-
tween the halo search problem and streaming algorithms which we further investigate to
scale it from proof-of-concept level experiments with relatively small datasets to larger
state-of-the-art datasets. We present a robust streaming tool that leverages GPU boosting,
sampling, and parallel I/O, to significantly improve performance and scalability. Our
rigorous analysis of the sketch parameters improves the initial results from finding the
centers of the 10° largest halos to 10* — 10°, and reveals the trade-offs between memory,
running time and the number of halos. Our experiments show that our tool can scale
to datasets with up to 10'? particles while using less than an hour of running time on a

single GPU Nvidia GTX 1080.

1.2.3 Monitoring the Network with Interval Queries

Modern network telemetry systems collect and analyze massive amounts of raw data in
space efficient manner, taking advantage streaming algorithms. Many statistics can be
efficiently computed on the sliding window, providing crucial information only on the
recent updates, however, many analytical tasks require more advanced capabilities such
as drill down queries that allow iterative refinement of the search space, i.e. at any time
moment ¢ the data structure is required to report statistics over given time interval (t1, ;).
Recently, in [14] new model was introduced to accomodate this need, [14] also presented
efficient sketching algorithm for finding ¢; heavy hitters in that model. We will refer
to it as an interval query model. In Chapter 3, we present the first algorithm to find ¢,

heavy hitters in interval query model. Using technique of recursive sketching, we further



Chapter 1. Introduction

generalize our result to a much wider class of functions of the frequency vector, including
entropy estimation, count distinct, etc. We implement the algorithm and estimate its

performance on network switches datasets from CAIDA [137].

1.2.4 Streaming quantiles algorithms with small space and update time

Approximating quantiles and distributions over streaming data has been studied for
roughly two decades now [2, 85, 104, 105, 143, 112]. Problem require data structure to
input a multiset S = {s;}”_;, and upon any query ¢ return ¢n-th item of the sorted S. Re-
cently, Karnin, Lang, and Liberty [85] proposed the first asymptotically optimal algorithm
for doing so. Chapter 4 complements their theoretical result by providing improved vari-
ants of their algorithm. It improves accuracy/space tradeoff by provably decreasing the
upper bound by almost twice, which was also verified experimentally. Our techniques ex-
ponentially reduce the worst case update time from O(1/¢) down to O(log (1/¢)). Also,
we suggest two algorithms for a weighted stream of updates (a;, w;), with the worst case
update times O(log?(1/¢)) and O(log(1/e)) correspondingly, which is a significant im-

provement over the naive extensions that require O((max w;) log 1/¢) update time.



Chapter 2

(> heavy hitters algorithm

with fewer words

This chapter is based on [31] and [32].

2.1 Introduction

As emphasized in Chapter 1 there are numerous applications of data streams, and the
elements of the stream p; may be numbers, points, edges in a graph, and so on. Examples
include internet search logs, network traffic, sensor networks, and scientific data streams
(such as in astronomy, genomics, physical simulations, etc.). The sheer size of the dataset
often imposes very stringent requirements on an algorithm’s resources. Moreover, in
many cases only a single pass over the data is feasible, such as in network applications,
since if the data on a network is not physically stored somewhere, it may be impossible
to make a second pass over it. There are multiple surveys and tutorials in the algorithms,
database, and networking communities on the recent activity in this area; we refer the

reader to [113, 11] for more details and motivations underlying this area.



Chapter 2. {, heavy hitters algorithm with fewer words

Within the study of streaming algorithms, the problem of finding frequent items is one
of the most well-studied and core problems, with work on the problem beginning in 1981
[22, 23]. It has applications in flow identification at IP routers [53], iceberg queries [55],
iceberg datacubes [20, 69], association rules, and frequent itemsets [4, 126, 142, 75, 68].
Aside from being an interesting problem in its own right, algorithms for finding frequent
items are used as subroutines to solve many other streaming problems, such as moment
estimation [80], entropy estimation [36, 72], £,-sampling [110], finding duplicates [62],
and several others.

Formally, we are given a stream py, ..., p;; of items from a universe U, which, without
loss of generality we identify with the set {1,2,...,n}. We make the common assumption
that logm = O(logn), though our results generalize naturally to any m and n. Let f;
denote the frequency, that is, the number of occurrences, of item i. We would like to find
those items i for which f; is large, i.e., the “heavy hitters”.

Stated simply, the goal is to report a list of items that appear least T times, for a given
threshold 7. Naturally, the threshold 7 should be chosen to depend on some measure of
the size of the stream. The point of a frequent items algorithm is to highlight a small set of
items that are frequency outliers. A choice of T that is independent of f misses the point;
it might be that all frequencies are larger than 7.

With this in mind, previous work has parameterized 7 in terms of different norms of
f with MisraGries [109] and CountSketch [39] being two of the most influential examples.
A value € > 0 is chosen, typically ¢ is a small constant independent of n or m, and 7 is set
tobe e[ [}y = em or el| -

These are called the ¢; and ¢, guarantees, respectively. Choosing the threshold T in
this manner immediately limits the focus to outliers since no more than 1/¢ items can

have frequency larger than ¢||f||; and no more than 1/¢? can have frequency ¢||f||» or



Chapter 2. {, heavy hitters algorithm with fewer words

larger.

A moments thought will lead one to conclude that the ¢, guarantee is stronger, i.e.
harder to achieve, than the ¢; guarantee because ||x|[1 > ||x||2, for all x € R". Indeed, the
¢ guarantee is much stronger. Consider a stream with all frequencies equal to 1 except
one which is equal j. With ¢ = 1/3, achieving the /; guarantee only requires finding
an item with frequency j = n/2, which means that it occupies more than one-third of
the positions in the stream, whereas achieving the /, guarantee would require finding an
item with frequency j = /1, such an item is a negligible fraction of the stream!

As we discuss further, the algorithms achieving ¢, guarantee, like CountSketch [39],
achieve essentially the best space-to-T trade-off. But, since the discovery of CountSketch,
which uses O(¢ 2 log 1) words of memory, it has been an open problem to determine the
smallest space possible for achieving the ¢, guarantee. Since the output is a list of up to
e~2 integers in [n], Q(¢~2) words of memory are necessary.

Work on the heavy hitters problem began in 1981 with the MJRTY algorithm of [22, 23],
which is an algorithm using only two machine words of memory that could identify an
item whose frequency was strictly more than half the stream. This result was generalized
by the MisraGries algorithm in [109], which, for any 0 < & < 1/2, uses 2([1/¢] — 1)
counters to identify every item that occurs strictly more than an em times in the stream.
This data structure was rediscovered at least two times afterward [48, 86] and became
also known as the Frequent algorithm. It has implementations that use O(1/¢) words of
memory, O(1) expected update time to process a stream item (using hashing), and O(1/¢)
query time to report all the frequent items. Similar space requirements and running times
for finding e-frequent items were later achieved by the SpaceSaving [107] and LossyCounting
[103] algorithms.

A later analysis of these algorithms in [19] showed that they not only identify the

10



Chapter 2. {, heavy hitters algorithm with fewer words

heavy hitters, but they also provided estimates of the frequencies of the heavy hitters.
Specifically, when using O(k/¢) counters they provide, for each heavy hitter i € [n], an
estimate f; of the frequency f; such that |f; — fi| < (e/k) - | frairoylln < (e/k)[| fll1. Here
frait(x) 1s the vector f but in which the largest k entries have been replaced by zeros (and
thus the norm of f,(x) can never be larger than that of f). We call this the ((e/k), k)-tail
guarantee. A recent work of [21] shows that for 0 < a < & < 1/2, all e-heavy hitters can
be found together with approximate for them f; such that |f; — f;| < «||f||1, and the space
complexity is O(a~1log(1/¢) + ¢ 1logn + loglog || f||1) bits.

All of the algorithms in the previous paragraph work in one pass over the data in the
insertion-only model, also known as the cash-register model [113], where deletions from
the stream are not allowed. Subsequently, many algorithms have been discovered that
work in more general models such as the strict turnstile and general turnstile models. In
the turnstile model, the vector f € IR" receives updates of the form (i, A), which triggers
the change f; < f; + A; note that we recover the insertion-only model by setting A = 1
for every update. The value A is assumed to be some bounded precision integer fitting
in a machine word, which can be either positive or negative. In the strict turnstile model
we are given the promise that f; > 0 at all times in the stream. That is, items cannot
be deleted if they were never inserted in the first place. In the general turnstile model
no such restriction is promised (i.e. entries in f are allowed to be negative). This can
be useful when tracking differences or changes across streams. For example, if f! is the
query stream vector with f! being the number of times word i was queried to a search
engine yesterday, and f2 is the similar vector corresponding to today, then finding heavy
coordinates in the vector f = f! — 2, which corresponds to a sequence of updates with
A = +1 (from yesterday) followed by updates with A = —1 (from today), can be used to

track changes in the queries over the past day.

11



Chapter 2. {, heavy hitters algorithm with fewer words

In the general turnstile model, an e-heavy hitter in the £, norm is defined as an index
i € [n] such that [f;| > ¢|fl,- Recall ||f|, is defined as (¥}, |f;|P)}/?. The CountMin
sketch treats the case of p = 1 and uses O(e~!logn) memory to find all e-heavy hitters
and achieve the (g, 1/¢)-tail guarantee [44]. The CountSketch treats the case of p = 2 and
uses O(e2logn) memory, achieving the (g, 1/¢?)-tail guarantee. It was later showed
in [82] that the CountSketch actually solves /,-heavy hitters for all 0 < p < 2 using
O(e Plogn) memory and achieving the (¢, 1/¢P)-tail guarantee. In fact, they showed
something stronger: that any ¢, heavy hitters algorithm with error parameter ¢”/2 achiev-
ing the tail guarantee automatically solves the £, heavy hitters problem with error pa-
rameter ¢ for any p € (0,2]. In this sense, solving the heavy hitters for p = 2 with tail
error, as CountSketch does, provides the strongest guarantee among all p € (0,2].

Identifying ¢> heavy hitters is optimal in another sense, too. When p > 2 by Holder’s
Inequality €| f[| > —7-17; || f||l2- Hence, one can use an £, heavy hitters algorithm to iden-
tify items with frequency at least €| f||,, for p > 2, by setting the heaviness parameter of
the £, algorithm to e/n'/2~1/P. The space needed to find ¢y heavy hitters with a CountS-
ketch is therefore O(e~2n'~2/P log n) which is known to be optimal [97]. We conclude that
the ¢, guarantee leads to the best space-to-frequency-threshold ratio among all p > 0.

It is worth pointing out that both the CountMin sketch and CountSketch are randomized
algorithms, and with small probability 1/n° (for a user-specified constant c > 0), they can
fail to achieve their stated guarantees. The work [82] also showed that the CountSketch
algorithm is optimal: they showed that any algorithm, even in the strict turnstile model,
solving ¢, heavy hitters even with 1/3 failure probability must use ()(e~? log 7) memory.

Of note is that the MisraGries and other algorithms in the insertion-only model solve

1 heavy hitters using (optimal) O(1/¢) memory, whereas the CountMin and CountSketch

12



Chapter 2. {, heavy hitters algorithm with fewer words

algorithms use a larger ©(¢~! log ) memory in the strict turnstile model, which is opti-
mal in that model. Thus there is a gap of log 1 between the space complexities of /1 heavy
hitters in the insertion-only and strict turnstile models.

In Section 2.2 we present an algorithm that solves ¢, heavy hitters problem in the
insertion-only model using only O (sl2 log % loglog 1) words of memory, later in Section 2.3

we further improve the memory usage and present an algorithm using only O(gl2 log %)

2.2 Beating CountSketch for Heavy Hitters
in Insertion Streams

This section is based on [31], work done in collaboration with Braverman V., Chestnut S.

and Woodruff D.

2.2.1 Introduction

Our contribution. The main result of this section is the near resolution of the open ques-

tion above.

Theorem 1 (/>-Heavy Hitters). For any e > 0, there is a 1-pass algorithm in the insertion-only
model that, with probability at least 2 /3, finds all those indices i € [n] for which f; > e\/F,, and
reports no indices i € [n] for which f; < 5+/F,. The space complexity is O(Sl2 log L lognloglogn)
bits.

The intuition of the proof is as follows. Suppose there is a single ¢»-heavy hitter H,
e > (0 is a constant, and we are trying to find the identity of H. Suppose further we could
identify a substream S’ where H is very heavy, specifically we want that the frequencies

2
i 72 Yjes! jAH ff. Suppose also that we could find certain

in the substream satisfy poly (log 1)

13



Chapter 2. {, heavy hitters algorithm with fewer words

R = O(logn) “breakpoints” in the stream corresponding to jumps in the value of fp, that
is, we knew a sequence p;; < p;, < -+ < pgr Which corresponds to positions in the
stream for which fp increases by a multiplicative factor of (14 1/®(R)).

Given all of these assumptions, in between breakpoints we can partition the universe
randomly into two pieces and run an F,-estimate [6] (AMS sketch) on each piece. Since
f#% is more than a poly(log 1) factor times Yies jzH f 2, while in between each breakpoint

i
logn

the squared frequency of H is () ( ), it follows that H contributes a constant fraction
of the F,-value in between consecutive breakpoints, and so, upon choosing the constants
appropriately, the larger in magnitude of the two AMS sketches will identify a bit of in-
formation about H, with probability say 90%. This is our algorithm Sieve. Since we have
O(log n) breakpoints, in total we will learn all log  bits of information needed to identify
H. One view of this algorithm is that it is a sequential implementation of the multiple
repetitions of CountSketch, namely, we split the stream at the breakpoints and perform
one “repetition” on each piece while discarding all but the single bit of information we
learn about H in between breakpoints.

However, it is not at all clear how to (1) identify S’ and (2) find the breakpoints.
For this, we resort to the theory of Gaussian and Bernoulli processes. Throughout the
stream we can maintain a sum of the form X; = Y , fi(t)Zi, where the Z; are indepen-
dent Normal(0, 1) or Rademacher random variables. Either distribution is workable. One
might think as one walks through a stream of length poly (), there will be times for which
this sum is much larger than V/F; indeed, the latter is the standard deviation and a naive
union bound, if tight, would imply positions in the stream for which |X;| is as large as
v/Elogn. It turns out that this cannot happen! Using a generic chaining bound devel-

oped by Fernique and Talagrand [135], we can prove that there exists a universal constant

14



Chapter 2. {, heavy hitters algorithm with fewer words
C’ such that

Esup |X¢| < C'/F.
t

We call this the Chaining Inequality.

We now randomly partition the universe into O(Slz) “parts”, and run our algorithm
independently on each part. This ensures that, for a large constant C, H is C-heavy, mean-
ing, f3 > C(F, — f%), where here we abuse notation and use F, to denote the moment
of the part containing H. We run the following two-stage algorithm independently on
each part. The first stage, called Amplifier, consists of L = O(loglogn) independent and
concurrent repetitions of the following: randomly split the set of items into two buckets
and maintain two Bernoulli processes, one for the updates in each bucket. By the Chain-
ing Inequality, a Markov bound, and a union bound, the total F, contribution, excluding
that of H, in each piece in each repetition at all times in the stream, will be O(y/F> — 7).
Since H is sufficiently heavy, this means after some time t*, its piece will be larger in
magnitude in most, say 90%, of the L repetitions. Furthermore, H will be among only
n /2L = 5 /polylog n items with this property. At this point, we can restrict our atten-

tion to a substream containing only those items.

1
og’n

The substream has the property that its F, value, not counting H, will be a factor ]
times the F, value of the original stream, making H Q(log® n)-heavy. Finally, to find
the breakpoints, our algorithm Timer maintains a Bernoulli process on the substream,
and every time the Bernoulli sum increases by a multiplicative <1 + 9(1—R)> factor, creates
a new breakpoint. By the Chaining Inequality applied in each consecutive interval of

breakpoints, the F;, of all items other than H in the interval is at most O(log 1) larger than

2
its expectation; while the squared frequency of H on the interval is at least l({gn. Since H
is Q(log? 11)-heavy, this makes f 2, to be the dominant fraction of F, on the interval.

One issue with the techniques above is they assume a large number of random bits

15



Chapter 2. {, heavy hitters algorithm with fewer words

can be stored. A standard way of derandomizing this, due to Indyk [78] and based on
Nisan’s pseudorandom generator PRG [116], would increase the space complexity by a
log n factor, which is exactly what we are trying to avoid. Besides, it is not clear we can
even apply Indyk’s method since our algorithm decides at certain points in the stream
to create new F,-sketches based on the past, whereas Indyk’s derandomization relies on
maintaining a certain type of linear sum in the stream, so that reordering of the stream
does not change the output distribution. A first observation is that the only places we
need more than limited independence are in maintaining a collection of O(logn) hash
functions and the stochastic process ;' ; f;Z; throughout the stream. The former can, in
fact, be derandomized along the lines of Indyk’s method [78].

In order to reduce the randomness needed for the stochastic process, we use a Johnson-
Lindenstrauss transformation to reduce the number of Rademacher (or Gaussian) ran-
dom variables needed. The idea is to reduce the frequency vector to O(logn) dimensions
with JL and run the Bernoulli process in this smaller dimensional space. The Bernoulli
process becomes Z?:q()g”) Z(Tf);, where T is the JL matrix. The same technique is used
by Meka for approximating the supremum of a Gaussian process [106]. It works because
the Euclidean length of the frequency vector describes the variance and covariances of
the process, hence the transformed process has roughly the same covariance structure as
the original process. An alternative perspective on this approach is that we use the JL
transformation in reverse, as a pseudorandom generator that expands O(logn) random
bits into O(n) random variables which fool our algorithm using the Bernoulli process.

In Section 2.2.5 we also use our techniques to prove the following.

Theorem 2 (F;, at all points). For any ¢ > 0, there is a 1-pass algorithm in the insertion-only
model that, with probability at least 2/3, outputs a (1 & €)-approximation of F, at all points in

the stream. It uses O(% log n(log & 4 loglogn)) bits of space.

16



Chapter 2. {, heavy hitters algorithm with fewer words

L amplifier size O(loglogn)
T round expansion 100(R+1)
) small constant Q(1)

S’z | interval of the stream | (pt,41,...,Pt,)
H heavy hitter id € [n]

ej jth unit vector

T JL transformation € RF>n

f I({k ) frequency on S

m stream length poly(n)
f(klikz) frequency on Sk f(kz) — f(kl)
n domain size

R # of Sieve rounds O(logn)

k JL dimension O(logn)

C’ Chaining Ineq. const. | O(1)

d dim. of Bern. proc. O(logs1)
C large const. >d 3¢ /6

TABLE 2.1: Notation and parameters used throughout the current section.

Preliminaries. Given a stream S = (p1, p2, ..., Pm), with p; € [n] for all i, we define the
frequency vector at time 0 < t < m to be the vector f (t) with coordinates fj(t) =#{t <t|
py = j}. When t = m we simply write f := f("). Given two times t; < t, we use f(1:%2)
for the vector f(2) — f(t1), Notice that all of these vectors are nonnegative because S has
no deletions. An item H € [n] is said to be an a-heavy hitter, for & > 0, if f4 >« YitH sz.
The goal of our main algorithm, CountSieve, is to identify a single a-heavy hitter for «
a large constant. We will assume logm = O(logn), although our methods apply even
when this is not true. It will be occasionally helpful to assume that 7 is sufficiently large.
This is without loss of generality since in the case n = O(1) the problem can be solved
exactly in O(logm) bits.

A streaming algorithm is allowed to read one item at a time from the stream in the

order given. The algorithm is also given access to a stream of random bits, it must pay

17



Chapter 2. {, heavy hitters algorithm with fewer words

to store any bits that it accesses more than once, and it is only required to be correct with
constant probability strictly greater than 1/2. Note that by repeating such an algorithm k
times and taking a majority vote, one can improve the success probability to 1 — 27%),
We measure the storage used by the algorithm on the worst case stream, i.e. worst case
item frequencies and order, with the worst case outcome of its random bits.

The AMS sketch [6] is a linear sketch for estimating F,. The sketch contains O (2 log & -1
independent sums of the form 2;7:1 S; f]-, where 51, Sy, ..., S, are four-wise independent
Rademacher random variables. By averaging and taking medians it achieves a (1 =+ ¢)-
approximation to F, with probability at least (1 — J).

A Gaussian process is a stochastic process (X;);er such that every finite subcollection
(Xt)terr, for T" C T, has a multivariate Gaussian distribution. When T is finite (as in
this section), every Gaussian process can be expressed as a linear transformation of a
multivariate Gaussian vector with mean 0 and covariance I. Similarly, a Bernoulli process
(Xt)ter, T finite, is a stochastic process defined as a linear transformation of a vector of
ii.d. Rademacher (i.e. uniform £1) random variables. Underpinning our results is an

analysis of the Gaussian process

Z Z f fort=0,...,m,
where Z4,...,7Z, iid N(0,1) are independent standard Normal random variables. The
Bernoulli analogue to our Gaussian process replaces the distribution of the random vector
Zas Z1,...,2y id Rademacher. Properties of the Normal distribution make it easier
for us to analyze the Gaussian process rather than its Bernoulli cousin. On the other
hand, we find Bernoulli processes more desirable for computational tasks. Existing tools,

which we discuss further in Section 2.2.3 and Section 2.2.4, allow us to transfer the needed

18



Chapter 2. {, heavy hitters algorithm with fewer words

properties of a Gaussian process to its Bernoulli analogue.

Ak x nmatrix T is a (1 £ 7y)-embedding of a set of vectors X C R" if

(1 =llx =yl < 1Tx = Tyll2 < A+ 7)llx = yll2,

for all x,y € XU {0}. We also call such a linear transformation a JL Transformation. It is
well-known that taking the entries of the matrix T to be i.i.d. Normal random variables
with mean 0 and variance 1/k produces a JL transformation with high probability. Many
other randomized and deterministic constructions exist, we will use the recent construc-
tion of Kane, Meka, and Nelson [84].

The development and analysis of our algorithm relies on several parameters, some
of which have already been introduced. Table 2.1 lists those along with the rest of the
parameters and some other notation for reference. In particular, the values C, d, 6, and 7y
are constants that we will choose in order to satisfy several inequalities. We will choose
and 7y to be small, say 1/200, and d = O(log1/6). C and C’ are sufficiently large constants,
in particular C > dC’/é.

2.2.2 /; heavy hitters algorithm

This section describes the algorithm CountSieve, which solves the heavy hitter problem
for the case of a single heavy hitter, i.e. top-1, in O(log n loglog n) bits of space and proves
Theorem 1. By definition, the number of e-heavy hittersis at most1+1/ €2, s0, upon hash-
ing the universe into O(1/¢?) parts, the problem of finding all e-heavy hitters reduces to
finding a single heavy hitter in each part. Collisions can be easily handled by repeat-
ing the algorithm O(log1/¢) times. When ¢ = ()(1), using this reduction incurs only a

constant factor increase in space over the single heavy hitter problem.

19



Chapter 2. {, heavy hitters algorithm with fewer words

Suppose the stream has only a single heavy hitter H € [n]. Sequentially, over the
course of reading the stream, CountSieve will hash the stream into two separate sub-
streams for O(logn) repetitions, and in each repetition it will try to determine which of
the two substreams has the heavy hitter using the AMS Sketch. With high probability,
H has a unique sequence of hashes, so if we correctly identify the stream containing H
every time then we can correctly identify H. This holds even if we only correctly identify
the stream containing H a large constant fraction of the repetitions. CountSketch accom-
plishes this by performing the O(log 1) rounds of hashing in parallel, with Q(log?® 1) bits
of storage. One of our innovations is to implement this scheme sequentially by specify-
ing intervals of updates, which we call rounds, during each of which we run the two AMS
Sketches. In total there could be as many as ®(log? 1) of these rounds, but we will discard
all except the last R = O(logn) of them.

Algorithm 1 is a simplified version of the Bernoulli process used by CountSieve. It
has all of the properties we need for correctness of the algorithm, but it requires too many
random bits. Chief among these properties is the control on the supremum of the process.

The Chaining Inequality gives us a uniform bound on the maximum value of the BP

Algorithm 1 One Bernoulli process.

procedure BP(Stream S)

Sample Zy,...,Z, id Rademacher
return (Z, f()) at each time ¢
end procedure

process in terms of the standard deviation of the last value. This property is formalized

by the definition of a tame process.

Definition 3. Let f!) € R", fort € [m], and let T : R" — RF be a matrix. Let Z be a

d x k matrix of i.i.d. Rademacher random variables. A d-dimensional Bernoulli process y; =

20



Chapter 2. {, heavy hitters algorithm with fewer words
d=2ZTfW, for t € [m), is tame if, with probability at least 1 — 5,

=
llyell2 < C ];fj, forall t € [m]. (2.1)

The definition anticipates our need for dimension reduction in order to reduce the
number of random bits needed for the algorithm. Our first use for it is for BP, which is
very simple with d = 1 and T the identity matrix. BP requires n random bits, which is too
many for a practical streaming algorithm. JLBP, Algorithm 2, exists to fix this problem.
Still, if one is willing to disregard the storage needed for the random bits, BP can be sub-
stituted everywhere for JLBP without affecting the correctness of our algorithms because
our proofs only require that the processes are tame, and BP produces a tame process, as

we will now show. We have a similar lemma for JLBP.

Lemma 4 (BP Correctness). Let f\*), for t € [m], be the frequency vectors of an insertion-only

stream. The sequence Z f*) returned by the algorithm BP is a tame Bernoulli process.

Proof. By the Chaining Inequality, Theorem 14, 3C’ s.t. Esup, |X;| < C'(}%; f].z)l/ 2. Let
F be the event that the condition (2.1) holds. Then, for C > C’/é, Markov’s Inequality

implies that:

Pr(F) = Pr Sle|Xt|§C Zf}z > (1-9).
J

O
In order to reduce the number of random bits needed for the algorithms we first ap-
ply JL transformation T to the frequency vector. The intuition for this comes from the

covariance structure of the Bernoulli process, which is what governs the behavior of the

process and is fundamental for the Chaining Inequality. The variance of an increment

21



Chapter 2. {, heavy hitters algorithm with fewer words

of the Bernoulli process between times s and t > s is || f()||3. The JL-property of the
matrix T guarantees that this value is well approximated by || Tf(*)|3, which is the in-
crement variance of the reduced-dimension process. Slepian’s Lemma (Lemma 15) is
a fundamental tool in the theory of Gaussian processes that allows us to draw a com-
parison between the suprema of the processes by comparing the increment variances
instead. Thus, for Z4,...,7Z, id Rademacher, the expected supremum of the process
Xy =312 fi(t) is closely approximated by that of X = Y*_, Z;(Tf("));, and the latter
uses only k = O(logn) random bits. The following lemma formalizes this discussion, its

proof is given in Section 2.2.4.

Lemma 5 (JLBP Correctness). Suppose the matrix T used by JLBP is an (1 %+ -y)-embedding of
(f (t))te[m}. For any d > 1, the sequence \/LaZT ) returned by JLBP is a tame d-dimensional
Bernoulli process. Furthermore, there exists ' = O(logé~') such that for any d > d' and
H € [n] it holds that Pr(} < ||d~2ZTey|| < 3) >1-4.

Algorithm 2 A Bernoulli process with fewer random bits.
procedure JLBP(Stream S)
Let T be a JL Transformation > The same T will suffice for all instance
Sample Z € {—1,1}K, s.t. Z; ; ¢ Rademacher
1 (t) i
return \/EZT f\!) at each time ¢

end procedure

Now that we have established the tameness of our Bernoulli processes, let us explain
how we can exploit it. We typically exploit tameness in two ways, one works by splitting
the stream according to the items and the second splits the stream temporally. Given
a stream and a tame Bernoulli process on that stream, every substream defines another
Bernoulli process, and the substream processes are tame as well. One way to use this

is for heavy hitters. If there is a heavy hitter H, then the substream consisting of all

22



Chapter 2. {, heavy hitters algorithm with fewer words

updates except those to the heavy hitter produces a tame process whose maximum is
bounded by C(F, — f%)!/2, so the value of the process in BP is Zp fy += C(F, — f7)V/2.
When H is sufficiently heavy, this means that the absolute value of the output of BP tracks
the value of fy, for example if H is a 4C?>-heavy hitter then the absolute value of BP’s
output is always a (1 £ %)—approximation to fg. Another way we exploit tameness is for
approximating F, at all points. We select a sequnece of times t; < t, < --- < t; € [m] and
consider the prefixes of the stream that end at times t, 1, ..., etc. For each t;, the prefix
stream ending at time ¢; is tame with the upper bound depending on the stream’s F, value
at time t;. If the times t; are chosen in close enough succession this observation allows us
to transform the uniform additive approximation guarantee into a uniform multiplicative

approximation.

Description of CountSieve. CountSieve primarily works in two stages that operate con-
currently. Each stage uses independent pairs of Bernoulli processes to determine bits
of the identity of the heavy hitter. The first stage is the Amplifier, which maintains
L = O(loglogn) independent pairs of Bernoulli processes. The second stage is the Timer
and Sieve. It consists of a series of rounds where one pair of AMS sketches is maintained
during each round.

CountSieve and its subroutines are described formally in Algorithm 4. The random
variables they use are listed in Table 2.2. Even though we reduce the number of random
bits needed for each Bernoulli process to a manageable O(log 1) bits, the storage space for
the random values is still an issue because the algorithm maintains O(log 1) independent
hash functions until the end of the stream. We explain how to overcome this barrier in

Section 2.2.4 as well as show that the JL generator of [84] suffices.

23



Chapter 2. {, heavy hitters algorithm with fewer words

4- . iid
A1, Apy ~ Bernoulli | Zi,...,Z; ~ Rademacher

4-w . 4-w
By1,...,Byn ~ Bernoulli | R, 1,..,R;» ~ Rademacher

TABLE 2.2: Random vectors for CountSieve. Each vector is independent of
the others, and Z = (Z;);c| is sampled independently for every instance of
JLBP.

We can now state an algorithm that maintains a pair of Bernoulli processes and prove

that the bits that it outputs favor the process in the pair with the heavy hitter.

Algorithm 3 Split the vector f into two parts depending on A and run a Bernoulli process
on each part. Return the identity of the larger estimate at each time.

procedure PAIR(Stream S, Ay, ... A, € {0,1})
For b € {0,1} let S, be the restriction
of Sto{j € [n] | A; = bl}
Xét) :]LBP(S(()t)) at each time ¢
Xit) :]LBP(SY)) at each time t
t
by = argmax, o1 HXZ(, )H2
return by, by, . ..
end procedure

Lemma 6 (Pair Correctness). Let tg € [m] be an index such that:

(F7)? > 4C? Y f2.

j7H

Let Aq,..., Ay S Bernoulli and let b1,by,. .., by be the sequence returned by

Pair(f, A1, ..., An). Then

Pr(by = Ay forall t > ty) > 1—36

24



Chapter 2. {, heavy hitters algorithm with fewer words
and, for every j € [n] \ {H} and t > ty,

1

Furthermore, if each JLBP is replaced by an AMS sketch with size O(lognlogé—1) then, for all
t>toand j # H, P(by = Ay) > 1— 25 and P(by = A;j) < § +30.

Proof. Let X(()t) = d2ZTf® and X{t) = d-2WTf®) be the two independent Bernoulli pro-
cesses output by JLBP. Without loss of generality, suppose that Ay =1,letv =d “1WTep,
and let Y(*) = th) - fl({t)v. By Lemma 5, with probability at least 1 — 24 all three of the

following hold
1 [X57 13 < C2Xja o f2, forall ,
2. [[YW|3 < C?Yjzn fj2' for all t, and
A=1
3. Jlofl2 > 1/2

If the three events above hold then, for all t > ¢,

1Ol = 1% 2 1of P2 — YO 2 — 1912

1
>l e [y fo
j#H

which establishes the first claim. The second claim follows from the first using

Pr(bt = A]) = Pr(bt = A] = AH) —l—P].‘(bt = A] 75 AH)

1
< PI‘(A]‘ = AH) + Pr(bt 75 AH) = 5 + 30.

The third and fourth inequalities follow from the correctness of the AMS sketch [6]. [J

25



Chapter 2. {, heavy hitters algorithm with fewer words

Amplifier Correctness. The L = O(loglogn) instances of Pair maintained by Amplifier
in the first stage of CountSieve serve to identify a substream containing roughly n2~F =
n/polylogn elements in which H appears as a polylog(n)-heavy hitter. Correctness of
Amplifier means that, after some “burn-in” period which we allow to include the first
fr /2 updates to H, all of the subsequent updates to H appear in the amplified substream

while the majority of other items do not. This is Lemma 7.

Lemma 7 (Amplifier Correctness). Let tg € [m] be such that ( fl(j;(’))2 > 4C7 Yy f]?; let
ar = (a,...,a) denote the length L bit-vector output by the Amplifier at step t. Let M;; =
#{l € [L] | apy = Agj} and W = {j € [n]\ {H} | 3t > to,Mj; > 0.9L}. Then, with
probability at least (1 — 26), both of the following hold:

1. forall t > to simultaneously, Mg ; > 0.9L and

2. Yjew f7 < exp(—g5) Ljzn f7-
Proof. Let N = #{( | forallt > ty,a;; = Ayp}. If N > 0.9L then 1 holds. Lemma 6
implies EN > (1 —36)L > 0.97L, so Chernoff’s Bound easily implies P(N < 0.9L) =
O(Z_L) < ¢, where ¢ is a constant.

Now, let j # H be a member of W and suppose that My ; > 0.9L. Let t > ty be such

that M;; > 0.9L. Then it must be that
Mi:=#{l € [L]| Ay;j= Ay} > 0.8L.

However, IEM; = 1L by pairwise independence. Let E; be the event {j € W and Mp; >
0.9L}. Since the L instances of Pair are independent, an application of Chernoff’s Inequal-

ity proves that

—0.6°L

Pr(E;) < Pr(M} > 0.8L) < exp{ } < e 120,

26



Chapter 2. {, heavy hitters algorithm with fewer words
We have

E() f].z) =E() 1Ejf]'2) <e L/ Yy f],z.

jEW j#H j#H

Therefore Markov’s Inequality yields

Pr (Z f]2 Z e—L/25 Z f:]2> S e—L/lOO S J.

jew j#H

The lemma follows by a union bound. O

Timer and Sieve Correctness. The timing of the rounds in the second stage of CountSieve
is determined by the algorithm Timer. Timer outputs a set of times g, 71, . . ., gr that break
the stream into intervals so that each interval has roughly a 1/ log n fraction of the occur-
rences of H and not too many other items. Precisely, we want that H is everywhere heavy
for g, as stated in the following definition. When this holds, in every round the Pair is
likely to identify one bit of H, and Sieve and Selector will be likely to correctly identify H

from these bits.

Definition 8. Given an item H € [n] and a sequence of times qo < q1 < - -+ < qg in a stream

with frequency vectors (f(*) )te|m) we say that H is everywhere heavy for q if, forall1 <r <R,

(fI(_?rflzqr))Z > C2 Z (fj(qrfl:‘h))Z.

j#H
Correctness for Timer means that enough rounds are completed and H is sufficiently

heavy within each round, i.e., H is everywhere heavy for g.

Lemma 9 (Timer Correctness). Let S be a stream with an item H € [n] such that the following

hold:

27



Chapter 2. {, heavy hitters algorithm with fewer words

Algorithm 4 Algorithm for a single F, heavy hitters.

procedure COUNTSIEVE(Stream S = (p1, P2, .-, Pm))
Maintain a; = (a14,a24,...,4r,) < AMPLIFIER(S)
Lettj <thp <:-- =

{t € [n] | Ap, = ay; for at least 0.9L values of /}

Let S = (ph’prI' . .,)
90,91, - - -, qr < TIMER(Sp)
by, by, ..., br <—SIEVE(So,q0,---,4qR)
return SELECTOR(bq, by, ..., br) based on S

end procedure

procedure AMPLIFIER(Stream S) > Find a substream where H is polylog(n)-heavy

for/=1,2,...,Ldo
Ap1,802, -+ ,00,m <—PAIR(S, Af,ll ce /Aé,n)
end for
return ayy, ..., ap at each time ¢
end procedure

procedure TIMER(Stream S) > Break the substream into rounds so H is heavy in each

gp =0
Y; < JLBP(S), fort =1,2,...,0ver S
Foreachr > 1, find ¢, = min{t | || Y¢[> > (1 + 1)"}
Let qo,q1, - ..,qr be thelast R + 1 of g5, 4}, . - .
return qo,q1,...,4qRr

end procedure

procedure SIEVE(Stream S, qo, . . ., qR) > Identify one bit of information from each

round
forr=0,1,...,R—1do
bg+1,- - -, bg,,, < PAIR(SW 1) B, ..., B,,)
end for
return by, by,, ..., by,
end procedure

> Replace JLBP here with AMS

procedure SELECTOR(by, ..., bR) > Determine H from the round winners

return Any j* € argmax;#{r € [R] : B, ; = b, }.
end procedure

1. fH Z T4,

2. ff = 400C* Yy f7, and

28



Chapter 2. {, heavy hitters algorithm with fewer words
7 7
(02 =1 2 250 S ()

where t* = min{t € [m] | fl(;) > 0.5fy} and C is the constant from Definition 3. If
90,91, - - -, qRr is the sequence output by Timer(S) then, with probability at least 1 — 46, H is

everywhere heavy for q.

Proof. We begin by proving that at least R rounds occur after t*, which shows that gy, . . ., gr
is well defined, and then we show that H is everywhere heavy. Let Y; be the sequence
output by JLBP and let X; = Y; — d’%ZTeH fl(;) Y; and X; are tame by Lemma 5 and
Pr(0.5 <a <15)>1—6 wherea = ||d_%ZTeHH2. Hereafter, we suppose thata > 1/2
and the tameness property holds for Y; and X;. With probability at least 1 — J, simultane-

ously for all t € [m], we have

1
IXe|3<C* Y. fA< —fA 2.2)
. ] 400
j#H
Therefore, | Yi-|l2 < [|Xi-]la+afy) < (54 5)fu and [Yula > afS"” — | Xl >

a — 1) fiy. This implies that the number of rounds completed after t*, which is
20 p p

[ Yon |2 «—1/20
log, ., 1/x HY:Hz = 108111/ 751 /20 = 108141/2(3/2),

is at least R + 1 by our choice of T = 100(R + 1). Similarly || Y|z > zxfl(;*) — | Xpe|]2 >

(% — 55) fu. Therefore we also get g; > g;_1 because (1+ T~ 1)||Y;<||2 > 1 by our assump-
tion that f; > t*. Hence qq, ..., qr are distinct times.

Now we show that H is everywhere heavy for q. Let W; = X; — Xy, for t > t*. By
design, Wy — Ws; = X; — X, for s,t > t*. By Lemma 5, W; is also a tame process on

the suffix of the original stream that has its first item at time t* 4 1. Specifically with

29



Chapter 2. {, heavy hitters algorithm with fewer words
probability at least 1 — §, for all t > t*,

2 2 (F:m)\2 1 2
IWiE < € 32 () < g

This inequality, with two applications of the triangle inequality, implies

fif 2 Yy = Yo llo = [ Wy, = Wy, 2
2

> HY%‘ - Yﬁhﬂ ”2 - EfH (2-3)

To complete the proof we must bound || Y, — Yg, , ||2 from below and then apply the heav-
iness, i.e., assumption 3.

Equation (2.2) and the triangle inequality imply that, for every t > t*, it holds that

Vil > ocfg) — || X¢ll2 > (4 — %) fu. Recalling the definition of g, ¢}, - - - from Timer,

since t* < gp < g1 < --- < qr and the rounds expand at arate (1+1/7),

1/« 1
Yai = Yailla > = (5 - %) it (2.4)

Using what we have already shown in (2.3) we have

(‘liifiz‘+1)>l E_l_g
*fu —r(z 20~ 20)/H

so dividing and using « > 1/2 and C sufficiently large we get

g 1 *im
(fgqurl))z > @f?{ > C2 ;;I(f](t ))2
]

> CZ Z (f]_(qi:q,ﬂ))z.

j#H

30



Chapter 2. {, heavy hitters algorithm with fewer words

Since this holds for all i, H is everywhere heavy for . We have used the tameness of the
three processes (X, Y, and W) and the bounds on «. Each of these fails with probability at
most J, so the probability that Timer fails to achieve the condition that H is everywhere

heavy for g is at most 4. O

During each round, the algorithm Sieve uses a hash function A to split the stream into
two parts and then determines which part contains H via Pair. For these instances of Pair,
we replace the two instances of JLBP with two instances of AMS. This replacement helps
us to hold down the storage when we later use Nisan’s PRG, because computing the JL
transformation T from [84] requires O(lognloglogn) bits. Applying Nisan’s PRG to an
algorithm that computes entries in T would leave us with a bound of O(log n(log log )?).
More details can be found in Section 2.2.4.

A total of O(log 1) rounds is enough to identify the heavy hitter and the only informa-
tion that we need to save from each round is the hash function A and the last bit output
by Pair. Selector does the work of finally identifying H from the sequence of bits out-
put by Sieve and the sequence of hash functions used during the rounds. We prove the

correctness of Sieve and Selector together in the following lemma.

Lemma 10 (Sieve/Selector). Let qo,q1,--.,qr be the sequence output by TIMER(S) and let
by, ..., br be the sequence output by SIEVE(S, qo, . ..,qRr). If H is everywhere heavy for q on the

stream S then, with probability at least 1 — &, Selector (b, ..., br) returns H.

Proof. Lemma 6 in the AMS case implies that the outcome of round r satisfies Pr(b, =
B, y) > 1—36and Pr(b, = B, ) < 1+ 36. The random bits used in each iteration of the
for loop within Sieve are independent of the other iterations. Upon choosing the number

of rounds R = O(logn) to be sufficiently large, Chernoff’s Inequality implies that, with

31



Chapter 2. {, heavy hitters algorithm with fewer words

high probability, H is the unique item in argmax;#{r € [R] | B,;j = br}. Therefore,

Selector returns H. O

Algorithm 5 ¢, heavy hitters algorithm.

procedure (,HEAVYHITTERS(S = (p1, P2, -, Pm))

Q « O(loge™'), B+ O(e72)

Select independent 2-universal hash functions
hl/- . "hQ'h,l" . ,]’IIQ : [7’[] — [B]
andoy,...,00: [n] = {-1,1}.

£, + (14 £)F, using AMS [6]

H+ @

for (q,b) € Q x Bdo

Let S, j, be the stream of items i with h;(i) = b
Cab <= Ljn (j)=b %4 (7)fi > The CountSketch [39]
H <+ COUNTSIEVE(S, ;)

end for

Remove from # any item i such that
mediang {[c, 5, (1)} < xF,.

return H
end procedure

CountSieve Correctness. We now have everything in place to prove that CountSieve
correctly identifies a sufficiently heavy heavy hitter H. As for the storage bound and The-
orem 1, the entire algorithm fits within O(lognloglogn) bits except the R = O(logn)
hash functions required by Sieve. We defer their replacement to Theorem 19 in Sec-

tion 2.2.4.

Theorem 11 (CountSieve Correctness). If H is a 400C2-heavy hitter then the probability that
CountSieve returns H is at least 0.95. The algorithm uses O(lognloglog n) bits of storage and

can be implemented with O(lognloglogn) stored random bits.

Proof. We use Theorem 16 to generate the JL transformation T. Each of our lemmas

requires that T embeds a (possibly different) polynomially sized set of vectors, so, for

32



Chapter 2. {, heavy hitters algorithm with fewer words
0 = (1), Theorem 16 implies that, with probability at least 1 — , T embeds all of the nec-

essary vectors with seed length O(logn), and the entries in T can be computed in space
O(lognloglogn) bits of space. Because of the heaviness assumption, the conclusion of
Lemma 7 fails to hold for ty = t* (defined in Lemma 9) with probability at most 26. When
that failure does not occur, the second and third hypotheses in Lemma 9 hold. The first
hypothesis is that fi; > 7, suppose it holds. Then the probability that H fails to be every-
where heavy for the sequence g that is output by Timer is at most 44. In this case, accord-
ing to Lemma 10, Sieve and Selector correctly identify H except with probability at most
J. Therefore, the algorithm is correct with probability at least 1 — 85 > 0.95, by choosing
6 <1/200.If fr < 7, then because H is a heavy hitter, we get }-; iy sz < 78 = O(log® n).
Then we choose the constant factor in L large enough so that, the second conclusion of
Lemma 7 implies } ey sz < e7L/% < 1. This means that H is the only item that passes
the amplifier for all t > t*, and, no matter what is the sequence output by Timer, H is
everywhere heavy because it is the only item in the substream. Thus, in this case the
algorithm also outputs H.

Now we analyze the storage and randomness. Computing the entries in the Kane-
Meka-Nelson JL matrix requires O(lognloglogn) bits of storage, by Theorem 16, and
there is only one of these matrices. Amplifier stores L = O(loglogn) counters. Sieve,
Timer, and Selector each require O(logn) bits at a time (since we discard any value as
soon as it is no longer needed). Thus the total working memory of the algorithm is
O(lognloglogn) bits. The random seed for the JL matrix has O(logn) bits. Each of
the O(loglogn) Bernoulli processes requires O(logn) random bits. By Theorem 19 be-
low, the remaining random bits can be generated with Nisan’s generator using a seed of
O(lognloglogn) bits. Using Nisan’s generator does not increase the storage of the algo-

rithm. Accounting for all of these, the total number of random bits used by CountSieve,

33



Chapter 2. {, heavy hitters algorithm with fewer words

which also must be stored, is O(lognloglogn). Therefore, the total storage used by the

algorithm is O(log n log log n) bits. O

Theorem 1 (/>-Heavy Hitters). For any e > 0, there is a 1-pass algorithm in the insertion-only
model that, with probability at least 2 /3, finds all those indices i € [n] for which f; > e\/F,, and
reports no indices i € [n] for which f; < 5+/F,. The space complexity is O(Sl2 log Llognloglogn)
bits.

Proof. The algorithm is Algorithm 5. It has the form of a CountSketch [39] with Q =
O(log1/¢e) “rows” and B = 8(10C)?/&*> “buckets” per row, wherein we run one in-
stance of CountSieve in each bucket to identify potential heavy hitters and also the usual
CountSketch counter in each bucket. Finally, the algorithm discriminates against non-
heavy hitters by testing their frequency estimates from the CountSketch. We will assume
that the AMS estimate F; is correct with probability at least 8 /9.

Let Hy = {i | fi > £V} and let H be set of distinct elements returned by Algo-
rithm 5. To prove the theorem, it is sufficient to prove that, with probability at least 2/3,
Hi CHC Ho.

Let H € H, and consider the stream S, j, () at position (q,hq(H)). We have

2
€
E )< —— b,
R
hq(j)=hq(H)
Let E; g be the event that
2
’ €
2< B,
].;{ I7'= focy
hq(j)=hq(H)

so by Markov’s Inequality Pr(E, ;) > 7/8. When E, ;j occurs H is sufficiently heavy in

Sq1,(11) for CountSieve. By Theorem 11, with probability at least % — 21—0 > 0.8, CountSieve

34



Chapter 2. {, heavy hitters algorithm with fewer words

identifies H. Therefore, with the correct choice of the constant factor for Q, a Chernoff
bound and a union bound imply that, with probability at least 1 — 1/9, every item in H;
is returned at least once by a CountSieve.

Let H' denote the set H before any elements are removed in the final step. Since
CountSieve identifies at most one item in each bucket, |H/| = O(e2loge™!). By the
correctness of CountSketch [39] and the fact that it is independent of F’, we get that, with

probability at least 1 — 1/9, for alli € H’

_ e
fi— medlanq{|cq,hq(i)|}‘ = 10_C\/F_2

When this happens and the AMS estimate is correct, the final step of the algorithm cor-
rectly removes any items i ¢ H; and all items i € H; remain. This completes the proof of
correctness.

The storage needed by the CountSketch is O(BQlogn), the total storage needed for
all instances of CountSieve is O(BQlognloglogn), and the storage needed for AMS is

O(e2logn). Therefore, the total number of bits of storage is
1 1
O(BQlognloglogn) = O(E—2 log - lognloglogn).

]

Corollary 11.1. There exists an insertion-only streaming algorithm that returns an additive
+e+/F, approximation to Lo, with probability at least 2 /3 and requires O(gl2 log % lognloglogn)

bits of space.

Proof. Use Algorithm 5. If no heavy-hitter is returned then the /., estimate is 0, otherwise

return the largest of the CountSketch medians among the discovered heavy hitters. The

35



Chapter 2. {, heavy hitters algorithm with fewer words

correctness follows from Theorem 1 and the correctness of CountSketch. O

2.2.3 Chaining Inequality

We call these inequalities Chaining Inequalities after the Generic Chaining, which is the
technique that we use to prove it. The book [136] by Talagrand contains an excellent
exposition of the subject. Let (X;)icr be a Gaussian process. The Generic Chaining
technique concerns the study of the supremum of X; in a particular metric space re-
lated to the variances and covariances of the process. The metric space is (T,d) where
d(s,t) = (E(Xs — Xt)z)%. The method takes any finite chain of finite subsets Ty C T; C

- C T, C T and uses (X)teT, as a sequence of successive approximations to (X;)ser
wherein X;, for t ¢ T;, is approximated by the value of the process at some minimizer
of d(t,T;) = min{d(t,s) | s € T;}. To apply the Generic Chaining one must judiciously
choose the chain in order to get a good bound, and the best choice necessarily depends

on the structure of the process. We will exploit the following lemma.

Lemma 12 ([136]). Let { X; }teT be a Gaussian process and let T C Ty -+ - C T, C T be a chain
of sets such that | Ty| = 1 and |T;| < 22 fori > 1. Then

Esup X; < O(1)sup ¥ 27/2d(t, Ty). (2.5)
teT teT i>0

The Generic Chaining also applies to Bernoulli processes, but, for our purposes, it is

enough that we can compare related Gaussian and Bernoulli processes.

Lemma 13 ([136]). Let A € R™*" be any matrix and let G and B be n-dimensional vectors with

independent coordinates distributed as N (0, 1) and Rademacher, respectively. Then the Gaussian

process X = AG and Bernoulli process Y = AB satisfy Esup, 7 Y; < \/glE sup, 7 Xt.

36



Chapter 2. {, heavy hitters algorithm with fewer words

Theorem 14 (Chaining Inequality). Define independent N (0,1) random variables Z, ..., Z,
and let (f() )te|m) be the sequence of frequency vectors of an insertion-only stream. There exists a

universal constant C' > 0 such that if X; = ¥ 4 Z]'f].(t),for t € [m], then

Esup |X;| < C'y/Var(Xy,) = C'|lf™|.. (2.6)
iid

IfZ1,...,2y ...~ Rademacher and Y; = 2;7:1 Z]-fj(t),fort € [m], then

Esup|Y;| < C'y/Var(Y,,) = C'|l f" 2. 2.7)

Proof. Let T = [m]. Define Ty = {to}, where ¢ is the index such that
Var(X;,) < 0.5Var(X,;,) < Var(X;+1) and T; = {1,t;1,tio,... } where for each index

tij € T; Var(Xy;) < 2%i\/ar(Xm) < Var (X, ..,). This is well-defined because Var(X;) =

ij+1
| f®)|13 is the second moment of an insertion-only stream, which must be monotonically

increasing. By construction |T;| < 22" and, for each t € T, there exist ti; € T; such that

a(t, T;) = min(d(t, ti’]’), d(t, ti,j—l—l))

NI—=

<d(tij tij1) = (E(Xy,;, — Xt,-,]»)z) /

where the last inequality holds because E(X?) monotonically increasing with ¢.

37



Chapter 2. {, heavy hitters algorithm with fewer words

Notice that every pair of increments has nonnegative covariance because the stream is

insertion-only. Thus, the following is true:

d(tl ti,j+1) < IE(XtI]-H Xti,]')z
< E(szm Xfi,;')z +2EXy; (Xtuﬂ - Xfi,f>
= ]EXf 1 ]EXtZl]
j+1 » J—1 2 _ 2 2
< Y —EX,, — ?IEX,” = ﬁ]EXm

Then we can conclude that

Y 224(t, T)) <221/222 EX2, = O(1)y/Var(Xy).

i>0 i>0
Applying (2.5) we obtain E sup,. X; < O(1)+/Var(Xy).
In order to bound the absolute value, observe
sup | X¢| < |Xq| +sup | X — Xi
t
< | X1] 4+ sup(X; — Xs)
st
= |X1| + sup X; + sup(—Xs). (2.8)
t s
Thus, E sup, |X¢| < E|X;i|+ 2Esup X; < O(1)+/Var(Xy), because —X; is also Gaussian

process with the same distribution as X; and E|X;| = O(y/Var(X,,)) because f(!) = 1.

This establishes (2.6) and (2.7) follows immediately by an application of Lemma 13. [

Theorem 14 would obviously not be true for a stream with deletions, since we may

38



Chapter 2. {, heavy hitters algorithm with fewer words

have Var(X;,) = 0. One may wonder if the theorem would be true for streams with dele-
tions upon replacing Var(X,,) by max; Var(X;). This is not true, and a counter example
is the stream (ej, —eq, ey, ..., ey, —ey) Which yields max; Var(X;) = 1, but Esup, |X;| =
o(y/Togn).

Theorem 14 does not apply to the process ouput by JLBP, but the covariance structures
of the two processes are very similar because T is an embedding. We can achieve basically
the same inequality for the JLBP process by applying Slepian’s Lemma, mimicking the

strategy in [106].

Lemma 15 (Slepian’s Lemma [95]). Let X; and Yy, for t € T, be Gaussian processes such that
E(Xs — X¢)? <E(Ys — Y;)?, forall s,t € T. Then, Esup,.r Xt < Esup, 1 Yi.

Corollary 15.1 (Chaining Inequality with JL). Let T be a (1 =+ 7)-embedding of (f*)),c ) and

let Zy,..., 7, 4

for t € [m], then Esup, |X;| < C'||f")|2. If Zy,..., 2 "¢ Rademacher and Y, = (Z, TF®),

(0,1). There exists a universal constant C' > 0 such that if X; = (Z, Tf1)),

for t € [m], then Esup, |Y;| < C'||f(™]],.

Proof. Let W; be the Gaussian process from Theorem 14. Since T is a JL transformation

E(X —Xs)? = TSV 13 < 1+ 2?5913

= (14 7)%E(W;: — W,)*.

The first claim of the corollary follows from Slepian’s Lemma, Equation (2.8), and Theo-

rem 14. The second inequality follows from the first and Lemma 13. O

39



Chapter 2. {, heavy hitters algorithm with fewer words
2.24 Reduced randomness

This section describes how CountSieve can be implemented with only O(lognloglogn)
random bits. There are two main barriers to reducing the number of random bits. We
have already partially overcome the first barrier, which is to reduce the number of bits
needed by a Bernoulli process from 7, as in the algorithm BP, to O(log 1) by introducing
JLBP. JLBP runs d = O(1) independent Bernoulli processes in dimension k = O(logn) for
a total of dk = O(log n) random bits. This section proves the correctness of that algorithm.

The second barrier is finding a surrogate for the R independent vectors of pairwise in-
dependent Bernoulli random variables that are used during the rounds of Sieve. We must
store their values so that Selector can retroactively identify a heavy hitter, but, naively,
they require Q(log2 n) random bits. We will show that one can use Nisan’s pseudoran-
dom generator (PRG) with seed length O(log nloglog n) bits to generate these vectors. A
priori, it is not obvious that this is possible. The main sticking point is that the stream-
ing algorithm that we want to derandomize must store the random bits it uses, which
means that these count against the seed length for Nisan’s PRG. Specifically, Nisan’s PRG
reduces the number of random bits needed by a space S algorithm using R random bits
to O(Slog R). Because CountSieve must pay to store the R random bits, the storage used
is S > R = Q(log®n), so Nisan’s PRG appears even to increase the storage used by the
algorithm! We can overcome this by introducing an auxiliary (non-streaming) algorithm
that has the same output as Sieve and Selector, but manages without storing all of the ran-
dom bits. This method is similar in spirit to Indyk’s derandomization of linear sketches
using Nisan’s PRG [78]. It is not a black-box reduction to the auxiliary algorithm and it is
only possible because we can exploit the structure of Sieve and Selector.

We remark here that we are not aware of any black-box derandomization of the Bernoulli

processes that suits our needs. This is for two reasons. First, we cannot reorder the stream

40



Chapter 2. {, heavy hitters algorithm with fewer words

for the purpose of the proof because the order of the computation is important. Reorder-
ing the stream is needed for Indyk’s argument [78] for applying Nisan’s PRG. Second, the
seed length of available generators is too large, typically in our setting we would require

a seed of length at least log' ™ 1, for some & > 0.

The Bernoulli Process with O(log 1) Random Bits. The main observation that leads
to reducing the number of random bits needed by the algorithm is that the distribution
of the corresponding Gaussian process depends only on the second moments of the in-
crements. These moments are just the square of the Euclidean norm of the change in the
frequency vector, so applying a Johnson-Lindenstrauss transformation to the frequency
vector nearly preserves the distribution of the process and allows us to get away with
O(logn) random bits. One trouble with this approach is that the heavy hitter H could
be “lost”, whereby we mean that although ||Tey|| ~ 1 it may be that (Z, Tey) =~ 0, for
the Rademacher random vector Z, whereupon H’s contribution to the sum (Z, Tf()) is
lost among the noise. To avoid this possibility we keep d = O(1) independent Bernoulli
processes in parallel.

First, we state correctness of the Johnson-Lindenstrauss transformation that we use

and the storage needed for it.

Theorem 16 (Kane, Meka, & Nelson [84]). Let V

be a set of n points in R". For any constant § > 0 there exists a k = O(y?log(n/6)) and
generator G : {0,1}°008") x [k] x [n] — R such that, with probability at least 1 — 6, the k x n
matrix T with entries T;; = G(R,1,j) is a (1 £ «y)-embedding of V, where R € {0, 1}Oogn) js g
uniformly random string. The value of G(R, i,j) can be computed with O(log nloglog n) bits of

storage.

41



Chapter 2. {, heavy hitters algorithm with fewer words
Lemma 5 (JLBP Correctness). Suppose the matrix T used by JLBP is an (1 % -y)-embedding of

(f (t))te[m}. For any d > 1, the sequence \/LaZT ) returned by JLBP is a tame d-dimensional
Bernoulli process. Furthermore, there exists ' = O(logé~') such that for any d > d' and

H € [n] it holds that Pr(} < ||d~2ZTey|| < 3) >1-4.

Proof. Let X;; :ZJ 1 l](Tf ) and

X, = | 2=2Tf "3 dzxm

fort = 1,...,m. Each process X;; is a Bernoulli process with Var(X;;) = ||Tf (t)H% <
(1+ )2 fD|B and, for s < £, E(X; — X;)? = [|TFED 3 < (14 7)) f3,

Notice that for all i Gaussian processes (X; ;) ;c|; are from same distribution. Let X} be
a Gaussian process that is identical to X; ;, except that the Rademacher random variables
are replaced by standard Gaussians. X} and X;; have the same means, variances, and
covariances. Thus, E sup, | X;;| < \/%E sup, | X}|, by Lemma 13.

Let Ny,..., Ny NN (0,1). We will compare X} against the Gaussian process X; =

C'/Var(Xp) = CUEL | £00|],. We have E(X/ — X!')? = §(1-+7)2][f)3, soby Slepian’s

Lemma applied to X} and X}’ and by (2.8) we have

Esup |X;,| < 1/%1Esup]X{| < 1/%\/31Esup|X£'|
t t
T
< JZa+ncf .

Now we apply Markov’s Inequality to get Pr(sup, |X;;| > \%H fM2) < 4, by taking

(1+ ’y)\/LH<N, f®). By the Chaining Inequality, there exists C’ such that Esup |X/| <

C > /%14 )C'd*?/5. From a union bound we find Pr(sup; , |X;,| > \%iﬂf(m) l2) <6

42



Chapter 2. {, heavy hitters algorithm with fewer words

and that event implies sup, |X| < C||f")||2, which is (2.1) and proves that the process is

tame.

1
Vd

transformation (see [1]), hence % < ||d’1/ 27 Tey|| < 3 with probability at least 1 — 2-4 >

For the second claim, we note that the matrix —=Z is itself a type of Johnson-Lindenstrauss

(1 — 8). The last inequality follows by our choice of d. O

Sieve and Selector. In the description of the algorithm, the Sieve and Selector use O(log 1)
many pairwise independent hash functions that are themselves independent. Nominally,
this needs O(logzn) bits. However, as we show in this section, it is sufficient to use
Nisan’s pseudorandom generator [116] to generate the hash functions. This reduces the
random seed length from O(log® ) to O(log 1 loglogn). Recall the definition of a pseu-

dorandom generator.

Definition 17. A function G : {0,1}"™ — {0,1}" is called a pseudorandom generator (PRG)
for space(S) with parameter ¢ if for every randomized space(S) algorithm A and every input to

it we have that

IDy(A(y)) = Dx(A(G(x)) 1 <&

where y is chosen uniformly at random in {0,1}", x uniformly in {0,1}™, and D(-) is the distri-

bution of - as a vector of probabilities.

Nisan’s PRG [116] is a pseudorandom generator for space S with parameter 25 that
takes a seed of length O(Slog R) bits to R bits. The total space used by Sieve and Selector
is O(log n) bits for the algorithm workspace and O(log? 1) bits to store the hash functions.

We will be able to apply Nisan’s PRG because Sieve only accesses the randomness
in O(logn) bit chunks, where the rth chunk generates the 4-wise independent random

variables needed for the rth round, namely B,, ..., B;; and the bits for two instances of

43



Chapter 2. {, heavy hitters algorithm with fewer words
the AMS sketch. We can discard the AMS sketches at the end of each round, but in order

to compute its output after reading the entire stream, Selector needs access to the bit se-
quence by, by, ..., bgr aswell as B,;, for r € [R] and i € [n]. Storing the B random variables,
by their seeds, requires O(log® ) bits. This poses a problem for derandomization with
Nisan’s PRG because it means that Sieve and Selector are effectively a O(log? 1) space
algorithm, even though most of the space is only used to store random bits.

We will overcome this difficulty by derandomizing an auxiliary algorithm. The auxil-
iary algorithm computes a piece of the information necessary for the outcome, specifically
for a given item j € [n] in the stream the auxiliary item will compute N; := #{r | b, = B,;}
the number of times j is on the “winning side” and compare that value to 3R /4. Recall
that the Selector outputs as the heavy hitter a j that maximizes N;. By Lemma 6 for the
AMS case, EN; is no larger than (% + 30)R, if j is not the heavy element, and ENy is
at least (1 — 36)R if H is the heavy element. When the Sieve is implemented with fully
independent rounds, Chernoff’s Inequality implies that Ny > 3R/4 or N; < 3R/4 with
high probability. When we replace the random bits for the independent rounds with bits
generated by Nisan’s PRG we find that for each j with high probability N; remains on the
same side of 3R/4.

Here is a formal description of the auxiliary algorithm. The auxiliary algorithm takes
the sequence 4o, 41, - . ., qr as input (which is independent of the bits we want to replace
with Nisan’s PRG), the stream S, and an item label j, and it outputs whether N; > 3R /4. It
initializes N; = 0, and then for eachround r =1, ..., R it draws O(log n) random bits and
computes the output b, of the round. If b, = B,j then N; is incremented, and otherwise it
remains unchanged during the round. The random bits used by each round are discarded

atits end. At the end of the stream the algorithm outputs 1 if N; > 3R/4.

44



Chapter 2. {, heavy hitters algorithm with fewer words
Lemma 18. Let X € {0,1} be the bit output by the auxiliary algorithm, and let X € {0,1} be

the bit output by the auxiliary algorithm when the random bits it uses are generated by Nisan's

PRG with seed length O(log nloglogn). Then | Pr(X = 1) — Pr(X = 1)| < #

Proof. The algorithm uses O(log ) bits of storage and O(log? 1) bits of randomness. The
claim follows by applying Nisan’s PRG [116] with parameters ¢ = 1/n? and seed length
O(lognloglogn). O

Theorem 19. Sieve and Selector can be implemented with O(log(n) loglogn) random bits.

Proof. Let N; be the number of rounds r for which b, = B,; when the algorithm is imple-
mented with independent rounds, and let Nj be that number of rounds when the algo-
rithm is implemented with Nisan’s PRG. Applying Lemma 18 we have for every item j
that | Pr(Nj > 3R/4) — P(Nj > 3R/4)| < 1/n?. Thus, by a union bound, the probability
that the heavy hitter H is correctly identified changes by no more than n/n? = 1/n. The
random seed requires O(log 1 log log 1) bits of storage, and aside from the random seeds
the algorithms use O(logn) bits of storage. Hence the total storage is O(lognloglogn)
bits. O

2.2.5 F, atall points

One approach to tracking F, at all times is to use the median of O(logn) independent
copies of an F, estimator like the AMS algorithm [6]. A Chernoff bound drives the error
probability to 1/poly(n), which is small enough for a union bound over all times, but it
requires O(log2 n) bits of storage to maintain all of the estimators. The Chaining Inequal-
ity allows us to get a handle on the error during an interval of times. Our approach to
tracking F, at all times is to take the median of O(log ¢ + loglogn) Bernoulli processes.

In any short enough interval—where F, changes by only a (1 + Q)(¢?)) factor—each of

45



Chapter 2. {, heavy hitters algorithm with fewer words

the processes will maintain an accurate estimate of F, for the entire interval, with con-
stant probability. Since there are only O(e 2log?(1)) intervals we can apply Chernoff’s
Inequality to guarantee the tracking on every interval, which gives us the tracking at all
times. This is a direct improvement over the F, tracking algorithm of [76] which for con-
stant € requires O(log n(logn + loglogm)) bits.

The algorithm has the same structure as the AMS algorithm, except we replace their

sketches with instances of JLBP. Theorem 2 follows immediately from Theorem 21.

Algorithm 6 An algorithm for approximating F, at all points in the stream.
procedure F2 ALWAYS(Stream S)
N «+ O(Slz), R + O(log(slzlogn))
x" « JLBP(S) fori € [N]and r € [R].
> Use a (1 £ §)-embedding T in this step.

v = & e IX 1
(t)

return £,” = median,c R{Yr(t)} at each time ¢
end procedure

Lemma 20. Let N = 0(51?) and let Xl.(t), fori = 1,...,N, be independent copies of the
output of JLBP(S) using a fixed (1 £ §)-embedding T on an insertion only stream S. Let
Y, = LN, ||Xl(t)||% Suppose that for two given times 1 < u < v < m the stream satis-
fies 256C2F{") < 2F\"), where F{"?) = Y ( fl.(”:v))2 is the second moment of the change in

the stream. Then
Pr (\Yt — Pz(t)| < sP(t),for allu <t < v) > 1 —26.
Proof. We first write |Y; — Fz(t)] <|Y: =Yyl + Yy — Fz(u)\ + \Fz(t) — Pz(u) |. It follows from the

arguments of AMS and the fact that T is a (1 + ¢/8)-embedding that, with an appropriate

46



Chapter 2. {, heavy hitters algorithm with fewer words

choice for N = O(%), we arrive at

Pr(|Y, — FY| < ZPS”) >1-4. (2.9)

For the third term we have F, () > 2( “) because t > u and the stream is insertion only.

We can bound the difference with

).\ 2
= I+ £ < 1 ||2( ”ﬂfunl’z)

<B(1+7),

where the last inequality follows because C > 2 and ¢ < 1/2.
For the first term, since Xi(t), i € [n], are independent d-dimensional Bernoulli process,

it follows that

is an Nd-dimensional Bernoulli process. By Lemma 5 and due to the fact that X() can
be represented as an output of JLBP procedure, the process X**) = Xt — X(#) s a
tame process, so with probability at least 1 — 4§, for all u < t < v we have || X(®t) 15 <

C? i1 ( f].(um) )2. Therefore, assuming the inequality inside (2.9),

2
(u:t)
Y, = HX(u) ‘I‘X(u:t)H% <Y, (1 + HX H2>

Xl
\/1+€HF“ A
\/1—5 [F@]]
(H 16C)
< E"(1+e/4),

47



Chapter 2. {, heavy hitters algorithm with fewer words

where the last inequality follows because C > 2 and ¢ < 1/2. The reverse bound Y; >
Fz(”) (1 — e/4) follows similarly upon applying the reverse triangle inequality in place of

the triangle inequality. With probability at least 1 — 24,

Vi — B9 ) < [Ye = Yo + Y — B+ B — )

< e < o)

O

Theorem 21. Let S be an insertion only stream and, for t = 1,2,...,m, let Fz(t) =Y fi(t))2

and let ﬁz(t) be the value that is output by Algorithm 6. Then
P(|152(t) - Fz(t)| < sFZ(t),for allt € [m]) >2/3.

It uses O (glz logn (log logn + log %)) bits of space.

Proof. By Lemma 16, the (single) matrix used by all instances of JLBP is a (1 £ ¢/3)-

embedding with probability at least 0.99, henceforth assume it is so. Let o = 0 and

(t) e i

until gx = m for some K. Notice that K = O(Sl2 logn). Here, C is the constant from
Definition 3.
By definition of g; and using the fact that (a — b)? < a? — b? for real numbers 0 < b < a

we have Fz(liiifiiﬂ) < (1:2(071'+1) _ PZ(%')) < 25€62C2 1:2(%')'

Applying Lemma 20 with § = 1/10, we have, for every r € [R] and i > 0 that

POV — ED| < eE), forall g; < t < gi1q) > 0.8.

48



Chapter 2. {, heavy hitters algorithm with fewer words

Thus, by Chernoff bound, the median satisfies

P(|ﬁ2(t) - Fz(t)\ < eFY, for all q; <t <gii1)
1
S1_Rm2sq_ L
>1—e >1 1K’
by our choice of R = 12log4K = O(log(¢2logn)). Thus, by a union bound over all of
the intervals and the embedding T we get P(|ﬁ2(t) - Fz(t)| < BV forallt € [m]) > 2,
which completes the proof of correctness.
The algorithm requires, for the matrix T, the JL transform of Kane, Meka, and Nel-
son [84] with a seed length of O(log(n) log(1logn)) bits, and it takes only O(log(n/¢))
bits of space to compute any entry of T. The algorithm maintains NR = O(e~2log(1 logn))

instances of JLBP which each requires O(log 1) bits of storage for the sketch and random

bits. Therefore, the total storage used by the algorithm is O(¢~2log(n) log(1logn)). O

2.3 BPTree: an ¢/, heavy hitters algorithm using constant
memory

This section is based on [32], work done in collaboration with Braverman V., Chestnut S.,

Woodruff D., Nelson J. and Wang Z.

2.3.1 Introduction

Our contributions. We provide a new one-pass algorithm, BPTree, which in the insertion-
only model solves ¢, heavy hitters and achieves the (¢, 1/¢?)-tail guarantee. For any con-

stant € our algorithm only uses a constant O(1) words of memory, which is optimal. This

49



Chapter 2. {, heavy hitters algorithm with fewer words

is the first optimal-space algorithm for ¢, heavy hitters in the insertion-only model for
constant e. The algorithm is described in Theorem 32.

En route to describing BPTree and proving its correctness we describe another result
that may be of independent interest. Theorem 22 is a new limited randomness supre-
mum bound for Bernoulli processes. Lemma 30 gives a more advanced analysis of the
algorithm of Alon, Matias, and Szegedy (AMS) for approximating || |2 [6], showing that
one can achieve the same (additive) error as the AMS algorithm at all points in the stream,
at the cost of using 8-wise independent random signs rather than 4-wise independent
signs. Note that section 2.2 describes an algorithm using O(loglogn) words that does F,
tracking in an insertion only stream with a multiplicative error (1 £ ¢). The multiplica-
tive guarantee is stronger, albeit with more space for the algorithm, but the result can be
recovered as a corollary to our additive F, tracking theorem, which has a much simplified
algorithm and analysis compared to section 2.2.

After some preliminaries, Section 2.3.2 presents both algorithms and their analyses.
The description of BPTree is split into three parts. Section 2.3.2 states and proves the

chaining inequality. Section 2.3.3 presents the results of some numerical experiments.

Overview of approach. Here we describe the intuition for our heavy hitters algorithm
in the case of a single heavy hitter H € [n] such that f4 > |/f||3. The reduction from
multiple heavy hitters to this case is standard. Suppose also for this discussion we knew a
constant factor approximation to F, := | f||3. Our algorithm and its analysis use several of
the techniques developed in section 2.2. We briefly review that algorithm for comparison.

Both CountSieve and BPTree share the same basic building block, which is a subroutine
that tries to identify one bit of information about the identity of H. The one-bit subroutine

hashes the elements of the stream into two buckets, computes one Bernoulli process in each

50



Chapter 2. {, heavy hitters algorithm with fewer words

bucket, and then compares the two values. The Bernoulli process is just the inner product
of the frequency vector with a vector of Rademacher (i.e., uniform +1) random variables.
The hope is that the Bernoulli process in the bucket with H grows faster than the other
one, so the larger of the two processes reveals which bucket contains H. In order to
prove that the process with H grows faster, section 2.2 introduce a chaining inequality
for insertion-only streams that bounds the supremum of the Bernoulli processes over all
times. The one-bit subroutine essentially gives us a test that H will pass with probability,
say, at least 9/10 and that any other item passes with probability at most 6/10. The high-
level strategy of both algorithms is to repeat this test sequentially over the stream.
CountSieve uses the one-bit subroutine in a two-part strategy to identify ¢, heavy
hitters with O(loglogn) memory. The two parts are (1) amplify the heavy hitter so
fu > (1- m) | fll2 and (2) identify H with independent repetitions of the one-
bit subroutine. Part (1) winnows the stream from, potentially, n distinct elements to
at most n/ poly(log n) elements. The heavy hitter remains and, furthermore, we get
fou > (1- m) || f]|2 because many of the other elements are removed. CountSieve
accomplishes this by running ®(loglogn) independent copies of the one-bit subroutine
in parallel, and discarding elements that do not pass a super-majority of the tests. A stan-
dard Chernoff bound implies that only 1/2°00°8198") — 11 /poly(log n) items survive. Part
(2) of the strategy identifies ©(logn) ‘break-points” where || f||2 of the winnowed stream
increases by approximately a (1 + 1/ logn) factor from one break-point to the next. Be-
cause H already accounts for nearly all of the value of || f||, it is still a heavy hitter within
each of the ®(log n) intervals. CountSieve learns one bit of the identity of H on each in-
terval by running the one-bit subroutine. After all ®(logn) intervals are completed the

identity of H is known.

BPTree merges the two parts of the above strategy. As above, the algorithm runs a

51



Chapter 2. {, heavy hitters algorithm with fewer words

series of ®(log 1) rounds where the goal of each round is to learn one bit of the identity of
H. The difference from CountSieve is that BPTree discards more items after every round,
then recurses on learning the remaining bits. As the algorithm proceeds, it discards more
and more items and H becomes heavier and heavier in the stream. This is reminiscent
of work on adaptive compressed sensing [79], but here we are able to do everything in a
single pass given the insertion-only property of the stream. Given that the heavy hitter
is even heavier, it allows us to weaken our requirement on the two counters at the next
level in the recursion tree: we now allow their suprema to deviate even further from their
expectation, and this is precisely what saves us from having to worry that one of the
O(logn) Bernoulli processes that we encounter while walking down the tree will have a
supremum which is too large and cause us to follow the wrong path. The fact that the
heavy hitter is even heavier also allows us to “use up” even fewer updates to the heavy
hitter in the next level of the tree, so that overall we have enough updates to the heavy

hitter to walk to the bottom of the tree.

Preliminaries. An insertion only stream is a list of items p1, ..., pm € [1]. The frequency
of j at time ¢ is f].(t) =#{i<t|p=j} f¥ ¢ Z%, is called the frequency vector, we denote
o= fm, Fz(t) = ;7:1(fi(t))2, B =Y, f? and Fy = #{j € [n] : f; > 0}. An item
H € [n] is a a-heavy hitter! if f4 > a? Z]-#Hsz = a?(F, — f%). For W C [n], denote
by fO(W) € Z%, the frequency vector at time t of the stream restricted to the items in
W, that is, a copy of f(!) with the ith coordinate replaced by 0 for every i ¢ W. We also
define &) (W) := fO(W) — f&)(W) and K (W) = Yiew f].z. In a case where the stream

is semi-infinite (it has no defined end) m should be taken to refer to the time of a query of

This definition is in a slightly different form from the one given in the introduction, but this form is
more convenient when £ is very close to F,.

52



Chapter 2. {, heavy hitters algorithm with fewer words

interest. When no time is specified, quantities like F, and f refer to the same query time
m.

Our algorithms make use of 2-universal (pairwise independent), 4-wise independent,
and 8-wise independent hash functions. We will commonly denote such a function & :
[n] — [p] where p is a prime larger than 1, or we may use h : [n] — {0,1}%, which
may be taken to mean a function of the first type for some prime p € [28~1,2R). We use
h(x); to denote the ith bit, with the first bit most significant (big-endian). A crucial step
in our algorithm involves comparing the bits of two values a,b € [p]. Notice that, for any
0 <r < [log,p|, wehavea; = b;, forall1 < i <7, if and only if |2 — b| < 2[logy pl—r,
Therefore, the test a; = b;, for all 1 < i < r, can be performed with a constant number of
operations.

We will use, as a subroutine, and also compare our algorithm against CountSketch [39].
To understand our results, one needs to know that CountSketch has two parameters, which
determine the number of “buckets” and “repetitions” or “rows” in the table it stores.
The authors of [39] denote these parameters b and 7, respectively. The algorithm selects,
independently, r functions hy, . .., h, from a 2-universal family with domain [n1] and range
[b] and r functions 07, . . ., 0, from a 2-universal family with domain [n] and range {—1,1}.
CountSketch stores the value Y., (y—; 0°(j) fj, in cell (,7) € [r] x [b] of the table.

In our algorithm we use the notation 1(A) denote the indicator function of the event

A. Namely, 1(A) = 1if A is true and 0 otherwise. We sometimes use x < y to denote

x = O(y).

53



Chapter 2. {, heavy hitters algorithm with fewer words
2.3.2 Algorithm and analysis

We will now describe and analyze the main algorithm, which is broken into several sub-
routines. The most important subroutine is HH1, Algorithm 7, which finds a single O(1)-
heavy hitter assuming we have an estimate ¢ of v/F, such that v/F, < ¢ < 2y/F,. Next is
HH2, Algorithm 8, which removes the assumption entailing ¢ by repeatedly “guessing”
values for ¢ and restarting HH1 as more items arrive. The guessing in HH2 is where we
need F, tracking. Finally, a well known reduction from finding e-heavy hitters to finding
a single O(1)-heavy hitter leads us to the main heavy hitters algorithm BPTree, which is
formally described in Theorem 32.

This section is organized as follows. The first subsection gives an overview of the
algorithm and its analysis. Section 2.3.2 proves the bound on the expected supremum of
the Bernoulli processes used by the algorithm. Section 2.3.2 uses the supremum bound to
prove the correctness of the main subroutine HH1. Section 2.3.2 establishes the correctness
of F, tracking. The subroutine HH2, which makes use of the F, tracker, and the complete

algorithm BPTree are described and analyzed in Section 2.3.2.

Description of the algorithm. The crux of the problem is to identify one K-heavy hit-
ter for some constant K. HH1, which we will soon describe in detail, accomplishes that
task given a suitable approximation ¢ to \/F,. HH2, which removes the assumption of
knowing an approximation o € [v/Fa,2v/Fs], is described in Algorithm 8. The reduction
from finding all e-heavy hitters to finding a single K-heavy hitter is standard from the
techniques of CountSketch; it is described in Theorem 32.

HH1, Algorithm 7, begins with randomizing the item labels by replacing them with

pairwise independent values on R = ©@(logmin{n,¢?}) bits, via the hash function h.

54



Chapter 2. {, heavy hitters algorithm with fewer words

Algorithm 7 Identify a heavy hitter.

procedure HH1(c, p1, p2,...,pm)
R < 3|log,(min{n,0?} +1)|
Initialize b = byby - - - bg = 0 € [28]
Sample h : [n] — {0,1}R ~ 2-wise indep. family
Sample Z € {—1,1}" 4-wise indep.
Xo, X1 <0
r<—1,H+ —1
B+« 3/4,c<1/32
fort=1,2,...,mandr < Rdo
if h(pt); = b, foralli <r —1 then
H « Pt
Xntpo)r < Xntpo). T Zpi
if |Xo + X1| > cof’ then
Record one bit b, < 1(|X1| > |Xo|)
Refresh (Z;)" ;, Xo, X1 <= 0
r<r+1
end if
end if
end for
return H
end procedure

Since n and ¢ > F, are both upper bounds for the number of distinct items in the stream,
R can be chosen so that every item receives a distinct hash value.

Once the labels are randomized, HH1 proceeds in rounds wherein one bit of the ran-
domized label of the heavy hitter is determined during each round. It completes all of
the rounds and outputs the heavy hitter’s identity within one pass over the stream. As
the rounds proceed, items are discarded from the stream. The remaining items are called
active. When the algorithm discards an item it will never reconsider it (unless the al-
gorithm is restarted). In each round, it creates two Bernoulli processes Xy and Xj. In
the rth round, Xy will be determined by the active items whose randomized labels have
their rth bit equal to 0, and X; determined by those with rth bit 1. Let fét), fl(t) € 7%,

be the frequency vectors of the active items in each category, respectively, initialized to

55



Chapter 2. {, heavy hitters algorithm with fewer words

0 at the beginning of the round. Then the Bernoulli processes are X(()t) = (Z, fo(t)> and
th) = (Z, fl(t)>, where Z is a vector of 4-wise independent Rademacher random vari-
ables (i.e. the Z; are marginally uniformly random in {—1,1}).

The rth round ends when |Xo + X;| > cop !, for specified® constants c and B. At
this point, the algorithm compares the values |Xy| and |X;| and records the identity of
the larger one as the rth bit of the candidate heavy hitter. All those items with rth bit
corresponding to the smaller counter are discarded (made inactive), and the next round
is started.

After R rounds are completed, if there is a heavy hitter then its randomized label
will be known with good probability. The identity of the item can be determined by
selecting an item in the stream that passes all of the R bit-wise tests, or by inverting the
hash function used for the label. If it is a K-heavy hitter, for a sufficiently large K = O(1),
then the algorithm will find it with probability at least 2/3. The algorithm is formally
presented in Algorithm 7.

The most important technical component of the analysis is the following theorem,
which is proved in Section 2.3.2. Theorem 22 gives us control of the evolution of | Xy| and

| X1 | so we can be sure that the larger of the two identifies a bit of H.

Theorem 22. If Z € {—1,1}" is drawn from a 4-wise independent family, E sup, |(f1), Z)| <
23 | f 2.

We will use Ci < 23 to denote the optimal constant in Theorem 22.

The key idea behind the algorithm is that as we learn bits of the heavy hitter and
discard other items, it becomes easier to learn additional bits of the heavy hitter’s identity.
With fewer items in the stream as the algorithm proceeds, the heavy hitter accounts for

a larger and larger fraction of the remaining stream as time goes on. As the heavy hitter

2c = 1/32 and B = 3/4 would suffice.

56



Chapter 2. {, heavy hitters algorithm with fewer words

gets heavier the discovery of the bits of its identity can be sped up. When the stream does
not contain a heavy hitter this acceleration of the rounds might not happen, though that
is not a problem because when there is no heavy hitter the algorithm is not required to
return any output. Early rounds will each use a constant fraction of the updates to the
heavy hitter, but the algorithm will be able to finish all R = ®(logn) rounds because
of the speed-up. The parameter  controls the speed-up of the rounds. Any value of
B € (%, 1) can be made to work (possibly with an adjustment to c), but the precise value

affects the heaviness requirement and the failure probability.

Proof of Theorem 22. Let Z € {—1,1}" be random. We are interested in bounding
Esup, |(f*), Z)]. It was shown in [31] that if each entry in Z is drawn independently and
uniformly from {—1,1}, then Esup, |(f), Z)| < ||[f"™]]2. We show that this inequal-
ity still holds if the entries of Z are drawn from a 4-wise independent family, which is

used both in our analyses of HH1 and our F, tracking algorithm. The following lemma is

implied by [67].

Lemma 23 (Khintchine’s inequality). Let Z € {—1,1}" be chosen uniformly at random, and
x € R" a fixed vector. Then for any even integer p, E (Z,x)P < \/p" - || x|)}.

of Theorem 22. To simplify notation, we first normalize the vectorsin { f(0) = 0, f(1), ..., f(m)}
(i.e., divide by || f"™]|2). Denote the set of these normalized vectors by T = {0y, ..., v},
where ||v,||2 = 1. Recall that an e-net of some set of points T under some metric d is a set
of point T’ such that for each t € T, there exists some t' € T such that d(t,t') < ¢. For ev-
ery k € N, we can find a 1/2F-net of T in £, with size |S;| < 2% by a greedy construction
as follows.

To construct an e-net for T, we first take v, then choose the smallest i such that ||v; —

voll2 > ¢ and so on. To prove the number of elements selected is upper bounded by

57



Chapter 2. {, heavy hitters algorithm with fewer words

1/€2, let ug, uy, uy, ..., u; denote the vectors we selected accordingly, and note that the
second moments of 1y — ug, up — uy, ..., uy — u;_q are greater than 2. Because the vectors
u; — u;_1 have non-negative coordinates, ||u¢||5 is lower bounded by the summation of
these moments, while on the other hand |[|1;]|3 < 1. Hence the net is of size at most 1/¢2.

Let S be a set of vectors. Let Z € {—1,1}" be drawn from a p-wise independent family,

where p is an even integer. By Markov and Khintchine’s inequality,

E|{x,Z)|F
Pr([(x, Z)[ > A~ [S|MP - ||x[|2) <
AP -S| x]1f
1 p
L (VP
S| (A)

Hence,

E sup|(x, Z)| :/0 Pr(sup |(x, Z)| > u)du

xeS xX€eS
= |S[V/7 - sup || x>
X€S
/ Pr(sup [(x, Z)| > A - |S['/7 - sup [[x[]2)dA
0 xes X€S
1) p p
< [S|YP - sup ||x|]2 - ( —|—/ <\/—_) d/\)
X€ES \/ﬁ VP A
(union bound)
1
= 1517 sup - V7 (141 )
X€S pP—- 1

Now we apply a similar chaining argument as in the proof of Dudley’s inequality
(cf. [50]). For x € T, let x* denote the closest point to x in Si. Then ||x* — 1|, <
|65 = x||o 4 []x — 2712 < (1/2F) + (1/2%1). Note that if for some x € T one has that

X = v is the closest vector to x in Ty (under /), then the closest vector x;_; to x in

58



Chapter 2. {, heavy hitters algorithm with fewer words

Ty, must either be the frequency vector vy in T;_; such that ¢’ is the smallest timestamp
after t of a vector in Ty_,, or the largest timestamp before t in Ty_;. Thus the size of

{xk — xk=1|x € T} is upper bounded by 2|S;| < 22*1, implying for p = 4

Esup |(x,Z) |<Z]Esup|( — X1 7))

xeT k=1

<3 2P /p <1+—) Yo (2P (1725
k=1

<23.

Identifying a single heavy hitter given an approximation to F,. This section analyzes
the subroutine HH1, which is formally presented in Algorithm 7. The goal of this section
is to prove Lemma 27, the correctness of HH1. We use H € [n] to stand for the identity
of the most frequent item in the stream. It is not assumed to be a heavy hitter unless
explicitly stated.

The first step of HH1 is to choose a hash function 4 : [n] — {0,1}R, for R = O(logn),

that relabels the universe of items [n]. For each r > 0, let

Hy={ie€ n\{H} | h(i)y = h(H)foralll <k <r},

and let #, :== H,_ 1\ H,, with Hy = @ for convenience. By definition, Hgx C Hgr_1 C

- CHo=[n]\{H}, and, in round r € [R], our hope is that the active items are those in
Hy1.

The point of randomizing the labels is as a sort of “load balancing” among the item

labels. The idea is that each bit of i(H) partitions the active items into two roughly equal

59



Chapter 2. {, heavy hitters algorithm with fewer words

H>
Hy 0

Ho 0 0 TR-1p ey
1T p/‘<:
1 Ho 1l 1 7‘_[1{

FIGURE 2.1: In this example of the execution of HH1, the randomized label

h(H) of the heavy hitter H begins with 01 and ends with 00. Each node in the

tree corresponds to a round of HH1, which must follow the path from H, to
‘Hr for the output to be correct.

sized parts, i.e. |H,| = |H,| in every round r. This leads HH1 to discard roughly half of
the active items after each round, allowing us to make progress on learning the (hashed)
identity of a heavy hitter. We will make use of the randomized labels in the next section,
within the proof of Lemma 24.

For h, we recommend choosing a prime p ~ min{n, F,}? and assigning the labels
h(i) = ap + a;i mod p, for ap and a; randomly chosen in {0,1,...,p — 1} and a; # 0.
We can always achieve this with R = 3log, (min{n, F,} + 1), which is convenient for the
upcoming analysis. This distribution on / is known to be a 2-wise independent family
[35]. Note computing k(i) for any i takes O(1) time. It is also simple to invert: namely
x =a; ' (h(x) — ag) mod p, so x can be computed quickly from /(x) when p > n. Invert-
ing requires computing the inverse of 21 modulo p, which takes O(log min{n, F,}) time
via repeated squaring, however this computation can be done once, for example during
initialization of the algorithm, and the result stored for all subsequent queries. Thus, the

time to compute a; !

mod p is negligible in comparison to reading the stream.
After randomizing the labels HH1 proceeds with the series of R rounds to identify
the (randomized) label h(H) of the heavy hitter H. The sequence of rounds is depicted

in Figure 2.1. Each node in the tree corresponds to one round of HH1. The algorithm

60



Chapter 2. {, heavy hitters algorithm with fewer words

traverses the tree from left to right as the rounds progress. Correctness of HH1 means
it traverses the path from Hy to Hg. The 0/1 labels on the path leading to Hy are the
bits of h(H), and when R = O(logn) is sufficiently large we get Hr = {H} with high
probability. Thus the algorithm correctly identifies #(H), from which it can determine H
with the method discussed earlier.

Now let us focus on one round and suppose that H is a K-heavy hitter, for some large
constant K. Suppose the algorithm is in round » > 1, and recall that the goal of the round
is to learn the rth bit of h(H). Our hope is that the active items are those in #,_1 (other-
wise the algorithm will fail), which means that the algorithm has correctly discovered the
first r — 1 bits of h(H). The general idea is that HH1 partitions #,_1 U {H} into #, U {H}
and #H,, creates a Bernoulli process for each of those sets of items, and compares the val-
ues of the two Bernoulli processes to discern h(H),. Suppose that the active items are
indeed H,_; and, for the sake of discussion, that the rth bit of the heavy hitter’s label is
h(H), = 0. Then the Bernoulli processes Xy and X, defined in Algorithm 7, have the

following form

Xo(t) = ZufS + ¥ ZifSY, xo(t) = Yz 5,
i€H, i€,

where s < m is the time of the last update to round » — 1 and ¢ is the current time.
To simplify things a little bit we adopt the notation f(S) for the frequency vector re-
stricted to only items in S. For example, in the equations above become Xy = Zy fI({S 4
(Z, fED(Hy)) and Xy = (Z, &I (Hy)).

The round is a success if |Xg| > |Xi| (because we assumed h(H), = 0) at the first
time when |Xy 4+ X1| > cop’. When that threshold is crossed, we must have |Xy| >

coB’/2, |X1| > coB’/2, or both. The way we will ensure that the round is a success is by

61



Chapter 2. {, heavy hitters algorithm with fewer words
establishing the following bound on the Bernoulli process X;: |X1| = [(Z, f&)(H,))| <

cop’/2, for all times t > s. Of course, the round does not end until the threshold is
crossed, so we will also establish a bound on the complementary Bernoulli process | Xy —
ZHfI({S:t)| = [(Z, fSD(T,))| < coB’/2, at all times t > s. When this holds we must
have | Xy + X1| > coB" no later than the first time t where fl(qs B> 2cof’, so the round
ends after at most 2cof” updates to H. In total over all of the rounds this uses up no
more than },~¢2cof” < fi updates to H, where we have used ¢ < 2\/F, < 3fy by our
assumption that H is a heavy hitter. In truth, both of those inequalities fail to hold with
some probability, but the failure probability is O(1/8727/?) so the probability that the
algorithm succeeds will turn out tobe 1 — Y_,-, O(1/872"/2) > 2/3.

The next lemma establishes the control on the Bernoulli processes that we have just
described (compare the events E; with the previous paragraph). We will use it later with
K ~ B’ so that, while the rounds progress, the upper bounds on the process maxima
and the failure probabilities both decrease geometrically as desired. This means that the
lengths of the rounds decreases geometrically and the latter means that a union bound

suffices to guarantee that all of the events E; occur. In our notation F, — f% = F»(Hy).

Lemma 24. Foranyr € {0,1,...,R} and K > 0, the events

Eyr1 = {max | <z,f<51f>(’ﬂr)> | < KFZ(HO)VZ}

s,t<m

and
£ i= {max| (2,150 () )| < KEa(0) 2

4C*
K2r/2

have respective probabilities at least 1 — of occurring, where C, < 23 is the constant from

Theorem 22.

62



Chapter 2. {, heavy hitters algorithm with fewer words

Proof. By the Law of Total Probability and Theorem 22 with Markov’s Inequality we have

Pr (r;gg (Z, fOH) = %KFz(”Ho)l/Z)
—E {Pr (Igg (Z, fO (M) > %KPz(”Ho)l/z

S]E{zc:,fz(”ﬂr)l/z}< 2C.Fy(Ho)'/?

"))

KFy(Ho)Y/2 | = KEy(Ho)l/221/27

where the last inequality is Jensen’s. The same holds if H, is replaced by #,.

Applying the triangle inequality to get
(Z, FED (M) < K2, FO (M) + (2, FO (M)

we then find P(Ep,) > 1 — %. A similar argument proves P(Ep,—1) > 1 — %. O

From here the strategy to prove the correctness of HH1 is to inductively use Lemma 24
to bound the success of each round. The correctness of HH1, Lemma 27, follows directly
from Lemma 25.

Let U be the event {h(j) # h(H) forall j # H, f; > 0} which has, by pairwise inde-

pendence, probability Pr(U) > 1— F2 R > 1 — recalling that Fy < min{n, F,}

1
min{n,F, }2’
is the number of distinct items appearing before time m. The next lemma is the main

proof of correctness for our algorithm.

Lemma 25. Let K' > 128, ¢ = 1/32, and B = 3/4. If 2K'Ci\/F2(Hy) <0 < 2\/§fH and

fu > 2K'Cy\/F2(Ho) then, with probability at least 1 — min{}jz e K,C(\/Siﬁfl)

the algorithm
HH1 returns H.

Proof. Recall that H is active during round r if it happens that h(H); = b;, forall 1 <i <

r — 1, which implies that updates from H are not discarded by the algorithm during round

63



Chapter 2. {, heavy hitters algorithm with fewer words
r. Let K = K(r) = K'cC.B" in Lemma 24, and let E be the event that U and ﬂ%ﬁlEr both

occur. We prove by induction on r that if E occurs then either b, = h(H),, for all r € [R] or
H is the only item appearing in the stream. In either case, the algorithm correctly outputs
H, where in the former case it follows because E C U.

Let r > 1 be such that H is still active in round 7, i.e. b; = h(H); forall1 <i <r—1.
Note that all items are active in round 1. Since H is active, the remaining active items are
exactly H, 1 = H, U H,. Let t, denote the time of the last update received during the rth

round, and define t) = 0. Attime t,_1 <t < t, we have

C(Tﬁr > ’XO + Xﬂ
— ’<Z’f(tr71:t)(7_[r UH,)) + ZHngl:t”

2 fI(;r—l:t) o K(i" o 1)1:'2(7_[0)1/2,

where the last inequality follows from the definition of E;(,_;). Rearranging and using

the assumed lower bound on ¢, we get the bound

K(r—1 1
K(r —1)F(H)Y? < Z(%C*)a = EcaﬁH. (2.10)

Therefore, by rearranging we see £ < 14 fli=1") < 14 3co8~1. That implies

P(It”) =Y fg"*lztk) <r+3coyi  p<r+ i{iﬁcf;{ Thus, if fy — %{%f;{ > R then

round r < R is guaranteed to be completed and a further update to H appears after the

round. Suppose, that is not the case, and rather R > fy — 31‘_[2; fu > % fu, where the last

inequality follows from our choices f = 3/4 and ¢ = 1/32. Then, by the definition of R,
9(1+log, 8f%)% > R* > 1f%. One can check that this inequality implies that f < 104.

Now K’ > 128 and the heaviness requirement of H implies that F,(#) = 0. Therefore, H

64



Chapter 2. {, heavy hitters algorithm with fewer words

is the only item in the stream, and, in that case the algorithm will always correctly output
H.

Furthermore, at the end of round 7, | Xy + X1| > cop’, so we have must have either
|Xo| > cop’/2 or | X1| > cop”/2. Both cannot occur for the following reason. The events
Ep—1 and Ej, occur, recall these govern the non-heavy items contributions to Xy and Xj,

and these events, with the inequality (2.10), imply
: 1
(Z, fUr=20 (1)) | < K(r)Fa(Ho) '/ < Scop’

and the same holds for #,. Therefore, the Bernoulli process not including H has its value
smaller than co8”/2, and the other, larger process identifies the bit #(H),. By induction,
the algorithm completes every round r = 1,2, ..., R and there is at least one update to H
after round R. This proves the correctness of the algorithm assuming the event E occurs.

It remains to compute the probability of E. Lemma 24 provides the bound

1 R 8C
Pr(Uand M5 E) >1— ————m =) =
r(Uand N2 Ej) > min{n, F,}? E)szrm
SR N W
= min{n, F2}2 = K’cﬁ’27/2
1 8

>1-

min{n, L}2  K'c(v2B—1)
[

Proposition 26. Let « > 1. Iszl/2 <o < 21321/2 and fr > a\/F(Ho) then a\/F(Hy) <
o< 2\/§fH-

Proof. 0> > B, > ff = B, — Fa(Ho) > (1 — L) B > g02. O

65



Chapter 2. {, heavy hitters algorithm with fewer words
Lemma 27 (HH1 Correctness). There is a constant K such that if H is a K-heavy hitter and

VE < 0 < 2V/F, then with probability at least 2 /3 algorithm HHI returns H. HHI uses O(1)

words of storage.

Proof. The Lemma follows immediately from Proposition 26 and Lemma 25 by setting

K’ = 213 which allows K = 214C, < 380, 000. O

F, Tracking. This section proves that the AMS algorithm with 8-wise, rather than 4-wise,
independent random signs has an additive eF, approximation guarantee at all points in
the stream. We will use the tracking to “guess” a good value of ¢ for input to HH1, but,
because the AMS algorithm is a fundamental streaming primitive, it is of independent
interest from the BPTree algorithm. The following theorem is a direct consequence of

Lemma 30 and [6].

Theorem 28. Let 0 < ¢ < 1. There is a streaming algorithm that outputs at each time t a value
ﬁz(t) such that Pr(\ﬁz(t) - Fz(t)| <eh, forall0 <t <m) >1—4. Thealgorithm use O(gl2 log })

words of storage and has O(Sl2 log }) update time.

Let us remark that it follows from Theorem 28 and a union bound that one can achieve
a (14 &) multiplicative approximation to F, at all points in the stream using O(e =2 log log m)
words. The proof that this works breaks the stream into O(logm) intervals of where the
change in F, doubles.

In its original form [6], the AMS sketch is a product of the form I1f, where II is a
random k X n matrix chosen with each row independently composed of 4-wise inde-
pendent +1 random variables. The sketch uses k = ©(1/¢?) rows to achieve a (1 + ¢)-
approximation with constant probability. We show that the AMS sketch with k ~ 1/¢?

rows and 8-wise independent entries provides ¢»-tracking with additive error €| f ||, at all

66



Chapter 2. {, heavy hitters algorithm with fewer words
times. We define v; = f) /| f(" |, so ||vs|l < 1, forall t > 0, and ||vy, |2 = 1. Define

T = {vo,v1,...,9m}. We use ||A|| to denote the spectral norm of A, which is equal to its
largest singular value, and || A||r for the Frobenius norm, which is the Euclidean length
of A when viewed as a vector. Our proof makes use of the following moment bound for
quadratic forms. Recall that given a metric space (X, d) and € > 0, an e-net of X is a subset

N C X such thatd(x, N) = inf,cnd(x,y) < eforall x € X.

Theorem 29 (Hanson-Wright [70]). For B € R™"*" symmetric with (Z;) uniformly random in
{=1,1}" forallp > 1,||Z'BZ ~EZ'BZ|, < \/p|IBllr + p| B

Observe the sketch can be written IIx = A,Z, where

1 k n
k;];xel@)e i—1)+j
—x— 0 0
1 0 —x— 0
- Vk
0 0 —x—

We are thus interested in bounding Ez sup,.; |ZTB,Z — EZ"B,Z| for B, = AL A,. Note
forany |x[|2, |lyll2 <1,
lxx™ —yy "Il < 4]lx = yll2. (2.11)

Lemma 30 (F, tracking). Ifk > 1/e> and Z € {—1,+1}" are 8-wise independent then

B sup 113 — |17 1] < el fI

67



Chapter 2. {, heavy hitters algorithm with fewer words
Proof. Let Ay, x € T, as defined above and B, = AzAx. By (2.11),

4
| By — ByHF < _ka —yll2

&l

forall x,y € T. In particular,

sup [[B.|| < sup [[Bllr < 1/Vk.

xeT xeT

Let T) be a (1/2%)-net of T under /»; we know we can take |T;| < 4¢. By = {By: x € Ty}
isa 1/+v/k2f-net under || - || and also under || - ||r. For x € T, let x, € T; denote the closest
element in Ty, under ¢,. Then we can write By = By, + 220:1 Ay, where Ay, = By, — By, ,.
For brevity, we will also define y(A) = |ZTAZT — EZTAZT|. Thus if the (Z;) are 2p-wise

independent

E sup y(Byx) < Esupy(By,) + Esup Z ¥(Ax,)
xeT xeT x€T p=1

S Py Z E sup y(Ax,) (2.12)
k /=1 xeT

If A € R"" is symmetric, then by the Hanson-Wright Inequality

rea() > 251 < L [(CEIALY (Colaly

1
S A

68



Chapter 2. {, heavy hitters algorithm with fewer words

for some constant C > 0. Thus if A is a collection of such matrices, | A| = S, choosing
' = C(yP-supaca [AlF+p-supye 4 [1A]])

Esup y(A) = / Pr(sup y(A) > u)du
AeA 0 AeA

— sl/P-/ Pr(sup 7(A) > A - SP)dA
0 AcA

= SYP(u* +/ Pr(sup y(A) > A-SVP)dA)
ur AeA

S SYP(Vp-sup [|Allp +p - sup [|A]) (2.13)
AeA AeA
Now by applying (2.13) to (2.12) repeatedly with
A=A, ={By,— By, ,: x €T},

noting sup ¢ 4, [|Al] < supcq, [AllF < 1/Vk2! and |Ay| < 2|Ty| <2-2%,

-/

é

2
<
~Y

E sup y(Bx) <P 4 Z 7k %

xeT ~ \/_

for p > 4. Thus it suffices for the entries of Z to be 2p-wise independent, i.e. 8-wise

independent. =

The complete heavy hitters algorithm We will now describe HH2, formally Algorithm 8,
which is an algorithm that removes the assumption on ¢ needed by HH1. It is followed by
the complete algorithm BPTree. The step in HH2 that guesses an approximation ¢ for /F,
works as follows. We construct the estimator F, of the previous section to (approximately)
track F,. HH2 starts a new instance of HH1 each time the estimate F, crosses a power of

2. Each new instance is initialized with the current estimate of v/F, as the value for o,

69



Chapter 2. {, heavy hitters algorithm with fewer words

Algorithm 8 Identify a heavy hitter by guessing c.
procedure HH2(py, p2,...,pm)
Run £, from Theorem 28 with e = 1/100 and § = 1/20
Start HH1 (1, p1,..., pm)
Letty) = 1 and #; = min{t | ﬁz(t) > 2K, fork > 1.
for each time t; do
Start HH1((B")'/2, py,, py 41, - )
Let Hy denote its output if it completes
Discard H_, and the copy of HH1 started at t;_»
end for
return H;_4
end procedure

but HH2 maintains only the two most recent copies of HH1. Thus, even though, overall,
it may instantiate Q(logn) copies of HH1 at most two will running concurrently and the
total storage remains O(1) words. At least one of the thresholds will be the “right” one,
in the sense that HH1 gets initialized with ¢ in the interval [/F,, 21/F], so we expect the
corresponding instance of HH1 to identify the heavy hitter, if one exists.

The scheme could fail if £, is wildly inaccurate at some points in the stream, for ex-
ample if £, ever grows too large then the algorithm could discard every instance of HH1
that was correctly initialized. But, Theorem 28 guarantees that it fails only with small
probability.

We begin by proving the correctness of HH2 in Lemma 31 and then complete the de-

scription and correctness of BPTree in Theorem 32.

Lemma 31. There exists a constant K > 0 and a 1-pass streaming algorithm HH2, Algorithm 8,
such that if the stream contains a K-heavy hitter then with probability at least 0.6 HH2 returns the

identity of the heavy hitter. The algorithm uses O(1) words of memory and O(1) update time.

Proof. The space and update time bounds are immediate from the description of the algo-

rithm. The success probability follows by a union bound over the failure probabilities in

70



Chapter 2. {, heavy hitters algorithm with fewer words

Lemma 27 and Theorem 28, which are 1/3 and J = 0.05 respectively. It remains to prove
that there is a constant K such that conditionally given the success of the F, estimator, the
hypotheses of Lemma 27 are satisfied by the penultimate instance of HH1 by HH2.

Let K’ denote the constant from Lemma 27 and set K = 12K/, so if H is a K-heavy
hitter then for any « > 2/K and in any interval (t, #| where (132(#))1/2 — (lfz(t))l/2 > av/F

we will have

£ B2 2 1 e 2 1 = 1V > « /B

If follows with in the stream py, py41, . .., pr the heaviness of H is at least

(t:t") _
i s wWh—Vh(H) | g Ke (2.14)
Fz(t.t)(fHO)l/z E(Ho) 2

Of course, if Pz(t:t/) (Ho) = 0 the same heaviness holds.

Let k be the last iteration of HH2. By the definition of t;, we have (Az(t"‘l))l/ 2 >
HE)YV?2 > 1,/(1—¢)F. Similar calculations show that there exists a time £, > f;_4
such that (F{'))1/2 — (B )1/2 > 1P, and |ffc ||y < (B V)12 < 2| fie . Tn
particular, the second pair of inequalities implies that ﬁz(t"fl) is a good “guess” for o on
the interval (t;_q,t*]. We claim H is a K’ heavy hitter on that interval, too. Indeed, be-
cause of (2.14), with « = 1/6, we get that H is a K’-heavy hitter on the interval (¢;_1,t*].
This proves that the hypotheses of Lemma 27 are satisfied for the stream p;,_ 11,..., ps.
It follows that from Lemma 27 that HH1 correctly identifies Hy_; = H on that substream

and the remaining updates in the interval (¢, t,,] do not affect the outcome. N

A now standard reduction from e-heavy hitters to O(1)-heavy hitters gives the fol-

lowing theorem. The next section describes an implementation that is more efficient in

71



Chapter 2. {, heavy hitters algorithm with fewer words

practice.

Theorem 32. For any € > 0 there is 1-pass streaming algorithm BPTree that, with probability
at least (1 — 6), returns a set of 5-heavy hitters containing every e-heavy hitter and an approxi-
mate frequency for every item returned satisfying the (¢, 1/€>)-tail guarantee. The algorithm uses

O(% log ) words of space and has O(log ) update and O(e2log 2 ) retrieval time.

Proof. The algorithm BPTree constructs a hash table in the same manner as CountSketch
where the items are hashed into b = O(1/¢?) buckets for r = O(log1/&d) repetitions.
On the stream fed into each bucket we run an independent copy of HH2. A standard
r x b CountSketch is also constructed. The constants are chosen so that when an e-heavy
hitter in the stream is hashed into a bucket it becomes a K-heavy hitter with probability at
least 0.95. Thus, in any bucket with a the e-heavy hitter, the heavy hitter is identified with
probability atleast 0.55 by Lemma 31 and the aforementioned hashing success probability.

At the end of the stream, all of the items returned by instances of HH2 are collected and
their frequencies checked using the CountSketch. Any items that cannot be e-heavy hitters
are discarded. The correctness of this algorithm, the bound on its success probability, and
the (e, 1/¢?)-tail guarantee follow directly from the correctness of CountSketch and the fact

that no more than O(e 2 log(1/5¢)) items are identified as potential heavy hitters. O

We can amplify the success probability of HH2 to any 1 — ¢ by running O(log(1/9))
copies in parallel and taking a majority vote for the heavy hitter. This allows one to
track O(1)-heavy hitters at all points in the stream with an additional O(loglogm) fac-
tor in space and update time. The reason is because there can be a succession of at most
O(logm) 2-heavy hitters in the stream, since their frequencies must increase geometri-

cally, so setting &6 = ®(1/ logm) is sufficient. The same scheme works for BPTree tree, as

72



Chapter 2. {, heavy hitters algorithm with fewer words

well, and if one replaces each of the counters in the attached CountSketch with an F,-at-
all-times estimator of [31] then one can track the frequencies of all e-heavy hitters at all
times as well. The total storage becomes O(Elz(log logn +1log 1)) words and the update

time is O(loglog n + log 1).

2.3.3 Experimental Results

We implemented HH2 in C to evaluate its performance and compare it against the CountS-
ketch for finding one frequent item. The source code is available from the authors upon
request. In practice, the hashing and repetitions perform predictably, so the most impor-
tant aspect to understand the performance of BPTree is determine the heaviness constant
K where HH2 reliably finds K-heavy hitters. Increasing the number of buckets that the
algorithm hashes to effectively decreases n. Therefore, in order to maximize the “effec-
tive” n of the tests that we can perform within a reasonable time, we will just compare
CountSketch against HH2.

The first two experiments help to determine some parameters for HH2 and the heavi-
ness constant K. Afterwards, we compare the performance of HH2 and CountSketch for
tinding a single heavy hitter in the regime where the heavy hitter frequency is large
enough so that both algorithms work reliably.

Streams. The experiments were performed using four types of streams (synthetic
data). In all cases, one heavy hitter is present. For a given n and « there are n items
with frequency 1 and one item, call it H, with frequency a+/7. If « is not specified then it
is taken to be 1. The four types of streams are (1) all occurrences of H occur at the start of
the stream, (2) all occurrences of H at the end of the stream, (3) occurrences of H placed

randomly in the stream, and (4) occurrences of H placed randomly in blocks of n'/4.

73



Chapter 2. {, heavy hitters algorithm with fewer words

avg. maximum F, tracking error | worst maximum F, tracking error
b\r 1 2 4 8 16 1 2 4 8 16
112 071 1082 |0.66 |059 |43 1.2 2.7 0.85 | 0.86
10 1 035 | 030 [033 | 019 |0.16 |1.1 068 | 091 |0.28 |0.20
100 | 0.12 | 0.095 | 0.080 | 0.074 | 0.052 | 0.24 |0.17 | 0.13 | 0.13 | 0.10
1000 | 0.044 | 0.030 | 0.028 | 0.018 | 0.017 | 0.076 | 0.060 | 0.045 | 0.029 | 0.024

TABLE 2.3: Average and maximum F, tracking error over 10 streams for dif-
ferent choices of b and r.

The experiments were run on a server with two 2.66GHz Intel Xenon X5650 proces-
sors, each with 12MB cache, and 48GB of memory. The server was running Scientific

Linux 7.2.

F, tracking experiment. The first experiment tests the accuracy of the F, tracking for
different parameter settings. We implemented the F, tracking in C using the speed-up of
[140]. The algorithm uses the same r x b table as a CountSketch. To query F, one takes the
median of r estimates, each of which is the sum of the squares of the b entries in a row of
the table. The same group of ten type (3) streams with n = 10% and a = 1 was used for
each of the parameter settings.

The results are presented in Table 2.3. Given the tracker F,(t) and true evolution of
the second moment F,(t), we measure the maximum F, tracking error of one instance
as max; |F>(t) — F2(t)|/ F,, where F; is the value of the second moment at the end of the
stream. We report the average maximum tracking error and the worst (maximum) maxi-
mum tracking over each of the ten streams for every choice of parameters.

The table indicates that, for every choice of parameter settings, the worst maximum
tracking error is not much worse than the average maximum tracking error. We observe
that the tracking error has relatively low variance, even when r = 1. It also shows that

the smallest possible tracker, with = b = 1, is highly unreliable.

74



Chapter 2. {, heavy hitters algorithm with fewer words

Implementations of HH2 and CountSketch. HH2 implementation details. We have
implemented the algorithm HH2 as described in Algorithm 8. The maximum number of
rounds is R = min{[3log, n|,64}. We implemented the four-wise independent hashing
using the “CW” trick using the C code from [141] Appendix A.14. We use the code from
Appendix A.3 of [141] to generate 2-universal random variables for random relabeling of
the item. The F, tracker from the previous section was used, we found experimentally
that setting the tracker parameters as r = 1 and b = 30 is accurate enough for HH2. We
also tried four-wise hashing with the tabulation-based hashing for 64-bit keys with 8 bit
characters and compression as implemented in C in Appendix A.11 of [141]. This led to
a 48% increase in speed (updates/millisecond), but at the cost of a 55 times increase in
space.

CountSketch implementation details. We implemented CountSketch in C as described
in the original paper [39] with parameters that lead to the smallest possible space. We use
the CountSketch parameters as b = 2 (number of buckets/row) and r = [3 4 log, | (num-
ber of rows). The choice of b is the smallest possible value. The choice of r is the minimum
needed to guarantee that, with probability 7/8, there does not exist an item i € [n] \ {H}
that collides the heavy hitter in every row of the data structure. In particular, if we use
only ¥ < r rows then we expect 2logs N=" o llisions with the heavy hitter, which would
break the guarantee of the CountSketch. Indeed, suppose there is a collision with the
heavy hitter and consider a stream where all occurrences of H appear at the beginning,
then CountSketch will not correctly return H as the most frequent item because some item
that collides with it and appears after it will replace H as the candidate heavy hitter in
the heap. In our experiments, the CountSketch does not reliably find the a-heavy hitter
with these parameters when a < 32. This gives some speed and storage advantage to the

CountSketch in the comparison against HH2, since b and/or r would need to increase to

75



Chapter 2. {, heavy hitters algorithm with fewer words

i S — —

—o— (1) start
—=—  (2)end
—e—(3) random
* —— (4) blocks | |

16 32 64

success rate
(@»)
@) ]
T
|

—_
N e
I
Qo

FIGURE 2.2: Success rate for HH2 on four types of streams with n = 10% and
heavy hitter frequency a+/n.

make CountSketch perform as reliably as HH2 during these tests.

We also tried implementing the four-wise hashing with the Thorup-Zhang tabulation.
With the same choices of b and r this led to an 18% speed-up and a 192 times average
increase in space. Since the hash functions are such a large part of the space and time
needed by the data structure this could likely be improved by taking b > 2, e.g. b = 100,
and r ~ [log, n]. No matter what parameters are chosen the storage will be larger than

using the CW trick because each tabulation-based hash function occupies 38kB, which

already ten times larger than the whole CountSketch table.

Heaviness. The goal of this experiment is to approximately determine the minimum
value K where if fyy > Ky/n then HH2 correctly identifies H. As shown in Lemma 31,
K < 12 -380,000 but we hope this is a very pessimistic bound. For this experiment, we
take n = 108 and consider a € {1,2, 22 .. .,26}. For each value of « and all four types
of streams we ran HH2 one hundred times independently. Figure 2.2 displays the success
rate, which is the fraction of the one hundred trials where HH2 correctly returned the

heavy hitter. The figure indicates that HH2 succeeds reliably when a > 32.

76



Chapter 2. {, heavy hitters algorithm with fewer words

6,000 ‘ : : ‘
2
& 4
34,000 =
£ <
T
3,000 2 &
8 G
S

0 L * L —a

100 107 108 10°

FIGURE 2.3: Update rate in updates/ rr?s (e) and storage in kB (o) for HH2 and
CountSketch (m and o, respectively) with the CW trick hashing.
HH2 versus CountSketch comparison. In the final experiment we compare HH2 against
CountSketch. The goal is to understand space and time trade-off in a regime where both
algorithms reliably find the heavy hitter.

For each choice of parameters we compute the update rate of the CountSketch and HH2
(in updates/millisecond) and the storage used (in kilobytes) for all of the variables in the
associated program. The results are presented in Figure 2.3.

The figure shows that HH2 is much faster and about one third of the space. The dra-
matic difference in speed is to be expected because two bottlenecks in CountSketch are
computing the median of the @(logn) values and evaluating ©(logn) hash functions.
HH2 removes both bottlenecks. Furthermore, as the subroutine HH1 progresses a greater
number of items are rejected from the stream, which means the program avoids the asso-
ciated hash function evaluations in HH2. This phenomena is responsible for the observed
increase in the update rate of HH2 as 7 increases. An additional factor that contributes to
the speedup is amortization of the start-up time for HH2 and of the restart time for each

copy of HH1.

77



Chapter 2. {, heavy hitters algorithm with fewer words

Experiments summary. We found HH2 to be faster and smaller than CountSketch. The
number of rows strongly affects the running time of CountSketch because during each up-
date r four-wise independent hash functions must be evaluated and of a median r values
is computed. The discussion in Section 2.3.3 explains why the number of rows r cannot be
reduced by much without abandoning the CountSketch guarantee or increasing the space.
Thus, when there is a K-heavy hitter for sufficiently large K our algorithm significantly
outperforms CountSketch. Experimentally we found K = 32 was large enough.

The full BPTree data structure is needed to find an item with smaller frequency, but
for finding an item of smaller frequency CountSketch could outperform BPTree until n
is very large. For example, to identify an a-heavy hitter in the stream our experiments
suggest that one can use a BPTree structure with about [(32/a)?] buckets per row. In
comparison a CountSketch with roughly max{2,1/a?} buckets per row should suffice.
When « is a small constant, e.g. 0.1, what we find is that one can essentially reduce the
number rows of the data structure from log(n) to just a few, e.g. one or two, at the cost
of a factor 322 = 1024 increase in space.? This brief calculation suggests that CountSketch

21024__which is to say

will outperform BPTree when the heaviness is « < 1 until n 2
always in practice. On the other hand, our experiments demonstrate that HH2 clearly
outperforms CountSketch with a sufficiently heavy heavy hitter. More experimental work
is necessary to determine the heaviness threshold (as a function of n) where BPTree out-
performs CountSketch. There are many parameters that affect the trade-offs among space,

time, and accuracy, so such an investigation is beyond the scope of the preliminary results

reported here.

3Recall, Q(logn/log(1/a)) rows are necessary CountSketch whereas BPTree needs only O(log1/«)
TOWS.

78



Chapter 2. {, heavy hitters algorithm with fewer words
2.4 Conclusion

In this chapter we studied the heavy hitters problem, which is arguably one of the most
important problems for data streams. The problem is heavily inspired from practice and
algorithms for it are used in commercial systems. We presented two results leading to the
first space and time optimal algorithm for finding ¢>-heavy hitters, which is the strongest
notion of heavy hitters achievable in polylogarithmic space. By optimal, we mean the
time is O(1) to process each stream update, and the space is O(logn) bits of memory.
These bounds match trivial lower bounds (for constant ). We also provided new tech-
niques which may be of independent interest: (1) a one-pass implementation of a multi-
round adaptive compressed-sensing scheme where we use that after filtering a fraction of
items, the heavy item is becoming even heavier (2) a derandomization of Bernoulli pro-
cesses relevant in this setting using limited independence. Both are essential in obtaining
an optimal heavy hitters algorithm with O(1) memory. Technique (1) illustrates a new
power of insertion-only streams and technique (2) can be stated as a general chaining re-
sult with limited independence in terms of the size of the nets used. Given the potential
practical value of such an algorithm, we provided preliminary experiments showing our

savings over previous algorithms.

79



Chapter 3

Monitoring the Network with Interval

Queries

This chapter is based on the work done in collaboration with Liu Z., Braverman V., Ben-

Basat R., Einziger G. and Friedman R.

3.1 Introduction

Network monitoring is at the heart of many networking protocols and network functions,
such as traffic engineering [18], load balanced routing [108, 146], attack and anomaly de-
tection [15, 52, 111, 128], and forensic analysis [88, 131]. Over the years, a large number of
metrics have been defined, including per-flow frequency [51, 145], heavy hitter detection [16,
43], distinct heavy hitters [56], cardinality estimation [58, 71, 73], change detection [59], en-
tropy estimation [9, 118], and more. With limited memory and computing resources on
the network device, it is often infeasible to compute these statistics at line rate. Thus,
approximated results are often a reasonable choice [145].

Interestingly, all the above metrics can be efficiently measured by streaming algo-

rithms with a small amount of memory. To that end, [29] has shown that any metric

80



Chapter 3. Monitoring the Network with Interval Queries

computable in polylogarithmic time per packet, can be obtained from the per-flow fre-
quency and the Ly-norm of the subsets of the flows in the stream. In other words, in-
stead of maintaining separate data-structures and algorithms for each possible metric,
it is enough to estimate the flow frequencies and Ly-norm as promoted by the seminal
UnivMon work [101].

Since computer networks usually operate continuously, for many applications, it is
particularly important to measure the network statistics that only reflect the recent traf-
fic. This model is known as the sliding window model [46], where the metrics are always
computed over a fixed-size window of recent data.

However, a measurement on a window of fixed size does not provide visibility into
any intervals within the window, e.g., a heavy hitter detection algorithm computed over
a 1 min window might not easily detect a 3-second microburst flow. Thus we are inter-
ested in a more refined model in which the application provides a time interval of interest
at query time. That is, the desired metric is estimated over a specific time interval rather
than on a fixed sized sliding window. We refer to this model as the Interval Queries (IQ)
model. This model is useful when there are multiple interesting intervals, or if the win-
dow of interest is not known a-priory. Also, it enables performing drill-down queries of
finer and finer intervals and comparing what happens at various intervals for root cause
analysis. For example, a security application may use the IQ model to determine exactly
when a suspicious pattern has emerged and how it changed over time. The IQ model
was previously studied for Ly heavy hitters in [14]. Yet, that work is limited to flow size
estimation and L; heavy hitters only. In [115], work done in collaboration of Ivkin, Liu,
Ben-Basat, Einziger, Friedman, and Bravermane, we introduce the first set of measure-
ment algorithms for L, heavy hitters and L, estimation in the IQ model. Further, we

extend our techniques to adapt UnivMon [101] the IQ model queries, where a variety of

81



Chapter 3. Monitoring the Network with Interval Queries

traffic statistics can be efficiently measured. Therefore, we are the first to facilitate drill-
down queries for a large variety of useful metrics using sub-linear space. We evaluate
our algorithms using real Internet traces and show that they achieve good accuracy for

network measurement tasks within acceptable memory space limitations.

3.2 Preliminaries

As it was introduced in Section 3.2 the streaming model targets the applications where the
data items arrive sequentially, and each item is only accessed at the moment of its arrival.
One is given a stream of updates S = {s1,...,5n}, where s; € D and D is a dictionary of
all possible elements, and the goal is to compute a target function f(S) while using the
space sublinear in m and |D|. Space constraints often render the exact computation of a
function infeasible; instead, streaming algorithms usually provide a (e, 4)-approximation
scheme. That is, randomized algorithms that return f(S) € (14 ¢)f(S) with probability
at least 1 — 6. For more details on the streaming model and its variations refer to [3, 113].

In many applications, the stream of data is considered to be infinite, and a target func-
tion should be computed only on the last n updates and “forget” older ones. The Sliding
Window model [46] addresses the pool of such problems. Formally, given a stream of
updates S = {s1,...,5,...} and s; € D, the goal of a sliding window algorithm is to
report f(t —n,t) = f(S(t —mn,t)) = f({St—n,...,st}) at any given moment ¢. Similarly,
the algorithm should use the space sublinear in # and |D| and follow the approximation
scheme f(t —n,t) € (1%¢)f(t —n,t).

In this work, we address typical measurement tasks in the IQ model. First consid-
ered in [14, 100], its goal is estimating a function over the interval (¢, f) (of the stream

S) that is specified at query time. Given a stream of updates S, the goal of an algorithm

82



Chapter 3. Monitoring the Network with Interval Queries

in the IQ model is to compute f(t1,t2) = f(S(t1,t2)) at any moment ¢, and any given
interval (t1,t,) C (f — n,t), while using space sublinear in n and |D|. In section 3.3,
we show that achieving approximation f(ty,t) = (14 e€)f(ty,tp) is infeasible as it re-
quires Q)(n) bits of memory. Thus, we call an IQ algorithm (¢, §)-approximate if it returns
f(t1,t2) = f(t1,t2) = ef (t1, t) with probability at least 1 — é. That is, the allowed error is
an ¢ fraction of the value of the function when applied on the suffix (1,¢) and not only
on (t1,t). Specifically, this means that if f; is the current time, we get a multiplicative
(1 4 ¢)-approximation for a t1-sized window whose size is given at query time.

Finding heavy hitters in streaming data is a well-studied problem in analysis of large
datasets; optimal or nearly optimal results were achieved in different models [21, 24,
32, 33, 39, 44, 107, 109, 147]. In this section for the sake of completeness we give a
brief overview of the heavy hitters problem, including the formal problem statement and
major differences between L; and L; settings. For more details on the problem please
refer to [3, 43, 113].

Itemiis an (g, L,)-heavy hitter in the stream S = {s;}" ;,s; € {1,...,N},if f; > eL,(f),
where f; = #{j|s; = i} is number of occurrences of item i in the stream S, and L,(f) =
m is the L, norm of frequency vector f, and j-th coordinate in the vector equals to
fj- An approximation algorithm for L, heavy hitters returns all the items that appear at
least eL, times and no item that appears less than 5L, times and error with probability
at most 4. It was shown in [12, 37] that for p > 2 any algorithm will require the space
at least polynomial in m and N. Therefore, the central interest is around finding L; and
L, heavy hitters. Note that finding L, is provably more difficult, compared to L; heavy
hitters. While to be an (g, L1)-heavy hitter an item needs to appear in a constant fraction
of the stream updates, in some cases to be an (¢, Ly )-heavy hitter the item can appear just

in O(1/+/n) fraction of updates. Note that to catch such L; heavy hitters using uniform

83



Chapter 3. Monitoring the Network with Interval Queries

sampling, one will need to sample at most O(1/¢?) items, while catching L, heavy hitters
will require the number of samples to be polynomial in n. Moreover, any L; algorithm
can find all L; heavy hitters while the opposite is not always the case. The L; heavy hit-
ters problem has optimal algorithms in both the cash register [107, 109] and turnstile [44]
streaming models and was considered in both sliding windows [46] and Interval Query
[14] computational models. The L, heavy hitters problem has tight results for both cash
register [32] and turnstile [39] streaming models. Recent results on L, heavy hitters in
the sliding window were shown to be space optimal [33]; however, to the best of our
knowledge, the problem was not considered in the Interval Query model. In this work,
we consider the following approximation L, heavy hitters problem in the Interval Query

model.

Definition 33 ((¢, Lp)-heavy hitters problem in IQ). For 0 < & < 1 output set of items T C
[N, such that T contains all items with f;(t1,t2) > eLp(t1,t) and no items with fi(t1,t) <

%Lz(tl, t).

There is a strong connection between the Interval Query and Sliding Window (SW)
models: any algorithm that solves the problem in IQ model can answer SW queries as
well, one only needs to query the largest permitted interval, ie., (t1,t2) = (t —n,n).
Therefore, we expect the current SW approaches to be useful for understanding the IQ
model. Further, we introduce some background on SW and (g, L,)-heavy hitters algo-
rithms in it.

Currently, two general SW frameworks are known: Exponential Histogram [46] and
Smooth Histogram [28]. We now provide a brief overview of the core techniques of those

frameworks.

84



Chapter 3. Monitoring the Network with Interval Queries

By B, Bs By By

>

EH T I

t—n t

SH ' |
A

1 AZ P .

3 A4

—

Ag

FIGURE 3.1: Interval (bucket) structure for EH and SH.

Exponential Histograms (EH). In [46], the authors suggest to break the sliding window
W = (t — n,n) into a sequence of k non-overlapping intervals By, By, . .., By, as depicted in
Fig. 3.1. Window W is covered by Ui‘(:1Bir and contains all B; except the first one. Then, if
a target function f admits a composable sketch, maintaining such a sketch on each bucket
can provide us with an estimator for f on window W' = U¥_,B,. Note, that f(W) is
“sandwiched” between f(W') and f(B; U W'). Therefore, a careful choice of each bucket
endpoints provides control over the difference between f(W) and f(W’), thereby making
f(W’) a good estimator for f(W). As the window slides, new buckets are introduced, old
buckets get expired and deleted, and buckets in between get merged. The EH approach
admits non-negative, polynomially bounded functions f which admit composable sketch

and are weakly additive, i.e., 3C; > 1, such that VS, Sy:

f(S1) + f(S2) < f(S1US2) < Cr(f(S1) + f(52)).

For such functions, [46] can ensure that k

f£(Bj) < L XE f(B;) and f(Bj1) + f(B))

O(CJ% log 1) by maintaining two invariants:

%Zi'(:jf(Bj)-

IN

85



Chapter 3. Monitoring the Network with Interval Queries

Smooth Histograms (SH). In [28], the authors relax the weak additivity to more general

property of smoothness — 30 < B < a < e V54,575,553 :

(1 — [B)f(Sl U 52) < f(Sz) = (1 — lX)f(Sl U S, U 53) < f(Sz U S3).

Additionally, in SH buckets Ay, ..., Ay overlap; therefore, [28] extends the class of admit-
ted target functions even further by relaxing the composability requirement. Similarly
to [46], f(W) is “sandwiched” between f(A1) and f(A;), see Figure 3.1. The memory
overhead is O(% logn) and the maintained invariants are (1 —a)f(A;) < f(A;+1) and
f(Air2) < (1= B)f(A).

B B, By, By B

>

I I I I
t—n o t

q

FIGURE 3.2: Interval query in the prism of EH.

Interval queries on EH and SH. The IQ model is more general than the SW model,
however we use similar building blocks. Fig. 3.2 depicts query interval g = (¢, ;) and
buckets of Exponential Histogram with window of size n. Note that g is “sandwiched”
between B U B3 U By and B3, while f(U;-‘ZZBj) = (1+e)f(f,t) and f(U;?:4Bj) = (1+
e)f(t,t). Intuitively, f(t1,t2) can be approximated by f(By U B3) with an additive error
of +ef(t1,t). Similar approach can be applied to Smooth Histograms, if the sketches

preserve approximation upon subtraction.

86



Chapter 3. Monitoring the Network with Interval Queries
3.3 Interval Algorithms

Lower bound.

Theorem 34. Any algorithm which maintains a sketch over the stream and at any moment t:

Vi, ty € (t —n,t) outputs Lo(ty, t2) = (1 £ a)Ly(ty, t2) requires Q(n) bits of memory.

Proof. The proof uses a reduction from the INDEX problem in communication complexity.
Alice is given a string x = {0,1}" and Bob gets an index k € {1,...,n}. Alice sends a
message to Bob and he should report the value of x;. Bob can err with probability at most
0. A known lower bound on the size of the message, even for randomized algorithmes, is
Q(n) [94].

Suppose there exists an algorithm which maintains a sketch over the stream and at
any moment ¢, for any interval (t1,t,) C (t —n,t), outputs Ly(t1,t2) = (1 £ a)La(ty, t2),
while using only o(n) bits of space. Such an algorithm can distinguish between L, and
Ly(1 +3a); denote p = (1 + 3a)?.

Alice encodes the string x as a stream of updates
f(x1), f(x2),...,f(xn), where f(1) =1,...,1and f(0) = 1,2,..., p with p updates in both
cases. Therefore, the entire stream has length pn, Ly(f(0)) = /p, and Ly(f(1)) = p.

La(f(1))

Hence, L,(70)) — /P and the algorithm can distinguish them. After running the stream

through the algorithm, Alice sends the content of the data structure to Bob. Bob queries
interval (t — pn + p(k — 1), t — pn + pk) and due to approximation guarantees of the al-
gorithm can infer whether x; = 0 or 1. Therefore the INDEX problem was resolved with

a message size of o(n) bits, which contradicts the ()(n) lower bound. O

Algorithm 1 Braverman, Gelles, and Ostrovsky, in [25], presented the first L, heavy

hitter algorithm in the SW model. They apply the SH framework described earlier to

87



Chapter 3. Monitoring the Network with Interval Queries

get a (1 + ¢)-approximation of L, norm. In addition, each bucket of the SH maintains an
instance of the Count Sketch algorithm [39].

Our algorithm, whose pseudo-code is given in Algorithm 9, utilizes a similar tech-
nique: when querying with an interval (t1,t,), it finds the largest SH suffix (a',t) con-
tained in (t1,t) and the largest suffix (a2, t) contained in (t,,t). It then calculates Count
Sketch of interval (a', a?) as the difference of two Count Sketches: (a',t) and (a?,t). The
frequencies on the interval (#1,f) can be approximated by the Count Sketch of interval

1

(al,a?), as we show later. Next, we prove that the described technique provides a good

estimation for Ly (t1,tp).

Lemma 35. Let A be an SH construction for («, )-smooth Ly and A; = (a;, t) are the suffixes

of A (see Fig. 3.1). Then for any interval (t1,t;):

Lz(al,a2) = Lz(tl, tz) + v 20(L2(t1, t),

1

where a' = mina; > t; and a> = mina; > t,.

Proof. From SH invariant [28]: Ly (a!,t) > (1 —a)Ly(#1,t). thensince L3(t1,t) > L3(al, t) +
L3(t1,a")
we have: L,(t1,a') < \/ﬂLz(tl,t),
and similarly: Ly(tp, %) < V2aLo(t, t) < V2aLy(t,t).
Due to triangle inequality and monotonicity of Lj:
La(ty, t2) < La(ty,a') + La(al, ta) < La(ty,a') + La(al,a?), thus Ly(al,a?) > Ly(ty,t2) —
V2aLy(ty, t).
Similarly: Ly (t1,t2) + Lo (t2,a?) > Ly(ty,a?)
Ly(ty, t2) > Ly(ty,a%) — Lo(tp,a®) > Ly(a',a?) — Lo(tp, a?)

Lz(ﬂl,az) < Lz(tl, tz) + Vv 206L2(t1, t). [

88



Chapter 3. Monitoring the Network with Interval Queries
Algorithm 9 L, heavy hitter algorithm based on [25]

1: function UPDATE(item)
2:  maintain SH for L, with («, f) = (;—27, 2%)

3: on each bucket A; maintain Count Sketch CS;
4: end function

5: function QUERY(#1, f2)

6: find a! = mina; > t; and 4? = mina; >

7: subtract sketches CS = CS,1 — CS 2

8: query L; of suffix: Ly(al, t) = SH.query(al,t)
9: for each item i in CS1.heap do

10: fi(t1,t2) = CS.estimateFreq(i)

11: if fi(t, t2) > 3[,(a',t) then report (i, ;)

12: end for
13: end function

Theorem 36. Algorithm 9 solves (e, Ly)-heavy hitters problem in the IQ model (Definition 33)

using O( log® nlog L) bits of space.

Proof.
Vi fi(ah,a2) = filt,t) — filt, ') + filte,d2).

Note that f;(t;,a') < Ly(t,a') and f;(t,a?) < Ly(tp,4%). From Lemma 35 and due to the

choice of SH parameters:
€ €
filthya') < la(ti,t), filt,a®) < gla(ty,t)

For a given stream S Count Sketch approximates the counts as follows:

fi(8) = £i(5) £ 5La(S)

89



Chapter 3. Monitoring the Network with Interval Queries
and its heap contains all (§, L2)-heavy hitters. Thus sketch CS = CS,1 — CS,> will esti-

mate the count of any queried item i as
P € €
fi(al,az) = f,-(al,az) + ng(tl,t) = fi(tlz tz) + ZLz(tl, t).

where the last equality follows from the derivations above.

To prove the correctness of the algorithm, we need to show that:

1. every (g, Ly)-heavy on (t1,t) item will appear in the heap of CS,1 (line 8) and sur-

vive pruning (line 10).
2. noitems f;(t1, t2) < 5La(ty, t) will survive pruning.

Note that if item i is (¢, Lp)-heavy on (t1, ), then fi(t1,t2) > eLy(t1,t) which implies
fi(al,a?) > %Lz(tl,t) and fi(al,t) > %Ly(t1,t). The latter one implies that item i will

be in the heap of CS 1. The former one given that
£l 2 1.2y ¢ 3
fi(a ,a ) > fl(ll ,a )— ng(tl,t) > ZLz(tl,f)

and [,(a',t) = (1+ ;—27)L2(t1, t) guarantees that heavy item i will survive pruning proce-
dure. Similarly,

A 3
fi(a!,a®) < fi(a',a®) + ng(tl,t) < 3la(t,b),

therefore light items will be filtered out.

According to Theorem 3 from [28], SH approach requires O(% q(e, %) log n) bits of
memory. Here, g(¢, ) is the amount of memory needed for sketch to get ¢ approximation
of target function with failure probability at most 4. Note that to avoid mistaken deletions

of suffixes in the SH construction, every target function sketch should succeed. Therefore

90



Chapter 3. Monitoring the Network with Interval Queries
L, sketch should fail with probability at most O(%). At the same time, Count Sketch is

needed only at the moment of a query, therefore it should fail with probability at most
O(@). Each amplified L, sketch, according to [6], requires O(Sl2 log? 1) bits of space —
same as the amount of memory that is needed for each Count Sketch. Thus, in total, the

algorithm requires O( log® 1) bits of memory. O

Algorithm 2 A natural question to ask is whether the Exponential Histogram frame-
work can be used instead of Smooth Histograms. Note that the target function L3(-) ad-
mits a composable sketch [6] and is weakly additive with Cy = 2. According to Theorem
7 of [46], an admittable target function f can be estimated with the relative error

C2

E < (1—}—8)%—1—@:—1—1—8,

where ¢ is relative error of the L3 sketch and k is a parameter of EH framework. Note
that for C f = 2,n0 k can get an error better than E, = 1+ 0(1), which only implies a
2-approximation of the Ly-norm on the sliding window. The IQ model is more general
than SW, therefore, the same idea would not work out of the box. Instead, we suggest the

following decoupling tweak to the weak additivity requirement:
E|Cf, C} V54,5, : f(Sl U 52) < Cff(Sl) + C}f(Sz)

Keeping the rest of the framework the same and repeating the argument as in Theorem 7

of [46], the relative error becomes:

C2
E, < (1+8)%+C}—1+8.

91



Chapter 3. Monitoring the Network with Interval Queries

To find appropriate constants Cy and C} for L3, note that for any positive integers a and b

and any ¢ € (0,1) :

(a+b)2§§a2+(1+8)b2—(7a+\/_b) <24 2+ (1+¢)b%

Therefore, Sy, 55 : L3(S1US2) < 5:L3(S1) + (1 +¢€)L3(S2), ie., Cf = 2 and C]’( =1+e.
Setting k = O(g—g) gives a (1 + ¢)-approximation of L3 on sliding windows using EH
framework. Note that the described tweak will work for any admittable function f for
which f(S;USy) < Cef(S1) + C}f(Sz), as no other properties of L, were used in the
proof. Further, we argue that same approximation can be achieved with smaller k. We
maintain EH histogram framework for f = L3 as proposed in [46] with C r = 2. However,

when queried, we output \/f = L, rather than f = L3. Note that, due to the triangle

inequality, \/f(S1 + S2) < v/f(S1) + /f(S2). Denote ty = t — n; then the core derivation

for the relative error E, from Theorem 7 of [46] can be rewritten as follows:

£ _Vf (to, t) — /f(b1,t) fto,b1 f(bo, by)
! f to, tO/ bl/ t)

Cr Y0 f(B)) Cef(b1,t)
< ¢ ey <\ ke

Setting k = O(Slz) provide necessary e-approximation for L, on the sliding window.

Lemma 37. Let B be an EH construction for L, with parameters C¢ and k, and let

B; = (bj, bj11) denote the buckets of B (see Fig. 3.1). Then for any interval (ty,t5):

C
Ly(bY,0%) = Ly(ty, 1) % \/ %Lz(tl,t),

where (B°,b') is the bucket containing t and (b?, b%) is the bucket containing t,.

92



Chapter 3. Monitoring the Network with Interval Queries

Proof. By monotonicity of L2 and EH invariant:

C C
L3(t;,bY) < L3, bY) < ?f Y I3(B) < %L%(bl,t).

bi>b0

Repeating the argument for (t,,b®) and taking the square root:

/C /C
Lz(tl,bl) S %Lz(tl,t) and Lz(tz,b3) S %Lz(tl, t).

Applying triangle inequality the same way as in the proof of Lemma 35 leads to the state-

ment of the current lemma. O

Algorithm 10 L, heavy hitter algorithm based on EH

1: function UPDATE(item)

2: maintain EH for L3 with k = O(Slz), Cr=2.

3 on each bucket B; maintain Count Sketch CS;

4: end function

5: function QUERY(t1,t7 )

6:  find b2 : 1 € (b0,b') = Biand t; € (b?, 1) = B;
7

8

9

compute union sketch CS = Uy ;43CS;
query Ly of suffix: L,(t1,t) = EH.query(b',t)
. for each heavy hitter (i, f;) in CS do
10: if f; > 3L,(t;,t) then report (i, f;)
11: end for
12: end function

Theorem 38. Algorithm 10 solves (g, Ly)-heavy hitters problem in IQ model (Definition 33)

using O(gl4 log® nlog L) bits of space.

Proof. Due to Lemma 37 for given parameters Cr and k:

. &€
Vi: fi(b',0%) = fi(ti, t2) £ ELZ(tlzt)~

93



Chapter 3. Monitoring the Network with Interval Queries

Approximation guarantees of Count Sketch CS can be rewritten as:

Vi: fi(b,0%) = fi(b}, %) £ ELz(b1 ).
Therefore, Vi : f;(b',0%) = fi(t1,t2) £ ELo(t), 1)
The same lemma applied to interval (t;,t), given fz-approximation of L, on each bucket
B, leads to Lo(t,t) = (14 §)La(ty,t). Thus, any heavy item with f;(t1,t2) > eLy(t1,t)

will be reported:

7€

tt
8 (1/)

u>|°°

Fi0,0) = filk, ) - gLa(ty ) >

Similarly, any item with f;(t1, ) < 5Ly(t1,t) will be pruned away:

5e

fib, 1) < S La(t, 1) < 5 La(tr ).

4>|°°

According to Theorem 7 from [46], the EH approach requires O(kg(e, %) log n) bits of
memory, where g (¢, ¢) is amount of memory needed for sketch to geta (1 + €)-approximation
of the target function with a failure probability of at most 4. Similarly to the SH case, L,
sketch should succeed on O(#n) instances, while Count Sketch only on O(log n). Thus, in

total, the algorithm requires O(Sl4 log® 1) bits of memory. O

Algorithm 3 Recently, a new algorithm for finding L,-heavy hitters in the SW model
was introduced in [33]. The Authors show a significant improvement in space complexity
and provide a matching lower bound. Memory footprint of the solution proposed in [33]
is O( log? nnlog L) bits, while previous result [25] needed at least O(a 1 log® nlog X bits.

Although the new approach uses the SH framework, it differs conceptually in the way of

94



Chapter 3. Monitoring the Network with Interval Queries

catching the heavy hitters. Recall that [25] requires a (1 + ¢)-approximation of the L, to
make sure that no heavy hitters are lost between neighboring buckets.

Streaming L»-heavy hitter algorithm can report a heavy hitter after seeing it {7 L»
times. [33] uses that property and approximates the counter for each reported item us-
ing a separate SH data structure. To report every (g, L)-heavy and no (5§, Ly)-heavy
items, one only needs a constant factor approximation for both L, and frequency of the
potentially-heavy items. [33] exploits this and runs an SH with constant « and § for both
Ly-norm approximation and for independently tracking the frequency of each potentially-
heavy item reported by the Count Sketch.

Additionally, [33] suggests to replace the Count Sketch algorithm with BPTree [32] and
use shared randomness and use the strong tracking argument from [31] to avoid union
bound for all bucket sketches to succeed.

We reuse this approach for the IQ model. First, we show a SW solution for e-approximation
of f;, which can be also considered as sum problem in a binary zero-one stream, proved

the following guarantees in IQ model:

filti, t2) = filt, t2) £ efi(ty,t)

Lemma 39. Let A be an SH construction for an («, B)-smooth sum function S and consider a
zero-one stream. Denote by A; = (a;, t) the suffixes of A (see Fig. 3.1). Then for any interval
(t1,t2):

S(at,a®) = S(t1,t2) £ aS(ty,t),

1

where a' = mina; > t; and a*> = mina; > t,.

95



Chapter 3. Monitoring the Network with Interval Queries
Proof. From the SH invariant [28]: S(a',t) > (1 — «)S(t1,t).

Since S(t1,t) = S(a',t) + S(t1,a'), we have: S(t,a') < aS(t1,t) and similarly: S(t,a%) <
aS(ty, t). Therefore, the statement of the lemma follows from

S(t1,tp) = S(al,a®) + S(t1,a') — S(to,a?). O

Algorithm 11 L, heavy hitter algorithm based on [33]

1: function INIT

2. init SHy, with (a, B) = ({5, 555)

3 init CS; Count Sketch on each SH}, bucket A;
4: init HH) an array for potential heavy items

5: —if i € HH)y then HH,[i].SH tracks f; in SW
6

7

8

9

: end function
: function UPDATE(item)
update SHj, and all CS;
if item € HH), then update HH,[item].SH

10:  forall i for each item (],f]) in CS;.heap

11: iff]- > 3SHj,.query(A;) and j ¢ HH,:
12: HH)p.add(j)
13: init HH,[j].SH with (a, B) = (&, &)

14: end function

15: function QUERY(f1, t)

16:  a' =mina; > t; and Ly(a',t) = SH.query(a', t)
17: for each item i € HH), do

18: a' = mina; > t; and a*> = mina; > f

19: fi(t1,t) = HHp[i].SH.query(ay, t)

20: fl-(fl,tz) = fi(t1,t) — HH, [i].SH.query(fzz, t)
21: if fi(t1,t2) > 3L, (al, t) then report (i, f;)

22: end for
23: end function

Theorem 40. Algorithm 11 solves (g, Ly)-heavy hitters problem in IQ model (Definition 33)

using O(gl3 log® nlog L) bits of space.

96



Chapter 3. Monitoring the Network with Interval Queries
Proof. First, let’s show that all items with f;(t1, ty) > eLo(t1,t) will appear in HH). Denote

ap = maxa; < t1 then

£i(a% ty) > fi(ty, t2) > eLly(ty, t) > eLla(ty, ta).

Therefore, by moment ¢,, Count sketch of the bucket (ao, tp) should have reported it in
line 10 of Algorithm 11.

Now we argue, that all heavy items will survive pruning in line 19. Let (ay, t) be the
first bucket of HH), [i].SH then we should consider two cases: t; > ag and t; < 4.

If t; > ag then it follows from Lemma 39, that ﬁ-(tl,tz) > f(ti,t2) — 15f(t1,t). At
the same, time SH framework guarantees Ly(t,t) < 1.1Ly(ty,t). Therefore, if fi(ty, t2) >
eLy(t1,t), then:

o 15 N
fi(t1,t2) > —eLla(ty,t) > —eLa(ty,t)

16

~] W

Recall, that Count Sketch reports an item after seeing 1z Lo its instances, therefore, for
t; < ag using the same lemma we can conclude that f;(t;, t2) > f(t1,t2) — £f(t1,t), while
the rest of computation is the same. Therefore, all items with f;(t1,tp) > eLp(t1,t) will be
reported by the Algorithm 11.

For every non-heavy item with f;(t1,t,) < 5Ly(ty,t), if i € HH, then from Lemma 39
filti, ) < filti, ) + S fi(t1, 1) < §La(t, 1) + La(t, 1) < %Ly(t, ), and item i will be
pruned out in line 19.

According to Theorem 3 from [33], modified SH approach requires
O(%g(s,&) logn) bits of memory. Algorithm 11 uses p = O(1) for SHy,, with g(¢,4) =
O(Sl2 log? 1) due to L sketch and Count Sketch instances. Thus, SH, requires O(El2 log”n)
bits of space, and have O(logn) buckets and each can potentially generate up to O(slz)

items in HH,. Therefore, in total, to track e-approximation to frequencies of all potential

97



Chapter 3. Monitoring the Network with Interval Queries

heavy hitters, data structure spend O(Sl3 log® n) bits of space. Summing the two derived

quantities, the space complexity of Algorithm 11 is O(sl3 log® nlog 51_5) bits. O

Note that replacing Count Sketch in Algorithm 11 with BPTree [32] improves the space

complexity by another log n factor.

Corollary 40.1. There exists an algorithm that solves (g, Ly)-heavy hitters problem in IQ model

using space O(% lo 2 nlog L) bits of space.
8 Sp 3 108 & e p

In this work, we mainly focus on the trade-off between memory and precision. In
Table 3.1 we compare space complexity, update and query time for all proposed algo-
rithms. Optimizing algorithms towards improving the query time is the subject of future

research.

Alg. Space complexity Update time | Query time
1 O(e®log’nlogs=1) | O(e*logn) | O(e2logn)
2 O(e*log’nlogs1) | O(e2logn) | O(e3logn)
3 | O(e3log’nloglogd=) | O(logn) | O(e2logn)

TABLE 3.1: Space complexity, update and query time for all proposed algo-
rithms.

Extending to a wider class of functions Many streaming algorithms and frameworks
use Lp-heavy hitter algorithm as a subroutine. One of them is UnivMon [101], the frame-
work which promotes recent results on universal sketching [34] in the field of network
traffic analysis. The main power of the framework is its ability to maintain only one
sketch for many target flow functions, rather than an ad-hoc sketch per each function.

The class of functions that can be queried is wide and covers the majority of those used

98



Chapter 3. Monitoring the Network with Interval Queries

in practice, among examples are the Ly, L, norms and entropy. Therefore, L,-heavy hit-
ters is an important step towards UnivMon in IQ model. For more details on universal
sketching refer to [34]; here we will cover the necessary basics.

Given a function ¢ : N — IN, the goal of universal sketching is to approximate G =
Y 1 g(fi) by making one or several passes over the stream. Theorem 2 in [34] states: if
g(x) grows slower then x?, drops no faster than sub-polynomially, and has predictable
local variability, then there is an algorithm that outputs an e-approximation to G, using
sub-polynomial space and only one pass over the data. The algorithm consists of two
major subroutines: (g, ¢)-heavy hitters and Recursive Sketch. The first one finds all items
i such that ¢(f;) > €G together with an e-approximation to ¢(f;). In [34], the authors
show that if an item is (g, ¢)-heavy then it is also (L, ;)-heavy for sub-polynomial /;
therefore, Count Sketch can be used to find (g, ¢)-heavy items. Recursive Sketch was
initially introduced in [80] and further generalized in [27]. It finds e-approximation of G
using a (g, €)-heavy hitters algorithm as the black box, by recursively subsampling the
universe, and by estimating the sum G of the subsampled stream.

In [34] (g, €)-heavy hitter algorithm requires subroutine which find all items i such that
fi(t1,t2) > eLa(t1, t2). However, due to the limitations of the IQ model all three proposed
algorithms only find all items 7 such that f;(t1,t2) > eLy(t1,t). Further, we adjust the
argument from [34] to argue that one can use algorithms from previous sections to find

(g, €)-heavy hitter with guarantee defined as follows:

Definition 41 ((¢, g)-heavy hitters problem in IQ). For 0 < € < 1output set of items T C [N],

such that T contains all items with g(fi(t1,t2)) > eG(t, ) = e ¥; g(fi(t1,t)) and no items with
g(fi(t, 12)) < 5G(ty, ).

99



Chapter 3. Monitoring the Network with Interval Queries

Propositions 15 and 16 in [34] show that if function g is slow-jumping and slow-

dropping, then there exist a sub-polynomial function H:

vx <y gl 2 8 oy < (U) yH)s) G

We can adjust the argument of Lemmas 17 and 18 in [34] to handle the heavy hitters with

additive error.

Lemma 42. Let HH (¢, 6) be an algorithm that solves (&, Lp)-heavy hitters problem in IQ model

(Definition 33), and g is a slow-jumping and slow-dropping function. Then HH (ﬁ(n), J) solves

(¢, g)-heavy hitters problem in 1Q model (Definition 41).

Proof. Note that for any (g, ¢)-heavy i:

g(fi(ti, ta)) > ey 8(fi(t1,t))

Therefore, applying the second statement of Equation 3.1:

. eg(fi(t, t2)) 7 (t1, 1)
g(fi(ty, t2)) > fj(tllt)ngi(tlltz) H(n)fiz(tlltZ)

&
fi(tt) > Y. fA(t, 1)
H) ¢S

Similarly, applying the first statement of Equation 3.1:

, eg(fi(t, )
g(fi(ty, t2)) > ﬁ(tl,wzzﬁul,tz) Hm

Hence, there are at most @ items with f;(t1,t) > fi(t1,t2), and HH(ZHE(n),(S) will

detect it. ]

100



Chapter 3. Monitoring the Network with Interval Queries

Further we argue that Recursive Sketch with (g, €)-heavy hitter algorithm which finds
all i such that g(fi(t1,t2)) > eG(t1,t) will return G(t1,t2) = G(t1, t2) £ eG(ty, t).

Algorithm 12 Recursive GSum(Sy, €) [34]
1: Hy, ..., Hy—o(10gn) are pairwise independent 0/1 vectors

2: S;is asubsampled stream {s € S;_1 : Hj(s) = 1}
3: Compute, in parallel, HH; = HH(S;)

4: Compute Yy = Gy(t1,t2) £eGy(t, 1)

5: forj=¢—1,...,0 do

6:  compute Y; = 2Yj 1 + Yiepp, (1 —2H;(i))8(fi)
7: end for

8: return Y|

Theorem 43. Let HH be an algorithm that finds all i such that g(fi(t1,t2)) > €G(t1,t) together
with e-approximation of g(fi(t1,t2)). Then Algorithm 12 computes

G(t, t2) = G(ty,t2) £ eG(ty,t) and errs with probability at most 0.3. Its space overhead is
O(logn).

Proof. Note that G; is a G-sum computed on the subsampled stream S; and according
to the line 4 of Algorithm 12 Yy = Gy (t1,t2) = €Gg(t1,t) our goal is to evaluate the er-
ror propagation from the top level of subsampling ¢ to the bottom one and show that
Yo = G(ty, t2) £ eG(t, t).

Consider r.v. X;:

Xp= ), g(fi)+2 ) H(i)s(fi).

Xj is an unbiased estimator of G;(t1,t>) with variance bounded as:

Var(X;) = Y. &(fi) <eGj(h, 1)) g(fi) < eGF(h, 1)

i¢ HH;

101



Chapter 3. Monitoring the Network with Interval Queries

by definition of HH; and monotonicity of G. Therefore, by conditioning on HH; success

and Chebyshev inequality:
€
Pr(|X; — Gj(t1, t2)| > €Gj(t1, 1)) < o o (3.2)
By definition of H;, X; can be rewritten as

Xj =26+ ¥ (1= 2Ha ()30

Then, |X; — Yj| <2|Gjyq — Y| + LieHH, |8(fi) — g(fi)|- To simplify further derivations,
denote E! = |X; - Gyl, E2 = |G; — Yl and E} = icn, 18(f) — 8().

2 _ 1 2 3

Therefore, the error will propagate to layer 0 as: E5 < E} +2E2 + E3 < ... < 24’]:% +

¢ . ¢ .
Y 2]E]1 + Y ZJE?. Denote event 24’Eé > ¢"G(t1,t) as A, event Z;P:O 2]E]1 > ¢’G(ty,t) as
=0 =0

B, and event 2;0:0 2]'E;5 > ¢"G(ty,t) as C.

Apply formula 3.2 for all j, then Pr(B) is upper bounded by:
Ly €
Pr (¢ Y 2/Gi(ty,t) > "Gty 1) | + (¢ +1) <?2 + 5)
j=0

Note, that E (Z;P:O 2Gj(t, t)) = (¢ +1)G;(t1,t), therefore by Markov:

/

€ €
Pr(B) < (p+ 1) + (9+1) (5 +9).
Recall that HH; fails with probability at most J, there are at most 1/¢’ items such

102



Chapter 3. Monitoring the Network with Interval Queries
that ¢(f;) > eG;(t1,t), and if HH; succeeds then ¢(f;) = (1 £¢)g(f;) for all i such that

g(fi) > €Gj(t1,t). Therefore, YieHH, 18(fi) — &(fi)| < eGj(t1,t), and we can bound Pr(C)

from above with:

Pr (sizfcj(tl,t) > s”G(tl,t)> + (¢ +1)0.

j=0
Finally, applying Markov: Pr(C) < (¢ +1)5 + (¢ + 1)0.
To bound Pr(A) recall that Y, = Gy(t1,t2) £ eGg(ty,t) with probability at least 1 — &
and E(29Gy(t1,t)) = G(t1,t). Therefore, P(A) < % + 9, and putting all together:

/ . 2
P(AUBUC) < (¢+2)7 + (¢ + 1)z + (¢ +1)(J + ). Choosing ¢ < (25'151)3 and ¢ <

0.1¢"
¢+1

we get the statement of the theorem

P(|Yo — G(t1,t2)| > €'G(t1,t)) < 0.3.

Extending to wider class of queries Recall that the interval queries (¢, t;) introduced
earlier were not measured in time, but rather in number of packets passed through. How-
ever, in practice it is often more use when one can query some statistic in time-based in-
terval, for example one hour interval half a day ago or from 5PM to 6PM yesterday. All
presented algorithms, are easily extendable to answer time-based interval queries, one
only need to create a time stamp for each bucket of SH or EH framework, and use that
timestamp when searching for corresponding buckets approximating the interval. Note
that all presented algorithms support weighted packets, i.e. when each packet i arrives

with it’s weight w;, which corresponds to the update f; = f; + w;.

103



Chapter 3. Monitoring the Network with Interval Queries
3.4 Evaluation

Next, we evaluate our algorithms for various network measurement tasks. We have im-
plemented a prototype in C and evaluated the accuracy v.s. memory using four CAIDA
Internet Traces: “Equinix-Sanjose” in 2014 (SanJose2014) [74] “Equinix-Chicago” in 2016
(Chicago2016) [139], and from “Equinix-NewYork” in 2018 (NewYork2018) [137]; and a
data center trace from the University of Wisconsin (Univ2) [17].

All experiments are based on 10M sized traces. We evaluate multiple measurement
metrics on two experiments. In the first experiment, we select a packet once every 30k
packets and estimate the frequency of the corresponding flow on an interval between
10k-20k packets ago (suffix length of 20k). In the second, we estimate frequencies on
varying suffixes and show how the suffix length affects the empirical error. To do so, we
select a packet once per 200k packets and estimate the frequency of the corresponding
flow for every possible suffix length from 100K to the window size of 1M. The depicted
tigures for the second experiment are for the NewYork2018 dataset.

Frequency estimation: We with the frequency estimation problem. The results in
Figure 3.3 show the trade-off between the memory consumption and the empirical error
for different network traces. As expected, having more memory increases the accuracy
of frequency estimation. The difference between the traces is mainly attributed to the
workload characteristics and namely how the L, norm changes during each trace.

Figure 3.4 shows results for the second experiment on the NY2018 trace. Notice that
(i) longer suffixes indeed have larger estimation error than shorter ones. This is expected
as our analysis indicates that the error is proportional to the suffix length. (ii) Notice
that more memory increases accuracy for every suffix length. This is also expected as

the error is proportional to the accuracy parameter ¢ which decreases with the memory.

104



Chapter 3. Monitoring the Network with Interval Queries

512 | | | |
p Rl ¥+ NewYork2018 |/
210} AN * % Chicago2016
291 - ¥ Sanjose2014
28| e8| &8 Univ2

27| —

Average Error [Packets]

0 10 20 30 40 50
Memory Requirement [MB]

FIGURE 3.3: Average frequency estimation error for flows in 10-20k interval.

(iii) the average error is small for moderate memory consumption, e.g. given 18MB, the
average error is less than 64 packets for all suffix lengths.

L, norm estimation: We repeat the above experiments for L, norm estimation. Fig-
ure 3.5 shows results for the first experiment. Notice that we get the same trend as before,
more memory leads to better accuracy in estimating the L, norm. Figure 3.6 shows re-
sults for the second experiment. As can be seen, (i) we get better L,