125 research outputs found

    A composable, energy-managed, real-time MPSOC platform.

    Get PDF
    Multi-processors systems on chip (MPSOC) platforms emerged in embedded systems as hardware solutions to support the continuously increasing functionality and performance demands in this domain. Such a platform has to execute a mix of applications with diverse performance and timing constraints, i.e., real-time or non-real-time, thus different application schedulers should co-exist on an MPSOC. Moreover, applications share many MPSOC resources, thus their timing depends on the arbitration at these resources. Arbitration may create inter-application dependencies, e.g., the timing of a low priority application depends on the timing of all higher priority ones. Application inter-dependencies make the functional and timing verification and the integration process harder. This is especially problematic for real-time applications, for which fulfilling the time-related constraints should be guaranteed by construction. Moreover, energy and power management, commonly employed in embedded systems, make this verification even more difficult. Typically, energy and power management involves scaling the resources operating point, which has a direct impact on the resource performance, thus influences the application time behaviour. Finally, a small change in one application leads to the need to re-verify all other applications, incurring a large effort. Composability is a property meant to ease the verification and integration process. A system is composable if the functionality and the timing behaviour of each application is independent of other applications mapped on the same platform. Composability is achieved by utilising arbiters that ensure applications independence. In this paper we present the concepts behind a composable, scalable, energy-managed MPSOC platform, able to support different real-time and nonreal time schedulers concurrently, and discuss its advantages and limitations

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Green computing: power optimisation of VFI-based real-time multiprocessor dataflow applications (extended version)

    Get PDF
    Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor frequency) help modern systems to reduce their power consumption while adhering to performance requirements. To balance flexibility and design complexity, the concept of Voltage and Frequency Islands (VFIs) was recently introduced for power optimisation. It achieves fine-grained system-level power management, by operating all processors in the same VFI at a common frequency/voltage.This paper presents a novel approach to compute a power management strategy combining DPM and DVFS. In our approach, applications (modelled in full synchronous dataflow, SDF) are mapped on heterogeneous multiprocessor platforms (partitioned in voltage and frequency islands). We compute an energy-optimal schedule, meeting minimal throughput requirements. We demonstrate that the combination of DPM and DVFS provides an energy reduction beyond considering DVFS or DMP separately. Moreover, we show that by clustering processors in VFIs, DPM can be combined with any granularity of DVFS. Our approach uses model checking, by encoding the optimisation problem as a query over priced timed automata. The model-checker Uppaal Cora extracts a cost minimal trace, representing a power minimal schedule. We illustrate our approach with several case studies on commercially available hardware

    A composable, energy-managed, real-time MPSOC platform

    Full text link
    Multi-processors systems on chip (MPSOC) platforms emerged in embedded systems as hardware solutions to support the continuously increasing functionality and performance demands in this domain. Such a platform has to execute a mix of applications with diverse performance and timing constraints, i.e., real-time or non-real-time, thus different application schedulers should co-exist on an MPSOC. Moreover, applications share many MPSOC resources, thus their timing depends on the arbitration at these resources. Arbitration may create inter-application dependencies, e.g., the timing of a low priority application depends on the timing of all higher priority ones. Application inter-dependencies make the functional and timing verification and the integration process harder. This is especially problematic for real-time applications, for which fulfilling the time-related constraints should be guaranteed by construction. Moreover, energy and power management, commonly employed in embedded systems, make this verification even more difficult. Typically, energy and power management involves scaling the resources operating point, which has a direct impact on the resource performance, thus influences the application time behaviour. Finally, a small change in one application leads to the need to re-verify all other applications, incurring a large effort. Composability is a property meant to ease the verification and integration process. A system is composable if the functionality and the timing behaviour of each application is independent of other applications mapped on the same platform. Composability is achieved by utilising arbiters that ensure applications independence. In this paper we present the concepts behind a composable, scalable, energy-managed MPSOC platform, able to support different real-time and nonreal time schedulers concurrently, and discuss its advantages and limitations

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    Run-time middleware to support real-time system scenarios

    Full text link
    Abstract—Systems on Chip (SOC) are powerful multipro-cessor systems capable of running multiple independent applica-tions, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single application. Scenarios are dynamic since applications can be started and stopped independently, and a single application’s behaviour can depend on its inputs, on different stages in processing, and so on. In this paper we describe how the CompSOC platform offers system integrators and application writers the capability to implement multiple scenarios. I

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints
    • …
    corecore