5,045 research outputs found

    Association Pattern Analysis for Pattern Pruning, Clustering and Summarization

    Get PDF
    Automatic pattern mining from databases and the analysis of the discovered patterns for useful information are important and in great demand in science, engineering and business. Today, effective pattern mining methods, such as association rule mining and pattern discovery, have been developed and widely used in various challenging industrial and business applications. These methods attempt to uncover the valuable information trapped in large collections of raw data. The patterns revealed provide significant and useful information for decision makers. Paradoxically, pattern mining itself can produce such huge amounts of data that poses a new knowledge management problem: to tackle thousands or even more patterns discovered and held in a data set. Unlike raw data, patterns often overlap, entangle and interrelate to each other in the databases. The relationship among them is usually complex and the notion of distance between them is difficult to qualify and quantify. Such phenomena pose great challenges to the existing data mining discipline. In this thesis, the analysis of patterns after their discovery by existing pattern mining methods is referred to as pattern post-analysis since the patterns to be analyzed are first discovered. Due to the overwhelmingly huge volume of discovered patterns in pattern mining, it is virtually impossible for a human user to manually analyze them. Thus, the valuable trapped information in the data is shifted to a large collection of patterns. Hence, to automatically analyze the patterns discovered and present the results in a user-friendly manner such as pattern post-analysis is badly needed. This thesis attempts to solve the problems listed below. It addresses 1) the important factors contributing to the interrelating relationship among patterns and hence more accurate measurements of distances between them; 2) the objective pruning of redundant patterns from the discovered patterns; 3) the objective clustering of the patterns into coherent pattern clusters for better organization; 4) the automatic summarization of each pattern cluster for human interpretation; and 5) the application of pattern post-analysis to large database analysis and data mining. In this thesis, the conceptualization, theoretical formulation, algorithm design and system development of pattern post-analysis of categorical or discrete-valued data is presented. It starts with presenting a natural dual relationship between patterns and data. The relationship furnishes an explicit one-to-one correspondence between a pattern and its associated data and provides a base for an effective analysis of patterns by relating them back to the data. It then discusses the important factors that differentiate patterns and formulates the notion of distances among patterns using a formal graphical approach. To accurately measure the distances between patterns and their associated data, both the samples and the attributes matched by the patterns are considered. To achieve this, the distance measure between patterns has to account for the differences of their associated data clusters at the attribute value (i.e. item) level. Furthermore, to capture the degree of variation of the items matched by patterns, entropy-based distance measures are developed. It attempts to quantify the uncertainty of the matched items. Such distances render an accurate and robust distance measurement between patterns and their associated data. To understand the properties and behaviors of the new distance measures, the mathematical relation between the new distances and the existing sample-matching distances is analytically derived. The new pattern distances based on the dual pattern-data relationship and their related concepts are used and adapted to pattern pruning, pattern clustering and pattern summarization to furnish an integrated, flexible and generic framework for pattern post-analysis which is able to meet the challenges of today’s complex real-world problems. In pattern pruning, the system defines the amount of redundancy of a pattern with respect to another pattern at the item level. Such definition generalizes the classical closed itemset pruning and maximal itemset pruning which define redundancy at the sample level. A new generalized itemset pruning method is developed using the new definition. It includes the closed and maximal itemsets as two extreme special cases and provides a control parameter for the user to adjust the tradeoff between the number of patterns being pruned and the amount of information loss after pruning. The mathematical relation between the proposed generalized itemsets and the existing closed and maximal itemsets are also given. In pattern clustering, a dual clustering method, known as simultaneous pattern and data clustering, is developed using two common yet very different types of clustering algorithms: hierarchical clustering and k-means clustering. Hierarchical clustering generates the entire clustering hierarchy but it is slow and not scalable. K-means clustering produces only a partition so it is fast and scalable. They can be used to handle most real-world situations (i.e. speed and clustering quality). The new clustering method is able to simultaneously cluster patterns as well as their associated data while maintaining an explicit pattern-data relationship. Such relationship enables subsequent analysis of individual pattern clusters through their associated data clusters. One important analysis on a pattern cluster is pattern summarization. In pattern summarization, to summarize each pattern cluster, a subset of the representative patterns will be selected for the cluster. Again, the system measures how representative a pattern is at the item level and takes into account how the patterns overlap each other. The proposed method, called AreaCover, is extended from the well-known RuleCover algorithm. The relationship between the two methods is given. AreaCover is less prone to yield large, trivial patterns (large patterns may cause summary that is too general and not informative enough), and the resulting summary is more concise (with less duplicated attribute values among summary patterns) and more informative (describing more attribute values in the cluster and have longer summary patterns). The thesis also covers the implementation of the major ideas outlined in the pattern post-analysis framework in an integrated software system. It ends with a discussion on the experimental results of pattern post-analysis on both synthetic and real-world benchmark data. Compared with the existing systems, the new methodology that this thesis presents stands out, possessing significant and superior characteristics in pattern post-analysis and decision support

    Proceedings of the Fifth Workshop on Information Theoretic Methods in Science and Engineering

    Get PDF
    These are the online proceedings of the Fifth Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), which was held in the Trippenhuis, Amsterdam, in August 2012

    Efficient Frequent Subtree Mining Beyond Forests

    Get PDF
    A common paradigm in distance-based learning is to embed the instance space into some appropriately chosen feature space equipped with a metric and to define the dissimilarity between instances by the distance of their images in the feature space. If the instances are graphs, then frequent connected subgraphs are a well-suited pattern language to define such feature spaces. Identifying the set of frequent connected subgraphs and subsequently computing embeddings for graph instances, however, is computationally intractable. As a result, existing frequent subgraph mining algorithms either restrict the structural complexity of the instance graphs or require exponential delay between the output of subsequent patterns. Hence distance-based learners lack an efficient way to operate on arbitrary graph data. To resolve this problem, in this thesis we present a mining system that gives up the demand on the completeness of the pattern set to instead guarantee a polynomial delay between subsequent patterns. Complementing this, we devise efficient methods to compute the embedding of arbitrary graphs into the Hamming space spanned by our pattern set. As a result, we present a system that allows to efficiently apply distance-based learning methods to arbitrary graph databases. To overcome the computational intractability of the mining step, we consider only frequent subtrees for arbitrary graph databases. This restriction alone, however, does not suffice to make the problem tractable. We reduce the mining problem from arbitrary graphs to forests by replacing each graph by a polynomially sized forest obtained from a random sample of its spanning trees. This results in an incomplete mining algorithm. However, we prove that the probability of missing a frequent subtree pattern is low. We show empirically that this is true in practice even for very small sized forests. As a result, our algorithm is able to mine frequent subtrees in a range of graph databases where state-of-the-art exact frequent subgraph mining systems fail to produce patterns in reasonable time or even at all. Furthermore, the predictive performance of our patterns is comparable to that of exact frequent connected subgraphs, where available. The above method considers polynomially many spanning trees for the forest, while many graphs have exponentially many spanning trees. The number of patterns found by our mining algorithm can be negatively influenced by this exponential gap. We hence propose a method that can (implicitly) consider forests of exponential size, while remaining computationally tractable. This results in a higher recall for our incomplete mining algorithm. Furthermore, the methods extend the known positive results on the tractability of exact frequent subtree mining to a novel class of transaction graphs. We conjecture that the next natural extension of our results to a larger transaction graph class is at least as difficult as proving whether P = NP, or not. Regarding the graph embedding step, we apply a similar strategy as in the mining step. We represent a novel graph by a forest of its spanning trees and decide whether the frequent trees from the mining step are subgraph isomorphic to this forest. As a result, the embedding computation has one-sided error with respect to the exact subgraph isomorphism test but is computationally tractable. Furthermore, we show that we can leverage a partial order on the pattern set. This structure can be used to reduce the runtime of the embedding computation dramatically. For the special case of Jaccard-similarity between graph embeddings, a further substantial reduction of runtime can be achieved using min-hashing. The Jaccard-distance can be approximated using small sketch vectors that can be computed fast, again using the partial order on the tree patterns

    KNOWLEDGE REPRESENTATION AND INFERENCE FOR ANALYSIS AND DESIGN OF DATABASES AND TABULAR RULE-BASED SYSTEMS

    Get PDF
    Rulc-based Systems constitute a powerful tool for speciftcation of knowledge in design and implementation of knowledge-based Systems. They provide also a universal programming paradigm for domains such as intelligent control, decision support, situation classification and opcrational knowledge encoding. In order to assure safe and reliable performance, such Systems should satisfy certain format reÄ…uirements, including completeness and consistency. This paper addresses the issue of analysis and verification of selected properties of a class of such Systems in a systematic way. A uniform, tabular scheme of single-levcl rule-bascd Systems is considered. Such systcms can be applied as a generalized form of databases for speciftcation of data pattems (unconditional knowledge), or can be used for deftning attributive decision tables (conditional knowledge in form of rules). They can also serve as lower-level componcnts of a hierarchical, multi-lcvcl control and decision support knowledge-based systcms. An algebraic knowledge rcprescntation paradigm using extcnded tabular rcprcsentation, similar to relational databasc tables is prcsentcd and algebraic bascs for system analysis, vcrification and design support arc outlined

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • …
    corecore