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Abstract
We present a novel notion of complexity that interpolates between and generalizes some classic
existing complexity notions in learning theory: for estimators like empirical risk minimization
(ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher
complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent informa-
tion complexity (also known as stochastic or PAC-Bayesian, KL(posterior ∥prior) complexity. For
(penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood
(NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds
excess risk in terms of the new complexity. Our second main result links the new complexity via
Rademacher complexity to L2(P ) entropy, thereby generalizing earlier results of Opper, Haussler,
Lugosi, and Cesa-Bianchi who did the log-loss case with L∞. Together, these results recover
optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher
complexity by a simpler analysis which almost completely separates the two aspects that determine
the achievable rates: ‘easiness’ (Bernstein) conditions and model complexity.

1. Introduction

We simultaneously address four questions of learning theory:

(A) We establish a precise relation between Rademacher complexities for arbitrary bounded
losses and the minimax cumulative log-loss regret, also known as the Shtarkov integral and
normalized maximum likelihood (NML) complexity.

(B) We bound this minimax regret in terms of L2 entropy. Past results were based on L∞ entropy.

(C) We introduce a new type of complexity that enables a unification of data-dependent PAC-
Bayesian and empirical-process-type excess risk bounds into a single clean bound; this bound
recovers minimax optimal rates for large classes under Bernstein ‘easiness’ conditions.

(D) We extend the link between excess risk bounds for arbitrary losses and codelengths of Bayesian
codes to general codes.

All four results are part of the chain of bounds in Figure 1. The ← arrow stands for ‘bounded
in terms of’; the precise bounds (which may hold in probability and expectation or may even be an
equality) are given in the respective results in the paper. Red arrows indicate results that are new.
We start with a family of predictors F for an arbitrary loss function `, which, for example, may be
log-loss, squared error loss or 0/1-loss, and an estimator Π̂ which on each sample Zn = Z1, . . . , Zn
outputs a distribution Π̂ ∣ Zn on F ; classic deterministic estimators f̂ such as ERM are represented
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Figure 1: The tree of bounds we provide; red arrows indicate new results.

by taking a Π̂ that outputs the Dirac measure on f̂ . The main bound 2 ← 3 , Theorem 4, bounds
the annealed excess risk of a fixed but arbitrary estimator Π̂ in terms of its empirical risk on the
training data Zn plus a novel notion of complexity, COMPη(F , Π̂,w,Zn) (formulas for COMPη and
all other concepts in the paper are summarized in the Glossary on page 27). The annealed excess
risk is a proxy (and lower bound) of the actual excess risk, the expected loss difference between
predicting with Π̂ ∣ Zn and predicting with the actual risk minimizer f∗ within F . The bound
1 ← 2 (Corollary 9, based on Lemma 8, itself from Grünwald (2012)) bounds the actual excess risk
in terms of the annealed excess risk, so that we get a true excess risk bound for Π̂. The complexity
COMPη(F , Π̂,w,Zn) is dependent on a luckiness function w ∶ Zn × F → R+

0 ; w can be chosen
freely; different choices lead to different complexities and excess risk bounds. For nonconstant w, the
complexity becomes data-dependent; in particular, for w of the form π(f)/π̂(f ∣ zn), where π is the
density of a ‘prior’ distribution Π onF , the complexity becomes, by 3 ← 4 (Proposition 1) (strictly)
upper bounded by the information complexity of Zhang (2006a,b), involving a Kullback-Leibler (KL)
divergence term KL(Π̂∣Zn ∥Π). Information complexity generalizes earlier complexity notions and
accompanying bounds from the information theory literature such as (extended) stochastic complexity
(Rissanen, 1989; Yamanishi, 1998), resolvability (Barron and Cover, 1991; Barron et al., 1998), and
also excess risk bounds from the PAC-Bayesian literature (Audibert, 2004; Catoni, 2007). Together,
1 ← 2 ← 3 ← 4 recover and strengthen Zhang’s bounds.

For constant w, the complexity is independent of the data and turns out ( 3 = 5 ), Section 2.2)
to be equal to the minimax cumulative individual sequence regret for sequential prediction with
log-loss relative to a family QF of probability measures defined in terms of F , also known as the
log-Shtarkov integral or NML (Normalized Maximum Likelihood) complexity. NML complexity has
been much studied in the MDL (minimum description length) literature (Rissanen, 1996; Grünwald,
2007).
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Problem A: NML and Rademacher NML complexity can itself be bounded in terms of a new
complexity we introduce, H-local complexity, which is further bounded in terms of Rademacher
complexity Rn (Theorem 10 and Corollary 14, 5 ← 6 ← 8 ). Both Rademacher and NML
complexities are used as penalties in model selection (albeit with different motivations), and the close
conceptual similarity between NML and Rademacher complexity has been noted by several authors
(e.g. Grünwald (2007); Zhu et al. (2009); Roos (2016)). For example, as shown by Grünwald (2007,
Open Problem 19, page 583) in classification problems, both the empirical Rademacher complexity
for 0-1 loss and the NML complexity of a family of conditional distributions can be simply expressed
in terms of a (possibly transformed) minimized cumulative loss that is uniformly averaged over all
possible values of the data to be predicted, thereby measuring how well the model F can fit random
noise. Theorem 10 and Corollary 14 establish, for the first time, a precise and tight link between
NML and Rademacher complexity. The proofs extend a technique due to Opper and Haussler (1999),
who bound NML complexity in terms of L∞ entropy using an empirical process result of Yurinskiı̆
(1976). By using Talagrand’s inequality instead, we get a bound in terms of Rademacher complexity.

Problem B: Bounding NML Complexity with L2(P ) entropy and empirical L2 Entropy If
F is of VC-type or a class of polynomial empirical L2 entropy, the Rademacher complexity can
be further bounded, (Theorem 15, 8 ← 9 ), in terms of the empirical L2 entropy; if F admits
polynomial L1(P ) entropy with bracketing, then Tn is further bounded, (Theorem 16, 6 ← 7 ),
in terms of this L1(P ) entropy with bracketing. These latter two results are well-known, due to
Koltchinskii (2011) and Massart and Nédélec (2006) respectively, but in conjunction with 5 ← 6
they become of significant interest for log-loss individual sequence prediction. Whereas previous
bounds on minimax log-loss regret were invariably in terms of L∞ entropy (Opper and Haussler,
1999; Cesa-Bianchi and Lugosi, 2001; Rakhlin and Sridharan, 2015), the aforementiond two results
allow us to obtain bounds in terms of L1(P ) entropy and empirical L2 entropy, where P can be any
member of the class Qf . Unlike the latter two works, however, our results are restricted to static
experts that treat the data as i.i.d.

Problem C: Unifying data-dependent and empirical process-type excess risk bounds As lamented
by Audibert (2004; 2009), despite their considerable appeal, standard PAC-Bayesian and KL excess
risk bounds do not lead to the right rates for large classes, i.e. with polynomial L2(P ) entropy. On
the other hand, standard Rademacher complexity generalization and excess risk bound analyses are
not easily extendable to either penalized estimators or generalized Bayesian estimators that are based
on updating a prior distribution; also handling logarithmic loss appears difficult. Yet 1 ← 2 ← 3
shows that there does exist a single bound capturing all these applications — by varying the function
w one can get both (a strict strengthening of) the KL bounds and a Rademacher complexity-type
excess risk bound. In this way, via the chain of bounds 1 ← . . . ← 7 / 9 , we recover rates for
empirical risk minimization (ERM) that either are minimax optimal (for classification) or the best
known rates for ERM (for other losses), even for VC and polynomial entropy classes; the rates
depend in the right way on the ‘easiness’ of the problem as measured by the central condition (Van
Erven et al., 2015), which generalizes Tsybakov’s (2004) margin condition and Bernstein conditions
(Bartlett et al., 2005).

Problem D: Excess Risk Bounds and Data Compression While Zhang’s bound holds for arbi-
trary ‘posteriors’ Π̂, one gets the best excess risk bounds if one takes Π̂ to be a generalized Bayesian
estimator. With such a Π̂, the information complexity can be expressed in terms of a (generalization

3



GRÜNWALD MEHTA

of) the cumulative log-loss of a Bayesian sequential prediction strategy (Zhang, 2006a; Grünwald,
2012) defined relative to the constructed probability model QF . By the correspondence between
codelengths and cumulative log-loss (reviewed in Section 2), we may say that we bound an excess
risk in terms of a codelength. 3 = 5 shows that we also get a useful excess risk bound in terms of
the codelengths of the minimax (NML) code — interestingly, Bayes and NML codes are the two
central codes in the universal coding literature (Barron et al., 1998; Grünwald, 2007). In fact, our
work shows that the correspondence between excess risk bounds and codelengths is a quite general
phenomenon, not particular to Bayes and NML codes: in Section 2 we show that there is a 1-to-1
relation between luckiness functions w and codes for data based on Qf : each luckiness function w
defines, up to scaling, a different code giving rise to a different complexity COMPη(F , Π̂,w, zn) and
hence a different excess risk bound, and vice versa. Because of its relation to data compression, it
becomes easy to extend the approach to model selection by using ‘two-part codes’ (Section 5.1).

For yet other choices of w, we obtain bounds for penalized ERM with arbitrary bounded
penalization functions (Section 5.2); if we specialize to log-loss, the complexity bound becomes a
minimax regret-with-luckiness-term as considered in recent papers on sequential log-loss prediction
such as (Kakade et al., 2006; Bartlett et al., 2013). Many other choices of w are possible and remain
subject for future investigation.

Additional Features and Limitations The full story above can only be told for bounded losses,
although the bounds 2 ← 3 , 3 ← 4 also hold for unbounded losses, and 1 ← 2 was recently
extended to unbounded losses under a mild additional condition (Grünwald and Mehta, 2016).
Remarkably, 2 ← 3 is as tight as can be: when viewed in terms of exponential moments, it is really
an equality rather than a bound; this suggests that, no matter the choice of w, the resulting bound
is essentially unimprovable. The complexity COMPη depends on a learning rate parameter η, and
all bounds in the figure become different depending on the choice of η. The optimal η depends on
the easiness of the problem at hand, as measured by central/Bernstein/Tsybakov’s conditions (see
above). ERM can be applied (and optimal rates can be obtained) without knowledge of the optimal η;
to get the right rates for Bayesian and penalized ERM algorithms however, these algorithms should
be made dependent on η (η is akin to 1/λ in the lasso and ridge regression); in practice, one can
learn it from the data using an algorithm such as the ‘safe Bayes’ algorithm of Grünwald (2012)
(Section 5.1).

Contents In Section 2.2, we introduce the simple data-independent version of our complexity,
COMP(F , f̂), which is really the NML complexity. In Section 2.4 we extend our notion of complexity
to the generalized data-dependent form COMP(F , Π̂,w, zn). Section 3 contains our first main result,
Theorem 4. In Section 4, we derive our second main result, Theorem 10 and its Corollary 14, a bound
on COMP(F , f̂) in terms of Rademacher complexity; we also present a concrete application of this
result, Theorem 20, which provides the best known rates for ERM under Bernstein conditions for
bounded loss functions in a number of situations. Section 5 gives various applications of our result.
Finally, Section 6 closes with a discussion of our work in the context of other recent works. All long
proofs can be found in the appendix. Mathematical definitions and notations are summarized in the
Glossary on page 27.
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2. The Novel Complexity Notion

2.1 Preliminaries

In the statistical learning problem (Vapnik, 1998), a labeled sample Zn = Z1, . . . , Zn is drawn
independently from probability distribution P over Z = (X × Y), where, for each j ∈ [n], we have
Zj = (Xj , Yj). We are given an action space or model F and a loss function ` ∶ F × Z → R, where
we denote the loss that action or predictor f makes on z as `f(z). Loss functions such as 0-1,
squared error, and log-loss (for joint densities on z = (x, y)) can all be expressed this way: in the
former two cases F consists of functions f ∶ X → Y , with `f(x, y) = ∣y − f(x)∣ and (y − f(x))2

respectively, and in the latter case F is a set of probability densities on Z = X × Y relative to some
underlying measure ν and `f(x, y) = − log f(x, y), with log denoting natural logarithm in this paper.
An estimator or learning algorithm Π̂ is a function from Zn to distributions over F . Here and in
the sequel we simply assume that F is endowed with a suitable sigma-algebra Σ so that (F ,Σ) is
a measurable space and all functions we refer to are measurable. We will write Π̂ ∣ zn to denote
the distribution chosen for data zn. In practice Π̂ is often supported entirely on a single function
f̂ ∈ F ; in that case we simply write the estimator as f̂ and the f chosen for given data zn as f̂∣zn .
An example of such a deterministic estimator is ERM, the empirical risk minimizer. An example
of a randomized estimator is obtained by setting Π̂ ∣ zn to be the generalized η-Bayesian posterior
(Zhang, 2006b; Catoni, 2007), which we explicitly define in Section 2.4. Henceforth, we simply call
Π̂ an ‘estimator’ irrespective of whether it is deterministic or randomized.

We aim to learn distributions Π̂ that obtain low expected risk Ef∼Π̂[EZ∼P [`f(Z)]]. The risk of
an action f is the expected value of the loss `f(Z) suffered when playing action f and the actual
outcome is Z. A natural way to measure the quality of Π̂ on data zn is therefore the excess risk
Ef∼Π̂∣zn[EZ∼P [`f(Z) − `f∗(Z)]], where f∗ is a minimizer of the risk over F ; like many other
authors (e.g Bartlett et al. (2005)) we assume throughout this work that such a minimizer exists.
We use the notation Rf(z) = `f(z) − `f∗(z), extended to samples zn = (z1, . . . , zn) ∈ Zn as
Rf(zn) = ∑ni=1 (`f(zi) − `f∗(zi)). Note that, when Zn ∼ P , Π̂ ∣ Zn and f̂∣Zn can be thought of as
random variables so we simply write them without Zn whenever this cannot cause any confusion.

2.2 The Novel Complexity Measure, Simple Case

To prepare for the definition of our complexity measure COMP, we first need to associate each f ∈ F
with an associated probability distribution Qf . We may assume without loss of generality that the
underlying distribution P on Z has a density p with respect to some base measure ν (we could for
example take ν = P but the formulas below are easier to parse for general ν). Now for each f ∈ F ,
we define Qf to be the distribution over Z with density (with respect to the same base measure ν)

qf(z) ∶=
p(z) ⋅ e−ηRf (z)

EZ∼P [e−ηRf (Z)]
. (1)

We extend the definition to n outcomes by taking the product densities, qf(zn) ∶= ∏ni=1 qf(zi). In
this way the model F is itself mapped to a set QF = {qf ∶ f ∈ F} of probability densities, the
mapping depending on the loss function ` of interest, but also (suppressed in notation) on η, f∗, and
on the ‘true’ P ; this is an instance of the ‘entropification procedure’ suggested by Grünwald (1999).

We are now ready to define our new complexity measure. For simplicity of we first present the
very special case of deterministic estimators f̂ without data dependence; this case is sufficient to
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make the connection to minimax regret and Rademacher complexities in Section 4. For this setting
we define the Shtarkov integral (name to be explained below) as

S(F ; f̂) ∶= EZn∼P

⎡⎢⎢⎢⎢⎢⎣

e
−ηR

f̂∣Zn
(Zn)

C(f̂∣Zn)

⎤⎥⎥⎥⎥⎥⎦
= ∫
Zn
qf̂∣zn

(zn)dν(zn)

. . .( (if ` log-loss, η = 1, model correct)= ∫
Zn
pf̂∣zn

(zn)dν(zn)) , (2)

where, for any f ∈ F , C(f) ∶= EZn∼P [e−ηRf (Zn)] is the normalization constant. Whenever S(F , f̂)
is finite (as will automatically be the case with bounded loss), the corresponding complexity of model
F equipped with f̂ is defined as

COMP(F , f̂) ∶= η−1 log S(F , f̂). (3)

COMP, S, qf , and normalizer C all depend on η, but this is suppressed in notation unless needed
for clarity. The final equality in (2) holds in the very special case that the original loss function is
log-loss, η = 1, and F contains the density p of P (‘the model is correct’). In that case f∗ = p (since
log-loss is a proper loss, see e.g. (Gneiting and Raftery, 2007)) C(f) evaluates to 1 for all f ∈ F ,
QF ,` is equal to F , and Rf(z) = − log f(z) + log p(z); thus, (1) reduces to qf(z) = f(z), and the
final equation in (2) follows. We further define the maximal complexity COMP(F) as

S(F) ∶= ∫
Zn

sup
f∈F

qf(zn)dν(zn) ; COMP(F) ∶= η−1 log S(F) = sup
f̂

COMP(F , f̂), (4)

where the final equality is a trivial consequence of the definition, the sup ranging over all deterministic
estimators that can be defined on F .

We often use the following observation due to (e.g.) Opper and Haussler (1999): Let K be a
finite set and let {Fk ∶ k ∈ K} be a partition of F . Then for every deterministic estimator,

COMP(F , f̂) ≤ log ∣K∣
η

+max
k∈K

COMP(Fk). (5)

This result follows as a special case of Proposition 22 in Section 5, but its proof is simple enough to
state in just a few lines:

COMP(F , f̂) ≤ η−1 log∫
Zn

max
k∈K

sup
f∈Fk

qf(zn)dν(zn)

≤ η−1 log∫
Zn
∑
k∈K

sup
f∈Fk

qf(zn)dν(zn)

≤ η−1 log ∣K∣ + η−1 max
k∈K

log∫
Zn

sup
f∈Fk

qf(zn)dν(zn).

Using (5), we can link COMP to Rademacher complexity, which we will do in Section 4.1 and 4.2.
Below, we first link COMP to log-loss prediction, extend it to encompass data-dependent and PAC-
Bayesian complexities and present our excess risk bound for the general complexities (Section 4.1
and 4.2) can be read without this material).
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Minimax Cumulative Log-Loss Interpretation of COMP For every given estimator f̂ , we can
define a density r on Zn relative to ν by setting

r(zn) ∶=
qf̂(z

n)
S(F , f̂)

, (6)

which evidently integrates to 1 and hence is a probability density (different choice of estimator
f̂ leads to different r; this is suppressed in the notation). We can use density r to sequentially
predict Z1, Z2, . . . , Zn by predicting Zi with the corresponding conditional density r(Zi ∣ Zi−1).
The cumulative log-loss obtained this way is given by

n

∑
i=1

− log r(Zi ∣ Zi−1) = − log r(Zn),

the latter equality following by definition of conditional probability and telescoping. Because of
the correspondence, via Kraft’s inequality, of log-loss prediction and data compression, we can also
think of this quantity as a codelength. Similarly, minf∈F − log qf(Zn) is the minimum cumulative
loss one could have obtained with hindsight, i.e. if one had sequentially predicted the Zi by the
qf that turned out to minimize − log qf on Zn. Assuming this minimum is well-defined it is of
course achieved by f̂ML, the maximum likelihood estimator relative to Q, for which evidently also
COMP(F) = COMP(F , f̂ML). Thus we get that for all zn ∈ Zn,

η−1 ⋅ COMP(F , f̂) = log S(F , f̂) = − log r(zn) − (− log qf̂(z
n))

if f̂ = f̂ML

= = η−1 ⋅ COMP(F) = − log r(zn) −min
f∈F

(− log qf(zn)) , (7)

the first equation holding for general f̂ and the second for f̂ML. The final expression is just the
(cumulative log-loss) regret of r on data zn, which, by (7), is constant on zn. As first noted by
Shtarkov (1987), this implies that (7) is also the minimax individual-sequence regret relative to the
model Q when sequentially predicting outcomes Z1, . . . , Zn with the log-loss; the corresponding
optimal sequential prediction strategy r is usually called the normalized maximum likelihood (NML)
or Shtarkov density; see Rissanen (1996); Grünwald (2007); Opper and Haussler (1999); Cesa-
Bianchi and Lugosi (2001) for details.

2.3 Allowing Data-Dependency

We now generalize the complexity definition above for arbitrary deterministic f̂ so that it becomes
data dependent; further extension to randomized estimators follows in Section 2.4. The central
concept we need is that of a luckiness function w ∶ Zn → R+

0 ; every combination of estimator
and luckiness function will, up to scaling, define a unique version of complexity; and every such
complexity will induce a different data-dependent bound on excess risk. We call w ‘luckiness
function’ since it will influence our excess risk bounds so that they become better iff we are ‘lucky’
in the sense that P is such that w(Xn) will be large with high probability).

The generalized Shtarkov integral for estimator f̂ relative to luckiness function w is defined as

S(F , f̂ , w) ∶= EZn∼P

⎡⎢⎢⎢⎢⎢⎣

e
−ηR

f̂∣Zn
(Zn)

C(f̂∣Zn)
⋅w(Zn)

⎤⎥⎥⎥⎥⎥⎦
= ∫
Zn
qf̂∣zn

(zn)w(zn)dν(zn), (8)

7
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and, whenever S(F , f̂ , w) < ∞, we define the corresponding data-dependent complexity as

COMP(F , f̂ , w, zn) ∶= 1

η
(− logw(zn) + log S(F , f̂ , w)) . (9)

Both expressions evidently reduce to (2) and (3) if we take w constant over Zn.

Cumulative Log-Loss Interpretation Fix an arbitrary estimator f̂ . Then for any luckiness func-
tion w with S(F , f̂ , w) < ∞, we can define the probability density

rw(zn) ∶=
qf̂ ∣zn(z

n) ⋅w(zn)
S(F , f̂ , w)

, (10)

with (6) being the special case with w ≡ 1. Just as with r1, for general such w, rw can be thought of
as a sequential prediction strategy, and η ⋅ COMP(F , f̂ , w, zn) − log qf̂∣zn

(zn) = − log rw(zn) is the
cumulative log-loss achieved by rw. Different (up to scaling) w generate different log-loss prediction
strategies (codes) and corresponding complexities. Conversely, for every probability density r′

relative to ν on Zn, we can set a luckiness measure w(zn) proportional to r′(zn)/qf̂ ∣zn(z
n); with

the appropriately scaled choice of w, rw will coincide r′; we thus have a 1-to-1-correspondence
between luckiness functions w with S(F , f̂ , w) < ∞, codes and complexities.

2.4 The Novel Complexity Measure, General Case

Here we further generalize the complexity definition so that it can output distributions Π̂ ∣ Zn on F .
For this we need to extend the domain of the luckiness function to encompass F , i.e. we now take
arbitrary functions of the form w ∶ Zn ×F → R+

0 .
The generalized Shtarkov integral for estimator Π̂ relative to luckiness function w is defined as

S(F , Π̂,w) ∶= EZn∼P [exp(−Ef∼Π̂∣Zn [ηRf(Zn) + logC(f) − logw(Zn, f)])] , (11)

and the generalized (data-dependent) model complexity corresponding to (11) is now defined as

COMP(F , Π̂,w, zn) ∶= 1

η
⋅ (Ef∼Π̂∣zn [− logw(zn, f)] + log S(F , Π̂,w)) . (12)

Both expressions are readily seen to generalize (8) and (9) respectively: if, for a given deterministic
estimator f̂ , we take Π̂(⋅ ∣ Zn) to be δf̂ (the Dirac measure on f̂∣Zn) and we take a function
w(zn, f) ≡ w(zn) that does not depend on f , then the expressions above simplify trivially to (8) and
(9) respectively; thus COMP(F , δf̂ ,w, z

n) = COMP(F , f̂ , w, zn). Finally, we define

COMPFULL(F , Π̂,w, zn) ∶= COMP(F , Π̂,w, zn) + Ef∼Π̂∣zn[Rf(z
n)] (13)

as the sum of the complexity and the expected excess loss that a random draw from Π̂ achieves on
the data.

8
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COMP generalizes information complexities To explain how PAC-Bayesian type complexity arise
a special case of COMP, we consider luckiness measures w that are defined in terms of probability
distributions Π onF that do not depend on the data; we call these ‘priors’. For notational convenience
it is useful to assume (without loss of generality) that Π has a density π relative to some underlying
measure ρ on F and that, for all zn ∈ Zn, Π̂ ∣ zn also has a density π̂ ∣ zn relative to ρ.

Proposition 1 Consider arbitrary Π and Π̂ as above with densities π and π̂ ∣ zn relative to some ρ.
Set w(zn, f) ∶= π(f)/π̂(f ∣ zn). Then we have

S(F , Π̂,w) ≤ 1. (14)

Consequently,

COMPFULL(F , Π̂,w, zn) ≤ Ef∼Π̂∣zn[Rf(z
n)] + η−1 ⋅KL( (Π̂ ∣ zn) ∥Π ), (15)

where KL( (Π̂ ∣ zn) ∥Π ) = Ef∼Π̂∣zn [log π̂(f ∣ zn)/π(f)] is KL divergence.

Proof By Jensen’s inequality applied to (11), we have, using the definition of w and Fubini’s
theorem,

S(F , Π̂,w) ≤ EZn∼P Ef∼Π̂∣zn

⎡⎢⎢⎢⎢⎣

e−ηRf (z
n
)

C(f) ⋅w(zn, f)
⎤⎥⎥⎥⎥⎦
= EZn∼P Ef∼Π

⎡⎢⎢⎢⎢⎣

e−ηRf (z
n
)

C(f)

⎤⎥⎥⎥⎥⎦
= Ef∼Π [∫

zn
qf(zn)dν(zn)] = 1,

which gives (14); (15) follows by plugging in our choice of w into the definition of COMP.

We thus see that COMPFULL is upper bounded by information complexity defined relative to
prior Π (Zhang, 2006a,b), which is just (15) normalized (divided by n). The notion of information
complexity is also used to bound excess risks in the PAC-Bayesian approach of Catoni (2007) and
Audibert (2004). As noted by Zhang (2006b), the right-hand side of (15) is minimized if we take as
our estimator Π̂ the η-generalized Bayesian estimator,

π̂(f ∣ zn) ∶=
exp (−η∑ni=1 `f(zi)) ⋅ π(f)

∫ exp (−η∑ni=1 `f(zi)) ⋅ π(f)dρ(f)
, (16)

and in that case is equal to the generalized marginal likelihood, known in the MDL literature as the
extended stochastic complexity (Yamanishi, 1998)

−η−1 logEf∼W [exp(−ηRf(Zn))], (17)

which, for η = 1 and ` the log-loss, coincides with the standard log Bayesian marginal likelihood.
We provide some further simple properties of COMP(F , Π̂,w, zn) for general Π̂ and w in

Section 5.

9
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Cumulative Log-Loss Interpretation Just as for deterministic estimators, we note that every
randomized estimator Π̂ and luckiness function w defines a probability density/prediction strategy
on Zn by setting

rw(zn) ∶=
e
(Ef∼Π̂∣zn[log qf (z

n
)⋅w(zn,f)])

S(F , Π̂,w)
,

and just as before, COMP can be interpreted in terms of the ‘code’ rw.

3. First Main Result: Bounding Excess Risk in Terms of New Complexity

In this section and Section 4, we restrict to the bounded loss setting; given this restriction, it is
without loss of generality that we assume that

sup
f,g∈F

ess sup ∣`f(Z) − `g(Z)∣ ≤ 1

2
, (A1)

as this always can be accomplished by an appropriate scaling of the loss.
Before presenting our first main result, it will be useful to introduce a variant of an ordinary

expectation as well as some notation. For η > 0 and general random variables U , we define the
annealed expectation (see Grünwald and Mehta (2016) for the origin of this terminology) as

EANN,η [U] = −1

η
logE [e−ηU] . (18)

Below we will first bound the annealed excess risk rather than the standard excess risk and then
continue to bound the latter in terms of the former. Our first main result below may be expressed
succinctly via the notion of exponential stochastic inequality,

Definition 2 (Exponential Stochastic Inequality (ESI)) Let η > 0 and let U,U ′ be random vari-
ables on some probability space with probability measure P . We define

U ⊴η U ′ ⇔ EU,U ′∼P [eη(U−U ′
)] ≤ 1, (19)

and we write U ⊴∗η U ′ iff the right hand of (19) holds with equality.

Clearly U ⊴∗η U ′ ⇒ U ⊴η U ′. An ESI simultaneously captures high probability and in-expectation
results:

Proposition 3 (ESI Implications) For all η > 0, if U ⊴η U ′ then, (i), E[U] ≤ E[U ′]; and, (ii), for
all K > 0, with P -probability at least 1 − e−K , U ≤ U ′ +K/η.

Proof Jensen’s inequality yields (i). Apply Markov’s inequality to e−η(U−U
′
) for (ii).

We now present our first main result, a new bound that interpolates between the Zhang bound and
standard empirical process theory bounds for handling large classes and that is sharp in the sense that
it really is an equality of exponential moments.

10
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Theorem 4 For every randomized estimator Π̂ and every luckiness function w ∶ ZN ×F → R+

0 , we
have

Ef∼Π̂∣Zn
[EANN,η

Z̄∼P
[Rf(Z̄)]] ⊴∗nη

1

n
⋅ COMPFULL(F , Π̂,w,Zn). (20)

The proof is in the appendix; it is merely a sequence of straightforward rewritings, where the key
observation is that for every f ∈ F , the annealed risk EANN,η

Z̄∼P
[Rf(Z̄)] is related to the normalization

factor appearing in the definition (1) of the probability density qf and its n-fold product C(f)
appearing in (2) via the following equality, as follows immediately from the definitions:

EANN,η

Z̄∼P
[Rf(Z̄)] = 1

n
⋅ − logC(f)

η
. (21)

We note that, by taking w as in Proposition 1, via (15), this theorem strictly generalizes Theorem 3.1
of Zhang (2006b), the left-hand side of Zhang’s inequality being equal to the annealed excess risk
and the right-hand side to the information complexity, i.e. the right hand of (15). However, by taking
different w, we get different bounds which are not covered by Zhang’s results and which, as we’ll see,
can be used to recover minimax excess risk bounds for certain large classes of polynomial entropy.

The above ESI’s have annealed expectations on their left-hand sides and thus still fall short of
providing such excess risk bounds.

This gap can be resolved under the v-central condition.

Definition 5 (v-central condition) Let v∶x ↦ η0 ⋅ xα be a function with domain [0,∞) for some
η0 > 0 and α ≥ 0. We say that (P, `,F) satisfies the v-central condition if, for all γ > 0,

E[e−v(γ)Rf (Z)] ≤ ev(γ)⋅γ .

In the special case of α = 0, we say that the η-central condition holds (for η = η0).

If the loss is η-exp-concave and the class F is convex, it is known that the η-central condition holds
(see the figure on page 1798 of Van Erven et al. (2015), or Lemma 1 of Mehta (2017) for an explicit
proof). More generally, in the case of bounded losses the v-central condition is in fact equivalent to
the well-known Bernstein condition.

Definition 6 (Bernstein condition) Let β ∈ [0,1]. We say that (P, `,F) satisfies the β-Bernstein
condition if, for some constant B < ∞

E [Rf(Z)2] ≤ B E [Rf(Z)]β for all f ∈ F .

We only recall one direction of the equivalence of the v-central condition to the Bernstein
condition here; the full equivalence is due to (Van Erven et al., 2015, Theorem 5.4).

Lemma 7 (Bernstein implies v-central) Assume for all f ∈ F that Rf(Z) ∈ [−1/2,1/2] a.s. If the
β-Bernstein condition holds for some β ∈ [0,1] and some constant B, then the v-central condition
holds for

v(γ) = min

⎧⎪⎪⎨⎪⎪⎩

γ1−β

B
,1

⎫⎪⎪⎬⎪⎪⎭
.

11



GRÜNWALD MEHTA

Proof For clarity, let ā and b̄ refer to the constants a and b from part 1(a) of Theorem 5.4 of Van
Erven et al. (2015). Apply that result with b̄ = 1

2ā , ā = 1/2, and the u function there set to x↦ Bxβ .
Note that although the statement of Theorem 5.4 actually imposes the stronger condition that the loss
` be [0,1/2]-valued, the proof thereof only requires that Rf ∈ [−1/2,1/2] a.s. for all f ∈ F .

Note that for such bounded loss functions, the weakest Bernstein condition with β = 0 holds
automatically and so does the v-central condition with v(γ) ∝ γ.

The following lemma is a translation of Lemma 2 of Grünwald (2012) which addresses the
aforementioned gap between the annealed and actual expectations.

Lemma 8 Suppose that the v-central condition holds for some η0 > 0 and α ≥ 0. If Rf(Z) ∈
[−1/2,1/2] a.s., then for all γ > 0, for all η ≤ v(γ)

2

EZ∼P [Rf(Z)] ≤ Cη ⋅ EANN,η
Z∼P [Rf(Z)] + Cη − 1

η
v(γ) ⋅ γ,

with Cη = 2 + 2η. In particular, taking η = v(γ)/2, we have

EZ∼P [Rf(Z)] ≤ Cv(γ)/2 ⋅ E
ANN,v(γ)/2
Z∼P [Rf(Z)] + 2(Cv(γ)/2 − 1)γ.

We note that a version of the above result also holds for general bounded losses. In fact, Grünwald
and Mehta (2016) (still under review) provide a refined version of this lemma that works even for
unbounded losses and for any η < v(γ), with sharper bounds for η < v(γ)/2.

With all the pieces in place, the next two excess risk bounds in terms of COMP are nearly
immediate.

Corollary 9 Take the same setup as Lemma 8. If Π̂ is an arbitrary randomized estimator, and w is
an arbitrary luckiness function, then

Ef∼Π̂∣Zn
[EZ∼P [Rf(Z)]] ⊴v(γ)⋅n/6

3 COMPFULL
v(γ)/2(F , Π̂,w,Z

n)
n

+ 4γ. (22)

If f̂ is ERM, then

EZ∼P [Rf̂(Z)] ⊴v(γ)⋅n/6
3 COMPv(γ)/2(F , f̂)

n
+ 4γ. (23)

Proof For (22), start with Lemma 8 with η = v(γ)/2 for the desired γ > 0, and then apply Theorem 4
to (stochastically) upper bound the annealed excess risk term. Observe that since v(γ) ≤ 1 by
assumption, we have Cv(γ)/2 ≤ 3.

For (23), start with (22), and take w ≡ 1 and Π̂(⋅ ∣ Zn) equal to the probability measure that
places mass 1 on f̂∣Zn and 0 elsewhere. From these settings and the optimality of ERM for the
empirical risk, COMPFULL(F , Π̂,w,Zn) reduces to the simpler form COMP(F , f̂).

To aid in the interpretation of the corollary, let us remark on two special cases of (22). In
both cases, we will suppose that, as in Proposition 1, w(zn, f) ∶= π(f)/π̂(f ∣ zn) where π is the
density of a fixed probability measureon F independent of the sample, so that COMP is bounded by

12
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information complexity. First, if the η-central condition holds, then, setting η′ = η/2 and using (15),
it further follows that

Ef∼Π̂∣Zn
[EZ∼P [Rf(Z)]] ⊴nη

6

3

n

⎛
⎝
Ef∼Π̂∣Zn[Rf(Z

n)] + 2 KL( (Π̂ ∣ Zn) ∥Π )
η

⎞
⎠
.

In the second case, we take Π̂ to be any posterior whose Π̂-expected empirical risk is at most the
empirical risk of f∗ (for example, Π̂ could be Dirac measure on, hence coincide with, ERM), and
for simplicity we further assume that a β-Bernstein condition holds for some B ≥ 2 (if it holds for
a smaller B, we will simply weaken the condition). Thus, from the bounded loss assumption the
v-central condition holds for v(γ) = γ1−β

B (provided that we only consider γ ≤ B1/(1−β)), and tuning
γ yields γ = A1 ⋅n−1/(2−β) KL( (Π̂ ∣ Zn) ∥Π )1/(2−β) for a constant A1 depending only on β and B,
so that

Ef∼Π̂∣Zn
[EZ∼P [Rf(Z)]] ⊴n⋅an A1 ⋅

⎛
⎝

KL( (Π̂ ∣ Zn) ∥Π )
n

⎞
⎠

1/(2−β)

, (24)

where an = A2(KL( (Π̂ ∣ Zn) ∥Π )/n)(1−β)/(2−β) for a constant A2 depending only on β and B.
Lastly, as usual, in both cases when the class is finite and the prior Π is uniform, the KL-divergence
term reduces to log ∣F∣. We thus retrieve the familar bounds O(n−1/2) in the worst-case (β = 0, for
which the Bernstein condition holds vacuously for bounded losses) and O(n−1) for the best case,
β = 1.

In the next section, we derive excess risk bounds for large classes by suitably controlling COMP

and then applying Corollary 9.

4. Bounds on Maximal Complexity COMP(F) and the excess risk bounds they imply

The results of the previous section do not yet yield explicit excess risk bounds as they still involve a
COMP term. In this section, we leverage and extend ideas from Opper and Haussler (1999) as well
as results from empirical process theory to provide explicit bounds on COMP for several important
types of large classes: classes of VC-type, classes whose empirical entropy grows polynomially,
and sets of classifiers whose entropy with bracketing grows polynomially. Along the way, we
form vital connections to expected suprema of certain empirical processes, including Rademacher
complexity. At the end of this section we present explicit excess risk bounds; these bounds are simple
consequences of the bounds we developed on COMP.

4.1 Preliminaries

Losses and Lipschitzness. To properly capture losses like log-loss and supervised losses like 0-1
loss and squared loss, we introduce two different parameterizations of the loss function:

1. the direct parameterization: `f(z) = f(x, y);

2. and the supervised loss parameterization: `f(z) = `(y, f(x)).

For example, in the case of conditional density estimation with log loss, we then have `f(z) =
f(x, y) = − log pf(y ∣ x). Thus, each function f ∈ F has domain Z , and the equivalence F = {`f ∶

13
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f ∈ F} holds. On the other hand, for supervised losses, each function f ∈ F has domain X while
each loss-composed function `f has domain Z .

Unlike previous sections, in this section we require an additional assumption in the case of
the supervised loss parameterization: we assume that, for each outcome (x, y) = z ∈ Z , the loss
`f(z) = `(y, f(x)) is L-Lipschitz in its second argument, i.e. for all f, g ∈ F ,

∣`(y, f(x)) − `(y, g(x))∣ ≤ L ∣f(x) − g(x)∣ . (A2)

In the case of classification with 0-1 loss, F is the set of classifiers taking values in {0,1} and
Y = {0,1}, and so (A2) will hold with L = 1 (and is in fact an equality). For convenience in the
analysis, in the case of the direct parameterization we may always take L = 1.

Standard complexity measures. It will be useful to review some of the standard notions of
complexity before presenting our bounds. In the below, letH be a class of functions mapping from
some space S to R; we typically will take S equal to either X or Z .

For a pseudonorm ∥ ⋅ ∥, the ε-covering number N(H, ∥ ⋅ ∥, ε) is the minimum number of radius-ε
balls in the pseudonorm ∥ ⋅ ∥ whose union contains H. We will work with the L2(Q) (or L1(Q))
pseudonorms for some probability measure Q. A case that will occur frequently is when Q = Pn
is the empirical measure 1

n ∑
n
j=1 δSj based on a sample S1, . . . , Sn; here, δs (for s ∈ S) is a Dirac

measure, and the sample will always be clear from the context.
For two functions h(l) and h(u), the bracket [h(l), h(u)] is the set of all functions f that satisfy

h(l) ≤ f ≤ h(u). An ε-bracket (in some pseudonorm ∥ ⋅ ∥) is a bracket [h(l), h(u)] satisfying
∥h(l) − h(u)∥ ≤ ε. The ε-bracketing number N[⋅](H, ∥ ⋅ ∥, ε) is the minimum number of ε-brackets
that coverH; the logarithm of the ε-bracketing number is called the ε-entropy with bracketing.

Let ε1, . . . , εn be independent Rademacher random variables (distributed uniformly on {−1,1}).
The empirical Rademacher complexity ofH and the Rademacher complexity ofH respectively are

Rn(H ∣ S1, . . . , Sn) ∶= Eε1,...,εn

⎡⎢⎢⎢⎢⎣
sup
h∈H

RRRRRRRRRRR

1

n

n

∑
i=1

εih(Si)
RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
Rn(H) ∶= E

⎡⎢⎢⎢⎢⎣
sup
h∈H

RRRRRRRRRRR

1

n

n

∑
i=1

εih(Si)
RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
,

where the first expectation is conditional on S1, . . . , Sn.

4.2 H-local complexity and Rademacher complexity bounds on the NML complexity

We first show that the simple form of the complexity COMP(F , f̂) ≤ COMP(F) can be directly upper
bounded in terms of two other complexity notions, the H-local complexity (defined below) and
Rademacher complexity, up to a constant depending on the L2(P ) diameter of F .

Theorem 10 Fix ε > 0 and let F have diameter ε in the L2(P ) pseudometric. Define σ ∶= eLε, fix
arbitrary f0 ∈ F , and define the loss class G ∶= {`f0 − `f ∶ f ∈ F}. Define

Tn ∶= sup
f∈F

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∑
j=1

(`f0(Zj) − `f(Zj)) − EZn∼Qf0

⎡⎢⎢⎢⎢⎣

n

∑
j=1

(`f0(Zj) − `f(Zj))
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then

COMPη(F) ≤ 3EZn∼Qf0 [Tn] + nησ2 (25)

≤ 6nEZn∼Qf0 [Rn(G)] + nησ2. (26)

14



PAC-BAYES–RADEMACHER–SHTARKOV–MDL

Two remarks are in order. First, we refer to the quantity EZn∼Qf0 [Tn] as an entropified local
complexity, or H-local complexity for short. The “local” part of the name stems from how, in the
empirical process inside the supremum defining Tn, the losses are centered/localized around `f0 ;
the “entropified” part of the name is due to the fact that the sample is distributed according to Qf0 ,
itself defined via entropification. Second, the attentive reader may have noticed that in the above
theorem, the expectation in the Rademacher complexity is relative to the distributionQf0 for arbitrary
f0 ∈ F , rather than the distribution P generating the data. Moreover, the appearance of Qf0 appears
to dampen the utility of F having small L2(P ) diameter. This apparent mismatch will be of no
concern due to a technical lemma (Lemma 23 in Appendix A.2), which relates the L2(Qf0) and
L2(P ) pseudometrics.

We now sketch a proof of this theorem in three steps; the first part, (25), is an immediate
consequence of Lemmas 11 and 12 below. The proofs of these results can be found in Appendix A.2.

First step: Relating COMP to exponential moment of Tn. The following result follows from a
straightforward generalization of an argument of Opper and Haussler (1999):

Lemma 11 Take arbitrary F and fix arbitrary f0 ∈ F . Then:

COMPη(F) ≤ 1

η
logEZn∼Qf0 [eηTn] . (27)

Second step: Bounding exponential moment of Tn. It remains to bound E[eηTn]. The next
lemma does this by leveraging Talagrand’s inequality.

Lemma 12 Suppose that F has L2(P ) diameter at most ε. Recall that σ = eLε and G ∶= {`f0 − `f ∶
f ∈ F}. Then

EZn∼Qf0 [e
ηTn] ≤ exp (3η EZn∼Qf0 [Tn] + nη2σ2) (28)

We note that Opper and Haussler (1999) obtained a result similar in form to (28) but under the con-
siderably stronger assumption that the original class has finite sup-norm entropy and, consequently,
that the class Gk has sup-norm radius at most O(ε).

Inequality (25) of Theorem 10 now follows. Proving the second part, inequality (26), is based on
the following standard result from empirical process theory.

Lemma 13

EZn∼Qf0 [Tn] ≤ 2nEZn∼Qf0 [Rn(G)] .

This lemma is proved in Appendix A.2 for completeness.
To make the bounds in Theorem 10 useful for general F with possibly large L2(P ) diameter, we

first decompose COMPη(F) in terms of the L2(P ) covering numbers at some small, optimally-tuned
resolution ε and the maximal complexity among all Voronoi cells induced by the cover, as in (4). We
then use existing bounds on H-local complexity and Rademacher complexity to get sharp bounds on
COMP(F) in terms of covering numbers.

To this end, let F be arbitrary and let {f1, f2, . . . , fNε} form an (ε/2)-net for F in the L2(P )
pseudometric, with Nε ∶= N(F , L2(P ), ε/2), and let Fε,1, . . . ,Fε,Nε be the corresponding partition
of F into Voronoi cells according to the L2(P ) pseudometric. That is, for each k ∈ [Nε], the Voronoi
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cell Fε,k is defined as {f ∈ F ∶ k = arg mini∈[Nε] ∥f −fi∥L2(P )
}.1 Clearly, each cell Fε,k has L2(P )

diameter at most ε. For each k, fix an arbitrary fk ∈ Fε,k and let T (k)
n be defined as Tn above with fk

in the role of f0. Inequality (5) immediately gives the following corollary of Theorem 10.

Corollary 14 Let σ ∶= eLε and, for each k ∈ [Nε], define the loss class Gk ∶= {`fk − `f ∶ f ∈ Fε,k}.
Then

COMPη(F) ≤ logNε

η
+ max
k∈[Nε]

(3EZn∼Qfk [T (k)
n ] + ηnσ2) (29)

≤ logNε

η
+ max
k∈[Nε]

(6nEZn∼Qfk [Rn(Gk)] + ηnσ2) . (30)

4.3 From H-local complexity and Rademacher complexity to excess risk bounds

We now show some concrete implications of our link between COMP, E[Tn] andRn for three types
of classes: classes of VC-type, classes with polynomial empirical entropy, and sets of classifiers
of polynomial L2(P ) entropy with bracketing. Each of these types of classes will be defined in
sequence. LetH be a class of functions over a space S. The classH is said to be of VC-type if, for
some A ∈ (0,∞) and V > 0, for all ε > 0, the empirical covering numbers of G satisfy

sup
s1,...,sn∈S

N(H, L2(Pn), ε) ≤ (A/ε)V . (31)

Such classes often are called parametric classes.
The classH is said to have polynomial empirical entropy if, for some A ∈ (0,∞), ρ ∈ (0,1), for

all ε > 0, the empirical entropy ofH satisfies

sup
s1,...,sn∈S

logN(H, L2(Pn), ε) ≤ (A/ε)2ρ
. (32)

These classes are nonparametric.
We say the classH has polynomial L1(P ) entropy with bracketing if, for some A ∈ (0,∞), ρ ∈

(0,1), for all ε > 0, the L1(P ) entropy with bracketing of G satisfies

logN[⋅](H, L1(P ), ε) ≤ (A2/ε)
ρ
. (33)

To obtain explicit bounds from Corollary 14, we require suitable upper bounds on either the
Rademacher complexity EZn∼Qfk [Rn(Gk)] or directly on theH-local complexity EQfk [T (k)

n ] itself
in the three cases of interest: VC-type classes, classes of polynomial empirical entropy, and sets of
classifiers of polynomial entropy with bracketing.

It is simple to obtain such bounds using Dudley’s entropy integral, itself a product of the well-
known chaining method from empirical process theory. However, the trick here is that we would
like to leverage the fact that Gk has small L2(P ) diameter. By making use of Talagrand’s generic
chaining complexity, Koltchinskii (2011) obtained bounds which improve with reductions in the
L2(P ) diameter. We restate simplified versions of these bounds here (see equations (3.17) and (3.19)
of Koltchinskii (2011)):

In the following and all subsequent results, ≲ indicates inequality up to multiplication by a
universal constant.

1. Ties are broken arbitrarily.
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Theorem 15 (Rademacher complexity bounds (Koltchinskii 2011)) Let H be a class of func-
tions over Z , and let Q ∈ ∆(Z). Let suph∈H EZ∼Q[h(Z)2] ≤ σ2 and U ∶= suph∈H ∥h∥∞. Assume
thatH is of VC-type as in (31) with exponent V . Then, for σ2 ≥ c

n (for some constant c)

EZn∼Q [Rn(H)] ≲ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
V

n
σ

√
log

A

σ
,
V U

n
log

A

σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (34)

TakeH, Q, σ, and U as before, but now assume that G is of polynomial empirical entropy as in
(32) with exponent ρ. Then

EZn∼Q [Rn(H)] ≲ max

⎧⎪⎪⎨⎪⎪⎩

Aρ√
n
σ1−ρ,

A2ρ/(ρ+1)U (1−ρ)/(1+ρ)

n1/(1+ρ)

⎫⎪⎪⎬⎪⎪⎭
. (35)

For the case of classes of polynomial entropy with bracketing, we appeal to upper bounds on
EQfk [T (k)

n ]. If the class Gk has small L1(Qfk) diameter and, moreover, if it also has polynomial
L1(Qfk) entropy with bracketing, then Lemma A.4 of Massart and Nédélec (2006) provides precisely
such a bound. Below, we present a straightforward consequence thereof.

Theorem 16 (Expected supremum bounds (Massart and Nédélec 2006)) LetH be a class of func-
tions over Z , and let Q ∈ ∆(Z). Let suph∈H EZ∼Q[∣h(Z)∣] ≤ σ2 and suph∈H ∥h∥∞ ≤ 1. Assume
thatH is has polynomial entropy with bracketing as in (33) with exponent ρ. Then

EZn∼Q

⎡⎢⎢⎢⎢⎣
sup
h∈H

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
j=1

h(Zj) − E[h(Z)]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
≲ max

⎧⎪⎪⎨⎪⎪⎩

Aρ√
n
σ1−ρ,

A2ρ/(ρ+1)

n1/(1+ρ)

⎫⎪⎪⎬⎪⎪⎭
. (36)

The following theorem builds on Corollary 14 and nearly follows by plugging in either (34) or
(35) into (30) and tuning ε in terms of n and η (which gives the VC case, (37)) , and plugging in (36)
into (29) and then tuning (which gives the polynomial entropy case, (38)). The remaining work is to
resolve a minor discrepancy between L2(P ) pseudonorms and L2(Qfk) pseudonorms (or the L1

versions thereof). This theorem will allow us to show optimal rates under Bernstein conditions.

Theorem 17 If F is of VC-type as in (31) with exponent V , then for all η ∈ (0,1],

COMPη(F)
n

≲ V log
ALn

V
⋅ n−1 ⋅ η−1. (37)

If F has polynomial empirical entropy as in (32) or is a set of classifiers of polynomial entropy with
bracketing as in (33) with exponent ρ, then, for all 0 < η < 1,

COMPη(F)
n

≲ (AL)
2ρ
1+ρ ⋅ n−

1
1+ρ ⋅ η−

1−ρ
1+ρ . (38)

The proof of Theorem 17 can be found in Appendix A.3. We will now prepare for our results on the
rates of ERM on a class F . We considerably generalize these results in the next section, using the
concept of ‘ERM-like’ estimators. For now, the reader may skip the following definition and simply
equate ERM-like with ‘ERM’.
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Definition 18 Consider two models F̄ and F ⊆ F̄ and let f̂ be any deterministic estimator on the
larger model F̄ and w ∶ Zn → R+

0 be a luckiness function. We say that f̂ is ERM-like relative to F
and w if for some τ ≥ 0, for all η > 0, all zn ∈ Zn,

COMPFULL
η (F̄ , f̂ , w, zn) ≲ COMPη(F) + τ

η
. (39)

Note that if we take F̄ = F and set f̂ to be ERM on F , then f̂ is indeed ERM-like with τ = 0, since
then Rf̂(z

n) ≤ 0.

In the following corollary, note that in both cases, the occurrence of the Bernstein exponent β (or
κ−1) is consistent with its occurence in the simple finite F setting of (24).

Corollary 19 Assume that a β-Bernstein condition holds for F as in Definition 6 for some β and B,
and impose assumption (A1). Define κ ∶= β−1. Let f̂ be a deterministic estimator on a model F̄ ⊇ F
that is ERM-like relative to F and some luckiness function w.

Then, (37) further implies, taking γ = (B (V log ALn
V

n + τ))
κ/(2κ−1)

and taking n large enough

so that Vn log ALn
V + τ ≤ B1/(1−β), that for all zn ∈ Zn,

COMPFULL
v(γ)(F̄ , f̂ ,W, z

n)
n

+ γ ≲
⎛
⎝
B (V log

ALn

V
+ τ)

⎞
⎠

κ
2κ−1

⋅ n−
κ

2κ−1 . (40)

Analogously, under such a Bernstein condition, (38) further implies, taking γ = n
−

κ
2κ−1+ρ and

assuming that n > (2B)−
2κ−1+ρ
κ−1 , that for all zn ∈ Zn,

COMPFULL
v(γ)(F̄ , f̂ ,W, z

n)
n

+ γ ≲ ((AL)
2ρ
ρ+1 + 1 + τ) ⋅B

1−ρ
1+ρn

−
κ

2κ−1+ρ . (41)

We used the notation κ = β−1 here to make the results easier comparable to Tsybakov (2004) and
Audibert (2004); the result still holds for the case β = 0 though, if we simply replace κ−1 by β in all
exponents above; e.g. κ/(2κ − 1) in (40) becomes 1/(2 − κ−1) = 1/(2 − β).

Proof To see (40), we begin by upper bounding
COMPv(γ)(F)

n using (37) with η = v(γ) = min{γ
1−β

B ,1}

(from Lemma 7). Tentatively suppose that Bγ−(1−β) ≥ 1; then v(γ)−1 ≲ Bγ−(1−β), and hence

COMPFULL
v(γ)(F̄ , f̂ ,W, z

n)
n

+ γ ≲ B
n

(V log
ALn

V
+ τ)γ−(1−β) + γ.

Tuning γ such that it is equal to the first term on the RHS above yields (40); it is simple to verify that
the supposition Bγ−(1−β) ≥ 1 is ensured by the constraint on n stated in the corollary.

We now prove (41). We first prove the case for f̂ ERM on F , i.e. with COMP(F) rather than
COMPFULL(F̄) on the left. Let γn ∶= n−

κ
2κ−1+ρ be the value of γ used at sample size n. We get from

the definition of the Bernstein condition and Lemma 7 that

ηn ∶= v(γn) = B−1 (n−
κ

2κ−1+ρ )
(κ−1)/κ

= B−1n
−

κ−1
2κ−1+ρ
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for all n for which the RHS above is at most 1. This will hold whenever n ≥ (1/B)
2κ−1+ρ
κ−1 . For such

n, we will also have ηn ≤ 1 and thus can apply (38), plugging in η = ηn = v(γn). The result follows
by simple algebra for all n larger than the given bound. To extend the result to ERM-like estimators,
we note that from (39) and (38), using ρ ≥ 0, we get

COMPFULL
η (F , f̂ ,W, zn)

n
≲ ((AL)

2ρ
1+ρ ⋅ n−

1
1+ρ + τ) ⋅ η−

1−ρ
1+ρ .

We now proceed as above plugging in ηn into the above expression rather than (38).

4.4 Recovering Bounds under Bernstein Conditions for Large Classes

Let us now see how Lemma 8 can recover the known optimal rates under the Tsybakov margin
condition and also the best known rates for empirical risk minimization under Bernstein-type
conditions. The theorem below works for general deterministic estimators, not just ERM; the
(simple) rate implications for ERM are discussed underneath the theorem. While there are other
techniques that can achieve the same rates for ERM, we feel that our approach embodies a simpler
analysis for the polynomial entropy case; it also leads to some new results for other estimators, which
we detail in the next section.

Theorem 20 Assume that the β-Bernstein condition holds for F as in Corollary 19 and define
κ ∶= β−1. Let f̂ be a deterministic estimator on F̄ ⊇ F that is ERM-like relative to F (with τ
as in Definition 18) and some luckiness function w. First suppose F is of VC-type as in (31)
with exponent V . Then there is a universal constant C1 such that for all n large enough so that
V
n log ALn

V + τ ≤ B1/(1−β), we have

EZ∼P [Rf̂(Z)] ⊴ψ1(n) C1
⎛
⎝
B (V log

ALn

V
+ τ)

⎞
⎠

κ
2κ−1

⋅ n−
κ

2κ−1 , (42)

where ψ1(n) = 1
6B ⋅ (B (V log ALn

V + τ))
(κ−1)/(2κ−1)

nκ/(2κ−1) ≍ (logn)(κ−1)/(2κ−1) ⋅ nκ/(2κ−1).

Analogously, suppose that F ⊆ F̄ has polynomial empirical entropy as in (32) or is a set of classifiers
of polynomial entropy with bracketing as in (33) with exponent ρ. Then there is a C2 such that for all
n large enough so that n > (2B)−

2κ−1+ρ
κ−1 , we have

EZ∼P [Rf̂(Z)] ⊴ψ2(n) C2 [((AL)
2ρ
ρ+1 + 1 + τ) ⋅B

1−ρ
1+ρ ⋅ n−

κ
2κ−1+ρ ] , (43)

where ψ2(n) = 1
6 ⋅ n

κ+ρ
2κ−1+ρ .

Proof of Theorem 20 For both results, observe from Corollary 9 and the definition of COMPFULL

that, for all γ > 0,

EZ∼P [Rf̂(Z)] ⊴v(γ)⋅n/6
3 (COMPFULL

v(γ)/2(F , f̂))
n

+ 4γ. (44)

The result now follows by plugging in (40) and (41).
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Theorem 20 combined with part (ii) of Proposition 3 implies that, with probability at least 1 − δ,
ERM obtains the rate

n
−

κ
2κ−1+ρ + n−

κ+ρ
2κ−1+ρ ⋅ log 1

δ .

For sets of classifiers of polynomial entropy with bracketing, the rate n−κ/(2κ−1+ρ) is known to
be optimal and, in particular, matches the results of Tsybakov (2004) (see Theorem 1), Audibert
(2004) (see the discussion after Theorem 3.3), and Koltchinskii (2006, p. 36). Outside the realm of
classification, for classes with polynomial empirical entropy, the rate we obtain is to our knowledge
the best known for ERM. In particular, if these nonparametric classes are convex and the loss is
exp-concave, then κ = β = 1, and the rates we obtain for ERM are known to be minimax optimal
(Rakhlin et al., 2017, Theorem 7). We note, however, that there are cases where β < 1 and yet, by
using an aggregation scheme, one can obtain a rate as if β = 1; one such example is in the case of
squared loss with a non-convex class (Rakhlin et al., 2017; Liang et al., 2015).

5. Properties and Applications of COMP

Here we provide two applications of the developments in this paper, emphasizing that we do not
just recover existing results but also generate new ones. We first provide some general properties of
COMP(F , Π̂,w, zn) that will be used in the applications.

The first property concerns data-independent complexities, i.e. based on constant luckiness
functions. Then for any randomized estimator, just as in the deterministic case, COMP(F , Π̂,w, zn)
is upper bounded by the maximal complexity COMP(F):

Proposition 21 Let Π̂ be an arbitrary randomized estimator and let w(f, zn) = 1 for all f ∈ F , zn ∈
Zn. Then:

sup
zn∈Zn

COMP(F , Π̂,w, zn) ≤ COMP(F). (45)

The second property is about a decomposition of COMP that vastly generalizes (5). Let K be a
countable set and consider a partition {Fk ∣ k ∈ K} of the model F . Suppose we have an estimator
Π̂ for F . This induces conditional estimators Π̂∣k for each Fk in the following way: for each k and
zn ∈ Zn, Π̂∣k,zn is a distribution on Fk; if Π̂(f ∈ Fk ∣ zn) > 0, then Π̂∣k,zn is the distribution of f
according to Π̂ conditioned on both data zn and f ∈ Fk; for zn with Π̂(f ∈ Fk ∣ zn) = 0, Π̂∣k,zn

can be set to an arbitrary distribution on Fk (the choice will not affect the results). Thus, Π̂∣k is
now well-defined as an estimator that maps Zn into the set of distributions on Fk. For all k ∈ K,
let wk be a luckiness function on ZN × Fk. The following proposition shows that, for arbitrary
such luckiness functions wk and sub-models Fk, we can construct an overall luckiness function
w such that the complexity COMP(F , Π̂,w, zn) may be decomposed into the sub-complexities
COMP(Fk, Π̂∣k,wk, z

n).
Formally, for each zn ∈ Zn, let Π̂K ∣ zn be the marginal distribution on K with probability mass

function π̂K ∣ zn , induced by Π̂, i.e. π̂K(k ∣ zn) = Π̂(f ∈ Fk ∣ zn). Let ΠK be a prior probability
measure on K with probability mass function πK.

Proposition 22 With the definitions above, for k ∈ K, f ∈ Fk, zn ∈ Zn, set the global luckiness
function w to:

w(zn, f) ∶= wk(zn, f) ⋅
πK(k)

π̂K(k ∣ zn) . (46)
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Then for each zn ∈ Zn:

COMP(F , Π̂,w, zn) ≤ KL( (Π̂K ∣ zn) ∥ΠK)
η

+ Ek∼Π̂K∣zn [COMP(Fk, Π̂∣k,wk, z
n)] . (47)

We note that this result generalizes two of our previous observations. First, it generalizes (15) for the
case of countable F : the second term of (15) can be retrieved by taking all the Fk to be singletons
and wk ≡ 1; note that the second term of (47) then vanishes. Second, it generalizes (5), which can be
retrieved by taking K finite, taking Π̂ to be an arbitrary deterministic estimator, setting the wk to be
equal to 1 and then applying Proposition 21.

5.1 Two-Part MDL Estimator Achieving Optimal Rate

Consider a given (finite or countable) partition {Fk ∶ k ∈ K} of our modelF and let f̂k represent ERM
within Fk. Let, for each k, COMP(Fk, f̂k) be any number larger than or equal to COMP(Fk, f̂k).

Fix a ‘prior’ distribution πK on K. Suppose that there exists a k∗ ∈ K that achieves excess risk
infk∈K inff∈Fk E[Rf(Z)]; if there’s more than one Fk achieving the minimum, take k∗ to be the one
with the largest mass πK(k); further ties can be resolved arbitrarily. f∗ denotes the risk minimizer
within Fk∗ which, consistently with earlier notation, is then also the risk minimizer within F .

Consider a two-stage deterministic estimator f̈ that proceeds by first selecting k̈ ≡ k̈∣Zn ∈ K based
on data Zn and then uses the ERM f̂k̈ within Fk̈. From Proposition 22, we see that, by choosing the
luckiness functions w and wk appropriately (all wk are set to 1 for all f ∈ Fk, zn ∈ Zn), we get, with
f̈∣Zn ∶= f̂k̈∣Zn denoting the f ∈ Fk̈∣Zn selected by the estimator f̈ upon observing Zn, that

COMPFULL
η (F , f̈ , w, zn) ≤ −

n

∑
i=1

`f∗(zi)+

n

∑
i=1

`f̂k̈∣zn
(zi) +

− logπK(k̈∣zn)
η

+ COMPη(Fk̈, f̂k̈). (48)

For reasons to become clear, we may call the particular choice of estimator k̈ that is defined as
minimizing the right-hand side of the second line of (48) the η-generalized MDL estimator. For

this estimator we must then further have, for all η > 0, using that ∑ni=1 `f̂k̈∣zn
(zi) +

− logπK(k̈∣zn)

η ≤

∑ni=1 `f̂k∗∣zn
(zi) + − logπK(k∗)

η , that

COMPFULL
η (F , f̈ ,W, zn) ≤ − logπK(k∗)

η
+ COMPη(Fk∗ , f̂k∗). (49)

Let us first consider the case that COMPη(Fk∗ , f̂k∗) = COMPη(Fk∗ , f̂k∗). In that case, for each
η > 0, the η-generalized MDL estimator for F has essentially the same complexity bound as does
ERM within the optimal submodel Fk∗ ; indeed it is ERM-like according to Definition 18. Thus,
by Theorem 20, if a β-Bernstein condition holds for Fk∗ , the two-part MDL estimator achieves the
same rate as ERM within the optimal subclass Fk∗ if we choose η = v(γ) with γ set to the same
value as we would for ERM relative to the submodel Fk∗ . Two-part v(γ)-MDL thus serves as an
optimal model selection criterion, and this holds even if the number of alternatives Fk considered is
infinite. However, even setting aside computational issues, there are two obstacles to applying such
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an MDL principle in practice: first, for each fixed η, COMPη(Fk∗ , f̂k∗) depends on the unknown
distribution P , and second, the desired η, i.e, η = v(γ) cannot be calculated since it depends on the
unknown β in the Bernstein condition (and hence also on P ).

The first obstacle is overcome if, for each fixed η, we base the two-part estimate f̈ on upper
bounds of COMPη(Fk, f̂k) that can be calculated for each k without knowing P . If, for example, in
the polynomial entropy case, for each k we plug in the upper bound (38) with F set to Fk (which
can in principle be calculated), then 2-part MDL will still achieve the optimal rate once we use the
right η; similarly if F is a VC-class and we plug in, for each k, (37).

As for the second obstacle, the optimal values of η are induced by the best β for which a β-
Bernstein condition holds; in practice, one can learn it from the data using an algorithm such as the
‘safe Bayes’ algorithm of Grünwald (2012).

Remarkably, this model selection estimator has, for each fixed η, an interpretation as minimizing
a 2-part codelength of the data: in the first part, one encodes a model index k (using the code with
lengths − logπK(k); each prior induces such a code by Kraft’s inequality) and in the second part, one
encodes the data using the NML code, i.e. the optimal universal code relative to Fk, and one picks
the k minimizing the total codelength. In fact, exactly this minimization, for the case of η = 1 and
log-loss, was suggested by Rissanen (1996) in the context of his MDL Principle, and has been much
applied since under the name ‘refined MDL’ (Grünwald, 2007). Rissanen suggested this method
simply because, viewed as a coding strategy, it led to small codelengths (cumulative log loss) of the
data, and gave no frequentist justification in terms of convergence rates; we have just shown that,
with a correctly set η, optimal rates for ERM within the optimal subclass can be recovered.

For the log-loss case with η = 1, we get COMP(Fk, f̂k) = log S(Fk, f̂k) and (2), so the refined
MDL estimator will pick the k minimizing

n

∑
i=1

`f̈k̈∣Zn
(Zi) − logπK(k) + log∫

Zn
f̂∣zn(zn)dν(zn), (50)

and thus avoids the problem of COMP being uncomputable without knowledge of P .

5.2 Penalized ERM Bounds: Lasso, Ridge and Luckiness NML

Consider a penalization function Γ ∶ F → R. Let f̂ be the penalized empirical risk minimizer defined
as

f̂∣zn ∶= arg min
f∈F

n

∑
i=1

`f(zi) + η−1 ⋅ Γ(f) = arg min
f∈F

Rf(zn) + η−1 ⋅ Γ(f), (51)

with ties resolved arbitrarily; we assume that the minimum is always achieved. Obviously, successful
estimation procedures such as the lasso (with multiplier λ ∶= η−1) and ridge regression (Hastie et al.,
2001) can be expressed in this form. In this subsection we show how our results give tight annealed
excess risk bounds for such estimators for arbitrary penalization functions Γ; these can then be turned
into real excess risk bounds using Corollary 9. The main interest of this fact is that neither of the
two already pre-existing specializations of COMP, i.e. PAC-Bayesian information complexity and
Rademacher-type complexity, can easily handle penalized ERM-type methods. In contrast, we can
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simply define the luckiness function w(zn) = exp(−Γ(f̂∣zn)). We can then write COMPFULL
η as

COMPFULL
η (F , f̂ ,W, zn) = Rf̂∣zn (z

n) + 1

η
⋅ (Γ(f̂∣zn) + log Sη(F , f̂ , w))

= min
f∈F

( Rf(zn) +
Γ(f)
η

) + 1

η
log Sη(F , f̂ , w). (52)

with

Sη(F , f̂ , w) = EZn∼P

⎡⎢⎢⎢⎢⎢⎢⎣

e
−(ηR

f̂∣Zn
(Zn)+Γ(f̂∣Zn))

C(f̂∣Zn)

⎤⎥⎥⎥⎥⎥⎥⎦

= ∫ qf̂∣zn
(zn)w(f̂∣zn)dν(zn),

We can now use Corollary 9 of Theorem 4 once again to get actual excess risk bounds under the v-
central condition (recall that the β-Bernstein condition implies v-central with v(γ) ≍ γ1−β), plugging
in the above expression (52). We can expect this risk bound to be tight since (52) is really an equality,
and Corollary 9, the link between annealed and actual excess risk for a given v-central condition,
is also tight up to constant factors. Of course, to make such a risk bound insightful we would have
to further bound log Sη, in a manner similar as was done for ERM-like estimators in Theorem 17.
Penalized empirical risk methods such as the lasso have been thoroughly studied over the last fifteen
years, and we do not yet know whether the approach we just sketched will lead to new results; our
goal here is mainly to show that penalized ERM and generalized Bayesian (randomized) estimators
can both be analyzed using the same technique, which bounds annealed risk in terms of cumulative
log-loss differences.

Cumulative Log-Loss Bounds — Luckiness Regret If the original loss function ` is log-loss and
we take η = 1, then we can interpret the penalized estimator (51) in terms of ‘minimax luckiness
regret’, which features prominently in recent papers on sequential individual sequence prediction
with log-loss such as (Kakade et al., 2006; Bartlett et al., 2013), with the ‘luckiness’ terminology
introduced by Grünwald (2007): for arbitrary probability densities (sequential log-loss prediction
strategies) r on Zn, we define the luckiness regret of r on zn with slack function Γ relative to set of
densities {pf ∶ f ∈ F} as

− log r(zn) −min
f∈F

( − log pf(zn) + Γ(f) ) , (53)

i.e. the difference between the log-loss of r and the log-loss achieved by the Γ-penalized predictor
f̂ which minimizes the penalized loss in hindsight. Now, if we take luckiness function w(zn) ∶=
exp(−Γ(f̂(zn)) and we take as r in (53) the density rw for the penalized estimator f̂ as in definition
(10) (note that pf = qf , since we work with log-loss), then from (53) and that definition we get that
for each zn, the luckiness regret of rw on zn is given by

− log rw(zn) −min
f∈F

( − log pf(zn) + Γ(f) ) =

− log pf̂∣zn
(zn) + Γ(f̂∣zn) + log S(F , f̂ , w) −min

f∈F
( − log pf(zn) + Γ(f) ) = log S(F , f̂ , w),

so that the luckiness regret of rw is constant over zn. rw is thus an equalizer strategy, and, as
explained by Grünwald (2007), this implies that rw minimizes, over all probability densities r, the
maximum, over all zn ∈ Zn, of (53), thus achieving the minimax luckiness regret. This minimax
luckiness regret is then also equal to log S(F , f̂ , w).
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Reconsidering Chatterjee and Barron (2014) Our first main result, the annealed risk convergence
bound of Theorem 4, when specialized to log-loss and η = 1/2, implies a classic result of Barron and
Cover (1991) that gives nonasymptotic Hellinger convergence rates for two-part MDL estimators for
well-specified models, implying that (two-part) data compression implies learning. Such two-part
MDL estimators invariably work with a countable discretization of the parameter space. Chatterjee
and Barron (2014) sought to use those bounds to prove convergence at the right rate of Lasso-type
estimators in a Gaussian regression setting, showing that the `1-penalization can be linked to a
minimization over a discretized grid of parameter values that allows it to be related to two-part MDL
so that the Barron-Cover result can be used to prove rates of convergence. The present development
suggests that this can perhaps be done much more generally — there is no need to consider only
two-part codes or a probabilistic setting: every Γ-penalized estimator f̂ for every bounded loss
function defines a corresponding density rw with w(xn) = exp(−Γ(f̂)), and hence a code with
lengths − log rw(zn) in terms of which one can prove an excess risk bound via Theorem 4 and
Corollary 9.

6. Discussion and Future Work

Our strategy for controlling COMP(F) owes much to an ingenious argument of Opper and Haussler
(1999). They analyzed the minimax regret in the individual sequence prediction setting with log loss,
where the class of comparators is the set of static experts (i.e. experts that predict according to the
same distribution in each round). Cesa-Bianchi and Lugosi (2001) obtain bounds in the more general
setting where the comparator class consists of arbitrary experts that can predict conditionally on the
past (for a further considerable extension within the realm of log loss, see Rakhlin and Sridharan
(2015) who use sequential complexities). Whereas the works of Opper and Haussler (1999) and
Cesa-Bianchi and Lugosi (2001) both operate under some kind of bounded L∞ metric entropy (the
metric entropy in the latter work differs due to the experts’ sequential nature), the present paper
operates under the much weaker assumption of bounded L2 metric entropy. We note, however, that
unlike the non-i.i.d. setting of Cesa-Bianchi and Lugosi (2001), the present paper is restricted to the
i.i.d./static experts setting. Yet, the extension to general losses we introduce appears to be completely
new.

Theorem 20 offers a distribution-dependent bound whose derivation we view as simpler than
similar bounds based on local Rademacher complexities. In particular, the strategy adopted in the
present paper completely avoids complicated (at least in the view of the authors) fixed point equations
that have been used to obtain good excess risk bounds in other works (such as Koltchinskii and
Panchenko (1999); Bartlett et al. (2005); Koltchinskii (2006)). In the case of classes of VC-type, one
can obtain optimal rates by decoupling the optimization of the parameters ε and γ; thus, one can
obtain a suitable bound on COMP without considering γ, leading to a rather easy tuning problem. In
the case of larger classes of polynomial empirical entropy or sets of classifiers of polynomial entropy
with bracketing, while γ and ε must be tuned jointly to obtain optimal rates, we have shown that an
optimal tuning can be obtained without great effort.

We note, however, that the bounds in the present paper lack the kind of data-dependence exhibited
by previous works leveraging local Rademacher complexities. Indeed, the bound in Theorem 20 is
an exact oracle inequality which is distribution-dependent and, consequently, is not computable by a
practitioner who does not know the β for which a Bernstein condition holds. In contrast, bounds
obtained via local Rademacher complexities can be computed without distributional knowledge and

24



PAC-BAYES–RADEMACHER–SHTARKOV–MDL

have been shown to behave like the correct (but unknown to the practitioner) distribution-dependent
bounds asymptotically (see Theorem 4.2 of Bartlett et al. (2005)).

Yet, the present work gives rise to results which allow a different kind of data-dependence: a PAC-
Bayesian improvement for situations when the posterior distribution is close to a prior distribution.
This improvement (which is also algorithm-dependent) is already apparent from the simplified setting
of Proposition 22 in which one places a prior over submodels, and we expect that much more can be
accomplished by using Theorem 4 as a starting point.

Theorem 4 is also related to the main results of Audibert and Bousquet (2007), who provide
bounds on the excess risk for bounded loss functions that can involve the generic chaining technique
of Fernique and Talagrand (2014); this technique generalizes the standard chaining technique of
Dudley and can lead to smaller complexities in some cases. To discuss the connection, first note
that, as far as we know, the standard chaining technique is used at some point in all approaches
that achieve optimal rates for polynomial entropy classes under Tsybakov or Bernstein conditions,
although this sometimes remains hidden2. In our approach, chaining remains completely under
the hood, but as mentioned earlier it is present in the proof of Koltchinskii’s (2011) result linking
Rademacher complexities to empirical entropy. Like we do, Audibert and Bousquet (2007) provides
bounds on excess risk that allow for the use of priors, that can exploit Bernstein conditions, and
that lead to optimal rates for large classes. However, whereas in our work chaining remains under
the hood, their analogue of our ‘complexity’ (the right-hand side of their deviation bound) involves
chaining explicitly, replacing the KL-term by an infinite sum over (roots of) KL terms. This makes it
possible to design partitions of F and priors thereon that allow one to use generic chaining. On the
other hand, they directly bound the excess risk — there is no ’annealed’ step in between and hence
no direct analogue of Theorem 4 either — so that it is not clear whether their approach lends itself
to the relatively easy fixed-point-free tuning that is possible using our approach; also, the Shtarkov
integral and hence the connection to minimax log-loss regret does not appear in their work, making
the two approaches somewhat orthogonal.

Thus, the aforementioned works go beyond our work in that they either allow data-dependent
analogues of Rademacher complexities (turning oracle bounds into empirical bounds) or allow
one to use generic chaining; it is at this point unclear (and an interesting open problem) whether
our approach can be extended in these directions. We stress, however, that these papers make no
connection between excess risk and NML complexity nor between NML complexity and Rademacher
complexities; these connections are, as far as we know, completely new.

The recently developed notion of offset Rademacher complexity provides a powerful alternative to
analyses based on local Rademacher complexities. Liang et al. (2015) introduced offset Rademacher
complexities for the i.i.d. statistical learning setting to obtain faster rates under squared loss with
unbounded noise (and hence unbounded loss); their bounds hold for Audibert’s star estimator
(Audibert, 2008) — an aggregation method — and obtain faster rates even in non-convex situations.
The techniques of the present paper, while for general loss functions, notably do not currently handle
unbounded losses nor do they leverage aggregation; in light of this latter trait, the rates obtained by
Theorem 20 in the case of squared loss with non-convex classes are not minimax optimal as ERM
itself fails to be an optimal procedure (Juditsky et al., 2008). On the other hand, the rate provided
by Theorem 20 is known to tightly characterize the performance of ERM in a number of situations,

2. For example, the proofs of Tsybakov (2004) are based on various results of van de Geer (2000, Chapter 5) which are
in turn based on chaining. We also note that if one strengthens the Bernstein condition to a two-sided version then,
with 0/1-loss, one can avoid chaining, see Audibert (2004).
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and it is unclear (to the authors) how to recover such results for ERM from the offset Rademacher
complexity-based analysis of Liang et al. (2015).

Zhivotovskiy and Hanneke (2016) use a combination of offset Rademacher complexities with
a shifted empirical process to obtain tight bounds for ERM for the case of classification with VC
classes under Massart’s noise condition. While in this setting our bounds are not as tight as those of
Zhivotovskiy and Hanneke (2016), our analysis applies to the case of general noise, general losses,
and large classes. We note that in the case of classification and bounded noise, existing lower bounds
imply that classes of infinite VC dimension fail to be learnable.
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Glossary

Notation Description Page
Losses
Rf(z) Excess loss, `f(z) − `f∗(z) 5
Rf(zn) Cumulative excess loss, `f(zn) − `f∗(zn) 5

qf(z) Entropified version of f , p(z)⋅e−ηRf (z)

EZ∼P [e−ηRf (Z)]
5

Notation
U ⊴η U ′ Exponential stochastic inequality, EU,U ′∼P [eη(U−U ′)] ≤ 1 10

EANN,η [U] Annealed expectation, − 1
η

logE [e−ηU ] 10

Complexities
C(f) Normalization constant for Shtarkov integral, EZn∼P [e−ηRf (Zn)] 6

S(F ; f̂) Shtarkov integral (deterministic version), EZn∼P
⎡⎢⎢⎢⎣
e
−ηR

f̂
∣Zn

(Zn)

C(f̂∣Zn)

⎤⎥⎥⎥⎦
6

S(F) Maximal Shtarkov integral (deterministic version),
∫Zn supf∈F qf(zn)dν(zn)

6

S(F ; f̂ , w) Generalized Shtarkov integral (deterministic version)

EZn∼P
⎡⎢⎢⎢⎣
e
−ηR

f̂
∣Zn

(Zn)

C(f̂∣Zn)
⋅w(Zn)

⎤⎥⎥⎥⎦
= ∫Zn qf̂∣zn (z

n)w(zn)dν(zn)

7

S(F , Π̂,w) Generalized Shtarkov integral,

EZn∼P [exp(−Ef∼Π̂∣Zn [ηRf(Zn) + logC(f) − logw(Zn, f)])]

8

COMP(F , f̂) Complexity, η−1 log S(F , f̂) 6
COMP(F , f̂ , w, zn) Generalized complexity (deterministic version),

1
η
(− logw(zn) + log S(F , f̂ , w))

8

COMP(F) Maximal complexity, η−1 log S(F) = supf̂ COMP(F , f̂) 6
COMP(F , Π̂,w, zn) Generalized complexity,

1
η
⋅ (Ef∼Π̂∣zn [− logw(zn, f)] + log S(F , Π̂,w))

8

COMPFULL(F , Π̂,w, zn) Full generalized complexity,
COMP(F , Π̂,w, zn) + Ef∼Π̂∣zn[Rf(zn)]

8

Tn supf∈F {∑
n
j=1 (`f0(Zj) − `f(Zj)) − EZn∼Qf0 [∑

n
j=1 (`f0(Zj) − `f(Zj))]} 14

EZn∼Qf0 [Tn] H-local complexity 15
N(H, ∥ ⋅ ∥, ε) ε-covering number forH in the norm ∥ ⋅ ∥ 14
N[⋅](H, ∥ ⋅ ∥, ε) ε-bracketing number forH in the norm∥ ⋅ ∥ 14

Rn(H ∣ S1, . . . , Sn) Empirical Rademacher complexity, Eε1,...,εn [suph∈H ∣ 1
n ∑

n
i=1 εih(Si)∣] 14

Rn(H) Rademacher complexity, E [suph∈H ∣ 1
n ∑

n
i=1 εih(Si)∣] 14
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Appendix A.

This section contains proofs omitted from the main text.

A.1 Theorem 4

Proof Let us abbreviate ANN(f) = nEANN,η

Z̄∼P
[Rf(Z̄)]. By the definition of ESI (19) we see that the

statement in the theorem is equivalent to

EZn∼P
⎡⎢⎢⎢⎣
exp(η ⋅ (Ef∼Π̂∣Zn

[ANN(f)] − COMPFULL(F , Π̂,w,Zn)))
⎤⎥⎥⎥⎦
= 1. (54)

Plugging in the definition of COMPFULL and then COMP, the left side can be rewritten as

E

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
η ⋅ (Ef∼Π̂∣Zn

[ANN(f) −Rf(Zn)] −
1

η
⋅ (Ef∼Π̂∣Zn [− logw(f,Zn)] + log S(F , Π̂,w)))

⎞
⎠

⎤⎥⎥⎥⎥⎦
=

E
⎡⎢⎢⎢⎣
exp(η ⋅ (Ef∼Π̂∣Zn

[ANN(f) −Rf(Zn)] − 1
η ⋅ Ef∼Π̂∣Zn [− logw(f,Zn)]))

⎤⎥⎥⎥⎦

EZn∼P [exp(−Ef∼Π̂∣zn [ηRf(zn) + logC(f) − logw(zn, f)])]
,

where the denominator is just the definition of S. It is thus sufficient to prove that this expression is
equal to 1. But this is immediate from the definition of C(f) and ANN(⋅).

A.2 Proof of second main result, Theorem 10

We first prove the results that imply (25) and then prove the result that implies (26).

A.2.1 PROOF OF (25)

Inequality (25) from Theorem 10 is a consequence of Lemmas 11 and 12, which we prove in turn.

Proof of Lemma 11

eη⋅COMPη(F) = S(F) = EZn∼Qf0

⎡⎢⎢⎢⎢⎣
sup
f∈F

qf(Zn)
qf0(Zn)

⎤⎥⎥⎥⎥⎦

= EZn∼Qf0

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝

sup
f∈F

log
qf(Zn)
qf0(Zn)

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ EZn∼Qf0

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝

sup
f∈F

⎧⎪⎪⎨⎪⎪⎩
log

qf(Zn)
qf0(Zn)

− EZn∼Qf0

⎡⎢⎢⎢⎣
log

qf(Zn)
qf0(Zn)

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
,
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where the inequality follows because the second term inside the supremum is a negative KL-
divergence. Now, using the definition of Qf and Qf0 , the above is equal to

EZn∼Qf0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

η sup
f∈F

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∑
j=1

(`f0(Zj) − `f(Zj)) − EZn∼Qf0

⎡⎢⎢⎢⎢⎣

n

∑
j=1

(`f0(Zj) − `f(Zj))
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It remains to prove Lemma 12.

Proof of Lemma 12 First, from our assumption on the loss and η ≤ 1 together imply that

sup
f,g∈F

ess sup{η (`f(Z) − `g(Z) − E[`f(Z) − `g(Z)])} ≤ 1.

Our goal now is to be able to apply Talagrand’s inequality. To this end, observe that

sup
f,g∈F

Var[η (`f(Z) − `g(Z) − E[`f(Z) − `g(Z)])] ≤ η2 sup
f,g∈F

∥(`f − `g)∥2
L2(Qf0)

.

Now, if F had a small L2(Qf0) diameter, then the Lipschitzness of the loss would imply that the
above term is also small. However, by assumption, the class F is only known to have small L2(P )
diameter (of at most ε). Lemma 23 (stated after this proof) effectively bridges the gap between these
two pseudonorms, showing that

sup
f,g∈F

∥`f − `g∥L2(Qf0)
≤ eL sup

f,g∈F
∥f − g∥L2(P ), (55)

which is then at most eLε = σ.
Bousquet’s version of Talagrand’s inequality (see Theorem 2.3 of Bousquet (2002) or, for a more

direct presentation, Theorem 12.5 of Boucheron et al. (2013)) now yields

EQf0 [e
ληT

(k)
n,η ] ≤ exp (EQf0 [ηT

(k)
n ] + (eλ − (λ + 1))(nη2σ2 + 2EQf0 [ηT

(k)
n ])) .

Inequality (28) now follows by taking λ = 1.

The following lemma was used to control the complexity of the class F .

Lemma 23 For the supervised loss parameterization,

∥`f − `g∥L2(Qf0)
≤ e ⋅L∥f − g∥L2(P ). (56)

For the direct parameterization,

∥`f − `g∥L2(Qf0)
≤ e∥f − g∥L2(P ). (57)
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Proof of Lemma 23 We first prove (56), the supervised loss parameterization result. The Lipschitz
assumption on the loss implies that

E(X,Y )∼Qf0
[(`f(X,Y ) − `g(X,Y ))2] ≤ L2 EX∼Qf0

[(f(X) − g(X))2] .

Next, observe that for ∆(x) = qf0(x)

p(x)

EX∼Qf0
[(f(X) − g(X))2] = EX∼P [∆(x) (f(X) − g(X))2] .

Since the inside of the expectation is nonnegative, it remains to upper bound ∆(x). By definition,

∆(x) = p(x) ∫ p(y ∣ x)e−ηRf (x,y)dy
p(x)E

(X̄,Ȳ )∼P [e−ηRf (X̄,Ȳ )]
=

EY ∼P ∣X=x [e−ηRf (x,Y )]

E
(X̄,Ȳ )∼P [e−ηRf (X̄,Ȳ )]

≤ eη ≤ e,

since η ≤ 1 and the excess loss random variable takes values in [−1/2,1/2].
We now prove the direct parameterization result (57). Observe that for ∆(z) = qf0(z)

p(z)

EZ∼Qf0 [(`f(Z) − `g(Z))2] = EZ∼P [∆(Z) (f(Z) − g(Z))2] ,

where we use the fact that `f = f for all f ∈ F in the direct parameterization. As above, it remains to
upper bound ∆(z). By definition,

∆(z) = p(z)e−ηRf (z)

p(z)EZ̄∼P [e−ηRf (Z̄)]
≤ eη ≤ e.

A.2.2 PROOF OF (26)

Inequality (26) is a consequence of (25) and a standard empirical process theory result, Lemma 13.
For completeness, we provide a proof of this result below.

Proof of Lemma 13 Recall that G = {`f0−`f ∶ f ∈ F}, and let ε1, . . . εn be independent Rademacher
random variables. In the below, both Zn and Z̄n are drawn from Qf0 .

33



GRÜNWALD MEHTA

The following sequence of inequalities is a standard use of symmetrization from empirical
process theory:

E

⎡⎢⎢⎢⎢⎢⎣
sup
f∈F

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∑
j=1

(`f0(Zj) − `f(Zj)) − E

⎡⎢⎢⎢⎢⎣

n

∑
j=1

(`f0(Z̄j) − `f(Z̄j))
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∑
j=1

g(Zj) − E

⎡⎢⎢⎢⎢⎣

n

∑
j=1

g(Z̄j)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

≤ E

⎡⎢⎢⎢⎢⎣
sup
g∈G

n

∑
j=1

(g(Zj) − g(Z̄j))
⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣
sup
g∈G

n

∑
j=1

εj (g(Zj) − g(Z̄j))
⎤⎥⎥⎥⎥⎦

≤ 2E

⎡⎢⎢⎢⎢⎣
sup
g∈G

n

∑
j=1

εjg(Zj)
⎤⎥⎥⎥⎥⎦

≤ 2E

⎡⎢⎢⎢⎢⎣
sup
g∈G

RRRRRRRRRRRR

n

∑
j=1

εjg(Zj)
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
.

A.3 Proof of Theorem 17

Proof of Theorem 17 Taking the results of Corollary 14 and dividing by n gives the two inequalities

COMPη(F)
n

≤ logN(F , L2(P ), ε/2)
nη

+ 3

n
max
k∈[Nε]

EZn∼Qfk [T (k)
n ] + ησ2 (58)

and

COMPη(F)
n

≤ logN(F , L2(P ), ε/2)
nη

+ 6 max
k∈[Nε]

EZn∼Qfk [Rn(Gk)] + ησ2, (59)

where we remind the reader that Nε = N(F , L2(P ), ε/2).
In the below applications of Theorems 15 and 16, we make use of the following two observations.

First, from Lemma 23 (which we previously applied to yield (55)), it follows that the L2(Qfk)
diameter of Gk is at most σ. Second, for any distribution Q ∈ ∆(Z), for all u > 0,

N(Gk, L2(Q), u) = N({`f ∶ f ∈ Fε,k}, L2(Q), u) ≤ N(Fε,k, L2(Q), u/L) (60)

and (in the case of sets of classifiers)

N[⋅](Gk, L2(Qfk), u) = N[⋅]({`f ∶ f ∈ Fε,k}, L2(Qfk), u) = N[⋅](Fε,k, L2(Qfk), u) (61)

≤ N[⋅](Fε,k, L2(P ), u/e);

in both (60) and (61), the first equality holds because Gk is a shifted version of {`f ∶ f ∈ F}. In the
case of the supervised loss parameterization, the inequality in (60) holds from the Lipschitzness of
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the loss, and, in the case of the direct parameterization, the inequality is actually equality (recall that
L = 1 in this case). The second equality of (61) holds because we only consider sets of classifiers
with 0-1 loss. Lastly, the inequality in (61) is due to the 1-Lipschitzness of 0-1 loss for sets of
classifiers and Lemma 23. From (60), if F is a VC-type class (and hence so is Fε,k), then Gk also is
a VC-type class. Analogously, if F has polynomial empirical entropy, the same property extends
to Gk. From (61), if F is a class whose L2(P ) entropy with bracketing is polynomial (and hence
so is Fε,k), then Gk is a class whose L2(Qfk) entropy with bracketing is polynomial with the same
exponent.

VC-type classes. First, Theorem 24 (stated after this proof) implies that, for all u > 0,

N(F , L2(P ), u) ≤ (2A

u
)
V

.

Starting from (59), inequality (34) from Theorem 15 combined with (60) then implies that (coarsely
using η ≤ 1)

COMPη(F)
n

≲
V log 4A

ε

nη
+max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
V

n
σ

√
log

AL

σ
,
V U

n
log

AL

σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ησ2

≲
V log 4A

ε

nη
+max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
V

n
Lε

√
log

A

ε
,
V U

n
log

A

ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ (Lε)2.

Finally, setting ε = 4
L

√
V
n yields (up to a universal multiplicative constant) the bound

V log ALn
V

nη
+max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V

n

√
log

ALn

V
,
V

n
log

ALn

V

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ V
n

≲
V log ALn

V

nη
,

where we used the assumption that η ≤ 1. This proves (37).

Classes of polynomial empirical entropy or polynomial entropy with bracketing. The first
order of business is to control Nε = logN(F , L2(P ), ε/2). In the case of classes of polynomial
empirical entropy, we again invoke Theorem 24 to conclude that, for all u > 0,

logN(F , L2(P ), u) ≤ (2A

u
)

2ρ

.

In the case of sets of classifiers of polynomial entropy with bracketing, the L2(P ) entropy can
be controlled by the relationship

logN(F , L2(P ), u) ≤ logN[⋅](F , L2(P ), u) = logN[⋅](F , L1(P ), u2) ≤ (A
u
)

2ρ

.

Next, for (i) classes of polynomial empirical entropy, we start from (59) and apply inequality (35)
from Theorem 15 combined with (60); or (ii) for classes of polynomial entropy with bracketing, we
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start from (58) and apply3 Theorem 16 combined with (61); both cases imply that, for 0 < η ≤ 1,
using ρ < 1,

COMPη(F)
n

≲ 1

nη
(2A

ε
)

2ρ

+max

⎧⎪⎪⎨⎪⎪⎩

(AL)ρ√
n

σ1−ρ,
(AL)2ρ/(ρ+1)U (1−ρ)/(1+ρ)

n1/(1+ρ)

⎫⎪⎪⎬⎪⎪⎭
+ ησ2

≲ 1

nη
(A
ε
)

2ρ

+ A
ρL√
n
ε1−ρ + η

ρ−1
ρ+1 ⋅ (AL)

2ρ/(ρ+1)

n1/(1+ρ)
+ η ⋅ (Lε)2. (62)

(the enlargement of the third term will not affect the rates, as will now become clear). We now set
ε ∶= C0n

−
1

2(1+ρ) ⋅ η−
1

1+ρ for a constant C0 > 0 to be determined later (this choice for ε was obtained
by minimizing the sum of the first and second terms in the last line of (62) by setting the derivative
to 0). With this choice, we get, as a very simple yet tedious calculation shows:

n−1η−1ε−2ρ = C−2ρ
0 ⋅ n−

1
1+ρ ⋅ η

ρ−1
ρ+1

n−1/2ε1−ρ = C1−ρ
0 ⋅ n−

1
1+ρ ⋅ η

ρ−1
ρ+1

ηε2 = C2
0 ⋅ n

−
1

1+ρ ⋅ η
ρ−1
ρ+1

so that (62) becomes

COMPη(F)
n

≲ CA,C0,L ⋅ n
−

1
1+ρ ⋅ η

ρ−1
ρ+1 (63)

where

CA,C0,L = (2A

C0
)

2ρ

+AρLρ(C0 e)1−ρ + (AL)2ρ/(ρ+1) + (eLC0)2. (64)

Plugging in C0 = Aρ/(ρ+1)L−1/(ρ+1), the four terms become of the same order:

CA,C0,L ≲ (L1/(ρ+1)A
1− ρ

ρ+1 )
2ρ

+L1− 1−ρ
1+ρA

ρ+
ρ(1−ρ)
ρ+1 + (AL)2ρ/(ρ+1) + (L1− 1

1+ρA
ρ
ρ+1 )2

≲ (AL)2ρ/(ρ+1),

and (38) follows.

The above proof made use of the universal L2(P ) metric entropy being essentially equivalent to
the universal L2(Pn) metric entropy. This result extends an analogous result of Haussler (1995) for
VC classes (see Corollary 1 therein).

Theorem 24 (Extended Haussler) Let F be a class of functions over a space S . Suppose that, for
all ε > 0 and all n ∈ N, there is some function ψ∶R+ → N such that

sup
s1,...,sn∈S

N(F , L2(Pn), ε) ≤ ψ(ε).

Then, for any probability measure P ∈ ∆(S) and any ε > 0,

N(F , L2(P ), ε) ≤ ψ(ε/2).
3. Note that in classification, for any Q, the L1(P ) diameter is equal to the square of the L2(P ) diameter.
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The proof is essentially due to Haussler with little change to the argument for the more general result.

Proof of Theorem 24 Let d be some pseudometric on F . We say that U ⊂ F is ε separated if, for
all f, g ∈ U , it holds that d(f, g) > ε. Let the ε-packing numberM(F , d, ε) be the maximal size of
an ε-separated set in F .

The packing numbers and covering numbers satisfy the following relationship (Vidyasagar, 2002,
Lemma 2.2)

M(F , d, ε) ≤ N(F , d, ε/2).

Thus, it is sufficient to boundM(F , L2(P ), ε).

Suppose thatM(F , L2(P ), ε) >M(F , L2(Pn), ε), and take U to be some ε-separated subset
of F in the L2(P ) pseudometric of cardinality ∣U ∣ > M(F , L2(Pn), ε).

Next, draw s1, . . . , sn i.i.d. from P . Since U is finite, by taking n large enough we can ensure
that the event Af,g, defined as,

∥f − g∥L2(Pn) =
⎛
⎝

1

n

n

∑
j=1

(f(sj) − g(sj))
⎞
⎠

1/2

< ε,

occurs with probability at most 1
∣U ∣2

. Since (∣U ∣

2
) < ∣U ∣2, it follows that the probability that no event

Af,g occurs among all f, g ∈ U is positive. Hence, there exists a set of points s1, . . . , sn for whichU is
an ε-packing in the L2(Pn) pseudometric. But then it must be the case thatM(F , L2(Pn), ε) ≥ ∣U ∣,
contradicting our assumption that ∣U ∣ > M(F , L2(Pn), ε).

A.4 Proofs for Section 5

A.4.1 PROOF OF PROPOSITION 21

Using w(f, zn) ≡ 1, we can write:

COMP(F , Π̂,w, zn) = 1

η
logEZn∼P [exp(−Ef∼Π̂∣Zn [ηRf(Zn) + logC(f)])]

≤ 1

η
logEZn∼P

⎡⎢⎢⎢⎢⎣
sup
f∈F

e−ηRf (Z
n
)

C(f)

⎤⎥⎥⎥⎥⎦
,

which is just COMP(F).
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A.4.2 PROOF OF PROPOSITION 22

Plugging the definition w into the definition of COMP, a sequence of straightforward rewritings gives:

COMP(F , Π̂,w, zn)

= 1

η
⋅
⎛
⎜
⎝
Ek∼Π̂K∣zn Ef∼Π̂∣k,zn

⎡⎢⎢⎢⎢⎣
log

π̂K(k ∣ zn)
πK(k) ⋅wk(zn, f)

⎤⎥⎥⎥⎥⎦
+ log S(F , Π̂,w)

⎞
⎟
⎠

= 1

η
⋅
⎛
⎝
Ek∼Π̂K∣zn [log

π̂K(k ∣ zn)
πK(k)

+ Ef∼Π̂∣k,zn [− logwk(zn, f)]] + log S(F , Π̂,w)
⎞
⎠

= 1

η
⋅KL( (Π̂K ∣ zn) ∥ΠK) + Ek∼Π̂K∣zn Ef∼Π̂∣k,zn [− logwk(zn, f)] +

1

η
log S(F , Π̂,w). (65)

If we can further show that

log S(F , Π̂,w) ≤ Ek∼Π̂K∣zn [log S(Fk, Π̂∣k,wk)] (66)

then the result follows by plugging this into the last line of (65). We thus proceed to show (66).
Setting

g(k, z′n) = Ef∼Π̂∣k,z′n [ηRf + logC(f) − logwk(z′n, f)] ,

we can write:

log S(F , Π̂,w) = logEZn∼P

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
Ek∼Π̂K∣zn [log

πK(k)
π̂K(k ∣ zn)]

⎞
⎠
⋅ exp (−Ek∼Π̂K∣zn [g(k,Zn)])

⎤⎥⎥⎥⎥⎦

≤ logEZn∼P

⎡⎢⎢⎢⎢⎣

⎛
⎝
Ek∼Π̂K∣zn [ πK(k)

π̂K(k ∣ zn)]
⎞
⎠
⋅ exp (−Ek∼Π̂K∣zn [g(k,Zn)])

⎤⎥⎥⎥⎥⎦

= logEZn∼P [exp (−Ek∼Π̂K∣zn [g(k,Zn)])]

≤ Ek∼Π̂K∣zn [logEZn∼P [exp (−g(k,Zn))]] = Ek∼Π̂K∣zn [log S(F , Π̂∣k,wk)]

where the first and last equalities are just definition chasing, the first inequality is Jensen’s and the
lastinequality is Lemma 3.2. from Audibert (2009); the result follows.
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