12,889 research outputs found

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posteriorprior)\mathrm{KL}(\text{posterior} \operatorname{\|} \text{prior}) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P)L_2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with LL_\infty. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity.Comment: 38 page

    Lecture notes on ridge regression

    Full text link
    The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart

    A Multiscale Approach for Statistical Characterization of Functional Images

    Get PDF
    Increasingly, scientific studies yield functional image data, in which the observed data consist of sets of curves recorded on the pixels of the image. Examples include temporal brain response intensities measured by fMRI and NMR frequency spectra measured at each pixel. This article presents a new methodology for improving the characterization of pixels in functional imaging, formulated as a spatial curve clustering problem. Our method operates on curves as a unit. It is nonparametric and involves multiple stages: (i) wavelet thresholding, aggregation, and Neyman truncation to effectively reduce dimensionality; (ii) clustering based on an extended EM algorithm; and (iii) multiscale penalized dyadic partitioning to create a spatial segmentation. We motivate the different stages with theoretical considerations and arguments, and illustrate the overall procedure on simulated and real datasets. Our method appears to offer substantial improvements over monoscale pixel-wise methods. An Appendix which gives some theoretical justifications of the methodology, computer code, documentation and dataset are available in the online supplements

    Bayesian interpolation

    Get PDF
    Although Bayesian analysis has been in use since Laplace, the Bayesian method of model-comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularization and model-comparison is demonstrated by studying the inference problem of interpolating noisy data. The concepts and methods described are quite general and can be applied to many other data modeling problems. Regularizing constants are set by examining their posterior probability distribution. Alternative regularizers (priors) and alternative basis sets are objectively compared by evaluating the evidence for them. “Occam's razor” is automatically embodied by this process. The way in which Bayes infers the values of regularizing constants and noise levels has an elegant interpretation in terms of the effective number of parameters determined by the data set. This framework is due to Gull and Skilling

    Conditional Density Estimation by Penalized Likelihood Model Selection and Applications

    Get PDF
    In this technical report, we consider conditional density estimation with a maximum likelihood approach. Under weak assumptions, we obtain a theoretical bound for a Kullback-Leibler type loss for a single model maximum likelihood estimate. We use a penalized model selection technique to select a best model within a collection. We give a general condition on penalty choice that leads to oracle type inequality for the resulting estimate. This construction is applied to two examples of partition-based conditional density models, models in which the conditional density depends only in a piecewise manner from the covariate. The first example relies on classical piecewise polynomial densities while the second uses Gaussian mixtures with varying mixing proportion but same mixture components. We show how this last case is related to an unsupervised segmentation application that has been the source of our motivation to this study.Comment: No. RR-7596 (2011
    corecore