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Abstract

As the IC technology is advancing quickly, Multi-processor System-on-Chip (MP-
SoC) becomes the trend of embedded System-on-Chip (SoC) design. A typical
modern MPSoC for embedded systems usually runs multiple applications, some of
which have real-time requirements. To meet the real-time requirements, predictable
system is needed. The interference between applications in the MPSoC usually re-
sult in exponential increase in design and verification complexity. To avoid such
situations, we need composable system, on which the temporal behavior of differ-
ent applications does not depend on each other. In modern IC design, especially
for embedded systems, power consumption is becoming a major constraint, which
means power management is essential for MPSoC. Hence we need composable and
predictable MPSoC with power management capability.

In this thesis, the design and implementation of an FPGA-based composable and
predictable platform for emulating the power management of MPSoC are presented.
The platform consists of multiple MicroBlaze processor cores and Æthereal Network
on Chip (NoC) is used as the interconnection. The platform enables the sharing
of different resources, including the processer, among different applications in a
composable way. The support for data-flow application in the platform hardware
and software enables the predictable execution of streaming applications. And
with the power management hardware and software infrastructure, composable and
predictable power management for each application is possible. The support for
power management in data-flow application is implemented and demonstrated in
the experiments, which saves up to 50% energy compared to the trivial power
management policy.
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Chapter 1

Introduction

A typical chip for an embedded system, i.e. a system-on-chip (SoC) usually
integrates different intellectual property (IP) components.

As technology advances rapidly, more complex IPs are integrated to a single chip.
Embedded systems, especially the ones in consumer electronics business usually
have strict requirements on cost efficiency, power efficiency, and time to market.
To fulfill these requirements, modern SoCs tend to integrate multiple programable
processing cores such as general purpose processors and DSPs which run software,
along with other resources like a external memory controller, resulting in multi-
processor system-on-chip (MPSoC).

...

...

Interconnection

Memory

Tile

Peripheral

Tile

Processing

Tile

Processing

Tile

Figure 1.1: A typical architecture of an MPSoC

Fig. 1.1 shows a typical architecture of an MPSoC. The processing tile (PT)
consists of a programable processing core, typically a processor or DSP, and local
resources that are tightly coupled with the core. An MPSoC has multiple PTs,
and other resources such as memories, and these elements communicates with each
other via an interconnection infrastructure. To fully utilize the computation power
of such a system and achieve cost and power efficiency, multiple applications, some
of which have real-time requirements, are mapped on the system. Applications
mapped on the system can be independent, and yet they still share some resources.

1.1 Challenges in MPSoC Design

The technology development introduces a lot of challenges in the MPSoC design.
In this section we will discuss the key challenges in MPSoC design.

1



CHAPTER 1. INTRODUCTION

1.1.1 Verification Complexity and Composability

With the increasing integration level in MPSoC, the complexity of verification is
growing for both software and hardware. Interference between different components
of the system, which may come from different vendors, increases the complexity of
design and verification. If this interference is not handled properly, the complexity
grows exponentially as more IPs and software are integrated in the system.

To keep verification complexity linear, we want to avoid the unintended inter-
ference between components in the system. To be specific, the applications in the
system should not influence each other unless we want it. A system with such
property is called a composable system. In such a system, hardware and software
components can be designed and verified independently, therefore the complexity
of verification is linear in the number of applications and components.

1.1.2 Predictability

In embedded systems, a lot of applications have real-time requirements, e.g. video
player should be able to deliver result at a certain frame rate. To meet such re-
quirements, the behavior of the system should be bounded in temporal domain, i.e.
it should be predictable.

1.1.3 Power Efficiency

Power consumption has become the major concern in the modern IC design. For
embedded systems, power efficiency is even more important as many systems are
powered very limited power supply, e.g. batteries, solar panels. ICs in embed-
ded systems need to have power management capability in order to achieve power
efficiency.

1.1.4 Simulation-based Verification

The design of an IC has to be verified before it enters the fabrication process.
Typical verification methods include formal verification and simulation-based veri-
fication.

Current IC verification practices depend heavily on simulation. For the veri-
fication of MPSoC, it usually requires hardware-software co-simulation. Software-
based simulators have limited simulation speed, and the situation gets worse as the
number of processor cores keeps increasing. This results in a situation where the
verification process is becoming a dominant part of development in terms of both
time and money.

By using Field Programable Gate Array (FPGA) for emulation of the SoC, we
can achieve a speed that is very close to real system, and yet the platform has the
flexibility similar to software simulation.

1.2 Problem Description

Hansson et al. [23] introduce CoMPSoC, a predictable and composable MPSoC tem-
plate, which removes all interference between applications through resource reserva-
tions. In [19], the design of CompOSe, an RTOS that enables composable sharing of

2



1.3. REQUIREMENTS

processor between applications is presented. These works give a good template for
designing a composable and predictable MPSoC. However, the power management
is not addressed in these works.

The goal in this thesis is to design an MPSoC platform that extends CoMP-
SoC and CompOSe with power management capability, and define an FPGA-based
emulation platform based on it. The follows have to be done:

• Define a hardware and software infrastructure for power management in a
composable and predictable MPSoC platform, which is targeting streaming
applications.

• Design and implement an FPGA-based platform for the emulation of com-
posable and predictable power management on the MPSoC platform.

1.3 Requirements

What we want to achieve in this thesis is to design and implement a platform with
the following properties:

• The MPSoC platform is a scalable platform targeting streaming applications.

• Multiple applications, which may have real-time requirements, run on the
same processor in a composable way.

• The emulation platform has the hardware infrastructure to support the em-
ulation of power management, and together with the software system, it is
possible to perform composable and predictable power management.

• The speed of the emulation is sufficient to run actual applications.

• The observability of the emulation platform is sufficient for verification and
experiments for the applications.

1.4 Contributions

In the work of this thesis, we achieve the follows:

• Hardware and software infrastructure for power management in a composable
and predictable MPSoC platform based on the CoMPSoC template.

• Composable two-level scheduling on each processor with task budgeting in-
terface and slack management.

• Composable and predictable power management for data-flow applications.

• Improve inter-processor communication by DMA controller on processing tile.

• Monitor for gathering trace data of the FPGA emulation.

3



CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the concepts
of different aspects of the platform are introduced, as well as the the proposed ar-
chitecture and methodology. Then we start to describe the details in the design
of the platform, the hardware system design is in Chapter 3, followed by the soft-
ware system design in Chapter 4. Next the experiments we have done are shown
in Chapter 5. Related work is presented in Chapter 6 and the thesis ends with
conclusions and future work in Chapter 7.

4



Chapter 2

Basic Concepts and
Methodology

The design of a power efficient, composable and predictable MPSoC involves
satisfaction of trade-offs in a lot of different aspects. This chapter gives the descrip-
tion of the important concepts. Section 2.1 gives the definition of composability
and explains its necessity in modern MPSoC design. Another orthogonal aspect,
the real-time requirement of a system and the predictability are discussed in Sec-
tion 2.2. Thereafter, in Section 2.3, the power model of CMOS circuit and the basic
concepts of power management are introduced. Next in Section 2.4, the intercon-
nection of MPSoC is discussed and the network-on-chip is proposed as the solution.
The programming model for streaming application in this platform, the data-flow
graph model, is introduced in Section 2.5. Then we discuss the importance of FPGA
emulation in modern MPSoC verification in Section 2.6. Finally, the architecture
of a platform is proposed in Section 2.7, as well as the design flow.

2.1 Composability

An application is a set of communicating tasks, which provides a certain function
for the system.

With the advance in technology, it is common to have a number of independent
applications running on one system instead of physically independent systems, e.g.
a smart-phone normally has the functionalities which used to be provided separately
by a cell-phone, a digital camera and a PDA.

The integration of different applications in one system means that the level of
resource sharing is increased. A system is composable if there is no interference
between applications, which means the behavior of an application is not influenced
by the presence or absence of other applications. In such systems, resources allo-
cated to an application can be seen as a virtualized platform that only runs this
application. Thus the application can be designed and verified separately. Fig. 2.1
gives an example of such a system, three applications run at the same platform,
and each of them has a virtual platform that only runs the application. To achieve
composability, both hardware and software resources have to be shared in a com-
posable way. In this work we focus on the composability in the temporal domain,
similar to [29].

Traditionally, composability is achieved by avoiding sharing resources, e.g. in
the automotive industry, each function is offered by a separate processor and ded-
icated resources, such systems are common in both automotive and aerospace in-
dustry. Apparently, this solution is too expensive, and not energy efficient for most
embedded systems, especially for the ones in consumer electronic business. For such

5



CHAPTER 2. BASIC CONCEPTS AND METHODOLOGY

systems, resource sharing is necessary, and it brings up the problem of composable
scheduling for hardware and software resources.

Hardware Platform

...

Interconnect

...
Processing

Tile

BE Application

Task

RT Application

Task Task

RT Application

Task

Processing

Tile PeripheralMemory

Software Platform

Task Task Task Task

OS OS
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& Peripheral

Virtualized Platform

Virtualized

Processor
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Memory
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Processor

Virtualized

Memory

& Peripheral
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Figure 2.1: Composable system

2.2 Real-time Applications and Predictability

An application is said to be real-time if the correctness of its operation depends not
only upon its functional correctness, but also upon the time in which it is performed.

The real-time requirement of an application is usually defined by deadline. Ap-
plications can have different kinds of real-time requirements, namely, hard real-time
(HRT), firm real-time (FRT) and soft real-time (SRT) [13].

The main difference of different real-time requirements is the effect of deadline
misses. For hard real-time applications, the misses of deadline can lead to critical
failure and therefore are unacceptable, e.g. the flight control system of an airplane.
Firm real-time applications have similar real-time requirements as hard real-time
applications, except that deadline misses make the result useless but do not cause
critical failure, e.g. an audio playback device. Soft real-time on the other hand,
allows deadline misses as long as they are not too often. Most multimedia appli-
cations have soft real-time requirements, which are often specified in probability
terms.

In this work we call an application a real-time (RT) application if it has such
requirement, otherwise we call it a best-effort (BE) application. The real-time
requirement is defined in terms of throughput and latency requirements.

6



2.3. POWER MANAGEMENT

2.2.1 Predictability

A system is predictable if its behavior is bounded in the temporal domain, i.e. it
provides guaranteed useful lower bounds on performance [8]. It is essential for a
system running real-time application to be predictable in order to meet the real-
time requirements. To achieve predictability, both the hardware and the software
should be able to provide predictable service to the applications.

2.3 Power Management

In this section, the power model of CMOS circuit is introduced, and the techniques
for power management for such circuits are discussed.

2.3.1 Power Consumption Model of CMOS digital circuit

In a CMOS digital circuit, the power dissipation can be calculated by (2.1), which
consists of two parts, dynamic power dissipation and static power dissipation.

P = Pdynamic + Pstatic = αCV 2
DDf + IleakVDD + ISCVDD (2.1)

Dynamic Power Consumption

The dynamic power consumption of CMOS circuit can be modeled by the charging
and discharging of capacitance, and it is determined by (2.2),

Pdynamic = αCV 2
DDf (2.2)

where α is the activity rate of the circuit, i.e. the probability that a power con-
suming transition happens in the system in every clock cycle. C is the capacitance
of the circuit, VDD is the supply voltage and f is the frequency of the circuit.

Static Power Consumption

The static power consumption is determined by leakage current, the short circuit
current and the supply voltage, as (2.3).

Pstatic = IleakVDD + ISCVDD (2.3)

In traditional IC design, static power consumption is considered insignificant.
However as IC process technology continues advancing towards smaller feature size,
static power is becoming increasingly important. It is believed that static power
may become the dominant factor in IC power consumption, especially for the deep
sub-micron technologies below 65nm.

This work focuses on the power management of processors in active mode, in which
the dynamic power consumption is the dominant factor.

For static power consumption, a lot of technologies in circuit design and IC
process provide choices to reduce the static power, but they are beyond the scope
of this work, so we do not go into the details of them.

7



CHAPTER 2. BASIC CONCEPTS AND METHODOLOGY

2.3.2 Power Management Techniques

According to (2.2), to reduce the dynamic power consumption, we should reduce
the follows: C, α,f and VDD.

C and α are mostly determined by the circuit design and the type of the applica-
tion. Obviously, the best way to reduce the dynamic power consumption is to lower
the supply voltage VDD as it can result in quadratic power reduction. However,
reducing the supply voltage increases the circuit delay, which can be estimated by
(2.4), where τ is the propagation delay of a CMOS transistor, VT is the threshold
voltage and VG is the input gate voltage [14].

τ ∝ VDD

(VG − VT )2
(2.4)

From (2.2) and (2.4), we can see there is a trade-off between power consump-
tion and the delay. The curve in Fig. 2.2 is the typical power-delay curve, the
exact shape and value depend on the process and circuit design. The delay of a
circuit determines the maximum frequency it can run at. For a digital comput-
ing system such as a processor, this is a trade-off between power consumption and
computational performance.

Delay
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Figure 2.2: Power-delay curve

Another technology for saving dynamic power in digital system is clock gating,
which disables the clock when the circuit is idle but the idle time is not long enough
to shut down the circuit. It changes the f in (2.2) to 0 and saves the dynamic
power.

For static power consumption, most of the techniques of reducing static power
consumption are at circuit level. One of the techniques is adaptive body biasing
(ABB) [44], which can reduce the leakage current. Another technology that is also
popular is power gating, which completely shuts down part of the circuit and is
able to save a lot of energy, but the overhead is high and it is useful only when the
power-off time is long enough.

2.3.3 Architectural Level Power Management

As discussed in Section 2.3.2, the most effective way to save dynamic power is to
lower the supply voltage. The trade-off between power consumption and perfor-
mance becomes the most important problem. Deciding the frequency and supply
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2.3. POWER MANAGEMENT

voltage statically at design time clearly limits the possibility of power saving for
a processor based system because the workload of a processor varies according to
the software it runs. For real-time applications, the static frequency-voltage point
is determined by the worst case workload which usually results in significant over-
estimation in the actual execution. At this point, one can see that dynamic adjust
of the frequency and supply voltage based on runtime information would be a good
solution to this problem for microprocessor, i.e. the dynamic voltage and frequency
scaling (DVFS) technique [26, 41].

W
o
rk
lo
a
d

Time

Worst Case

Actual Case

Slack

(a) Slack Example

Deadline

time
(normalized)

1

2

3

1 2 3

frequency
(normalized)

(b) Use slack to set a lower frequency

Figure 2.3: An examples of DVFS

The basic idea of DVFS is to dynamically adjust the processor’s frequency so it
runs at a lower supply voltage. For hard or firm real-time applications the problem
here is to make sure the task still finishes in time. Assuming that the workload
of a task is defined by the number of cycles it needed to finish, and there is is a
deadline for this task, a number of cycles are allocated to this job according to the
worst case workload and the deadline. In reality the actual workload often varies,
the difference between the worst-case and actual-case workload is called slack, as
Fig. 2.3a shows. If the processor is able to detect slack generated at runtime, it can
use it to lower the frequency. The task produces the correct result at the right time
as long as the task gets the required number of cycles before the deadline. Fig. 2.3b
gives an example of DVFS using slack, the job is given 3 time units to finish its
work but at the maximal frequency 3 it only needs 1 time unit, so it can lower the
frequency to 1 which allows a lower supply voltage, and can fully utilize the time
assigned to it. It has been proven that the just-in-time policy minimizes dynamic
power in DVFS [26], i.e. the processor finishes the task just before the deadline. In
DVFS for best-effort or soft real-time applications, similar technique can be used,
and there are more possibilities since the timing constraints for these applications
is not so strict as hard/firm real-time applications. Per-core DVFS is an attractive
option for MPSoC power management, but it requires careful consideration of the
trade-off between the overhead and the energy saving [28].

For static power consumption, power gating is a practical choice at architectural
level. Some studies also suggest use ABB at the architectural level in order to reduce
static power consumption [35]. At application level, most of these techniques do
not show significant effect at runtime, and some of them can be simulated by the
same infrastructure as the DVFS simulation, e.g. the power gating.

In this work we assume the techniques described above are used, and we focus
on per-core dynamic power management at the architectural level using DVFS on

9



CHAPTER 2. BASIC CONCEPTS AND METHODOLOGY

an MPSoC.

2.4 Network on Chip

When multiple applications are integrated on the same system, resource sharing
between applications is inevitable as different elements in the system need to com-
municate and resources need to be reused.

ARM 0
(Master)

Memory
(Slave)

Peripheral
(Slave)

ARM 1
(Master)

DSP
(Master)

Arbiter

(a) Shared Bus

Memory

Router Router Router

DSP

Router Router Router

NI NI NI

NI NI NI

Memory Peripheral

ARM 0 ARM 1

(b) Network-on-Chip

Figure 2.4: Examples of interconnection based on shared bus and network-on-chip

In traditional SoC architecture, shared buses such as AHB [4] and PLB [24]
are widely used for solving this problem. In such an architecture, IPs that need to
access resources are masters on the bus, and the resources are slaves on the bus, as
shown in Fig. 2.4a. For shared buses, at any given moment, only one master has
the control of the bus and is able to access one of the slaves. Concurrent requests
are scheduled by the bus arbiter.

The shared bus is simple and cheap, but it is not scalable at either architectural
or physical level. At the architectural level, a shared bus is not scalable as it is shared
by all masters, which becomes a central bottleneck, causing severe performance
losses when number of masters increases. At physical level, the structure of shared
bus results in long global wires, which causes large delay and easily becomes the
critical path in the system implementation.

Networks on chip (NoC) [18] are the solution for this problem. A typical NoC
consists of a number of routers and links between them, see Fig. 2.4b. IPs are
connected to the network through a network interface (NI). Data is routed through
routers in the network. The data transfer in a NoC uses only local wires between
routers, which provides scalability at physical level. Additionally, NoC makes it
easier for IPs to run at their own clock domain compared to shared bus. It enables
globally asynchronous locally synchronous (GALS) system design [32], which eases
the design and provide more possibility for reducing power consumption. At the
architectural level, NoC handles concurrent transactions and can be easily pipelined,
therefore it does not become the central bottleneck. A NoC can provide high
bandwidth for multiple IPs in the system by properly allocating resources.

NoCs achieve a better trade-off than traditional interconnection architectures [3,
11]. Crossbar and multi-layered or hierarchical bus structure have been used to
improve the scalability of shared buses, but due to the nature of bus, these inter-
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connection cannot completely solve the problem, and a NoC would be the most
reasonable choice of interconnection for large scale MPSoC [3].

As stated earlier in this chapter, to build a composable and predictable sys-
tem, composable and predictable services should be provided by each component
in the system. For NoC this is not trivial as its structure is more complex. The
Æthereal [20] architecture addresses this issue by supporting time-division multiple
access (TDMA) of the network components across different connections, i.e. virtual
wires. With the TDMA time slots allocated to match the application requirements,
Quality of Service (QoS) guarantees is achieved, and the guaranteed service con-
nections are composable [21, 22]. The Ætheral is chosen to be the interconnection
of the platform in this work. More details are given later in Chapter 3.

2.5 Data-flow Graph Programming Model

Data-flow graphs are often used for modeling DSP applications and designing
streaming multimedia applications [34]. The platform in this work supports dif-
ferent types of data-flow graph model, and we focus on the synchronous data-flow
graph [33].

A synchronous data-flow (SDF) graph models tasks as nodes in the graph, called
actors. The communication channels between tasks are represented by directed
edges in the graph. The actor execution in SDF graph is called firing, incom-
ing edges to an actor represent the input data needed by the actor in one firing,
while outgoing edges represent the output data produced by the actor in one fir-
ing. Fig. 2.5a is an example of SDF graph with two actors and one communication
channel.

It is clear that the edges in the SDF graph represent the data dependence
between actors. The communications in the SDF graph is done in first-in-first-
out (FIFO) channels, the amount of data transferred is measured in tokens. The
number of tokens an actor produces or consumes in one firing is called rate, as a
and b in Fig. 2.5a, for actor A and actor B, respectively.

In SDF graph, whether an actor is allowed to fire or not, depends only on the
status of the FIFOs connected to it. If all incoming FIFOs have enough data and
all outgoing FIFOs have enough free space, the actor is allowed to fire once, and the
tokens are consumed according to the rate of the FIFOs. A self-edge in SDF graph
is used to model auto-concurrency, i.e. then maximum number of simultaneous
executions the actor, e.g. actor A in Fig. 2.5a cannot start a new execution until
the last one finishes. The SDF graph is monotonic, i.e. starting early does not
increase the completion time of the successors of an actor, which is important in
scheduling and power management.

1

A B
a b

1

(a) Synchronous data-flow
graph

A B
{a1,…,an} {b1,…,bn}

(b) Cyclo-static data-flow graph

Figure 2.5: Data-flow graph
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There are different kinds of data-flow graphs besides SDF graph. The Cyclo-
static data-flow (CSDF) graph model [10] is a similar computation model as SDF
graph. The major difference is that instead of having constant value in SDF, the rate
of a FIFO in the graph varies according to a pre-defined sequence, see Fig. 2.5b. This
modification makes it easier to model applications. CSDF graph can be converted
to SDF graph [39], so the analysis techniques for SDF graph still apply. Kahn
process network (KPN) proposed by Kahn in [27] is even more expressive, as it
allows data-dependency on the rate and actor behavior, on the other hand it makes
the analysis more difficult.

In this work we choose the data-flow graph as the programming model for
streaming applications. Note that the platform in this work has built-in support
for the scheduling and communication of the data-flow graph model, but it does
not mean only applications using this model can run on the platform.

2.6 FPGA-based Hardware Emulation and Simulation

As mention in Chapter 1, IC verification practice usually depends heavily on simu-
lation. Software-based simulation has limited simulation speed. The situation gets
worse as the number of processor cores in the design keeps increasing. The require-
ment for hardware-software co-simulation puts even more pressure on the simula-
tor. A typical trade-off in software simulator is to trade speed for abstraction-level.
However, even for simple simulators, the speed is quite limited [6, 12].

To correctly capture the behavior of an MPSoC, the simulation has to be de-
tailed, which leads to slow simulation. This results in a situation where the ver-
ification process is becoming a dominant part of development, in both time and
money.

FPGA-based emulation and simulation platforms are able to perform fast sim-
ulation way at low cost. Comparing to a software simulator, an FPGA platform
provides a much higher speed, usually more than 1/10 of the real system speed,
sometimes even at full speed. Moreover, the FPGA platform is very close to the
real IC environment, one can test the design without really producing the chip.
With state-of-the-art FPGA technology, the observability of such platforms is com-
parable to software simulators. The Berkeley Emulation Engine (BEE) [15], and
the Research Accelerator for Multiple Processors (RAMP) based on BEE [46] are
interesting examples of such FPGA platforms.

The speed of FPGA emulation is a motivation of this work.

2.7 Proposed System Architecture and Design Flow

In this work, we extend the CoMPSoC template in [23], and propose a tiled MPSoC
architecture. They system consists of a number of tiles, as Fig. 2.6 shows. There
are different types of tiles in the system, e.g. processing tile and memory tile. These
tiles are connected by the Æthereal NoC which allows predictable and composable
communication between different tiles.
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Figure 2.6: Proposed architecture

We focus on the hardware and software design of the processing tile, on which
the software applications are running. A processing tile has a MicroBlaze processor
with some local memories, a power management unit and a communication unit. On
the processor, an operating system (OS), which is an extension of the work in [19],
manages the processing tile resources and schedules application in a composable
manner. We assume the streaming applications are mapped on the platform using
data-flow graph model, which is directly supported by the OS. An application can
be mapped to one or multiple processing tiles.

As the system is designed in the globally asynchronous locally synchronous
(GALS) style, each processing tile performs the power management independently.
This enables the per-tile power management. In this work we design and implement
a power management unit (PMU) on each processing tile, which allows the processor
to perform DVFS on the tile.

Apart from the processing tiles and resource tiles, a monitor tile is introduced to
guarantee the observability of the system. The monitor tile collects data at runtime
from each processing tile, and sends the data to the host PC for analysis.

For power management, we assume the PMU on each processing tile is able to
generate different frequencies for the tile independently. Although it is difficult or
even impossible to implement complete DVFS on an FPGA due to the missing of
on-chip voltage scaling infrastructure, we do manage to create a power management
unit that enables the processing tile to emulate the behavior of DVFS.

On such a platform, the design flow is simple and effective, see Fig. 2.7. As the
components in the system provide composable services, it is possible to design the
applications separately. Each application has its own task set, scheduling algorithm
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and power management policy. The application is mapped on the virtual platform
and verified independently, as the composability of the system guarantees that
integration of applications does not affect the behavior of an individual application.
However, in the current implementation, the composable design flow is still not
complete yet, the mapping of different applications are still performed together.
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Figure 2.7: Design Flow of the System

2.8 Summary

The basic concepts of the platform are introduced in this chapter. The composabil-
ity and predictability are two important properties in MPSoC design for embedded
system. The power consumption is becoming the major problem in modern IC
design, which is also the most important motivation of this work. We discuss the
power model and different power management techniques in this chapter. Then the
necessity of developing FPGA-based emulation platform is presented. Finally, we
show the proposed system architecture, as well as the design flow for such platform.
In the remainder of this thesis, the design of this platform is explained in detail.
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Chapter 3

Hardware Platform Design

In this chapter, the design and implementation of the hardware modules in the
platform are presented. The hardware platform architecture is shown in Fig. 3.1.
The system consists of different kinds of tiles and a NoC that connects them.

MPSoC Platform

... ...

Processing

Tile

MicroBlaze

PMU

Memory

CU

Independent power 

and clock domain

Processing

Tile

Peripheral

Tile

Memory

Tile

Æthereal 

NoC

Host

PC

Monitor

Tile

FPGA Emulation

Platform

Cfg

Figure 3.1: Hardware platform architecture

Interconnection of the platform is a key element in a tiled architecture, so we
first introduce the Æthereal NoC in Section 3.1. Next, the most important tile
in the system, the processing tile is described in Section 3.2, including the power
management and communication infrastructure. Then the hardware part of the
monitor, which plays an important role in the emulation system, is discussed in
Section 3.3, and the system configuration, which is implemented on the monitor
tile, is introduced in Section 3.4. Finally, we put everything together to a complete
hardware platform in Section 3.5.
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3.1 NoC Based Interconnection

The Æthereal NoC is used as the interconnection between different tiles in the
system. In this section, we briefly introduce the architecture of the Æthereal NoC,
as well as the communication in Æthereal.

3.1.1 Æthereal NoC

The Æthereal NoC consist of two kinds of components, the routers that transfer data
among each other and network interface (NI) that are responsible for connecting
the IPs to the router network [20, 22].

The NI consists of two parts, the NI kernel and the NI shell, as shown in Fig. 3.2.
The NI shell is used as the bridge between the IP and the NI kernel, which allows the
IP to use different protocols to access the NoC, e.g. DTL [40]. The core functions
of NI, e.g. the packetization and depacketization, are provided by the NI kernel. In
this work, the DTL shell is used to connecting different tiles.

NI Kernel

NI Shell

DTL

NI Shell

AXIDTL

Config 

Port

Router

Figure 3.2: Æthereal Network Interface

3.1.2 Connection-based Communication

In the Æthereal NoC, communication between nodes of the network is based on
connections, which are established by resource reservation as Fig. 3.3a illustrates.

The links between components are resources that are shared with different IPs.
Contention on the links has to be resolved properly so the interconnection is com-
posable and predictable. Æthereal solves this problem by time division multiplexing
(TDM) scheduling of the links, which results in a contention-free routing [22].

Connections have requirements for the quality of service(QoS), which are char-
acterized by the bandwidth and latency requirements. There is a slot table on each
NI. Some slots in the slot table are reserved for a connection base on its QoS re-
quirements. An IP is only allowed to send data to the NoC when the current time
slot is reserved for the connection it is using. The slot tables in different NIs are
synchronized, so it is possible to allocate the slots such that no contention on the
links even happens. A simple example is given in Fig. 3.3b. Two connections c0
and c1 need to reach the NI at the bottom and each cycle a datum is transferred
through a link. c0 is allowed to send data at time slot 0 and 2, and c1 is allowed
data at time slot 1, so there is no contention at the left router and the destination
NI.
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Figure 3.3: Interconnection based on Æthereal NoC

In Æthereal, connections without QoS requirements, i.e. the best-effort connec-
tions use the time slots that are not allocated, or allocated but not used.

With this contention-free routing scheme, the interference between any two con-
nections with guaranteed service is eliminated, so the interconnection is compos-
able. And since the routing is based on TDM, the temporal behavior could be easily
bounded, i.e. the NoC is also predictable.

In this work, different applications use the composable connections provided by
Æthereal to access the remote resources.

3.2 Processing Tile Design

The processing tile is the central element in the system. Apart from running task
code, a processing tile also needs to provide the following things:

• Hardware infrastructure that allows software on the processor to perform
power management.

• Hardware infrastructure that connects the tile to the NoC, allows software to
access remote resource

The architecture of a processing tile is in Fig. 3.4. There are three main compo-
nents in a processing tile: a MicroBlaze processor core, a power management unit
and a communication unit.

The PMU is connected to the processor via FIFO interface which provides clock
domain crossing. The communication unit is connected to the local data bus, which
could be accessed by the processor using load/store instructions.

To ease the analysis of predictability, we decide not to use the cache in Mi-
croBlaze. Moreover, all communication with off-tile resources is performed by the
communication unit. As the platform is targeting streaming applications, such de-
sign is efficient. Other configurations of the core are determined according to the
application requirement.

Besides the main components, an instruction memory and data memory are
also essential parts of the tile, they are connected to the processor via local memory
bus (LMB), and the communication unit accesses the data memory using DTL
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Figure 3.4: Architecture of the processing tile

protocol [40]. The local timer, a counter that counts the local clock, i.e. the output
clock of the PMU is also provided, which can be useful for the software. In addition
a processing tile may have some local peripherals, depending on the requirements
of the applications, e.g. a computation accelerator.

The remainder of this section presents the design and integration of the compo-
nents in detail.

3.2.1 The MicroBlaze Processor Core

MicroBlaze is a 32-bit processor soft-core provided by Xilinx [49]. The instruction
set architecture (ISA) of MicroBlaze is a typical reduced instruction set computer
(RISC) ISA.
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Figure 3.5: MicroBlaze core architecture

The MicroBlaze core is highly configurable, which enables users to keep only
needed things in the system. The following parts of MicroBlaze core are config-
urable,

• Pipeline: 5 stages by default, 3 if optimized for area;

• Arithmetic unit: optional barrel shifter, hardware multiplier, divider, floating
point unit (FPU), etc;
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• Memory system: configurable memory management unit (MMU), cache and
cache-links;

In addition, the MicroBlaze core has different interfaces for communicating with
others IPs, including other processors [49]:

• Processor Local Bus (PLB) or On-chip Peripheral Bus (OPB): shared bus for
on-chip IPs, available on both data and instruction side. It is part of the
CoreConnect of IBM [24].

• Local Memory Bus (LMB): a single-master bus for accessing Block RAM(BRAM)
on the FPGA. It is simple and provides zero-wait-state access to local memory.
Available on both data and instruction side.

• Fast Simplex Link (FSL) [48]: a simple FIFO protocol. The interface is
directly connected to the register file of MicroBlaze and a set of instructions
is used to control it. Typically, it is used for co-processor and high speed
peripheral.

• Xilinx Cache Link (XCL): a dedicated FIFO interface based on the protocol
of FSL. It provides low latency access for the cache controller and reduces the
traffic on the bus. Available on both data and instruction side.

In comparison to other synthesizable processor cores, e.g. the LEON and Open-
RISC, MicroBlaze achieves a good trade-off between performance and resource uti-
lization on FPGA [36]. By using different configurations, MicroBlaze can be used
in a very wide range of cases, from doing simple finite state machine (FSM) duty,
to running operating systems that require a full featured processor, e.g. Linux. In
the area-optimized configuration, a MicroBlaze core utilizes only about 600 slices
in a Virtex2-Pro FPGA [1].

The simplicity of this core makes it easy to analyze. Without complex features
such as multiple issue, dynamic branch prediction, and out-of-order execution, it is
easy to predict the behavior of a MicroBlaze core, provided the peripherals are also
predictable, and this is very important for our system.

Although a simple single-issue in-order core seems to be quite limited in per-
formance, the flexible interfaces of MicroBlaze allow users to extend the processor
in different ways, e.g. connecting a computation engine via the FSL interface can
achieve similar performance as the multimedia extension in the ISA of some cores.
So it is even possible to use MicroBlaze in situations where high computational
performance is required.

Configuration for the Processing Tile

In this work, the MicroBlaze can be configured according to the requirement of
the application. Typically we have a MicroBlaze processor with 5-stage pipeline, a
32-bit integer multiplier and a barrel shifter. Such configuration consumes about
1200 slices on a Virtex2-Pro FPGA.
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3.2.2 Power Management Infrastructure

Power management unit consists of two sub-modules, the system timer and the
frequency generator, as shown in Fig. 3.6.
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Figure 3.6: Power Management Unit

System Timer

The main purpose of the system timer is to provide a time reference. Here we define
wall time as the absolute time, which can be measured by number of cycles of a
clock. The system timer provides the following services for the system:

• Provide wall time reference to the frequency generator. The system timer is
readonly in this case. The purpose is to enable the frequency to work in a
predictable way.

• Provides wall time reference to the processor. In this case, the system is a
programable timer, which is writable. It provides wall time reference to the
processor in two ways: by generating an interrupt request signal (IRQ), and
by allowing the processor to read the timer value.

The system timer is implemented by a simple programable counter which counts
the global clock signal. In this work it is usually set to a down counter. When the
timer value reaches zero, an interrupt request signal is generated if the interrupt of
the timer is enabled.

Since the processor may change the operating frequency, it is very important
that the system timer is always running at the maximum frequency, which enables
it to give the wall time reference to the processor and the frequency generator.
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Frequency Generator

Frequency generator is designed for two purposes:

• For setting output frequency to n
dfin at a given wall time, where n and d are

programable parameters. This functionality allows the processing tile to set
its own operating point.

• For gating the output clock, i.e. set output frequency to 0, and un-gate it at
a required moment. This functionality could be used to stop the processor in
order to achieve constant execution time for certain programs, and to emulate
the idle state, e.g. sleep mode or power gating. As the halt instruction is not
available in MicroBlaze’s ISA, this capability is very useful.

On existing FPGAs, there is no infrastructure for implementing complete DVFS.
In particular there is no on-chip regulator available to change the supply voltage at
runtime. So the PMU should include a module for emulating DVFS. For emulation,
the absence of on-chip voltage regulator is not a hard limit, as the voltage level itself
does not have direct impact on the behavior on the application.

For frequency scaling, a few options are available. The partial reconfiguration of
the digital clock manager (DCM) on the Xilinx FPGA implements a real frequency
scaling. However it introduce a lot of extra overhead such as the relocking of the
phase locked loop (PLL), which limits flexibility of the frequency generator, so
it is not suitable for our system. Alternatively, the frequency can be generated
by fine-grained clock gating, i.e. deciding whether to enable the clock for each
cycle. Although no actual frequency scaling is implemented, the processor, as well
as the software running on it, get the same number of clock cycles as the ideally
scaled clock, but the exact time of the clock pulse is different. The algorithm of
generating the frequency is given in Algorithm 1. With this algorithm, the clock
pulse is distributed in the most uniform way, i.e. closest to the ideally scaled clock.
And it does not cost extra hardware compared to implementations that give all the
clock pulses in the beginning of the end of a period.

Algorithm 1: Clock-Generation
Input: ClkIn, N , D,
Output: ClkOut, where fClkOut = N

D · fClkIn

acc←− 0;1

for each cycle of ClkIn do2

acc←− acc+N ;3

if acc ≥ D then4

acc←− acc−D;5

ClkOut←− ClkIn;6

else7

ClkOut←− 0;8

end9

end10
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In the implementation, to ease the calculation of the software and allow the
processor to set the frequency using only one command word, d is fixed to 16, so
the output frequency is n

16fin, where n is a programmable parameter.
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Figure 3.8: Architecture of the frequency generator

Fig. 3.8 gives the architecture of the frequency generator. The clock enable
(CE) generation module uses Algorithm 1 to generate the CE signal. The processor
can program the frequency parameter N through a FIFO. Note that the processor
may run at a different frequency, therefore the latency of the FIFO is not constant.
To eliminate the uncertainty caused by the variable frequency and clock domain
crossing, a programmable time value register T2 is introduced. The parameter N
does not affect the CE generation until the system timer reaches the value set in
T2, as shown in Fig. 3.9. The algorithm in Algorithm 1 works in a periodic way, of
which the period is 16. In order to keep the frequency scaling factor valid for the
period before the frequency switch, the frequency switch is only allowed when the
system timer value is multiple of 16, i.e. the value of T2 is aligned with 16.
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When a gate command is sent to the frequency generator, it sets the Gate
register which disables the output clock. When the system time reaches the value
of register T1, the gate register will be reset and the output clock will continue.
The timing of gate and un-gate of the clock is shown in Fig. 3.10.
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Figure 3.10: Gate and un-gate of the clock

PMU Interface to Processor

There are three input ports and one output port in the PMU interface. In principle
they can be mapped to any interface that is accessible for the processor, including
a bus. But in order to build a predictable system, it is important to make sure
that these ports are mapped to a predictable interface. In our design, we map these
ports to the FSL of MicroBlaze, which is fast and more importantly, completely
predictable.

As shown in Fig. 3.6, a FIFO from the processor to the system timer is used for
configuring the timer, which is also used for clock domain crossing. The timer value
is sent to the processor via a synchronizer, which is implemented by two flip-flops.

The processor can perform the following operations on the system timer:

1. Start and stop the timer.
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2. Read and/or set the timer value.

3. Enable or disable the timer interrupt.

Note that due to the clock domain crossing, reading of the system timer value is not
cycle accurate, and cannot be used directly used as the cycle-level wall time refer-
ence. The processor has to compensate for the latency according to the frequency
it is running at, or use the time reference in a coarse granularity.

As shown in Fig. 3.6, two FIFOs from the processor to the frequency generator
are used for configuring the frequency generator. The processor can perform the
following operations on the system timer:

1. Set new frequency and its effective time. Done by sending a 32-bit word via
the Freq FIFO, the lower 4 bits are the frequency parameter N and the rest
are the effective time, which is aligned to 16.

2. Gate the clock output. Done by sending a command word via the Freq FIFO
with the control bit [48] set to 1. In this case the content of the command is
ignored.

3. Set un-gate time. Done by sending the effective time via the Un-gate FIFO.

In a system with DVFS, the transition between different frequencies may intro-
duce a state in which the clock is unstable and cannot be used to drive the circuit.
Moreover, the frequency switch latency at different frequencies are different, due
to the variable latency of the frequency generation and the asynchronous commu-
nication. Here we introduce a method to perform predictable frequency switch
using the PMU described before. The typical timing of using all three operations
to switch frequency is shown in Fig. 3.11. The processor sets the new frequency
and un-gate time, then gate the clock. The frequency switching happens when the
processor is not running. When the processor comes back, it is already running at
the new frequency. The switching in Fig. 3.11 can be used to get the WCET of the
frequency switching by setting T1 to the proper value.
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3.2.3 Tile Communication Infrastructure

As described in section 3.1.1, the NoC provides connections between nodes in the
network. A connection allows the tile processor to access remote resources. Here we
assume the connection is between a tile and a memory or peripheral with memory-
mapped I/O (MMIO), and both ends of the connection use DTL-MMIO proto-
col [40]. In such a connection, the processor is the initiator and the remote device
is the target. Note that the remote resource for one processor may be the local
resource of another processor.

Trade-offs in Designing the Interface to the NoC

To connect the MicroBlaze processor to the NoC, the following options are available:

• Map the remote memory into the processor’s memory space, so the processor
accesses data on remote location by load/store instructions.

• Use a communication unit that supports Direct Memory Access (DMA), which
requires explicit control over the transactions over the NoC.

The memory-mapped solution is simple and straight forward. It provides trans-
parent access to remote resources to the processor. The major drawback is that the
processor is exposed to the large latency cause by the NoC and/or remote resource,
e.g. the access of off-chip DRAM can easily cost hundreds of cycles. For simple
processor cores like MicroBlaze, this causes loss in not only performance, but also
predictability. Large latency of memory access results in long stalling of the proces-
sor pipeline, and consequently significant increases of worst-case interrupt response
time, which makes it difficult to derive a useful bond for the system behavior and
the predictability of the processor is jeopardized.

The use of DMA controller is a solution to this problem as the use of a DMA
controller only requires local accesses. The DMA controller supports block trans-
action and runs in parallel with the processor, hence there is a potential for getting
a better performance than the memory-mapped communication. The downside is
that the communication is no longer transparent to the software. For applications
that do not decouple communication from computation, it may be very difficult to
adapt the remote access in the software code to the communication unit. A well
known example of system with similar solution is the CELL processor, on the syn-
ergistic processing elements (SPE) in CELL, all remote access through the element
interconnect bus (EIB) is performed by a DMA controller [2].

In this work, we choose the second option for the processing tile, based on the
following consideration,

• The MicroBlaze does not support block transaction on the data bus, which
limits the performance. A communication unit with DMA support gives bet-
ter performance than a direct connection.

• The data-flow programming model used in this work provides a clean sepa-
ration between computation and communication, therefore it is easy to use
such module in the application. More details can be found in Chapter 4.
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A communication unit is designed for the processing tile. In this communica-
tion unit, each outgoing NoC connection on the tile has a DMA controller, called
connection DMA controller (CDMAC). In the remainder of this section, we dis-
cuss the design of the CDMAC, and the management of multiple connection on the
processing tile.

Connection DMA Controller

In our design, the connection DMA controller supports the following two kinds of
transactions:

1. Processor controlled transaction: in this type of transaction, data is transfer
between the processor and the remote location. The processor writes to and
reads from the data buffer inside the controller, the block size in this case is
limited by the DTL protocol. This kind of operation is useful in transferring
small data unit as it provides lower latency than the DMA transaction.

2. DMA transaction: in this type of transaction, the controller moves data be-
tween the on-tile memory and remote location, while the processor is doing
other things. It supports larger block size than processor controlled transac-
tion. The DMA transaction is efficient in transferring large amount of data,
which is chopped into multiple DTL transactions.

The structure of the CDMAC is in Fig. 3.12a. The control logic is implemented
as a finite state machine (FSM), as shown in Fig. 3.12b. Note that there are two
parts in the FSM, the first part that controls the processor controlled transaction,
and the other part that controls the DMA transaction. Either part is optional, for
example if the processor controlled transaction is not necessary, it is possible to
reduce the FSM, as well as the corresponding hardware in the DMA controller.

Listing 3.1 is the pseudo code of the use of the CDMAC. Note that the program-
ming of CDMAC in a DMA transaction should be atomic, otherwise the behavior
of the CDMAC might be incorrect.

Listing 3.1: Transaction on CDMAC (Blocking)

1 /∗ conn id i s the i d o f the connect ion be ing used ∗/
2
3 while ( ConnectionIsBusy ( conn id )==true )
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4 NOP
5
6 i f t r a n s a c t i o n i s DMA t r a n s a c t i o n
7 SetSourceAddress ( source addr , conn id )
8 SetDest inat ionAddress ( de s t ina t i on addr , conn id )
9 i f t r a n s a c t i o n i s read

10 SendCommand( dma read , conn id )
11 else
12 SendCommand( dma write , conn id )
13 else
14 i f t r a n s a c t i o n i s read
15 SetSourceAddress ( source addr , conn id )
16 SendCommand( pct read , conn id )
17 ReadBuffer ( )
18 else
19 SetDest inat ionAddress ( de s t ina t i on addr , conn id )
20 SendCommand( pct wr i t e , conn id )
21 WriteBuf fer ( output data )

Multi-connection Management

For multiple connections, if there is any incoming connection to the local data
memory, a scheduler is needed in order to share the memory port between incoming
connections and outgoing connections.

If there are multiple outgoing connections, two options are available:

• Extend the DMA controller to support multiple outgoing connections.

• Each outgoing connection that needs to be composable uses a DMA controller
of its own.

The first option probably results in a complex DMA controller. As we want
the controller to provide composable and predictable service for multiple applica-
tions on the processor, the scheduler inside the controller has to be composable
and predictable. Moreover, if both incoming and outgoing connections exist, we
need a scheduler for the memory port anyway. In Æthereal, such a scheduler is
implemented in the initiator bus [22].

Since the scheduler at the memory port cannot be avoided, the second option is
a more reasonable choice. In this solution, we keep the DMA controller simple and
small. For outgoing connections, each of them has a connection DMA controller.

The resulting architecture is shown in Fig. 3.13. Here a separate communication
memory (C-Mem) is used for two reasons: first, the memory map in inter-processor
communication is easier if there is any incoming connection. Second, if single port
memory is preferred for the local memory, such a separate memory for communica-
tion reduces the performance loss of the processor caused by sharing memory port
with the NoC connections. If there is no incoming connection, it is possible for the
communication unit to use the other port of the processor data memory (D-Mem).
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In the current implementation, because the composable and predictable memory
controller is not available yet, each composable connection has a separate commu-
nication memory. Fig. 3.14 shows two examples. The tile in Fig. 3.14a has only
one outgoing connection, the CDMAC of this connection is connect to D-Mem of
the tile. In Fig. 3.14b, the tile has one incoming connection and one outgoing
connection. The outgoing connection is connected to D-Mem while the incoming
connection is connected to a C-Mem.
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Figure 3.14: Communication unit examples

3.2.4 Clock Domains on the Processing Tile

There are multiple clock domains on a processing tile. We assume that the NoC is
running at a constant frequency fnoc.

The processor and local buses use the clock signal generated by PMU, of which
the frequency is variable, denoted as ftile. The input clock of the PMU is assumed
to have a constant frequency fsys. In the design of this thesis, we assume that
fsys = fnoc = fmax where fmax is the maximum frequency in the system, and the
clock of the NoC is synchronous with the input clock of the PMU. Note that this is
not a restriction but a design choice, it’s possible to have a different clock for the
NoC.

The operating frequency of the connection DMA controller can be either fnoc or
ftile. In this work, we chose to run the DMA controller at fnoc. The motivation is to
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avoid the unintended interference between tasks. When a DMA controller receives
a command, it executes it and waits until it is completed, even if the task that gives
the command is swapped out, as shown in Fig. 3.15. The new task (or OS) swapped
in is probably running at a different frequency, which means ftile is changed. If the
DMA controller is running at ftile, interference between tasks is introduced, which is
unintended and hard to detect and cope with at design time. If the two tasks belong
to different applications, the interference is between applications, and consequently
the composability of the system is compromised.

The standard processing tile architecture is shown in Fig. 3.16. There are two
clock domains on the tile, PMU and communication module running at fnoc and the
other parts of the tile running at ftile. The clock domain boundary runs through
FIFOs between PMU and the processor, and the FIFOs inside the CDMAC in the
communication unit, see Fig 3.6 and Fig. 3.12a. Another clock domain crossing in
the processing tile is within the C-Mem and/or D-Mem, which is true dual port
memory that allow separate clock on each port.
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Figure 3.16: Tile Architecture and Clock Domains

3.3 Monitor Tile Design

The main purpose of the monitor tile is to gather trace data from the processing tiles
in the system. It monitors the processing tiles by recording the events of interest.
There are two ways to do that, to actively detect the events of interest happen on
the processing tiles and record them, or to let the processing tiles send the messages
to the monitor when events of interest happen, i.e. the monitor collects information
passively.

In this work, most events of interest are high level events, e.g. task switching in
the OS. It is difficult for the monitor to detect such events for each processing tile,
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so we decide to use the passive method and let the processing tiles send messages
to the monitor when events of interest happen. The FSL of the monitor is used for
this propose. The trace data from the processing tiles is stored in memory and sent
to the host PC via the serial port when enough data is collected. The architecture
of the monitor tile is shown in Fig. 3.17.

The processing tiles use non-blocking FSL instructions [49] to send messages to
the monitor tile, hence if the monitor tile fails to empty the FIFOs in time, the
processing tiles do not stall. Here the FIFO size is set to 64 words, which is enough
for the message from one tile in a time slice, which usually has a length of over
15000 cycles. The load of the monitor is light, thus no data loss is expected during
the execution.
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Figure 3.17: Monitor Tile Architecture

3.4 System Configuration

The system has to be configured before the start of any application. The most
important thing is setting up the NoC connections for the tiles in the system. And
before the configuration is finished, it is important to make sure that the tiles in
the system do not try to start running, otherwise their behavior can be incorrect.

In this work the system configuration is performed the monitor tile described in
Section 3.3. The monitor tile configures the NoC via a PLB-to-DTL converter. The
FSL channel from monitor to processing tile is used to synchronize and configure
the tiles. The typical use-case is to synchronize the start of the processing tile, so
they start safely after the NoC is configured and the difference between tiles is small
(< 100 cycles).

3.5 Integration

The platform is designed in a modular way, so the integration is straightforward.
The complete platform is shown in Fig. 3.18. Each processing tile has its own clock
and power domain, and we assume that the rest of the platform is in one clock
and power domain, in which the frequency is always the maximum frequency of the
system fmax.
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Note that the Æthereal NoC itself does not have power management infrastruc-
ture yet, so in this work we do not go into the power management of the NoC.
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Figure 3.18: Hardware Platform Architecture

3.6 Summary

In this chapter, the design of hardware of the platform is presented. The system
has a tiled architecture with the Æthereal NoC as the interconnection. All the basic
hardware components in the system provide composable and predictable services.
The infrastructure for emulating DVFS and the monitoring support hardware en-
able the platform to host emulations for power management experiments, which
is the main purpose of the platform. The result of this chapter provides a solid
foundation for further developments and experiments.
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Chapter 4

Software Platform Design

Software is crucial to a processor based system. This chapter describes the
software design for the platform, for both the processing tile and the monitor.

CompOSe [19] provides a good starting point for the software system on the
processing tile. CompOSe provides composable scheduling which is useful for this
work. However, there are several limitations in CompOSe. The most important one
is no support for dynamic power management in CompOSe. The lack of progress
awareness of tasks and the ability to perform DVFS, makes it impossible to perform
efficient power management. Also the limited communication library in CompOSe
is too simple for mapping real applications on a multi-processor platform since it
only supports single rate static FIFO. In this work we improve the design and
implementation of CompOSe, and add components to support power management
on a MPSoC platform, as well as the support for monitoring in the FPGA emulation.

An application can be mapped to multiple processing tiles, as discussed in Sec-
tion 2.7. The hierarchy of the software system on the processing tile is shown in
Fig. 4.1.

...

Task Task...

OS

Task Task...

ApplicationApplication

Figure 4.1: Hierarchy in the operating system on a processor

The structure of the OS is in Fig. 4.2. The OS has three main functions:
scheduling, inter-task communication, and power management. In the remainder
of this chapter we start with the two-level scheduling of the OS, as well as the
slack management, is discussed in Section 4.1. Then, in Section 4.2, the inter-
task communication service provided by the system is described. Thereafter, the
support for power management is shown in Section 4.3. Apart from the application
execution, the monitoring of the system activity is also important. It is covered in
Section 4.4. At the end, a complete software system is presented in Section 4.5.
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4.1 Scheduling on the Processing Tile

In the OS, processor time is divided into time slices of equal length. For each time
slice, a task is selected to execute. In this section we talk about how the scheduling
is done.

4.1.1 Time Slices on the Processor

The length of a time slice is defined in wall time, and in this work, it is controlled
by the system timer in the PMU. As specified in Section 3.2.2, the frequency of
the input clock of the system timer is the maximum frequency in the system fmax,
which is constant.

Part of the system time slice is used by the task execution, and part of it is used
by the OS, in which most of the OS services are done, as Fig. 4.3 shows. We call
the first part the task time slice and the second part the OS time slice. The task
time slice is the time unit for the scheduling in the software system. In each task
time a task is selected to execute. The scheduling is preemptive, i.e. at the end of
the task time slice, the task that is still running is swapped out. The OS services
in the OS time slice run at the maximum frequency fmax, while the application is
allowed to determine the operating frequency in the task time slice.
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Time Slice

Task

Time Slice

TaskOS

Time

System Time Slice
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INTINT

Figure 4.3: Time slices in the operating system
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Predictability and Composability of the Time Slices

It is crucial that the system time slice has a constant length. To achieve that, both
the task time slice and the OS time slice have to be predictable. In this section
we discuss the factors that can affect the predictability of the time slices, and the
solutions.

First we look at the interrupt response time and the predictability of the task
time slice. At the beginning of each task time slice, the system timer is set to
the value of the length of task time slice. When the timer value reaches zero, an
interrupt request signal (IRQ) is sent to the processor. That is how a lower bound
of the task time slice is achieved. However, the exact length of the task time slice
depends on the interrupt response time of the processor and it is not constant in
wall time. In our system the interrupt response time depends on the following
factors:

1. The instruction being executed when the IRQ is generated. When an IRQ is
generated, the instruction in the execution stage of the MicroBlaze’s pipeline
continues executing until it finishes [49]. This determines the response latency
in processor cycles. This latency depends on the instruction type and the
memory controller. Assuming no division instruction is used and all memory
accesses are local, this latency is less than 5 cycles.

2. Some times the IRQ cannot be served because the processor disables the inter-
rupt temporally, e.g. in this system if there is any sharing of NoC connections
the interrupt is disabled when programming the connection DMA controller.
This introduces a latency of roughly 30 cycles in the worst case.

3. The frequency of the current task time slice. It determines the response time
in wall time together with the response latency in cycles.

In the system, the worst case latency is around 30 cycles. Compared to the
length of the time slice, this overhead is small, so the length of the task time slice
in wall time has an useful upper bound.

Another thing that affects the length of the system time slice is the execution
time of the OS service in the OS time slice, which depends on the the application
and task being scheduled.

In this work, we hide these variations in the OS time slice. The length of the
OS time slice is the sum of the following:

1. The worst case interrupt response time.

2. WCET of the OS routines.

3. The worst case frequency switching time.

Note that as described in Section 3.2.2, the frequency switch can only happen
when the system timer value is multiple of 16, so the length of the OS time slice in
cycles should also be aligned to 16.

Fig. 4.4 shows how the variations are hidden in the OS time slice. When the
IRQ is generated and the interrupt service routine starts, the processor frequency is
switched to the fOS which equals to fmax. The OS saves the task context and starts
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the services, and the system timer continue counting. When the OS has finished
everything and ready to enter the task time slice, it gates the clock using PMU and
set the un-gate time to (Tmax − TOS), where Tmax is the maximum value of the
system timer and TOS is the length of the OS time slices. When the clock is un-
gated, the timer is loaded with the task time slice length, the processor frequency
is set to the task frequency and a new task time slice starts. By using hand-written
assembly code, and assuming the code is running a local memory with one-cycle
latency, we ensure that the code executed after the un-gate is always the same.
For frequency switch, the predictability is guaranteed by the switching method in
Fig. 3.11. Hence the time between the interrupt and the start of the next task time
slice is a constant.
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Figure 4.4: Use OS time slice to hide the variation

As all the variations are hidden in the OS time slice, the length of the system
time slice is always constant. For the task time slice, the length is predictable, and
more importantly, the variation of the length of a task time does not depend on
tasks running in other task time slices.

4.1.2 Two-level Scheduling

In this work, we use a scheduler that is similar to the one in [19].
In each task time slice, the scheduler selects a task to run. A preemptive two-

level scheduling is employed. The two levels are system level, where an application is
scheduled, and application level, where a task is scheduled. The scheduling is done
in two steps, first select an application, then a task in the application is selected to
execute in that time slice, as shown in Fig. 4.5.

In the operating system, a task can be a independent thread that scheduled by
the OS, or it can be a task in a data-flow application.

A data-flow application is defined as a set of tasks with the communication
channels bteween them. We assume there is no dependence between applications.
Each task in such an application is an actor in the data-flow graph, which has a
number of FIFOs connected to it. The task is allowed to start an iteration when all
its input FIFOs have enough data and all its output FIFOs have enough free space,
called the firing rules. The checking for input data and output space is called firing
rules checking. In this work, the OS is aware of the firing rules, this is required for
managing slack and hence real-time frequency scaling and power management [37].
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Figure 4.5: An Example of Two-level Scheduling

Composable System Level Scheduling

The application scheduling is based on Time Division Multiplexing (TDM) schedul-
ing. The OS has a list of application scheduling order. Each entry of the list is a
application ID, and in each time slice the corresponding application is selected, then
the scheduler goes into the task scheduling and selects a task from that application.
the length of this list is called TDM replenishment interval.

The length of the system time slice is constant even if the adjacent time slices
are assigned to the same application. So once the TDM scheduling order is set, the
temporal behavior of an applications in the system does not depend on any other
application, i.e. the application scheduling is composable.

Application Level Scheduling

An application consists of a set of tasks, and the dependence between these tasks.
Each application defines its own scheduling policy. Once the application is sched-
uled by the system, the scheduling process is passed to the task scheduler of the
application, which selects a task for the given time slice.

In this work, two kinds of task schedulers are available, TDM and round-robin.

Task States in Data-flow Application

As stated earlier in this section, the firing rule checking of the data-flow tasks is
handled by the OS, thus the state transition of these tasks is also controlled by the
OS.

In data-flow graph, whether a task is allowed to fire or not depends only on the
status of the FIFOs connected to it. With such a model, the state transition of a
task depends on status of the FIFOs connected to it. A task can be in one of the
three states, waiting, running and finished, as shown in Fig. 4.6.

Note that in our system, the OS only checks the status of the FIFOs when it
tries to schedule a task, so the state that tokens are ready and the task is waiting
to be scheduled does not exist in this system. When a running task is preempted,
it stays in the running state as it is ready to run again at any time. When a task
finishes an iteration, it enters the finished state, in which the OS resets the task

37



CHAPTER 4. SOFTWARE PLATFORM DESIGN

stack. The finished state is not a stable state, once the task is reset, it goes in the
waiting state unconditionally and tries to start the next iteration.

Waiting Running

Finished

FIFOs Ready

Task Finishes

Figure 4.6: Different task states in data-flow application

State Description
Waiting Task is waiting for tokens
Running Task is running, or started but preempted
Finished Task has finished and is waiting to be reset

Table 4.1: SDF graph task states

4.1.3 Slack Management

Slack Definition

Slack is the idle processor time. Ekerhult [19] defines two kinds of slack based on
how the slack is generated:

• Internal slack, generated when a task finishes before the end of the task time
slice. In this case part of the time slice is slack.

• External slack, generated when a task time slice is assigned to an application
but it has no eligible task to execute. In this case the whole time slice is slack.

In this work, the OS keeps the budget and progress information of a task, which
enables us to extend the definition of slack.

With budget and progress information, there are two kinds of slack in the sys-
tem:

• Input data or output space is not ready for the selected task. This type of
slack is external slack.

• The selected task does not use up the budget in the last execution, i.e. the
task execution time is less than its WCET.

The first type of slack is static and in theory can be calculated at design time
using the data-flow graph model.

The second type of slack can be detected by proper budget and progress infor-
mation keeping of the tasks.
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Slack Management

When a slack time slice is generated, there are two possibilities to handle it:

• Find a task in the same application that can accept the time slice.

• Give the time slice to other application, the recipient of the slack is not com-
posable in this case.

Fig. 4.7 shows the different levels of slack management. When a time slice
is detected as slack, the system first runs the application level slack management
routine. If again only the idle task is scheduled, the system runs the system level
slack management routine, which tries to schedue another application.

System

Level

Application

Level

Slack

Slack

Task

Task

Scheduling

Application

Scheduling

Application

Slack Management

Slack 

Management

Task
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Figure 4.7: Two-level Scheduling with Slack Management

For application level slack management, a interface similar to the task scheduling
interface is given. An application defines its own slack management policy. This
slack management function can also be seen as part of the task scheduler, but
a separate interface makes it more flexible to have different combinations of task
scheduling and slack management policies.

For system level slack management, i.e. the slack exchange between applications,
we use the similar scheme as in [19]. A slack-matrix is used to define the possibility
of slack exchange between applications. The row and column index of the matrix
is the ID of the application that gives the slack and the application that receives
the slack. Note that if an application can accept slack from other applications, it
is no longer composable. In addition it is not predictable if the application is not
monotonic.

The slack can be used for two purposes, improving the throughput of the applica-
tion, or reducing the power consumption of the application for a given throughput.
This work focuses on the second one.

4.1.4 Complete Scheduling Flow

Listing 4.1 shows the pseudo code of the complete scheduling flow.
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Listing 4.1: OS scheduling flow

1 /∗ App order i s an array t h a t co nta ins the s c h e d u l i n g order ∗/
2 i = −1;
3 L = the l ength o f App order [ ]
4 for each i n t e r r u p t
5 i = ( i + 1) % L
6 app = f ind app ( App order [ i ] )
7 task = app−>t a s k s c h e d u l e r ( )
8 i f task == i d l e t a s k
9 task = app−>slack management

10 i f task == i d l e t a s k
11 app = sys s lack management
12 task = app−>t a s k s c h e d u l e r ( )
13
14 CopyInputData ( task )
15 Res to r e context ( task )
16 /∗ S t a r t o f i n t e r r u p t i b l e reg ion ∗/
17 Run( task )
18 CopyOutputData ( task )
19 WaitForInterrupt ( )

4.2 Inter-task Communication

In this section the support for inter-task communication in the OS is discussed.
It is based on C-HEAP protocol [38] and it provides support for both local and
inter-processor communication.

The task state in the data-flow graph model is also discussed in this section, as
it only depends on the status of the FIFOs connected to the task.

4.2.1 C-HEAP Protocol

The C-HEAP protocol is used as the inter-task communication protocol of the
system. It is a FIFO-based communication protocol, in which each FIFO is a
logical communication channel which has one producer and one consumer, as shown
in Fig. 4.8a. The unit element in the communication is called a token. In each
transaction, the producer (consumer) writes (reads) a number of tokens, the number
it writes (reads) is called the produce rate (consume rate), or token rate. The
producer and consumer of the same FIFO can have different token rates.

Fig. 4.8b demonstrates a write transaction and a read transaction. Listing 4.2
shows the pseudo code for a blocking write transaction. The read transaction is
performed in a similar way. Note that the write counter and the read counter can
only written by one actor, and the writing and reading of the FIFO are controlled
by these two counters, therefore no mutual exclusion primitive is required for the
synchronization.

Listing 4.2: Write Transaction(Blocking)

1 /∗ wr cnt and r d c n t are in shared memory ( remote or l o c a l ) ∗
2 ∗ wc and rc are t h e i r l o c a l c o p i e s . ∗/
3 do{
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4 rc = rd cnt ;
5 space = Calcu lateSpace ( rc , wc) ;
6 }while ( space < produce ra te ) ;
7
8 WriteFIFO ( ) ;
9 wc = UpdateWriteCounter ( ) ;

10 wr cnt = wc ;

In the C-HEAP implementation, three primitives are used for the write trans-
action:

1. claimSpace: check if there is enough free space in the FIFO.

2. writeFIFO : copy data from output buffer to the FIFO.

3. releaseData: update the write counter so the consumer can read the data.

Similarly, three primitives are used for the read transaction:

1. claimData: check if there is enough data in the FIFO.

2. readFIFO : copy data from the FIFO to input buffer.

3. releaseSpace: update the read counter so the producer can write to the free
space.

As described in Section 2.5, the platform in this work uses data-flow as the
primary programming model, C-HEAP fits this model very well.

Producer Consumer

Token

Produce

Rate

Comsume

Rate

(a) Model of FIFO

Producer Consumer
FIFO Buffer

wr_cnt rd_cnt

Shared Memory

1

2

3
4

5

6

Read

Write

(b) C-HEAP transactions

Figure 4.8: Model of FIFO and communication protocol

4.2.2 Communication Flow in the Operating System

The communication flow for applications using data-flow graph model is shown in
Fig. 4.9. Noted that here only the case for one time slice is shown, but since the
interrupt is enable after the read FIFO operations, there can be more than one time
slice. The communication is part of the task execution, so the time for it is also in
the task time slice. To decouple communication from computation, the control of
the communication is done by the OS. A task is allowed to start a new firing when
a time slice is allocated to it and the firing rule checking succeeds. Before starting
to run the task code, the OS copies data from all input FIFOs to a local buffer, and
after the task code finishes, the OS copies data from local buffer to output FIFOs.
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Figure 4.9: Communication Flow for Data-flow Model

Listing 4.3: Communication flow for data-flow task

1 /∗ T i s the t a s k to be s c h e d u l e d in t h i s s l i c e ∗/
2
3 for each FIFO in T
4 f a i l = CheckForToken ( )
5 i f f a i l == 1
6 return f i r i n g r u l e check ing f a i l
7
8 for each input FIFO in T: //Read input data
9 readFIFO ( )

10 r e l e a s e Sp a ce ( )
11
12 Restore contex (T)
13 Run(T)
14
15 for each output FIFO in T: // Write output data
16 writeFIFO ( )
17 re l ea seData ( )

For the applications using data-flow graph model, only communication inside
the application is allowed, so all FIFOs are between tasks in the same application.
The calculation of the task budget does not need to consider the waiting time for
remote resources, as it should be captured by the data-flow model.

Inter-task communication inside the task execution code (Task Execution in
Fig. 4.9) is still possible, which enables the possibility of running applications that
do not use data-flow model. But for such applications, budgeting becomes a com-
plex problem, hence we do not consider the slack and power management for such
applications.

Dynamic Configuration of Firing Rules

To support more flexible programming model such as the cyclo-static data-flow
(CSDF) graph, the OS allows the application to dynamically change the firing
rules. For each FIFO, two parameters can be configured:

• Token rate for next firing. This is the basic support for the dynamic firing
rule. The task, i.e. the actor is allowed to change the number of tokens
written (read) to (from) a FIFO in the next iteration.
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• Pointer to local buffer. This is useful when the granularity of the variation is
very fine, the amount of data (free space) used in one firing is hard or even
impossible to be determined before hand, as shown in Fig. 4.10. A typical
example of this case is the variable length decoding (VLD) in the multimedia
stream decoding. In theory this can be solved by setting the token size to 1
bit, but obviously it is not realistic for most application.

Token

Token

Worst case data 

requirement

No new token 

needed

New token 

needed

Figure 4.10: Example of Variable Buffer

Memory Mapping of FIFOs

For a non-local FIFO, as described earlier in this section, three things need to be
shared by both the producer tile and the consumer tile, namely, the write counter,
the read counter and the FIFO storage. There are three different ways to map these
shared resources in the system, as listed in Table 4.2:

FIFO storage Counters
Shared Memory Shared Memory
Shared Memory Local Memory
Local Memory Local Memory

Table 4.2: Different memory mapping of FIFOs

• All shared resources on shared memory, as Fig. 4.11a shows. This mapping
is simple, but the OS has to perform a remote read when checking the firing
rules, which affects the predictability of OS service.

• Only the FIFO storage is mapped to the shared memory, while the counter
values are directly written to the tile’s local memory, as shown in Fig. 4.11b.
No remote read is needed in firing rules checking. This requires more connec-
tions on the NoC in order to enable external access to the tile’s local memory.

• No shared memory is used at all, everything is mapped to the local memory.
As shown in Fig. 4.11c, the FIFO storage locates in the consumer’s local
memory, possibly combined with the consumer’s read buffer. which eliminates
remote read. However, the capacity of the FIFO storage is limited by the size
of the communication buffer on the consumer tile.
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Figure 4.11: Three different memory mappings of a FIFO

The choice of the memory mapping of a FIFO depends on the system architec-
ture and the requirement of the FIFO. Ideally, the first mapping should be avoided,
and the third one should be chosen whenever it is possible.

Note that in the second option, the counter and the FIFO data are transferred
via different connections. In this work, a write transaction of a tile is posted, i.e.
the finish of a write transaction just means the data is sent to the NoC, but the
actual time that data reaches the remote resource depends on the QoS of the NoC
connection. In Æthereal, the order of the finish time of transactions on different
connections is not preserved. This may cause inconsistency in the write transaction
of the C-HEAP protocol, the write of the write counter may arrive at the consumer
tile before the data is written to the FIFO storage and the consumer may read the
data before it is ready. There are two possible solutions for this problem: use tagged
write [40] for the last write command, or perform a read from the destination after
the write transaction. The first option is easier for software but requires hardware
support that is not available in the NoC yet, which leaves the second one to be the
only option.

Connection Management in Inter-processor Communication

For FIFOs of which the producer and consumer are not on the same tile, inter-
processor communication is required. In the Æthereal NoC, all communication
is based on connections, as discussed in Section 3.1.1. And as discussed in Sec-
tion 3.2.3, a CDMAC is used for each connection. Ideally, each FIFO in the oper-
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ating system is mapped to one of such connections. In this case the task connected
to a FIFO does not need to worry about any conflict on the use of the CDMAC.

However, for FIFOs that use the same remote memory, there is a possibility
of using the same CDMAC for inter-processor communication, which save some
hardware resource. In such case, two questions are brought up:

• Assuming the QoS of the connection satisfies the requirements of all FIFOs,
can different FIFOs share the same connection?

• If different FIFOs share the same connection, how to manage the potential
conflict on the use of the CDMAC?

The connection of the NoC is connected to the processor through the CDMAC,
which can transfer data in parallel with the software execution on the processor.
With the existence of such a module, sharing a connection with different FIFOs
may cause conflicts on the access to the DMA controller.
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(b) Non-blocking connection sharing

Figure 4.12: Connection sharing example

For FIFOs of the same task, connection sharing may limit the communication
performance, but it does not cause resource conflicts. However, for FIFOs of differ-
ent tasks, since the DMA controller can run in the background, connection sharing
may cause conflicts.

The conflict can be resolved in two ways, namely, blocking and non-blocking. An
example of two tasks T1 with FIFO1 and T2 with FIFO2 sharing a connection
is given in Fig. 4.12. The blocking solution hides the interference in the OS time
budget, but it may result in a significant increase of the WCET of the OS service,
which is unacceptable for predictable systems. On the other hand, the non-blocking
version, which adds the connection availability to the firing rule, introduces inter-
ference between tasks, and it is unacceptable if the two tasks belong to different
applications that have to be composable.
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Ideally, each FIFO should has its own CDMAC and connection. In this work, to
save resource, we decided to allow the sharing of connections inside an application
in the non-blocking way.

4.3 Power Management

In this section we discuss the support for power management in the data-flow ap-
plication. As stated in Section 2.3.3, the power management requires the budgeting
and progress information of the task, so we start with the budgeting for data-flow
tasks in Section 4.3.1, then the power management is discussed in Section 4.3.2.

4.3.1 Processor Time Budgeting

For each task that needs budgeting, two kinds of information have to be kept:

• Task Budget Btask: the amount of wall time assigned to the task for an iter-
ation (firing). A conservative power management should guarantee that the
task can finish the current iteration before it runs out of budget.

• Worst case work (WCW): the number of processor cycles required to finish an
iteration. Assuming the worst case execution time (WCET) at the maximum
frequency in wall time is known, then WCW = WCET · fmax.

Task budget Btask is defined in wall time. The number of cycles at maximum
frequency in a time period of length Btask guarantees the finishing of the task
iteration in the worst case. In the implementation, Btask is converted to number of
task time slices Ts, as it is the time unit in the scheduling. So the unit of the Btask

is the length of the task time slice in wall time, i.e. Ts.
WCW is defined by the number of processor cycles needed for one iteration in

the worst case. We assume it does not change when the frequency changes. Similar
to the budget, we also want to transform it to a simple metric that does not need
fraction. The WCW is updated after each time slice the task uses, therefore the
unit of the WCW should be the minimum number of processor cycles a task can
get in one time slice.

Assuming there areN uniform frequency steps on the tile F = {fmax

N , . . . , N ·fmax

N }
where fmax is the maximum frequency. Then, the minimum number a task can get
in a time slice would be Ts · fmax

N . Therefore the WCW is converted to a metric of
which the unit is Ts · fmax

N . cycles.
Assuming resources used by the task are either local resources which run at

the same frequency as the processor, or remote resources which have frequency-
independent performance, and keeping in mind that a task in data-flow application
is never blocked by any other task once it starts running, the workload left at
the beginning of the ith time slice in an iteration, w[i], is estimated by (4.1), and
w[0] = WCW.

w[i] =

{
0 Task finished

w[i− 1]−N(f [i−1]
fmax

) Otherwise
where f [i] ∈ F (4.1)
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The budget left at the beginning of the ith time slice assigned to the task in an
iteration, B[i] is defined in (4.2), and B[0] = Btask.

B[i] = B[i− 1]− 1 (4.2)

If the WCW of a task is known, the budget for this task Btask can be easily
calculated. It is the minimal number of time slices that gives at least WCW cycles,
i.e. (Btask · fmax) ≥ WCW. A simple way of assigning the budget for a task is
defined in (4.3).

Btask = d WCW
Ts · fmax

e (4.3)

Note that the processor has different frequencies, and as discussed in Sec-
tion 4.1.2, the length of the task time slice in the system is defined in wall time,
therefore the number of cycles in each time slice is variable. With different fre-
quencies, the number of slices used by the task might vary. Since the OS is using
preemptive scheduling, the overhead of the task switching can invalidate the sim-
ple linear relation between WCW and WCET. In the remainder of this section, a
proper budgeting method for different frequencies is given, which takes the variable
overhead of task switches into account.

Budgeting for Multi-frequency

The total number of cycles needed by a task in one iteration is defined by (4.4),
where n is the number of time slots needed by the task, Csw is the overhead in
each time slice, including the task switching overhead. Cexe is the number of cycles
needed by the task communication.

Ctask = dne · Csw + Cexe (4.4)

Let Cslice be the number of cycles in one time slice at the maximum frequency,
n is the number of time slices needed by the task in one iteration, it is determined
by (4.5).

n =
Cexe

Cslice − Csw
(4.5)

Let d = fmax/fscaled, the number of cycles in each time slice at fscaled is Cslice
d .

The correctness of the task execution requires that Cslice > dmax · Csw, where
dmax = fmax/fmin. If this condition is not met, the task is not able to execute at
the minimal frequency.

The number of slices needed by the task changes to n′, as shown in Fig. 4.13.
n′ is determined by (4.6). Consequently, the number of cycles needed by the task
is defined by (4.7).

n′ =
Cexe

Cslice
d − Csw

=
d · Cexe

Cslice − d · Csw
(4.6)
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Figure 4.13: Number of time slices changes

C ′task = dn′e · Csw + Cexe (4.7)

Obviously, we have n′ ≥ n and C ′task ≥ Ctask,

n′

n
=

d·Cexe
Cslice−d·Csw

Cexe
Cslice−Csw

=
d · (Cslice − Csw)
Cslice − d · Csw

(4.8)

In (4.8) we can see that n′

n > d, thus we have dn′e ≥ dd · ne. Let x = Cslice
Csw

. To
run the system correctly, it has to be guaranteed that x > dmax. And for a real
system, it is reasonable to assume that x > 2dmax, then we have (4.9).

n′

n
= d · x− 1

x− d
= d · (1 +

d− 1
x− d

) < 2dmax = dmax + c (4.9)

In a real system, x should be a fairly big positive number, and a tighter bound
for c can be derived. And the worst case work for a task for multiple frequencies is
determined by (4.10), and a budget is assigned to the task.

WCW = (dne+ dmax + c) · Csw + Cexe (4.10)

4.3.2 Power Management

As described in 3.2.2, sixteen different frequency steps are available. In the imple-
mentation of the OS, eight frequency steps are available, they are {1

8 · f, . . . ,
8
8 · f}.

The reason is that most SoCs in the real world only have no more than 5 frequency
steps. Note that this is not a hard limit, changing the available number of steps to
16 only requires very little effort.

In the power management of this platform, we make the following two assump-
tions:

1. The number of cycles needed by a task in one iteration, i.e. WCW , is indepen-
dent of the operating frequency. This assumption holds with the budgeting
scheme described in Section 4.3.1 and assuming all resources either run at the
processor frequency or have frequency-independent performance. This implies
that the the DVFS does not increase WCW.

2. Once a task starts executing, it does not need to wait for any resource other
than the processor time. This guarantees that receiving slack does not result
in a worse execution time than the WCET.
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Based on the assumption that the number of cycles needed for task execution
is independent of the processor frequency, for a task that needs t0 time to finish at
frequency f0, we have,

tx =
1
α
· t0, where α =

fx

f0
(4.11)

This assumption holds if the task only uses local resources that runs at fx.

fideal =
cycles needed

cycles allocated
· fmax (4.12)

Processor should be set to the lowest possible frequency that is greater than or
equal to ideal frequency, and it is conservative according to the assumptions.

Based on the budgeting scheme described in Section 4.3.1 and the slack man-
agement, there are two possibilities for a task to get more processor cycles than it
needs:

• If there is internal slack caused by the rounding of task budget, e.g. a task
with a WCW of half a time slice would be given a budget of 1 time slice. We
called it over-provision slack, which is already included in the task budget.

• Extra time slice(s) received through slack management, i.e. the received slack
Sr.

Let w[i] be the workload left at the beginning of the ith time slice defined in
(4.1), N be the number of frequency steps, and Bl be the budget left for the task
in the current iteration, the frequency for the ith time slice f [i] can be determined
by (4.13).

f [i] = d w[i]
N · (Bl + Sr)

e · fmax (4.13)

For many circuits, there is a minimal voltage Vmin, below which the circuits do
not function correctly, therefore the frequency should not scale below the maximum
frequency at Vmin, as it does not save more energy. The OS supports the emulation
of this effect by setting a fmin parameter.

Note that the assumption of (4.11) is very important for the predictability of the
power management. Obviously, it is not accurate if a task needs to access resource
outside the tile, e.g. the shared memory.

Workload Decomposition

In principle, the workload of a task can be decomposed into two parts: on-tile
workload Won and off-tile workload Woff. Assume the workload is measured in
number of cycles, the on-tile workload remains the same in processor cycles when
the frequency scales down. The off-tile workload, on the other hand, depends on the
frequency of the remote resources, i.e. it is defined in number of cycles at maximum
frequency. As stated in Section. 3.2.4 and Section. 3.5, all the communication
and remote resources are running at maximum frequency. So when the processor

49



CHAPTER 4. SOFTWARE PLATFORM DESIGN

frequency scales down, i.e. f = fmax/N , the workload of a task in processor cycles
is determined by (4.14).

W ′ = W ′on +W ′off = Won +
Woff

N
≤Won +Woff (4.14)

We can see that although the assumption that the workload is constant in
number of processor cycles is not accurate, it is a conservative assumption since it
does not lead to deadline misses in power management. However it leaves possibility
for further optimization. Workload decomposition based on memory access intensity
is introduced for accurate modeling and using this effect [17, 31]. In this work we do
not go into the details, but the decomposition of communication from computation
in the OS does provide the opportunity to use such techniques.

Estimating the Energy Consumption

In this work, we focus on the energy consumption of the processing tile. Since the
rest of the system is running at maximum frequency, its energy consumption is
considered linear to time.

Similar to [37], we assume a linear dependency between the voltage and the
frequency, i.e. VDD = a · f , where a is a constant. According to (2.2), the energy
consumption is determined by (4.15).

E = Pt = αCV 2
DDft = αCaf2ft (4.15)

As discussed in this section, the number of cycles needed for a given task, i.e.
the workload w, is consider as a constant. The energy consumption of a task is
determined by (4.16), where fi is the ith time slice the task used, and ti is the time
the task actually used in the ith time slice.

E = αCaf2ft = β
∑

f3
i ti (4.16)

4.4 Monitor Support

The monitoring is import for serving the main purpose of this platform as it guar-
antees the observability of the system. As discussed in Section 3.3, the processing
tile is responsible for sending message to the monitor tile. To avoid the interference
with task execution, the monitoring information is sent during the OS time slice.

The monitoring messages are sent to the monitor in data packets, which consists
of a number of 32-bit words. The structure of the packet is shown in Fig. 4.14.
Table 4.3 shows the different types of monitor packets and their payload sizes.
Each tile can be configured to send any combination of different types of monitoring
packets.

The packet is sent to the monitoring tile via the FSL using non-blocking in-
structions. The monitor tile keeps polling each FSL port and parse the message.
When enough data is collected, it sends all the data to the host PC for analysis.
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0xFFAA Type

1631 015

Payload

….

Payload

Figure 4.14: Monitoring packet

Type ID Payload size Description
Execution 0x06 1 word Scheduling information

Task Progress 0x07 3 words Task progress and budgeting
FIFO read 0x02 3 words FIFO read operation
FIFO write 0x03 3 words FIFO write operation

Execution time 0x05 2 words Execution time of the last iteration

Table 4.3: Monitoring packet types

4.5 Integration

Different components of the operating system are organized in the data structure
shown in Fig. 4.15. The system is organized in a hierarchical structure. The top
level is the processor control block (PCB), where the system-wide information is
stored. PCB has a list of application control blocks (ACB). Each ACB has a list
of task control blocks (TCB) and a list of FIFO control blocks (FCB). As stated
in Section 4.2.2, only tasks that belong to the same application are allowed to
communicate with each other, so each FCB belongs to only one ACB. The FCB of
a local FIFO is connected to two TCBs in the same application, while the FCB of
a inter-processor FIFO is connected to one TCB in the same application.

 PCB
TDM order

Slack Matrix

FCB

TCB TCB

FCB

TCB ...

...

  ACB
Task 

Scheduler

FCB

TCB TCB

FCB

TCB

...

...

...

  ACB
Task 

Scheduler

Figure 4.15: Data structure of the system

The control flow of the operating system kernel loop is given in Fig. 4.16. The
task update handler is used to let the application perform certain operations af-
ter each time slice, e.g. custom budget keeping. This flow summarizes the flows
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of scheduling, communication and power management discussed in the previous
sections.
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Figure 4.16: Kernel loop of the OS

4.5.1 Predictability

The predictability of the time slices in the OS is discussed in Section 4.1.1. The
OS handles the system timer in a way that guarantees the predictability of the OS
time slice and the task time slice. However, the predictability of the OS services
still needs to be taken care of.

Predictability of the OS Services

To provide a predictable service to the applications, the OS services have to be
predictable. As shown in Fig. 4.16, most parts of the OS services in the kernel loop
can be easily bounded. However, the following thing should be noted as the OS is
highly configurable:

• The number of FIFOs linked to a task should be bounded by a reasonable
number, otherwise the time for firing rules checking is not predictable.

• The routines defined by the applications, including the task state update han-
dler, and the task scheduler, should have a bounded execution time. Prefer-
ably, the user should only choose the scheduler from a safe, fixed set of sched-
ulers, e.g. the TDM and Round-robin scheduler. And the task update handler
should avoid the complex operations that can result in long execution time.
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As the OS services is predictable, a budget can be assigned to it based on the
WCET of the OS, i.e. the length of the OS time slice. In the implementation,
with fixed set of schedulers and task update handlers the WCET of the OS can
be measured by experiments using system timer and/or simulation. The typical
number of cycles needed by the OS services is between 1500 and 3000. The length
of the OS slice length is a configurable parameter in the system, with a default
value of 4000 cycles, which is safe for most cases.

4.6 Summary

The design of software part of the platform is discussed in this chapter. The focus
is on the OS of the processing tile. The two-level scheduling in the OS provides
composability between applications, as well as a flexible scheduling interface for
task scheduling inside the application. The system supports the data-flow graph
programming model, which is an efficient model for streaming application. The
built-in inter-task communication, C-HEAP protocol, can fit in the data-flow model
very well. To achieve the primary goal of this work, the power management, the
OS must have the ability to keep track of the task budget and progress, and set the
processor operating point at appropriate times. Also, the support for monitoring
in the emulation is discussed. The result of this chapter, together with the result
of Chapter 3, gives the complete template of an MPSoC emulation system.
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Chapter 5

Experiments and Results

As the design of the platform is completed, we are ready to run experiments
on it. In order to carry out experiments, the experimental system has to be built,
so we start with the system configuration, as well as the FPGA implementation
flow in Section 5.1. Then, in Section 5.2, the applications used in the experiments
are introduced. Finally, the experiments and the result analysis are in Section 5.3.
Four different experiments are done here, including tests of execution time and fre-
quency relation, predictability and composability. In the end, a power management
experiment is also given to show the power management capability of this platform.
These experiment will show that the platform meets the requirements of this work.

5.1 Experimental System Setup

The experiments in this work are done on the Xilinx University Program Virtex-
II Pro Development System [1], the FPGA chip on this platform is XC2VP30,
with 30, 816 Logic Cells, 136 18-bit multipliers, 2, 448 Kb of block RAM , and two
PowerPC Processors. Due to the limitation of the FPGA platform, especially the
limited on-chip memory, we have different configurations for the different experi-
ments. Table 5.1 shows two different system configurations. The first system is a
system with two processing tiles with the same architecture shown in Fig. 3.14a.
The architecture of this system is similar to the one in Fig. 5.1, but without the
PowerPC, VGA and DDR.

Parameter Dual-tile Dual-tile+VGA
Monitor memory size 32KB 32KB
Memory left for trace 96KB 48KB

Tile I-MEM size 32KB 32KB
Shared memory size 16KB 32KB

Tile D-MEM size 32KB 32KB

Table 5.1: Dual tile system configuration

In order to test the application and try the real-life application, a system with
frame-buffer and VGA output is also built. A PowerPC processor on the FPGA is
used to control the platform IO. The architecture of this system is shown in Fig. 5.1.

This platform is useful for the demonstrations. However, due to the limitations
of the FPGA platform, the existence of the IO components limits the configuration
of the MPSoC platform, thus it also limits the experiments on this platform.
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Figure 5.1: Dual tile system with VGA output

5.1.1 Implementation on FPGA Platform

To implement the hardware of the emulation platform on the FPGA, two different
tool flows are used, namely the Xilinx EDK [47] and the Æthereal NoC tool flow [22].
The XML files used to specify the NoC are given in Appendix A. Fig. 5.2a shows
the hardware flow of the FPGA emulation platform. The specifications of the
hardware platform and the NoC are created according to the system requirement.
The Æthereal flow produces the netlist of the NoC (.edf), which is imported to the
EDK as a peripheral. The EDK then generates the bitstream (.bit) which is used
to configure the FPGA.

For the software, this work uses the software tool-chain in EDK. The flow is
shown in Fig. 5.2b. Note that the executables are embedded in the bitstream for
FPGA configuration. This is not flexible for reconfiguration of the system; however
we leave the dynamic configuration of the software for the future work.
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(a) Hardware flow
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Bitstream

With Software

(b) Software flow

Figure 5.2: FPGA tool flow

5.2 Test Applications

Two different kinds of applications are mapped on the platform: the synthetic
application and the JPEG decoder. In this section we will described them.
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5.2.1 Synthetic Applications

The synthetic application template is used to emulate the behavior of different
applications. A synthetic application consists of two kinds of components, synthetic
tasks and FIFOs between the tasks.

The FIFOs used in the synthetic application are almost the same as FIFOs
used in normal applications, except that the content of the FIFOs storage can be
abandoned. The behavior of different kinds of FIFOs is emulated by setting different
token and FIFO sizes, and changing the token rate of the FIFOs.

Parameter Description Allowable Value
exe time Initial execution time Positive integer

exe time dist Execution time distribution User defined function
nbr fifo Number of FIFOs Positive integer
fid list FIFO ID list Array of integer
t rate Token rate list Array of integer

token rate dist Token rate distribution User defined function

Table 5.2: Parameters for a synthetic task

The synthetic task is useful for emulating of the behavior of different types of
tasks. Since the communication is already decoupled from computation in the OS,
the implementation of a synthetic task is fairly simple: consume a certain number
of processor cycles, and change the token rate. The behavior of a synthetic task is
defined by the parameters in Table. 5.2, and the control flow of a task is shown in
Fig. 5.3.

Read 

FIFOs

Write 

FIFOs

Delay(t)

t=exe_time_dis()

f=token_rate_dis()

Set_token_rate(f)

For each FIFO

Task

Figure 5.3: Flowchart of the synthetic task

The workload distribution function generates the number of cycles consumed by
a task in each iteration. Different workload distributions are implemented, including
constant, random and pulse width modulation (PWM). In random distribution,
the workload is generated by a pseudo random number generator (PRNG), with
a maximum value. In the PWM distribution, the workload is periodic, which is
described by two pairs of parameters, (Period, Duty-Cycle) and (High, Low). In
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the first Duty-Cycle iterations of a period, the workload is High, and it is Low in
the rest of iterations in the period, as shown in Fig. 5.4.

Duty-cycle

Period

High

Low

Workload

Iterations

Figure 5.4: PWM workload distribution

5.2.2 JPEG Decoder

To demonstrate the ability of running actual applications on the platform, a JPEG
decoder is ported to the platform.

The JPEG decoder is divided into three pipeline stages, the variable length
decoding (VLD), the inverse discrete cosine transformation (IDCT) and the color-
space conversion (CC). Each stage is mapped to a separate task. An iteration is
defined as the processing of one Minimal Coding Unit (MCU) of an JPEG picture.
For each task, there is a special iteration called initialization iteration, in which the
parameters of the input picture are set in the task state structure, e.g. the picture
size, sub-sampling factor.

Fig. 5.5 shows the execution time for each task in the JPEG decoder for decoding
three images similar to Fig. 5.5a, the troughs in IDCT and CC are the execution time
of the initialization iterations. Based on this information, on the dual processing
tile system, the VLD task is mapped on one tile and the other two are mapped to
the second tile, as shown in Fig. 5.6.

Note that the producer of the input FIFO and the consumer of the output
FIFO are not on any of the processing tiles, but they still need to use the C-HEAP
protocol.

On the platform with VGA output, the input and output of the JPEG decoder
is controlled by a PowerPC in order to let the I/O fit in the C-HEAP protocol. By
using large buffers and a fast processor (the PPC’s frequency is twice as high as
the processing tile’s maximum frequency), stalling for I/O never happens on the
processing tile, so for the tasks on the processing tile, the I/O is infinitely fast.

On the platform without PowerPC, the input FIFO is pre-filled, and the output
data is not actually written to the output space.

5.3 Experiments and Results

Four different experiments are performed. First one is the test of the impact of
communication on the task execution time. Second one is the experiment of ap-
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Figure 5.5: Execution time of the tasks in the JPEG decoder
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Figure 5.6: Mapping of the JPEG decoder
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plication and predictability. The third experiment tests the composability of the
system. Finally a power management experiment is performed to demonstrate the
power management for data-flow application.

5.3.1 Impact of Inter-processor Communication

In Section 4.3, one of the assumptions is that the workload in processor cycles is
independent of the processor frequency. Based on this assumption, a linear relation
between the execution time (in wall time) and the processor frequency can be de-
rived. However, as discussed in Section 4.3.2, the assumption may not be valid for
workload of different characteristic, but it should be conservative. In this section,
an experiment is carried out in order to investigate this assumption.

The setup is a single synthetic task with one single-rate input FIFO and one
single-rate output FIFO running on a processing tile. The producer of the input
FIFO and the consumer of the output FIFO are on the other processing tile, on
which a stand-alone program produce token and read data when ever it is possible.
With such setup, the task under test never needs to wait for tokens. Table 5.3 shows
different configurations of the experiment, the task delay parameter is constant in
all configurations and the task time slice is set to a value that guarantees the task
to finish one iteration within one time slice.

FIFO token size Workload Communication in workload
(Word) (Cycle) (Percentage)

0 12228 0%
16 13387 8.7%
64 14056 13.0%
128 14975 18.3%
256 16809 27.3%
512 20479 40.3%
1000 27502 55.5%

Table 5.3: Different workload of the task

In this experiment, each type of workload is tested at all possible frequency
steps, and the execution time of the task is measured by the system timer on the
processing tile.

Results and Analysis

Table 5.4 shows the execution times at different frequencies measured by the system
timer on the processing tile. The numbers are averaged over 100 iterations and the
unit here is cycle.

Fig. 5.7 shows the normalized throughput at different frequencies, where a value
of 1 represents the throughput for each configuration at the minimal frequency,
i.e. 6.25MHz. We can see that when there is no inter-processor communication,
the throughput increases linearly as the frequency increases. When there is inter-
processor communication, the curve is below the one without communication. And
as the task communicates more, the difference between linear projection and the
throughput increases, as expected.
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Token Size 50 43.75 37.5 31.25 25 18.75 12.5 6.25
(Word) MHz MHz MHz MHz MHz MHz MHz MHz

0 12228 13974 16303 19563 24454 32604 48906 97810
16 13387 15266 17771 21287 26544 35334 52884 105615
64 14056 15936 18444 21952 27205 35974 53524 106255
128 14975 16851 19364 22873 28133 36905 54473 107023
256 16809 18689 21200 24704 29974 38753 56265 108943
512 20479 22359 24871 28378 33637 42417 59935 112655
1000 27502 29380 31886 35392 40647 49429 66986 119695

Table 5.4: Execution times at different frequencies
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Figure 5.7: Throughput at different frequencies

The conclusion is that the linear assumption in Section 4.3 is conservative, which
means the number of processor cycles does not exceed the calculated WCW. Thus
we can use it as the basis for the power management.

5.3.2 Application Slack Management and Predictability Test

In this section, experiments are carried out to test the application slack management
and predictability of the system. A synthetic application is used in this experiment.
The setup of the test application is shown in Fig. 5.8. The task slice length in this
experiment is 1/1000 s

The application consists of four tasks, connected as a pipeline. Each FIFO in
the task graph is single rate, with token size of 40 Bytes and FIFO size of 8 tokens.
The configurations of the synthetic tasks are shown in Table 5.5.

TDM is used for task scheduling, and the scheduling order is as follow:

• Processing Tile 0: {T1, T1, T1, T1, T2, T2 }.
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Figure 5.8: Slack Management Test Application

Task Random WCW Budget Number
Max (1/8 slice) Slice of FIFOs

Tile 0 T1 47000 32 4 1
Tile 0 T2 16384 16 2 2
Tile 1 T1 47000 32 4 2
Tile 1 T2 16384 16 2 1

Table 5.5: Configurations of the synthetic tasks

• Processing Tile 1: {T1, T1, T1, T1, T2, T2 }.

Two types of application slack management policies are tested in this experi-
ment.

1. Self : tries to give the slack slice to the task which generated it (the owner).

2. Next-eligible (NE): tries to find an eligible task starting from the task next to
the owner in the application’s TCB list. The owner is tested when all other
tasks cannot run.

Fig. 5.9 shows an example of the scheduling without any slack management, and
Fig. 5.10 shows the result of using the two slack management policies. In Fig. 5.10a
the next-eligible policy significantly reduces the number of idle slices. In Fig. 5.10b
the self policy only uses the idle slices from 43 to 45.

0 10 20 30 40
Time Slice

App 0
Task 1

App 0
Task 2

Idle

Owned by
App 0
Task 1

Owned by
App 0
Task 2

Figure 5.9: Scheduling without slack management
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Figure 5.10: Scheduling with slack management

There are two ways to use the slack. First, the slack can be used to get a higher
throughput. Second, the slack can be used to enable the processor to run at a lower
frequency to save energy. In this experiment, both options are tested.

Results and Analysis

Table 5.6 shows the result of running 80 iterations. From this table we can see that
when DVFS is disabled, both policies significantly improve the throughput of the
application, thus the utilization of the processor is high. However, for the power
management, the next-eligible policy performs much better than the self policy.

Task Fixed NE Self NE Self
TDM No DVFS No DVFS DVFS DVFS

Tile 0 T1 Used Slices 234 234 236 363 320
Tile 0 T1 Owned Slices 320 228 236 320 320
Tile 0 T2 Used Slices 106 106 106 116 108

Tile 0 T2 Owned Slices 159 112 118 159 159
Tile 0 Utilization 0.7098 1.0 0.9661 1.0 0.8935

Tile 1 T1 Used Slices 212 212 220 295 215
Tile 1 T1 Owned Slices 324 228 248 322 324
Tile 1 T2 Used Slices 106 106 106 121 106

Tile 1 T2 Owned Slices 161 114 124 160 161
Tile 1 Utilization 0.6557 0.9298 0.8763 0.8631 0.6619

Table 5.6: Processor utilization

Fig. 5.11 shows the accumulated finishing time for 50 iterations, i.e. the through-
put of each task without DVFS. We can see that with slack management, the time
used for finishing 50 iterations becomes shorter, i.e. the throughput increases.
Moreover, the finishing time with slack management is always earlier then the one
without slack management, i.e. the slack management is conservative.

Fig. 5.12 shows the throughput of each task with DVFS. Here we can see that
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Figure 5.11: Throughput without DVFS

the slack management is still conservative. But in contrast to Fig. 5.11, there is
no considerable difference in the finishing time although the slack management is
enabled.

Fig. 5.13 shows the frequency traces of each task for the next-eligible policy, and
Fig. 5.14 shows the ones of the self policy. Here the frequency trace is subsampled
for each task, i.e. only the time slices used by the task are included. The self
policy cannot do much on the second tile, as the pace of the second tile is mostly
determined by the first tile. Since the slack management with DVFS does not
increase the throughput, in the self policy, T1 on the second tile can not start
before it gets tokens from T2 on the first tile, which runs at the similar speed as
the fixed TDM scheduling. So the result of the tasks on the second tile is similar
to the result of fixed TDM scheduling.

The slack accumulation of the tasks are also different with different goal for
slack management In this experiment, the budget is assigned based on the WCET
of the task, which means the actual execution time of the task is always smaller or
equals to the budget. Consequently, when no DVFS is performed, the slack of a
task accumulates over time, while in the situation with DVFS, the slack is consumed
by tasks running at low frequency and the slack accumulates slower or even does
not accumulate. An example of the slack accumulation is shown in Fig. 5.15, the
slack accumulates quickly when DVFS is disabled, and it does not accumulate when
DVFS is enabled.

In this experiment, the application slack management is tested. Two different poli-
cies are used and the two different goals of slack management, throughput and en-
ergy with the two policies are observed. The system produces the expected results,
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Figure 5.12: Throughput with DVFS
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Figure 5.13: Frequency of each task with next-eligible policy (subsampled)
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Figure 5.14: Frequency of each task with self policy (subsampled)
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Figure 5.15: Accumulated slack for Tile 0 T2 with next-eligible policy
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from which we can conclude that the slack management in the TDM scheduling is
conservative, whether power management is enabled or not.

5.3.3 Composability Test

In this section, experiments are carried out to verify the composability of the plat-
form. The setup of the test applications is shown in Fig. 5.16. The JPEG decoder is
mapped to two processing tiles, and on each processing tile, there is an additional
synthetic application which consists of three tasks. Since the implementation of
a composable memory controller is not available yet, in this experiment only one
application, the JPEG decoder is mapped on multiple processing tiles. The task
slice length in this experiment is 1/3000 s.

Tile 0 Tile 1

App 0

VLD IDCT CC

App 0

App 1 App 1

T1 T2 T3 T3T2T1

(T1) (T2)(T1)

Figure 5.16: Composability test applications

To test the composability, we fix the settings and input of the JPEG decoder,
and change the settings of the synthetic applications. The JPEG decoder uses
round-robin on both tiles, and the synthetic application has different test cases as
in Table 5.7. Here cases of different schedulers, with and without slack management
(SM) and DVFS are tested.

Case Synthetic Application Task Scheduler
1 Round Robin
2 TDM
3 TDM + SM
4 TDM + SM + DVFS

Table 5.7: Composability test case

The workload and budget for the synthetic application in the TDM scheduling
are shown in Table 5.8.

In TDM scheduling, both synthetic applications use the following scheduling
order:

• {T1, T1, T1, T1, T2, T2, T3, T3 }.
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Task PWM Value PWM Period WCW Budget
(High, low) (Period, duty cycle) (1/8 slice) Slice

Tile 0 T1 (15000, 500) (5, 1) 32 4
Tile 0 T2 (8000, 500) (5, 3) 16 2
Tile 0 T3 (8000, 500) (10, 3) 16 2
Tile 1 T1 (15000, 500) (5, 2) 32 4
Tile 1 T2 (8000, 500) (5, 2) 16 2
Tile 1 T3 (8000, 500) (5, 2) 16 2

Table 5.8: Task workloads in composability test

The application scheduling order for the two tiles is as follows:

• Processing Tile 0: {A0, A1 }.

• Processing Tile 1: { A0, A0, A1 }.

This work focuses on the composability in the temporal domain. In this ex-
periment, we change the configuration of the synthetic application according to
Table 5.7, and measure the following parameters for the JPEG decoder:

• Trace of the scheduling order on each of the processing tiles.

• Execution time of each iteration.

• Finishing time of each iteration.

Results and Analysis

Fig. 5.17 shows an example of the scheduling order. Application 1 uses different
scheduling policies, namely, without slack management in Fig. 5.17a and with slack
management in Fig. 5.17b. The idle slices in Fig. 5.17a are used in Fig. 5.17b, which
increases the throughput of the application. The scheduling order in application 0
remains the same when different scheduling policies are used in application 1.

30 40 50 60 70
Time Slice

App 0
Task 1

App 0
Task 2

App 1
Task 3

App 1
Task 2

App 1
Task 1

Idle

(a) App 1 without slack management

30 40 50 60 70
Time Slice

App 0
Task 1

App 0
Task 2

App 1
Task 3

App 1
Task 2

App 1
Task 1

Idle

(b) App 1 with slack management

Figure 5.17: Scheduling of tile 1
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The execution time of the JPEG decoder measured by the system timer on the
processing tile for different test cases is exactly the same. Fig. 5.18 and Fig. 5.19
show the execution time of the sink tasks (VLD on tile 0 and CC on tile 1) on
the two tiles. Case 1, 2, 3 and 4 correspond to the four cases in Table 5.7. In
different test cases, the throughput of the synthetic application changes a lot while
the behavior of the JPEG stays the same.

To see the impact of execution time in wall time, the finishing of each iteration
of the application is time-stamped by the monitor. This measurement is not ac-
curate at cycle level as there is interference between different processing tiles and
different applications on the monitor side. However the relative error due to the
time-stamping is less than 0.5%, so we can conclude that the execution time in wall
time is also constant for all test cases.
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Figure 5.18: Throughput in different test cases on tile 0
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Figure 5.19: Throughput of different test cases on tile 1

In this experiment, the behavior of the JPEG decoder remains the same when
the other applications change the behavior, which shows that the platform is com-
posable in the temporal domain.
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5.3.4 Power Management Case Study

In this section, an example of power management in the platform is given. In this
experiment only one application is running on the dual processing tile platform.
The test application is a synthetic application with the task graph is shown in
Fig. 5.20. All FIFOs have the same token size, 10 words, and all token rates are 1.
The sizes of the FIFOs are given in Table 5.9. The task time slice length in this
experiment is 1ms, i.e. 50000 cycles.

T1

T2 T3

T4

T5

T6

Tile 0 Tile 1

Figure 5.20: Task graph of the synthetic application

FIFO Size (tokens)
FIFO 0 8
FIFO 1 4
FIFO 2 4
FIFO 3 8
FIFO 4 8

IPC FIFO 0 8
IPC FIFO 1 8

Table 5.9: FIFO size in the synthetic application

In this experiment, two types of workload distributions are used, PWM and ran-
dom. Table 5.10 gives the workload and budget information of the synthetic tasks.
The energy consumption of each task is estimated by the model in Section 4.3.2.

Task PWM Value PWM Period Random WCW Budget
(High, low) (Period, duty cycle) Max (1/8 slice) Slice

T1 (24000, 5000) (8, 1) 16384 16 2
T2 (36000, 5000) (5, 3) 47000 24 3
T3 (47000, 5000) (3, 2) 37500 32 4
T4 (24000, 5000) (8, 1) 16384 16 2
T5 (47000, 5000) (8, 1) 47000 32 4
T6 (36000, 5000) (8, 1) 37500 24 3

Table 5.10: Workload of the synthetic tasks

TDM scheduling with progress information is used on both tiles. Based on the
task graph and the workload information, the scheduling order is as follows,
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• Processing Tile 0: {T1, T1, T2, T2, T2, T3, T3, T3, T3}.

• Processing Tile 1: {T4, T4, T5, T5, T5, T5, T6, T6, T6}.

For slack management, the next-eligible policy described in Section 5.3.2 is used.

Results and Analysis

For each type of workload, the following cases are tested:

• Both tiles use fixed TDM scheduling, no slack management (SM) and no
DVFS.

• Both tiles use TDM scheduling with slack management, but only one tile uses
DVFS.

• Both tiles use TDM scheduling with slack management and DVFS.

In the experiment, a test case with a minimal frequency at 0.5 · fmax (25MHz)
instead of 0.125 · fmax (6.25MHz) is also included to see the effect of the minimal
voltage describe in Section 4.3.2. In this case, the following five frequency steps are
available: 50MHz, 43.75MHz, 37.5MHz, 31.25MHz and 25MHz.

When calculating the energy consumption, the unit is the energy consumption
of a full task time slice running at fmax. And according to (4.15), for a given period
of time t, the energy consumption E = αCaf2ft = βf3t where β is a constant
for a certain circuit and application. Here we let the length of the task time slice
be the time unit and denote it as T , and let the maximum frequency fmax be the
frequency unit. Here we define the unit of energy consumption to be the energy
consumption of running at maximum frequency for one task time slice, then the
energy consumption in one task time slice is determined by (5.1). Where tx is the
actual time used in that time slice. For a task that does not finish in the slice, we
have tx = T .

Ex = (
fx

fmax
)3
tx
T

(5.1)

In this experiment, the average energy consumption for each task in one iteration
in 100 iterations is calculated. Since the OS gates the clock when the idle task is
selected, in this section, the idle slices in the system are considered not consuming
any energy. For each task time slice there is a corresponding OS time slice which
runs at fmax, and it consumes energy as well. Here we also calculate the overhead
of the OS time slice, assuming the execution time of the OS services is constant,
then the overhead is linear to the number of time slices used. In this experiment
the OS overhead is set to 0.08 per slice, which equals to 4000 cycles (the default
OS time slice length) at this task time slice length.

Table 5.11 shows the result of random workload. The maximum power saving
is 49.93% in comparison to the fixed scheduling without any power management,
which happens when both tiles enable DVFS with minimal frequency restriction.
The number drops to 43.55% when the 8% OS overhead. If we assume the system
always runs at maximal frequency instead of halt when it is idle, the maximal
saving here is 74%. Note here only the energy consumption of the processing tile
is considered; for the system wide energy consumption, the energy consumption of
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the other resources has to be considered. The comparison between different policies
is shown in Fig. 5.25a. Limiting the minimal frequency has positive impact on
the energy saving in this case, although the difference is not significant. Fig. 5.21
and Fig. 5.22 shows the frequency of the processor with and without the limit of
minimal frequency. The minimal frequency restriction forces the processors to run
at a more uniform frequency, so it consumes less energy.

Tile0 Fixed SM+DVFS SM+DVFS SM+DVFS+min
Tile1 Fixed SM SM+DVFS SM+DVFS+min
T1 0.723 0.380 0.380 0.373
T2 1.233 0.579 0.579 0.574
T3 2.579 1.182 1.182 1.174
T4 0.638 0.639 0.331 0.334
T5 2.694 2.695 1.352 1.321
T6 1.394 1.394 0.913 0.862

Sum 9.2629 6.8690 4.7372 4.6376
Norm. Energy 1.0000 0.7416 0.5114 0.5007

With OS overhead 1.0000 0.7767 0.5783 0.5645
Total slices 1808 1806 1817 1757
Used slices 1233 1528 1757 1724
Utilization 0.682 0.846 0.967 0.981

Table 5.11: Energy consumption for random workload
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(b) fmin = 0.5 · fmax = 25MHz

Figure 5.21: Frequency of Tile 0 with random workload

Table 5.12 shows the result of PWM workload. The maximal power saving
is 47.98% in comparison to the fixed scheduling, which happens when both tiles
enable DVFS with minimal frequency restriction.. The number drops to 41.57%
when the 8% OS overhead. If we assume the system always runs at maximal
frequency instead of halt when it’s idle, the maximal saving here is 68%. Again,
here only the processing tile is considered. Limiting the minimal frequency in this
case also saves even more energy then the case without the restriction. Fig. 5.23 and
Fig. 5.24 shows the frequency of the processor with and without the limit of minimal
frequency, which is similar to the case with random workload. The comparison of
different policies is shown in Fig. 5.25b.
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Figure 5.22: Frequency of Tile 1 with random workload
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Figure 5.23: Frequency of Tile 0 with PWM workload
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Figure 5.24: Frequency of Tile 1 with PWM workload
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Tile0 Fixed SM+DVFS SM+DVFS SM+DVFS+min
Tile1 Fixed SM SM+DVFS SM+DVFS+min
T1 0.627 0.320 0.323 0.322
T2 1.910 0.847 0.844 0.796
T3 2.685 2.051 2.036 1.864
T4 0.578 0.590 0.359 0.296
T5 1.436 1.436 0.852 0.745
T6 2.284 2.284 1.127 0.930

Sum 9.5208 7.5283 5.5410 4.9524
Normalized 1.0000 0.7907 0.5820 0.5202

With OS overhead 1.0000 0.8182 0.6494 0.5843
Total slices 1807 1805 1976 1819
Used slices 1233 1435 1820 1757
Utilization 0.655 0.805 0.921 0.966

Table 5.12: Energy consumption for PWM workload
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Figure 5.25: Energy consumption of the test application

The result of this experiment shows that the platform has the ability to perform
power management in real-time application. A few interesting points are discovered
in the experiment. However, the detail study of power management policies is
beyond the scope of this work, we leave it as a future work.

5.4 Summary

In this chapter, the setup up of the experimental platform, the test application and
the experiments are described. This chapter shows that the design and implemen-
tation of the platform meets the requirements of this work – a composable and
predictable MPSoC emulation platform with power management capability.
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Chapter 6

Related Work

In this chapter, the related work is discussed. We start with MPSoC platforms
similar to this work in Section 6.1. Then we take a look at the power management
techniques in MPSoC design in Section 6.2. Finally, the FPGA-based emulation
platforms for MPSoC design is discussed in Section 6.3.

6.1 Composable and Predictable MPSoC Platform

Composable MPSoC architecture templates are presented in [23, 30].
The time-triggered platform proposed in [30] is a multi-core platform targeting

the automotive industry. It includes error correction and redundancy, and requires
logical synchronicity and a global notion of time.

CoMPSoC is a template for composable and predictable MPSoC, where each
application is given its own reconfigurable virtual platform [23].

Private data

SW tasks

Streaming API

Scheduler

HW Abstraction Layer

Circular buffers

Buffer administration

VLIW

NoC

Peripheral SRAM

Host CPU

Streaming I/O

memory

Bus I/O

Data
memory

VLIW core

Program

Figure 6.1: CoMPSoC architecture template, from [23]

In CoMPSoC, composability is provided by eliminating interference between
applications through resource reservations, thus the cycle-level behavior of an ap-
plication is independent of all other applications without placing any restriction
on the applications. Predictability is achieved by using hardware resource budget
enforcement to give a lower bound on resource availability. The template is given
in Fig. 6.1, an instance with three VLIW processor cores is implemented on FPGA
platform to demonstrate it. Due to the limitation of the VLIW cores, the processing
elements are not shared between applications in CoMPSoC.

The work of this thesis uses a template similar to CoMPSoC, and extends it to
support sharing processors between application. Using an operating system based
on the work in [19], the processor is shared between applications in a composable
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way. Besides the basic composable and predictable resource sharing, the MPSoC
platform in this work is able to perform per-tile composable and predictable power
management.

6.2 Power Management in MPSoC

Vasanth Venkatachalam and Michael Franz [45] give an overview of different power
management techniques for microprocessors. As mentioned in Section 2.3, the most
promising way to save dynamic power is to lower the supply voltage, and dynamic
voltage and frequency scaling (DVFS) is the obvious and the most promising solu-
tion.

A lot of studies have been done on the DVFS for MPSoC. For multi-processor
system, obviously a chip-wide power management policy is not efficient, and per-
core DVFS has been shown to offer larger energy savings [25, 43].

In [28], a trade-off between the benefit of per-core DVFS and the cost of on-chip
switching regulators is carefully considered, and the result suggests that the on-
chip regulator can provide fine grained DVFS, but the overhead of the regulators
for multiple power domains can be expensive.

Beign et al. [7] introduces a scheme that uses voltage hopping, a technique similar
to DC-DC converter, to generate an effective voltage and frequency for each unit in
a GALS system. With such technique, each unit of the system has its own power
and clock domain, and it is possible to perform fine grained DVFS for each unit.
The power efficiency of the complete system is evaluated close to 95%, and the area
overhead of the power supply unit is only 5% of the unit area.

To completely avoid the expensive on-chip regulator, [42] proposes thread mo-
tion, a scheme that uses cores with a number of fixed V-F levels and rapid thread
migration between cores at different V-F levels to achieve a lower effective voltage for
the thread execution, and increase the throughput at a given power budget. Thread
motion avoids the DVFS module and enables the fine grained power management
(at ns level). Currently, it is limited to homogeneous multi-processor platform only,
but it is an interesting option for power management in MPSoC.

In this work we assume the existence of DVFS module for each processing tile,
i.e. for each core, and per-core DVFS is performed. The power management is
targeting streaming applications using data-flow model, which is similar to the
work in [37].

6.3 FPGA-based Hardware Emulation

FPGA emulation is a widely used technique in multiprocessor system design, Rapid
Prototype engine for Multiprocessors (RPM) [50] is an early example.

As power consumption is becoming the dominant factor in current IC design,
there are raising attentions on using FPGA to emulate the power behavior of MP-
SoC [5, 9].

The work of [9] based on BEE [15], is a platform for power estimation of MPSoC
with the following feature:

• Two LEON3 cores, AHB bus with snooping.
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• Component-based power model, trace fine details in the system.

• The OS is linux, with knowledge of the power model.

Fig. 6.2 shows the architecture of the platform.
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Figure 6.2: FPGA based Power Evaluation Platform, from [9]

Most of such platforms are just for emulating the power-related behavior of
the system. The platform in this work, however, can support the actual power
management emulation. Also, the use of NoC brings the scalability of the platform
to a new level.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

As technology advances rapidly, the use of MPSoC in embedded systems is becom-
ing more and more common. In such systems, usually multiple applications are
running on the same platform, which requires resource sharing in the MPSoC. The
real-time constraints of the applications requires predictability of the MPSoC. To
reduce the complexity of design and verification of multi-application systems, com-
posability is required. And for embedded system, the power consumption is a major
design constraint. Thus, we need composable and predictable power management
on MPSoC.

In this thesis the design and implementation of a FPGA-based composable and
predictable MPSoC emulation platform with power management capability is pre-
sented.

The MPSoC platform is an extension of CoMPSoC [23] platform template and
the operating system is based on CompOSe RTOS [19]. A general processor core
MicroBlaze is used on the processing tile in the platform. And with an composable
RTOS running on the it, applications can share the processor in a composable and
predictable way.

Inter-task communication in the system is improved in both hardware and soft-
ware. In hardware, the design of a communication unit is presented. In software,
the implementation C-HEAP protocol and the support of data-flow graph model
are improved to cope with the real application.

Hardware and software infrastructure for composable and predictable per-tile
power management of the processing tile are designed and implemented. In hard-
ware, the power management unit (PMU) enables the simulation of DVFS on each
processing tile. In software, a power management system is presented such that
each applications on this platform are able to composable and predictable power
management.

The platform is tested and demonstrated in a number of experiment. These ex-
periments shows that the platform is composable and predictable, and composable
and predictable power management is possible on such a platform. So the primary
goal of this thesis is achieved.
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7.2 Future Work

In this section, a number of improvements and useful features are presented as the
possible future research areas.

7.2.1 Complete and More Accurate Power Model

The power model used in this work is simple and only considered the power con-
sumption of the processing tile. A complete and more accurate power model for
the system would be very useful for the research on power management.

7.2.2 Supporting Power Management for Different Types of Ap-
plications

The platform can perform power management on data-flow application with bud-
geting information. However, it is not limited to this type of application. The
support for more general applications would be very useful.

7.2.3 Dynamic configuration and reconfiguration

The support for dynamic reconfiguration of the platform is useful, such as adding or
deleting applications and tasks, dynamic reconfiguration of the NoC. In particular,
the dynamic application loading is very interesting. Since the on-chip memory is
limited in size, applications with large code size usually do not fit in the local
memory completely. Possible solution including cache, and application loading via
the NoC.

7.2.4 Cache Handling

Whether to use cache in the system is a design choice. In this work the cache is
not used so that the analysis of predictability is simple. However, a lot of legacy
applications require a lot of changes due to the missing of cache. It would be
interesting to see how the cache can fit in such a composable and predictable system.

7.2.5 Supporting Fine-grained Power Management

Related work in Section 6.2 shows a trend towards fine-grained power management,
which can exploit the dynamics in the application behavior. In this work, the
decision point of the power management is the same as the scheduling point, which
limits the granularity of the power management, as the task switching overhead can
be high.

7.2.6 Improving Monitor Capability

The monitor in this system is simple, most of the work is done in software on the
monitoring tile. However, this limits the system in two ways. First, the accuracy
of the monitoring is not at cycle level when the time-stamping is done at the mon-
itoring tile. Second, the scalability is limited by the number of FSL ports and the
response time of the monitor. Improving the monitoring infrastructure is important
for the emulation.
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Appendix A

NoC Specification XML
Files

A.1 Architecture Specification

1 < !DOCTYPE a r c h i t e c t u r e SYSTEM ” . . / . . / e t c / arch i t ec turegrm . dtd”>
2 <a r c h i t e c t u r e id=” p lb2dt l ”>
3
4 <parameter id=” c lk ” type=” i n t ” value=”50” />
5 <parameter id=” s l o t s i z e ” type=” i n t ” value=”3” />
6 <parameter id=” words ize ” type=” i n t ” value=”4” />
7 <parameter id=”pckhdr” type=” i n t ” value=”1” />
8 <parameter id=” cmdsize ” type=” i n t ” value=”2” />
9 <parameter id=”maxfc” type=” i n t ” value=”31” />

10 <parameter id=”maxpcklen” type=” i n t ” value=”8” />
11 <parameter id=” r iqueue ” type=” i n t ” value=”8” />
12 <parameter id=” n i iqueue ” type=” i n t ” value=”8” />
13 <parameter id=” nioqueue ” type=” i n t ” value=”8” />
14 <parameter id=” l i n k p i p e l i n e s t a g e s ” type=” i n t ” value=”0” />
15
16 < !−− Next comes the a c t u a l IP b l o c k s and t h e i r i n t e r f a c e s . −−>
17 <ip id=” monitor ” type=”Host”>
18 <port id=” pi ” type=” I n i t i a t o r ” p ro to co l=”MMIO DTL”>
19 <parameter id=”width” type=” i n t ” value=”32” un i t=” b i t s ” />
20 <parameter id=” address ” type=” i n t ” value=”0xb0000000” />
21 </ port>
22 </ ip>
23
24 <ip id=”mb0” type=”IP”>
25 <port id=” pi ” type=” I n i t i a t o r ” p ro to co l=”MMIO DTL”>
26 <parameter id=”width” type=” i n t ” value=”32” un i t=” b i t s ” />
27 </ port>
28 </ ip>
29
30 <ip id=”mb1” type=”IP”>
31 <port id=” pi ” type=” I n i t i a t o r ” p ro to co l=”MMIO DTL”>
32 <parameter id=”width” type=” i n t ” value=”32” un i t=” b i t s ” />
33 </ port>
34 </ ip>
35
36 <ip id=”ram” type=”IP”>
37 <port id=”pt” type=” Target ” p ro to co l=”MMIO DTL”>
38 <parameter id=”width” type=” i n t ” value=”32” un i t=” b i t s ” />
39 <parameter id=” delay ” type=” s t r i n g ” value=”1” />
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40 </ port>
41 </ ip>
42 </ a r c h i t e c t u r e>

A.2 Communication Specification

1 < !DOCTYPE communication SYSTEM ” . . / . . / e t c /communicationgrm . dtd”>
2 <communication>
3 <a p p l i c a t i o n id=” a p p l i c a t i o n ”>
4
5 <connect ion id=”0” qos=”GT”>
6 < i n i t i a t o r ip=” monitor ” port=” pi ” />
7 <t a r g e t ip=”ram” port=”pt” />
8 <read bw=” 0.01 ” />
9 </ connect ion>

10
11 <connect ion id=”1” qos=”GT”>
12 < i n i t i a t o r ip=”mb0” port=” pi ” />
13 <t a r g e t ip=”ram” port=”pt” />
14 <read bw=”4” b u r s t s i z e=’ 128 ’ />
15
16 </ connect ion>
17
18 <connect ion id=”2” qos=”GT”>
19 < i n i t i a t o r ip=”mb1” port=” pi ” />
20 <t a r g e t ip=”ram” port=”pt” />
21
22 <read bw=”4” b u r s t s i z e=’ 128 ’ />
23 </ connect ion>
24
25 </ a p p l i c a t i o n>
26 </communication>

88


	List of Figures
	List of Tables
	Introduction
	Challenges in MPSoC Design
	Problem Description
	Requirements
	Contributions
	Thesis Outline

	Basic Concepts and Methodology
	Composability
	Real-time Applications and Predictability
	Power Management
	Network on Chip
	Data-flow Graph Programming Model
	FPGA-based Hardware Emulation and Simulation
	Proposed System Architecture and Design Flow
	Summary

	Hardware Platform Design
	NoC Based Interconnection
	Processing Tile Design
	Monitor Tile Design
	System Configuration
	Integration
	Summary

	Software Platform Design
	Scheduling on the Processing Tile
	Inter-task Communication
	Power Management
	Monitor Support
	Integration
	Summary

	Experiments and Results
	Experimental System Setup
	Test Applications
	Experiments and Results
	Summary

	Related Work
	Composable and Predictable MPSoC Platform
	Power Management in MPSoC
	FPGA-based Hardware Emulation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	NoC Specification XML Files
	Architecture Specification
	Communication Specification


