
STREAMING ALGORITHMS
FOR MINING FREQUENT ITEMS

by

Nikita Ivkin

A dissertation submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

October, 2018

c© 2018 by Nikita Ivkin

All rights reserved



Abstract

Streaming model supplies solutions for handling enormous data flows for over 20 years

now. The model works with sequential data access and states sublinear memory as its

primary restriction. Although the majority of the algorithms are randomized and ap-

proximate, the field facilitates numerous applications from handling networking traffic

to analyzing cosmology simulations and beyond. This thesis focuses on one of the most

foundational and well-studied problems of finding heavy hitters, i.e. frequent items:

1. We challenge the long-lasting complexity gap in finding heavy hitters with `2 guar-

antee in the insertion-only stream and present the first optimal algorithm with a

space complexity of O(1) words and O(1) update time. Our result improves on

Count Sketch algorithm with space and time complexity of O(log n) by Charikar et

al. 2002 [39].

2. We consider the `2-heavy hitter problem in the interval query settings, rapidly emerg-

ing in the field. Compared to well known sliding window model where an algo-

rithm is required to report the function of interest computed over the last N updates,

interval query provides query flexibility, such that at any moment t one can query

the function value on any interval (t1, t2) ⊆ (t− N, t). We present the first `2-heavy

hitter algorithm in that model and extend the result to estimation all streamable

functions of a frequency vector.

ii



3. We provide the experimental study for the recent space optimal result on streaming

quantiles by Karnin et al. 2016 [85]. The problem can be considered as a gener-

alization to the heavy hitters. Additionally, we suggest several variations to the

algorithms which improve the running time from O(1/ε) to O(log 1/ε), provide

twice better space vs. precision trade-off, and extend the algorithm for the case of

weighted updates.

4. We establish the connection between finding "halos", i.e. dense areas, in cosmol-

ogy N-body simulation and finding heavy hitters. We build the first halo finder

and scale it up to handle datasets with up-to 1012 particles via GPU boosting, sam-

pling and parallel I/O. We investigate its behavior and compare it to traditional

in-memory halo finders. Our solution pushes the memory footprint from several

terabytes down to less than a gigabyte, therefore, make the problem feasible for

small servers and even desktops.

Primary reader: Vladimir Braverman, Alexander Szalay

Secondary reader: Raman Arora

iii



Acknowledgements

I would like to thank my advisor Vladimir Braverman for all the support and guidance

during the entire Ph.D. program. I especially appreciate his effort in introducing me to

other researchers in the field and encouraging me to find new collaborations on my own.

I have gained a lot in the skill of controlling my time more efficiently and manage it mind-

fully, while going through several teaching assistantships during my Ph.D. I would like to

express my gratitude to all the researchers I had a chance to collaborate with: Tamas Bu-

davari, Mohammad Hajiaghayi, Michael Jacobs, Zohar Karnin, Kevin Lang, Edo Liberty,

Gerard Lemson, Morteza Monemizadeh, Muthu Muthukrishnan, Jelani Nelson, Mark

Neyrinck, Alex Szalay, David Woodruff, Sepehr Assadi, Stephen Chestnut, Hossein Es-

fandiari, Ruoyuan Gao, Srini Suresh Kumar, Zaoxing Liu, Teodor Marinov, Poorya Mi-

anjy, Jalaj Upadhyay, Xin Wang, Lin Yang, Zhengyu Wang. I owe a very important debt

to all the professors whose classes I had a chance to participate in and to learn a lot from

them. Each class was a big excitement for me thanks to Yanif Ahmad, Raman Arora,

Amitabh Basu, Vladimir Braverman, Michael Dinitz, Jim Fill and Rene Vidal. I would

like to offer my special thanks to Deborah DeFord, Cathy Thornton, Zachary Burwell,

Laura Graham, Tonette Harris, Shani McPherson, Joanne Selinski, and Javonnia Thomas

for all the help from administrative side of the department. I am deeply grateful to all

my family and all my friends who were there for me when I needed it the most. Special

thanks to all the readers of my thesis Raman Arora, Vladimir Braverman and Alex Szalay.

iv



Finally, I would like to acknowledge that my work was financially supported by the fol-

lowing grants and awards: NSA-H98230-13-C-0265, NSF IIS -1447639, DARPA -111477,

Research Trends Det. HR0011-16-P-0014 NSF EAGER -16050041, ONR N00014-18-1-2364,

CISCO 90073352.

v



Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Streaming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 `2 heavy hitters algorithm with fewer words . . . . . . . . . . . . . . 4

1.2.2 Streaming Algorithms for cosmological N-body simulations . . . . . 5

1.2.3 Monitoring the Network with Interval Queries . . . . . . . . . . . . . 6

1.2.4 Streaming quantiles algorithms with small space and update time . 7

2 `2 heavy hitters algorithm with fewer words 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Beating CountSketch for Heavy Hitters

in Insertion Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 `2 heavy hitters algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Chaining Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Reduced randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



2.2.5 F2 at all points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 BPTree: an `2 heavy hitters algorithm using constant memory . . . . . . . . 49

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Algorithm and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Monitoring the Network with Interval Queries 80

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Interval Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Streaming quantiles algorithms with small space and update time 116

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 A unified view of previous randomized solutions . . . . . . . . . . . . . . . 119

4.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Finding haloes in cosmological N-body simulations 141

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Streaming Algorithms for Halo Finders . . . . . . . . . . . . . . . . . . . . . 145

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3 Scalable Streaming Tools for Analyzing N-body Simulations . . . . . . . . . 165

5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 206

viii



List of Figures

2.1 In this example of the execution of HH1, the randomized label h(H) of the

heavy hitter H begins with 01 and ends with 00. Each node in the tree

corresponds to a round of HH1, which must follow the path fromH0 toHR

for the output to be correct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Success rate for HH2 on four types of streams with n = 108 and heavy hitter

frequency α
√

n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3 Update rate in updates/ms (•) and storage in kB (◦) for HH2 and CountS-

ketch (� and �, respectively) with the CW trick hashing. . . . . . . . . . . . . 77

3.1 Interval (bucket) structure for EH and SH. . . . . . . . . . . . . . . . . . . . . 85

3.2 Interval query in the prism of EH. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Average frequency estimation error for flows in 10-20k interval. . . . . . . . 105

3.4 Average frequency estimation error for flows for various suffix lengths on

the NY2018 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Average L2 norm estimation error for flows in 10-20k intervals. . . . . . . . 107

3.6 Average L2 norm estimation error for flows for various suffix lengths on

the NY2018 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.7 Quality of HH solution for 10k-20k interval (first experiment). Precision

and Recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.8 Quality of HH solution for 10k-20k interval (first experiment). F1 Measure. . 110

ix



3.9 Quality of HH solution for varying suffix lengths (second experiment). Pre-

cision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.10 Quality of HH solution for varying suffix lengths (second experiment). Re-

call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.11 Quality of HH solution for varying suffix lengths (second experiment). F1

Measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.12 Average entropy relative error for 10-20k intervals. . . . . . . . . . . . . . . . 114

3.13 Average entropy relative error for various suffix lengths on the NY2018

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1 One pair compression: initially each item has weight w, compression intro-

duces ±w error for inner queries and no error for outer queries. . . . . . . . 119

4.2 Compaction procedure: rank error ±w is introduced to inner queries q2,4,

no error to outer queries q1,3,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Compactor saturation: vanilla KLL vs. lazy KLL . . . . . . . . . . . . . . . . 124

4.4 Compaction with an equally spread error: every query q2,3,4,5 is either inner

or outer equiprobably. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Example of one full sweep in 4 stages, each stage depicts pair chosen for

the compaction, updated threshold θ and new items arrived (shadow bars). 128

4.6 Intuition behind base2update algorithm . . . . . . . . . . . . . . . . . . . . . 129

4.7 Compressing pair in the weighted compactor . . . . . . . . . . . . . . . . . . 133

x



4.8 Figures 4.8a, 4.8b, 4.8c, 4.8e, 4.8f depict the trade-off between maximum

error over all queried quantiles and space allocated to the sketch: figures

4.8a, 4.8c, 4.8b shows the results on the randomly ordered streams but in

different axes, figure 4.8e shows the results for the sorted stream, stream

ordered according to zoom-in pattern, and stream with Gaussian distribu-

tion, 4.8f shows the approximation ratio for CAIDA dataset. Figure 4.8d

shows the trade-off between error and the length of the stream. . . . . . . . 137

5.1 Count-Sketch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2 Pick-and-Drop Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Halo mass distribution of various halo finders. . . . . . . . . . . . . . . . . . 152

5.4 Count-Sketch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5 Pick-and-Drop Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Halo Finder Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 Measures of the disagreement between PD and CS, and various in-memory

algorithms. The percentage shown is the fraction of haloes farther than a

half-cell diagonal (0.5
√

3 Mpc/h) from PD or CS halo positions. . . . . . . . 156

5.8 The number of top-1000 FoF haloes farther than a distance d away from

any top-1000 halo from the algorithm of each curve. . . . . . . . . . . . . . . 157

5.9 Number of detected halos by our two algorithms. The solid lines corre-

spond to (CS) and the dashed lines to (PD). The dotted line at k = 1000

shows our selection criteria. The x axis is the threshold in the number of

particles allocated to the heavy hitter. The cyan color denotes the total

number of detections, the blue curves are the true positives (TP), and the

red curves are the false positives (FP). . . . . . . . . . . . . . . . . . . . . . . 161

xi



5.10 This ROC curve shows the tradeoff between true and false detections as a

function of threshold. The figure plots TPR vs FPR on a log-log scale. The

two thresholds are shown with symbols, the circle denotes 1000, and the

square is 900. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.11 The top 1000 heavy hitters are rank-ordered by the number of their parti-

cles. We also computed a rank of the corresponding FoF halo. The linked

pairs of ranks are plotted. One can see that if we adopted a cut at k = 900,

it would eliminate a lot of the false positives. . . . . . . . . . . . . . . . . . . 163

5.12 Each line on the graph represents the top 1000 halo centers found with

Pick-and-Drop sampling, Count-Sketch, and in-memory algorithms, as de-

scribed in section 5.2.2. The comparison with FOF is shown in Fig.5.8. The

shaded area (too small to be visible) shows the variation due to random-

ness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.13 Finding approximate dense areas with the help of a regular mesh and a

streaming solution for finding the top k most frequent items in the stream. . 167

5.14 Count Sketch subroutine on an example stream: each non-heavy item ap-

pears twice, heavy hitter (5) appears 7 times, a random +1/− 1 bit is as-

signed to each item, the algorithm maintains the sum of the random bits,

and the final sum is an unbiased estimator of the heavy hitter frequency

having the same sign as its random bit . . . . . . . . . . . . . . . . . . . . . . 168

5.15 Count Sketch algorithm scheme: bucket hash to identify the counter to

which we should add the sign hash. Repeat t times to recover the IDs. . . . 170

5.16 Dependency of time performance on sampling rate. . . . . . . . . . . . . . . 182

5.17 Cell density distribution for the top 0.5 · 106 cells found by Count Sketch

(in green) and the top 107 cells found by exact counting (in blue). . . . . . . 185

xii



5.18 Relative error vs. rank for (a) cell size 0.1Mpc/h and (b) cell size 1Mpc/h. Each

experiment was carried 20 times. Dashed lines depict the maximum and

the minimum, while the solid line shows the average over those 20 runs

for each rank value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.19 Relative error vs. δ of the cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.20 Distribution of absolute error for different ranks . . . . . . . . . . . . . . . . 199

5.21 Count distortion for the cell size = 0.1 Mpc/h on the top and for the cell

size = 1 Mpc/h on the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.22 Relative error for the counts in the output of the Count Sketch algorithm

and Count Min Sketch algorithm, cell size = 0.1 Mpc/h . . . . . . . . . . . . 201

5.23 Relative error for the counts in the output of the Count Sketch algorithm

with different sampling rates, cell size = 1 Mpc/h . . . . . . . . . . . . . . . 201

5.24 Relative error for the counts in the output of the Count Sketch algorithm

with different sampling rates, cell size = 0.1 Mpc/h . . . . . . . . . . . . . . 202

5.25 Relative error for the counts in the output of the Count Sketch algorithm

with different internal parameters, cell size = 0.1Mpc. Color is the height of

the CS table, and line type is the width of CS table: solid is 16 · 106, dashed

is 8 · 106, dash-dotted is 4 · 106, and dotted is 106 columns . . . . . . . . . . . 202

5.26 Finding halos from heavy cells exactly by running any offline in-memory

algorithm on the subset of particles belonging to the top heaviest cells. . . . 203

xiii



5.27 Comparison of the 2-point correlation functions of excursion sets deter-

mined using the exact counts and the Count Sketch results for 4 over-

density levels. The numbers in parentheses indicate the number of cells

that was found and used i the calculation of ξ. Clearly the results of ap-

plying the spatial statistic to the Count Sketch result is equivalent to that

of the exact counts. The radius R is in the natural, co-moving units of the

simulations, Mpc/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.28 Two-point correlation functions of excursion sets, defined as sets of cells

with a certain lower limit on the over-density. In this plot the results of the

count-sketch algorithm for detecting heavy-hitters is used to determine the

excursion sets. The number next to the line segments in the legend gives

the over-density, the numbers in parentheses indicate the number of cells

at that over-density. The radius R is in the natural, co-moving units of the

simulations, Mpc/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.29 Relative error for the counts in output of Count Sketch algorithm for Mil-

lennium XXL dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.30 Comparison of CS 2-pt correlation function for excursion sets in 0.2 Mpc

cells with δ ≥ 20000 for the XXL (dots) compared to the exact result for the

Millennium run. The two results are compatible with each other, with de-

viations explained by discreteness effects in the much sparser Millennium

result. The radius R is in the natural, co-moving units of the simulations,

Mpc/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xiv



List of Tables

2.1 Notation and parameters used throughout the current section. . . . . . . . . 17

2.2 Random vectors for CountSieve. Each vector is independent of the others,

and Z = (Zi)i∈[k] is sampled independently for every instance of JLBP. . . . 24

2.3 Average and maximum F2 tracking error over 10 streams for different choices

of b and r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Space complexity, update and query time for all proposed algorithms. . . . 98

4.1 Possible outcomes for the rank query q. . . . . . . . . . . . . . . . . . . . . . 124

xv



Chapter 1

Introduction

The rates at which data is generated are growing tremendously. Among examples: daily

life (social media, fitness tracking, delivery vehicles tracking), infrastructure (network-

ing telemetry, cloud services), science (bioinformatics, astrophysics), etc. It is pushing

modern technology to deal with a large pool of new problems where data is too large to

be stored due to either storage absence, or storage hardware being too slow. Network

switch cannot store or keep in the memory trillions of packets going through it daily,

Twitter needs to mine the hot topics over the window of last 15 minutes, which cannot be

done offline, cosmology simulations are too big to fit into the memory of a regular size

server. These are just a couple of examples where the analysis cannot be done either of-

fline or in-memory, and data stream model naturally fits them and the numerous of other

problems. But the model is very restrictive and it was proven that many problems cannot

be solved in it. We describe the model in the following section.

1.1 Streaming model

Streaming model gained its fame after the seminal paper on estimating `p norms by Alon,

Matias, and Szegedy [6]. Authors consider the stream of updates S = {s1, . . . , sm}, where

1



Chapter 1. Introduction

si can represent any object with respect to the problem to be solved: numbers, graph

edges, vectors in high dimensional space, etc. For simplicity we will set si to be an integer:

si ∈ [n] = {1, . . . , n}. Algorithm reads the data items si one at a time, it is allowed to make

only a single pass over the dataset, and at the end of the stream it should return the value

of the function of interest f (S). The algorithm is expected to optimize the time complexity

of an update and a final query, however minimizing the space complexity is at the first

priority. Streaming model requires algorithm’s memory footprint to grow sublinearly to

the size of the dataset. Under these strict limitations the majority of the problems were

proved not to have the solutions, but the compromise can be achieved, if one allows the

algorithm, first of all, to return only an approximation rather than the exact value, and

second of all, to be randomized, i.e. to be allowed to fail with some small probability.

In stated settings, streaming model found applications in a variety of fields: network-

ing [14, 15], bioinformatics [125], machine learning [60], astrophysics [102], security [127],

databases [129, 123], sensor networks [98], finance [38], optimization [5], etc. The mo-

tivation for each requirement of the model might seem to be too strict and unnatural,

therefore we explain further several relevant examples to see the roots and the origin:

1. Network switch processes up to a billion packets a day, but the memory available

for monitoring purposes can be as little as one hundred megabytes. At the same

time storing packets cannot be done at the rate of the flow. Widely spread denial

of service (DDoS) attack can be detected due to unusually high packet flow to the

server under attack. Without knowing the target of the attack switch have to main-

tain the flow size to each of them, which is impossible due to the high number of

servers and low memory allowance on the switch. However, in this problem, the

exact values for the flows are not critically important, and an approximation can be

used instead.

2



Chapter 1. Introduction

2. To perform distributed computation efficiently, one needs to balance out the load

among the computing machines (workers). Given the internal distribution of the

data, the problem becomes trivial. However, finding the distribution is challenging

and often done on a single machine in the dynamic settings, i.e. tasks coming one

by one to the controlling node and it should distribute the flow of tasks among the

computing nodes (workers). As in the previous example, data cannot be stored

on the controlling node, however exact balance is not required, therefore just an

approximate distribution is enough.

3. The analysis of the cosmological N-body simulations requires finding halos (dense

areas) in the dataset where 90% of particles are treated as noise. Simulations operate

with more than billion particles and this number is growing, while all conventional

approaches require to load entire dataset into a memory. Researchers without access

to the machines with terabytes of memory cannot work with the dataset. Alterna-

tively, streaming based solution let task to be performed on small servers with large

storage but low memory. This example depicts the existing gap between the cost of

storage and memory.

Due to the variety of applications streaming model was considered in different settings.

The definition given earlier corresponds to the cash-register model, where items can only

be ”added”, also known as an additions-only model. Alternatively, one can allow ”dele-

tions” in the stream, i.e. stream can be represented as a sequence of pairs (sj, δj) with

δj ∈ {−1,+1}. Then, at the end of the stream, frequency of each item fi can be rep-

resented as fi = ∑j:sj=i δj. This model is often called turnstile. For example, the result

mentioned earlier [6] provide (1± ε) approximation of ‖ f ‖2 using only O( 1
ε2 log2 n) bits

of space in turnstile model, where f is a vector defined by fi’s. Certain applications need

3



Chapter 1. Introduction

to work with infinite streams, however, the target function should be evaluated only on

the most recent items. Given an infinite stream S = {s1, . . . , st, . . .} at any moment t re-

port f ({st−N, . . . , st}), where N is large, such that window {st−N, . . . , st} cannot be stored

explicitly. Note, this model, called sliding windows, differs a lot from the turnstile one,

as in the latter an algorithm is always aware which item to ”delete”, while in the former

an algorithm needs at each moment t delete item st−N which might be not stored explic-

itly anywhere. For instance, Twitter shows the most discussed topics over the last hour,

rather than the entire time. In the current chapter we only aim to give a brief glance at the

model and the reader is encouraged to read more about the topic in [113, 3].

1.2 Contribution

1.2.1 `2 heavy hitters algorithm with fewer words

Given a stream of updates S : s1, s2, . . . sm with sj ∈ {1, . . . , n} we consider the problem

of finding all (ε, `p) heavy hitters in the cash-register model for p = 2. Formally, item i is

an (ε, `p) heavy hitter in the stream S if fi > ε‖ f ‖p, where fi is the number of updates

with the id i: fi = |{j| sj = i}| and f is a frequency vector, i.e. i-th component of

this vector equals fi. Note, that `2 guarantee is significantly stronger than `1. In 1996,

the seminal paper by Alon, Matias, and Szegedy [6] among other breakthrough results

introduced the first algorithm for estimating ‖ f ‖2 in the streaming model. Later in 2002,

Charikar, Chen, and Farach-Colton [39] presented Count Sketch, the algorithm which

used ‖ f ‖2 estimation procedure from [6] as a subroutine to find all (ε, `2) heavy hitters.

Count Sketch works in turnstile model and requires O(log n) words of memory. It is

known that Count Sketch algorithm is tight in memory requirement for turnstile model

[82, 10]. However, no better solution was proposed for cash-register model and the only

4



Chapter 1. Introduction

known lower bound is the naive one requiring Ω(1) words, coming from the need to

store the identity of the heavy hitter. In Chapter 2, we present the algorithm CountSieve

capable of finding all `2 heavy hitters in cash-register model with the space complexity of

O(log log n) words; then we improve it further by presenting BPTree algorithm, working

with only O(1) words of space. Both algorithms take advantage of Dudley-like chaining

argument applied to `2 norm estimator.

1.2.2 Streaming Algorithms for cosmological N-body simulations

Cosmological N-body simulations are essential for studies of the large-scale distribution

of matter and galaxies in the Universe. This analysis often involves finding clusters of

particles and retrieving their properties. Detecting such "halos" among a very large set

of particles is a computationally intensive problem, usually executed on the same super-

computers that produced the simulations, requiring terabytes of memory. Working with

the simulation output in streaming settings can potentially make the problem of finding

halos and other postprocessing analytical tasks feasible for the smaller machines or even

desktops. In Chapter 5 we present a novel connection between the N-body simulations

and the streaming algorithms. In particular, we investigate a link between halo finders

and the problem of finding heavy hitters in a data stream, that should greatly reduce the

computational resource requirements, especially the memory needs. Based on this con-

nection, we can build a new halo finder by running efficient heavy hitter algorithms as a

black-box. We implement two representatives of the family of heavy hitter algorithms, the

Count-Sketch algorithm (CS) and the Pick-and-Drop sampling (PD), and evaluate their

accuracy and memory usage. Comparison with other halo-finding algorithms from [92]

5



Chapter 1. Introduction

shows that our halo finder can locate the largest halos using significantly smaller mem-

ory space and with comparable running time. This streaming approach makes it possi-

ble to run and analyze extremely large data sets from N-body simulations on a smaller

machine, rather than on supercomputers. Our findings demonstrate the connection be-

tween the halo search problem and streaming algorithms which we further investigate to

scale it from proof-of-concept level experiments with relatively small datasets to larger

state-of-the-art datasets. We present a robust streaming tool that leverages GPU boosting,

sampling, and parallel I/O, to significantly improve performance and scalability. Our

rigorous analysis of the sketch parameters improves the initial results from finding the

centers of the 103 largest halos to 104 − 105, and reveals the trade-offs between memory,

running time and the number of halos. Our experiments show that our tool can scale

to datasets with up to 1012 particles while using less than an hour of running time on a

single GPU Nvidia GTX 1080.

1.2.3 Monitoring the Network with Interval Queries

Modern network telemetry systems collect and analyze massive amounts of raw data in

space efficient manner, taking advantage streaming algorithms. Many statistics can be

efficiently computed on the sliding window, providing crucial information only on the

recent updates, however, many analytical tasks require more advanced capabilities such

as drill down queries that allow iterative refinement of the search space, i.e. at any time

moment t the data structure is required to report statistics over given time interval (t1, t2).

Recently, in [14] new model was introduced to accomodate this need, [14] also presented

efficient sketching algorithm for finding `1 heavy hitters in that model. We will refer

to it as an interval query model. In Chapter 3, we present the first algorithm to find `2

heavy hitters in interval query model. Using technique of recursive sketching, we further

6



Chapter 1. Introduction

generalize our result to a much wider class of functions of the frequency vector, including

entropy estimation, count distinct, etc. We implement the algorithm and estimate its

performance on network switches datasets from CAIDA [137].

1.2.4 Streaming quantiles algorithms with small space and update time

Approximating quantiles and distributions over streaming data has been studied for

roughly two decades now [2, 85, 104, 105, 143, 112]. Problem require data structure to

input a multiset S = {si}n
i=1, and upon any query φ return φn-th item of the sorted S. Re-

cently, Karnin, Lang, and Liberty [85] proposed the first asymptotically optimal algorithm

for doing so. Chapter 4 complements their theoretical result by providing improved vari-

ants of their algorithm. It improves accuracy/space tradeoff by provably decreasing the

upper bound by almost twice, which was also verified experimentally. Our techniques ex-

ponentially reduce the worst case update time from O(1/ε) down to O(log (1/ε)). Also,

we suggest two algorithms for a weighted stream of updates (ai, wi), with the worst case

update times O(log2(1/ε)) and O(log(1/ε)) correspondingly, which is a significant im-

provement over the naive extensions that require O((max wi) log 1/ε) update time.

7



Chapter 2

`2 heavy hitters algorithm

with fewer words

This chapter is based on [31] and [32].

2.1 Introduction

As emphasized in Chapter 1 there are numerous applications of data streams, and the

elements of the stream pi may be numbers, points, edges in a graph, and so on. Examples

include internet search logs, network traffic, sensor networks, and scientific data streams

(such as in astronomy, genomics, physical simulations, etc.). The sheer size of the dataset

often imposes very stringent requirements on an algorithm’s resources. Moreover, in

many cases only a single pass over the data is feasible, such as in network applications,

since if the data on a network is not physically stored somewhere, it may be impossible

to make a second pass over it. There are multiple surveys and tutorials in the algorithms,

database, and networking communities on the recent activity in this area; we refer the

reader to [113, 11] for more details and motivations underlying this area.

8



Chapter 2. `2 heavy hitters algorithm with fewer words

Within the study of streaming algorithms, the problem of finding frequent items is one

of the most well-studied and core problems, with work on the problem beginning in 1981

[22, 23]. It has applications in flow identification at IP routers [53], iceberg queries [55],

iceberg datacubes [20, 69], association rules, and frequent itemsets [4, 126, 142, 75, 68].

Aside from being an interesting problem in its own right, algorithms for finding frequent

items are used as subroutines to solve many other streaming problems, such as moment

estimation [80], entropy estimation [36, 72], `p-sampling [110], finding duplicates [62],

and several others.

Formally, we are given a stream p1, . . . , pm of items from a universe U , which, without

loss of generality we identify with the set {1, 2, . . . , n}. We make the common assumption

that log m = O(log n), though our results generalize naturally to any m and n. Let fi

denote the frequency, that is, the number of occurrences, of item i. We would like to find

those items i for which fi is large, i.e., the “heavy hitters”.

Stated simply, the goal is to report a list of items that appear least τ times, for a given

threshold τ. Naturally, the threshold τ should be chosen to depend on some measure of

the size of the stream. The point of a frequent items algorithm is to highlight a small set of

items that are frequency outliers. A choice of τ that is independent of f misses the point;

it might be that all frequencies are larger than τ.

With this in mind, previous work has parameterized τ in terms of different norms of

f with MisraGries [109] and CountSketch [39] being two of the most influential examples.

A value ε > 0 is chosen, typically ε is a small constant independent of n or m, and τ is set

to be ε‖ f ‖1 = εm or ε‖ f ‖2.

These are called the `1 and `2 guarantees, respectively. Choosing the threshold τ in

this manner immediately limits the focus to outliers since no more than 1/ε items can

have frequency larger than ε‖ f ‖1 and no more than 1/ε2 can have frequency ε‖ f ‖2 or

9



Chapter 2. `2 heavy hitters algorithm with fewer words

larger.

A moments thought will lead one to conclude that the `2 guarantee is stronger, i.e.

harder to achieve, than the `1 guarantee because ‖x‖1 ≥ ‖x‖2, for all x ∈ Rn. Indeed, the

`2 guarantee is much stronger. Consider a stream with all frequencies equal to 1 except

one which is equal j. With ε = 1/3, achieving the `1 guarantee only requires finding

an item with frequency j = n/2, which means that it occupies more than one-third of

the positions in the stream, whereas achieving the `2 guarantee would require finding an

item with frequency j =
√

n, such an item is a negligible fraction of the stream!

As we discuss further, the algorithms achieving `2 guarantee, like CountSketch [39],

achieve essentially the best space-to-τ trade-off. But, since the discovery of CountSketch,

which uses O(ε−2 log n) words of memory, it has been an open problem to determine the

smallest space possible for achieving the `2 guarantee. Since the output is a list of up to

ε−2 integers in [n], Ω(ε−2) words of memory are necessary.

Work on the heavy hitters problem began in 1981 with the MJRTY algorithm of [22, 23],

which is an algorithm using only two machine words of memory that could identify an

item whose frequency was strictly more than half the stream. This result was generalized

by the MisraGries algorithm in [109], which, for any 0 < ε ≤ 1/2, uses 2(d1/εe − 1)

counters to identify every item that occurs strictly more than an εm times in the stream.

This data structure was rediscovered at least two times afterward [48, 86] and became

also known as the Frequent algorithm. It has implementations that use O(1/ε) words of

memory, O(1) expected update time to process a stream item (using hashing), and O(1/ε)

query time to report all the frequent items. Similar space requirements and running times

for finding ε-frequent items were later achieved by the SpaceSaving [107] and LossyCounting

[103] algorithms.

A later analysis of these algorithms in [19] showed that they not only identify the

10



Chapter 2. `2 heavy hitters algorithm with fewer words

heavy hitters, but they also provided estimates of the frequencies of the heavy hitters.

Specifically, when using O(k/ε) counters they provide, for each heavy hitter i ∈ [n], an

estimate f̃i of the frequency fi such that | f̃i − fi| ≤ (ε/k) · ‖ ftail(k)‖1 ≤ (ε/k)‖ f ‖1. Here

ftail(k) is the vector f but in which the largest k entries have been replaced by zeros (and

thus the norm of ftail(k) can never be larger than that of f ). We call this the ((ε/k), k)-tail

guarantee. A recent work of [21] shows that for 0 < α < ε ≤ 1/2, all ε-heavy hitters can

be found together with approximate for them f̃i such that | f̃i − fi| ≤ α‖ f ‖1, and the space

complexity is O(α−1 log(1/ε) + ε−1 log n + log log ‖ f ‖1) bits.

All of the algorithms in the previous paragraph work in one pass over the data in the

insertion-only model, also known as the cash-register model [113], where deletions from

the stream are not allowed. Subsequently, many algorithms have been discovered that

work in more general models such as the strict turnstile and general turnstile models. In

the turnstile model, the vector f ∈ Rn receives updates of the form (i, ∆), which triggers

the change fi ← fi + ∆; note that we recover the insertion-only model by setting ∆ = 1

for every update. The value ∆ is assumed to be some bounded precision integer fitting

in a machine word, which can be either positive or negative. In the strict turnstile model

we are given the promise that fi ≥ 0 at all times in the stream. That is, items cannot

be deleted if they were never inserted in the first place. In the general turnstile model

no such restriction is promised (i.e. entries in f are allowed to be negative). This can

be useful when tracking differences or changes across streams. For example, if f 1 is the

query stream vector with f 1
i being the number of times word i was queried to a search

engine yesterday, and f 2 is the similar vector corresponding to today, then finding heavy

coordinates in the vector f = f 1 − f 2, which corresponds to a sequence of updates with

∆ = +1 (from yesterday) followed by updates with ∆ = −1 (from today), can be used to

track changes in the queries over the past day.

11



Chapter 2. `2 heavy hitters algorithm with fewer words

In the general turnstile model, an ε-heavy hitter in the `p norm is defined as an index

i ∈ [n] such that | fi| ≥ ε‖ f ‖p. Recall ‖ f ‖p is defined as (∑n
i=1 | fi|p)1/p. The CountMin

sketch treats the case of p = 1 and uses O(ε−1 log n) memory to find all ε-heavy hitters

and achieve the (ε, 1/ε)-tail guarantee [44]. The CountSketch treats the case of p = 2 and

uses O(ε−2 log n) memory, achieving the (ε, 1/ε2)-tail guarantee. It was later showed

in [82] that the CountSketch actually solves `p-heavy hitters for all 0 < p ≤ 2 using

O(ε−p log n) memory and achieving the (ε, 1/εp)-tail guarantee. In fact, they showed

something stronger: that any `2 heavy hitters algorithm with error parameter εp/2 achiev-

ing the tail guarantee automatically solves the `p heavy hitters problem with error pa-

rameter ε for any p ∈ (0, 2]. In this sense, solving the heavy hitters for p = 2 with tail

error, as CountSketch does, provides the strongest guarantee among all p ∈ (0, 2].

Identifying `2 heavy hitters is optimal in another sense, too. When p > 2 by Hölder’s

Inequality ε‖ f ‖p ≥ ε
n1/2−1/p ‖ f ‖2. Hence, one can use an `2 heavy hitters algorithm to iden-

tify items with frequency at least ε‖ f ‖p, for p > 2, by setting the heaviness parameter of

the `2 algorithm to ε/n1/2−1/p. The space needed to find `p heavy hitters with a CountS-

ketch is therefore O(ε−2n1−2/p log n) which is known to be optimal [97]. We conclude that

the `2 guarantee leads to the best space-to-frequency-threshold ratio among all p > 0.

It is worth pointing out that both the CountMin sketch and CountSketch are randomized

algorithms, and with small probability 1/nc (for a user-specified constant c > 0), they can

fail to achieve their stated guarantees. The work [82] also showed that the CountSketch

algorithm is optimal: they showed that any algorithm, even in the strict turnstile model,

solving `p heavy hitters even with 1/3 failure probability must use Ω(ε−p log n) memory.

Of note is that the MisraGries and other algorithms in the insertion-only model solve

`1 heavy hitters using (optimal) O(1/ε) memory, whereas the CountMin and CountSketch

12



Chapter 2. `2 heavy hitters algorithm with fewer words

algorithms use a larger Θ(ε−1 log n) memory in the strict turnstile model, which is opti-

mal in that model. Thus there is a gap of log n between the space complexities of `1 heavy

hitters in the insertion-only and strict turnstile models.

In Section 2.2 we present an algorithm that solves `2 heavy hitters problem in the

insertion-only model using only O( 1
ε2 log 1

ε log log n) words of memory, later in Section 2.3

we further improve the memory usage and present an algorithm using only O( 1
ε2 log 1

ε ).

2.2 Beating CountSketch for Heavy Hitters

in Insertion Streams

This section is based on [31], work done in collaboration with Braverman V., Chestnut S.

and Woodruff D.

2.2.1 Introduction

Our contribution. The main result of this section is the near resolution of the open ques-

tion above.

Theorem 1 (`2-Heavy Hitters). For any ε > 0, there is a 1-pass algorithm in the insertion-only

model that, with probability at least 2/3, finds all those indices i ∈ [n] for which fi ≥ ε
√

F2, and

reports no indices i ∈ [n] for which fi ≤ ε
2
√

F2. The space complexity is O( 1
ε2 log 1

ε log n log log n)

bits.

The intuition of the proof is as follows. Suppose there is a single `2-heavy hitter H,

ε > 0 is a constant, and we are trying to find the identity of H. Suppose further we could

identify a substream S′ where H is very heavy, specifically we want that the frequencies

in the substream satisfy f 2
H

poly(log n) ≥ ∑j∈S′,j 6=H f 2
j . Suppose also that we could find certain

13



Chapter 2. `2 heavy hitters algorithm with fewer words

R = O(log n) “breakpoints” in the stream corresponding to jumps in the value of fH, that

is, we knew a sequence pq1 < pq2 < · · · < pqR which corresponds to positions in the

stream for which fH increases by a multiplicative factor of (1 + 1/Θ(R)).

Given all of these assumptions, in between breakpoints we can partition the universe

randomly into two pieces and run an F2-estimate [6] (AMS sketch) on each piece. Since

f 2
H is more than a poly(log n) factor times ∑j∈S′,j 6=H f 2

j , while in between each breakpoint

the squared frequency of H is Ω
(

f 2
H

log n

)
, it follows that H contributes a constant fraction

of the F2-value in between consecutive breakpoints, and so, upon choosing the constants

appropriately, the larger in magnitude of the two AMS sketches will identify a bit of in-

formation about H, with probability say 90%. This is our algorithm Sieve. Since we have

Θ(log n) breakpoints, in total we will learn all log n bits of information needed to identify

H. One view of this algorithm is that it is a sequential implementation of the multiple

repetitions of CountSketch, namely, we split the stream at the breakpoints and perform

one “repetition” on each piece while discarding all but the single bit of information we

learn about H in between breakpoints.

However, it is not at all clear how to (1) identify S′ and (2) find the breakpoints.

For this, we resort to the theory of Gaussian and Bernoulli processes. Throughout the

stream we can maintain a sum of the form Xt = ∑n
i=1 f (t)i Zi, where the Zi are indepen-

dent Normal(0, 1) or Rademacher random variables. Either distribution is workable. One

might think as one walks through a stream of length poly(n), there will be times for which

this sum is much larger than
√

F2; indeed, the latter is the standard deviation and a naïve

union bound, if tight, would imply positions in the stream for which |Xt| is as large as√
F2 log n. It turns out that this cannot happen! Using a generic chaining bound devel-

oped by Fernique and Talagrand [135], we can prove that there exists a universal constant

14



Chapter 2. `2 heavy hitters algorithm with fewer words

C′ such that

E sup
t
|Xt| ≤ C′

√
F2.

We call this the Chaining Inequality.

We now randomly partition the universe into O( 1
ε2 ) “parts”, and run our algorithm

independently on each part. This ensures that, for a large constant C, H is C-heavy, mean-

ing, f 2
H ≥ C(F2 − f 2

H), where here we abuse notation and use F2 to denote the moment

of the part containing H. We run the following two-stage algorithm independently on

each part. The first stage, called Amplifier, consists of L = O(log log n) independent and

concurrent repetitions of the following: randomly split the set of items into two buckets

and maintain two Bernoulli processes, one for the updates in each bucket. By the Chain-

ing Inequality, a Markov bound, and a union bound, the total F2 contribution, excluding

that of H, in each piece in each repetition at all times in the stream, will be O(
√

F2 − f 2
H).

Since H is sufficiently heavy, this means after some time t∗, its piece will be larger in

magnitude in most, say 90%, of the L repetitions. Furthermore, H will be among only

n/2Ω(L) = n/poly log n items with this property. At this point, we can restrict our atten-

tion to a substream containing only those items.

The substream has the property that its F2 value, not counting H, will be a factor 1
log2 n

times the F2 value of the original stream, making H Ω(log2 n)-heavy. Finally, to find

the breakpoints, our algorithm Timer maintains a Bernoulli process on the substream,

and every time the Bernoulli sum increases by a multiplicative
(

1 + 1
θ(R)

)
factor, creates

a new breakpoint. By the Chaining Inequality applied in each consecutive interval of

breakpoints, the F2 of all items other than H in the interval is at most O(log n) larger than

its expectation; while the squared frequency of H on the interval is at least f 2
H

log n . Since H

is Ω(log2 n)-heavy, this makes f 2
H to be the dominant fraction of F2 on the interval.

One issue with the techniques above is they assume a large number of random bits

15



Chapter 2. `2 heavy hitters algorithm with fewer words

can be stored. A standard way of derandomizing this, due to Indyk [78] and based on

Nisan’s pseudorandom generator PRG [116], would increase the space complexity by a

log n factor, which is exactly what we are trying to avoid. Besides, it is not clear we can

even apply Indyk’s method since our algorithm decides at certain points in the stream

to create new F2-sketches based on the past, whereas Indyk’s derandomization relies on

maintaining a certain type of linear sum in the stream, so that reordering of the stream

does not change the output distribution. A first observation is that the only places we

need more than limited independence are in maintaining a collection of O(log n) hash

functions and the stochastic process ∑n
i=1 fiZi throughout the stream. The former can, in

fact, be derandomized along the lines of Indyk’s method [78].

In order to reduce the randomness needed for the stochastic process, we use a Johnson-

Lindenstrauss transformation to reduce the number of Rademacher (or Gaussian) ran-

dom variables needed. The idea is to reduce the frequency vector to O(log n) dimensions

with JL and run the Bernoulli process in this smaller dimensional space. The Bernoulli

process becomes ∑
O(log n)
i=1 Zi(T f )i, where T is the JL matrix. The same technique is used

by Meka for approximating the supremum of a Gaussian process [106]. It works because

the Euclidean length of the frequency vector describes the variance and covariances of

the process, hence the transformed process has roughly the same covariance structure as

the original process. An alternative perspective on this approach is that we use the JL

transformation in reverse, as a pseudorandom generator that expands O(log n) random

bits into O(n) random variables which fool our algorithm using the Bernoulli process.

In Section 2.2.5 we also use our techniques to prove the following.

Theorem 2 (F2 at all points). For any ε > 0, there is a 1-pass algorithm in the insertion-only

model that, with probability at least 2/3, outputs a (1± ε)-approximation of F2 at all points in

the stream. It uses O( 1
ε2 log n(log 1

ε + log log n)) bits of space.

16



Chapter 2. `2 heavy hitters algorithm with fewer words
L amplifier size O(log log n)
τ round expansion 100(R + 1)
δ small constant Ω(1)
St1:t2 interval of the stream (pt1+1, . . . , pt2)
H heavy hitter id ∈ [n]
ej jth unit vector
T JL transformation ∈ Rk×n

f (k)H frequency on S0:k

m stream length poly(n)
f (k1:k2) frequency on Sk1:k2 f (k2) − f (k1)

n domain size
R # of Sieve rounds O(log n)
k JL dimension O(log n)
C′ Chaining Ineq. const. O(1)
d dim. of Bern. proc. O(log δ−1)

C large const. ≥ d
3
2 C′/δ

TABLE 2.1: Notation and parameters used throughout the current section.

Preliminaries. Given a stream S = (p1, p2, . . . , pm), with pi ∈ [n] for all i, we define the

frequency vector at time 0 ≤ t ≤ m to be the vector f (t) with coordinates f (t)j := #{t′ ≤ t |

pt′ = j}. When t = m we simply write f := f (m). Given two times t1 ≤ t2 we use f (t1:t2)

for the vector f (t2) − f (t1). Notice that all of these vectors are nonnegative because S has

no deletions. An item H ∈ [n] is said to be an α-heavy hitter, for α > 0, if f 2
H ≥ α ∑j 6=H f 2

j .

The goal of our main algorithm, CountSieve, is to identify a single α-heavy hitter for α

a large constant. We will assume log m = O(log n), although our methods apply even

when this is not true. It will be occasionally helpful to assume that n is sufficiently large.

This is without loss of generality since in the case n = O(1) the problem can be solved

exactly in O(log m) bits.

A streaming algorithm is allowed to read one item at a time from the stream in the

order given. The algorithm is also given access to a stream of random bits, it must pay

17



Chapter 2. `2 heavy hitters algorithm with fewer words

to store any bits that it accesses more than once, and it is only required to be correct with

constant probability strictly greater than 1/2. Note that by repeating such an algorithm k

times and taking a majority vote, one can improve the success probability to 1− 2−Ω(k).

We measure the storage used by the algorithm on the worst case stream, i.e. worst case

item frequencies and order, with the worst case outcome of its random bits.

The AMS sketch [6] is a linear sketch for estimating F2. The sketch contains O(ε−2 log δ−1)

independent sums of the form ∑n
j=1 Sj f j, where S1, S2, . . . , Sn are four-wise independent

Rademacher random variables. By averaging and taking medians it achieves a (1± ε)-

approximation to F2 with probability at least (1− δ).

A Gaussian process is a stochastic process (Xt)t∈T such that every finite subcollection

(Xt)t∈T′ , for T′ ⊆ T, has a multivariate Gaussian distribution. When T is finite (as in

this section), every Gaussian process can be expressed as a linear transformation of a

multivariate Gaussian vector with mean 0 and covariance I. Similarly, a Bernoulli process

(Xt)t∈T, T finite, is a stochastic process defined as a linear transformation of a vector of

i.i.d. Rademacher (i.e. uniform ±1) random variables. Underpinning our results is an

analysis of the Gaussian process

Xt = ∑
j∈[n]

Zj f (t)j , for t = 0, . . . , m,

where Z1, . . . , Zn
iid∼ N (0, 1) are independent standard Normal random variables. The

Bernoulli analogue to our Gaussian process replaces the distribution of the random vector

Z as Z1, . . . , Zn
iid∼ Rademacher. Properties of the Normal distribution make it easier

for us to analyze the Gaussian process rather than its Bernoulli cousin. On the other

hand, we find Bernoulli processes more desirable for computational tasks. Existing tools,

which we discuss further in Section 2.2.3 and Section 2.2.4, allow us to transfer the needed

18



Chapter 2. `2 heavy hitters algorithm with fewer words

properties of a Gaussian process to its Bernoulli analogue.

A k× n matrix T is a (1± γ)-embedding of a set of vectors X ⊆ Rn if

(1− γ)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + γ)‖x− y‖2,

for all x, y ∈ X ∪ {0}. We also call such a linear transformation a JL Transformation. It is

well-known that taking the entries of the matrix T to be i.i.d. Normal random variables

with mean 0 and variance 1/k produces a JL transformation with high probability. Many

other randomized and deterministic constructions exist, we will use the recent construc-

tion of Kane, Meka, and Nelson [84].

The development and analysis of our algorithm relies on several parameters, some

of which have already been introduced. Table 2.1 lists those along with the rest of the

parameters and some other notation for reference. In particular, the values C, d, δ, and γ

are constants that we will choose in order to satisfy several inequalities. We will choose δ

and γ to be small, say 1/200, and d = O(log 1/δ). C and C′ are sufficiently large constants,

in particular C ≥ dC′/δ.

2.2.2 `2 heavy hitters algorithm

This section describes the algorithm CountSieve, which solves the heavy hitter problem

for the case of a single heavy hitter, i.e. top-1, in O(log n log log n) bits of space and proves

Theorem 1. By definition, the number of ε-heavy hitters is at most 1+ 1/ε2, so, upon hash-

ing the universe into O(1/ε2) parts, the problem of finding all ε-heavy hitters reduces to

finding a single heavy hitter in each part. Collisions can be easily handled by repeat-

ing the algorithm O(log 1/ε) times. When ε = Ω(1), using this reduction incurs only a

constant factor increase in space over the single heavy hitter problem.

19



Chapter 2. `2 heavy hitters algorithm with fewer words

Suppose the stream has only a single heavy hitter H ∈ [n]. Sequentially, over the

course of reading the stream, CountSieve will hash the stream into two separate sub-

streams for O(log n) repetitions, and in each repetition it will try to determine which of

the two substreams has the heavy hitter using the AMS Sketch. With high probability,

H has a unique sequence of hashes, so if we correctly identify the stream containing H

every time then we can correctly identify H. This holds even if we only correctly identify

the stream containing H a large constant fraction of the repetitions. CountSketch accom-

plishes this by performing the O(log n) rounds of hashing in parallel, with Ω(log2 n) bits

of storage. One of our innovations is to implement this scheme sequentially by specify-

ing intervals of updates, which we call rounds, during each of which we run the two AMS

Sketches. In total there could be as many as Θ(log2 n) of these rounds, but we will discard

all except the last R = O(log n) of them.

Algorithm 1 is a simplified version of the Bernoulli process used by CountSieve. It

has all of the properties we need for correctness of the algorithm, but it requires too many

random bits. Chief among these properties is the control on the supremum of the process.

The Chaining Inequality gives us a uniform bound on the maximum value of the BP

Algorithm 1 One Bernoulli process.
procedure BP(Stream S)

Sample Z1, . . . , Zn
iid∼ Rademacher

return 〈Z, f (t)〉 at each time t
end procedure

process in terms of the standard deviation of the last value. This property is formalized

by the definition of a tame process.

Definition 3. Let f (t) ∈ Rn, for t ∈ [m], and let T : Rn → Rk be a matrix. Let Z be a

d × k matrix of i.i.d. Rademacher random variables. A d-dimensional Bernoulli process yt =

20



Chapter 2. `2 heavy hitters algorithm with fewer words

d−
1
2 ZT f (t), for t ∈ [m], is tame if, with probability at least 1− δ,

‖yt‖2 ≤ C

√√√√ n

∑
j=1

f 2
j , for all t ∈ [m]. (2.1)

The definition anticipates our need for dimension reduction in order to reduce the

number of random bits needed for the algorithm. Our first use for it is for BP, which is

very simple with d = 1 and T the identity matrix. BP requires n random bits, which is too

many for a practical streaming algorithm. JLBP, Algorithm 2, exists to fix this problem.

Still, if one is willing to disregard the storage needed for the random bits, BP can be sub-

stituted everywhere for JLBP without affecting the correctness of our algorithms because

our proofs only require that the processes are tame, and BP produces a tame process, as

we will now show. We have a similar lemma for JLBP.

Lemma 4 (BP Correctness). Let f (t), for t ∈ [m], be the frequency vectors of an insertion-only

stream. The sequence Z f (t) returned by the algorithm BP is a tame Bernoulli process.

Proof. By the Chaining Inequality, Theorem 14, ∃C′ s.t. E supt |Xt| ≤ C′(∑j f 2
j )

1/2. Let

F be the event that the condition (2.1) holds. Then, for C ≥ C′/δ, Markov’s Inequality

implies that:

Pr(F) = Pr

sup
t
|Xt| ≤ C

√
∑

j
f 2
j

 ≥ (1− δ).

In order to reduce the number of random bits needed for the algorithms we first ap-

ply JL transformation T to the frequency vector. The intuition for this comes from the

covariance structure of the Bernoulli process, which is what governs the behavior of the

process and is fundamental for the Chaining Inequality. The variance of an increment

21



Chapter 2. `2 heavy hitters algorithm with fewer words

of the Bernoulli process between times s and t > s is ‖ f (s:t)‖2
2. The JL-property of the

matrix T guarantees that this value is well approximated by ‖T f (s:t)‖2
2, which is the in-

crement variance of the reduced-dimension process. Slepian’s Lemma (Lemma 15) is

a fundamental tool in the theory of Gaussian processes that allows us to draw a com-

parison between the suprema of the processes by comparing the increment variances

instead. Thus, for Z1, . . . , Zn
iid∼ Rademacher, the expected supremum of the process

Xt = ∑n
i=1 Zi f (t)i is closely approximated by that of X′t = ∑k

i=1 Zi(T f (t))i, and the latter

uses only k = O(log n) random bits. The following lemma formalizes this discussion, its

proof is given in Section 2.2.4.

Lemma 5 (JLBP Correctness). Suppose the matrix T used by JLBP is an (1± γ)-embedding of

( f (t))t∈[m]. For any d ≥ 1, the sequence 1√
d

ZT f (t) returned by JLBP is a tame d-dimensional

Bernoulli process. Furthermore, there exists d′ = O(log δ−1) such that for any d ≥ d′ and

H ∈ [n] it holds that Pr(1
2 ≤ ‖d

− 1
2 ZTeH‖ ≤ 3

2) ≥ 1− δ.

Algorithm 2 A Bernoulli process with fewer random bits.
procedure JLBP(Stream S)

Let T be a JL Transformation . The same T will suffice for all instance
Sample Z ∈ {−1, 1}d×k, s.t. Zi,j

iid∼ Rademacher
return 1√

d
ZT f (t) at each time t

end procedure

Now that we have established the tameness of our Bernoulli processes, let us explain

how we can exploit it. We typically exploit tameness in two ways, one works by splitting

the stream according to the items and the second splits the stream temporally. Given

a stream and a tame Bernoulli process on that stream, every substream defines another

Bernoulli process, and the substream processes are tame as well. One way to use this

is for heavy hitters. If there is a heavy hitter H, then the substream consisting of all

22



Chapter 2. `2 heavy hitters algorithm with fewer words

updates except those to the heavy hitter produces a tame process whose maximum is

bounded by C(F2 − f 2
H)

1/2, so the value of the process in BP is ZH fH ± C(F2 − f 2
H)

1/2.

When H is sufficiently heavy, this means that the absolute value of the output of BP tracks

the value of fH, for example if H is a 4C2-heavy hitter then the absolute value of BP’s

output is always a (1± 1
2)-approximation to fH. Another way we exploit tameness is for

approximating F2 at all points. We select a sequnece of times t1 < t2 < · · · < tj ∈ [m] and

consider the prefixes of the stream that end at times t1, t2, . . . , etc. For each ti, the prefix

stream ending at time ti is tame with the upper bound depending on the stream’s F2 value

at time ti. If the times ti are chosen in close enough succession this observation allows us

to transform the uniform additive approximation guarantee into a uniform multiplicative

approximation.

Description of CountSieve. CountSieve primarily works in two stages that operate con-

currently. Each stage uses independent pairs of Bernoulli processes to determine bits

of the identity of the heavy hitter. The first stage is the Amplifier, which maintains

L = O(log log n) independent pairs of Bernoulli processes. The second stage is the Timer

and Sieve. It consists of a series of rounds where one pair of AMS sketches is maintained

during each round.

CountSieve and its subroutines are described formally in Algorithm 4. The random

variables they use are listed in Table 2.2. Even though we reduce the number of random

bits needed for each Bernoulli process to a manageable O(log n) bits, the storage space for

the random values is still an issue because the algorithm maintains O(log n) independent

hash functions until the end of the stream. We explain how to overcome this barrier in

Section 2.2.4 as well as show that the JL generator of [84] suffices.

23



Chapter 2. `2 heavy hitters algorithm with fewer words

A`,1, . . . , A`,n
4-w∼ Bernoulli Z1, . . . , Zk

iid∼ Rademacher

Br,1, . . . , Br,n
4-w∼ Bernoulli Rr,1, .., Rr,n

4-w∼ Rademacher

TABLE 2.2: Random vectors for CountSieve. Each vector is independent of
the others, and Z = (Zi)i∈[k] is sampled independently for every instance of

JLBP.

We can now state an algorithm that maintains a pair of Bernoulli processes and prove

that the bits that it outputs favor the process in the pair with the heavy hitter.

Algorithm 3 Split the vector f into two parts depending on A and run a Bernoulli process
on each part. Return the identity of the larger estimate at each time.

procedure PAIR(Stream S, A1, . . . An ∈ {0, 1})
For b ∈ {0, 1} let Sb be the restriction

of S to {j ∈ [n] | Aj = b|}
X(t)

0 =JLBP(S(t)
0 ) at each time t

X(t)
1 =JLBP(S(t)

1 ) at each time t
bt = argmaxb∈{0,1} ‖X

(t)
b ‖2

return b1, b2, . . .
end procedure

Lemma 6 (Pair Correctness). Let t0 ∈ [m] be an index such that:

( f (t0)
H )2 > 4C2 ∑

j 6=H
f 2
j .

Let A1, . . . , An
p.w.∼ Bernoulli and let b1, b2, . . . , bm be the sequence returned by

Pair( f , A1, . . . , An). Then

Pr(bt = AH for all t ≥ t0) ≥ 1− 3δ

24



Chapter 2. `2 heavy hitters algorithm with fewer words

and, for every j ∈ [n] \ {H} and t ≥ t0,

Pr(bt = Aj) ≤
1
2
+ 3δ.

Furthermore, if each JLBP is replaced by an AMS sketch with size O(log n log δ−1) then, for all

t ≥ t0 and j 6= H, P(bt = AH) ≥ 1− 2δ and P(bt = Aj) ≤ 1
2 + 3δ.

Proof. Let X(t)
0 = d−

1
2 ZT f (t) and X(t)

1 = d−
1
2 WT f (t) be the two independent Bernoulli pro-

cesses output by JLBP. Without loss of generality, suppose that AH = 1, let v = d−
1
2 WTeH,

and let Y(t) = X(t)
1 − f (t)H v. By Lemma 5, with probability at least 1− 2δ all three of the

following hold

1. ‖X(t)
0 ‖2

2 ≤ C2 ∑j:Aj=0 f 2
j , for all t,

2. ‖Y(t)‖2
2 ≤ C2 ∑ j 6=H

Aj=1
f 2
j , for all t, and

3. ‖v‖2 ≥ 1/2.

If the three events above hold then, for all t ≥ t0,

‖X(t)
1 ‖2 − ‖X(t)

0 ‖2 ≥ ‖v f (t)H ‖2 − ‖Y(t)‖2 − ‖X(t)
0 ‖2

≥ 1
2

f (t)H − C
√

∑
j 6=H

f 2
j > 0,

which establishes the first claim. The second claim follows from the first using

Pr(bt = Aj) = Pr(bt = Aj = AH) + Pr(bt = Aj 6= AH)

≤ Pr(Aj = AH) + Pr(bt 6= AH) =
1
2
+ 3δ.

The third and fourth inequalities follow from the correctness of the AMS sketch [6].

25



Chapter 2. `2 heavy hitters algorithm with fewer words

Amplifier Correctness. The L = O(log log n) instances of Pair maintained by Amplifier

in the first stage of CountSieve serve to identify a substream containing roughly n2−L =

n/polylogn elements in which H appears as a polylog(n)-heavy hitter. Correctness of

Amplifier means that, after some “burn-in” period which we allow to include the first

fH/2 updates to H, all of the subsequent updates to H appear in the amplified substream

while the majority of other items do not. This is Lemma 7.

Lemma 7 (Amplifier Correctness). Let t0 ∈ [m] be such that ( f (t0)
H )2 ≥ 4C2 ∑j 6=H f 2

j ; let

at = (a1,t, . . . , aL,t) denote the length L bit-vector output by the Amplifier at step t. Let Mj,t =

#{` ∈ [L] | a`,t = A`,j} and W = {j ∈ [n] \ {H} | ∃t ≥ t0, Mj,t ≥ 0.9L}. Then, with

probability at least (1− 2δ), both of the following hold:

1. for all t ≥ t0 simultaneously, MH,t ≥ 0.9L and

2. ∑j∈W f 2
j ≤ exp(− L

25)∑j 6=H f 2
j .

Proof. Let N = #{` | for all t ≥ t0, a`,t = A`,H}. If N ≥ 0.9L then 1 holds. Lemma 6

implies EN ≥ (1− 3δ)L ≥ 0.97L, so Chernoff’s Bound easily implies P(N < 0.9L) =

O(2−L) ≤ δ, where δ is a constant.

Now, let j 6= H be a member of W and suppose that MH,t ≥ 0.9L. Let t ≥ t0 be such

that Mj,t ≥ 0.9L. Then it must be that

M′j := #{` ∈ [L] | A`,j = A`,H} ≥ 0.8L.

However, EM′j =
1
2 L by pairwise independence. Let Ej be the event {j ∈ W and MH,t ≥

0.9L}. Since the L instances of Pair are independent, an application of Chernoff’s Inequal-

ity proves that

Pr(Ej) ≤ Pr(M′j ≥ 0.8L) ≤ exp{−0.62L
6
} ≤ e−L/20.

26



Chapter 2. `2 heavy hitters algorithm with fewer words

We have

E( ∑
j∈W

f 2
j ) = E( ∑

j 6=H
1Ej f 2

j ) ≤ e−L/20 ∑
j 6=H

f 2
j .

Therefore Markov’s Inequality yields

Pr

(
∑

j∈W
f 2
j ≥ e−L/25 ∑

j 6=H
f 2
j

)
≤ e−L/100 ≤ δ.

The lemma follows by a union bound.

Timer and Sieve Correctness. The timing of the rounds in the second stage of CountSieve

is determined by the algorithm Timer. Timer outputs a set of times q0, q1, . . . , qR that break

the stream into intervals so that each interval has roughly a 1/ log n fraction of the occur-

rences of H and not too many other items. Precisely, we want that H is everywhere heavy

for q, as stated in the following definition. When this holds, in every round the Pair is

likely to identify one bit of H, and Sieve and Selector will be likely to correctly identify H

from these bits.

Definition 8. Given an item H ∈ [n] and a sequence of times q0 < q1 < · · · < qR in a stream

with frequency vectors ( f (t))t∈[m] we say that H is everywhere heavy for q if, for all 1 ≤ r ≤ R,

( f (qr−1:qr)
H )2 ≥ C2 ∑

j 6=H
( f (qr−1:qr)

j )2.

Correctness for Timer means that enough rounds are completed and H is sufficiently

heavy within each round, i.e., H is everywhere heavy for q.

Lemma 9 (Timer Correctness). Let S be a stream with an item H ∈ [n] such that the following

hold:

27



Chapter 2. `2 heavy hitters algorithm with fewer words

Algorithm 4 Algorithm for a single F2 heavy hitters.
procedure COUNTSIEVE(Stream S = (p1, p2, . . . , pm))

Maintain at = (a1,t, a2,t, . . . , aL,t)←AMPLIFIER(S)
Let t1 < t2 < · · · =
{t ∈ [n] | A`,pt = a`,t for at least 0.9L values of `}

Let S0 = (pt1 , pt2 , . . . , )
q0, q1, . . . , qR ←TIMER(S0)
b1, b2, . . . , bR ←SIEVE(S0, q0, . . . , qR)
return SELECTOR(b1, b2, . . . , bR) based on S0

end procedure
procedure AMPLIFIER(Stream S) . Find a substream where H is polylog(n)-heavy

for ` = 1, 2, . . . , L do
a`,1, a`,2, . . . , a`,m ←PAIR(S, A`,1, . . . , A`,n)

end for
return a1,t, . . . , aL,t at each time t

end procedure
procedure TIMER(Stream S) . Break the substream into rounds so H is heavy in each

q′0 = 0
Yt ←JLBP(S), for t = 1, 2, . . . , over S
For each r ≥ 1, find q′r = min{t | ‖Yt‖2 > (1 + 1

τ )
r}

Let q0, q1, . . . , qR be the last R + 1 of q′0, q′1, . . .
return q0, q1, . . . , qR

end procedure
procedure SIEVE(Stream S, q0, . . . , qR) . Identify one bit of information from each
round

for r = 0, 1, . . . , R− 1 do
bqr+1, . . . , bqr+1 ←PAIR(S(qr :qr+1), Br,1, . . . , Br,n)

. Replace JLBP here with AMS
end for
return bq1 , bq2 , . . . , bqR

end procedure
procedure SELECTOR(b1, . . . , bR) . Determine H from the round winners

return Any j∗ ∈ argmaxj #{r ∈ [R] : Br,j = br}.
end procedure

1. fH ≥ τ4,

2. f 2
H ≥ 400C2 ∑j 6=H f 2

j , and

28



Chapter 2. `2 heavy hitters algorithm with fewer words

3. ( f (t
∗ :m)

H )2 = 1
4 f 2

H ≥ 25C2τ2 ∑j 6=H( f (t
∗ :m)

j )2,

where t∗ = min{t ∈ [m] | f (t)H ≥ 0.5 fH} and C is the constant from Definition 3. If

q0, q1, . . . , qR is the sequence output by Timer(S) then, with probability at least 1 − 4δ, H is

everywhere heavy for q.

Proof. We begin by proving that at least R rounds occur after t∗, which shows that q0, . . . , qR

is well defined, and then we show that H is everywhere heavy. Let Yt be the sequence

output by JLBP and let Xt = Yt − d−
1
2 ZTeH f (t)H . Yt and Xt are tame by Lemma 5 and

Pr(0.5 ≤ α ≤ 1.5) ≥ 1− δ where α = ‖d− 1
2 ZTeH‖2. Hereafter, we suppose that α ≥ 1/2

and the tameness property holds for Yt and Xt. With probability at least 1− δ, simultane-

ously for all t ∈ [m], we have

‖Xt‖2
2 ≤ C2 ∑

j 6=H
f 2
j ≤

1
400

f 2
H. (2.2)

Therefore, ‖Yt∗‖2 ≤ ‖Xt∗‖2 + α f (t
∗)

H ≤ ( α
2 + 1

20) fH and ‖Ym‖2 ≥ α f (m)
H − ‖Xm‖2 ≥

(α− 1
20) fH. This implies that the number of rounds completed after t∗, which is

log1+1/τ

‖Ym‖2

‖Yt∗‖2
≥ log1+1/τ

α− 1/20
α/2 + 1/20

≥ log1+1/τ(3/2),

is at least R + 1 by our choice of τ = 100(R + 1). Similarly ‖Yt∗‖2 ≥ α f (t
∗)

H − ‖Xt∗‖2 ≥

( α
2 −

1
20) fH. Therefore we also get qi > qi−1 because (1 + τ−1)‖Yt∗‖2 ≥ 1 by our assump-

tion that fH ≥ τ4. Hence q0, . . . , qR are distinct times.

Now we show that H is everywhere heavy for q. Let Wt = Xt − Xt∗ , for t ≥ t∗. By

design, Wt −Ws = Xt − Xs, for s, t ≥ t∗. By Lemma 5, Wt is also a tame process on

the suffix of the original stream that has its first item at time t∗ + 1. Specifically with

29



Chapter 2. `2 heavy hitters algorithm with fewer words

probability at least 1− δ, for all t ≥ t∗,

‖Wt‖2
2 ≤ C2 ∑

j 6=H
( f (t

∗ :m)
j )2 ≤ 1

400τ2 f 2
H.

This inequality, with two applications of the triangle inequality, implies

α f (qi−1:qi)
H ≥ ‖Yqi −Yqi−1‖2 − ‖Wqi −Wqi−1‖2

≥ ‖Yqi −Yqi−1‖2 −
2

20τ
fH. (2.3)

To complete the proof we must bound ‖Yqi −Yqi−1‖2 from below and then apply the heav-

iness, i.e., assumption 3.

Equation (2.2) and the triangle inequality imply that, for every t ≥ t∗, it holds that

‖Yt‖2 ≥ α f (t)H − ‖Xt‖2 ≥ ( α
2 −

1
20) fH. Recalling the definition of q′0, q′1, · · · from Timer,

since t∗ ≤ q0 < q1 < · · · < qR and the rounds expand at a rate (1 + 1/τ),

‖Yqi+1 −Yqi‖2 ≥
1
τ

(
α

2
− 1

20

)
fH. (2.4)

Using what we have already shown in (2.3) we have

α f (qi :qi+1)
H ≥ 1

τ

(
α

2
− 1

20
− 2

20

)
fH

so dividing and using α ≥ 1/2 and C sufficiently large we get

( f (qi :qi+1)
H )2 ≥ 1

25τ2 f 2
H ≥ C2 ∑

j 6=H
( f (t

∗ :m)
j )2

≥ C2 ∑
j 6=H

( f (qi :qi+1)
j )2.

30



Chapter 2. `2 heavy hitters algorithm with fewer words

Since this holds for all i, H is everywhere heavy for q. We have used the tameness of the

three processes (X, Y, and W) and the bounds on α. Each of these fails with probability at

most δ, so the probability that Timer fails to achieve the condition that H is everywhere

heavy for q is at most 4δ.

During each round, the algorithm Sieve uses a hash function A to split the stream into

two parts and then determines which part contains H via Pair. For these instances of Pair,

we replace the two instances of JLBP with two instances of AMS. This replacement helps

us to hold down the storage when we later use Nisan’s PRG, because computing the JL

transformation T from [84] requires O(log n log log n) bits. Applying Nisan’s PRG to an

algorithm that computes entries in T would leave us with a bound of O(log n(log log n)2).

More details can be found in Section 2.2.4.

A total of O(log n) rounds is enough to identify the heavy hitter and the only informa-

tion that we need to save from each round is the hash function A and the last bit output

by Pair. Selector does the work of finally identifying H from the sequence of bits out-

put by Sieve and the sequence of hash functions used during the rounds. We prove the

correctness of Sieve and Selector together in the following lemma.

Lemma 10 (Sieve/Selector). Let q0, q1, . . . , qR be the sequence output by TIMER(S) and let

b1, . . . , bR be the sequence output by SIEVE(S, q0, . . . , qR). If H is everywhere heavy for q on the

stream S then, with probability at least 1− δ, Selector(b1, . . . , bR) returns H.

Proof. Lemma 6 in the AMS case implies that the outcome of round r satisfies Pr(br =

Br,H) ≥ 1− 3δ and Pr(br = Br,j) ≤ 1
2 + 3δ. The random bits used in each iteration of the

for loop within Sieve are independent of the other iterations. Upon choosing the number

of rounds R = O(log n) to be sufficiently large, Chernoff’s Inequality implies that, with

31



Chapter 2. `2 heavy hitters algorithm with fewer words

high probability, H is the unique item in argmaxj #{r ∈ [R] | Br,j = br}. Therefore,

Selector returns H.

Algorithm 5 `2 heavy hitters algorithm.
procedure `2HEAVYHITTERS(S = (p1, p2, . . . , pm))

Q← O(log ε−1), B← O(ε−2)
Select independent 2-universal hash functions

h1, . . . , hQ, h′1, . . . , h′Q : [n]→ [B]
and σ1, . . . , σQ : [n]→ {−1, 1}.

F̂2 ← (1± ε
10)F2 using AMS [6]

Ĥ ← ∅
for (q, b) ∈ Q× B do

Let Sq,b be the stream of items i with hq(i) = b
cq,b ← ∑j:h′q(j)=b σq(j) f j . The CountSketch [39]
H ← COUNTSIEVE(Sq,b)

end for
Remove from Ĥ any item i such that

medianq{|cq,hq(i)|} ≤
3ε
4 F̂2.

return Ĥ
end procedure

CountSieve Correctness. We now have everything in place to prove that CountSieve

correctly identifies a sufficiently heavy heavy hitter H. As for the storage bound and The-

orem 1, the entire algorithm fits within O(log n log log n) bits except the R = O(log n)

hash functions required by Sieve. We defer their replacement to Theorem 19 in Sec-

tion 2.2.4.

Theorem 11 (CountSieve Correctness). If H is a 400C2-heavy hitter then the probability that

CountSieve returns H is at least 0.95. The algorithm uses O(log n log log n) bits of storage and

can be implemented with O(log n log log n) stored random bits.

Proof. We use Theorem 16 to generate the JL transformation T. Each of our lemmas

requires that T embeds a (possibly different) polynomially sized set of vectors, so, for

32



Chapter 2. `2 heavy hitters algorithm with fewer words

δ = Ω(1), Theorem 16 implies that, with probability at least 1− δ, T embeds all of the nec-

essary vectors with seed length O(log n), and the entries in T can be computed in space

O(log n log log n) bits of space. Because of the heaviness assumption, the conclusion of

Lemma 7 fails to hold for t0 = t∗ (defined in Lemma 9) with probability at most 2δ. When

that failure does not occur, the second and third hypotheses in Lemma 9 hold. The first

hypothesis is that fH ≥ τ4, suppose it holds. Then the probability that H fails to be every-

where heavy for the sequence q that is output by Timer is at most 4δ. In this case, accord-

ing to Lemma 10, Sieve and Selector correctly identify H except with probability at most

δ. Therefore, the algorithm is correct with probability at least 1− 8δ ≥ 0.95, by choosing

δ ≤ 1/200. If fH < τ4, then because H is a heavy hitter, we get ∑j 6=H f 2
j ≤ τ8 = O(log8 n).

Then we choose the constant factor in L large enough so that, the second conclusion of

Lemma 7 implies ∑j∈W f 2
j ≤ e−L/25 < 1. This means that H is the only item that passes

the amplifier for all t ≥ t∗, and, no matter what is the sequence output by Timer, H is

everywhere heavy because it is the only item in the substream. Thus, in this case the

algorithm also outputs H.

Now we analyze the storage and randomness. Computing the entries in the Kane-

Meka-Nelson JL matrix requires O(log n log log n) bits of storage, by Theorem 16, and

there is only one of these matrices. Amplifier stores L = O(log log n) counters. Sieve,

Timer, and Selector each require O(log n) bits at a time (since we discard any value as

soon as it is no longer needed). Thus the total working memory of the algorithm is

O(log n log log n) bits. The random seed for the JL matrix has O(log n) bits. Each of

the O(log log n) Bernoulli processes requires O(log n) random bits. By Theorem 19 be-

low, the remaining random bits can be generated with Nisan’s generator using a seed of

O(log n log log n) bits. Using Nisan’s generator does not increase the storage of the algo-

rithm. Accounting for all of these, the total number of random bits used by CountSieve,

33



Chapter 2. `2 heavy hitters algorithm with fewer words

which also must be stored, is O(log n log log n). Therefore, the total storage used by the

algorithm is O(log n log log n) bits.

Theorem 1 (`2-Heavy Hitters). For any ε > 0, there is a 1-pass algorithm in the insertion-only

model that, with probability at least 2/3, finds all those indices i ∈ [n] for which fi ≥ ε
√

F2, and

reports no indices i ∈ [n] for which fi ≤ ε
2
√

F2. The space complexity is O( 1
ε2 log 1

ε log n log log n)

bits.

Proof. The algorithm is Algorithm 5. It has the form of a CountSketch [39] with Q =

O(log 1/ε) “rows” and B = 8(10C)2/ε2 “buckets” per row, wherein we run one in-

stance of CountSieve in each bucket to identify potential heavy hitters and also the usual

CountSketch counter in each bucket. Finally, the algorithm discriminates against non-

heavy hitters by testing their frequency estimates from the CountSketch. We will assume

that the AMS estimate F̂2 is correct with probability at least 8/9.

Let Hk = {i | fi ≥ ε
k
√

F2} and let Ĥ be set of distinct elements returned by Algo-

rithm 5. To prove the theorem, it is sufficient to prove that, with probability at least 2/3,

H1 ⊆ Ĥ ⊆ H2.

Let H ∈ H1 and consider the stream Sq,hq(H) at position (q, hq(H)). We have

E( ∑
j 6=H

hq(j)=hq(H)

f 2
j ) ≤

ε2

8(10C)2 F2.

Let Eq,H be the event that

∑
j 6=H

hq(j)=hq(H)

f 2
j ≤

ε2

(10C)2 F2,

so by Markov’s Inequality Pr(Eq,H) ≥ 7/8. When Eq,H occurs H is sufficiently heavy in

Sq,hq(H) for CountSieve. By Theorem 11, with probability at least 7
8 −

1
20 ≥ 0.8, CountSieve

34



Chapter 2. `2 heavy hitters algorithm with fewer words

identifies H. Therefore, with the correct choice of the constant factor for Q, a Chernoff

bound and a union bound imply that, with probability at least 1− 1/9, every item in H1

is returned at least once by a CountSieve.

Let Ĥ′ denote the set Ĥ before any elements are removed in the final step. Since

CountSieve identifies at most one item in each bucket, |Ĥ′| = O(ε−2 log ε−1). By the

correctness of CountSketch [39] and the fact that it is independent of Ĥ′, we get that, with

probability at least 1− 1/9, for all i ∈ Ĥ′

∣∣∣ fi −medianq{|cq,hq(i)|}
∣∣∣ ≤ ε

10C

√
F2.

When this happens and the AMS estimate is correct, the final step of the algorithm cor-

rectly removes any items i /∈ H2 and all items i ∈ H1 remain. This completes the proof of

correctness.

The storage needed by the CountSketch is O(BQ log n), the total storage needed for

all instances of CountSieve is O(BQ log n log log n), and the storage needed for AMS is

O(ε−2 log n). Therefore, the total number of bits of storage is

O(BQ log n log log n) = O(
1
ε2 log

1
ε

log n log log n).

Corollary 11.1. There exists an insertion-only streaming algorithm that returns an additive

±ε
√

F2 approximation to `∞, with probability at least 2/3 and requires O( 1
ε2 log 1

ε log n log log n)

bits of space.

Proof. Use Algorithm 5. If no heavy-hitter is returned then the `∞ estimate is 0, otherwise

return the largest of the CountSketch medians among the discovered heavy hitters. The

35



Chapter 2. `2 heavy hitters algorithm with fewer words

correctness follows from Theorem 1 and the correctness of CountSketch.

2.2.3 Chaining Inequality

We call these inequalities Chaining Inequalities after the Generic Chaining, which is the

technique that we use to prove it. The book [136] by Talagrand contains an excellent

exposition of the subject. Let (Xt)t∈T be a Gaussian process. The Generic Chaining

technique concerns the study of the supremum of Xt in a particular metric space re-

lated to the variances and covariances of the process. The metric space is (T, d) where

d(s, t) = (E(Xs − Xt)2)
1
2 . The method takes any finite chain of finite subsets T0 ⊆ T1 ⊆

· · · ⊆ Tn ⊆ T and uses (Xt)t∈Ti as a sequence of successive approximations to (Xt)t∈T

wherein Xt, for t /∈ Ti, is approximated by the value of the process at some minimizer

of d(t, Ti) = min{d(t, s) | s ∈ Ti}. To apply the Generic Chaining one must judiciously

choose the chain in order to get a good bound, and the best choice necessarily depends

on the structure of the process. We will exploit the following lemma.

Lemma 12 ([136]). Let {Xt}t∈T be a Gaussian process and let T0 ⊆ T1 · · · ⊆ Tn ⊆ T be a chain

of sets such that |T0| = 1 and |Ti| ≤ 22i
for i ≥ 1. Then

E sup
t∈T

Xt ≤ O(1) sup
t∈T

∑
i≥0

2i/2d(t, Ti). (2.5)

The Generic Chaining also applies to Bernoulli processes, but, for our purposes, it is

enough that we can compare related Gaussian and Bernoulli processes.

Lemma 13 ([136]). Let A ∈ Rm×n be any matrix and let G and B be n-dimensional vectors with

independent coordinates distributed as N(0, 1) and Rademacher, respectively. Then the Gaussian

process X = AG and Bernoulli process Y = AB satisfy E supt∈T Yt ≤
√

π
2 E supt∈T Xt.

36



Chapter 2. `2 heavy hitters algorithm with fewer words

Theorem 14 (Chaining Inequality). Define independent N (0, 1) random variables Z1, . . . , Zn

and let ( f (t))t∈[m] be the sequence of frequency vectors of an insertion-only stream. There exists a

universal constant C′ > 0 such that if Xt = ∑n
j=1 Zj f (t)j , for t ∈ [m], then

E sup
i
|Xi| ≤ C′

√
Var(Xm) = C′‖ f (m)‖2. (2.6)

If Z̄1, . . . , Z̄n . . . iid∼ Rademacher and Yt = ∑n
j=1 Z̄j f (t)j , for t ∈ [m], then

E sup
i
|Yi| ≤ C′

√
Var(Ym) = C′‖ f (m)‖2. (2.7)

Proof. Let T = [m]. Define T0 = {t0}, where t0 is the index such that

Var(Xt0) < 0.5 Var(Xm) ≤ Var(Xt0+1) and Ti = {1, ti,1, ti,2, . . . } where for each index

ti,j ∈ Ti Var(Xti,j) < j
22i Var(Xm) ≤ Var(Xti,j+1). This is well-defined because Var(Xt) =

‖ f (t)‖2
2 is the second moment of an insertion-only stream, which must be monotonically

increasing. By construction |Ti| ≤ 22i
and, for each t ∈ T, there exist ti,j ∈ Tj such that

d(t, Ti) = min(d(t, ti,j), d(t, ti,j+1))

≤ d(ti,j, ti,j+1) = (E(Xti,j+1 − Xti,j)
2)

1
2 ,

where the last inequality holds because E(X2
t ) monotonically increasing with t.

37



Chapter 2. `2 heavy hitters algorithm with fewer words

Notice that every pair of increments has nonnegative covariance because the stream is

insertion-only. Thus, the following is true:

d(t, ti,j+1)
2 ≤ E(Xti,j+1 − Xti,j)

2

≤ E(Xti,j+1 − Xti,j)
2 + 2EXti,j(Xti,j+1 − Xti,j)

= EX2
ti,j+1
−EX2

ti,j

≤ j + 1
22i EX2

m −
j− 1
22i EX2

m =
2

22i EX2
m.

Then we can conclude that

∑
i≥0

2i/2d(t, Ti) ≤ ∑
i≥0

2i/2 2
22i

√
EX2

m = O(1)
√

Var(Xm).

Applying (2.5) we obtain E supt∈T Xt ≤ O(1)
√

Var(Xm).

In order to bound the absolute value, observe

sup
t
|Xt| ≤ |X1|+ sup |Xt − X1|

≤ |X1|+ sup
s,t

(Xt − Xs)

= |X1|+ sup
t

Xt + sup
s
(−Xs). (2.8)

Thus, E supt |Xt| ≤ E|X1|+ 2E sup Xt ≤ O(1)
√

Var(Xm), because −Xt is also Gaussian

process with the same distribution as Xt and E|X1| = O(
√

Var(Xm)) because f (1) = 1.

This establishes (2.6) and (2.7) follows immediately by an application of Lemma 13.

Theorem 14 would obviously not be true for a stream with deletions, since we may

38



Chapter 2. `2 heavy hitters algorithm with fewer words

have Var(Xm) = 0. One may wonder if the theorem would be true for streams with dele-

tions upon replacing Var(Xm) by maxt Var(Xt). This is not true, and a counter example

is the stream (e1,−e1, e2, . . . , en,−en) which yields maxt Var(Xt) = 1, but E supt |Xt| =

Θ(
√

log n).

Theorem 14 does not apply to the process ouput by JLBP, but the covariance structures

of the two processes are very similar because T is an embedding. We can achieve basically

the same inequality for the JLBP process by applying Slepian’s Lemma, mimicking the

strategy in [106].

Lemma 15 (Slepian’s Lemma [95]). Let Xt and Yt, for t ∈ T, be Gaussian processes such that

E(Xs − Xt)2 ≤ E(Ys −Yt)2, for all s, t ∈ T. Then, E supt∈T Xt ≤ E supt∈T Yt.

Corollary 15.1 (Chaining Inequality with JL). Let T be a (1± γ)-embedding of ( f (t))t∈[m] and

let Z1, . . . , Zk
iid∼ N (0, 1). There exists a universal constant C′ > 0 such that if Xt = 〈Z, T f (t)〉,

for t ∈ [m], then E supi |Xi| ≤ C′‖ f (m)‖2. If Z̄1, . . . , Z̄k
iid∼ Rademacher and Yt = 〈Z̄, T f (t)〉,

for t ∈ [m], then E supi |Yi| ≤ C′‖ f (m)‖2.

Proof. Let Wt be the Gaussian process from Theorem 14. Since T is a JL transformation

E(Xt − Xs)
2 = ‖T f (s:t)‖2

2 ≤ (1 + γ)2‖ f (s:t)‖2
2

= (1 + γ)2E(Wt −Ws)
2.

The first claim of the corollary follows from Slepian’s Lemma, Equation (2.8), and Theo-

rem 14. The second inequality follows from the first and Lemma 13.

39



Chapter 2. `2 heavy hitters algorithm with fewer words

2.2.4 Reduced randomness

This section describes how CountSieve can be implemented with only O(log n log log n)

random bits. There are two main barriers to reducing the number of random bits. We

have already partially overcome the first barrier, which is to reduce the number of bits

needed by a Bernoulli process from n, as in the algorithm BP, to O(log n) by introducing

JLBP. JLBP runs d = O(1) independent Bernoulli processes in dimension k = O(log n) for

a total of dk = O(log n) random bits. This section proves the correctness of that algorithm.

The second barrier is finding a surrogate for the R independent vectors of pairwise in-

dependent Bernoulli random variables that are used during the rounds of Sieve. We must

store their values so that Selector can retroactively identify a heavy hitter, but, naïvely,

they require Ω(log2 n) random bits. We will show that one can use Nisan’s pseudoran-

dom generator (PRG) with seed length O(log n log log n) bits to generate these vectors. A

priori, it is not obvious that this is possible. The main sticking point is that the stream-

ing algorithm that we want to derandomize must store the random bits it uses, which

means that these count against the seed length for Nisan’s PRG. Specifically, Nisan’s PRG

reduces the number of random bits needed by a space S algorithm using R random bits

to O(S log R). Because CountSieve must pay to store the R random bits, the storage used

is S ≥ R = Ω(log2 n), so Nisan’s PRG appears even to increase the storage used by the

algorithm! We can overcome this by introducing an auxiliary (non-streaming) algorithm

that has the same output as Sieve and Selector, but manages without storing all of the ran-

dom bits. This method is similar in spirit to Indyk’s derandomization of linear sketches

using Nisan’s PRG [78]. It is not a black-box reduction to the auxiliary algorithm and it is

only possible because we can exploit the structure of Sieve and Selector.

We remark here that we are not aware of any black-box derandomization of the Bernoulli

processes that suits our needs. This is for two reasons. First, we cannot reorder the stream

40



Chapter 2. `2 heavy hitters algorithm with fewer words

for the purpose of the proof because the order of the computation is important. Reorder-

ing the stream is needed for Indyk’s argument [78] for applying Nisan’s PRG. Second, the

seed length of available generators is too large, typically in our setting we would require

a seed of length at least log1+δ n, for some δ > 0.

The Bernoulli Process with O(log n) Random Bits. The main observation that leads

to reducing the number of random bits needed by the algorithm is that the distribution

of the corresponding Gaussian process depends only on the second moments of the in-

crements. These moments are just the square of the Euclidean norm of the change in the

frequency vector, so applying a Johnson-Lindenstrauss transformation to the frequency

vector nearly preserves the distribution of the process and allows us to get away with

O(log n) random bits. One trouble with this approach is that the heavy hitter H could

be “lost”, whereby we mean that although ‖TeH‖ ≈ 1 it may be that 〈Z, TeH〉 ≈ 0, for

the Rademacher random vector Z, whereupon H’s contribution to the sum 〈Z, T f (t)〉 is

lost among the noise. To avoid this possibility we keep d = O(1) independent Bernoulli

processes in parallel.

First, we state correctness of the Johnson-Lindenstrauss transformation that we use

and the storage needed for it.

Theorem 16 (Kane, Meka, & Nelson [84]). Let V

be a set of n points in Rn. For any constant δ > 0 there exists a k = O(γ−2 log(n/δ)) and

generator G : {0, 1}O(log n) × [k]× [n] → R such that, with probability at least 1− δ, the k× n

matrix T with entries Tij = G(R, i, j) is a (1± γ)-embedding of V, where R ∈ {0, 1}O(log n) is a

uniformly random string. The value of G(R, i, j) can be computed with O(log n log log n) bits of

storage.

41



Chapter 2. `2 heavy hitters algorithm with fewer words

Lemma 5 (JLBP Correctness). Suppose the matrix T used by JLBP is an (1± γ)-embedding of

( f (t))t∈[m]. For any d ≥ 1, the sequence 1√
d

ZT f (t) returned by JLBP is a tame d-dimensional

Bernoulli process. Furthermore, there exists d′ = O(log δ−1) such that for any d ≥ d′ and

H ∈ [n] it holds that Pr(1
2 ≤ ‖d

− 1
2 ZTeH‖ ≤ 3

2) ≥ 1− δ.

Proof. Let Xi,t = ∑k
j=1 Zij(T f (t))j and

Xt = ‖
1√
d

ZT f (t)‖2
2 =

1
d

d

∑
i=1

X2
i,t,

for t = 1, . . . , m. Each process Xi,t is a Bernoulli process with Var(Xi,t) = ‖T f (t)‖2
2 ≤

(1 + γ)2‖ f (t)‖2
2 and, for s < t, E(Xi,t − Xi,s)

2 = ‖T f (s:t)‖2
2 ≤ (1 + γ)2‖ f (s:t)‖2

2.

Notice that for all i Gaussian processes (Xi,t)t∈[m] are from same distribution. Let X′t be

a Gaussian process that is identical to Xi,t, except that the Rademacher random variables

are replaced by standard Gaussians. X′t and Xi,t have the same means, variances, and

covariances. Thus, E supt |Xi,t| ≤
√

π
2 E supt |X′t|, by Lemma 13.

Let N1, . . . , Nn
iid∼ N(0, 1). We will compare X′t against the Gaussian process X′′t =

(1 + γ) 1√
d
〈N, f (t)〉. By the Chaining Inequality, there exists C′ such that E sup |X′′t | ≤

C′
√

Var(X′′m) =
C′(1+γ)√

d
‖ f (m)‖2. We have E(X′′t −X′′s )2 = 1

d (1+γ)2‖ f (s:t)‖2
2, so by Slepian’s

Lemma applied to X′t and X′′t and by (2.8) we have

E sup
t
|Xi,t| ≤

√
π

2
E sup |X′t| ≤

√
π

2

√
dE sup

t
|X′′t |

≤
√

π

2
(1 + γ)C′‖ f (m)‖2.

Now we apply Markov’s Inequality to get Pr(supt |Xi,t| ≥ C√
d
‖ f (m)‖2) ≤ δ

d , by taking

C ≥
√

π
2 (1 + γ)C′d3/2/δ. From a union bound we find Pr(supi,t |Xi,t| ≥ C√

d
‖ f (m)‖2) ≤ δ,

42



Chapter 2. `2 heavy hitters algorithm with fewer words

and that event implies supt |Xt| ≤ C‖ f (m)‖2, which is (2.1) and proves that the process is

tame.

For the second claim, we note that the matrix 1√
d

Z is itself a type of Johnson-Lindenstrauss

transformation (see [1]), hence 1
2 ≤ ‖d−1/2ZTeH‖ ≤ 3

2 , with probability at least 1− 2−d ≥

(1− δ). The last inequality follows by our choice of d.

Sieve and Selector. In the description of the algorithm, the Sieve and Selector use O(log n)

many pairwise independent hash functions that are themselves independent. Nominally,

this needs O(log2 n) bits. However, as we show in this section, it is sufficient to use

Nisan’s pseudorandom generator [116] to generate the hash functions. This reduces the

random seed length from O(log2 n) to O(log n log log n). Recall the definition of a pseu-

dorandom generator.

Definition 17. A function G : {0, 1}m → {0, 1}n is called a pseudorandom generator (PRG)

for space(S) with parameter ε if for every randomized space(S) algorithm A and every input to

it we have that

‖Dy(A(y))−Dx(A(G(x))‖1 < ε,

where y is chosen uniformly at random in {0, 1}n, x uniformly in {0, 1}m, and D(·) is the distri-

bution of · as a vector of probabilities.

Nisan’s PRG [116] is a pseudorandom generator for space S with parameter 2−S that

takes a seed of length O(S log R) bits to R bits. The total space used by Sieve and Selector

is O(log n) bits for the algorithm workspace and O(log2 n) bits to store the hash functions.

We will be able to apply Nisan’s PRG because Sieve only accesses the randomness

in O(log n) bit chunks, where the rth chunk generates the 4-wise independent random

variables needed for the rth round, namely Br1, . . . , Brn and the bits for two instances of

43



Chapter 2. `2 heavy hitters algorithm with fewer words

the AMS sketch. We can discard the AMS sketches at the end of each round, but in order

to compute its output after reading the entire stream, Selector needs access to the bit se-

quence b1, b2, . . . , bR as well as Bri, for r ∈ [R] and i ∈ [n]. Storing the B random variables,

by their seeds, requires O(log2 n) bits. This poses a problem for derandomization with

Nisan’s PRG because it means that Sieve and Selector are effectively a O(log2 n) space

algorithm, even though most of the space is only used to store random bits.

We will overcome this difficulty by derandomizing an auxiliary algorithm. The auxil-

iary algorithm computes a piece of the information necessary for the outcome, specifically

for a given item j ∈ [n] in the stream the auxiliary item will compute Nj := #{r | br = Brj}

the number of times j is on the “winning side” and compare that value to 3R/4. Recall

that the Selector outputs as the heavy hitter a j that maximizes Nj. By Lemma 6 for the

AMS case, ENj is no larger than (1
2 + 3δ)R, if j is not the heavy element, and ENH is

at least (1− 3δ)R if H is the heavy element. When the Sieve is implemented with fully

independent rounds, Chernoff’s Inequality implies that NH > 3R/4 or Nj ≤ 3R/4 with

high probability. When we replace the random bits for the independent rounds with bits

generated by Nisan’s PRG we find that for each j with high probability Nj remains on the

same side of 3R/4.

Here is a formal description of the auxiliary algorithm. The auxiliary algorithm takes

the sequence q0, q1, . . . , qR as input (which is independent of the bits we want to replace

with Nisan’s PRG), the stream S, and an item label j, and it outputs whether Nj > 3R/4. It

initializes Ni = 0, and then for each round r = 1, . . . , R it draws O(log n) random bits and

computes the output br of the round. If br = Brj then Ni is incremented, and otherwise it

remains unchanged during the round. The random bits used by each round are discarded

at its end. At the end of the stream the algorithm outputs 1 if Nj > 3R/4.

44



Chapter 2. `2 heavy hitters algorithm with fewer words

Lemma 18. Let X ∈ {0, 1} be the bit output by the auxiliary algorithm, and let X̃ ∈ {0, 1} be

the bit output by the auxiliary algorithm when the random bits it uses are generated by Nisan’s

PRG with seed length O(log n log log n). Then |Pr(X = 1)− Pr(X̃ = 1)| ≤ 1
n2 .

Proof. The algorithm uses O(log n) bits of storage and O(log2 n) bits of randomness. The

claim follows by applying Nisan’s PRG [116] with parameters ε = 1/n2 and seed length

O(log n log log n).

Theorem 19. Sieve and Selector can be implemented with O(log(n) log log n) random bits.

Proof. Let Nj be the number of rounds r for which br = Brj when the algorithm is imple-

mented with independent rounds, and let Ñj be that number of rounds when the algo-

rithm is implemented with Nisan’s PRG. Applying Lemma 18 we have for every item j

that |Pr(Ñj > 3R/4)− P(Nj > 3R/4)| ≤ 1/n2. Thus, by a union bound, the probability

that the heavy hitter H is correctly identified changes by no more than n/n2 = 1/n. The

random seed requires O(log n log log n) bits of storage, and aside from the random seeds

the algorithms use O(log n) bits of storage. Hence the total storage is O(log n log log n)

bits.

2.2.5 F2 at all points

One approach to tracking F2 at all times is to use the median of O(log n) independent

copies of an F2 estimator like the AMS algorithm [6]. A Chernoff bound drives the error

probability to 1/poly(n), which is small enough for a union bound over all times, but it

requires O(log2 n) bits of storage to maintain all of the estimators. The Chaining Inequal-

ity allows us to get a handle on the error during an interval of times. Our approach to

tracking F2 at all times is to take the median of O(log 1
ε + log log n) Bernoulli processes.

In any short enough interval—where F2 changes by only a (1 + Ω(ε2)) factor—each of

45



Chapter 2. `2 heavy hitters algorithm with fewer words

the processes will maintain an accurate estimate of F2 for the entire interval, with con-

stant probability. Since there are only O(ε−2 log2(n)) intervals we can apply Chernoff’s

Inequality to guarantee the tracking on every interval, which gives us the tracking at all

times. This is a direct improvement over the F2 tracking algorithm of [76] which for con-

stant ε requires O(log n(log n + log log m)) bits.

The algorithm has the same structure as the AMS algorithm, except we replace their

sketches with instances of JLBP. Theorem 2 follows immediately from Theorem 21.

Algorithm 6 An algorithm for approximating F2 at all points in the stream.
procedure F2ALWAYS(Stream S)

N ← O( 1
ε2 ), R← O(log( 1

ε2 log n))

X(t)
i,r ← JLBP(S) for i ∈ [N] and r ∈ [R].

. Use a (1± ε
3)-embedding T in this step.

Y(t)
r = 1

N ∑N
i=1 ‖X

(t)
i,r ‖

2
2

return F̂(t)
2 = medianr∈R{Y

(t)
r } at each time t

end procedure

Lemma 20. Let N = O( 1
δε2 ) and let X(t)

i , for i = 1, . . . , N, be independent copies of the

output of JLBP(S) using a fixed (1 ± ε
8)-embedding T on an insertion only stream S. Let

Yt = 1
N ∑N

i=1 ‖X
(t)
i ‖

2
2. Suppose that for two given times 1 ≤ u < v ≤ m the stream satis-

fies 256C2F(u:v)
2 ≤ ε2F(u)

2 , where F(u:v)
2 = ∑n

i=1( f (u:v)
i )2 is the second moment of the change in

the stream. Then

Pr
(
|Yt − F(t)

2 | ≤ εF(t)
2 , for all u ≤ t ≤ v

)
≥ 1− 2δ.

Proof. We first write |Yt− F(t)
2 | ≤ |Yt−Yu|+ |Yu− F(u)

2 |+ |F
(t)
2 − F(u)

2 |. It follows from the

arguments of AMS and the fact that T is a (1± ε/8)-embedding that, with an appropriate

46



Chapter 2. `2 heavy hitters algorithm with fewer words

choice for N = O( 1
δε2 ), we arrive at

Pr(|Yu − F(u)
2 | ≤

ε

4
F(u)

2 ) ≥ 1− δ. (2.9)

For the third term we have F(t)
2 ≥ F(u)

2 because t ≥ u and the stream is insertion only.

We can bound the difference with

F(t)
2 = ‖ f (u) + f (u:t)‖2

2 ≤ ‖ f (u)‖2
2

(
1 +
‖ f (u:t)‖2

‖ f u‖2

)2

≤ F(u)
2 (1 +

ε

4
),

where the last inequality follows because C ≥ 2 and ε ≤ 1/2.

For the first term, since X(t)
i , i ∈ [n], are independent d-dimensional Bernoulli process,

it follows that

X(t) =
1√
N
((X(t)

1 )T, (X(t)
2 )T, . . . , (X(t)

N )T)T

is an Nd-dimensional Bernoulli process. By Lemma 5 and due to the fact that X(t) can

be represented as an output of JLBP procedure, the process X(u:t) = X(t) − X(u), is a

tame process, so with probability at least 1− δ, for all u ≤ t ≤ v we have ‖X(u:t)‖2
2 ≤

C2 ∑n
j=1( f (u:v)

j )2. Therefore, assuming the inequality inside (2.9),

Yt = ‖X(u) + X(u:t)‖2
2 ≤ Yu

(
1 +
‖X(u:t)‖2

‖X(u)‖2

)2

≤ Yu

(
1 +
√

1 + ε√
1− ε

‖F(u:t)‖2

‖F(u)‖2

)2

≤ Yu

(
1 +

2ε

16C

)2

≤ F(u)
2 (1 + ε/4),

47



Chapter 2. `2 heavy hitters algorithm with fewer words

where the last inequality follows because C ≥ 2 and ε ≤ 1/2. The reverse bound Yt ≥

F(u)
2 (1− ε/4) follows similarly upon applying the reverse triangle inequality in place of

the triangle inequality. With probability at least 1− 2δ,

|Yt − F(t)
2 | ≤ |Yt −Yu|+ |Yu − F(u)

2 |+ |F
(t)
2 − F(u)

2 |

≤ εF(u)
2 ≤ εF(t)

2 .

Theorem 21. Let S be an insertion only stream and, for t = 1, 2, . . . , m, let F(t)
2 = ∑n

i=1( f (t)i )2

and let F̂(t)
2 be the value that is output by Algorithm 6. Then

P(|F̂(t)
2 − F(t)

2 | ≤ εF(t)
2 , for all t ∈ [m]) ≥ 2/3.

It uses O
(

1
ε2 log n

(
log log n + log 1

ε

))
bits of space.

Proof. By Lemma 16, the (single) matrix used by all instances of JLBP is a (1 ± ε/3)-

embedding with probability at least 0.99, henceforth assume it is so. Let q0 = 0 and

qi = max
t

{
t |F(t)

2 ≤ (1 +
ε2

256C2 )
i
}

,

until qK = m for some K. Notice that K = O( 1
ε2 log n). Here, C is the constant from

Definition 3.

By definition of qi and using the fact that (a− b)2 ≤ a2− b2 for real numbers 0 ≤ b ≤ a

we have F(qi :qi+1)
2 ≤ (F(qi+1)

2 − F(qi)
2 ) ≤ ε2

256C2 F(qi)
2 .

Applying Lemma 20 with δ = 1/10, we have, for every r ∈ [R] and i ≥ 0 that

P(|Y(t)
r − F(t)

2 | ≤ εF(t)
2 , for all qi ≤ t ≤ qi+1) ≥ 0.8.

48



Chapter 2. `2 heavy hitters algorithm with fewer words

Thus, by Chernoff bound, the median satisfies

P(|F̂(t)
2 − F(t)

2 | ≤ εF(t)
2 , for all qi ≤ t ≤ qi+1)

≥ 1− e−R/12 ≥ 1− 1
4K

,

by our choice of R = 12 log 4K = O(log(ε−2 log n)). Thus, by a union bound over all of

the intervals and the embedding T we get P(|F̂(t)
2 − F(t)

2 | ≤ εF(t)
2 , for all t ∈ [m]) ≥ 2

3 ,

which completes the proof of correctness.

The algorithm requires, for the matrix T, the JL transform of Kane, Meka, and Nel-

son [84] with a seed length of O(log(n) log(1
ε log n)) bits, and it takes only O(log(n/ε))

bits of space to compute any entry of T. The algorithm maintains NR = O(ε−2 log(1
ε log n))

instances of JLBP which each requires O(log n) bits of storage for the sketch and random

bits. Therefore, the total storage used by the algorithm is O(ε−2 log(n) log(1
ε log n)).

2.3 BPTree: an `2 heavy hitters algorithm using constant

memory

This section is based on [32], work done in collaboration with Braverman V., Chestnut S.,

Woodruff D., Nelson J. and Wang Z.

2.3.1 Introduction

Our contributions. We provide a new one-pass algorithm, BPTree, which in the insertion-

only model solves `2 heavy hitters and achieves the (ε, 1/ε2)-tail guarantee. For any con-

stant ε our algorithm only uses a constant O(1) words of memory, which is optimal. This

49



Chapter 2. `2 heavy hitters algorithm with fewer words

is the first optimal-space algorithm for `2 heavy hitters in the insertion-only model for

constant ε. The algorithm is described in Theorem 32.

En route to describing BPTree and proving its correctness we describe another result

that may be of independent interest. Theorem 22 is a new limited randomness supre-

mum bound for Bernoulli processes. Lemma 30 gives a more advanced analysis of the

algorithm of Alon, Matias, and Szegedy (AMS) for approximating ‖ f ‖2 [6], showing that

one can achieve the same (additive) error as the AMS algorithm at all points in the stream,

at the cost of using 8-wise independent random signs rather than 4-wise independent

signs. Note that section 2.2 describes an algorithm using O(log log n) words that does F2

tracking in an insertion only stream with a multiplicative error (1± ε). The multiplica-

tive guarantee is stronger, albeit with more space for the algorithm, but the result can be

recovered as a corollary to our additive F2 tracking theorem, which has a much simplified

algorithm and analysis compared to section 2.2.

After some preliminaries, Section 2.3.2 presents both algorithms and their analyses.

The description of BPTree is split into three parts. Section 2.3.2 states and proves the

chaining inequality. Section 2.3.3 presents the results of some numerical experiments.

Overview of approach. Here we describe the intuition for our heavy hitters algorithm

in the case of a single heavy hitter H ∈ [n] such that f 2
H ≥

9
10‖ f ‖2

2. The reduction from

multiple heavy hitters to this case is standard. Suppose also for this discussion we knew a

constant factor approximation to F2 := ‖ f ‖2
2. Our algorithm and its analysis use several of

the techniques developed in section 2.2. We briefly review that algorithm for comparison.

Both CountSieve and BPTree share the same basic building block, which is a subroutine

that tries to identify one bit of information about the identity of H. The one-bit subroutine

hashes the elements of the stream into two buckets, computes one Bernoulli process in each

50



Chapter 2. `2 heavy hitters algorithm with fewer words

bucket, and then compares the two values. The Bernoulli process is just the inner product

of the frequency vector with a vector of Rademacher (i.e., uniform ±1) random variables.

The hope is that the Bernoulli process in the bucket with H grows faster than the other

one, so the larger of the two processes reveals which bucket contains H. In order to

prove that the process with H grows faster, section 2.2 introduce a chaining inequality

for insertion-only streams that bounds the supremum of the Bernoulli processes over all

times. The one-bit subroutine essentially gives us a test that H will pass with probability,

say, at least 9/10 and that any other item passes with probability at most 6/10. The high-

level strategy of both algorithms is to repeat this test sequentially over the stream.

CountSieve uses the one-bit subroutine in a two-part strategy to identify `2 heavy

hitters with O(log log n) memory. The two parts are (1) amplify the heavy hitter so

fH ≥ (1 − 1
poly(log n) )‖ f ‖2 and (2) identify H with independent repetitions of the one-

bit subroutine. Part (1) winnows the stream from, potentially, n distinct elements to

at most n/poly(log n) elements. The heavy hitter remains and, furthermore, we get

fH ≥ (1− 1
poly(log n) )‖ f ‖2 because many of the other elements are removed. CountSieve

accomplishes this by running Θ(log log n) independent copies of the one-bit subroutine

in parallel, and discarding elements that do not pass a super-majority of the tests. A stan-

dard Chernoff bound implies that only n/2O(log log n) = n/poly(log n) items survive. Part

(2) of the strategy identifies Θ(log n) ‘break-points’ where ‖ f ‖2 of the winnowed stream

increases by approximately a (1 + 1/ log n) factor from one break-point to the next. Be-

cause H already accounts for nearly all of the value of ‖ f ‖2 it is still a heavy hitter within

each of the Θ(log n) intervals. CountSieve learns one bit of the identity of H on each in-

terval by running the one-bit subroutine. After all Θ(log n) intervals are completed the

identity of H is known.

BPTree merges the two parts of the above strategy. As above, the algorithm runs a

51



Chapter 2. `2 heavy hitters algorithm with fewer words

series of Θ(log n) rounds where the goal of each round is to learn one bit of the identity of

H. The difference from CountSieve is that BPTree discards more items after every round,

then recurses on learning the remaining bits. As the algorithm proceeds, it discards more

and more items and H becomes heavier and heavier in the stream. This is reminiscent

of work on adaptive compressed sensing [79], but here we are able to do everything in a

single pass given the insertion-only property of the stream. Given that the heavy hitter

is even heavier, it allows us to weaken our requirement on the two counters at the next

level in the recursion tree: we now allow their suprema to deviate even further from their

expectation, and this is precisely what saves us from having to worry that one of the

O(log n) Bernoulli processes that we encounter while walking down the tree will have a

supremum which is too large and cause us to follow the wrong path. The fact that the

heavy hitter is even heavier also allows us to “use up” even fewer updates to the heavy

hitter in the next level of the tree, so that overall we have enough updates to the heavy

hitter to walk to the bottom of the tree.

Preliminaries. An insertion only stream is a list of items p1, . . . , pm ∈ [n]. The frequency

of j at time t is f (t)j := #{i ≤ t | pi = j}, f (t) ∈ Zn
≥0 is called the frequency vector, we denote

f := f (m), F(t)
2 = ∑n

i=1( f (t)i )2, F2 = ∑n
j=1 f 2

j , and F0 = #{j ∈ [n] : f j > 0}. An item

H ∈ [n] is a α-heavy hitter1 if f 2
H ≥ α2 ∑j 6=H f 2

j = α2(F2 − f 2
H). For W ⊆ [n], denote

by f (t)(W) ∈ Zn
≥0 the frequency vector at time t of the stream restricted to the items in

W, that is, a copy of f (t) with the ith coordinate replaced by 0 for every i /∈ W. We also

define f (s:t)(W) := f (t)(W)− f (s)(W) and F2(W) = ∑j∈W f 2
j . In a case where the stream

is semi-infinite (it has no defined end) m should be taken to refer to the time of a query of

1This definition is in a slightly different form from the one given in the introduction, but this form is
more convenient when f 2

H is very close to F2.

52



Chapter 2. `2 heavy hitters algorithm with fewer words

interest. When no time is specified, quantities like F2 and f refer to the same query time

m.

Our algorithms make use of 2-universal (pairwise independent), 4-wise independent,

and 8-wise independent hash functions. We will commonly denote such a function h :

[n] → [p] where p is a prime larger than n, or we may use h : [n] → {0, 1}R, which

may be taken to mean a function of the first type for some prime p ∈ [2R−1, 2R). We use

h(x)i to denote the ith bit, with the first bit most significant (big-endian). A crucial step

in our algorithm involves comparing the bits of two values a, b ∈ [p]. Notice that, for any

0 ≤ r ≤ dlog2 pe, we have ai = bi, for all 1 ≤ i ≤ r, if and only if |a − b| < 2dlog2 pe−r.

Therefore, the test ai = bi, for all 1 ≤ i ≤ r, can be performed with a constant number of

operations.

We will use, as a subroutine, and also compare our algorithm against CountSketch [39].

To understand our results, one needs to know that CountSketch has two parameters, which

determine the number of “buckets” and “repetitions” or “rows” in the table it stores.

The authors of [39] denote these parameters b and r, respectively. The algorithm selects,

independently, r functions h1, . . . , hr from a 2-universal family with domain [n] and range

[b] and r functions σ1, . . . , σr from a 2-universal family with domain [n] and range {−1, 1}.

CountSketch stores the value ∑j:ht(j)=i σ(j) f j, in cell (t, i) ∈ [r]× [b] of the table.

In our algorithm we use the notation 1(A) denote the indicator function of the event

A. Namely, 1(A) = 1 if A is true and 0 otherwise. We sometimes use x . y to denote

x = O(y).

53



Chapter 2. `2 heavy hitters algorithm with fewer words

2.3.2 Algorithm and analysis

We will now describe and analyze the main algorithm, which is broken into several sub-

routines. The most important subroutine is HH1, Algorithm 7, which finds a single O(1)-

heavy hitter assuming we have an estimate σ of
√

F2 such that
√

F2 ≤ σ ≤ 2
√

F2. Next is

HH2, Algorithm 8, which removes the assumption entailing σ by repeatedly “guessing”

values for σ and restarting HH1 as more items arrive. The guessing in HH2 is where we

need F2 tracking. Finally, a well known reduction from finding ε-heavy hitters to finding

a single O(1)-heavy hitter leads us to the main heavy hitters algorithm BPTree, which is

formally described in Theorem 32.

This section is organized as follows. The first subsection gives an overview of the

algorithm and its analysis. Section 2.3.2 proves the bound on the expected supremum of

the Bernoulli processes used by the algorithm. Section 2.3.2 uses the supremum bound to

prove the correctness of the main subroutine HH1. Section 2.3.2 establishes the correctness

of F2 tracking. The subroutine HH2, which makes use of the F2 tracker, and the complete

algorithm BPTree are described and analyzed in Section 2.3.2.

Description of the algorithm. The crux of the problem is to identify one K-heavy hit-

ter for some constant K. HH1, which we will soon describe in detail, accomplishes that

task given a suitable approximation σ to
√

F2. HH2, which removes the assumption of

knowing an approximation σ ∈ [
√

F2, 2
√

F2], is described in Algorithm 8. The reduction

from finding all ε-heavy hitters to finding a single K-heavy hitter is standard from the

techniques of CountSketch; it is described in Theorem 32.

HH1, Algorithm 7, begins with randomizing the item labels by replacing them with

pairwise independent values on R = Θ(log min{n, σ2}) bits, via the hash function h.

54



Chapter 2. `2 heavy hitters algorithm with fewer words

Algorithm 7 Identify a heavy hitter.
procedure HH1(σ, p1, p2, . . . ,pm)

R← 3blog2(min{n, σ2}+ 1)c
Initialize b = b1b2 · · · bR = 0 ∈ [2R]
Sample h : [n]→ {0, 1}R ∼ 2-wise indep. family
Sample Z ∈ {−1, 1}n 4-wise indep.
X0, X1 ← 0
r ← 1, H ← −1
β← 3/4, c← 1/32
for t = 1, 2, . . . , m and r < R do

if h(pt)i = bi, for all i ≤ r− 1 then
H ← pt
Xh(pt)r ← Xh(pt)r + Zpt

if |X0 + X1| ≥ cσβr then
Record one bit br ← 1(|X1| > |X0|)
Refresh (Zi)

n
i=1, X0, X1 ← 0

r ← r + 1
end if

end if
end for
return H

end procedure

Since n and σ2 ≥ F2 are both upper bounds for the number of distinct items in the stream,

R can be chosen so that every item receives a distinct hash value.

Once the labels are randomized, HH1 proceeds in rounds wherein one bit of the ran-

domized label of the heavy hitter is determined during each round. It completes all of

the rounds and outputs the heavy hitter’s identity within one pass over the stream. As

the rounds proceed, items are discarded from the stream. The remaining items are called

active. When the algorithm discards an item it will never reconsider it (unless the al-

gorithm is restarted). In each round, it creates two Bernoulli processes X0 and X1. In

the rth round, X0 will be determined by the active items whose randomized labels have

their rth bit equal to 0, and X1 determined by those with rth bit 1. Let f (t)0 , f (t)1 ∈ Zn
≥0

be the frequency vectors of the active items in each category, respectively, initialized to

55



Chapter 2. `2 heavy hitters algorithm with fewer words

0 at the beginning of the round. Then the Bernoulli processes are X(t)
0 = 〈Z, f (t)0 〉 and

X(t)
1 = 〈Z, f (t)1 〉, where Z is a vector of 4-wise independent Rademacher random vari-

ables (i.e. the Zi are marginally uniformly random in {−1, 1}).

The rth round ends when |X0 + X1| > cσβr−1, for specified2 constants c and β. At

this point, the algorithm compares the values |X0| and |X1| and records the identity of

the larger one as the rth bit of the candidate heavy hitter. All those items with rth bit

corresponding to the smaller counter are discarded (made inactive), and the next round

is started.

After R rounds are completed, if there is a heavy hitter then its randomized label

will be known with good probability. The identity of the item can be determined by

selecting an item in the stream that passes all of the R bit-wise tests, or by inverting the

hash function used for the label. If it is a K-heavy hitter, for a sufficiently large K = O(1),

then the algorithm will find it with probability at least 2/3. The algorithm is formally

presented in Algorithm 7.

The most important technical component of the analysis is the following theorem,

which is proved in Section 2.3.2. Theorem 22 gives us control of the evolution of |X0| and

|X1| so we can be sure that the larger of the two identifies a bit of H.

Theorem 22. If Z ∈ {−1, 1}n is drawn from a 4-wise independent family, E supt |〈 f (t), Z〉| <

23 · ‖ f (m)‖2.

We will use C∗ < 23 to denote the optimal constant in Theorem 22.

The key idea behind the algorithm is that as we learn bits of the heavy hitter and

discard other items, it becomes easier to learn additional bits of the heavy hitter’s identity.

With fewer items in the stream as the algorithm proceeds, the heavy hitter accounts for

a larger and larger fraction of the remaining stream as time goes on. As the heavy hitter
2c = 1/32 and β = 3/4 would suffice.

56



Chapter 2. `2 heavy hitters algorithm with fewer words

gets heavier the discovery of the bits of its identity can be sped up. When the stream does

not contain a heavy hitter this acceleration of the rounds might not happen, though that

is not a problem because when there is no heavy hitter the algorithm is not required to

return any output. Early rounds will each use a constant fraction of the updates to the

heavy hitter, but the algorithm will be able to finish all R = Θ(log n) rounds because

of the speed-up. The parameter β controls the speed-up of the rounds. Any value of

β ∈ (1
2 , 1) can be made to work (possibly with an adjustment to c), but the precise value

affects the heaviness requirement and the failure probability.

Proof of Theorem 22. Let Z ∈ {−1, 1}n be random. We are interested in bounding

E supt |〈 f (t), Z〉|. It was shown in [31] that if each entry in Z is drawn independently and

uniformly from {−1, 1}, then E supt |〈 f (t), Z〉| . ‖ f (m)‖2. We show that this inequal-

ity still holds if the entries of Z are drawn from a 4-wise independent family, which is

used both in our analyses of HH1 and our F2 tracking algorithm. The following lemma is

implied by [67].

Lemma 23 (Khintchine’s inequality). Let Z ∈ {−1, 1}n be chosen uniformly at random, and

x ∈ Rn a fixed vector. Then for any even integer p, E 〈Z, x〉p ≤ √pp · ‖x‖p
2 .

of Theorem 22. To simplify notation, we first normalize the vectors in { f (0) = 0, f (1), . . . , f (m)}

(i.e., divide by ‖ f (m)‖2). Denote the set of these normalized vectors by T = {v0, . . . , vm},

where ‖vm‖2 = 1. Recall that an ε-net of some set of points T under some metric d is a set

of point T′ such that for each t ∈ T, there exists some t′ ∈ T′ such that d(t, t′) ≤ ε. For ev-

ery k ∈ N, we can find a 1/2k-net of T in `2 with size |Sk| ≤ 22k by a greedy construction

as follows.

To construct an ε-net for T, we first take v0, then choose the smallest i such that ‖vi −

v0‖2 > ε, and so on. To prove the number of elements selected is upper bounded by

57



Chapter 2. `2 heavy hitters algorithm with fewer words

1/ε2, let u0, u1, u2, . . . , ut denote the vectors we selected accordingly, and note that the

second moments of u1− u0, u2− u1, . . . , ut − ut−1 are greater than ε2. Because the vectors

ui − ui−1 have non-negative coordinates, ‖ut‖2
2 is lower bounded by the summation of

these moments, while on the other hand ‖ut‖2
2 ≤ 1. Hence the net is of size at most 1/ε2.

Let S be a set of vectors. Let Z ∈ {−1, 1}n be drawn from a p-wise independent family,

where p is an even integer. By Markov and Khintchine’s inequality,

Pr(|〈x, Z〉| > λ · |S|1/p · ‖x‖2) <
E|〈x, Z〉|p

λp · |S| · ‖x‖p
2

<
1
|S| ·

(√
p

λ

)p

.

Hence,

E sup
x∈S
|〈x, Z〉| =

∫ ∞

0
Pr(sup

x∈S
|〈x, Z〉| > u)du

= |S|1/p · sup
x∈S
‖x‖2·∫ ∞

0
Pr(sup

x∈S
|〈x, Z〉| > λ · |S|1/p · sup

x∈S
‖x‖2)dλ

< |S|1/p · sup
x∈S
‖x‖2 ·

(
√

p +
∫ ∞

√
p

(√
p

λ

)p

dλ

)
(union bound)

= |S|1/p · sup
x∈S
‖x‖2 ·

√
p ·
(

1 +
1

p− 1

)

Now we apply a similar chaining argument as in the proof of Dudley’s inequality

(cf. [50]). For x ∈ T, let xk denote the closest point to x in Sk. Then ‖xk − xk−1‖2 ≤

‖xk − x‖2 + ‖x − xk−1‖2 ≤ (1/2k) + (1/2k−1). Note that if for some x ∈ T one has that

xk = vt is the closest vector to x in Tk (under `2), then the closest vector xk−1 to x in

58



Chapter 2. `2 heavy hitters algorithm with fewer words

Tk−1 must either be the frequency vector vt′ in Tk−1 such that t′ is the smallest timestamp

after t of a vector in Tk−1, or the largest timestamp before t in Tk−1. Thus the size of

{xk − xk−1|x ∈ T} is upper bounded by 2|Sk| ≤ 22k+1, implying for p = 4

E sup
x∈T
|〈x, Z〉| ≤

∞

∑
k=1

E sup |〈xk − xk−1, Z〉|

< 3 · 21/p√p
(

1 +
1

p− 1

) ∞

∑
k=1

(22k)1/p · (1/2k)

< 23.

Identifying a single heavy hitter given an approximation to F2. This section analyzes

the subroutine HH1, which is formally presented in Algorithm 7. The goal of this section

is to prove Lemma 27, the correctness of HH1. We use H ∈ [n] to stand for the identity

of the most frequent item in the stream. It is not assumed to be a heavy hitter unless

explicitly stated.

The first step of HH1 is to choose a hash function h : [n] → {0, 1}R, for R = O(log n),

that relabels the universe of items [n]. For each r ≥ 0, let

Hr := {i ∈ [n] \ {H} | h(i)k = h(H)k for all 1 ≤ k ≤ r},

and let H̄r := Hr−1 \ Hr, with H̄0 = ∅ for convenience. By definition, HR ⊆ HR−1 ⊆

· · · ⊆ H0 = [n] \ {H}, and, in round r ∈ [R], our hope is that the active items are those in

Hr−1.

The point of randomizing the labels is as a sort of “load balancing” among the item

labels. The idea is that each bit of h(H) partitions the active items into two roughly equal

59



Chapter 2. `2 heavy hitters algorithm with fewer words

H0

H1

H̄1

H̄2

H2

HR−1 HR

H̄R

0

1

0

1
0

1
0

0

1

FIGURE 2.1: In this example of the execution of HH1, the randomized label
h(H) of the heavy hitter H begins with 01 and ends with 00. Each node in the
tree corresponds to a round of HH1, which must follow the path from H0 to

HR for the output to be correct.

sized parts, i.e. |Hr| ≈ |H̄r| in every round r. This leads HH1 to discard roughly half of

the active items after each round, allowing us to make progress on learning the (hashed)

identity of a heavy hitter. We will make use of the randomized labels in the next section,

within the proof of Lemma 24.

For h, we recommend choosing a prime p ≈ min{n, F2}2 and assigning the labels

h(i) = a0 + a1i mod p, for a0 and a1 randomly chosen in {0, 1, . . . , p − 1} and a1 6= 0.

We can always achieve this with R = 3 log2(min{n, F2}+ 1), which is convenient for the

upcoming analysis. This distribution on h is known to be a 2-wise independent family

[35]. Note computing h(i) for any i takes O(1) time. It is also simple to invert: namely

x = a−1
1 (h(x)− a0) mod p, so x can be computed quickly from h(x) when p > n. Invert-

ing requires computing the inverse of a1 modulo p, which takes O(log min{n, F2}) time

via repeated squaring, however this computation can be done once, for example during

initialization of the algorithm, and the result stored for all subsequent queries. Thus, the

time to compute a−1
1 mod p is negligible in comparison to reading the stream.

After randomizing the labels HH1 proceeds with the series of R rounds to identify

the (randomized) label h(H) of the heavy hitter H. The sequence of rounds is depicted

in Figure 2.1. Each node in the tree corresponds to one round of HH1. The algorithm

60



Chapter 2. `2 heavy hitters algorithm with fewer words

traverses the tree from left to right as the rounds progress. Correctness of HH1 means

it traverses the path from H0 to HR. The 0/1 labels on the path leading to HR are the

bits of h(H), and when R = O(log n) is sufficiently large we get HR = {H} with high

probability. Thus the algorithm correctly identifies h(H), from which it can determine H

with the method discussed earlier.

Now let us focus on one round and suppose that H is a K-heavy hitter, for some large

constant K. Suppose the algorithm is in round r ≥ 1, and recall that the goal of the round

is to learn the rth bit of h(H). Our hope is that the active items are those in Hr−1 (other-

wise the algorithm will fail), which means that the algorithm has correctly discovered the

first r− 1 bits of h(H). The general idea is that HH1 partitionsHr−1 ∪ {H} intoHr ∪ {H}

and H̄r, creates a Bernoulli process for each of those sets of items, and compares the val-

ues of the two Bernoulli processes to discern h(H)r. Suppose that the active items are

indeed Hr−1 and, for the sake of discussion, that the rth bit of the heavy hitter’s label is

h(H)r = 0. Then the Bernoulli processes X0 and X1, defined in Algorithm 7, have the

following form

X0(t) = ZH f (s:t)
H + ∑

i∈Hr

Zi f (s:t)
i , X1(t) = ∑

i∈H̄r

Zi f (s:t)
i ,

where s ≤ m is the time of the last update to round r − 1 and t is the current time.

To simplify things a little bit we adopt the notation f (S) for the frequency vector re-

stricted to only items in S. For example, in the equations above become X0 = ZH f (s:t)
H +

〈Z, f (s:t)(Hr)〉 and X1 = 〈Z, f (s:t)(H̄r)〉.

The round is a success if |X0| > |X1| (because we assumed h(H)r = 0) at the first

time when |X0 + X1| > cσβr. When that threshold is crossed, we must have |X0| ≥

cσβr/2, |X1| ≥ cσβr/2, or both. The way we will ensure that the round is a success is by

61



Chapter 2. `2 heavy hitters algorithm with fewer words

establishing the following bound on the Bernoulli process X1: |X1| = |〈Z, f (s:t)(H̄r)〉| <

cσβr/2, for all times t ≥ s. Of course, the round does not end until the threshold is

crossed, so we will also establish a bound on the complementary Bernoulli process |X0 −

ZH f (s:t)
H | = |〈Z, f (s:t)(H̄r)〉| < cσβr/2, at all times t ≥ s. When this holds we must

have |X0 + X1| > cσβr no later than the first time t where f (s:t)
H ≥ 2cσβr, so the round

ends after at most 2cσβr updates to H. In total over all of the rounds this uses up no

more than ∑r≥0 2cσβr < fH updates to H, where we have used σ < 2
√

F2 < 3 fH by our

assumption that H is a heavy hitter. In truth, both of those inequalities fail to hold with

some probability, but the failure probability is O(1/βr2r/2) so the probability that the

algorithm succeeds will turn out to be 1−∑r≥0 O(1/βr2r/2) > 2/3.

The next lemma establishes the control on the Bernoulli processes that we have just

described (compare the events Ei with the previous paragraph). We will use it later with

K ≈ βr so that, while the rounds progress, the upper bounds on the process maxima

and the failure probabilities both decrease geometrically as desired. This means that the

lengths of the rounds decreases geometrically and the latter means that a union bound

suffices to guarantee that all of the events Ei occur. In our notation F2 − f 2
H = F2(H0).

Lemma 24. For any r ∈ {0, 1, . . . , R} and K > 0, the events

E2r−1 :=
{

max
s,t≤m

|
〈

Z, f (s:t)(H̄r)
〉
| ≤ KF2(H0)

1/2
}

and

E2r :=
{

max
s,t≤m

|
〈

Z, f (s:t)(Hr)
〉
| ≤ KF2(H0)

1/2
}

have respective probabilities at least 1− 4C∗
K2r/2 of occurring, where C∗ < 23 is the constant from

Theorem 22.

62



Chapter 2. `2 heavy hitters algorithm with fewer words

Proof. By the Law of Total Probability and Theorem 22 with Markov’s Inequality we have

Pr
(

max
t≤m
|〈Z, f (t)(Hr)〉| ≥

1
2

KF2(H0)
1/2
)

= E

{
Pr
(

max
t≤m
|〈Z, f (t)(Hr)〉| ≥

1
2

KF2(H0)
1/2
∣∣∣∣Hr

)}
≤ E

{
2C∗F2(Hr)1/2

KF2(H0)1/2

}
≤ 2C∗F2(H0)

1/2

KF2(H0)1/22r/2 ,

where the last inequality is Jensen’s. The same holds ifHr is replaced by H̄r.

Applying the triangle inequality to get

|〈Z, f (s:t)(Hr)〉| ≤ |〈Z, f (s)(Hr)〉|+ |〈Z, f (t)(Hr)〉|

we then find P(E2r) ≥ 1− 4C∗
K2r/2 . A similar argument proves P(E2r−1) ≥ 1− 4C∗

K2r/2 .

From here the strategy to prove the correctness of HH1 is to inductively use Lemma 24

to bound the success of each round. The correctness of HH1, Lemma 27, follows directly

from Lemma 25.

Let U be the event {h(j) 6= h(H) for all j 6= H, f j > 0} which has, by pairwise inde-

pendence, probability Pr(U) ≥ 1− F02−R ≥ 1− 1
min{n,F2}2 , recalling that F0 ≤ min{n, F2}

is the number of distinct items appearing before time m. The next lemma is the main

proof of correctness for our algorithm.

Lemma 25. Let K′ ≥ 128, c = 1/32, and β = 3/4. If 2K′C∗
√

F2(H0) ≤ σ ≤ 2
√

2 fH and

fH > 2K′C∗
√

F2(H0) then, with probability at least 1− 1
min{F2,n}2 − 8

K′c(
√

2β−1)
the algorithm

HH1 returns H.

Proof. Recall that H is active during round r if it happens that h(H)i = bi, for all 1 ≤ i ≤

r− 1, which implies that updates from H are not discarded by the algorithm during round

63



Chapter 2. `2 heavy hitters algorithm with fewer words

r. Let K = K(r) = K′cC∗βr in Lemma 24, and let E be the event that U and ∩2R
r=1Er both

occur. We prove by induction on r that if E occurs then either br = h(H)r, for all r ∈ [R] or

H is the only item appearing in the stream. In either case, the algorithm correctly outputs

H, where in the former case it follows because E ⊆ U.

Let r ≥ 1 be such that H is still active in round r, i.e. bi = h(H)i for all 1 ≤ i ≤ r− 1.

Note that all items are active in round 1. Since H is active, the remaining active items are

exactly Hr−1 = Hr ∪ H̄r. Let tr denote the time of the last update received during the rth

round, and define t0 = 0. At time tr−1 ≤ t < tr we have

cσβr > |X0 + X1|

= |〈Z, f (tr−1:t)(Hr ∪ H̄r)〉+ ZH f (tr−1:t)
H |

≥ f (tr−1:t)
H − K(r− 1)F2(H0)

1/2,

where the last inequality follows from the definition of E2(r−1). Rearranging and using

the assumed lower bound on σ, we get the bound

K(r− 1)F2(H0)
1/2 ≤ K(r− 1)

2K′C∗
σ =

1
2

cσβr−1. (2.10)

Therefore, by rearranging we see f (tr−1:tr)
H ≤ 1 + f (tr−1:t)

H < 1 + 3
2 cσβr−1. That implies

f (tr)
H = ∑r

k=1 f (tk−1:tk)
H < r + 3

2 cσ ∑r
k=1 βk−1 ≤ r + 3

√
2c

1−β fH. Thus, if fH − 3
√

2c
1−β fH > R then

round r ≤ R is guaranteed to be completed and a further update to H appears after the

round. Suppose, that is not the case, and rather R ≥ fH − 3
√

2c
1−β fH ≥ 1

2 fH, where the last

inequality follows from our choices β = 3/4 and c = 1/32. Then, by the definition of R,

9(1 + log2 8 f 2
H)

2 ≥ R2 ≥ 1
4 f 2

H. One can check that this inequality implies that fH ≤ 104.

Now K′ ≥ 128 and the heaviness requirement of H implies that F2(H0) = 0. Therefore, H

64



Chapter 2. `2 heavy hitters algorithm with fewer words

is the only item in the stream, and, in that case the algorithm will always correctly output

H.

Furthermore, at the end of round r, |X0 + X1| ≥ cσβr, so we have must have either

|X0| ≥ cσβr/2 or |X1| ≥ cσβr/2. Both cannot occur for the following reason. The events

E2r−1 and E2r occur, recall these govern the non-heavy items contributions to X0 and X1,

and these events, with the inequality (2.10), imply

|〈Z, f (tr−1:tr)(Hr)〉| ≤ K(r)F2(H0)
1/2 <

1
2

cσβr

and the same holds for H̄r. Therefore, the Bernoulli process not including H has its value

smaller than cσβr/2, and the other, larger process identifies the bit h(H)r. By induction,

the algorithm completes every round r = 1, 2, . . . , R and there is at least one update to H

after round R. This proves the correctness of the algorithm assuming the event E occurs.

It remains to compute the probability of E. Lemma 24 provides the bound

Pr(U and ∩2R
i=1 Ei) ≥ 1− 1

min{n, F2}2 −
R

∑
r=0

8C∗
K(r)2r/2

= 1− 1
min{n, F2}2 −

R

∑
r=0

8
K′cβr2r/2

> 1− 1
min{n, F2}2 −

8
K′c(
√

2β− 1)
.

Proposition 26. Let α ≥ 1. If F1/2
2 ≤ σ ≤ 2F1/2

2 and fH ≥ α
√

F2(H0) then α
√

F2(H0) ≤

σ ≤ 2
√

2 fH.

Proof. σ2 ≥ F2 ≥ f 2
H = F2 − F2(H0) ≥ (1− 1

1+α2 )F2 ≥ 1
8 σ2.

65



Chapter 2. `2 heavy hitters algorithm with fewer words

Lemma 27 (HH1 Correctness). There is a constant K such that if H is a K-heavy hitter and
√

F2 ≤ σ ≤ 2
√

F2, then with probability at least 2/3 algorithm HH1 returns H. HH1 uses O(1)

words of storage.

Proof. The Lemma follows immediately from Proposition 26 and Lemma 25 by setting

K′ = 213, which allows K = 214C∗ ≤ 380, 000.

F2 Tracking. This section proves that the AMS algorithm with 8-wise, rather than 4-wise,

independent random signs has an additive εF2 approximation guarantee at all points in

the stream. We will use the tracking to “guess” a good value of σ for input to HH1, but,

because the AMS algorithm is a fundamental streaming primitive, it is of independent

interest from the BPTree algorithm. The following theorem is a direct consequence of

Lemma 30 and [6].

Theorem 28. Let 0 < ε < 1. There is a streaming algorithm that outputs at each time t a value

F̂(t)
2 such that Pr(|F̂(t)

2 − F(t)
2 | ≤ εF2, for all 0 ≤ t ≤ m) ≥ 1− δ. The algorithm use O( 1

ε2 log 1
δ )

words of storage and has O( 1
ε2 log 1

δ ) update time.

Let us remark that it follows from Theorem 28 and a union bound that one can achieve

a (1± ε) multiplicative approximation to F2 at all points in the stream using O(ε−2 log log m)

words. The proof that this works breaks the stream into O(log m) intervals of where the

change in F2 doubles.

In its original form [6], the AMS sketch is a product of the form Π f , where Π is a

random k × n matrix chosen with each row independently composed of 4-wise inde-

pendent ±1 random variables. The sketch uses k = Θ(1/ε2) rows to achieve a (1± ε)-

approximation with constant probability. We show that the AMS sketch with k ' 1/ε2

rows and 8-wise independent entries provides `2-tracking with additive error ε‖ f ‖2 at all

66



Chapter 2. `2 heavy hitters algorithm with fewer words

times. We define vt = f (t)/‖ f (m)‖2 so ‖vt‖2 ≤ 1, for all t ≥ 0, and ‖vm‖2 = 1. Define

T = {v0, v1, . . . , vm}. We use ‖A‖ to denote the spectral norm of A, which is equal to its

largest singular value, and ‖A‖F for the Frobenius norm, which is the Euclidean length

of A when viewed as a vector. Our proof makes use of the following moment bound for

quadratic forms. Recall that given a metric space (X, d) and ε > 0, an ε-net of X is a subset

N ⊆ X such that d(x, N) = infy∈N d(x, y) ≤ ε for all x ∈ X.

Theorem 29 (Hanson-Wright [70]). For B ∈ Rn×n symmetric with (Zi) uniformly random in

{−1, 1}n, for all p ≥ 1, ‖ZTBZ−EZTBZ‖p .
√

p‖B‖F + p‖B‖.

Observe the sketch can be written Πx = AxZ, where

Ax :=
1√
k

k

∑
i=1

n

∑
j=1

xi
jei ⊗ en(i−1)+j

=
1√
k



−x− 0 · · · 0

0 −x− · · · 0
...

...
...

0 0 · · · −x−


.

We are thus interested in bounding EZ supx∈T |ZTBxZ−EZTBxZ|,for Bx = AT
x Ax. Note

for any ‖x‖2, ‖y‖2 ≤ 1,

‖xxT − yyT‖F ≤ 4‖x− y‖2. (2.11)

Lemma 30 (F2 tracking). If k & 1/ε2 and Z ∈ {−1,+1}kn are 8-wise independent then

E sup
t

∣∣∣‖Π f (t)‖2
2 − ‖ f (t)‖2

2

∣∣∣ ≤ ε‖ f ‖2
2.

67



Chapter 2. `2 heavy hitters algorithm with fewer words

Proof. Let Ax, x ∈ T, as defined above and Bx = AT
x Ax. By (2.11),

‖Bx − By‖F ≤
4√
k
‖x− y‖2,

for all x, y ∈ T. In particular,

sup
x∈T
‖Bx‖ ≤ sup

x∈T
‖Bx‖F ≤ 1/

√
k.

Let T` be a (1/2`)-net of T under `2; we know we can take |T`| ≤ 4`. B` = {Bx : x ∈ T`}

is a 1/
√

k2`-net under ‖ · ‖ and also under ‖ · ‖F. For x ∈ T, let x` ∈ T` denote the closest

element in T`, under `2. Then we can write Bx = Bx0 + ∑∞
`=1 ∆x` , where ∆x` = Bx` − Bx`−1 .

For brevity, we will also define γ(A) := |ZT AZT −EZT AZT|. Thus if the (Zi) are 2p-wise

independent

E sup
x∈T

γ(Bx) ≤ E sup
x∈T

γ(Bx0) + E sup
x∈T

∞

∑
`=1

γ(∆x`)

.
p√
k
+

∞

∑
`=1

E sup
x∈T

γ(∆x`) (2.12)

If A ∈ Rn×n is symmetric, then by the Hanson-Wright Inequality

Pr(γ(A) > λ · S1/p) <
1
S
·
[(

C
√

p‖A‖F

λ

)p

+

(
Cp‖A‖

λ

)p
]

68



Chapter 2. `2 heavy hitters algorithm with fewer words

for some constant C > 0. Thus if A is a collection of such matrices, |A| = S, choosing

u∗ = C(
√

p · supA∈A ‖A‖F + p · supA∈A ‖A‖)

E sup
A∈A

γ(A) =
∫ ∞

0
Pr(sup

A∈A
γ(A) > u)du

= S1/p ·
∫ ∞

0
Pr(sup

A∈A
γ(A) > λ · S1/p)dλ

= S1/p(u∗ +
∫ ∞

u∗
Pr(sup

A∈A
γ(A) > λ · S1/p)dλ)

. S1/p(
√

p · sup
A∈A
‖A‖F + p · sup

A∈A
‖A‖) (2.13)

Now by applying (2.13) to (2.12) repeatedly with

A = A` = {Bx` − Bx`−1 : x ∈ T},

noting supA∈A`
‖A‖ ≤ supA∈A`

‖A‖F ≤ 1/
√

k2` and |A`| ≤ 2|T`| ≤ 2 · 22`,

E sup
x∈T

γ(Bx) .
p√
k
+

∞

∑
`=1

p22 `
p−`
√

k
.

p√
k

for p ≥ 4. Thus it suffices for the entries of Z to be 2p-wise independent, i.e. 8-wise

independent.

The complete heavy hitters algorithm We will now describe HH2, formally Algorithm 8,

which is an algorithm that removes the assumption on σ needed by HH1. It is followed by

the complete algorithm BPTree. The step in HH2 that guesses an approximation σ for
√

F2

works as follows. We construct the estimator F̂2 of the previous section to (approximately)

track F2. HH2 starts a new instance of HH1 each time the estimate F̂2 crosses a power of

2. Each new instance is initialized with the current estimate of
√

F2 as the value for σ,

69



Chapter 2. `2 heavy hitters algorithm with fewer words

Algorithm 8 Identify a heavy hitter by guessing σ.
procedure HH2(p1, p2, . . . ,pm)

Run F̂2 from Theorem 28 with ε = 1/100 and δ = 1/20
Start HH1 (1, p1,. . . , pm)
Let t0 = 1 and tk = min{t | F̂(t)

2 ≥ 2k}, for k ≥ 1.
for each time tk do

Start HH1((F̂(tk)
2 )1/2, ptk , ptk+1, . . . pm)

Let Hk denote its output if it completes
Discard Hk−2 and the copy of HH1 started at tk−2

end for
return Hk−1

end procedure

but HH2 maintains only the two most recent copies of HH1. Thus, even though, overall,

it may instantiate Ω(log n) copies of HH1 at most two will running concurrently and the

total storage remains O(1) words. At least one of the thresholds will be the “right” one,

in the sense that HH1 gets initialized with σ in the interval [
√

F2, 2
√

F2], so we expect the

corresponding instance of HH1 to identify the heavy hitter, if one exists.

The scheme could fail if F̂2 is wildly inaccurate at some points in the stream, for ex-

ample if F̂2 ever grows too large then the algorithm could discard every instance of HH1

that was correctly initialized. But, Theorem 28 guarantees that it fails only with small

probability.

We begin by proving the correctness of HH2 in Lemma 31 and then complete the de-

scription and correctness of BPTree in Theorem 32.

Lemma 31. There exists a constant K > 0 and a 1-pass streaming algorithm HH2, Algorithm 8,

such that if the stream contains a K-heavy hitter then with probability at least 0.6 HH2 returns the

identity of the heavy hitter. The algorithm uses O(1) words of memory and O(1) update time.

Proof. The space and update time bounds are immediate from the description of the algo-

rithm. The success probability follows by a union bound over the failure probabilities in

70



Chapter 2. `2 heavy hitters algorithm with fewer words

Lemma 27 and Theorem 28, which are 1/3 and δ = 0.05 respectively. It remains to prove

that there is a constant K such that conditionally given the success of the F2 estimator, the

hypotheses of Lemma 27 are satisfied by the penultimate instance of HH1 by HH2.

Let K′ denote the constant from Lemma 27 and set K = 12K′, so if H is a K-heavy

hitter then for any α > 2/K and in any interval (t, t′] where (F(t′)
2 )1/2 − (F(t)

2 )1/2 ≥ α
√

F2

we will have

f (t:t
′)

H + F2(H0)
1/2 ≥ ‖ f (t:t

′)‖2 ≥ ‖ f (t
′)‖2 − ‖ f (t)‖2 ≥ α

√
F2.

If follows with in the stream pt, pt+1, . . . , pt′ the heaviness of H is at least

f (t:t
′)

H

F(t:t′)
2 (H0)1/2

≥ α
√

F2 −
√

F2(H0)√
F2(H0)

≥ Kα− 1 ≥ Kα

2
. (2.14)

Of course, if F(t:t′)
2 (H0) = 0 the same heaviness holds.

Let k be the last iteration of HH2. By the definition of tk, we have (F̂(tk−1)
2 )1/2 ≥

1
4(F̂2)

1/2 ≥ 1
4

√
(1− ε)F2. Similar calculations show that there exists a time t∗ > tk−1

such that (F(t∗)
2 )1/2 − (F(tk−1)

2 )1/2 ≥ 1
6 F2 and ‖ f tk−1:t∗‖2 ≤ (F̂(tk−1)

2 )1/2 ≤ 2‖ f tk−1:t∗‖2. In

particular, the second pair of inequalities implies that F̂(tk−1)
2 is a good “guess” for σ on

the interval (tk−1, t∗]. We claim H is a K′ heavy hitter on that interval, too. Indeed, be-

cause of (2.14), with α = 1/6, we get that H is a K′-heavy hitter on the interval (tk−1, t∗].

This proves that the hypotheses of Lemma 27 are satisfied for the stream ptk−1+1, . . . , pt∗ .

It follows that from Lemma 27 that HH1 correctly identifies Hk−1 = H on that substream

and the remaining updates in the interval (t∗, tm] do not affect the outcome.

A now standard reduction from ε-heavy hitters to O(1)-heavy hitters gives the fol-

lowing theorem. The next section describes an implementation that is more efficient in

71



Chapter 2. `2 heavy hitters algorithm with fewer words

practice.

Theorem 32. For any ε > 0 there is 1-pass streaming algorithm BPTree that, with probability

at least (1− δ), returns a set of ε
2 -heavy hitters containing every ε-heavy hitter and an approxi-

mate frequency for every item returned satisfying the (ε, 1/ε2)-tail guarantee. The algorithm uses

O( 1
ε2 log 1

εδ ) words of space and has O(log 1
εδ ) update and O(ε−2 log 1

εδ ) retrieval time.

Proof. The algorithm BPTree constructs a hash table in the same manner as CountSketch

where the items are hashed into b = O(1/ε2) buckets for r = O(log 1/εδ) repetitions.

On the stream fed into each bucket we run an independent copy of HH2. A standard

r × b CountSketch is also constructed. The constants are chosen so that when an ε-heavy

hitter in the stream is hashed into a bucket it becomes a K-heavy hitter with probability at

least 0.95. Thus, in any bucket with a the ε-heavy hitter, the heavy hitter is identified with

probability at least 0.55 by Lemma 31 and the aforementioned hashing success probability.

At the end of the stream, all of the items returned by instances of HH2 are collected and

their frequencies checked using the CountSketch. Any items that cannot be ε-heavy hitters

are discarded. The correctness of this algorithm, the bound on its success probability, and

the (ε, 1/ε2)-tail guarantee follow directly from the correctness of CountSketch and the fact

that no more than O(ε−2 log(1/δε)) items are identified as potential heavy hitters.

We can amplify the success probability of HH2 to any 1− δ by running O(log(1/δ))

copies in parallel and taking a majority vote for the heavy hitter. This allows one to

track O(1)-heavy hitters at all points in the stream with an additional O(log log m) fac-

tor in space and update time. The reason is because there can be a succession of at most

O(log m) 2-heavy hitters in the stream, since their frequencies must increase geometri-

cally, so setting δ = Θ(1/ log m) is sufficient. The same scheme works for BPTree tree, as

72



Chapter 2. `2 heavy hitters algorithm with fewer words

well, and if one replaces each of the counters in the attached CountSketch with an F2-at-

all-times estimator of [31] then one can track the frequencies of all ε-heavy hitters at all

times as well. The total storage becomes O( 1
ε2 (log log n + log 1

ε )) words and the update

time is O(log log n + log 1
ε ).

2.3.3 Experimental Results

We implemented HH2 in C to evaluate its performance and compare it against the CountS-

ketch for finding one frequent item. The source code is available from the authors upon

request. In practice, the hashing and repetitions perform predictably, so the most impor-

tant aspect to understand the performance of BPTree is determine the heaviness constant

K where HH2 reliably finds K-heavy hitters. Increasing the number of buckets that the

algorithm hashes to effectively decreases n. Therefore, in order to maximize the “effec-

tive” n of the tests that we can perform within a reasonable time, we will just compare

CountSketch against HH2.

The first two experiments help to determine some parameters for HH2 and the heavi-

ness constant K. Afterwards, we compare the performance of HH2 and CountSketch for

finding a single heavy hitter in the regime where the heavy hitter frequency is large

enough so that both algorithms work reliably.

Streams. The experiments were performed using four types of streams (synthetic

data). In all cases, one heavy hitter is present. For a given n and α there are n items

with frequency 1 and one item, call it H, with frequency α
√

n. If α is not specified then it

is taken to be 1. The four types of streams are (1) all occurrences of H occur at the start of

the stream, (2) all occurrences of H at the end of the stream, (3) occurrences of H placed

randomly in the stream, and (4) occurrences of H placed randomly in blocks of n1/4.

73



Chapter 2. `2 heavy hitters algorithm with fewer words

avg. maximum F2 tracking error worst maximum F2 tracking error
b \ r 1 2 4 8 16 1 2 4 8 16

1 1.2 0.71 0.82 0.66 0.59 4.3 1.2 2.7 0.85 0.86
10 0.35 0.30 0.33 0.19 0.16 1.1 0.68 0.91 0.28 0.20

100 0.12 0.095 0.080 0.074 0.052 0.24 0.17 0.13 0.13 0.10
1000 0.044 0.030 0.028 0.018 0.017 0.076 0.060 0.045 0.029 0.024

TABLE 2.3: Average and maximum F2 tracking error over 10 streams for dif-
ferent choices of b and r.

The experiments were run on a server with two 2.66GHz Intel Xenon X5650 proces-

sors, each with 12MB cache, and 48GB of memory. The server was running Scientific

Linux 7.2.

F2 tracking experiment. The first experiment tests the accuracy of the F2 tracking for

different parameter settings. We implemented the F2 tracking in C using the speed-up of

[140]. The algorithm uses the same r× b table as a CountSketch. To query F2 one takes the

median of r estimates, each of which is the sum of the squares of the b entries in a row of

the table. The same group of ten type (3) streams with n = 108 and α = 1 was used for

each of the parameter settings.

The results are presented in Table 2.3. Given the tracker F̂2(t) and true evolution of

the second moment F2(t), we measure the maximum F2 tracking error of one instance

as maxt |F̂2(t)− F2(t)|/F2, where F2 is the value of the second moment at the end of the

stream. We report the average maximum tracking error and the worst (maximum) maxi-

mum tracking over each of the ten streams for every choice of parameters.

The table indicates that, for every choice of parameter settings, the worst maximum

tracking error is not much worse than the average maximum tracking error. We observe

that the tracking error has relatively low variance, even when r = 1. It also shows that

the smallest possible tracker, with r = b = 1, is highly unreliable.

74



Chapter 2. `2 heavy hitters algorithm with fewer words

Implementations of HH2 and CountSketch. HH2 implementation details. We have

implemented the algorithm HH2 as described in Algorithm 8. The maximum number of

rounds is R = min{d3 log2 ne, 64}. We implemented the four-wise independent hashing

using the “CW” trick using the C code from [141] Appendix A.14. We use the code from

Appendix A.3 of [141] to generate 2-universal random variables for random relabeling of

the item. The F2 tracker from the previous section was used, we found experimentally

that setting the tracker parameters as r = 1 and b = 30 is accurate enough for HH2. We

also tried four-wise hashing with the tabulation-based hashing for 64-bit keys with 8 bit

characters and compression as implemented in C in Appendix A.11 of [141]. This led to

a 48% increase in speed (updates/millisecond), but at the cost of a 55 times increase in

space.

CountSketch implementation details. We implemented CountSketch in C as described

in the original paper [39] with parameters that lead to the smallest possible space. We use

the CountSketch parameters as b = 2 (number of buckets/row) and r = d3+ log2 ne (num-

ber of rows). The choice of b is the smallest possible value. The choice of r is the minimum

needed to guarantee that, with probability 7/8, there does not exist an item i ∈ [n] \ {H}

that collides the heavy hitter in every row of the data structure. In particular, if we use

only r′ < r rows then we expect 2log2 N−r′ collisions with the heavy hitter, which would

break the guarantee of the CountSketch. Indeed, suppose there is a collision with the

heavy hitter and consider a stream where all occurrences of H appear at the beginning,

then CountSketch will not correctly return H as the most frequent item because some item

that collides with it and appears after it will replace H as the candidate heavy hitter in

the heap. In our experiments, the CountSketch does not reliably find the α-heavy hitter

with these parameters when α < 32. This gives some speed and storage advantage to the

CountSketch in the comparison against HH2, since b and/or r would need to increase to

75



Chapter 2. `2 heavy hitters algorithm with fewer words

1 2 4 8 16 32 64

0

0.5

1

α

su
cc

es
s

ra
te

(1) start
(2) end

(3) random
(4) blocks

FIGURE 2.2: Success rate for HH2 on four types of streams with n = 108 and
heavy hitter frequency α

√
n.

make CountSketch perform as reliably as HH2 during these tests.

We also tried implementing the four-wise hashing with the Thorup-Zhang tabulation.

With the same choices of b and r this led to an 18% speed-up and a 192 times average

increase in space. Since the hash functions are such a large part of the space and time

needed by the data structure this could likely be improved by taking b > 2, e.g. b = 100,

and r ≈ dlogb ne. No matter what parameters are chosen the storage will be larger than

using the CW trick because each tabulation-based hash function occupies 38kB, which

already ten times larger than the whole CountSketch table.

Heaviness. The goal of this experiment is to approximately determine the minimum

value K where if fH ≥ K
√

n then HH2 correctly identifies H. As shown in Lemma 31,

K ≤ 12 · 380, 000 but we hope this is a very pessimistic bound. For this experiment, we

take n = 108 and consider α ∈ {1, 2, 22, . . . , 26}. For each value of α and all four types

of streams we ran HH2 one hundred times independently. Figure 2.2 displays the success

rate, which is the fraction of the one hundred trials where HH2 correctly returned the

heavy hitter. The figure indicates that HH2 succeeds reliably when α ≥ 32.

76



Chapter 2. `2 heavy hitters algorithm with fewer words

106 107 108 109
0

2,000

4,000

6,000

n

ra
te

(u
pd

at
es

/m
s)

0

2

4

sp
ac

e
(k

B)

FIGURE 2.3: Update rate in updates/ms (•) and storage in kB (◦) for HH2 and
CountSketch (� and �, respectively) with the CW trick hashing.

HH2 versus CountSketch comparison. In the final experiment we compare HH2 against

CountSketch. The goal is to understand space and time trade-off in a regime where both

algorithms reliably find the heavy hitter.

For each choice of parameters we compute the update rate of the CountSketch and HH2

(in updates/millisecond) and the storage used (in kilobytes) for all of the variables in the

associated program. The results are presented in Figure 2.3.

The figure shows that HH2 is much faster and about one third of the space. The dra-

matic difference in speed is to be expected because two bottlenecks in CountSketch are

computing the median of the Θ(log n) values and evaluating Θ(log n) hash functions.

HH2 removes both bottlenecks. Furthermore, as the subroutine HH1 progresses a greater

number of items are rejected from the stream, which means the program avoids the asso-

ciated hash function evaluations in HH2. This phenomena is responsible for the observed

increase in the update rate of HH2 as n increases. An additional factor that contributes to

the speedup is amortization of the start-up time for HH2 and of the restart time for each

copy of HH1.

77



Chapter 2. `2 heavy hitters algorithm with fewer words

Experiments summary. We found HH2 to be faster and smaller than CountSketch. The

number of rows strongly affects the running time of CountSketch because during each up-

date r four-wise independent hash functions must be evaluated and of a median r values

is computed. The discussion in Section 2.3.3 explains why the number of rows r cannot be

reduced by much without abandoning the CountSketch guarantee or increasing the space.

Thus, when there is a K-heavy hitter for sufficiently large K our algorithm significantly

outperforms CountSketch. Experimentally we found K = 32 was large enough.

The full BPTree data structure is needed to find an item with smaller frequency, but

for finding an item of smaller frequency CountSketch could outperform BPTree until n

is very large. For example, to identify an α-heavy hitter in the stream our experiments

suggest that one can use a BPTree structure with about d(32/α)2e buckets per row. In

comparison a CountSketch with roughly max{2, 1/α2} buckets per row should suffice.

When α is a small constant, e.g. 0.1, what we find is that one can essentially reduce the

number rows of the data structure from log(n) to just a few, e.g. one or two, at the cost

of a factor 322 = 1024 increase in space.3 This brief calculation suggests that CountSketch

will outperform BPTree when the heaviness is α < 1 until n & 21024—which is to say

always in practice. On the other hand, our experiments demonstrate that HH2 clearly

outperforms CountSketch with a sufficiently heavy heavy hitter. More experimental work

is necessary to determine the heaviness threshold (as a function of n) where BPTree out-

performs CountSketch. There are many parameters that affect the trade-offs among space,

time, and accuracy, so such an investigation is beyond the scope of the preliminary results

reported here.

3Recall, Ω(log n/ log(1/α)) rows are necessary CountSketch whereas BPTree needs only O(log 1/α)
rows.

78



Chapter 2. `2 heavy hitters algorithm with fewer words

2.4 Conclusion

In this chapter we studied the heavy hitters problem, which is arguably one of the most

important problems for data streams. The problem is heavily inspired from practice and

algorithms for it are used in commercial systems. We presented two results leading to the

first space and time optimal algorithm for finding `2-heavy hitters, which is the strongest

notion of heavy hitters achievable in polylogarithmic space. By optimal, we mean the

time is O(1) to process each stream update, and the space is O(log n) bits of memory.

These bounds match trivial lower bounds (for constant ε). We also provided new tech-

niques which may be of independent interest: (1) a one-pass implementation of a multi-

round adaptive compressed-sensing scheme where we use that after filtering a fraction of

items, the heavy item is becoming even heavier (2) a derandomization of Bernoulli pro-

cesses relevant in this setting using limited independence. Both are essential in obtaining

an optimal heavy hitters algorithm with O(1) memory. Technique (1) illustrates a new

power of insertion-only streams and technique (2) can be stated as a general chaining re-

sult with limited independence in terms of the size of the nets used. Given the potential

practical value of such an algorithm, we provided preliminary experiments showing our

savings over previous algorithms.

79



Chapter 3

Monitoring the Network with Interval

Queries

This chapter is based on the work done in collaboration with Liu Z., Braverman V., Ben-

Basat R., Einziger G. and Friedman R.

3.1 Introduction

Network monitoring is at the heart of many networking protocols and network functions,

such as traffic engineering [18], load balanced routing [108, 146], attack and anomaly de-

tection [15, 52, 111, 128], and forensic analysis [88, 131]. Over the years, a large number of

metrics have been defined, including per-flow frequency [51, 145], heavy hitter detection [16,

43], distinct heavy hitters [56], cardinality estimation [58, 71, 73], change detection [59], en-

tropy estimation [9, 118], and more. With limited memory and computing resources on

the network device, it is often infeasible to compute these statistics at line rate. Thus,

approximated results are often a reasonable choice [145].

Interestingly, all the above metrics can be efficiently measured by streaming algo-

rithms with a small amount of memory. To that end, [29] has shown that any metric

80



Chapter 3. Monitoring the Network with Interval Queries

computable in polylogarithmic time per packet, can be obtained from the per-flow fre-

quency and the L2-norm of the subsets of the flows in the stream. In other words, in-

stead of maintaining separate data-structures and algorithms for each possible metric,

it is enough to estimate the flow frequencies and L2-norm as promoted by the seminal

UnivMon work [101].

Since computer networks usually operate continuously, for many applications, it is

particularly important to measure the network statistics that only reflect the recent traf-

fic. This model is known as the sliding window model [46], where the metrics are always

computed over a fixed-size window of recent data.

However, a measurement on a window of fixed size does not provide visibility into

any intervals within the window, e.g., a heavy hitter detection algorithm computed over

a 1 min window might not easily detect a 3-second microburst flow. Thus we are inter-

ested in a more refined model in which the application provides a time interval of interest

at query time. That is, the desired metric is estimated over a specific time interval rather

than on a fixed sized sliding window. We refer to this model as the Interval Queries (IQ)

model. This model is useful when there are multiple interesting intervals, or if the win-

dow of interest is not known a-priory. Also, it enables performing drill-down queries of

finer and finer intervals and comparing what happens at various intervals for root cause

analysis. For example, a security application may use the IQ model to determine exactly

when a suspicious pattern has emerged and how it changed over time. The IQ model

was previously studied for L1 heavy hitters in [14]. Yet, that work is limited to flow size

estimation and L1 heavy hitters only. In [115], work done in collaboration of Ivkin, Liu,

Ben-Basat, Einziger, Friedman, and Bravermane, we introduce the first set of measure-

ment algorithms for L2 heavy hitters and L2 estimation in the IQ model. Further, we

extend our techniques to adapt UnivMon [101] the IQ model queries, where a variety of

81



Chapter 3. Monitoring the Network with Interval Queries

traffic statistics can be efficiently measured. Therefore, we are the first to facilitate drill-

down queries for a large variety of useful metrics using sub-linear space. We evaluate

our algorithms using real Internet traces and show that they achieve good accuracy for

network measurement tasks within acceptable memory space limitations.

3.2 Preliminaries

As it was introduced in Section 3.2 the streaming model targets the applications where the

data items arrive sequentially, and each item is only accessed at the moment of its arrival.

One is given a stream of updates S = {s1, . . . , sm}, where si ∈ D and D is a dictionary of

all possible elements, and the goal is to compute a target function f (S) while using the

space sublinear in m and |D|. Space constraints often render the exact computation of a

function infeasible; instead, streaming algorithms usually provide a (ε, δ)-approximation

scheme. That is, randomized algorithms that return f̂ (S) ∈ (1± ε) f (S) with probability

at least 1− δ. For more details on the streaming model and its variations refer to [3, 113].

In many applications, the stream of data is considered to be infinite, and a target func-

tion should be computed only on the last n updates and “forget” older ones. The Sliding

Window model [46] addresses the pool of such problems. Formally, given a stream of

updates S = {s1, . . . , st, . . .} and si ∈ D, the goal of a sliding window algorithm is to

report f (t− n, t) = f (S(t− n, t)) = f ({st−n, . . . , st}) at any given moment t. Similarly,

the algorithm should use the space sublinear in n and |D| and follow the approximation

scheme f̂ (t− n, t) ∈ (1± ε) f (t− n, t).

In this work, we address typical measurement tasks in the IQ model. First consid-

ered in [14, 100], its goal is estimating a function over the interval (t1, t2) (of the stream

S) that is specified at query time. Given a stream of updates S, the goal of an algorithm

82



Chapter 3. Monitoring the Network with Interval Queries

in the IQ model is to compute f (t1, t2) = f (S(t1, t2)) at any moment t, and any given

interval (t1, t2) ⊂ (t − n, t), while using space sublinear in n and |D|. In section 3.3,

we show that achieving approximation f̂ (t1, t2) = (1 ± ε) f (t1, t2) is infeasible as it re-

quires Ω(n) bits of memory. Thus, we call an IQ algorithm (ε, δ)-approximate if it returns

f̂ (t1, t2) = f (t1, t2)± ε f (t1, t) with probability at least 1− δ. That is, the allowed error is

an ε fraction of the value of the function when applied on the suffix (t1, t) and not only

on (t1, t2). Specifically, this means that if t2 is the current time, we get a multiplicative

(1 + ε)-approximation for a t1-sized window whose size is given at query time.

Finding heavy hitters in streaming data is a well-studied problem in analysis of large

datasets; optimal or nearly optimal results were achieved in different models [21, 24,

32, 33, 39, 44, 107, 109, 147]. In this section for the sake of completeness we give a

brief overview of the heavy hitters problem, including the formal problem statement and

major differences between L1 and L2 settings. For more details on the problem please

refer to [3, 43, 113].

Item i is an (ε, Lp)-heavy hitter in the stream S = {si}m
i=1, si ∈ {1, . . . , N}, if fi ≥ εLp( f ),

where fi = #{j|sj = i} is number of occurrences of item i in the stream S, and Lp( f ) =

p
√

∑ f p
i is the Lp norm of frequency vector f , and j-th coordinate in the vector equals to

f j. An approximation algorithm for Lp heavy hitters returns all the items that appear at

least εLp times and no item that appears less than ε
2 Lp times and error with probability

at most δ. It was shown in [12, 37] that for p > 2 any algorithm will require the space

at least polynomial in m and N. Therefore, the central interest is around finding L1 and

L2 heavy hitters. Note that finding L2 is provably more difficult, compared to L1 heavy

hitters. While to be an (ε, L1)-heavy hitter an item needs to appear in a constant fraction

of the stream updates, in some cases to be an (ε, L2)-heavy hitter the item can appear just

in O(1/
√

n) fraction of updates. Note that to catch such L1 heavy hitters using uniform

83



Chapter 3. Monitoring the Network with Interval Queries

sampling, one will need to sample at most O(1/ε2) items, while catching L2 heavy hitters

will require the number of samples to be polynomial in n. Moreover, any L2 algorithm

can find all L1 heavy hitters while the opposite is not always the case. The L1 heavy hit-

ters problem has optimal algorithms in both the cash register [107, 109] and turnstile [44]

streaming models and was considered in both sliding windows [46] and Interval Query

[14] computational models. The L2 heavy hitters problem has tight results for both cash

register [32] and turnstile [39] streaming models. Recent results on L2 heavy hitters in

the sliding window were shown to be space optimal [33]; however, to the best of our

knowledge, the problem was not considered in the Interval Query model. In this work,

we consider the following approximation L2 heavy hitters problem in the Interval Query

model.

Definition 33 ((ε, L2)-heavy hitters problem in IQ). For 0 < ε < 1 output set of items T ⊂

[N], such that T contains all items with fi(t1, t2) ≥ εL2(t1, t) and no items with fi(t1, t2) ≤
ε
2 L2(t1, t).

There is a strong connection between the Interval Query and Sliding Window (SW)

models: any algorithm that solves the problem in IQ model can answer SW queries as

well, one only needs to query the largest permitted interval, i.e., (t1, t2) = (t − n, n).

Therefore, we expect the current SW approaches to be useful for understanding the IQ

model. Further, we introduce some background on SW and (ε, L2)-heavy hitters algo-

rithms in it.

Currently, two general SW frameworks are known: Exponential Histogram [46] and

Smooth Histogram [28]. We now provide a brief overview of the core techniques of those

frameworks.

84



Chapter 3. Monitoring the Network with Interval Queries

EH
tt− n

BkB4B3B2B1

SH

A1 A2 A3 A4

Ak

FIGURE 3.1: Interval (bucket) structure for EH and SH.

Exponential Histograms (EH). In [46], the authors suggest to break the sliding window

W = (t− n, n) into a sequence of k non-overlapping intervals B1, B2, . . . , Bk, as depicted in

Fig. 3.1. Window W is covered by ∪k
i=1Bi, and contains all Bi except the first one. Then, if

a target function f admits a composable sketch, maintaining such a sketch on each bucket

can provide us with an estimator for f on window W ′ = ∪k
i=2Bi. Note, that f (W) is

“sandwiched” between f (W ′) and f (B1 ∪W ′). Therefore, a careful choice of each bucket

endpoints provides control over the difference between f (W) and f (W ′), thereby making

f (W ′) a good estimator for f (W). As the window slides, new buckets are introduced, old

buckets get expired and deleted, and buckets in between get merged. The EH approach

admits non-negative, polynomially bounded functions f which admit composable sketch

and are weakly additive, i.e., ∃C f ≥ 1, such that ∀S1, S2:

f (S1) + f (S2) ≤ f (S1 ∪ S2) ≤ C f ( f (S1) + f (S2)).

For such functions, [46] can ensure that k = O(C2
f log n) by maintaining two invariants:

f (Bj) ≤
C f
k ∑k

i=j f (Bj) and f (Bj−1) + f (Bj) ≤ 1
k ∑k

i=j f (Bj).

85



Chapter 3. Monitoring the Network with Interval Queries

Smooth Histograms (SH). In [28], the authors relax the weak additivity to more general

property of smoothness — ∃0 < β ≤ α ≤ ε ∀S1, S2, S3 :

(1− β) f (S1 ∪ S2) ≤ f (S2)⇒ (1− α) f (S1 ∪ S2 ∪ S3) ≤ f (S2 ∪ S3).

Additionally, in SH buckets A1, . . . , Ak overlap; therefore, [28] extends the class of admit-

ted target functions even further by relaxing the composability requirement. Similarly

to [46], f (W) is ”sandwiched” between f (A1) and f (A2), see Figure 3.1. The memory

overhead is O( 1
β log n) and the maintained invariants are (1 − α) f (Ai) ≤ f (Ai+1) and

f (Ai+2) < (1− β) f (Ai).

tt− n t1 t2q

BkB4B3B2B1

FIGURE 3.2: Interval query in the prism of EH.

Interval queries on EH and SH. The IQ model is more general than the SW model,

however we use similar building blocks. Fig. 3.2 depicts query interval q = (t1, t2) and

buckets of Exponential Histogram with window of size n. Note that q is ”sandwiched”

between B2 ∪ B3 ∪ B4 and B3, while f (∪k
j=2Bj) = (1 ± ε) f (t1, t) and f (∪k

j=4Bj) = (1 ±

ε) f (t2, t). Intuitively, f (t1, t2) can be approximated by f (B2 ∪ B3) with an additive error

of ±ε f (t1, t). Similar approach can be applied to Smooth Histograms, if the sketches

preserve approximation upon subtraction.

86



Chapter 3. Monitoring the Network with Interval Queries

3.3 Interval Algorithms

Lower bound.

Theorem 34. Any algorithm which maintains a sketch over the stream and at any moment t:

∀t1, t2 ∈ (t− n, t) outputs L̂2(t1, t2) = (1± α)L2(t1, t2) requires Ω(n) bits of memory.

Proof. The proof uses a reduction from the INDEX problem in communication complexity.

Alice is given a string x = {0, 1}n and Bob gets an index k ∈ {1, . . . , n}. Alice sends a

message to Bob and he should report the value of xk. Bob can err with probability at most

δ. A known lower bound on the size of the message, even for randomized algorithms, is

Ω(n) [94].

Suppose there exists an algorithm which maintains a sketch over the stream and at

any moment t, for any interval (t1, t2) ⊂ (t− n, t), outputs L̂2(t1, t2) = (1± α)L2(t1, t2),

while using only o(n) bits of space. Such an algorithm can distinguish between L2 and

L2(1 + 3α); denote p = (1 + 3α)2.

Alice encodes the string x as a stream of updates

f (x1), f (x2), . . . , f (xn), where f (1) = 1, . . . , 1 and f (0) = 1, 2, . . . , p with p updates in both

cases. Therefore, the entire stream has length pn, L2( f (0)) =
√

p, and L2( f (1)) = p.

Hence, L2( f (1))
L2( f (0)) =

√
p and the algorithm can distinguish them. After running the stream

through the algorithm, Alice sends the content of the data structure to Bob. Bob queries

interval (t− pn + p(k− 1), t− pn + pk) and due to approximation guarantees of the al-

gorithm can infer whether xk = 0 or 1. Therefore the INDEX problem was resolved with

a message size of o(n) bits, which contradicts the Ω(n) lower bound.

Algorithm 1 Braverman, Gelles, and Ostrovsky, in [25], presented the first L2 heavy

hitter algorithm in the SW model. They apply the SH framework described earlier to

87



Chapter 3. Monitoring the Network with Interval Queries

get a (1 + ε)-approximation of L2 norm. In addition, each bucket of the SH maintains an

instance of the Count Sketch algorithm [39].

Our algorithm, whose pseudo-code is given in Algorithm 9, utilizes a similar tech-

nique: when querying with an interval (t1, t2), it finds the largest SH suffix (a1, t) con-

tained in (t1, t) and the largest suffix (a2, t) contained in (t2, t). It then calculates Count

Sketch of interval (a1, a2) as the difference of two Count Sketches: (a1, t) and (a2, t). The

frequencies on the interval (t1, t2) can be approximated by the Count Sketch of interval

(a1, a2), as we show later. Next, we prove that the described technique provides a good

estimation for L2(t1, t2).

Lemma 35. Let A be an SH construction for (α, β)-smooth L2 and Ai = (ai, t) are the suffixes

of A (see Fig. 3.1). Then for any interval (t1, t2):

L2(a1, a2) = L2(t1, t2)±
√

2αL2(t1, t),

where a1 = min ai ≥ t1 and a2 = min ai ≥ t2.

Proof. From SH invariant [28]: L2(a1, t) > (1− α)L2(t1, t). then since L2
2(t1, t) ≥ L2

2(a1, t)+

L2
2(t1, a1)

we have: L2(t1, a1) ≤
√

2αL2(t1, t),

and similarly: L2(t2, a2) ≤
√

2αL2(t2, t) ≤
√

2αL2(t1, t).

Due to triangle inequality and monotonicity of L2:

L2(t1, t2) ≤ L2(t1, a1) + L2(a1, t2) ≤ L2(t1, a1) + L2(a1, a2), thus L2(a1, a2) ≥ L2(t1, t2)−
√

2αL2(t1, t).

Similarly: L2(t1, t2) + L2(t2, a2) ≥ L2(t1, a2)

L2(t1, t2) ≥ L2(t1, a2)− L2(t2, a2) ≥ L2(a1, a2)− L2(t2, a2)

L2(a1, a2) ≤ L2(t1, t2) +
√

2αL2(t1, t).

88



Chapter 3. Monitoring the Network with Interval Queries

Algorithm 9 L2 heavy hitter algorithm based on [25]

1: function UPDATE(item)
2: maintain SH for L2 with (α, β) = ( ε2

27 , ε4

215 )
3: on each bucket Ai maintain Count Sketch CSi
4: end function
5: function QUERY(t1, t2)
6: find a1 = min ai ≥ t1 and a2 = min ai ≥ t2
7: subtract sketches CS = CSa1 − CSa2

8: query L2 of suffix: L̂2(a1, t) = SH.query(a1, t)
9: for each item i in CSa1 .heap do

10: f̂i(t1, t2) = CS.estimateFreq(i)
11: if f̂i(t1, t2) >

3ε
4 L̂2(a1, t) then report (i, f̂i)

12: end for
13: end function

Theorem 36. Algorithm 9 solves (ε, L2)-heavy hitters problem in the IQ model (Definition 33)

using O( 1
ε6 log3 n log 1

δε ) bits of space.

Proof.

∀i : fi(a1, a2) = fi(t1, t2)− fi(t1, a1) + fi(t2, a2).

Note that fi(t1, a1) ≤ L2(t1, a1) and fi(t2, a2) ≤ L2(t2, a2). From Lemma 35 and due to the

choice of SH parameters:

fi(t1, a1) ≤ ε

8
L2(t1, t), fi(t2, a2) ≤ ε

8
L2(t1, t)

For a given stream S Count Sketch approximates the counts as follows:

f̂i(S) = fi(S)±
ε

8
L2(S)

89



Chapter 3. Monitoring the Network with Interval Queries

and its heap contains all ( ε
8 , L2)-heavy hitters. Thus sketch CS = CSa1 − CSa2 will esti-

mate the count of any queried item i as

f̂i(a1, a2) = fi(a1, a2)± ε

8
L2(t1, t) = fi(t1, t2)±

ε

4
L2(t1, t).

where the last equality follows from the derivations above.

To prove the correctness of the algorithm, we need to show that:

1. every (ε, L2)-heavy on (t1, t2) item will appear in the heap of CSa1 (line 8) and sur-

vive pruning (line 10).

2. no items f j(t1, t2) ≤ ε
2 L2(t1, t) will survive pruning.

Note that if item i is (ε, L2)-heavy on (t1, t2), then fi(t1, t2) > εL2(t1, t) which implies

fi(a1, a2) > 7ε
8 L2(t1, t) and fi(a1, t) > 7ε

8 L2(t1, t). The latter one implies that item i will

be in the heap of CSa1 . The former one given that

f̂i(a1, a2) > fi(a1, a2)− ε

8
L2(t1, t) >

3
4

L2(t1, t)

and L̂2(a1, t) = (1± ε2

27 )L2(t1, t) guarantees that heavy item i will survive pruning proce-

dure. Similarly,

f̂i(a1, a2) < fi(a1, a2) +
ε

8
L2(t1, t) <

3
4

L2(t1, t),

therefore light items will be filtered out.

According to Theorem 3 from [28], SH approach requires O( 1
β g(ε, δβ

n ) log n) bits of

memory. Here, g(ε, δ) is the amount of memory needed for sketch to get ε approximation

of target function with failure probability at most δ. Note that to avoid mistaken deletions

of suffixes in the SH construction, every target function sketch should succeed. Therefore

90



Chapter 3. Monitoring the Network with Interval Queries

L2 sketch should fail with probability at most O( δ
n ). At the same time, Count Sketch is

needed only at the moment of a query, therefore it should fail with probability at most

O( δ
log n ). Each amplified L2 sketch, according to [6], requires O( 1

ε2 log2 n) bits of space –

same as the amount of memory that is needed for each Count Sketch. Thus, in total, the

algorithm requires O( 1
ε6 log3 n) bits of memory.

Algorithm 2 A natural question to ask is whether the Exponential Histogram frame-

work can be used instead of Smooth Histograms. Note that the target function L2
2(·) ad-

mits a composable sketch [6] and is weakly additive with C f = 2. According to Theorem

7 of [46], an admittable target function f can be estimated with the relative error

Er ≤ (1 + ε)
C2

f

k
+ C f − 1 + ε,

where ε is relative error of the L2
2 sketch and k is a parameter of EH framework. Note

that for C f = 2, no k can get an error better than Er = 1 + o(1), which only implies a

2-approximation of the L2-norm on the sliding window. The IQ model is more general

than SW, therefore, the same idea would not work out of the box. Instead, we suggest the

following decoupling tweak to the weak additivity requirement:

∃C f , C′f ∀S1, S2 : f (S1 ∪ S2) ≤ C f f (S1) + C′f f (S2).

Keeping the rest of the framework the same and repeating the argument as in Theorem 7

of [46], the relative error becomes:

Er ≤ (1 + ε)
C2

f

k
+ C′f − 1 + ε.

91



Chapter 3. Monitoring the Network with Interval Queries

To find appropriate constants C f and C′f for L2
2, note that for any positive integers a and b

and any ε ∈ (0, 1) :

(a + b)2 ≤ 2
ε

a2 + (1 + ε)b2 − (
1√

ε
a +
√

εb)2 ≤ 2
ε

a2 + (1 + ε)b2.

Therefore, ∀S1, S2 : L2
2(S1 ∪ S2) ≤ 1

2ε L2
2(S1) + (1 + ε)L2

2(S2), i.e., C f = 2
ε and C′f = 1 + ε.

Setting k = O( 1
ε3 ) gives a (1 + ε)-approximation of L2

2 on sliding windows using EH

framework. Note that the described tweak will work for any admittable function f for

which f (S1 ∪ S2) ≤ C f f (S1) + C′f f (S2), as no other properties of L2 were used in the

proof. Further, we argue that same approximation can be achieved with smaller k. We

maintain EH histogram framework for f = L2
2 as proposed in [46] with C f = 2. However,

when queried, we output
√

f = L2 rather than f = L2
2. Note that, due to the triangle

inequality,
√

f (S1 + S2) ≤
√

f (S1) +
√

f (S2). Denote t0 = t− n; then the core derivation

for the relative error Er from Theorem 7 of [46] can be rewritten as follows:

Er =

√
f (t0, t)−

√
f (b1, t)√

f (t0, t)
≤

√
f (t0, b1)

f (t0, t)
≤

√
f (b0, b1)

f (b1, t)

≤

√
C f ∑i>0 f (Bi)

k f (b1, t)
≤

√
C f f (b1, t)
k f (b1, t)

≤
√

C f

k
.

Setting k = O( 1
ε2 ) provide necessary ε-approximation for L2 on the sliding window.

Lemma 37. Let B be an EH construction for L2 with parameters C f and k, and let

Bi = (bi, bi+1) denote the buckets of B (see Fig. 3.1). Then for any interval (t1, t2):

L2(b1, b3) = L2(t1, t2)±
√

C f

k
L2(t1, t),

where (b0, b1) is the bucket containing t1 and (b2, b3) is the bucket containing t2.

92



Chapter 3. Monitoring the Network with Interval Queries

Proof. By monotonicity of L2
2 and EH invariant:

L2
2(t1, b1) ≤ L2

2(b
0, b1) ≤

C f

k ∑
bi>b0

L2
2(Bi) ≤

C f

k
L2

2(b
1, t).

Repeating the argument for (t2, b3) and taking the square root:

L2(t1, b1) ≤
√

C f

k
L2(t1, t) and L2(t2, b3) ≤

√
C f

k
L2(t1, t).

Applying triangle inequality the same way as in the proof of Lemma 35 leads to the state-

ment of the current lemma.

Algorithm 10 L2 heavy hitter algorithm based on EH

1: function UPDATE(item)
2: maintain EH for L2

2 with k = O( 1
ε2 ), C f = 2.

3: on each bucket Bi maintain Count Sketch CSi
4: end function
5: function QUERY(t1, t2 )
6: find b0,...,3 : t1 ∈ (b0, b1) = Bi and t2 ∈ (b2, b3) = Bj
7: compute union sketch CS = ∪b1≤l≤b3CSl
8: query L2 of suffix: L̂2(t1, t) = EH.query(b1, t)
9: for each heavy hitter (i, fi) in CS do

10: if f̂i >
3ε
4 L̂2(t1, t) then report (i, f̂i)

11: end for
12: end function

Theorem 38. Algorithm 10 solves (ε, L2)-heavy hitters problem in IQ model (Definition 33)

using O( 1
ε4 log3 n log 1

δε ) bits of space.

Proof. Due to Lemma 37 for given parameters C f and k:

∀i : fi(b1, b3) = fi(t1, t2)±
ε

16
L2(t1, t).

93



Chapter 3. Monitoring the Network with Interval Queries

Approximation guarantees of Count Sketch CS can be rewritten as:

∀i : f̂i(b1, b3) = fi(b1, b3)± ε

16
L2(b1, t).

Therefore, ∀i : f̂i(b1, b3) = fi(t1, t2)± ε
8 L2(t1, t).

The same lemma applied to interval (t1, t), given ε
16 -approximation of L2 on each bucket

Bi, leads to L̂2(t1, t) = (1± ε
8)L2(t1, t). Thus, any heavy item with fi(t1, t2) ≥ εL2(t1, t)

will be reported:

f̂i(b1, b3) ≥ fi(t1, t2)−
ε

8
L2(t1, t) ≥ 7ε

8
L2(t1, t) ≥ 3ε

4
L̂2(t1, t).

Similarly, any item with fi(t1, t2) ≤ ε
2 L2(t1, t) will be pruned away:

f̂i(b1, b3) ≤ 5ε

8
L2(t1, t) ≤ 3ε

4
L̂2(t1, t).

According to Theorem 7 from [46], the EH approach requires O(kg(ε, δβ
n ) log n) bits of

memory, where g(ε, δ) is amount of memory needed for sketch to get a (1+ ε)-approximation

of the target function with a failure probability of at most δ. Similarly to the SH case, L2

sketch should succeed on O(n) instances, while Count Sketch only on O(log n). Thus, in

total, the algorithm requires O( 1
ε4 log3 n) bits of memory.

Algorithm 3 Recently, a new algorithm for finding L2-heavy hitters in the SW model

was introduced in [33]. The Authors show a significant improvement in space complexity

and provide a matching lower bound. Memory footprint of the solution proposed in [33]

is O( 1
ε2 log2 n log 1

εδ ) bits, while previous result [25] needed at least O( 1
ε4 log3 n log 1

εδ ) bits.

Although the new approach uses the SH framework, it differs conceptually in the way of

94



Chapter 3. Monitoring the Network with Interval Queries

catching the heavy hitters. Recall that [25] requires a (1 + ε)-approximation of the L2 to

make sure that no heavy hitters are lost between neighboring buckets.

Streaming L2-heavy hitter algorithm can report a heavy hitter after seeing it ε
16 L2

times. [33] uses that property and approximates the counter for each reported item us-

ing a separate SH data structure. To report every (ε, L2)-heavy and no ( ε
2 , L2)-heavy

items, one only needs a constant factor approximation for both L2 and frequency of the

potentially-heavy items. [33] exploits this and runs an SH with constant α and β for both

L2-norm approximation and for independently tracking the frequency of each potentially-

heavy item reported by the Count Sketch.

Additionally, [33] suggests to replace the Count Sketch algorithm with BPTree [32] and

use shared randomness and use the strong tracking argument from [31] to avoid union

bound for all bucket sketches to succeed.

We reuse this approach for the IQ model. First, we show a SW solution for ε-approximation

of fi, which can be also considered as sum problem in a binary zero-one stream, proved

the following guarantees in IQ model:

f̂i(t1, t2) = fi(t1, t2)± ε fi(t1, t)

.

Lemma 39. Let A be an SH construction for an (α, β)-smooth sum function S and consider a

zero-one stream. Denote by Ai = (ai, t) the suffixes of A (see Fig. 3.1). Then for any interval

(t1, t2):

S(a1, a2) = S(t1, t2)± αS(t1, t),

where a1 = min ai ≥ t1 and a2 = min ai ≥ t2.

95



Chapter 3. Monitoring the Network with Interval Queries

Proof. From the SH invariant [28]: S(a1, t) > (1− α)S(t1, t).

Since S(t1, t) = S(a1, t) + S(t1, a1), we have: S(t1, a1) ≤ αS(t1, t) and similarly: S(t2, a2) ≤

αS(t2, t). Therefore, the statement of the lemma follows from

S(t1, t2) = S(a1, a2) + S(t1, a1)− S(t2, a2).

Algorithm 11 L2 heavy hitter algorithm based on [33]

1: function INIT
2: init SHL2 with (α, β) = ( 1

10 , 1
200)

3: init CSi Count Sketch on each SHL2 bucket Ai
4: init HHp an array for potential heavy items
5: − if i ∈ HHp then HHp[i].SH tracks fi in SW
6: end function
7: function UPDATE(item)
8: update SHL2 and all CSi
9: if item ∈ HHp then update HHp[item].SH

10: for all i for each item (j, f̂ j) in CSi.heap
11: if f̂ j >

3ε
4 SHL2 .query(Ai) and j /∈ HHp:

12: HHp.add(j)
13: init HHp[j].SH with (α, β) = ( ε

16 , ε
16)

14: end function
15: function QUERY(t1, t2)
16: a1 = min ai ≥ t1 and L̂2(a1, t) = SH.query(a1, t)
17: for each item i ∈ HHp do
18: a1 = min ai ≥ t1 and a2 = min ai ≥ t2
19: f̂i(t1, t) = HHp[i].SH.query(a1, t)
20: f̂i(t1, t2) = f̂i(t1, t)− HHp[i].SH.query(a2, t)
21: if f̂i(t1, t2) >

3ε
4 L̂2(a1, t) then report (i, f̂i)

22: end for
23: end function

Theorem 40. Algorithm 11 solves (ε, L2)-heavy hitters problem in IQ model (Definition 33)

using O( 1
ε3 log3 n log 1

δε ) bits of space.

96



Chapter 3. Monitoring the Network with Interval Queries

Proof. First, let’s show that all items with fi(t1, t2) ≥ εL2(t1, t) will appear in HHp. Denote

a0 = max ai ≤ t1 then

fi(a0, t2) ≥ fi(t1, t2) ≥ εL2(t1, t) ≥ εL2(t1, t2).

Therefore, by moment t2, Count sketch of the bucket (a0, t2) should have reported it in

line 10 of Algorithm 11.

Now we argue, that all heavy items will survive pruning in line 19. Let (a0, t) be the

first bucket of HHp[i].SH then we should consider two cases: t1 ≥ a0 and t1 ≤ a0.

If t1 ≥ a0 then it follows from Lemma 39, that f̂i(t1, t2) ≥ f (t1, t2) − ε
16 f (t1, t). At

the same, time SH framework guarantees L̂2(t1, t) ≤ 1.1L2(t1, t). Therefore, if fi(t1, t2) ≥

εL2(t1, t), then:

f̂i(t1, t2) ≥
15
16

εL2(t1, t) ≥ 3
4

εL̂2(t1, t)

Recall, that Count Sketch reports an item after seeing ε
16 L2 its instances, therefore, for

t1 ≤ a0 using the same lemma we can conclude that f̂i(t1, t2) ≥ f (t1, t2)− ε
8 f (t1, t), while

the rest of computation is the same. Therefore, all items with fi(t1, t2) ≥ εL2(t1, t) will be

reported by the Algorithm 11.

For every non-heavy item with fi(t1, t2) ≤ ε
2 L2(t1, t), if i ∈ HHp, then from Lemma 39

f̂i(t1, t2) ≤ fi(t1, t2) +
ε

16 fi(t1, t) ≤ ε
2 L2(t1, t) + ε

16 L2(t1, t) ≤ 3ε
4 L̂2(t1, t), and item i will be

pruned out in line 19.

According to Theorem 3 from [33], modified SH approach requires

O( 1
β g(ε, δ) log n) bits of memory. Algorithm 11 uses β = O(1) for SHL2 , with g(ε, δ) =

O( 1
ε2 log2 n) due to L2 sketch and Count Sketch instances. Thus, SHL2 requires O( 1

ε2 log2 n)

bits of space, and have O(log n) buckets and each can potentially generate up to O( 1
ε2 )

items in HHp. Therefore, in total, to track ε-approximation to frequencies of all potential

97



Chapter 3. Monitoring the Network with Interval Queries

heavy hitters, data structure spend O( 1
ε3 log3 n) bits of space. Summing the two derived

quantities, the space complexity of Algorithm 11 is O( 1
ε3 log3 n log 1

δε ) bits.

Note that replacing Count Sketch in Algorithm 11 with BPTree [32] improves the space

complexity by another log n factor.

Corollary 40.1. There exists an algorithm that solves (ε, L2)-heavy hitters problem in IQ model

using space O( 1
ε3 log2 n log 1

δε ) bits of space.

In this work, we mainly focus on the trade-off between memory and precision. In

Table 3.1 we compare space complexity, update and query time for all proposed algo-

rithms. Optimizing algorithms towards improving the query time is the subject of future

research.

Alg. Space complexity Update time Query time
1 O(ε−6 log3 n log δ−1) O(ε−4 log n) O(ε−2 log n)
2 O(ε−4 log3 n log δ−1) O(ε−2 log n) O(ε−3 log n)
3 O(ε−3 log2 n log log δ−1) O(log n) O(ε−2 log n)

TABLE 3.1: Space complexity, update and query time for all proposed algo-
rithms.

Extending to a wider class of functions Many streaming algorithms and frameworks

use L2-heavy hitter algorithm as a subroutine. One of them is UnivMon [101], the frame-

work which promotes recent results on universal sketching [34] in the field of network

traffic analysis. The main power of the framework is its ability to maintain only one

sketch for many target flow functions, rather than an ad-hoc sketch per each function.

The class of functions that can be queried is wide and covers the majority of those used

98



Chapter 3. Monitoring the Network with Interval Queries

in practice, among examples are the L0, L2 norms and entropy. Therefore, L2-heavy hit-

ters is an important step towards UnivMon in IQ model. For more details on universal

sketching refer to [34]; here we will cover the necessary basics.

Given a function g : N → N, the goal of universal sketching is to approximate G =

∑n
i=1 g( fi) by making one or several passes over the stream. Theorem 2 in [34] states: if

g(x) grows slower then x2, drops no faster than sub-polynomially, and has predictable

local variability, then there is an algorithm that outputs an ε-approximation to G, using

sub-polynomial space and only one pass over the data. The algorithm consists of two

major subroutines: (g, ε)-heavy hitters and Recursive Sketch. The first one finds all items

i such that g( fi) ≥ εG together with an ε-approximation to g( fi). In [34], the authors

show that if an item is (g, ε)-heavy then it is also (L2, ε
h )-heavy for sub-polynomial h;

therefore, Count Sketch can be used to find (g, ε)-heavy items. Recursive Sketch was

initially introduced in [80] and further generalized in [27]. It finds ε-approximation of G

using a (g, ε)-heavy hitters algorithm as the black box, by recursively subsampling the

universe, and by estimating the sum G of the subsampled stream.

In [34] (g, ε)-heavy hitter algorithm requires subroutine which find all items i such that

fi(t1, t2) ≥ εL2(t1, t2). However, due to the limitations of the IQ model all three proposed

algorithms only find all items i such that fi(t1, t2) ≥ εL2(t1, t). Further, we adjust the

argument from [34] to argue that one can use algorithms from previous sections to find

(g, ε)-heavy hitter with guarantee defined as follows:

Definition 41 ((ε, g)-heavy hitters problem in IQ). For 0 < ε < 1 output set of items T ⊂ [N],

such that T contains all items with g( fi(t1, t2)) ≥ εG(t1, t) = ε ∑j g( f j(t1, t)) and no items with

g( fi(t1, t2)) ≤ ε
2 G(t1, t).

99



Chapter 3. Monitoring the Network with Interval Queries

Propositions 15 and 16 in [34] show that if function g is slow-jumping and slow-

dropping, then there exist a sub-polynomial function H:

∀x ≤ y : g(y) ≥ g(x)
H(y)

, g(y) ≤
(y

x

)2
yαH(y)g(x) (3.1)

We can adjust the argument of Lemmas 17 and 18 in [34] to handle the heavy hitters with

additive error.

Lemma 42. Let HH(ε, δ) be an algorithm that solves (ε, L2)-heavy hitters problem in IQ model

(Definition 33), and g is a slow-jumping and slow-dropping function. Then HH( ε
2H(n) , δ) solves

(ε, g)-heavy hitters problem in IQ model (Definition 41).

Proof. Note that for any (g, ε)-heavy i:

g( fi(t1, t2)) ≥ ε ∑j g( f j(t1, t))

Therefore, applying the second statement of Equation 3.1:

g( fi(t1, t2)) ≥ ∑
f j(t1,t)≤ fi(t1,t2)

εg( fi(t1, t2)) f 2
j (t1, t)

H(n) f 2
i (t1, t2)

f 2
i (t1, t2) ≥

ε

H(n) ∑
f j(t1,t)≤ fi(t1,t2)

f 2
j (t1, t)

Similarly, applying the first statement of Equation 3.1:

g( fi(t1, t2)) ≥ ∑
f j(t1,t)≥ fi(t1,t2)

εg( fi(t1, t2))

H(n)

Hence, there are at most H(n)
ε items with f j(t1, t) ≥ fi(t1, t2), and HH( ε

2H(n) , δ) will

detect it.

100



Chapter 3. Monitoring the Network with Interval Queries

Further we argue that Recursive Sketch with (g, ε)-heavy hitter algorithm which finds

all i such that g( fi(t1, t2)) ≥ εG(t1, t) will return Ĝ(t1, t2) = G(t1, t2)± εG(t1, t).

Algorithm 12 Recursive GSum(S0, ε) [34]

1: H1, . . . , Hφ=O(log n) are pairwise independent 0/1 vectors
2: Sj is a subsampled stream {s ∈ Sj−1 : Hj(s) = 1}
3: Compute, in parallel, HHj = HH(Sj)
4: Compute Yφ = Gφ(t1, t2)± εGφ(t1, t)
5: for j = φ− 1, . . . , 0 do
6: compute Yj = 2Yj+1 + ∑i∈HHj

(1− 2Hj(i))ĝ( fi)

7: end for
8: return Y0

Theorem 43. Let HH be an algorithm that finds all i such that g( fi(t1, t2)) ≥ εG(t1, t) together

with ε-approximation of g( fi(t1, t2)). Then Algorithm 12 computes

Ĝ(t1, t2) = G(t1, t2) ± εG(t1, t) and errs with probability at most 0.3. Its space overhead is

O(log n).

Proof. Note that Gj is a G-sum computed on the subsampled stream Sj and according

to the line 4 of Algorithm 12 Yφ = Gφ(t1, t2)± εGφ(t1, t) our goal is to evaluate the er-

ror propagation from the top level of subsampling φ to the bottom one and show that

Y0 = G(t1, t2)± εG(t1, t).

Consider r.v. Xj:

Xj = ∑
i∈HHj

g( fi) + 2 ∑
i/∈HHj

Hj(i)g( fi).

Xj is an unbiased estimator of Gj(t1, t2) with variance bounded as:

Var(Xj) = ∑
i/∈HHj

g2( fi) ≤ εGj(t1, t)∑ g( fi) ≤ εG2
j (t1, t)

101



Chapter 3. Monitoring the Network with Interval Queries

by definition of HHj and monotonicity of G. Therefore, by conditioning on HHj success

and Chebyshev inequality:

Pr(|Xj − Gj(t1, t2)| ≥ ε′Gj(t1, t)) ≤ ε

ε′2
+ δ. (3.2)

By definition of Hj, Xj can be rewritten as

Xj = 2Gj+1 + ∑
i∈HHj

(1− 2Hj+1(i))g( fi).

Then, |Xj −Yj| ≤ 2|Gj+1 −Yj+1|+ ∑i∈HHj
|ĝ( fi)− g( fi)|. To simplify further derivations,

denote E1
j = |Xj − Gj|, E2

j = |Gj −Yj| and E3
j = ∑i∈HHj

|ĝ( fi)− g( fi)|.

E2
j = |Gj −Yj| ≤ |Gj − Xj|+ |Xj −Yj| ≤ E1

j + 2E2
j+1 + E3

j .

Therefore, the error will propagate to layer 0 as: E2
0 ≤ E1

0 + 2E2
1 + E3

0 ≤ . . . ≤ 2φE2
φ +

φ

∑
j=0

2jE1
j +

φ

∑
j=0

2jE3
j . Denote event 2φE2

φ ≥ ε′′G(t1, t) as A, event ∑
φ
j=0 2jE1

j ≥ ε′′G(t1, t) as

B, and event ∑
φ
j=0 2jE3

j ≥ ε′′G(t1, t) as C.

Apply formula 3.2 for all j, then Pr(B) is upper bounded by:

Pr

(
ε′

φ

∑
j=0

2jGj(t1, t) ≥ ε′′G(t1, t)

)
+ (φ + 1)

( ε

ε′2
+ δ
)

Note, that E
(

∑
φ
j=0 2jGj(t1, t)

)
= (φ + 1)Gj(t1, t), therefore by Markov:

Pr(B) ≤ (φ + 1)
ε′

ε′′
+ (φ + 1)

( ε

ε′2
+ δ
)

.

Recall that HHj fails with probability at most δ, there are at most 1/ε′ items such

102



Chapter 3. Monitoring the Network with Interval Queries

that g( fi) ≥ εGj(t1, t), and if HHj succeeds then ĝ( fi) = (1± ε)g( fi) for all i such that

g( fi) ≥ εGj(t1, t). Therefore, ∑i∈HHj
|ĝ( fi)− g( fi)| < εGj(t1, t), and we can bound Pr(C)

from above with:

Pr

(
ε

φ

∑
j=0

2jGj(t1, t) ≥ ε′′G(t1, t)

)
+ (φ + 1)δ.

Finally, applying Markov: Pr(C) ≤ (φ + 1) ε
ε′′ + (φ + 1)δ.

To bound Pr(A) recall that Yφ = Gφ(t1, t2)± εGφ(t1, t) with probability at least 1− δ

and E(2φGφ(t1, t)) = G(t1, t). Therefore, P(A) ≤ ε
ε′′ + δ, and putting all together:

P(A ∪ B ∪ C) ≤ (φ + 2) ε
ε′′ + (φ + 1) ε′

ε′′ + (φ + 1)( ε
ε′2

+ δ). Choosing ε ≤ 0.1ε′′2

(φ+1)3 and ε′ ≤
0.1ε′′
φ+1 we get the statement of the theorem

P(|Y0 − G(t1, t2)| ≥ ε′′G(t1, t)) ≤ 0.3.

Extending to wider class of queries Recall that the interval queries (t1, t2) introduced

earlier were not measured in time, but rather in number of packets passed through. How-

ever, in practice it is often more use when one can query some statistic in time-based in-

terval, for example one hour interval half a day ago or from 5PM to 6PM yesterday. All

presented algorithms, are easily extendable to answer time-based interval queries, one

only need to create a time stamp for each bucket of SH or EH framework, and use that

timestamp when searching for corresponding buckets approximating the interval. Note

that all presented algorithms support weighted packets, i.e. when each packet i arrives

with it’s weight wi, which corresponds to the update fi = fi + wi.

103



Chapter 3. Monitoring the Network with Interval Queries

3.4 Evaluation

Next, we evaluate our algorithms for various network measurement tasks. We have im-

plemented a prototype in C and evaluated the accuracy v.s. memory using four CAIDA

Internet Traces: “Equinix-Sanjose” in 2014 (SanJose2014) [74] “Equinix-Chicago” in 2016

(Chicago2016) [139], and from “Equinix-NewYork” in 2018 (NewYork2018) [137]; and a

data center trace from the University of Wisconsin (Univ2) [17].

All experiments are based on 10M sized traces. We evaluate multiple measurement

metrics on two experiments. In the first experiment, we select a packet once every 30k

packets and estimate the frequency of the corresponding flow on an interval between

10k-20k packets ago (suffix length of 20k). In the second, we estimate frequencies on

varying suffixes and show how the suffix length affects the empirical error. To do so, we

select a packet once per 200k packets and estimate the frequency of the corresponding

flow for every possible suffix length from 100K to the window size of 1M. The depicted

figures for the second experiment are for the NewYork2018 dataset.

Frequency estimation: We with the frequency estimation problem. The results in

Figure 3.3 show the trade-off between the memory consumption and the empirical error

for different network traces. As expected, having more memory increases the accuracy

of frequency estimation. The difference between the traces is mainly attributed to the

workload characteristics and namely how the L2 norm changes during each trace.

Figure 3.4 shows results for the second experiment on the NY2018 trace. Notice that

(i) longer suffixes indeed have larger estimation error than shorter ones. This is expected

as our analysis indicates that the error is proportional to the suffix length. (ii) Notice

that more memory increases accuracy for every suffix length. This is also expected as

the error is proportional to the accuracy parameter ε which decreases with the memory.

104



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.3: Average frequency estimation error for flows in 10-20k interval.

(iii) the average error is small for moderate memory consumption, e.g. given 18MB, the

average error is less than 64 packets for all suffix lengths.

L2 norm estimation: We repeat the above experiments for L2 norm estimation. Fig-

ure 3.5 shows results for the first experiment. Notice that we get the same trend as before,

more memory leads to better accuracy in estimating the L2 norm. Figure 3.6 shows re-

sults for the second experiment. As can be seen, (i) we get better L2 estimations for small

suffixes, (ii) additional memory increases the accuracy.

Heavy hitters estimation: We now evaluate L2 heavy hitters, with θ = 0.5%. We

evaluate three metrics for heavy hitters estimation. (i) Precision: measure how many of

the reported flows are indeed heavy hitters, (ii) Recall: measure how many of the real

heavy hitters are reported, and the F1 norm that factors both Precision and Recall into a

105



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.4: Average frequency estimation error for flows for various suffix
lengths on the NY2018 dataset.

single measure. The perfect solution has F1 = 1, and the closer the value is to 1, the more

accurate the solution.

Figure 3.7 shows precision (solid curves) and recall (dashed) for various workloads

for the first experiment. Notice that (i) increasing memory increases both precision and

recall. (ii) that we get to around 90% recall with enough memory, and 95+% accuracy.

Figure 3.8 shows the F1 values in the same experiment. As can be observed, the value

converges close to 1 as we increase the memory.

Figures 3.9, 3.10, and 3.11 shows result for the second experiment. Figure 3.9 shows

precision, Figure 3.10 shows recall and Figure 3.11 shows the F1 metric. As can be ob-

served, (i) longer suffixes yield less accurate results. For precision, there is a slight anomaly

for 2 and 4.5 MB sized algorithm. Note that however, at the same time recall drops, and

106



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.5: Average L2 norm estimation error for flows in 10-20k intervals.

the overall quality (F1) remains constant. This means that less heavy hitters are detected,

but less non heavy hitters are falsely detected. (ii) increasing memory improves all quality

metrics for any suffix length.

Entropy estimation: Finally, we evaluate the error in Entropy estimation. We used

Algorithm 4, and extended UnivMon [101] to provide Entropy estimations. Figures 3.12

and 3.13 show the results. As illustrated, we estimate the entropy for this interval very

accurately throughout the range of memory. As expected, more memory means a better

estimation.

107



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.6: Average L2 norm estimation error for flows for various suffix
lengths on the NY2018 dataset.

3.5 Conclusion

Our study investigates the IQ model that allows calculating metrics on any intervals

within a recent window. Such capabilities are often provided by databases that maintain

a full subset of the data. Our novelty lies in providing such capabilities in a space-efficient

manner which is considerably smaller than any database. Thus, it is a step towards re-

alizing efficient interval queries in network devices. We anticipate that such capabilities

would enable a new generation of advanced network algorithms, given the access to more

fine-grained primitives. For example, security applications would be able to compare a

variety of measurement metrics in different time scales to more accurately identify at-

tacks.

Our work studies how to extend L2 heavy hitter algorithms to the IQ model. We justify

108



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.7: Quality of HH solution for 10k-20k interval (first experiment).
Precision and Recall.

the focus on L2 as it is used as a building block in monitoring a large variety of network

measurement tasks such as frequency estimation, L2 norm, the number of distinct flows,

and the entropy of traffic distribution. We suggest three different techniques to do so, each

improving on the space requirement of the previous one. We also extend the analysis of

the previously suggested Exponential Histogram [46], which enables it to be used as a

building block in the IQ model. Finally, we use our best algorithm to extend UnivMon

capable of all the network tasks mentioned above [101] to the IQ model, based on our best

L2 heavy hitter algorithm. Our work is the first to provide these measurement tasks in

the IQ model, and through an extensive evaluation on real Internet traces, we show that

these capabilities are practical within the available memory range of network devices.

109



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.8: Quality of HH solution for 10k-20k interval (first experiment).
F1 Measure.

110



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.9: Quality of HH solution for varying suffix lengths (second exper-
iment). Precision.

111



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.10: Quality of HH solution for varying suffix lengths (second ex-
periment). Recall.

112



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.11: Quality of HH solution for varying suffix lengths (second ex-
periment). F1 Measure.

113



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.12: Average entropy relative error for 10-20k intervals.

114



Chapter 3. Monitoring the Network with Interval Queries

FIGURE 3.13: Average entropy relative error for various suffix lengths on the
NY2018 dataset.

115



Chapter 4

Streaming quantiles algorithms with

small space and update time

Current chapter is based on the work done in collaboration with Liberty E., Karnin Z.,

Lang K. and Braverman V.

4.1 Introduction

Estimating the underlying distribution of data is crucial for many applications. It is com-

mon to approximate an entire Cumulative Distribution Function (CDF) or specific quan-

tiles. The median (0.5 quantile) and 95-th and 99-th percentiles are widely used in finan-

cial analytics, statistical tests, and system monitoring. Quantiles summary found appli-

cations in databases [129, 123], sensor networks [98], logging systems [121], distributed

systems [49], and decision trees [40]. While computing quantiles is conceptually very

simple, using compressed summaries becomes unavoidable for very large data.

Formally the quantiles problem can be defined as follows: data structure inputs a mul-

tiset S = {si}n
i=1, and upon a query φ it should output an item with the rank φn, i.e. φn-th

item in the sorted S. An approximate version of the problem relaxes the requirement and

116



Chapter 4. Streaming quantiles algorithms with small space and update time

admits any item with rank in [(φ− ε)n, (φ + ε)n]. In a randomized version, the algorithm

is allowed to make a mistake with a probability at most δ. Note that in order for the ran-

domized version to provide a correct answer to all possible queries, it suffices to amplify

the probability of success, by running the algorithm with failure probability of δε, and

applying the union bound over all O(1/ε) quantiles.

In network monitoring [101] and other applications it is critical to maintain statistics

while making only a single pass over the data and minimizing the communication and

update time. As a result, the problem of quantiles has been considered in several models:

distributed settings [49, 65, 130], continuous monitoring [45, 147], streaming [2, 85, 104,

105, 143, 64, 66], sliding windows [8, 100]. In the present chapter, the quantiles prob-

lem is considered in a standard streaming settings: at time 0 the initial set S0 is empty,

and at every time moment t ∈ [n] the data structure is updated with new item st, i.e.

St = St−1 ∪ {st}, at the end of the stream, the data structure is queried with a quantile φ.

The algorithm’s space complexity and approximation guarantees should not depend on

the order or the content of the updates st, and should depend on n at most sublinearly.

In the pioneering paper [112], Munro and Paterson showed that one would need Ω(n1/p)

space and p passes over the dataset to find a median. They also suggested an optimal

iterative algorithm to find it. Later Manku et al. [104] showed that the first iteration of the

algorithm in [112] can be used to solve the ε approximate quantile problem in one pass

using only O(1/ε log2 n) words of space. Note that, for a small enough ε, this is a signif-

icant improvement over the naive algorithm, which samples O(1/ε2 log(1/ε)) items of

the stream using reservoir sampling. The algorithm in [104] is deterministic, however,

compared with the reservoir sampling it assumes the length of the stream to be known

in advance. In many applications such an assumption is unrealistic. In their follow-up

117



Chapter 4. Streaming quantiles algorithms with small space and update time

paper [105] the authors suggested a randomized algorithm without that assumption. Fur-

ther improvement by Agarwal et al. [2] via randomizing the core subroutine, pushed the

space requirements down to O(1/ε log3/2(1/ε)). In addition, new data structure has been

proven to be fully mergeable. Greenwald and Khanna in [64] presented an algorithm that

maintains upper and lower bounds for each quantile individually, rather than one bound

for all quantiles. It is deterministic and requires only O(1/ε log εn) words of memory,

however, it is not known to be fully mergeable. Later Felber and Ostrovsky [57] sug-

gested novel techniques of feeding sampled items into a sketch from [64] and improved

the space complexity to O(1/ε log 1/ε) words of memory.

Recently Karnin et al. in [85] presented an asymptotically optimal but non-mergeable

data structure with space usage of O(1/ε log log 1/ε) words. In the same paper authors

proved matching lower bound and presented another algortihm which is fully merge-

able however with space requirement of O(1
ε log2 log 1

ε ) words. In the current chapter,

we suggest several further improvements to the algorithms introduced in [85]. These

improvements do not affect the asymptotic guarantees of [85], but improve the constant

terms, both in theory and practice. Also suggested techniques will improve the worst-

case update time. Additionally we suggest 2 algorithms for the extended version of the

problem when each update comes with a weight. All the algorithms discussed in this

chapter are in the comparison model, i.e. algorithm should explicitly store the items it

will output, therefore it can not ”compute” the item in the contrary to the fixed universe

model. For the more detailed review of the quantiles algorithms in the streaming model

we refer the reader to [66, 143].

118



Chapter 4. Streaming quantiles algorithms with small space and update time

4.2 A unified view of previous randomized solutions

To introduce further improvements to the streaming quantiles algorithms we will first

re-explain the previous work using simplified concepts of one pair compression and a

compactor. Consider a simple problem in which your data set contains only two items a

and b, while your data structure (DS) can only store one item. We focus on the comparison

based framework where we can only compare items and cannot compute new items via

operations such as averaging. In this framework, the only option for the DS is to pick one

of them and store it explicitly. The stored item x is assigned weight 2. Given a rank query

q the DS will report 0 for q < x, and 2 for q > x. Note that for q /∈ [a, b] the output of

the DS will be correct; however, for q ∈ [a, b] the correct rank is 1, the DS will introduce

a +1/− 1 error depending on which item the DS stored. From here we will call q with

respect to the compaction (a, b) as inner query if q ∈ [a, b] and an outer query otherwise;

such notion lets us distinguish those queries for which an error is introduced, from those

that were not influenced by a compression. Figure 4.1 depicts the above example of one

pair compression.

a b

inner query

a b

outer queries

a b a b

error+w -w 0 0

FIGURE 4.1: One pair compression: initially each item has weight w, com-
pression introduces±w error for inner queries and no error for outer queries.

The example gives a rise to a high-level method for the original problem with the

dataset of size n and memory capacity of k items: 1)keep adding items to the DS until it is

full; 2)choose any pair of items with the same weight and compress them. Notice that if

119



Chapter 4. Streaming quantiles algorithms with small space and update time

we choose those pairs without care, in the worst-case we might end up representing the

full dataset by its top k elements, introducing an error of almost n, that is much larger than

εn. It follows that we should make sure that the pairs being compacted (i.e. compressed)

should have their ranks as close as possible, thereby affecting as few queries as possible.

This intuition is implemented via a compactor. First introduced by Manku et al. in [104],

it defines an array of k items with weight w each, and a compaction procedure which

compress all k items into k/2 items with weight 2w. A compaction procedure first sorts

all items, then deletes either even or odd positions, and doubles the weight of the rest.

Figure 4.2 depicts the error introduced for different rank queries q, by a compaction pro-

cedure applied to an example array of items [1, 3, 5, 8]. Notice that the compactor utilizes

the same idea as the one pair compression, but on the pairs of neighbors in the sorted ar-

ray; thus by performing k/2 non-intersecting compressions it introduces an overall error

of w as opposed to kw/2.

The algorithm introduced in [104], defines a stack of H = O(log n/k) compactors,

each of size k. Each compactor obtains as an input a stream and outputs a stream with

half the size by performing a compact operation each time its buffer is full. The output

of the final compactor is a stream of length k that can simply be stored in memory. The

Compactor

Keeping odd positions

Keeping even positions

Introduced rank error

q1

0

q2

±w

q3

0

q4

±w

q5

0

1 3 5 8

1 5

3 8

FIGURE 4.2: Compaction procedure: rank error ±w is introduced to inner
queries q2,4, no error to outer queries q1,3,5

120



Chapter 4. Streaming quantiles algorithms with small space and update time

bottom compactor that observes items has a weight of 1; the next one observes items of

weight 2 and the top one 2H−1. The output of a compaction on h-th level is an input of

the compactor on (h + 1)-th layer. Note that error introduced on h-th level is equal to the

number of compactions mh = n/kwh times the error introduced by one compaction wh.

The total error can be computed as

Err =
H

∑
h=1

mhwh = Hn/k = O(n/k log n/k).

Setting k = O(1/ε log εn) will lead to an approximation error of εn. Space is used by H

compactors of size k each — O(1/ε log2 εn) words. Note that the algorithm is determinis-

tic.

Later, Agarwal et al. [2] suggested the compactor to choose the odd or even positions

randomly and equiprobably, pushing the introduced error to zero in expectation. Addi-

tionally, authors suggested a new way of feeding subsampled stream into the data struc-

ture, recalling that O(1/ε2 log 1/ε) samples preserve quantiles with ±εn approximation

error. Proposed algorithm requires O(1/ε log3/2 1/ε) words of space and succeed with

high constant probability.

To prove the result the authors introduced a random variable Xi,h denoting the error

introduced on the i-th compaction at h-th level. Then the overall error is:

Err =
H

∑
h=1

mh

∑
i=1

whXi,h.

whXi,h is bounded, has mean zero and is independent of the other variables. Thus, due to

Hoeffding’s inequality:

P(|Err| > εn) ≤ 2 exp
−ε2n2

∑H
h=1 ∑mh

i=1 w2
h

.

121



Chapter 4. Streaming quantiles algorithms with small space and update time

Setting wh = 2h−1 and k = 1/ε
√

log 1/δ will keep the error probability bounded by δ.

The following improvement by Karnin et al. [85] suggested to:

1. use exponentially decreasing size of the compactor,

2. keep only top O(log 1/ε) top compactors,

3. keep the size of the top O(log log 1/δ) compactors fixed,

4. replace the top O(log log 1/δ) compactors with GK sketch [64].

(1) and (2) dropped the space down to O(1
ε

√
log 1

ε ), (3) pushed it further to O(1
ε log2 log 1

ε ),

and (4) led to an optimal O(1
ε log log 1

ε ). The authors also provided the matching lower

bound. Note, the last solution is not mergeable due to the use of GK [64] as a subroutine.

While (3) and (4) lead to the asymptotically better algorithm, its implementation is

quite complicated for application purposes and mostly are of a theoretical interest. For

these reasons, in the current chapter, we build upon the KLL algorithm of [85] using only

(1) and (2).

In [85], the authors show that if the size of the compactor decreases as kh = ch−hk for

c ∈ (0.5, 1), then ∑h
h=1 ∑mh

i=1 w2
h ≤

n2/k2

2c2(2c−1) . As previously, applying Hoeffding inequality

results in:

P(|Err| > εn) ≤ 2 exp
(
−Cε2k2

)
≤ δ,

where C = 2c2(2c − 1). Setting k = O(1/ε
√

log 1/ε) lead to the desired approxima-

tion guarantee for all O (1/ε) quantiles with constant probability. Note that the smallest

meaningful compactor has size 2, thus the algorithm will require

k(1 + c + . . . + clog1/ck) + O(log n) =
k

1− c
+ O(log n)

122



Chapter 4. Streaming quantiles algorithms with small space and update time

compactors, where the last term is due to the stack of compactors of size 2. The authors

suggested replacing that stack with a basic sampler, which picks one item out of every

2wH−log1/ck updates at random and logically is identical but costs only O(1) words. The re-

sulting space complexity is O(1
ε

√
log 1

ε ). We provide the pseudocode for the core routine

in Algorithm 13.

Algorithm 13 Core routines for KLL algorithm [85]

1: function KLL.UPDATE(item)
2: if SAMPLER(item) then KLL[0].APPEND(item)
3: for h = 1 . . . H do
4: if LEN(KLL[h] ≥ kh) then KLL.COMPACT(h)
5: end for
6: end function
7: function KLL.COMPACT(h)
8: KLL[h].SORT(); rb = RANDOM({0,1});
9: KLL[h + 1].APPEND(KLL[h][rb : : 2])

10: KLL[h]= []
11: end function

4.3 Our Contribution

In the effort of obtaining a practical method, during the chapter we maintain a conve-

nient API for the algorithm where the only parameter it requires is the memory limit, as

opposed to knowing the values of different parameters such ε, δ in advance. Our aim is

to obtain the best possible guarantee given that memory limit. Such optimization (min-

imizing error under fixed memory) is widely used in practical applications. Below we

present a series of modifications that improve the approximation error both in theory and

practice. We then compare all of them experimentally in Section 4.4.

123



Chapter 4. Streaming quantiles algorithms with small space and update time

Lazy compactions We suggest all the compactors to share the pool of allocated memory

and perform compaction only when the pool is fully saturated. This way each compaction

will be performed on the larger set of items, and the total number of compactions will be

lower. Each compaction introduces fixed ammount of error thus total error introduced

will be lower. Algorithm 14 gives the formal lazy-compacting algorithm, and Figure 4.3

visualizes its advantage: in vanilla KLL all compactors having fewer items than their

individual capacities, in lazy KLL this is not enforced due to sharing the pool of memory.

memory usage: 60%va
ni

lla
K

LL

memory usage: 90%
la

zy
K

LL

FIGURE 4.3: Compactor saturation: vanilla KLL vs. lazy KLL

Algorithm 14 Update procedure for lazy KLL

1: function KLL.UPDATE(item)
2: if SAMPLER(item) then KLL[0].APPEND(item); itemsN++;
3: if itemsN > sketchSpace then
4: for h = 1 . . . H do
5: if LEN(KLL[h]) ≥ kh then
6: KLL.COMPACT(h); break;
7: end if
8: end for
9: end if

10: end function

ii io oi oo
even→ odd 0 −w +w 0 w.p. 1/2
odd→ even 0 +w −w 0 w.p. 1/2

TABLE 4.1: Possible outcomes for the rank query q.

124



Chapter 4. Streaming quantiles algorithms with small space and update time

Reduced randomness Instead of flipping a coin during each compaction, we suggest

only doing it for every other compaction, and for others use the opposite to the previous

choice. This way, each coin flip defines 2 consecutive compactions: w.p. 1
2 it is even →

odd (e→ o), and w.p. 1
2 it is odd→ even (o → e). Consider all possible options for a fixed

rank query q in two consecutive compactions: io(inner-outer), oi, ii, oo (depicted in the

Table 4.1). Clearly, in expectation every two compactions introduce 0 error, additionally,

we conclude that total variance introduced while processing the stream is twice smaller

compared to vanilla KLL, as in vanilla KLL each compaction introduces an unbiased error

bounded in absolute value by w, and in our modification the same variance is introduced

by every two compactions.

Equally Spread Error Recall that in the analysis of all compactor based solutions [104,

2, 85, 143] during a single compaction we can distinguish two types of rank queries: in-

ner queries, for which some error is introduced, and outer queries, for which no error

is introduced. That being said, the existing algorithms do not exploit the fact that outer

Keeping
odds

Keeping
evensD

is
ca

rd
in

g
la

st
it

em

Keeping
odds

Keeping
evensD

is
ca

rd
in

g
fir

st
it

em

q1

0

0

0

0

q2

+w

−w

0

0

q3

0

0

+w

−w

q4

+w

−w

0

0

q5

0

0

+w

−w

q6

0

0

0

0

1 3 5 8 11

1 5
11

3 8
11

1
3 8

1
5 11

FIGURE 4.4: Compaction with an equally spread error: every query q2,3,4,5 is
either inner or outer equiprobably.

125



Chapter 4. Streaming quantiles algorithms with small space and update time

queries do not present an error, and an adversarial stream might be arranged such that a

particular query is internal in all compactions. We suggest to probabilistically ”spread”

an error of each compaction among all queries. Suppose k is odd, on each compaction we

flip a coin and then either compact the items with indices 0 to k− 1 or 1 to k equiprobably.

This way query q w.p.1
2 is outer and no error is introduced; w.p. 1

4 is inner and introduced

error is −w; and w.p.1
4 is inner with error +w. Thus, the estimator is still unbiased but

the variance is cut in half. We note that the same analysis applies for two consecutive

compactions using the reduced randomness improvement discussed in Section 4.3: The

configuration (ii,io,oi,oo) of a query in two consecutive compactions described in Table 4.1

will now happen with equal probability. Consequently we have the same distribution for

the error: 0 w.p. 1
2 , +w w.p. 1

4 and −w w.p. 1
4 , meaning that the variance is cut in half

compared to its worse case analysis without the error-spreading improvement. Thus, if

we apply both modifications total variance should become 4 times smaller. The algorithm

including the error-spreading improvement is described in Figure 4.4.

Sweep-compactor The error bound for all compactor based algorithms follows from the

property that every batch of k/2 compressions is disjoint. In this section we suggest to

compress pairs one at time, while making sure that every batch of at least k/2 compression

is disjoint. Compacting a single pair takes constant time; hence we reduce the worst-case

update time from O(1/ε) to O(log(1/ε)). Additionally, for some data streams the disjoint

batch size is strictily larger than k/2 resulting in a reduction in the overall error.

The modified compactor operates in phases we call sweeps. It maintains the same

buffer as before and an additional threshold θ initialized as−∞ 1. As previously, the items

in the buffer are stored in non-decreasing sorted order. When a pair must be compacted

1Notice that −∞ is still defined in the comparison model

126



Chapter 4. Streaming quantiles algorithms with small space and update time

algorithm chooses the pair of two smallest items larger than θ; after the compaction algo-

rithm updates θ to have the value of the largest item of the compacted pair.

If no such pair exists (due to θ being too large) we set θ as −∞, thereby starting a new

sweep. Figure 4.5 demonstrates a single sweep, and the pseudocode for the modified

compactor is provided in Algorithm 15.

Algorithm 15 Sweep compaction procedure

1: function KLLSWEEP.COMPACT(h)
2: KLL[h].SORT()
3: i∗ = argmini (KLL[h][i] ≥ KLL[h].θ)
4: if i∗ == None then i∗ = 0;
5: KLL[h].θ = KLL[i∗ + 1];
6: KLL[h].POP(i∗+ RANDBIT());
7: return KLL[h].POP(i∗)
8: end function

We note two important properties of a sweep in a buffer that can hold k (or k + 1)

items; the proof of these properties is immediate. The first is that the overall number of

pairs compacted in each sweep is at least k/2. The second is that the intervals of all the

pairs in a single sweep do not intersect. These two properties together result in the exact

same guarantee as the ordinary compactor in the worst-case. However, notice that for

an already sorted stream the modified compactor performs only a single sweep, hence in

this scenario the resulting error would not be a sum of n/k i.i.d. error terms, each of mag-

nitude±w but rather a single error term of magnitude±w. Though this extreme situation

may not happen very often, it is likely that the data admits some sorted subsequences and

the average sweep would contain more than k/2 pairs. We demonstrate this empirically

in our experiments.

Weighted stream extension Consider the stream of updates (ai, wi), where each item ai

comes with a weight wi. After feeding the stream into a data structure, it is queried with

127



Chapter 4. Streaming quantiles algorithms with small space and update time

a quantile φ, and should report an item x such that:

(φ− ε)W ≤ ∑
i:ai<x

wi ≤ (φ + ε)W,

where W = ∑i wi is the total weight of the entire stream.

The naive approach is to transform the input stream S into the stream of unit updates

S′ and apply one of the algorithms described earlier. However, this might cause update

time O(wi log 1/ε) to become very poor if the item’s weight is very large, for instance,

wi = 2n.

In the current chapter we suggest two algorithms with improved time performance:

base2update with O(log2 1/ε) worst-case update time and base2compactor with O(log 1/ε)

worst-case update time. Both algorithms have the same space complexity as KLL.

We can tweak the naive approach to make use of the inner structure of the compactor

based algorithms. Instead of breaking the weighted updates into a unitary updates, one

1 2 3 7 8

θ

0 3 5 7 8

θ

0 4 7 8 9

θ

0 2 4 9 12

θ

FIGURE 4.5: Example of one full sweep in 4 stages, each stage depicts
pair chosen for the compaction, updated threshold θ and new items arrived

(shadow bars).

128



Chapter 4. Streaming quantiles algorithms with small space and update time

can break it into the power-of-two weights:

wi =
log wi

∑
i=1

(wi

2i mod 2
)

.

Note that this operation can be performed very efficiently, because the weight is typi-

cally stored in binary representation. Such breakdown guarantees that each update in S

would not cause more than O(log wm) updates in S′, where wm is the largest weight of

the updates. Later we will show how to push it to only O(log 1/ε) updates independent

of wm. Thus |S′| ≤ |S| log wm. Recall that all compactor based algorithms have a weight

wh = 2h assigned to the compactor at the level h. Therefore, instead of adding unitary

updates in the lowest compactor, we will distribute our power-of-two weighted updates

among corresponding compactors (including feeding into the sampler, if needed). The

process is depicted on the Figure 4.6. The algorithm’s update procedure is presented in

the Algorithm 16.

wH = 28

Sampler

item (a, 93) =

28 · 0
27 · 0
26 · 1

push a

25 · 0
24 · 1 push a

23 · 1
22 · 1
21 · 0
20 · 1

push
(a, 13)

FIGURE 4.6: Intuition behind base2update algorithm

Theorem 44. Algorithm base2update processes stream of weighted updates and outputs all ε-

approximate quantiles with high probability, works in a space O(1/ε log1/2 1/ε) and has an up-

date time O(log2 1/ε).

129



Chapter 4. Streaming quantiles algorithms with small space and update time

Algorithm 16 Base2update update procedure

1: function KLL.PUSHITEMS((a, w))
2: for h = log w− log 1/ε . . . log w do
3: if wh = w

2h−1 mod 2 then
4: KLL[h].APPEND(a)
5: Compact if needed
6: end if
7: end for
8: end function
9: function KLL.UPDATE((a, w))

10: if w < 2H+1 then
11: KLL.PUSHITEMS((a, w))
12: end if
13: if w ∈ [2H+1, 1/ε2H] then
14: KLL.PUSHITEMS((a, w))
15: end if
16: if w > 1/ε2H then
17: h∗ = argmaxh (2

H+h1/ε < w)
18: delete bottom h∗ compactors
19: add h∗ empty compactors on the top
20: KLL.PUSHITEMS((a, w))
21: end if
22: end function

130



Chapter 4. Streaming quantiles algorithms with small space and update time

Proof. Algorithm 16 classifies all updates by its weight into three groups:

1. small — w < 2H+1

2. medium — w ∈ [2H+1, 1
ε 2H]x

3. large — ∃h∗ ≥ 0 : w > 1
ε 2H+h∗

For small updates its weight can be represented as log wi updates with power of 2 weights.

Note that the algorithm discards all except the largest O(log 1/ε) of them. In doing so it

for each update introduces to total error additionaly at most ∑i εwi = εW. Then the algo-

rithm adds every update with weight 2h to the level h compactor directly. This operation

does not introduce any error until any compaction procedure is performed.

For large updates its weight is too large to include into compactor. However, it makes

the content of the bottom h∗ compactor impact negligible compared with wi. Thus we can

delete bottom h∗ compactors, and create new h∗ compactors on the top. Similarly to the

case described earlier, we discard at most εwi of weight, thus in total it could introduce

up to εW error. After new h∗ compactors are created, a large update can be classified as a

small one and can be processed accordingly.

On the other side medium updates are not large enough to let us discard bottom com-

pactors. As a result, we could not create new compactors. Additionally, it could possibly

require up to O(1/ε) updates to be pushed on the top layer, which pushes the update

time exponentially. To avoid such loss in the update time, the compactor would need to

support efficient insertion of many identical items at a time: this can be achieved if we

allow to store the number of items next to the item itself. As we only need to do it for the

items which appear at least twice, this modification should not hurt the space complexity.

Note that in all three cases the error introduced is bounded by 3εW: εW for discarding

bottom weights in decomposition of wi, εW for discarding bottom h∗ compactors, εW

131



Chapter 4. Streaming quantiles algorithms with small space and update time

from running the KLL algorithm. Each case requires up to O(log 1/ε) updates for KLL.

We will use sweep-compactor KLL as a core of the base2update algorithm, then the total

update time is O(log2 1/ε) and the space complexity O(1/ε log1/2 1/ε).

The Base2compactor algorithm does not require any stream transformation. To ex-

plain the idea behind it we first introduce a weighted compactor and a weighted pair

compression. Suppose you are given two pairs (a, wa) and (b, wb), such that a < b, how-

ever the data structure can store only one item. Due to the limitations of the comparison

model, as described in section 4.2, the only option is to pick either a or b. Base2compactor

chooses a w.p. wa
wa+wb

and b w.p. wb
wa+wb

, assigns weight wa + wb for the chosen item and

drop the other one. For q /∈ [a, b] this operation does not introduce any error, however, for

q ∈ [a, b] the introduced error is wb w.p. wa
wa+wb

and −wa w.p. wb
wa+wb

. The expectation of

the error is zero and direct computation shows that it’s variance is wawb. To carefully con-

trol the variance we introduce the weighted compactor as an array of pairs {(ai, wi)}kh
i=1

such that wi ∈ [w, 2w) (w is a characteristic of given compactor), and the compaction

procedure is similar to the unweighted case:

1. sort the array using ai as an index,

2. break the array into pairs of neighbors (aj, wj), (aj+1, wj+1)

3. compress each pair, using procedure described above

The whole process is depicted in the Figure 4.7. The algorithm’s updated procedure for

a given input item (ai, wi) pushes it into a compactor with w s.t. wi ∈ [w, 2w), and then

performs a compaction if needed. Note that the input of the compactor on the level with

weight w have weights in the range [w, 2w) and output of the compaction on the same

level has items with a weight in the range [2w, 4w) thus it can be pushed into the following

compactor on the next level.

132



Chapter 4. Streaming quantiles algorithms with small space and update time
2w

w a b c d e f

4w

2w c

4w

2wd
w.p. wc

wc+wd
w.p. wd

wc+wd

FIGURE 4.7: Compressing pair in the weighted compactor

The analysis for this extension is in the same key as for unitary updates. Let Xi,h

be a random variable which indicates the sign of the error introduced during the i-th

compaction on the h-th level, and let it be equal to zero if no error is introduced. Note

that during each weighted compaction when all items have the weights within the range

[w, 2w), maximum absolute error is bounded by 2w, thus total error introduced is

Err =
H

∑
h=1

mh

∑
i=1

2whXi,h.

Note that this value differs from the one in the analysis of vanilla KLL, only by a factor

of 2, thus all the previous derivations made for unitary updates would still hold with one

constant adjustment:

P(|Err| > εW) ≤ 2 exp (−C
4

ε2k2) < δ.

To reach the same approximation guarantees with the same probability of fail, one need

to set up knew = 2kold, i.e. this algorithm will use space twice as much compared to naive

implementations. Additionally it requires to store weight for each item explicitly, which

might cause up to another factor of two in space complexity (depends on the memory

requirement to store one item).

To process any weight updates we suggest to use the same technique as in base2update

algorithm. Then base2compactor would require at most O(1) updates to KLL to process

each weighted update from the initial stream. Thus if we use sweep-compactor KLL as a

133



Chapter 4. Streaming quantiles algorithms with small space and update time

core algorithm we will get the following theorem.

Theorem 45. Algorithm base2compactor processes stream of weighted updates and outputs all

ε-approximate quantiles with high probability, works in a space O(1/ε log1/2 1/ε) and has an

update time O(log 1/ε)

Note that the importance of the improvement in update time depends a lot on the

application, in particular on the relation between n and 1/ε, and is debatable. Lets call a

weighted stream ”good” if it is long enough (n >> 1/ε) and all updates have moderate

weights (there is no extreme situations, when weight of the update is O(1) of the total

weight seen so far). For ”good” streams, as soon as sampling rate grows significantly

larger than the typical weight of the update, worst-case update time for KLL-ls (lazy

sweep compactors) becomes O(log 1/ε) and amortized time drops to O(1).

4.4 Experimental Results

Datasets. To study algorithm’s properties we tested it on both synthetic and real datasets,

with various of sizes, underlying distributions and orders. Note that approximation guar-

antees of all investigated algorithms do not depend on the data itself, however it depends

on the order in which data set is fed into the algorithm. Surprisingly the worst-case is

achieved when the dataset is randomly shuffled []. Therefore we will pay more attention

to the randomly ordered data sets in this section, while also experimenting with the semi-

random orders that resemble more to real-life applications. Due to the space limitations

we could not possibly present all the experiments in the chapter. We encourage the read-

ers to refer to the interactive stand while here we will only present the most interesting

and relevant findings.

134



Chapter 4. Streaming quantiles algorithms with small space and update time

Our experiments were carried on two types of synthetic datasets. The length of the

stream varies from 105 to 109 for both types of the datasets. In the first type, we fixed

the distribution (ai ∈ {1, . . . , n} and each item appear exactly once) and varied the order

of updates: randomly shuffled; sorted order (ascending and descending); semi-sorted

(shuffle the entire array, for i ∈ {1 . . .
√

n} sort locally i-th chunk of
√

n items); zoom

in order (a2i = i, a2i+1 = n − i); zoom out order (a2i = n/2 + i, a2i+1 = n/2− i). In

the second type, we fixed the order to be the random shuffle and checked the following

distributions: uniform, Gaussian, mixture of Gaussians. Different variances and number

of components were tested with the last two.

To evaluate the performance of KLL and all proposed modifications on the real data

we used two datasets and to represent the advantage of the comparison based model both

of them contain non-number updates: one contain strings and another one IP addresses:

(1) Anonymized Internet Traces 2015 (CAIDA).[138] The dataset contains anonymized

passive traffic traces from the internet data collection monitor which belongs to CAIDA

(Center for Applied Internet Data Analysis) and located at an Equinix data center in

Chicago, IL. While the dataset has a variety of additional information provided with each

packet, for simplicity we will consider only two fields, specifically IP of the source and

IP of the destination, as one update for the algorithm. The comparison model is lexico-

graphic. We evaluate the performance on the pieces of the dataset of different sizes: from

107 to 109. Note that evaluation of the CDF of underlying distribution for traffic flow lets

optimize packet managing, thus CAIDA’s datasets used widely for verifying different

sketching techniques to maintain different statistics over the flow, and finding quantiles

and heavy hitters specifically.

(2) Page view statistics for Wikimedia projects (Wiki) [119] The dataset contains

counts for the number of requests for each page of the Wikipedia project during 8 months

135



Chapter 4. Streaming quantiles algorithms with small space and update time

of 2016. Data is aggregated by day, i.e. within each day data is sorted and each item is

assigned with a count of requests during that day. Every update in this dataset is the title

of a Wikipedia page. We will consider several modifications of the original dataset:

1. updates in the original order, while ignoring the weights,

2. updates are shuffled within each day, while ignoring the weights,

3. updates are shuffled within each day, while the weight indicates the number of

appearances

Similarly to CAIDA dataset we will consider Wiki datasets of size from 107 to 109. In our

experiments, one update is a string which contains the name of the page in Wikipedia,

comparison model is lexicographic.

Implementation and evaluation detail All the algorithms and experimental settings are

implemented in Python 3.6.3 and are publicly available via GitHub . The advantage of

using scripting language is fast prototyping, and in our case it is a chance to quickly test

all the new tweaks to the algorithm, and distribute concise and readable code inside the

community thus encouraging others to try their own modifications. Time performance

of the algorithm is not the subject of the research in the current chapter, and should be

investigated separately, specifically sweep compactor KLL and algorithms for weighted

quantiles, which theoretically improve the worst-case update time exponentially in 1/ε.

All algorithms in the current comparison are randomized, thus for each experiment the

results presented are averaged over 50 independent runs. KLL and all suggested modifi-

cations are compared with each other and LWYC (algorithm Random from [77]). In [143]

the authors carried the experimental study algorithms from [104, 105, 2, 64] and con-

cluded that their own algorithm LWYC with the space complexity of O(1/ε log3/2 1/ε) is

136



Chapter 4. Streaming quantiles algorithms with small space and update time

(A) (B) (C)

(D) (E) (F)

FIGURE 4.8: Figures 4.8a, 4.8b, 4.8c, 4.8e, 4.8f depict the trade-off between
maximum error over all queried quantiles and space allocated to the sketch:
figures 4.8a, 4.8c, 4.8b shows the results on the randomly ordered streams but
in different axes, figure 4.8e shows the results for the sorted stream, stream or-
dered according to zoom-in pattern, and stream with Gaussian distribution,
4.8f shows the approximation ratio for CAIDA dataset. Figure 4.8d shows

the trade-off between error and the length of the stream.

preferable to the others: better in accuracy than [64] and similar in accuracy compared

with [105] while LWYC has a simpler logic, i.e. easier to implement. As mentioned ear-

lier we compared our algorithms under a fixed space restrictions. In other words, in

all experiments we fixed the space allocated to the sketch and evaluate the algorithm

based on the best accuracy it can achieve under that space limit. We measured the ac-

curacy as the maximum deviation among all quantile queries, otherwise known as the

Kolmogorov-Smirnov divergence, widely used to measure the distance between CDFs of

two distributions. Additionally, we measure the introduced variance caused separately

137



Chapter 4. Streaming quantiles algorithms with small space and update time

by the compaction steps and sampling. Its value can help the user to evaluate the accu-

racy of the output. Note that for KLL this value depends on the size of the stream, and is

independent of the arrival order of the items. In other words, the guarantees of KLL are

the same for all types of streams, adversarial and structured. Some of our improvements

change this property; recall that the sweep compactor KLL, when applied to sorted input,

requires only a single sweep, i.e. compaction, per layer. For this reason, in our experi-

ments we found variance to be dependent not only on the internal randomness of the

algorithm but also the arrival order of the stream items.

Results On the Figure 4.8a you can see the actual error for LWYC, KLL and its modifica-

tions. Note that majority modifications presented in the current chapter can be combined

for better performance, due to the space limits we present only the following: KLL-l,

KLL-lr, KLL-lre, KLL-lrs and KLL-les. For compactness, from here we use the follow-

ing encoding: ”l” for lazy, ”r” for reduced randomness, ”e” for spread error, and ”s” for

sweep compactor. Solid lines on the Figure 4.8a depicts actual error vs. space allocated

to the sketch, dashed line depicts the improvement of KLL-lrs over the LWYC and dot-

ted line — over the KLL. Improvement is measured as error(LWYC)/error(KLL-lrs) and

error(KLL)/error(KLL-lrs) correspondingly.

First, we can see that all KLL-based algorithms provide the approximation ratio signif-

icantly better than LWYC as the space allocation is growing, which confirms theoretical

guarantees, i.e. dependency of the space complexity on ε in both algorithms. In more

details it is presented on the Figure 4.8b where the same results are plotted in axis (error

× space vs. log1/2 1/error). Although the axis are not very useful for practical tuning

and optimizing, they depict that theoretical upper bounds are quite tight: all KLL-based

algorithms can be approximated with linear functions, while LWYC clearly shows the

138



Chapter 4. Streaming quantiles algorithms with small space and update time

polynomial growth. Figure 4.8b also makes it obvious that vanilla KLL has different

constant compared to its modifications. Going back to the Figure 4.8a we can see that

improvement of modified KLL over the vanilla version is approaching the factor of two,

which agrees with the theoretical argument, that the variance of the total error introduced

in KLL-lre is four times smaller than for KLL. Note that smaller allocated space induce

higher portion of the final error that comes from sampling, thus larger sketch size would

demonstrate larger improvement factor. Figure 4.8a shows that KLL-lre has up-to 7 times

better performance than LWYC and the factor is growing with the space allocated to the

sketch.

Similar experiments were carried on all synthetic and real datasets, on the Figure 4.8e

we plotted results for sorted order, zoom-in order, and randomly shuffled items from

Gaussian distribution. Note that most compactor-based algorithms show its best perfor-

mance on the sorted order datasets. Figure 4.8e shows that on the sorted stream vanilla

KLL performs worse compared to LWYC. However, the sweep-compactor modification

helps to beat LWYC results even on the sorted data, i.e. sweep compactor based KLL-lrs

is better than LWYC on all tested orders. Same figure shows significant overhead of pro-

posed algorithms and modifications compared to LWYC on zoom-in ordered and Gaus-

sian streams. Similar positive results were achieved on the real datasets, on the Figure

4.8f you can see that error introduced by KLL-lrs is twice smaller compared to KLL and 8

times smaller compared to LWYC. Although, theoretically none of the algorithms should

depend on the length of the dataset, we verified this property in practice, the results can

be seen on the Figure 4.8d.

139



Chapter 4. Streaming quantiles algorithms with small space and update time

4.5 Conclusion

We verified experimentally that the algorithm KLL proposed by Karnin et al. [85] has

predicted asymptotic improvement over LWYC[143], previously showing the best results

among the compactor based algorithms. We proposed three modifications to KLL with

provably better constants in the approximation bounds. Experiments verified that im-

provement in approximation which is almost twice better compared to KLL and more

than 8 times better compared to LWYC (and growing with the space allocated to the

sketch). Moreover, worst-case update time for presented sweep-compactor based KLL is

O(log 1/ε) which improves over the rest compactor based algorithms with O(1/ε). Two

algorithms proposed for the weighted streams improve over the naive extension from

O((max wi) log 1/ε) to O(log 1/ε), while working with the same space complexity.

140



Chapter 5

Finding haloes in cosmological N-body

simulations

5.1 Introduction

The main purpose of astrophysics as a field is to describe the universe and explain all

of its observed properties. Cosmology in particular works with distribution of matter in

the universe on the large scale. Specifics of the field made the intense computer simula-

tions to be the only way to mimic the controlled experiments and therefore verify certain

hypothesis on the evolution of matter distribution. In other words, simulations help to

understand how matter organizes itself into galaxies, clusters of galaxies and large-scale

structures (e.g. [133]). Therefore, a large amount of effort is spent on running simulations

modeling representative parts of the universe in ever greater detail. On the high level,

simulation operates with a set of particles and at each step iteratively computes first the

gravitational force field caused by their interaction and then corresponding change in

the position and velocity of each particle. The nature of the simulations made it compu-

tationally and memory intensive, pushing the requirements to the hardware beyond the

141



Chapter 5. Finding haloes in cosmological N-body simulations

capabilities of many researchers, just hosting a single snapshot for the state-of-the art sim-

ulations [7, 124] requires tens of Terabytes of memory. Moreover, even just storing such a

large snapshot is not only expensive but also challenging. The crucial step in the analy-

sis of the simulations is to locate mass concentration called ”haloes” [92], where galaxies

would be expected to form. This step is important to connect theory and observations

as galaxies are the most observable objects that trace the large-scale structure, but their

precise spatial distribution is only established through these simulations. Finding haloes

in the output of the simulations allows astronomers to compute important statistics, e.g.,

mass functions [87].

Although from an astronomical perspective the concept of a “halo” is fairly well un-

derstood, the mathematical definition of halos in a simulation varies among simulation

and analysis methods. For instance, [122] defines it as mass blobs around the density

peaks above some thresholds; [47] defines it as the connected components of the dis-

tances graph on the particles. A definition that does not use the density, instead uses

particle crossings [54]. Many algorithms have been developed to find haloes in simu-

lations. The algorithms vary widely, even conceptually. The lack of agreement upon a

single definition of a halo makes it difficult to uniquely compare the results of different

halo-finding algorithms. Nevertheless, [91] evaluated 17 different algorithms and com-

pared them using various criteria, and found broad agreement between them, but with

many differences in detail for ambiguous cases. Friends-of-Friends algorithm (FoF) [47] is

often considered to be a standard approach, as it was among the first used, and is simple

conceptually. The drawbacks of FoF include that the simple density estimate can artifi-

cially link physically separate haloes together, and the arbitrariness of the linking length.

A halo-finding comparison project [91] evaluated the results of 17 different halo-finding

algorithms; further analysis appeared in [92].

142



Chapter 5. Finding haloes in cosmological N-body simulations

Although there are a large number of algorithms and implementations [93, 61, 122,

90, 134, 144, 114, 47], all of them are generally computationally intensive, often requir-

ing all particle positions and velocities to be loaded in memory simultaneously. In fact,

most are executed during the execution of the simulation itself, requiring comparable

computational resources. However, in order to understand the systematic errors in such

algorithms, it is often necessary to run multiple halo-finders, often well after the original

simulation has been run. Also, many of the newest simulations have several hundred

billion to over a trillion particles [7, 124], with a very large memory footprint, making

post-processing analysis unfeasible unless using supercomputers of the same size that

created the simulations in the first place. In the current chapter we investigate a way to

apply streaming algorithms as halo finders, and compare the results to those of other algo-

rithms participating in the Halo-Finding Comparison Project. Given that state-of-the-art

cosmological simulations operate with over a trillion particles, compared to offline algo-

rithms that require the input to be entirely in memory, streaming model provide a way

to process the data by making just one or a small number of passes over it, using only

megabytes of memory instead of terabytes.

Section 5.2 is based on work done in collaboration with Liu Z., Yang L., Neyrinck M.,

Lemson G., Szalay A., Braverman V., Budavari T., Burns R., and Wang X. [102]. In that

work we investigate a novel connection between the problem of finding the most massive

halos in cosmological N-Body simulations and the problem of finding heavy hitters in

data streams. We have built a halo finder based on the implementation of the Count-

Sketch algorithm [39] and Pick-and-Drop sampling [26]. The halo finder successfully

locates most (> 90%) of the top k ≈ 1000 largest haloes in a dark matter simulation and

can be run on the machines with relatively modest computing resources.

However, in [102], all experiments were running on relatively small data streams with

143



Chapter 5. Finding haloes in cosmological N-body simulations

at most 109 items. One of the reasons for that was the rather poor time performance of the

underlying algorithms, which would cause every experiment to take more than week to

run. In section 5.3, which is based on [81], work done in collaboration with Liu Z., Yang

L., Kumar S., Neyrinck M., Lemson G., Szalay A., Braverman V., Budavari T., we improve

the implementation and push the number of halos’ centers to be found to ∼ 104 − 105.

Our tool needs less than 5 minutes to find the top 3 · 105 heavy cells on a dataset with

1010 particles. Compared to previous results [102], which required more than 8 hours, it’s

more than a 100× improvement. This dataset consists of a snapshot of the Millennium

dataset [133] and we use a grid of 1011 cells in our algorithm for approximation of the

density field, which can be used further for astrophysical analysis. We port the entire

Count-Sketch infrastructure into the GPU and thus make the tool significantly outperform

the previous approach. In our analysis, we carefully investigate the trade-off between

memory and the quality of the result.

In [102] authors reduced the halo-finding problem to the problem of finding the top-k

densest cells in a regular mesh. This reduction shows that these densest cells are closely

related to space with the heaviest halos. In [81] we consider another possible application,

that of determining statistics on ”excursion sets”. Kaiser [83] investigated the cluster-

ing properties of the regions with a density higher than the average in Gaussian random

fields. He showed that such regions cluster more strongly than those with lower over-

densities and the strength of this effect increases with the density threshold. He used this

as an explanation of the observed stronger clustering of galaxy clusters compared to the

clustering of the galaxy distribution itself. Bardeen et al. [13], refined this argument, fo-

cusing on the peaks of the density fields—the locations where galaxies and clusters are

expected to form. This biased clustering phenomenon can be examined in an evolved

144



Chapter 5. Finding haloes in cosmological N-body simulations

density field by filtering regions in the dark matter distribution field, based on their den-

sity. This is equivalent to examining the ”heavy hitters” in the counts-in-cells. We expect

the randomized algorithms to not be exact, and it is interesting to investigate how this

affects the clustering measure.

5.2 Streaming Algorithms for Halo Finders

This section is based on [102].

5.2.1 Methodology

Streaming and heavy hitters. As it was defined in Chapter 3.2, a data stream D =

D(n, m) is an ordered sequence of objects p1, p2, . . . , pn, where pj = 1 . . . m. The elements

of the stream can represent any digital object: integers, real numbers of fixed precision,

edges of a large graph, messages, images, web pages, etc. In the practical applications,

both n and m may be very large, and we are interested in the algorithms with o(n + m)

space. A streaming algorithm is an algorithm that can make a single pass over the input

stream. The above constraints imply that a streaming algorithm is often a randomized

algorithm that provides approximate answers with high probability. In practice, these

approximate answers often suffice.

We investigate the results of cosmological simulations where the number of particles

will soon reach 1012. Compared to offline algorithms that require the input to be entirely

in memory, streaming algorithms provide a way to process the data using only megabytes

memory instead of gigabytes or terabytes in practice.

145



Chapter 5. Finding haloes in cosmological N-body simulations

Further we investigate the connection between problems of finding haloes and heavy

hitters, thus for the sake of completeness, we review the heavy hitter problem and heavy

hitter algorithms first introduced in 3.2.

For each element i, its frequency fi is the number of its occurrences in D. The kth

frequency moment of a data stream D is defined as Fk(D) = ∑m
i=1 f k

i . We say that an

element is “heavy” if it appears more times than a constant fraction of some Lp norm of

the stream, where Lp = (∑i f p
i )

1/p for p > 1. In this section, we consider the following

heavy hitter problem.

Problem 1. Given a stream D of n elements, the ε-approximate (φ, Lp)-heavy hitter problem is

to find a set of elements T:

• ∀i ∈ [m], fi > φLp =⇒ i ∈ T.

• ∀i ∈ [m], fi < (φ− ε)Lp =⇒ i 6∈ T.

We allow the heavy hitter algorithms to use randomness; the requirement is that the

correct answer should be returned with high probability. The heavy hitter problem is

equivalent to the problem of approximately finding the k most frequent elements. Indeed,

the top k most frequent elements are in the set of (φ, L1)-heavy hitters in the stream,

where φ = Θ(1/k). There is a Ω(1/ε2) trade-off between the approximation error ε and

the memory usage. Heavy hitter algorithms are building blocks of many data stream

algorithms ([30, 80]).

We treat the cosmological simulation data from [91] as a data stream. To do so, we

apply an online transformation that we describe in the next section.

Data Transformation. In a cosmological simulation, dark matter particles form struc-

tures through gravitational clustering in a large box with periodic boundary conditions

146



Chapter 5. Finding haloes in cosmological N-body simulations

representing a patch of the simulated universe. The box we use [91] is of size 500 Mpc/h,

or about 2 billion light-years. The simulation data consists of positions and velocities of

2563, 5123 or 10243 particles, each representing a huge number of physical dark-matter

particles. They are distributed rather uniformly on large scales (& 50 Mpc/h) in the sim-

ulation box, clumping together on smaller scales. A halo is a clump of particles that are

gravitationally bound.

To apply the streaming algorithms, we transform the data. We discretize the spatial

coordinates so that we will have a finite number of types in our transformed data stream.

We partition the simulation box into a grid of cubic cells, and bin the particles into them.

The cell size is chosen to be 1 Mpc/h as to match a typical size of a large halo; there are

thus 5003 cells. This parameter can be modified in practical applications, but it relates to

the space and time efficiency of the algorithm. We summarize the data transformation

steps as follows.

• Partition the simulation box into grids of cubic cells. Assign each cell a unique

integer ID.

• After reading a particle, determine its cell. Insert that cell ID into the data stream.

Using the above transformation, streaming algorithms can process the particles in the

same way as an integer data stream.

Heavy Hitters and Dense Cells. For a heavy-hitter algorithm to save memory and

time, the distribution of cell counts must be very non-uniform. The simulations begin

with an almost uniform lattice of particles, but after gravity clusters them together, the

density distribution in cells can be modeled by a lognormal PDF ([41], [89]):

147



Chapter 5. Finding haloes in cosmological N-body simulations

P(1)
LN(δ) =

1
(2πσ2

1 )
1/2

exp

{
−
[ln(1 + δ) + σ2

1 /2]2

2σ2
1

}
1

1 + δ
, (5.1)

where δ = ρ/ρ̄− 1 is the overdensity, σ2
1 (R) = ln[1 + σ2

nl(R)], and σ2
nl(R) is the variance

of the nonlinear density field in spheres of radius R. Our cells are cubic, not spherical; for

theoretical estimates, we use a spherical top-hat of the same volume as a cell.

Let N be the number of cells, and Pc be the distribution of the number of particles per

cell. The Lp heaviness φp can be estimated as

φp ≈
P200

(N〈Pc
p〉)1/p , (5.2)

where P200 is the number of particles in a cell with density exactly 200ρ̄. This density

threshold is a typical minimum density of a halo, coming from the spherical-collapse

model. We theoretically estimated σnl for the cells in our density field by integrating the

nonlinear power spectrum (using the fit of [132], and the cosmological parameters of the

simulation) with a spherical tophat window. The grid size in our algorithm is roughly 1.0

Mpc (5003 cells in total), giving σnl(Cell) ≈ 10.75. We estimated φ1 ≈ 10−6 and φ2 ≈ 10−3,

matching order-of-magnitude with the measurement of the actual density variance from

the simulation cells. These heaviness values are low enough to presume that a heavy-

hitter algorithm will efficiently find cells corresponding to haloes.

Streaming Algorithms for Heavy Hitter Problem. The above relation between the halo-

finding problem and the heavy hitter problem encourages us to apply efficient streaming

algorithms to build a new halo finder. Our halo finder takes a stream of particles, per-

forms the data transformation described above and then applies a heavy hitter algorithm

148



Chapter 5. Finding haloes in cosmological N-body simulations

to output the approximate top k heavy hitters in the transformed stream. These heavy

hitters correspond to the densest cells in the simulation data as described earlier. In our

first version of the halo finder, we use Count-Sketch algorithm [39] and Pick-and-Drop

Sampling [26].

The Count-Sketch Algorithm. For a more generalized description of the algorithm,

please refer to [39]. For completeness, we summarize the algorithm as follows. The

Count-Sketch algorithm uses a compact data structure to maintain the approximate counts

of the top k most frequent elements in a stream. This data structure is an r× t matrix M

representing estimated counts for all elements. These counts are calculated by two sets of

hash functions: let h1, h2, . . . , hr be r hash functions, mapping the input items to {1, . . . , t},

where each hi is sampled uniformly from the hash function set H. Let s1, s2, . . . , sr be hash

functions, mapping the input items to {+1,−1}, uniformly sampled from another hash

function set S. We can interpret this matrix as an array of r hash tables, each containing t

buckets.

There are two operations on the Count-Sketch data structure. Denote Mi,j as the jth

bucket in the ith hash table:

• Add(M, p): For i ∈ [1, r], Mi,hi[p]+ = si[p].

• Estimate(M, p), return mediani{hi[p] · si[p]}

The Add operation updates the approximate frequency for each incoming element and

the Estimate operation outputs the current approximate frequency. To maintain and store

the estimated k most frequent elements, CountSketch also needs a priority queue data

structure. The pseudocode of Count-Sketch algorithm is presented in Figure 5.1. More

details and theoretical guarantees are presented in [39].

149



Chapter 5. Finding haloes in cosmological N-body simulations
1: procedure COUNTSKETCH(r, t, k, D) . D is a stream
2: Initialize an empty r× t matrix M.
3: Initialize an min-priority queue Q of size k
4: (particle with smallest count is on the top).
5: for i = 1, . . . , n and pi ∈ D do
6: Add(M, pi);
7: if pi ∈ Q then
8: Pi.count++;
9: else if Estimate(M, pi) > Q.top().count then

10: Q.pop();
11: Q.push(pi);
12: end if
13: end for
14: return Q
15: end procedure

FIGURE 5.1: Count-Sketch Algorithm

The Pick-and-Drop Sampling Algorithm. Pick-and-Drop Sampling is a sampling-based

streaming algorithm to approximate the heavy hitters. To describe the idea of Pick-and-

Drop sampling, we view the data stream as a sequence of r blocks of size t. Define di,j

as the jth element in the ith block and di,j = pk(i−1)+j in stream D. In each block of the

stream, Pick-and-Drop sampling will pick one random sample and record its remaining

frequency in the block. The algorithm maintains a sample with the largest current counter

and drops previous samples. The pseudocode of Pick-and-Drop sampling [26] is given in

Figure 5.2 and we need the following definitions in Figure 5.2. For i ∈ [r], j, s ∈ [t], q ∈ [m]

define:

fi,q = |{j ∈ [t] : di,j = q}|, (5.3)

ai,s = |{j∗ : s ≤ j∗ ≤ t, di,j∗ = di,s}|. (5.4)

The detail implementation is in Section 5.2.2.

150



Chapter 5. Finding haloes in cosmological N-body simulations
1: procedure PICKDROP(r, t, λ, D)
2: Sample S1 uniformly at random on [t].
3: L1 ← d1,S1 ,
4: C1 ← a1,S1 ,
5: u1 ← 1.
6: for i = 2, . . . , r do
7: Sample Si uniformly at random on [t].
8: li ← di,Si , ci ← ai,Si
9: if Ci−1 < max(ci, λui−1) then

10: Li ← li,
11: Ci ← ci,
12: ui ← 1
13: else
14: Li ← Li−1,
15: Ci ← Ci−1 + fi,Li−1 ,
16: ui ← qi−1 + 1
17: end if
18: end for
19: return {Lr, Cr}
20: end procedure

FIGURE 5.2: Pick-and-Drop Algorithm

5.2.2 Implementation

Simulation Data. The N-body simulation data we use as the input to our halo finder

was used in the halo-finding comparison project [91] and consists of various resolutions

(numbers of particles) of the MareNostrum Universe cosmological simulation [63]. These

simulations ran in a 500 h−1Mpc box, assuming a standard ΛCDM (cold dark matter and

cosmological constant) cosmological model.

In the first implementation of our halo finder, we consider two halo properties: center

position and mass (the number of particles in it). We compare to the the fiducial offline

algorithm FoF. The distributions of halo sizes from different halo finders are presented in

Fig. 5.3.

Since our halo finder builds upon on the streaming algorithms of finding frequent

151



Chapter 5. Finding haloes in cosmological N-body simulations

100 101 102 103 104
log(Np )

100
101
102
103
104
105
106

lo
g(
N
h
)

FOF
AHF
ASOHF
BDM
VOBOZ

FIGURE 5.3: Halo mass distribution of various halo finders.

items, the algorithms need to transform the data as described in section 5.2.1 — dividing

all the particles into different small cells and label each particle with its associated cell ID.

For example, if an input dataset contains three particles p1, p2, p3 and they are all included

in a cell of ID = 1, then the transformed data stream becomes 1, 1, 1. The most frequent

element in the stream is obviously 1 and thus the cell 1 is the heaviest cell overall.

Implementation Details. Our halo finder implementation is written using C++ with

GNU GCC compiler 4.9.2. We implemented Count-Sketch and Pick-and-Drop sampling

as two algorithms to find heavy hitters.

Count-Sketch-based Halo Finder. There are three basic steps in the Count-Sketch

algorithm, which returns the heavy cells and the number of particles associated with

them. (1) Allocate memory for the CountSketch data structure to hold current estimates

152



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.4: Count-Sketch Algorithm

of cell frequencies; (2) use a priority queue to record the top k most frequent elements; (3)

return the positions of the top k heavy cells.

The Count-Sketch data structure is an r × t matrix. Following [42], we set r = log(n
ε )

and t to be sufficiently large (>1 million) to achieve an expected approximation error

ε = 0.05. We build the matrix as a 2D array with r × t 0’s. For each incoming element

in the stream, an Add operation has to be executed and an estimate operation needs to be

executed only when this element is not in the queue.

Pick-and-Drop-based Halo Finder. In the Pick-and-Drop sampling based halo finder,

we implement a general hash function H: N+ → {1, 2, . . . , ck}, where c ≥ 1, to gain

the probability of success to approximate the top k heaviest cells. We apply the hash

function H on every incoming element and put the elements with the same hash value

together such that the original stream is divided into ck smaller sub-streams. Meanwhile,

we initialize ck instances of Pick-and-Drop sampling so that each PD instance will process

153



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.5: Pick-and-Drop Sampling

one sub-stream. The whole process of approximating the heavy hitters is presented in

Figure 5.5. In this way, the repeated items in the whole stream will be distributed into

the same sub-stream and they are much heavier in this sub-stream. With high probability,

each instance of Pick-and-Drop sampling will output the heaviest one in each of the sub-

streams, and in total we will have ck output items. Because of the randomness in the

sampling method, we will expect some of inaccurate heavy hitters among the total ck

outputs. By setting a large c, most of the actual top k most frequent elements should be

inside the ck outputs (raw data).

To get precise properties of haloes, such as the center, and mass, an offline algorithm

such as FoF [47] can be applied to the particles inside the returned heavy cells and their

neighbor cells. This needs an additional pass over the data but we only need to store a

small amount of particles to run those offline in-memory algorithms. The whole process

154



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.6: Halo Finder Procedure

of the halo finder is represented in Figure 5.6, where heavy hitter algorithms can be re-

garded as a black box. That is, any theoretically efficient heavy hitter algorithms could be

applied to further improve the memory usage and practical performance.

Shifting Method. In the first pass of our halo finder, we only use the position of a heavy

cell as the position of a halo. However, each heavy cell may contain several haloes and

some of the haloes located on the edges between two cells cannot be recognized because

the cell size in the data transformation step is fixed. To recover those missing haloes, we

utilize a simple shifting method:

• Initialize 2d instances of Count-Sketch or Pick-and-Drop in parallel, where d is the

dimension. Our simulation data reside in three dimensions, so d = 3.

155



Chapter 5. Finding haloes in cosmological N-body simulations

0.0% 5.0% 10.0% 15.0% 20.0%
(1−Q(

√
3/2)/k) ·100%

FOF

AHF

ASOHF

BDMC

VOBOZ

In
-m

em
or
y 
al
go

rit
hm

s

Pick and Drop
Count Sketch

FIGURE 5.7: Measures of the disagreement between PD and CS, and various
in-memory algorithms. The percentage shown is the fraction of haloes farther

than a half-cell diagonal (0.5
√

3 Mpc/h) from PD or CS halo positions.

• Move all the particles to one of the 2d directions with a distance of 0.5 Mpc/h (half

of the cell size). In each of the 2d shifting processes, assign a Count-Sketch/Pick-

and-Drop instance to run. By combining the results from 2d shifting processes, we

expect that the majority of the top k largest haloes are discovered. All the parallel

instances of the CountSketch/Pick-and-Drop are enabled by OpenMP 4.0 in C++.

5.2.3 Evaluation

To evaluate how well streaming based halo finders work, we mainly focus on testing it in

the following four aspects:

156



Chapter 5. Finding haloes in cosmological N-body simulations

10-1 100 101 102
log(d)

100

101

102

103

lo
g(
k
−Q

(d
))

CS
PD
AHF
ASOHF

BDMC
VOBOZ
Random

FIGURE 5.8: The number of top-1000 FoF haloes farther than a distance d
away from any top-1000 halo from the algorithm of each curve.

157



Chapter 5. Finding haloes in cosmological N-body simulations

• Correctness: Evaluate how close are the positions of top k largest haloes found by

the streaming-based algorithms to the top k largest haloes returned by some widely

used in-memory algorithms. Evaluate the trade-off between selection k and quality

of result.

• Stability: Since streaming algorithms always require some randomness and may

produce some incorrect results, we want to see how stable are streaming based

heavy hitter algorithms are.

• Memory Usage: Linear memory space requirement is a "bottleneck" for all offline

algorithms, and it is the central problem that we are trying to overcome by applying

streaming approach. Thus it is significantly important to theoretically or experimen-

tally estimate the memory usage of Pick-and-Drop and Count-Sketch algorithms.

In the evaluation, all the in-memory algorithms we choose to compare were proposed

in the Halo-Finding Comparison Project [91]. We test against the fiducial FOF method, as

well as four others that find density peak:

1. FOF by Davis et al.[47]

“Plain-vanilla” Friends-of-Friends.

2. AHF by Knollmann & Knebe [93]

Density peaks search with recursively refined grid

3. ASOHF by Planelles & Quilis. [122]

Finds spherical-overdensity peaks using adaptive density refinement.

4. BDM [90], run by Klypin & Ceverino “Bound Density Maxima” – finds gravitationally-

bound spherical-overdensity peaks.

158



Chapter 5. Finding haloes in cosmological N-body simulations

5. VOBOZ by Neyrinck et al [114]

“Voronoi BOund Zones” – finds gravitationally bound peaks using a Voronoi tes-

sellation.

Correctness. As there is no agreed-upon rule how to define the center and the boundary

of a halo, it is impossible to theoretically define and deterministically verify the correct-

ness of any halo finder. Therefore a comparison to the results of previous widely accepted

halo finders seems to be the best practical verification of a new halo finder algorithm.

To compare the outputs of two different halo finders we need to introduce some formal

measure of similarity. The most straightforward way to compare them is to consider one

of them H as a ground truth, and another one E as an estimator. Among this the FOF

algorithm is considered to be the oldest and the most widely used, thus in our initial

evaluation we decided to concentrate on the comparison with FOF. Then the most natu-

ral measure of similarity is number of elements in H that match to elements in output of

E. More formally we will define “matches” as: for a given θ we will say that center ei ∈ E

matches the element hi ∈ E if dist(ei, hi) ≤ θ, where dist(·, ·) is Euclidean distance. Then

our measure of similarity is:

Q(θ) = Q(Ek, Hk, θ) = |{hi ∈ Hk : min
ej∈Ek

dist(hi, ej) < θ}|,

where k represents the top k heaviest halos.

We compare the output of both streaming-based halo finders to the output of in-

memory halo finders. We made comparisons for the 2563, 5123 and 10243-particle sim-

ulations, finding the top 1000 and top 10000 heaviest hitters. Since the comparison results

in all cases were similar, the figures presented below are for the smallest dataset, and

k = 1000.

159



Chapter 5. Finding haloes in cosmological N-body simulations

On the Figure 5.7 we show for each in-memory algorithm the percentage of centers

that were not found by streaming-based halo finder. We can see that both the Count-

sketch and Pick-and-drop algorithms missed no much more than 10 percent of the haloes

in any of the results from the in-memory algorithms.

To understand if 10 percent means that two halo catalogs are close to each other or not,

we will choose one of the in-memory algorithms as a ground truth and compare how close

are the other in-memory algorithms. Again, we choose FOF algorithm as a ground truth.

The comparison is depicted in Fig. 5.8. From this graph you can see that outputs of Count-

sketch and Pick-and-drop based halo finders are closer to the FOF haloes, then other in-

memory algorithms. It can be easily explained, as after finding heavy cells we apply the

same FOF to the heavy cells and their neighborhoods, thus output should always have

similar structure to the output of in-memory FOF on the full dataset. Also from this graph

you can see that each line can be represented as a mix of two component, one of which is

the component of random distribution. Basically it means that after distance of
√

3/2 all

matches are the same if we just put bunch of points at random.

The classifier is using a top-k to select the halo candidates. Figure 5.9 shows how

sensitive the results are to the selection threshold of k = 1000. It shows several curves,

including the total number of heavy hitters, the ones close to an FoF group – we can call

these true positive (TP) – and the ones detected, but not near an FoF object (false positives

FP). From the figure, it is clear that the threshold of 1000 is close to the optimal detection

threshold, preserving TP and minimizing FP. This corresponds to a true positive detection

rate (TPR) of 96% and a false positive detection rate of 3.6%. If we lowered our threshold

to k = 900, our TPR drops to 91% but the FPR becomes even lower, 0.88%.

These tradeoffs can be shown on a so-called ROC-curve (receiver operating character-

istic), where the TPR is plotted against the FPR. This shows how lowering the detection

160



Chapter 5. Finding haloes in cosmological N-body simulations

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

N
p

k
d

e
t

FIGURE 5.9: Number of detected halos by our two algorithms. The solid
lines correspond to (CS) and the dashed lines to (PD). The dotted line at k =
1000 shows our selection criteria. The x axis is the threshold in the number
of particles allocated to the heavy hitter. The cyan color denotes the total
number of detections, the blue curves are the true positives (TP), and the red

curves are the false positives (FP).

threshold increases the true detections, but the false detection rate increases much faster.

Using the ROC curve, shown below we can see the position of the k = 1000 threshold as

a circle and the k = 900 as a square.

Finally, we should also ask, besides the set comparison, how do the individual particle

cardinalities counted around the heavy hitters correspond to the FoF ones. Our particle

counting is restricted to neighbouring cells, while the FoF is not, so we will always be

undercounting. To be less sensitive to such biases, we compare the rank ordering of the

two particle counts in the two samples. The rank 1 is assigned to the most massive objects

in each set.

161



Chapter 5. Finding haloes in cosmological N-body simulations

−6 −5 −4 −3 −2 −1 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

log(false positive rate)

lo
g

(t
ru

e
 p

o
s
it
iv

e
 r

a
te

)

log ROC curve

 

 

CS

DP

FIGURE 5.10: This ROC curve shows the tradeoff between true and false de-
tections as a function of threshold. The figure plots TPR vs FPR on a log-log
scale. The two thresholds are shown with symbols, the circle denotes 1000,

and the square is 900.

Stability. As most of the streaming algorithms utilize randomness, we estimate how

stable our results are compared to the results from a deterministic search. In the deter-

ministic search algorithm, we find the actual heavy cells by counting the number of parti-

cles inside each cell; we perform the comparison for the smallest dataset containing 2563

particles. To perform this evaluation we run 50 instances of each algorithm (denoting the

outputs as {Ci
cs}50

i=1 and {Ci
pd}

50
i=1). We also count the number of cells of each result that

match the densest cells returned by the deterministic search algorithm Cds. The normal-

ized number of matches will be ρi
pd =

|Ci
pd∩Cds|
|Cds|

and ρi
cs = |Ci

cs∩Cds|
|Cds|

correspondingly. Our

experiment showed:

µ(ρi
cs) = 0.946, σ(ρi

cs) = 2.7 · 10−7

162



Chapter 5. Finding haloes in cosmological N-body simulations

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

CS

PD

rank(HH)

ra
n

k
(F

o
F

)
CS

PD

CS

PD

FIGURE 5.11: The top 1000 heavy hitters are rank-ordered by the number of
their particles. We also computed a rank of the corresponding FoF halo. The
linked pairs of ranks are plotted. One can see that if we adopted a cut at

k = 900, it would eliminate a lot of the false positives.

µ(ρi
pd) = 0.995, σ(ρi

pd) = 6 · 10−7

That means that the approximation error caused by randomness is very small compared

with error caused by transition from overdense cells to haloes centers. This fact can also

be easily caught from the Fig. 5.12. On that figure, you can see that shaded area below

and above red and green lines, which represents the range of outputs among 50 instances,

is very thin. Thus the output is very stable.

Memory Usage Low memory usage is one of the most significant advantages of stream-

ing approaches comparing with current halo finding solutions. To the best of our knowl-

edge even for the problem of locating top 1000 largest haloes in the simulation data with

163



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.12: Each line on the graph represents the top 1000 halo centers
found with Pick-and-Drop sampling, Count-Sketch, and in-memory algo-
rithms, as described in section 5.2.2. The comparison with FOF is shown
in Fig.5.8. The shaded area (too small to be visible) shows the variation due

to randomness.

10243 particles, there is no way to run other halo finder algorithms on a regular PC since

10243 particles already needs ≈ 12GB memory to only store all the particle coordinates; a

computing cluster or even supercomputer is necessary. So, the application of streaming

techniques introduces a new direction on the development of halo-finding algorithms.

To find top k heavy cells Count-sketch theoretically requires following amount of

space:

O(k log
n
δ
+

∑m
q′=k+1 f 2

q′

(ε fk)2 log
n
δ
),

where 1 − δ is probability of success, and ε is an Qk estimation error, where Qk is the

frequency of k-th heaviest cell. It is worth mentioning that in application to the heavy

164



Chapter 5. Finding haloes in cosmological N-body simulations

cells search problem the second term is the dominating one. The first factor in the second

term represents the linear dependency of memory usage on the heaviness of the top k

cells. Thus we can expect linear memory usage for small data-set. But as a dataset grows

dependence becomes logarithmic if we assume the same level of heaviness. Experiments

verify this observation, as for small data set with 2563 particles algorithm used around 900

megabytes, while for the large dataset with 10243 particles, the amount of space increased

up to almost 1000 megabytes, which is insignificant compared with dataset size increase.

Thus if we can assume almost constant heaviness of the top k cells, then memory grows

logarithmically with dataset size, that is why such an approach is scalable for even larger

datasets.

Experimentally for this particular dataset Pick-and-drop algorithm showed much bet-

ter performance in terms of memory usage than Count-sketch. The actual usage of mem-

ory was around 20 megabytes for a small dataset with 2563 particles and around 30

megabytes for the large dataset with 10243 particles.

5.3 Scalable Streaming Tools for Analyzing N-body Simu-

lations

This section is based on [81].

5.3.1 Methodology

In this section, we introduce our methods for efficiently analyzing cosmological datasets.

First, we recap the concept of streaming and explain how the problem of estimating den-

sity statistics can be approached from the perspective of finding frequent items in the

165



Chapter 5. Finding haloes in cosmological N-body simulations

stream. Then we go over several crucial details of the heavy hitter algorithm named

Count Sketch [39].

In this section, we work on two cosmological N-body simulations with 1010 and 3×

1011 particles, respectively, resulting in several terabytes of data. In this setting, typical

approaches for finding halos that require loading data into memory become inapplicable

on common computing devices (e.g. laptop, desktop, or small workstations) for post-

processing and analysis. In contrast, a streaming approach makes the analysis of such

datasets feasible even on a desktop by lowering the memory footprint from several ter-

abytes to less than a gigabyte.

Much of the analysis of cosmological N-body simulations focuses on regions with a

high concentration of particles as it was shown in Section 5.2. By putting a regular mesh

on the simulation box, we can replace each particle with the ID of the cell it belongs

to [102]. Then using streaming algorithms we can find the k most frequent cells, i.e. cells

with the largest number of particles (see Figure 5.13). Such statistics are very useful for

analyzing a spatial distribution of particles on each iteration of the simulation, as shown

in 5.2 and as we will show in the current section. One might think that this approach is

too naive and just keeping a counter for each cell would provide the exact solution with

probability 1, which is much better than any streaming algorithm can offer. However,

under the assumption that particles are not sorted in any way, the naïve solution would

increase memory usage to terabytes even for the mesh with only 1012 cells in it.

Finding frequent elements is one of the most studied problems in streaming settings,

moreover, it is often used as a subroutine in many other algorithms [99, 60, 80, 36, 110].

For the sake of completeness we repeat the problem definition in current section with ad-

ditional details. The frequency (or count) of the element i is the number of its occurrences

in the stream S: fi = |{j|sj = i}|. We will call element i as (α, `p)-heavy if fi > α`p where

166



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.13: Finding approximate dense areas with the help of a regular
mesh and a streaming solution for finding the top k most frequent items in

the stream.

�p =
(

∑j f p
j

)1/p
. An approximate scheme for the problem is the following:

Problem 1 (Heavy Hitter). Given a stream S of m elements the ε-approximate (α, �p)-heavy

hitter problem is to find a set of elements T, such that:

• ∀i ∈ [n], fi > α�p → i ∈ T

• ∀i ∈ [n], fi < (α − ε)�p → i /∈ T

Note that ε in the definition above serves as slack for the algorithm to output some

items which are not (α, ε)-heavy hitters, but are ”ε close” to them. Typically smaller input

ε would cause the algorithm to use more memory. Finding the k most frequent items in

the stream is the same as finding all (αk, �1)-heavy hitters, where αk is the heaviness of the

k-th most frequent item. Note that being �2-heavy is a weaker requirement than being �1-

heavy: every �1-heavy item is �2-heavy, but the other way around it is not always the case.

For example, consider the stream where all n items of the dictionary appear only once.

To be found in such a stream, a �1-heavy hitter needs to appear more than εn times for

some constant ε, while an �2-heavy hitter needs to appear just ε
√

n. Catching an item that

appears in the stream significantly less often is more difficult, thus finding all �2-heavy

hitters is more challenging than all �1.

167



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.14: Count Sketch subroutine on an example stream: each non-
heavy item appears twice, heavy hitter (5) appears 7 times, a random +1/− 1
bit is assigned to each item, the algorithm maintains the sum of the random
bits, and the final sum is an unbiased estimator of the heavy hitter frequency

having the same sign as its random bit
.

The problem of finding heavy-hitters is well studied and there are memory optimal

algorithms for �1 [109, 110] and �2[36] heavy hitters, of which we are most interested in

the latter. Here we will describe a Count Sketch algorithm [36] which finds (2ε, �2)-heavy

hitters O(1/ε2 log2(mn)) bits of memory.

Count-Sketch Algorithms. Consider a simplified stream with only one heavy item i′,

and every other item i appears in the stream only once. Let h : [n] ⇒ {−1,+1} be a hash

function which flips a +1/−1 coin for every item in the dictionary i ∈ [n]. If we will go

through the stream S = {s1, . . . , sm} and maintain a counter c = c + h(sj), then at the end

of the stream, with high probability, c will be equal to the contribution of i′: h(i′) fi′ plus

some small noise, while the majority of non-heavy contributors will be canceled by each

other. The absolute value of c can be considered as an approximation of the heavy item’s

frequency. At the same time, the sign of c coincides with the random bit assigned to heavy

168



Chapter 5. Finding haloes in cosmological N-body simulations

items; thus, it helps us to reveal the ID of the heavy hitter by eliminating from considera-

tion all items of the opposite sign. Simply repeating the experiment t = O(log n) times in

parallel will reveal the entire ID of the heavy item. However, if the number of repetitions

would be significantly smaller, we will face the problem of collisions, i.e. there will be

items with the same random bits as the heavy item in all experiments. Thus we end up

with many false positives due to the indistinguishability of those items from the heavy

hitter. An example stream is depicted in Figure 5.14. If our stream has k heavy hitters, all

we need to do is randomly distribute all items of the dictionary into b = O(k) different

substreams. Then with high probability none of the O(k) substreams will have more than

one heavy hitter in it, thus for each stream we can apply the same technique as before.

On figure 5.15 you can see the high-level intuition of both ideas described above:

1. Bucket hash to distribute items among b substreams (buckets)

2. Sign hash to assign random bit to every update

3. Row of b counters to maintain the sum of random bits

4. t instances to recover the IDs.

Thus for each item update we need to calculate t bucket hashes (specifying which

substream/bucket this item belongs to) and t sign hashes. We then update one counter

in each row of the Count Sketch table, which is t counters. In total the algorithm requires

t · b = O(log n) counters, which in turn requires O(log2 n) bits of memory. For simplicity,

here and later, we assume that log m = O(log n), i.e. in our application mesh size is at

most polynomially larger than the number of particles in the simulation).

All of the statements above can be proven formally [39]. Here we only show that using

such a counter c provides us with an unbiased estimator f̂i = c · h(i) for the frequency of

169



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.15: Count Sketch algorithm scheme: bucket hash to identify the
counter to which we should add the sign hash. Repeat t times to recover the

IDs.

the item i:

∀i : E(c · h(i)) = E

(
∑

j
f j · h(j)h(i)

)
= ∑

i �=j
E( f j · h(j)h(i)) + fi = fi,

where the last equality is due to the 2-independence of hashing h(·). However, the vari-

ance of such estimators might be quite large and depends mainly on the second frequency

moment of the other items in the substream. At the same time we know that with high

probability there is only one heavy hitter in each substream and we repeat the experiment

t = O(log n) times. We take the median of those estimates, which reduces the variance

and boost the probability for the final estimator to be within the approximation error from

the real value. Summarizing, we have a data structure containing b× t = O(k)×O(log n)

counters which maintain good estimates for the frequencies of the top k most frequent

items, but we still have to find the values of their IDs. There are three approaches to do

this:

1. Count Sketch with Full Search(CSFS)

When all stream updates are processed we estimate the frequency of each possible

170



Chapter 5. Finding haloes in cosmological N-body simulations

item in the dictionary i ∈ [n] and find the top k most frequent.

pros: updates are fast and easy to run in parallel

cons: post-processing becomes very slow as the size of the dictionary grows

2. Count Sketch with Heap(CSHe)

While processing each item, estimate its frequency and maintain the heap with the

top k most frequent items.

pros: post-processing takes zero time

cons: updates require extra log k time-steps to update the heap

3. Count Sketch Hierarchical(CSHi)

Maintain two sketches, the first one for stream of super-items S′ = {sj/1000} and

the second one for the initial stream S = {sj}. When all stream updates are pro-

cessed, we first estimate the frequency of each possible super-item i ∈ [n/1000] in

the dictionary of S′ and find the top k most frequent super-items K′ = {hh′j}k
j=1, then

estimate the frequencies of all potentially heavy items i ∈ [n] s.t. i/1000 ∈ K′ and

find the top k most frequent items. This way we reduce the number of potentially

heavy items to check. If necessary, more than 2 layers might be created.

pros: post-processing is fast even for very large dictionaries

cons: update time is ρ times slower and the algorithm uses ρ times more memory,

where ρ is the number of layers.

CSFS contains set of b× t counters M, t hash functions hs : [n]→ ±1 and t hash functions

hb : [n] → [b] which decides which counter in the t-th row element i corresponds to. In

addition, CSHe contains the heap of pairs (item,frequency), and CSHi contains more than

one sets of counters {Mi}
ρ
i=1. Let’s define three following operations:

171



Chapter 5. Finding haloes in cosmological N-body simulations

• Add(M, sj):

∀i ∈ [t] : Mi,hi,b(sj)
+ = hi,s(sj)

• Estimate(M, j):

return median
({

Mi,hi,b(j) · hi,s(j)
}t

i=1

)
• UpdateHeap(H, j, f̂ j):

if (j ∈ H) : H[j] := f̂ j

else if (H.top(). f̂ < f̂ j) : H.pop(); H.push(j, f̂ j);

The Add() operation updates all the counters, Estimate() outputs current approxima-

tion for the frequency of the element j and UpdateHeap() maintains the top k most fre-

quent items via updates of (i, f̂i). The pseudo code for discussed functions is the follow-

ing:

Similar construction is used in the algorithm Count Min Sketch [44]. The algorithm

utilize the similar logic and the same size table of counters, however for each update it

computes only one hash (to specify the bucket to be updated) rather than two in Count

Sketch, and output the minimum over the estimates, rather than the median. Thus sub-

routines ”Add” and ”Estimate” are different:

• Add(M, sj):

∀i ∈ [t] : Mi,hi,b(sj)
+ = 1

• Estimate(M, j):

return min
({

Mi,hi,b(j) · hi,s(j)
}t

i=1

)
We compare Count Sketch and Count Min Sketch experimentally. However the latter

only finds `1 heavy hitters, so we expect it to be outperformed by Count Sketch.

172



Chapter 5. Finding haloes in cosmological N-body simulations

Algorithm 17 Count Sketch with Full Search(CSFS)

1: procedure INITIALIZATION
2: initialize b× t matrix of counters M with zeroes
3: end procedure
4: procedure PROCESSING THE STREAM
5: for si ∈ [m] = {1, . . . , m} do
6: Add(M,si)
7: end for
8: end procedure
9: procedure QUERYING THE DATA STRUCTURE

10: initialize a heap H of size k
11: for j ∈ [n] do
12: f̂ j = Estimate(M, j);
13: UpdateHeap(H ,j , f̂ j)
14: end for
15: for i ∈ [k] do
16: (j, f̂ j) = H.pop()
17: return (j, f̂ j)
18: end for
19: end procedure

5.3.2 Implementation

Section 5.2 presented a halo finding tool using streaming algorithms that can be very

useful even in systems with as low as 1GB memory. However, the running time of that

tool was more than 8 hours on a desktop for a relatively small dataset. Here we provide

a new algorithm based on an efficient GPU implementation. The core part of the halo

finding tool relies on the implementation of the Count Sketch algorithm. All experiments

in this section were carried out on the CPU Intel Xeon X5650 @ 2.67GHz with 48 GB RAM

and GPU Tesla C2050/C2070.

Count Sketch Implementation. The data flow of the Count Sketch algorithm consists

of 5 basic stages, i.e. for each item we need to do the following:

173



Chapter 5. Finding haloes in cosmological N-body simulations

Algorithm 18 Count Sketch with Heap(CSHe)

1: procedure INITIALIZATION
2: initialize b× t matrix of counters M with zeroes
3: initialize a heap H of size k
4: end procedure
5: procedure PROCESSING THE STREAM
6: for si ∈ [m] = {1, . . . , m} do
7: Add(M,si)
8: f̂ j = Estimate(M, sj)
9: UpdateHeap(H ,sj , f̂ j)

10: end for
11: end procedure
12: procedure QUERYING THE DATA STRUCTURE
13: for i ∈ [k] do
14: (j, f̂ j) = H.pop()
15: return (j, f̂ j)
16: end for
17: end procedure

1. Compute cell ID from XYZ representation of the particle

2. Compute t bucket hashes and t sign hashes

3. Update t counters

4. Estimate the current frequency for the item (find median of t updated counters)

5. Update the heap with current top-k if necessary

Below we consider different implementations of the Count Sketch algorithm with the

argument to architectural decisions made:

1. CPU:

Purely CPU version of the Count Sketch has all five stages implemented on the CPU

and described in details in [102]. As depicted below, it takes 8.7 hours to process

one snapshot of all particles from the Millennium dataset. In the breakdown of

174



Chapter 5. Finding haloes in cosmological N-body simulations

Algorithm 19 Count Sketch Hierarchical(CSHi)

1: procedure INITIALIZATION
2: initialize two b × t matrices of counters M1 and M2 with zeroes
3: end procedure
4: procedure PROCESSING THE STREAM
5: for si ∈ [m] = {1, . . . , m} do
6: Add(M1,si/1000)
7: Add(M2,si)
8: end for
9: end procedure

10: procedure QUERYING THE DATA STRUCTURE
11: for j ∈ [n/1000] do
12: f̂ j = Estimate(M1, j);
13: if f̂ j > θ1 then
14: for j′ ∈ [1000j : 1000(j + 1)] do
15: f̂ j′ = Estimate(M2, j′);
16: if f̂ j′ > θ2 then
17: return (j′, f j′)
18: end if
19: end for
20: end if
21: end for
22: end procedure

the profiler output below, where integer numbers denote the 5 stages of the Count

Sketch algorithm and fractions show proportional amounts of time spent on that

stage, we can see that the second stage is computationally the most expensive. The

most straightforward improvement is to ”outsource” this computation to the GPU.

We implemented this idea, and we describe it further below.

175



Chapter 5. Finding haloes in cosmological N-body simulations

2. CPU + hashes on GPU

In this implementation, we are trying to “outsource” the most time intensive opera-

tion — calculating hashes. Recall that we need to compute 2t hashes. As long as t is

a relatively small number ( ≤ 16), a naive parallelism which suggests computing all

hashes for each particle in t parallel threads, will not provide a significant speedup

due to the inability to saturate all cores (∼ 2000) of the graphics card. Thus to im-

prove performance even further, we need to make use of data parallelism, which as-

sumes computing hashes for a batch of updates at the same time. Such an approach

is straightforward due to the fact that computing hashes are identical operations

required for all particles and those operations can be performed independently. As

illustrated below, the GPU computes hashes almost for free, compared to stages 3,4

and 5, and total time drops by 35%. The next bottleneck is stage 3, during which the

algorithm updates counters. Although it is just 2t increments or decrements, they

happen at random places in the table of counters. This makes it impossible to use

CPU cache and memory access becomes a bottleneck for the algorithm.

3. GPU + heap on CPU

Updating counters (stage 3) and estimating current frequencies (stage 4) are two

very connected stages. If we keep them together we can significantly save on the

number of queries to the memory. Implementing a time efficient heap (stage 5) on

the GPU is quite challenging, due to hardware features. Thus our next implemen-

tation takes advantage of the CPU for maintaining the heap, while doing all other

176



Chapter 5. Finding haloes in cosmological N-body simulations

computations and storing the table of counters on the GPU. The basic data flow can

be described as follows:

(a) CPU sends a batch of particles in XYZ representation onto GPU

(b) GPU processes all particles in parallel: compute cell ID, compute hashes, up-

date counters and estimate frequencies

(c) GPU sends a batch of estimates back to the CPU

(d) CPU maintains heap with top k items using estimations from GPU

It can be seen below that adopting such an approach pushed the total time of the

algorithm down to 38 minutes. In the breakdown of the profiler, one can see that

updating the heap became a new bottleneck for the algorithm.

4. GPU without heap

While heap on the CPU is quite efficient, it still slows down the process quite seri-

ously, especially when the top k gets larger and reaches 106. On large datasets this

might cause many items to have an update time close to log k. Moreover, keeping

the heap on the CPU forces the GPU to send a lot of data back to the CPU. Avoiding

this data transfer would improve the slowest memory operation by a factor of 2.

Thus we decided to switch from Count Sketch with Heap (CSHe) to Count Sketch

with Full Search (CSFS), both of which were broadly described in the previous sec-

tion. The CSFS algorithm works in two modes: update mode, which encompasses

177



Chapter 5. Finding haloes in cosmological N-body simulations

calculating hashes and updating counters, and estimate mode, which deals with es-

timating the frequency for all cells and emitting the top k. The CSFS algorithm is

first invoked in update mode for the entire stream, and when it finishes, the gener-

ated table of counters is used as input to estimate mode. While in estimate mode, we

still need to maintain the top k items and do it on the GPU. This can be done semi-

dynamically by adding to the array all items which are larger than some threshold.

Then, if we have more than k items, we will raise the threshold and rearrange el-

ements in the array, deleting those items which do not satisfy the new threshold.

If we grow the threshold geometrically we can guarantee that such ”cleaning” step

won’t happen too often. Such an approach cannot be applied to the CSHe algo-

rithm due to the possibility of two updates for the same cell. In the figure below, the

stream time, which includes only the update mode, takes only 3.5 minutes, while

the estimate mode takes 25 minutes. The time of the estimate mode, i.e. query

time, linearly depends on the size of the mesh, due to the necessity to estimate the

frequency for every cell in the mesh. For example, in the same experiment for the

mesh with 5 · 108 cells, query time would be less than 10 seconds.

5. GPU hierarchy

As it was already discussed in the previous section, one of the ways to decrease

query time is to eliminate the full search and implement it as a search tree instead. In

our case, the search tree (hierarchy) will contain only two layers. By grouping cells

together we can find the heavy super-cells first (using a small mesh), then search for

178



Chapter 5. Finding haloes in cosmological N-body simulations

heavy cells only inside heavy super-cells. We will merge cells by their IDs in the top

layer with a dictionary size of ∼ 108, find top c · k super-cells and find top k cells

inside the selected heavy super-cells, where c > 1 is a small constant. As can be seen

below, such an approach reduces query time from 25 minutes down to 55 seconds.

However, it requires twice the amount of memory due to the need to store a table

of counters for each layer. It can also be observed that time performance of the

update mode gets worse, due to the necessity to calculate twice as many hashes and

update twice as many counters. The total time of the algorithm is 5 minutes, which

is very impressive for the size of the dataset and the mesh. The total performance

improvement over the sequential CPU implementation is more than 100-fold.

Here we will briefly introduce the key architectural decisions in the implementation

of the “GPU without heap” version of the algorithm. While it is not the most efficient

implementation, it is easier to explain. At the same time, it makes it straightforward how

to extend it to the "hierarchical" version. The graphical processor is a separate device

that has many limiting features compared to the CPU. In this project, all our experiments

leverage the CUDA platform to make use of the graphical processor’s capabilities. [117].

A GeForce GTX 1080 has 20 multiprocessors (SM) each with 128 cores (threads). CUDA

introduced a block/thread approach, such that all computations are grouped into blocks,

where one block is always implemented on only one SM. Within a block, we can specify

how to share computation between threads. CUDA has three layers of memory:

179



Chapter 5. Finding haloes in cosmological N-body simulations

1. Global memory: accessible within the device and conventionally is quite large (up

to 8 GB). It is also the only type of memory that can be used to copy to or from RAM.

At the same time, it is the slowest memory on the device.

2. Shared memory: accessible from within the block and shared among all threads of

that block. Shared memory is ∼ 10 times faster than global memory, however, it is

very limited with ∼ 48− 64KB per SM.

3. Registers: there are 215 32-bit registers per SM. They are as fast as shared memory,

but visible only to the thread.

Storing a table of counters for Count Sketch is possible only in global memory. Primar-

ily, this is due to the large size of the counters ∼ 1GB. Secondly, counters are accessed in

random order, which makes it impossible to store some localities in the shared memory.

In our implementation, each block is in charge of exactly one update of the stream. In

order to make an update, one needs to calculate 2t hash functions and update t counters,

thus we distributed this work among t threads, each calculating two hashes and updating

one counter.

Note that to avoid memory access conflicts we need to use atomic operations, which

are present in CUDA. However we expect the number of conflicts not to be very large:

while the typical width of the table is 107 counters and the maximum number requests

is bounded by the number of GPU threads (which is ∼ 2000 in our case), the probability

of collision is negligible. In practice, we can see that using non-atomic operations would

give us at most a 10%-fold gain in time performance. The pseudo code for each thread is

presented in Algorithm 20.

After the stream is processed, we need to find the IDs of the heavy hitters. As de-

scribed earlier, we need to find an estimation for each item in the dictionary. Here we

180



Chapter 5. Finding haloes in cosmological N-body simulations

will use the same approach as for stream processing. Each block will be in charge of one

cell. Each thread will be in charge of an estimation based on one row of Count Sketch

counters. The procedure for each thread is described in Algorithm 20.

Algorithm 20 GPU thread code for Count Sketch

1: procedure UPDATE(cellID)
2: i = threadID;
3: M[i, hi,b(cell ID)]+ = hi,s(cell ID)
4: end procedure
5:
6: procedure ESTIMATE(cellID)
7: shared estimates[t];
8: shared median;
9: j = threadID;

10: f̂ = M[i, hj,b(cell ID)] · hj,s(cell ID);
11: estimates[j] = f̂ ;
12: synchronize
13: int above, below = 0;
14: for i ∈ [t] do
15: below + = (estimates[i] < f̂ )
16: above + = (estimates[i] > f̂ )
17: end for
18: if above <= t/2 and below <= t/2 then
19: median = f̂
20: end if
21: synchronize
22: if j = 1 and median > θ then
23: return median
24: end if
25: end procedure

Note that we find the median using a very naive algorithm — for each item of the

array check if it is a median by definition. That is thread i would be in charge of checking

if the number of estimates smaller than estimates[i] is equal to the number of estimates

larger than estimates[i], and reporting/recording the found media if so. This is one of the

reasons why all estimates should be reachable by all threads, and thus should be stored in

181



Chapter 5. Finding haloes in cosmological N-body simulations

the shared memory. While in sequential implementation this approach would take O(t2)

time steps, here we use t parallel threads, ending up with time complexity of O(t).

To boost the time performance even further we can apply sampling. However, one

should not expect performance to improve linearly with the sampling rate, because of

necessity to compute sampling hashes for all particles. The dependency of the time per-

formance on the sampling rate is depicted in figure 5.16. From that graph, one can see

that changing the subsampling rate from 8 to 16 is the last significant improvement in

time performance.

FIGURE 5.16: Dependency of time performance on sampling rate.

5.3.3 Evaluation

In this section, we present a tool which is capable of finding up to 105 − 106 densest cells

in state of the art cosmological simulations for an arbitrary sized regular mesh. Moreover,

the proposed technique makes these procedures available even for the desktop or a small

server. In this section, we evaluate this claim. We do this in two steps. In the first, which

we call the algorithmic evaluation we compare the rank order produced by the heavy hitter

182



Chapter 5. Finding haloes in cosmological N-body simulations

algorithm directly to the exact results. In the second, we perform a scientific evaluation

and analyze what the effects are of the randomized nature of the approximate algorithm

to various statistical measures of astrophysical interest; namely the tail end of the counts-

in-cell distribution and the spatial clustering of excursion sets.

Evaluation Setup. For testing and evaluation, we use the Millennium dataset [96] with

1010 particles in a cube with side length 500 Mpc/h. The cell size in the grid is 0.1 Mpc/h,

thus the total grid contains 1.25× 1011 cells. Our goal is to find top 105 to 106 heaviest

cells. Those numbers are important to understand some decisions in choosing the specific

architecture of the implementation.

The data, originally stored in the GADGET[133] format, is reorganized, such that ev-

ery 64 bits contains 3 coordinates for one particle. This reorganization helps to reduce the

number of global memory writes inside the GPU. After such a reorganization the entire

dataset weights in at 80 GB. One of the time performance bottlenecks in such settings is

reading data from the hard drive. We implemented a parallel I/O system that includes 3

SSDs and 24 HDDs without data replication, and this way we reduced the pure I/O time

from 15 minutes to 20 seconds. For comparison purposes all experiments were accom-

plished on two different hardware configurations:

1. AMD Phenom II X4 965 @ 3.4 GHz, 16 GB RAM, GPU GeForce GTX 1080.

2. Intel Xeon X5650 @ 2.67GHz, 48 GB RAM, GPU Tesla C2050/C2070.

Top-k Cells First, let’s introduce different ways of finding the top k most frequent cells

with exact counts. Given a set of particles in the simulation box and a regular grid of a

fixed size we need to find k cells of the grid containing the largest numbers of particles,

together with the IDs of those cells. The algorithm is required to return an estimate of

183



Chapter 5. Finding haloes in cosmological N-body simulations

the number of particles in each cell. The most straightforward solution to this problem is

to count the number of particles in each cell precisely. Such an exact algorithm might be

described as follows:

1. Create a counter for every cell in the grid

2. While making a pass through the dataset, update the cell counters based on the

position of the particles

3. Find k ”heaviest” cells and return their IDs and exact counts

This solution breaks down in step 1 once the size of the mesh is too large to store all

counters in memory.

It is possible to remove the memory problem at the expense of worsening time perfor-

mance by making multiple passes over the data, as in the following algorithm. Assuming

the memory is about a factor 1/λ of the total size of the grid:

1. Create a counter for every cell in the range [i− n/λ, i], and use the basic algorithm

above to find k ”heaviest” cells in the range and call them topKi.

2. Repeat previous step for all ranges i ∈ {n/λ, 2n/λ, . . . , n} and find top k ”heaviest”

cells in ∪itopKi

This multi-pass trick becomes unfeasible when the size of the mesh grows too large

compared to the available memory, as it would take too many passes over the data. How-

ever, to evaluate how well our algorithm approximates the exact top k with counts, we do

need to have exact counts. That was one of the reasons why [102] restricted themselves

to relatively small meshes. In the current section, we show results for meshes of sizes

108, 1011 and 1012. We will provide algorithmic evaluation only for 108, where the naive

precise algorithm can be applied, and for 1011, where we apply the trick described above

184



Chapter 5. Finding haloes in cosmological N-body simulations

and do 20 passes over the dataset. For the mesh of size 1012, algorithmic evaluation is

more challenging and therefore only the scientific evaluation will be performed.

Evaluation of algorithm. In this section, all experiments are for the mesh size 1011.

Fig. 5.17 shows the distribution of exact cell counts for the top 107 cells.

FIGURE 5.17: Cell density distribution for the top 0.5 · 106 cells found by
Count Sketch (in green) and the top 107 cells found by exact counting (in

blue).

Most experiments in this section use a Count Sketch with parameters t = 5, b = 107

and k = 5 · 105. A motivation for these values will be provided later. To understand how

well the Count Sketch approximates the exact counts and how well it reproduces the rank

order, we determine how the relative error grows with the rank inside the top-k cells. To

do so, for each cell i we find its count ci and rank ri in the output of an exact algorithm

and its count ĉi in the Count Sketch output. If cell i is not present in the Count Sketch

output, i.e. not among its top k heaviest cells, we define ĉi = 0. Fig. 5.18a shows, in blue,

the dependency on rank ri of the relative error, defined as |ci − ĉi|/ci. Here we use a bin

size of 100 in i for the averaging.

The relative error is shown in green and is determined for cells which were among the

top k for both the exact and the Count Sketch counts. By ignoring the cells not found in the

185



Chapter 5. Finding haloes in cosmological N-body simulations

Count Sketch, the relative error is artificially reduced. On the other hand, treating those

cells as empty ĉi = 0 pushes the error rate up significantly. This overestimates the error

compared to the count that might have been determined had the Count Sketch included

those cells, for example by using a larger value of k.

As we can see, up to a rank of ∼ 250000 the algorithm works reliably and has quite

low approximation error. However, at higher ranks the error grows rapidly. The main

cause of this is the loss of heavy cells, rather than a bad approximation of the counts for

the cells that were accepted by the Count Sketch. This is shown by the fact that the green

line remains low.

Fig. 5.19 shows the same graphs, but now plotted against the over-density δi = (Ni− <

N >)/ < N > in cells. This quantity is more meaningful from an astrophysical point of

view compared to the rank. It shows that the errors are stable for a large range of over-

densities, but very quickly shoot up near a threshold. That threshold depends on the size

of the cell as the comparison in Fig. 5.19 shows. Note that the size of the cell for any spe-

cific dataset would influence the number of particles in the each of the top-k heavy cells

and `2 norm of the stream.

There is a straightforward reason why the approximate algorithm loses so many heavy

cells. Before we explain it we need point out three important facts. First, Fig. 5.20 shows

that the absolute error is about constant for all cells. This can be understood from the

theoretical arguments in [36], which state that all estimations have an additive approx-

imation error of ε`2, i.e. for each cell, error does not depend on the count, but only on

the `2 norm of the entire dataset. Second, as we can see from Fig. 5.17, the number of

cells is increasing exponentially with the count going down (this is a property of the mass

function in the cosmological simulation). Third, for the cells with ranks near 250000, the

actual count is ∼ 820, and for the cells with ranks near 500000 the actual count is ∼ 650.

186



Chapter 5. Finding haloes in cosmological N-body simulations

While searching for the top-k cells using Count Sketch estimations we will face two types

of errors:

type 1: false rejection of heavy cells caused by underestimation of the true count due to ap-

proximation error

type 2: false exclusion of heavy cells caused by overestimation of counts of cells below the

top-K selection criterion.

We expect that having 250000 elements with counts between ∼ 650 and ∼ 820 with

an average approximation error ∼ 80 (and ranging up to 250) will cause significant loss

of heavy cells in the top k. We can see this in Fig. 5.18a, which also depicts the recovery

rate. Thus we can conclude that the main cause for missing heavy cells in the output

is the fact that many cells have counts which are relatively close to the approximation

error of the algorithm. We have tested this conclusion by running the algorithm for larger

cell sizes, with significantly larger expected counts. This increases the typical |ci − cj|

for cells i and j with small rank distance. The result of an experiment with a cell size

of 1 Mpc/h is shown in Fig. 5.18b, which corroborates our hypothesis. The difference in

the results for different mesh sizes is even more obvious in the relative error vs. exact

count graphs in Fig. 5.21a and Fig. 5.21b. Note that closer to the cut-off threshold the

algorithm is tending to overestimate the count rather then underestimate. This behaviour

is reasonable due to the fact that only one-way error is passing the threshold test, while

all items with underestimated counts are discarded by the algorithm.

We know that every `2 heavy hitters algorithm catches all `1 heavy items and some

items which are `2-heavy but not `1-heavy. While asymptotically the space requirements

for both algorithms are the same, the time performance for `1 algorithms is better in prac-

tice than for the `2 algorithms. It is therefore of interest to compare the two in the specific

187



Chapter 5. Finding haloes in cosmological N-body simulations

application to our problem. To do so we compared the Count Sketch with the intuitively

similar `1 Count Min Sketch algorithm. Fig. 5.22 shows that the approximation error dif-

fers significantly, with the Count Sketch algorithm giving much more accurate results.

As it was mentioned earlier, a random sampling of the particles before feeding them

to the algorithm can significantly improve the time performance of the entire procedure.

To investigate the influence of such sampling on the approximation error we carried out

experiments comparing different sampling rates for mesh sizes 1 Mpc/h and 0.1 Mpc/h.

From the figures 5.23 and 5.24 we can see that in both cases a sampling rate of 1/16 still

provides a tolerable approximation error. It is important to recall that the time perfor-

mance does not scale linearly with the sampling rate due to the need to compute the sam-

pling hash function for each element. This operation is comparable in time to processing

the element through the entire data flow without skipping the Count Sketch.

The crucial advantage of the algorithm presented here compared to existing algo-

rithms is the improvement in memory usage. Traditional algorithms often require com-

plete snapshots to be loaded into memory, which for state-of-the-art cosmological simu-

lations implies they cannot be analyzed on a small server or even one desktop. For a cell

size of 1 Mpc/h and a box size of 500Mpc/h our mesh would contain only 1.25 · 108 cells

which require only 500 MB for a naive algorithm and provides an exact solution. Such a

low memory footprint makes the naive solution feasible even for a laptop. For a cell size

of 0.1 Mpc/hwith the same box size the memory requirements would be 1000× larger

and barely fit onto a mid-size server.

Next, we investigate the trade-off between time performance, memory requirement

and approximation error in more detail. The Count Sketch data structure consists of t× b

counters, which also sets the memory requirements. The graph in Fig. 5.25 shows the

approximation error for different combinations of b and t.

188



Chapter 5. Finding haloes in cosmological N-body simulations

The CS algorithm provides a tolerable error rate as long as t × b ≥ 64 · 106, except

for the case (t, b) = (4, 16 ∗ 106) which has too small of a t, causing a high rate of false

positives; we will provide more details in the next paragraph. To better understand the

spectrum of possible error rates, we consider the rates at rank 400000, where the fre-

quencies of the cells are already quite low. For all combinations of the parameters, the

algorithms start losing a significant fraction of correct heavy hitters near that value. The

following table shows these error rates as a function of b and t.

t 16 12 8 16 12 16 8 12

b /106 16 16 16 8 8 4 8 4

Error 0.27 0.34 0.42 0.47 0.51 0.64 0.67 0.72

Algorithms with a similar space usage (∝ t× b) have a similar error rate, but the so-

lution with the larger number of rows is generally somewhat better. This can be easily

explained using a theoretical argument: the largest portion of the relative error depicted

is due to losing true heavy hitters; this happens due to the fact that the algorithm finds

”fake” heavy hitters, and those push the true heavy hitters with a smaller frequency out

of the top group. A fake heavy hitter can appear only if it collides with some other true

heavy hitter in at least half of the rows. Thus, the expected number of collisions can be

computed as a total number of different items n times the probability to have collided

with at least one heavy hitter, which is k/b, and then this should happen in t/2 inde-

pendent experiments. Therefore expected number of collisions is n(k/b)t/2. From that

dependency, we can see that under fixed t× b, the larger value of t is always better. For

example, if we want to find only one heavy hitter and minimize the space usage which is

proportional to t× b, then the most efficient way is to take b = 2 and t = c log n. How-

ever, this would force us to increment or decrement O(log n) counters for each update,

which is much slower, O(logb n) with b >> 2. Theoretically running Count Sketch with

189



Chapter 5. Finding haloes in cosmological N-body simulations

t = 8 would be twice slower than with t′ = 4, due to the need to compute twice more

hashes and increment twice more counters. In practice, we saw almost the same, mostly

due to the fact that computing hashes and updating counters takes around 75% of the

total running time in the ”GPU hierarchy” implementation. From these examples, we can

understand the nature of the space versus time trade-off, and we can see this behavior

in the graph and in the table for the pairs 8× 16 · 105 and 16× 8 · 105, 16× 4 · 105 and

8× 8 · 105 and others. Note that increasing both b and t will provide better approxima-

tion and lower false positive rate, however increasing t would significantly push time

performance and space (if we will keep b fixed) up, while increasing b will not influence

the time performance but still push the memory usage. In all our experiments we were

limited by the memory of the GPU, which for both devices was only 8GB.

Evaluation of the model. Here we will evaluate the quality of the model for two specific

problems: finding halos and the analysis of excursion sets. To do so, we will try to solve

the problem using Count Sketch and its ability to find top k densest cells in the simulation

box.

In [102] authors showed a simple solution for using the heavy cells to find heavy

clusters by making a second pass through the data set and storing locally the particles

which belong to one of the heavy cells. This is possible because the number of particles

in those heavy cells is much smaller than that of the entire data set, and we can even

store them in main memory. This implies that any traditional in-memory algorithm can

be applied offline. This scheme is illustrated in Fig. 5.26. In this section, we will not repeat

the entire chain of this computation, but will simply check the number of halos contained

in the top k cells.

It turns out that to find the centers of the 105 most massive halos we need to find the

190



Chapter 5. Finding haloes in cosmological N-body simulations

∼ 1.8 · 105 heavy cells, i.e. the centers of the top 105 most massive halos are contained in

the top ∼ 1.8 · 105 heavy cells. Then running an offline in-memory halo finder, such as

Friends of Friends [47] or any other halo finder of choice [91], on the particles located only

inside the top 1.8 · 105 heavy cells (and it’s immediate neighbours) will provide us with

more precise halo centers and mass distribution for each halo. We emphasize on the fact

that in current manuscript we find only the centers of the haloes and leave finding actual

borders and mass distribution for future research. Hence the streaming approach can be

considered as a sieve step, allowing us to efficiently remove the particles which are not in

the largest halos from further consideration. The resulting filtered data set is significantly

smaller in size, thus one can apply offline algorithms. In [102] we showed how to find 103

largest halos while working with a data set of size 109: find the top 2 · 103 heavy cells and

run an offline algorithm on the particles that are located only inside the heavy cells.

Applying the same approach to find the top 106 heaviest cells in the Millennium data

set containing 1010 particles would be challenging, but still manageable:

1. top 106 haloes contain ∼ 3.8 · 109 particles = 45 GB;

2. top 105 haloes contain ∼ 2.5 · 109 particles = 31 GB;

3. top 104 haloes contain ∼ 1.4 · 109 particles = 16 GB;

4. top 103 haloes contain ∼ 0.8 · 109 particles = 9 GB;

Thus we indeed can afford to run offline in-memory halo finder and locate ∼ 105 haloes

on a desktop or a small size server. At the first glance, it seems that the memory gain is

not significant: initial dataset weights ∼ 90GB, i.e. for the top ∼ 105 haloes the gain is

at most factor of 3 (factor of 5 for the top 104), at the cost of introduced approximation

and non-zero probability of failure. However, initial dataset does not provide an option

191



Chapter 5. Finding haloes in cosmological N-body simulations

of running offline halo finder sequentially in several passes on the machine with very

low memory usage. Our filtering step provide an opportunity to run it on the machine

with just 2GB of memory, the algorithm will require make more passes over the data, i.e.

to find the top 104 haloes one will need to make ∼ 10 passes while working under 2GB

memory restriction.

We should take into account that number of particles in each halo is growing with

the size of the data set. Additionally, using 10 times larger top will significantly increase

the total number of particles one need to store in the memory, while applying offline

algorithm. Hence, finding the top 105 haloes on the Millenium XXL dataset with 3 · 1011

particles is less feasible as a low-memory solution:

1. top 106 haloes contain ∼ 31 · 109 particles = 372 GB;

2. top 105 haloes contain ∼ 9 · 109 particles = 108 GB;

3. top 104 haloes contain ∼ 2 · 109 particles = 24 GB;

4. top 103 haloes contain ∼ 0.4 · 109 particles = 4.8 GB.

From the list above we can see that to keep everything on the small server, proposed

approach can help to find at most top 104 haloes in one extra pass or 105 haloes in∼ 8− 10

passes, which we state as a result in the current section and keep the further improvement

as a subject for future investigation. Note that compression level for the top 105 particles

is 33 times (148 times for the top 104 haloes). However requirement to make more than

2 passes and utilize ∼ 24 GB on the second pass is very restrictive and better techniques

should be proposed for after-processing. Among the most straightforward solutions are

sampling and applying streaming approach hierarchically for different cell sizes.

As described in the introduction, a connection can be made between the heavy hitters

in the collection of grid cells and excursion sets of the density field. We want to determine

192



Chapter 5. Finding haloes in cosmological N-body simulations

spatial clustering properties of these over-dense cells and determine if the algorithm by

which this set is determined has an influence on the spatial statistics. To do this we have

extracted the locations of heavy hitter grid cells in the Count Sketch result and deter-

mined their clustering properties using the two-point correlation function ξ(R) [e.g. 120].

We compare this to the 2-pt function calculated on the cells in the exact excursion set.

Adopted cell size is 0.1 Mpc/h. As the results in Fig. 5.27 show, for the over-densities

that can be reliably probed with the streaming algorithm the exact and Count Sketch re-

sults are indistinguishable. The main deviations are due to discreteness effects for the

smaller high-density samples. As an aside, we note that in Fig. 5.28, the higher-density

cells cluster more strongly than the lower-density cells, as expected [83].

Millennium XXL. Running on the Millennium dataset, we could still find the “top-k”

densest cells exactly using quite moderate time and memory. Even when the full density

grid was too large to fit in memory, we could make multiple passes over the data and

determine parts of the grid. Those experiments are necessary for evaluating the precision

of the output from the randomized algorithm, but on our medium sized server they take

about a day to complete.

In this section, we describe an experiment on the results of the Millennium XXL sim-

ulation [7], which contains around 300 billion particles, and hence is 30 times larger than

the Millennium dataset. Its box size is 3 Gpc and we will use a cell size of 0.2 Mpc. Thus

our regular mesh would contain ∼ 3.4 · 1012 cells and need 13.5TB of RAM to be kept in

memory completely (using 4-byte integer counters). While this is beyond the means of

most clusters, our algorithm will be able to solve the problem with a memory footprint

under 4GB while keeping the lapse time under an hour.

Before we describe some technical details of the experiment, we need to clarify the

193



Chapter 5. Finding haloes in cosmological N-body simulations

process of evaluation, as we are now not able to produce exact counts in a reasonable

amount of time. Hence, we consider only the following two ways for evaluating the

accuracy of our results:

1. From the size of the exact counts

While we can not determine the top-k most dense cells precisely, we can still make

a second pass over the data and maintain counters for some subset of cells. We

will use this opportunity to evaluate the approximation error from Count Sketch,

but only for those particles which were output by the algorithm. Note that this

verification is not as reliable as the one used earlier in this section because it does

not catch any false negative items, i.e. the items which are supposed to be in the top-

k, but were lost by the algorithm. But this way we can evaluate the approximation

error, and get a preliminary estimation of the false positive rate.

2. From astrophysics

Running a simulation with a larger number of particles provides us with more sta-

ble quantities. While we do not have any way to verify them precisely, we know

that the spatial statistics should be more or less close to those from smaller size sim-

ulations. This evaluation is more qualitative than quantitative, but it will definitely

be alarming if serious deviations are present.

We ran the "GPU hierarchical" version of the Count Sketch. We then made a second

pass over the dataset where we determined the exact counts, restricted to the cells found

in the first pass. While we do not know the cutoff frequency for the top-k, we can still

approximately estimate the false positive rate: if all cells in the top-k output by Count

Sketch have frequencies larger than 1700, then every item with a true frequency less than

100 would be considered as false positive. Initially, we set the same number of counters in

194



Chapter 5. Finding haloes in cosmological N-body simulations

the Count Sketch table as before: 16 rows and 107 columns. However the result was quite

noisy and had a very high rate of false positives: around 60000 had a frequency lower

than 100, while the top-k frequency cutoff is around 1700. Then we ran Count Sketch

with 24 rows, and the number of collisions dropped accordingly to approximately 800.

The graph depicting relative error of the Count Sketch can be observed in Figure 5.29. It

is evident that approximation error is more than twice that of the experiment with the

Millennium dataset (refer to the Figure 5.18a). This can be explained by the size of the

dataset, as long as algorithm’s guaranteed approximation error is ε`2, then with `2 for

the XXL dataset the error is significantly larger. If the further astrophysics analysis will

require better approximation error we can increase the width of the Count Sketch table.

In Fig. 5.30 we compare the two-point correlation function for all cells with δ ≥ 20000

for both Millennium and Millennium XXL. For the Millennium XXL result we use the

Count Sketch, for the Millennium we use the exact over-densities, both in cells of size

0.2 Mpc. The XXL has a volume that is 216× the volume of the Millennium run and

hence much better statistics. Nevertheless, the results are compatible with each other.

We ran the experiment on the small server with the following characteristics: Intel

Xeon X5650 @ 2.67GHz, 48 GB RAM, GPU Tesla C2050/C2070. Our I/O was based on 4

Raid-0 volumes of 6 hard drives each. The total time for the I/O is 30 minutes. Due to the

fact that I/O is implemented in parallel, if the time of the algorithm is higher than I/O,

then I/O is "for free", this happens due to the fact that we can read a new portion of the

data from the disk, while the GPU is still processing the previous portion. Our algorithm

time on the Tesla card is 8 hours. In contrast, on the GTX1080, the estimated running time

is expected to be less than an hour, which we calculated by running a small portion of

the data. However, we were not able to carry out the entire experiment on the GTX1080,

lacking a server with this card, and parallel I/O with a significant amount of storage.

195



Chapter 5. Finding haloes in cosmological N-body simulations

For comparison, had we calculated the exact density field on a grid we would have

required about 13.5TB of memory. Alternatively, on the machine with 48 GB RAM, we’d

need about 280 passes over the data to calculate the exact field in chunks small enough to

fit on the machine.

5.4 Conclusion

In Section 5.2 we found a novel connection between the problem of finding the most

massive halos in cosmological N-Body simulations and the problem of finding heavy

hitters in data streams. According to this link, we have built a halo finder based on the

implementation of Count-Sketch algorithm and Pick-and-Drop sampling. The halo finder

successfully locates most (> 90%) of the k largest haloes using sub-linear memory. Most

halo-finders require the entire simulation to be loaded into memory. But our halo finder

does not and could be run on the massive N-body simulations that are anticipated to

arrive in the near future with relatively modest computing resources. In section 5.2 we

did not pay much attention to the time performance and all experiments were mainly

focused on precision vs. memory trade-off. But both Count-sketch and Pick-and-drop

Sampling can be easily parallelized further to achieve significantly better performance.

The majority of the computation on Count-sketch is spent on the calculations of r× t hash

functions. A straight forward way to improve the performance is taking advantage of the

highly parallel GPU streaming processors to improve the performance of calculating a

large number of hash functions.

In Section 5.3, we pushed the limits of these algorithms toward datasets with sizes

up to ∼ 1012 particles, while still keeping all computations on a single server, or in some

cases, even a desktop. To make this possible, we implemented the Count Sketch algorithm

196



Chapter 5. Finding haloes in cosmological N-body simulations

in a batch streaming setting and ported it to a graphics processor (GPU) using the CUDA

environment. This approach significantly improves the time performance while using

much less memory, enabling the possibility of processing very large datasets.

We have benchmarked several implementations, varying time, precision, and memory

usage. We conclude that GPUs offer a perfect infrastructure for supporting the batch

streaming model. Note that in the current project, while all experiments were carried out

on a single GPU, we did not change the Count Sketch data structure. Thus, two or more

sketches computed on different nodes, if merged, will approximate the cell counts for the

combined stream of updates. Therefore, this approach can be used in distributed settings,

where each node will have its own stream of updates and its own data sketch, and at the

end all the sketches can be summed to find the heaviest cells. An implementation of this

algorithm on distributed storage, using several GPUs, is crucial due to IO being the main

bottleneck and will be considered in future work. Additionally, we will investigate the

application of other classic streaming algorithms in a batch streaming model, on the GPU.

Among other future directions, we are considering structure finding in 6D space, where

each particle is described by its velocity and location; we are also considering hierarchical

sketch-based clustering, to find the top-k heaviest cells in meshes of different sizes in

parallel.

Though the emphasis in the entire chapter is on the technical application of these

streaming algorithms in a new context, we showed, where possible, that these random-

ized algorithms provide results consistent with their exact counterparts. In particular, we

can reproduce the positions of the most massive clusters and the two-point correlation

function of highly non-linear excursion sets. The nature of these algorithms currently

precludes the possibility of sampling the full density field or the full halo multiplicity

function, though we are working on algorithms to at least approximate those statistics.

197



Chapter 5. Finding haloes in cosmological N-body simulations

(A) Cell size = 0.1 Mpc/h

(B) Cell size = 1 Mpc/h

FIGURE 5.18: Relative error vs. rank for (a) cell size 0.1Mpc/h and (b) cell
size 1Mpc/h. Each experiment was carried 20 times. Dashed lines depict
the maximum and the minimum, while the solid line shows the average over

those 20 runs for each rank value.

198



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.19: Relative error vs. δ of the cell

FIGURE 5.20: Distribution of absolute error for different ranks

199



Chapter 5. Finding haloes in cosmological N-body simulations

(A) cell size = 0.1 Mpc/h

(B) cell size = 1 Mpc/h

FIGURE 5.21: Count distortion for the cell size = 0.1 Mpc/h on the top and
for the cell size = 1 Mpc/h on the bottom.

200



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.22: Relative error for the counts in the output of the Count Sketch
algorithm and Count Min Sketch algorithm, cell size = 0.1 Mpc/h

FIGURE 5.23: Relative error for the counts in the output of the Count Sketch
algorithm with different sampling rates, cell size = 1 Mpc/h

201



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.24: Relative error for the counts in the output of the Count Sketch
algorithm with different sampling rates, cell size = 0.1 Mpc/h

FIGURE 5.25: Relative error for the counts in the output of the Count Sketch
algorithm with different internal parameters, cell size = 0.1Mpc. Color is the
height of the CS table, and line type is the width of CS table: solid is 16 · 106,

dashed is 8 · 106, dash-dotted is 4 · 106, and dotted is 106 columns

202



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.26: Finding halos from heavy cells exactly by running any offline
in-memory algorithm on the subset of particles belonging to the top heaviest

cells.

FIGURE 5.27: Comparison of the 2-point correlation functions of excursion
sets determined using the exact counts and the Count Sketch results for 4
over-density levels. The numbers in parentheses indicate the number of cells
that was found and used i the calculation of ξ. Clearly the results of applying
the spatial statistic to the Count Sketch result is equivalent to that of the exact
counts. The radius R is in the natural, co-moving units of the simulations,

Mpc/h.

203



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.28: Two-point correlation functions of excursion sets, defined as
sets of cells with a certain lower limit on the over-density. In this plot the
results of the count-sketch algorithm for detecting heavy-hitters is used to
determine the excursion sets. The number next to the line segments in the
legend gives the over-density, the numbers in parentheses indicate the num-
ber of cells at that over-density. The radius R is in the natural, co-moving

units of the simulations, Mpc/h.

204



Chapter 5. Finding haloes in cosmological N-body simulations

FIGURE 5.29: Relative error for the counts in output of Count Sketch algo-
rithm for Millennium XXL dataset.

FIGURE 5.30: Comparison of CS 2-pt correlation function for excursion sets in
0.2 Mpc cells with δ ≥ 20000 for the XXL (dots) compared to the exact result
for the Millennium run. The two results are compatible with each other, with
deviations explained by discreteness effects in the much sparser Millennium
result. The radius R is in the natural, co-moving units of the simulations,

Mpc/h.

205



Bibliography

[1] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss

with binary coins”. In: Journal of Computer and System Sciences 66.4 (2003), pp. 671–

687.

[2] Pankaj K Agarwal et al. “Mergeable summaries”. In: ACM Transactions on Database

Systems (TODS) 38.4 (2013), p. 26.

[3] Charu C Aggarwal. Data streams: models and algorithms. Vol. 31. Springer Science &

Business Media, 2007.

[4] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining Associ-

ation Rules in Large Databases”. In: VLDB. 1994, pp. 487–499.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. “First efficient convergence for streaming k-

pca: a global, gap-free, and near-optimal rate”. In: Foundations of Computer Science

(FOCS), 2017 IEEE 58th Annual Symposium on. IEEE. 2017, pp. 487–492.

[6] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approx-

imating the frequency moments”. In: Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing. ACM. 1996, pp. 20–29.

[7] RE Angulo et al. “Scaling relations for galaxy clusters in the Millennium-XXL sim-

ulation”. In: Monthly Notices of the Royal Astronomical Society 426.3 (2012), pp. 2046–

2062.

206



BIBLIOGRAPHY

[8] Arvind Arasu and Gurmeet Singh Manku. “Approximate counts and quantiles

over sliding windows”. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems. ACM. 2004, pp. 286–296.

[9] Eran Assaf et al. “Pay for a Sliding Bloom Filter and Get Counting, Distinct Ele-

ments, and Entropy for Free”. In: IEEE INFOCOM. 2018.

[10] Khanh Do Ba et al. “Lower Bounds for Sparse Recovery”. In: CoRR abs/1106.0365

(2011).

[11] Brian Babcock et al. “Models and Issues in Data Stream Systems”. In: PODS. Madi-

son, Wisconsin, 2002.

[12] Ziv Bar-Yossef et al. “An information statistics approach to data stream and com-

munication complexity”. In: Journal of Computer and System Sciences (2004).

[13] James M Bardeen et al. “The statistics of peaks of Gaussian random fields”. In: The

Astrophysical Journal 304 (1986), pp. 15–61.

[14] Ran Ben Basat, Roy Friedman, and Rana Shahout. “Heavy Hitters over Interval

Queries”. In: arXiv:1804.10740 (2018).

[15] Ran Ben-Basat et al. “Constant Time Updates in Hierarchical Heavy Hitters”. In:

ACM SIGCOMM (2017).

[16] Ran Ben-Basat et al. “Randomized Admission Policy for Efficient Top-k and Fre-

quency Estimation”. In: IEEE INFOCOM. 2017.

[17] Theophilus Benson, Aditya Akella, and David A. Maltz. “Network traffic charac-

teristics of data centers in the wild”. In: ACM IMC. 2010.

[18] Theophilus Benson et al. “MicroTE: Fine Grained Traffic Engineering for Data Cen-

ters”. In: ACM CoNEXT. 2011, p. 8.

207



BIBLIOGRAPHY

[19] Radu Berinde et al. “Space-optimal heavy hitters with strong error bounds”. In:

Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems (PODS). 2009, pp. 157–166.

[20] Kevin S. Beyer and Raghu Ramakrishnan. “Bottom-Up Computation of Sparse

and Iceberg CUBEs”. In: SIGMOD. 1999, pp. 359–370.

[21] Arnab Bhattacharyya, Palash Dey, and David P Woodruff. “An optimal algorithm

for `1-heavy hitters in insertion streams and related problems”. In: ACM PODS.

2016.

[22] Robert S Boyer and J Strother Moore. A fast majority vote algorithm. SRI Interna-

tional. Computer Science Laboratory, 1981.

[23] Robert S. Boyer and J. Strother Moore. “MJRTY: A Fast Majority Vote Algorithm”.

In: Automated Reasoning: Essays in Honor of Woody Bledsoe. 1991, pp. 105–118.

[24] V. Braverman. “Sliding window algorithms”. In: Encyc. of Algorithms, 2004 ().

[25] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. “How to catch l2-heavy-

hitters on sliding windows”. In: Theoretical Computer Science (2014).

[26] Vladimir Braverman and Rafail Ostrovsky. “Approximating large frequency mo-

ments with pick-and-drop sampling”. In: Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques. Springer, 2013, pp. 42–57.

[27] Vladimir Braverman and Rafail Ostrovsky. “Generalizing the Layering Method of

Indyk and Woodruff: Recursive Sketches for Frequency-Based Vectors on Streams”.

In: APPROX/RANDOM. 2013.

208



BIBLIOGRAPHY

[28] Vladimir Braverman and Rafail Ostrovsky. “Smooth histograms for sliding win-

dows”. In: Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Sym-

posium on. IEEE. 2007, pp. 283–293.

[29] Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. “Zero-One Laws for

Sliding Windows and Universal Sketches”. In: APPROX/RANDOM. 2015.

[30] Vladimir Braverman et al. “An Optimal Algorithm for Large Frequency Moments

Using O(n1−2/k) Bits”. In: Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques. 2014, pp. 531–544.

[31] Vladimir Braverman et al. “Beating CountSketch for heavy hitters in insertion

streams”. In: ACM STOC. 2016.

[32] Vladimir Braverman et al. “BPTree: an `2 heavy hitters algorithm using constant

memory”. In: arXiv preprint arXiv:1603.00759 (2016).

[33] Vladimir Braverman et al. “Nearly Optimal Distinct Elements and Heavy Hitters

on Sliding Windows”. In: arXiv preprint arXiv:1805.00212 (2018).

[34] Vladimir Braverman et al. “Streaming Space Complexity of Nearly All Functions

of One Variable on Frequency Vectors”. In: ACM PODS. 2016.

[35] Larry Carter and Mark N. Wegman. “Universal Classes of Hash Functions”. In: J.

Comput. Syst. Sci. 18.2 (1979), pp. 143–154.

[36] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. “A near-optimal

algorithm for estimating the entropy of a stream”. In: ACM Transactions on Algo-

rithms (TALG) 6.3 (2010), p. 51.

209



BIBLIOGRAPHY

[37] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. “Near-optimal lower bounds

on the multi-party communication complexity of set disjointness”. In: IEEE CCC.

2003.

[38] Badrish Chandramouli et al. “Data stream management systems for computa-

tional finance”. In: Computer 43.12 (2010), pp. 45–52.

[39] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items

in data streams”. In: International Colloquium on Automata, Languages, and Program-

ming. Springer. 2002, pp. 693–703.

[40] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and

data mining. ACM. 2016, pp. 785–794.

[41] P. Coles and B. Jones. “A lognormal model for the cosmological mass distribution”.

In: MNRAS 248 (Jan. 1991), pp. 1–13.

[42] Graham Cormode and Marios Hadjieleftheriou. “Finding Frequent Items in Data

Streams”. In: Proc. VLDB Endow. 1.2 (Aug. 2008), pp. 1530–1541. ISSN: 2150-8097.

DOI: 10.14778/1454159.1454225. URL: http://dx.doi.org/10.14778/1454159.

1454225.

[43] Graham Cormode and Marios Hadjieleftheriou. “Methods for Finding Frequent

Items in Data Streams”. In: J. VLDB (2010).

[44] Graham Cormode and Shan Muthukrishnan. “An improved data stream sum-

mary: the count-min sketch and its applications”. In: Journal of Algorithms 55.1

(2005), pp. 58–75.

210

http://dx.doi.org/10.14778/1454159.1454225
http://dx.doi.org/10.14778/1454159.1454225
http://dx.doi.org/10.14778/1454159.1454225


BIBLIOGRAPHY

[45] Graham Cormode et al. “Holistic aggregates in a networked world: Distributed

tracking of approximate quantiles”. In: Proceedings of the 2005 ACM SIGMOD in-

ternational conference on Management of data. ACM. 2005, pp. 25–36.

[46] Mayur Datar et al. “Maintaining stream statistics over sliding windows”. In: SIAM

journal on computing 31.6 (2002), pp. 1794–1813.

[47] Marc Davis et al. “The evolution of large-scale structure in a universe dominated

by cold dark matter”. In: The Astrophysical Journal 292 (1985), pp. 371–394.

[48] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. “Frequency Estimation

of Internet Packet Streams with Limited Space”. In: ESA. 2002, pp. 348–360.

[49] David J DeWitt, Jeffrey F Naughton, and Donovan A Schneider. “Parallel sorting

on a shared-nothing architecture using probabilistic splitting”. In: Parallel and dis-

tributed information systems, 1991., proceedings of the first international conference on.

IEEE. 1991, pp. 280–291.

[50] Richard M. Dudley. “The sizes of compact subsets of Hilbert space and continuity

of Gaussian processes”. In: J. Functional Analysis 1 (1967), pp. 290–330.

[51] G. Einziger, B. Fellman, and Y. Kassner. “Independent counter estimation buck-

ets”. In: IEEE INFOCOM. 2015.

[52] Cristian Estan, Stefan Savage, and George Varghese. “Automatically Inferring Pat-

terns of Resource Consumption in Network Traffic”. In: ACM SIGCOMM. 2003.

[53] Cristian Estan and George Varghese. “New directions in traffic measurement and

accounting: Focusing on the elephants, ignoring the mice”. In: ACM Trans. Comput.

Syst. 21.3 (2003), pp. 270–313.

211



BIBLIOGRAPHY

[54] B. L. Falck, M. C. Neyrinck, and A. S. Szalay. “ORIGAMI: Delineating Halos Using

Phase-space Folds”. In: ApJ 754, 126 (Aug. 2012), p. 126. DOI: 10 . 1088 / 0004 -

637X/754/2/126. arXiv: 1201.2353.

[55] Min Fang et al. “Computing Iceberg Queries Efficiently”. In: VLDB. 1998, pp. 299–

310.

[56] Shir Landau Feibish et al. “Mitigating DNS random subdomain DDoS attacks by

distinct heavy hitters sketches”. In: ACM/IEEE HotWeb 2017.

[57] David Felber and Rafail Ostrovsky. “A randomized online quantile summary in O

(1/epsilon* log (1/epsilon)) words”. In: LIPIcs-Leibniz International Proceedings in

Informatics. Vol. 40. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[58] Éric Fusy and Frécéric Giroire. “Estimating the number of active flows in a data

stream over a sliding window”. In: ANALCO. 2007.

[59] Pedro Garcia-Teodoro et al. “Anomaly-Based Network Intrusion Detection: Tech-

niques, Systems and Challenges”. In: Computers and Security (2009).

[60] Mina Ghashami et al. “Frequent directions: Simple and deterministic matrix sketch-

ing”. In: SIAM Journal on Computing 45.5 (2016), pp. 1762–1792.

[61] Stuart PD Gill, Alexander Knebe, and Brad K Gibson. “The evolution of substruc-

ture—I. A new identification method”. In: Monthly Notices of the Royal Astronomical

Society 351.2 (2004), pp. 399–409.

[62] Parikshit Gopalan and Jaikumar Radhakrishnan. “Finding duplicates in a data

stream”. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA). 2009, pp. 402–411.

212

http://dx.doi.org/10.1088/0004-637X/754/2/126
http://dx.doi.org/10.1088/0004-637X/754/2/126
http://arxiv.org/abs/1201.2353


BIBLIOGRAPHY

[63] S. Gottlöber and G. Yepes. “Shape, Spin, and Baryon Fraction of Clusters in the

MareNostrum Universe”. In: ApJ 664 (July 2007), pp. 117–122. DOI: 10 . 1086 /

517907. eprint: astro-ph/0703164.

[64] Michael Greenwald and Sanjeev Khanna. “Space-efficient online computation of

quantile summaries”. In: ACM SIGMOD Record. Vol. 30. 2. ACM. 2001, pp. 58–66.

[65] Michael B Greenwald and Sanjeev Khanna. “Power-conserving computation of

order-statistics over sensor networks”. In: Proceedings of the twenty-third ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems. ACM. 2004, pp. 275–

285.

[66] Michael B Greenwald and Sanjeev Khanna. “Quantiles and equi-depth histograms

over streams”. In: Data Stream Management. Springer, 2016, pp. 45–86.

[67] Uffe Haagerup. “The best constants in the Khintchine inequality”. In: Studia Math.

70.3 (1982), pp. 231–283.

[68] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns without Candi-

date Generation”. In: SIGMOD. 2000, pp. 1–12.

[69] Jiawei Han et al. “Efficient Computation of Iceberg Cubes with Complex Mea-

sures”. In: SIGMOD. 2001, pp. 1–12.

[70] David Lee Hanson and Farroll Tim Wright. “A bound on tail probabilities for

quadratic forms in independent random variables”. In: The Annals of Mathemati-

cal Statistics 42.3 (1971), pp. 1079–1083.

[71] Hazar Harmouch and Felix Naumann. “Cardinality Estimation: An Experimental

Survey”. In: J. VLDB (2017).

213

http://dx.doi.org/10.1086/517907
http://dx.doi.org/10.1086/517907
astro-ph/0703164


BIBLIOGRAPHY

[72] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. “Sketching and Stream-

ing Entropy via Approximation Theory”. In: 49th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS). 2008, pp. 489–498.

[73] Stefan Heule, Marc Nunkesser, and Alexander Hall. “HyperLogLog in Practice:

Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm”.

In: ACM EDBT. 2013.

[74] Paul Hick. CAIDA Anonymized 2014 Internet Trace, equinix-chicago 2014-03-20 13:55

UTC, Direction B. http://www.caida.org/data/monitors/passive-equinix-chicago.xml.

[75] Christian Hidber. “Online Association Rule Mining”. In: SIGMOD. 1999, pp. 145–

156.

[76] Zengfeng Huang, Wai Ming Tai, and Ke Yi. “Tracking the Frequency Moments at

All Times”. In: arXiv preprint arXiv:1412.1763 (2014).

[77] Zengfeng Huang et al. “Sampling based algorithms for quantile computation in

sensor networks”. In: Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data. ACM. 2011, pp. 745–756.

[78] Piotr Indyk. “Stable distributions, pseudorandom generators, embeddings, and

data stream computation”. In: J. ACM 53.3 (2006), pp. 307–323.

[79] Piotr Indyk, Eric Price, and David P. Woodruff. “On the Power of Adaptivity in

Sparse Recovery”. In: IEEE 52nd Annual Symposium on Foundations of Computer Sci-

ence (FOCS). 2011, pp. 285–294.

[80] Piotr Indyk and David Woodruff. “Optimal Approximations of the Frequency Mo-

ments of Data Streams”. In: Proceedings of the Thirty-seventh Annual ACM Sympo-

sium on Theory of Computing. STOC ’05. Baltimore, MD, USA: ACM, 2005, pp. 202–

214



BIBLIOGRAPHY

208. ISBN: 1-58113-960-8. DOI: 10.1145/1060590.1060621. URL: http://doi.acm.

org/10.1145/1060590.1060621.

[81] Nikita Ivkin et al. “Scalable streaming tools for analyzing N-body simulations:

Finding halos and investigating excursion sets in one pass”. In: Astronomy and com-

puting 23 (2018), pp. 166–179.

[82] Hossein Jowhari, Mert Saglam, and Gábor Tardos. “Tight bounds for Lp samplers,

finding duplicates in streams, and related problems”. In: PODS. 2011, pp. 49–58.

[83] Nick Kaiser. “On the spatial correlations of Abell clusters”. In: The Astrophysical

Journal 284 (1984), pp. L9–L12.

[84] Daniel Kane, Raghu Meka, and Jelani Nelson. “Almost optimal explicit Johnson-

Lindenstrauss families”. In: Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques. Springer, 2011, pp. 628–639.

[85] Zohar Karnin, Kevin Lang, and Edo Liberty. “Optimal quantile approximation

in streams”. In: Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual

Symposium on. IEEE. 2016, pp. 71–78.

[86] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. “A simple algo-

rithm for finding frequent elements in streams and bags”. In: ACM Trans. Database

Syst. 28 (2003), pp. 51–55.

[87] Hannu Karttunen et al. Fundamental astronomy. Springer, 2016.

[88] Atul Kant Kaushik, Emmanuel S. Pilli, and R. C. Joshi. “Network Forensic Analysis

by Correlation of Attacks with Network Attributes”. In: Information and Communi-

cation Technologies. 2010.

215

http://dx.doi.org/10.1145/1060590.1060621
http://doi.acm.org/10.1145/1060590.1060621
http://doi.acm.org/10.1145/1060590.1060621


BIBLIOGRAPHY

[89] Issha Kayo, Atsushi Taruya, and Yasushi Suto. “Probability Distribution Function

of Cosmological Density Fluctuations from a Gaussian Initial Condition: Compari-

son of One-Point and Two-Point Lognormal Model Predictions with N-Body Sim-

ulations”. In: The Astrophysical Journal 561.1 (2001), p. 22. URL: http://stacks.

iop.org/0004-637X/561/i=1/a=22.

[90] Anatoly Klypin and Jon Holtzman. “Particle-Mesh code for cosmological simula-

tions”. In: arXiv preprint astro-ph/9712217 (1997).

[91] Alexander Knebe et al. “Haloes gone MAD: the halo-finder comparison project”.

In: Monthly Notices of the Royal Astronomical Society 415.3 (2011), pp. 2293–2318.

[92] Alexander Knebe et al. “Structure finding in cosmological simulations: the state of

affairs”. In: Monthly Notices of the Royal Astronomical Society 435.2 (2013), pp. 1618–

1658.

[93] Steffen R Knollmann and Alexander Knebe. “AHF: Amiga’s halo finder”. In: The

Astrophysical Journal Supplement Series 182.2 (2009), p. 608.

[94] Ilan Kremer, Noam Nisan, and Dana Ron. “On randomized one-round communi-

cation complexity”. In: Computational Complexity 8.1 (1999), pp. 21–49.

[95] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces. Vol. 23. Springer-

Verlag, 1991.

[96] Gerard Lemson et al. “Halo and galaxy formation histories from the millennium

simulation: Public release of a VO-oriented and SQL-queryable database for study-

ing the evolution of galaxies in the LambdaCDM cosmogony”. In: arXiv preprint

astro-ph/0608019 (2006).

216

http://stacks.iop.org/0004-637X/561/i=1/a=22
http://stacks.iop.org/0004-637X/561/i=1/a=22


BIBLIOGRAPHY

[97] Yi Li and David P Woodruff. “A tight lower bound for high frequency moment

estimation with small error”. In: Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques. Springer, 2013, pp. 623–638.

[98] Zhenjiang Li et al. “Ubiquitous data collection for mobile users in wireless sensor

networks”. In: INFOCOM, 2011 Proceedings IEEE. IEEE. 2011, pp. 2246–2254.

[99] Edo Liberty. “Simple and deterministic matrix sketching”. In: Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2013, pp. 581–588.

[100] Xuemin Lin et al. “Continuously maintaining quantile summaries of the most re-

cent n elements over a data stream”. In: Data Engineering, 2004. Proceedings. 20th

International Conference on. IEEE. 2004, pp. 362–373.

[101] Zaoxing Liu et al. “One Sketch to Rule Them All: Rethinking Network Flow Moni-

toring with UnivMon”. In: Proceedings of the 2016 ACM SIGCOMM Conference. SIG-

COMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 101–114. ISBN: 978-1-4503-4193-

6. DOI: 10.1145/2934872.2934906. URL: http://doi.acm.org/10.1145/2934872.

2934906.

[102] Zaoxing Liu et al. “Streaming Algorithms for Halo Finders”. In: e-Science (e-Science),

2015 IEEE 11th International Conference on. IEEE. 2015, pp. 342–351.

[103] Gurmeet Singh Manku and Rajeev Motwani. “Approximate Frequency Counts

over Data Streams”. In: PVLDB 5.12 (2012), p. 1699.

[104] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. “Approximate

medians and other quantiles in one pass and with limited memory”. In: ACM SIG-

MOD Record. Vol. 27. 2. ACM. 1998, pp. 426–435.

217

http://dx.doi.org/10.1145/2934872.2934906
http://doi.acm.org/10.1145/2934872.2934906
http://doi.acm.org/10.1145/2934872.2934906


BIBLIOGRAPHY

[105] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. “Random sam-

pling techniques for space efficient online computation of order statistics of large

datasets”. In: ACM SIGMOD Record. Vol. 28. 2. ACM. 1999, pp. 251–262.

[106] Raghu Meka. “A PTAS for computing the supremum of Gaussian processes”. In:

FOCS. IEEE. 2012, pp. 217–222.

[107] A. Metwally, D. Agrawal, and A. El Abbadi. “Efficient computation of frequent

and top-k elements in data streams”. In: ICDT. 2005.

[108] Rui Miao et al. “SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap

Using Switching ASICs”. In: ACM SIGCOMM. 2017.

[109] Jayadev Misra and David Gries. “Finding repeated elements”. In: Science of com-

puter programming 2.2 (1982), pp. 143–152.

[110] Morteza Monemizadeh and David P Woodruff. “1-pass relative-error lp-sampling

with applications”. In: Proceedings of the twenty-first annual ACM-SIAM symposium

on Discrete Algorithms. SIAM. 2010, pp. 1143–1160.

[111] Masoud Moshref et al. “DREAM: Dynamic Resource Allocation for Software-defined

Measurement”. In: ACM SIGCOMM. 2014.

[112] J Ian Munro and Mike S Paterson. “Selection and sorting with limited storage”. In:

Theoretical computer science 12.3 (1980), pp. 315–323.

[113] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. In: Foundations

and Trends in Theoretical Computer Science 1.2 (2005). DOI: 10.1561/0400000002.

URL: http://dx.doi.org/10.1561/0400000002.

218

http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1561/0400000002


BIBLIOGRAPHY

[114] Mark C Neyrinck, Nickolay Y Gnedin, and Andrew JS Hamilton. “VOBOZ: an

almost-parameter-free halo-finding algorithm”. In: Monthly Notices of the Royal As-

tronomical Society 356.4 (2005), pp. 1222–1232.

[115] Ran Ben Basat Gil Einziger Roy Friedman Vladimir Braverman Nikita Ivkin Zaox-

ing Liu. “Monitoring the Network with Interval Queries”. In: In submission. 2018.

[116] Noam Nisan. “Pseudorandom generators for space-bounded computation”. In:

Combinatorica 12.4 (1992), pp. 449–461.

[117] CUDA Nvidia. Programming guide. 2010.

[118] George Nychis et al. “An Empirical Evaluation of Entropy-based Traffic Anomaly

Detection”. In: ACM IMC. 2008.

[119] “Page view statistics for Wikimedia projects”. In: (2016). URL: https://dumps.

wikimedia.org/other/pagecounts-raw/.

[120] Phillip James Edwin Peebles. The large-scale structure of the universe. Princeton uni-

versity press, 1980.

[121] Rob Pike et al. “Interpreting the data: Parallel analysis with Sawzall”. In: Scientific

Programming 13.4 (2005), pp. 277–298.

[122] Susana Planelles and Vicent Quilis. “ASOHF: a new adaptive spherical overden-

sity halo finder”. In: Astronomy & Astrophysics 519 (2010), A94.

[123] Viswanath Poosala et al. “Improved histograms for selectivity estimation of range

predicates”. In: ACM Sigmod Record. Vol. 25. 2. ACM. 1996, pp. 294–305.

[124] Douglas Potter, Joachim Stadel, and Romain Teyssier. “PKDGRAV3: beyond tril-

lion particle cosmological simulations for the next era of galaxy surveys”. In: Com-

putational Astrophysics and Cosmology 4.1 (2017), p. 2.

219

https://dumps.wikimedia.org/other/pagecounts-raw/
https://dumps.wikimedia.org/other/pagecounts-raw/


BIBLIOGRAPHY

[125] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. “DSK: k-mer counting

with very low memory usage”. In: Bioinformatics 29.5 (2013), pp. 652–653.

[126] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. “An Efficient

Algorithm for Mining Association Rules in Large Databases”. In: VLDB. 1995,

pp. 432–444.

[127] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. “Popularity is ev-

erything: A new approach to protecting passwords from statistical-guessing at-

tacks”. In: Proceedings of the 5th USENIX conference on Hot topics in security. USENIX

Association. 2010, pp. 1–8.

[128] Vyas Sekar et al. “LADS: Large-scale Automated DDoS Detection System.” In:

USENIX ATC. 2006.

[129] P Griffiths Selinger et al. “Access path selection in a relational database manage-

ment system”. In: Proceedings of the 1979 ACM SIGMOD international conference on

Management of data. ACM. 1979, pp. 23–34.

[130] Nisheeth Shrivastava et al. “Medians and beyond: new aggregation techniques

for sensor networks”. In: Proceedings of the 2nd international conference on Embedded

networked sensor systems. ACM. 2004, pp. 239–249.

[131] Haya Shulman and Michael Waidner. “Towards Forensic Analysis of Attacks with

DNSSEC”. In: IEEE SPW. 2014.

[132] R. E. Smith et al. “Stable clustering, the halo model and non-linear cosmological

power spectra”. In: MNRAS 341 (June 2003), pp. 1311–1332. DOI: 10.1046/j.1365-

8711.2003.06503.x. eprint: astro-ph/0207664.

[133] Volker Springel. “The cosmological simulation code GADGET-2”. In: Monthly no-

tices of the royal astronomical society 364.4 (2005), pp. 1105–1134.

220

http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
astro-ph/0207664


BIBLIOGRAPHY

[134] PM Sutter and PM Ricker. “Examining subgrid models of supermassive black

holes in cosmological simulation”. In: The Astrophysical Journal 723.2 (2010), p. 1308.

[135] Michel Talagrand. “Majorizing Measures: The Generic Chaining”. In: The Annals

of Probability 24.3 (1996).

[136] Michel Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods

and Classical Problems. Vol. 60. Springer Science & Business Media, 2014.

[137] The CAIDA nonymized Internet Traces equinix-nyc 2018-03-15, Dir. A.

[138] “The CAIDA UCSD Anonymized Internet Traces”. In: (2015). URL: http://data.

caida.org/datasets/passive-2015/.

[139] The CAIDA UCSD Anonymized Internet Traces 2016 - January. 21st. URL: http://

www.caida.org/data/passive/passive_2016_dataset.xml.

[140] Mikkel Thorup and Yin Zhang. “Tabulation based 4-universal hashing with ap-

plications to second moment estimation”. In: Proceedings of the Fifteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,

USA, January 11-14, 2004. 2004, pp. 615–624. URL: http://dl.acm.org/citation.

cfm?id=982792.982884.

[141] Mikkel Thorup and Yin Zhang. “Tabulation-based 5-independent hashing with

applications to linear probing and second moment estimation”. In: SIAM Journal

on Computing 41.2 (2012), pp. 293–331.

[142] Hannu Toivonen. “Sampling Large Databases for Association Rules”. In: VLDB.

1996, pp. 134–145.

221

http://data.caida.org/datasets/passive-2015/
http://data.caida.org/datasets/passive-2015/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://dl.acm.org/citation.cfm?id=982792.982884
http://dl.acm.org/citation.cfm?id=982792.982884


BIBLIOGRAPHY

[143] Lu Wang et al. “Quantiles over data streams: an experimental study”. In: Pro-

ceedings of the 2013 ACM SIGMOD International Conference on Management of Data.

ACM. 2013, pp. 737–748.

[144] Martin White, Lars Hernquist, and Volker Springel. “The halo model and numeri-

cal simulations”. In: The Astrophysical Journal Letters 550.2 (2001), p. L129.

[145] Li Yang et al. “CASE: Cache-assisted Stretchable Estimator for High Speed Per-

flow Measurement”. In: IEEE INFOCOM. 2016.

[146] Sen Yang, Bill Lin, and Jun Xu. “Safe Randomized Load-Balanced Switching By

Diffusing Extra Loads”. In: ACM Meas. Anal. Comput. Syst., 2007 ().

[147] Ke Yi and Qin Zhang. “Optimal tracking of distributed heavy hitters and quan-

tiles”. In: Algorithmica 65.1 (2013), pp. 206–223.

222



Biography

Nikita Ivkin was born in Moscow, Russia. He obtained a B.S. and M.S. degrees in Applied

Math from Moscow Institute of Physics and Technology in 2011 and 2013 correspond-

ingly. In 2016 he earned M.S.E. degree from Johns Hopkins University.

223


	Abstract
	Acknowledgements
	Introduction
	Streaming model
	Contribution
	2 heavy hitters algorithm with fewer words
	Streaming Algorithms for cosmological N-body simulations
	Monitoring the Network with Interval Queries
	Streaming quantiles algorithms with small space and update time


	2 heavy hitters algorithm with fewer words
	Introduction
	Beating CountSketch for Heavy Hitters  in Insertion Streams
	Introduction
	2 heavy hitters algorithm
	Chaining Inequality
	Reduced randomness
	F2 at all points

	BPTree: an 2 heavy hitters algorithm using constant memory
	Introduction
	Algorithm and analysis
	Experimental Results

	Conclusion

	Monitoring the Network with Interval Queries
	Introduction
	Preliminaries
	Interval Algorithms
	Evaluation
	Conclusion

	Streaming quantiles algorithms with small space and update time
	Introduction
	A unified view of previous randomized solutions
	Our Contribution
	Experimental Results
	Conclusion

	Finding haloes in cosmological N-body simulations
	Introduction
	Streaming Algorithms for Halo Finders
	Methodology
	Implementation
	Evaluation

	Scalable Streaming Tools for Analyzing N-body Simulations
	Methodology
	Implementation
	Evaluation

	Conclusion

	Bibliography



