815,711 research outputs found

    A discrete decentralized variable structure robotic controller

    Get PDF
    A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for

    Designing dependable process-oriented software : a CSP-based approach

    Get PDF
    This thesis advocates dependability as a crucial aspect of software quality. Process orientation, as it is defined in this thesis, concentrates on the notion of a process as a basic building component of a dataflow-centred software architecture. The dependability approach in the proposed variant of process orientation builds on a few specific strengths of the particular dataflowcentred architecture which is based on the principles of the CSP process algebra

    Multi-layer Architecture For Storing Visual Data Based on WCF and Microsoft SQL Server Database

    Full text link
    In this paper we present a novel architecture for storing visual data. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as SQL database management systems and service-oriented frameworks. The proposed solution is based on a multi-layer architecture, which allows to replace any component without recompilation of other components. The approach contains five components, i.e. Model, Base Engine, Concrete Engine, CBIR service and Presentation. They were based on two well-known design patterns: Dependency Injection and Inverse of Control. For experimental purposes we implemented the SURF local interest point detector as a feature extractor and KK-means clustering as indexer. The presented architecture is intended for content-based retrieval systems simulation purposes as well as for real-world CBIR tasks.Comment: Accepted for the 14th International Conference on Artificial Intelligence and Soft Computing, ICAISC, June 14-18, 2015, Zakopane, Polan

    Component technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA component model

    Get PDF
    This one-day tutorial is aimed at software engineering practitioners and researchers, who are familiar with objectoriented analysis, design and programming and want to obtain an overview of the technologies that are enabling component-based development. We introduce the idea of component-based development by dening the concept and providing its economic rationale. We describe how objectoriented programming evolved into local component models, such as Java Beans and distributed object technologies, such as the Common Object Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and the Component Object Model (COM). We then address how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans (EJB) and the CORBA Component Model (CCM). We give an assessment of the maturity of each of these technologies and sketch how they are used to build distributed architectures

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar
    corecore