
Component Technologies: Java Beans, COM, CORBA,
RMI, EJB and the CORBA Component Model

Wolfgang Emmerich and Nima Kaveh
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{w.emmerich|n.kaveh}@cs.ucl.ac.uk

ABSTRACT
This one-day tutorial is aimed at software engineering prac-
titioners and researchers, who are familiar with object-
oriented analysis, design and programming and want to
obtain an overview of the technologies that are enabling
component-based development. We introduce the idea of
component-based development by defining the concept and
providing its economic rationale. We describe how object-
oriented programming evolved into local component mod-
els, such as Java Beans and distributed object technolo-
gies, such as the Common Object Request Broker Archi-
tecture (CORBA), Java Remote Method Invocation (RMI)
and the Component Object Model (COM). We then address
how these technologies matured into distributed component
models, in partiuclar Enterprise Java Beans (EJB) and the
CORBA Component Model (CCM). We give an assessment
of the maturity of each of these technologies and sketch how
they are used to build distributed architectures.

Keywords: Component-based development, middleware,
enterprise applications

1. INTRODUCTION
Object-oriented technologies have had a large impact on
industrial software development process. Features of OO
methodologies such as encapsulation and abstraction lead
to a more flexible and extensible software product. Object-
oriented programming, however has failed to deliver its ex-
pectations with respect to productivity gains and in partic-
ular the creation of reuse. Component technologies build
on this foundation to provide third-party components that
isolate and encapsulate specific functionalities and offer
them as services in such a way that they can be adapted
and reused without having to change them programatically.
Components usually consist of multiple objects and thus
have a larger granularity. This characteristic enables them
to combine functionalities of the objects and offer them as
a single service.

2. TUTORIAL STRUCTURE
This tutorial provides a classification of the existing key
technologies in component-based and distributed systems.
We explore the relationships between these technologies and
the ways in which some have been combined together. Start-
ing from object-oriented programming we outline the differ-
ent development strands of component technologies, which
are:

1. Local component technology

2. Distributed Object technology

3. Distributed component technology

During the tutorial, we discuss examples technologies in each
of these classes and demonstrate how they can be used to
build applications.

2.1 Local Component Technology
Component models provide a mechanism by which software
engineers can develop applications by composing compo-
nents through their well defined interfaces rather than devel-
oping new or changing existing components. By acquiring
components from third-party providers the process of devel-
opment becomes less time consuming and raises the level
of implementation abstraction. Moreover using components
that have previously been deployed successfully should re-
duce bugs in the software.

Local component technologies can only operate in an intra-
process fashion. Therefore all components must reside on
the same host at execution time.

Two of the main component technologies include JavaBeans
of Sun Microsystems [6] and ActiveX [1] of Microsoft, based
on their Component Object Model (COM). The tutorial will
focus mainly on JavaBeans. The concept behind JavaBeans
is to enable the composition of components, known as beans,
through a composition tool (Bean Box). In this way devel-
opers can simply customise imported beans via a palette
of properties. Bean components communicate by sending
events to one another using a publish/subscribe model. In
order for the Bean Box to extract the properties, methods
and events supported by a component, JavaBeans uses an
introspection mechanism. Introspection, a weak type of re-
flection, is achieved in two ways. Firstly there is a strict

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


guideline for naming the properties and methods of a bean
during implementation. Secondly a bean provider can ex-
plicitly provide information about the feature of a bean us-
ing a standard API and then Java’s reflection package can
be used.

2.2 Distributed Object Technology
Object middleware enables communication between multi-
ple objects that reside on different networked hosts (dis-
tributed objects). The communication primitive between a
client object and a server object is a method invocation.
Middleware is responsible for providing transparency lay-
ers that deal with distributed systems complexities such as
location of objects, heterogeneous hardware/software plat-
forms and numerous object implementation programming
languages. Shielding the application developer from such
complexities results in simpler design and implementation
processes.

Besides the core task of transparently relaying object invoca-
tions, some middleware technologies offer additional services
to the application developer. Examples of these services in-
clude security, persistence, naming and trading.

The tutorial will look at three mainstream object middle-
ware technologies used in industry. These are the Common
Object Request Broker Architecture (CORBA) [2, 5], Java
Remote Method Invocation (RMI) [3] and Microsoft COM.
Java RMI is most suitable when the system purely consists
of Java objects that need to communicate on a distributed
system. The close integration of Microsoft’s COM technol-
ogy with its other products makes COM the best choice for
a Microsoft based environment. The CORBA specification
is the result of input from a wide range of OMG members,
making its implementations the most generally applicable
option.

We compare and contrast the object models of these object
middleware systems and discuss scenarios in which different
types of middleware may need to be integrated. In order to
achieve interworking between different types of middleware
system, object model mappings and interaction protocols
need to be provided.

2.3 Distributed Component Models
The motivation for distributed component models partly
originate from deficiencies present in available OO middle-
ware technologies. Designs and implementations of appli-
cations using middleware invariably have a large focus on
middleware which can cause a distraction from the main
business problem at hand. Moreover experience has shown
that integrating existing middleware technologies is cumber-
some and often a source of additional complexity.

Distributed component technologies combine the character-
istics of components with the functionality of middleware
systems to provide inter-process communication between
components. That is to say components that can communi-
cate across machine boundaries.

The tutorial will discuss two distributed component tech-
nologies namely, Enterprise Java Beans (EJB) [4] of Sun
Microsystems and the CORBA Component model. These

are both server-side component models used for developing
distributed business objects. These are used on the middle-
tier application servers that manage the components at run-
time and make them available to remote clients.

Both EJB and CORBA components operate by providing
components with a container in which they can execute.
Each component provides an interface used for life-cycle op-
erations such as creation, migration and destruction, as well
as the remote interface it supports. Compliant containers all
support the same set of interfaces which means that compo-
nents can freely migrate between different containers at run-
time without the need of reconfiguration or recompilation.
Containers themselves run on application servers, which of-
fer services offered by the underlying middleware systems
such as transactions, security, persistence and notification.

The CORBA component model was developed to provide
a distributed component model for use with programming
languages other than Java and at the same time achieve in-
teroperability with EJB components. However its also mo-
tivated by providing an open standard that is not controlled
by individual vendors. Currently there are more than 30
implementations of EJB servers and that number is increas-
ing. CORBA component implementations are underway but
have not yet been released.

3. WHO SHOULD ATTEND
This full-day tutorial is aimed at both industrial and aca-
demic participants, who wish to get an overview of the local
and distributed component technologies that are currently
available. We assume that participants are familiar with
object-oriented programming concepts.

4. ABOUT THE INSTRUCTORS
Dr. Wolfgang Emmerich is a co-founder, Director and
Chairman of Zuhlke Engineering (UK) Ltd. He has authored
a Wiley text on “Engineering Distributed Objects”. Wolf-
gang Emmerich has delivered numerous tutorials at interna-
tional software engineering conferences. He is also a Senior
Lecturer in Computer Science at University College London.
Nima Kaveh investigates model checking techniques for dis-
tributed objects and components during his PhD studies at
UCL.

5. REFERENCES
[1] D. Box. Essential COM. Addison-Wesley Publishing

Company, 1998.

[2] W. Emmerich. Engineering Distributed Objects. John
Wiley & Sons, Apr. 2000.

[3] JavaSoft. Java Remote Method Invocation Specification,
revision 1.50, jdk 1.2 edition, Oct. 1998.

[4] R. Monson-Haefel. Enterprise Java Beans - 2nd
Edition. O’Reily, 2000.

[5] Object Management Group. The Common Object
Request Broker: Architecture and Specification Revision
2.3. 492 Old Connecticut Path, Framingham, MA
01701, USA, December 1998.

[6] JavaBeans Component Architecture Specification
Revision 1.0.1, 1998.


