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ABSTRACT

Multi-label learning, which deals with data associated with multiple labels simultane-

ously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in

multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts

a small number of features by removing the irrelevant, redundant, and noisy information while

considering the correlation among different labels in multi-label learning. Specifically, I pro-

pose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label

data by exploiting correlations among different labels using a hypergraph. The regulariza-

tion effect on the classical dimensionality reduction algorithm known as Canonical Correlation

Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormal-

ized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction

efficiently for large-scale problems, two efficient implementations are proposed for a class of

dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized

partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first

approach is a direct least squares approach which allows the use of different regularization

penalties, but is applicable under a certain assumption; the second one is a two-stage approach

which can be applied in the regularization setting without any assumption. Furthermore, an

online implementation for the same class of dimensionality reduction algorithms is proposed

when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction

has been developed and released. The proposed algorithms have been applied successfully in

the Drosophila gene expression pattern image annotation. The experimental results on some

benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of

the proposed algorithms.
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Chapter 1

INTRODUCTION

1.1 Introduction to Multi-Label Learning

Multi-label learning deals with data associated with multiple labels simultaneously. In tradi-

tional classification, each instance is relevant to only one label. However, in many real-world

problems, one instance may belong to multiple labels. For example, in news categorization, a

piece of news regarding Apple’s release of new iPhone is associated with both the label busi-

ness and the label technology. In other words, each instance is associated with a set of labels

instead of only one label. One distinguishing difference between multi-label learning and tra-

ditional binary or multi-class learning is that the labels in multi-label learning are not mutually

exclusive, leading to the fact that each instance may belong to multiple labels. Thus, one of the

challenges of multi-label learning is how to effectively utilize the correlation among different

labels in classification.

In our discussion, we assume that each instance in the training data set is represented

by a feature vector and the associated label set. Multi-label learning is the task of predicting the

label sets of unseen instances by building a classifier based on the training data set. Formally, let

X and Y denote the instance space and the label space, respectively. In multi-label learning,

the label space Y is defined as Y = {0,1}k, where k is the number of labels. Similar to

traditional classification, given a training data set, the goal of multi-label learning is to learn a

classifier f : X →Y which assigns a predicted label set for each instance x∈X . Specifically,

the output of the classifier f given the instance x ∈X is

f (x) = [ f1(x), f2(x), · · · , fk(x)]T , (1.1)

where f j(x)( j = 1, · · · ,k) is the either 1 or 0 indicating the association of x to the jth label. In

the following discussion, the set of labels is denoted as L = {C1, · · · ,Ck}.

Multi-label learning has applications in many real-world problems, such as text catego-

rization [1, 2], semantic annotation of images [3, 4], functional genomics [2, 5], 3D hand pose

estimation [6], and biological literature classification [7]. We will discuss the applications of

multi-label learning in more detail in Section 1.2.

1



Motivated by the increasing number of applications, multi-label learning has recently

attracted significant attention in the literature [8–10]. Many algorithms have been proposed to

solve multi-label learning, and roughly they can be divided into two categories:

1. Problem transformation, which transforms the multi-label learning problem into a series

of single-label problems first, and then solves them using existing algorithms.

2. Algorithm adaption, which solves the multi-label problem directly by adapting existing

algorithms for single label.

We will review existing multi-label learning algorithms in more detail in Section 1.3.

In this thesis, we focus on the multi-label dimensionality reduction, which extracts a

small number of features by removing the irrelevant, redundant, and noisy information while

considering the correlation among different labels in multi-label learning. Similar to other

machine learning and data mining tasks, multi-label learning also suffers from the so-called

curse of dimensionality [11]. Although dimensionality reduction is well studied in the literature,

limited progress has been made on multi-label dimensionality reduction [12–14]. In this thesis,

we develop and analyze novel methods for effectively capturing the label correlation for multi-

label dimensionality reduction. In addition, we propose to develop efficient implementations

of dimensionality reduction algorithms, including both existing algorithms and newly proposed

ones.

In the rest of this chapter, we will briefly introduce multi-label learning and dimension-

ality reduction, including their applications, existing algorithms and related work. We will also

highlight the main challenges of multi-label dimensionality reduction.

1.2 Applications of Multi-Label Learning

Multi-label learning has been applied successfully in many real-world applications. In this

section, we introduce several applications, including scene classification, text classification,

functional genomics and Drosophila gene expression pattern image annotation.
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(A) Scene 1 (B) Scene 2

Figure 1.1: Examples of multi-label scenes. The Scene 1 is associated with the label “lake”
and the label “mountain”, and the Scene 2 is associated with the label “geyser” and the label
“mountain”.

Scene Classification

Humans are extremely proficient at perceiving natural scenes and understanding their contents.

In semantic scene classification, the task is to determine the associated labels such as moun-

tains, lakes, or parties for given images. Scene classification has a lot of applications in many

areas, such as content-based image indexing and organization, and content-sensitive image en-

hancement [4]. For example, many current digital library systems support content-based image

retrieval, which allows the user to search images similar to a specified query image [15]. In

this case, knowing the label of the query image can reduce the search space and improve the

retrieval accuracy.

A natural scene may be associated with multiple labels. Hence, scene classification

can be modeled as a multi-label learning problem. For example, Figure 1.1(A) shows an im-

age associated with the label “lake” and the label “mountain”; Figure 1.1(B) shows an image

associated with the label “geyser” and the label “mountain”.

Text Categorization

Text Categorization (TC) is the task of classifying text documents under one or more of a set

of predefined categories or subject codes [16, 17]. Originally dated back to the early 1960s, the

effectiveness of text categorization has been improved significantly in the past 20 years mainly

due to the use of advanced machine learning methods [16]. Text categorization has been ap-
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plied in various fields, including web page categorization under hierarchical labels, detection of

text genre, classifying text (or hypertext) documents given a predefined label set, personalized

information delivery and filtering unsuitable content [16, 17]. Typically, the predefined labels

(or categories) in text categorization are not assumed to be mutually exclusive, thus the text cat-

egorization can naturally be modeled as a multi-label learning problem. For instance, consider

labels business, technology, entertainment, and politics in news categorization, a news article

about Apple’s release of new iPhone may be labeled with both the label business and the label

technology.

When applying multi-label learning to perform text categorization, the first step is to

transform documents into some representation suitable for the learning algorithm, such as the

vector space model [2] and the binary representation [18]. In the past, many multi-label learning

algorithms have been proposed to perform text categorization [1, 2, 19–22]. One well-known

algorithm in multi-label text categorization is BoosTexter, which extends the classical boosting

algorithm AdaBoost [23] specifically to handle multi-label data. Some other algorithms include

the Bayesian approach [1] using the mixture model and the EM algorithm, the Maximal Figure-

of-Merit (MFoM) approach [20]. We will review existing multi-label learning algorithms in

Section 1.3.

One widely used benchmark data set in multi-label text categorization is the Reuters-

21578 data set1. The data was originally collected and labeled by Carnegie Group, Inc. and

Reuters, Ltd. in the course of developing the CONSTRUE text categorization system. Reuters-

21578 consists of 21,578 Reuters newswire documents that appeared in 1987. Almost all doc-

uments in Reuters collection come with title, dateline and text body, and the number of topics

(labels) is 135. In particular, three widely used subsets of the Reuters-21578 data set have been

extracted [18] by identifying the labels that suggest parent-child relationships, and the labels

are organized in a hierarchical structure as shown in Fig 1.2. Note that the roots of the three

category trees are virtual categories.

Another data set which becomes more popular for text categorization in recent years

is the Reuters Corpus Volume 1 (RCV1) data set2 [24]. The RCV1 data set consists of over
1http://www.research.att.com/∼lewis/reuters21578.html
2http://www.daviddlewis.com/resources/testcollections/rcv1/
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Hier1

Crude OilVeg-OilGrain
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(A) Data set Hier1

Hier2
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(B) Date set Hier2
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MoneyMetals
Food
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(C) Date set Hier3

Figure 1.2: The Label structures in the Reuters-21578 data set.

800,000 manually categorized newswire stories recently made available by Reuters, Ltd. for

research purposes. Similar to the Reuters-21578 data set, the labels in RCV1 data set are orga-

nized in a hierarchical structure. The original data set is referred as RCV1-v1, and a corrected

version called RCV1-v2 is generated and becomes more popular in text categorization research.

More details on this data set can be found in [24].

Functional Genomics

Functional genomics is an important field in bioinformatics. It studies gene and protein func-

tions on a large scale by conducting analysis on a vast amount of data collected by genomic
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Figure 1.3: The labels selected in the Yeast data set.

projects [25, 26]. For example, the DNA microarrays allow researchers to simultaneously mea-

sure the expression levels of thousands of different genes, and overwhelming amounts of data

are produced [27]. Recently, much research focuses on automatic analysis of microarray da-

ta [26]. In automated gene expression analysis, the task is to predict the functions for genes.

Generally it is based on the assumption that genes with similar functions have similar expression

profiles in cells [25]. Note that each gene may be associated with multiple functions in func-

tional genomics. When the functions are considered as labels, the function prediction problem

in functional genomics can be modeled as a multi-label learning problem.

A widely used benchmark data set in multi-label learning for functional genomics is

the Yeast data set [28, 29]. The Yeast data set consists of microarray expression data and phy-

logenetic profiles from the budding yeast Saccharomyces cerevisiae. It contains 2417 samples,

and each sample is represented by a 103-dimensional feature vector3. Each sample (gene) is

associated with a set of functional labels whose maximum size can be potentially more than

190. The functional classes (labels) are organized in a tree structure, which is known in the

literature [28, 29]. This data set is preprocessed in [28] and only the function classes in the top

hierarchy are selected, resulting in a total of 14 labels, as shown in Figure 1.3.

Drosophila Gene Expression Pattern Image Annotation

Detailed knowledge of the expression and interaction of genes is crucial to deciphering the

mechanisms underlying cell-fate specification and tissue differentiation. The fruit fly Drosophi-

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html#yeast
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la melanogaster is one of the model organisms in developmental biology, and its patterns

of gene expression have been studied extensively [30–33]. The comprehensive atlas of s-

patial patterns of gene expression during Drosophila embryogenesis has been created by in

situ hybridization techniques, and the patterns are documented in the form of digital images

[32,34–36]. Comparative analysis of gene expression pattern images can potentially reveal new

genetic interactions and yield insights into the complex regulatory networks governing embry-

onic development [32, 37–39].

To facilitate pattern comparison and searching, the images of Drosophila gene expres-

sion patterns are annotated with anatomical and developmental ontology terms using a con-

trolled vocabulary [32, 34]. The annotation is performed not only for each terminally differ-

entiated embryonic structure but also for the developmental intermediates that correspond to

it. Four general classes of terms, called anlage in statu nascendi, anlage, primordium, and

organ (ordered in terms of developmental time), are used in the annotation. Such an elabo-

rate naming scheme describes a developing “path”, starting from the cellular blastoderm stage

until organs are formed, that documents the dynamic process of Drosophila embryogenesis.

Due to the overwhelming complexity of this task, the images are currently annotated manually

by human experts. However, the number of available images produced by high-throughput in

situ hybridization is now rapidly increasing [37, 38, 40–42]. It is therefore tempting to design

computational methods for the automated annotation of gene expression patterns.

The annotated terms from the controlled vocabulary can be considered as labels in

multi-label classification. Since a variable number of terms from the controlled vocabulary can

be assigned to a group of pattern images, the problem of gene expression pattern annotation

can be modeled as a multi-label learning problem. In the current image database, annotation

terms are associated with a group of patterns sharing a subset of the named structures. Thus, the

difficulty of this problem is that the labels (annotation terms) are assigned to groups of patterns

rather than to individual images. Figure 6.1 shows sample Drosophila gene expression pattern

images and their corresponding annotated terms.

7



Stage range BDGP terms
4-6 dorsal ectoderm anlage in statu nascendi

mesectoderm anlage in statu nascendi
segmentally repeated
trunk mesoderm anlage in statu nascendi
ventral ectoderm anlage in statu nascendi

7-8 dorsal ectoderm primordium
hindgut anlage
mesectoderm primordium
procephalic ectoderm anlage
trunk mesoderm primordium P2
ventral ectoderm primordium P2

9-10 inclusive hindgut primordium
mesectoderm primordium
procephalic ectoderm primordium
trunk mesoderm primordium
ventral ectoderm primordium

11-12 atrium primordium
brain primordium
clypeo-labral primordium
dorsal epidermis primordium
gnathal primordium
head epidermis primordium P1
hindgut proper primordium
midline primordium
ventral epidermis primordium
ventral nerve cord primordium

Figure 1.4: Sample image groups and their associated terms (class labels) in the BDGP database
(http://www.fruitfly.org) for the segmentation gene engrailed in 4 stage ranges.

1.3 Prior Work on Multi-Label Learning: Challenges and Progress

In this section we give a brief review of the state-of-the-art multi-label learning algorithms in

the literature.

Existing multi-label classification algorithms [1, 2, 5, 19–21, 28, 43–53] can be divid-

ed into two categories [8]: 1) problem transformation, and 2) algorithm adaption. In the first

approach, the multi-label learning problem is transformed into a series of single-label classi-

fication problems so that existing single-label learning algorithms can readily be applied. The

second approach, i.e., algorithm adaption, adapts existing single-label classification algorithms

to handle multi-label classification directly. In [54], the algorithms are categorized based on the

order of correlations among labels used in the algorithm. Specifically, the first-order approach
8



only decomposes the multi-label learning problem into a sequence of independent binary clas-

sification problems; the second-order approach considers the pairwise relations between labels;

the higher-order approach considers the higher-order relations among labels.

Besides multi-label classification, another popular problem in multi-label learning is

label ranking (LR) [55] which learns an ordering of the labels based on their relevance to a

given instance. In this thesis we mainly focus on Multi-Label Classification (MLC). More

details on the connections between multi-label classification and label ranking can be found

in [8].

In the following, we first highlight some challenges of multi-label learning and then

review some multi-label learning algorithms. We follow the categorization in [8] to survey

these multi-label learning algorithms, i.e., problem transformation and algorithm adaption.

Challenges of Multi-Label Learning

In comparison with traditional binary classification and multi-class classification, the generality

of multi-label classification inevitably makes it more challenging to solve. Here we list some

of the most fundamental challenges which exist in the successful application of multi-label

learning in real-world problems.

The first challenge lies in how to effectively exploit the label structure to improve the

performance of multi-label classification. In multi-label learning, the labels are often corrected

since they are not mutually exclusive. In this case, how to measure and capture the correlation

in the label space for improved prediction is crucial in multi-label learning. So far, some algo-

rithms have been proposed in the literature to capture the label correlations [8, 51, 54, 56, 57].

However, how to effectively make use of the correlation in the label space still remains an open

question. Furthermore, as we discussed in Section 1.2, in some applications of text catego-

rization and bioinformatics, the labels are organized in a hierarchical structure or in a Directed

Acyclic Graph (DAG). It is clear that taking advantage of such structures can lead to improved

classification performance. For example, in a general-to-specific label tree structure, an instance

associated with a specific label should also be associated with its parent label. How to effec-

tively use these complex structures in specific applications also remains a challenging research

question [58].
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The second challenge lies in the classification imbalance problem in multi-label learn-

ing. When each label is treated independently, it can be observed that most instances are irrel-

evant to a specific label. Since the number of positive instances for some label is significantly

less than the number of negative instances, it is difficult to build a highly accurate classifier

for these labels without considering the correlations among different labels. Thus, the research

question is how to correctly classify these rare classes given their limited numbers of training

instances. In fact, the classification imbalance problem becomes worse when the number of

labels is relatively large.

The third challenge concerns the effectiveness and efficiency of multi-label learning for

large-scale problems, especially when the data dimensionality is high and the number of labels

is large. Multi-label learning also suffers from the curse of dimensionality, and many existing

multi-label learning algorithms fail when the dimensionality is high since data points become

sparse and far apart from each other. We will provide more details on how to deal with the high-

dimensional data in multi-label learning in Section 1.4. In addition, the computational cost of

multi-label learning increases as the number of labels increases. For example, the Binary Rel-

evance (BP) and Label Power-set (LP) (both will be discussed in detail in the next subsection)

can only work when the label size is comparatively small. Recently, some algorithms have been

proposed [53, 59] to deal with a large number of labels. For example, the dimensionality of

the label space is reduced by using a random projection in [53]. However, the computation of

the mapping from the reduced space to the original label space is expensive, which limits its

applicability in large-scale problems. In addition, when the number of labels is large it is more

difficult to maintain a large number of prediction models in memory [8].
Problem Transformation

The most straightforward approach to handling the multi-label learning problem is to transform

it into a series of single-label classification problems so that existing algorithms for single-label

classification can readily be applied. The key idea is to eliminate the label overlapping in the

original label space. Compared with the algorithm adaption scheme, the problem transforma-

tion scheme is more flexible since any off-the-shelf single-label classifier can be applied after

problem transformation. In this subsection, we will introduce three different transformation

schemes: COpy transformation (CO), Binary Relevance (BR), and Label Power-set (LP).
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Copy Transformation (CO)

The instance COpy transformation (CO) converts the multi-label problem into a multi-class

problem by performing a transformation on the data set. Specifically, for each example (xi,yi)

in the original multi-label problem, we replace it with a set of new examples {(xi,C j)|yi( j) =

1}. In other words, a new example (xi,C j) is generated if xi is associated with C j in the o-

riginal multi-label problem. Some variation of this transform also adds some weight for the

new instances, e.g., 1
∑ j yi( j) for each new example generated for the original example (xi,yi).

By applying the copy transformation, the original multi-label learning problem is transformed

into a multi-class classification problem. The copy transformation of a toy multi-label learning

problem is illustrated in Figure 1.5.

Binary Relevance (BR)

Binary Relevance (BR), or one-against-all approach, is the most well-known and most com-

monly used transformation approach for multi-label learning in the literature [8, 55]. It has

been used widely as a baseline method to evaluate the performance of multi-label learning al-

gorithms. Specifically, BR learns k binary classifiers for all labels in L independently. For

each label C j, it uses all instances associated with it as the positive training samples, and the

remaining instances as negative samples. Based on the new training data set, a classifier f j can

be learned for the label C j. After learning k classifiers { f1, · · · , fk} for all k labels, the prediction

for the new instance x is given by f (x) = [ f1(x), f2(x), · · · , fk(x)]T .

Binary Relevance is a straightforward transformation approach and can be combined

with many state-of-the-art binary classification algorithms such as Support Vector Machines

(SVM) and Artificial Neural Networks (ANN). The drawback of binary relevance is that it does

not consider correlations among the labels in the label transformation as all labels are treated

independently. In addition, when the number of labels is large, it may not scale to large-size

data sets since a binary classifier has to be constructed for each label. Binary relevance also

suffers from the class imbalance problem, i.e., the number of positive instances is significantly

less than the number of negative instances for some labels due to the typical sparsity of labels

in multi-label data.
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Example Label

1 {health, business, science }

2 {sports, business}
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1 health

1 business
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Example Label
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2 ¬health

Example Label
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1 ¬sports
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(a) Copy Transformation (CO)

(c) Label Power-set (LP)

(b) Binary Relevance (BR)

Figure 1.5: Illustration of different transformations of a toy multi-label learning problem.

The binary relevance transformation of a toy multi-label learning problem is illustrated

in Figure 1.5.

Label Power-Set (LP)

Another popular approach is the Label Power-set (LP) [4], which treats each distinct label set

in the training data set of the multi-label learning problem as a new label. As a result, the multi-

label problem can be transformed into a series of single-label classification problems. Given a

new data instance, LP will output the most probable classes, i.e., a set of labels in the original

problem.
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Compared with the copy transformation and the binary relevance, the label power-set

transformation considers the correlations and dependencies among different labels explicitly.

One drawback of the label power-set transformation is that the label set which does not appear

in the training data set of the original multi-label learning problem cannot be handled properly.

In addition, the label power-set transformation is computationally expensive since the number of

labels is increased exponentially. In the worst case, the number of labels after LP transformation

is 2k−1(k ≥ 2), which means that the computational cost will increase exponentially after LP

transformation. Furthermore, many of these new labels tend to be very sparse which leads to

very severe class imbalance problem due to the fact that many of these new labels are only

associated with a limited number of instances.

The label power-set transformation of a toy multi-label learning problem is illustrated

in Figure 1.5.

Besides the three classical transformation approaches, some novel transformation meth-

ods which combine both binary relevance and label power-set have also been proposed in the

literature recently [60].

Single-Label Classification After Transformation

After label transformation, the single-label classification algorithms can be applied readily to

predict the final label(s) of new data instances. Some well-known single-label algorithms which

have been applied in multi-label classification include SVM, decision tree, k-nearest neighbors,

naive Bayes classifier, artificial neural network, etc. [61]. The comparison between differen-

t single-label algorithms after label transformation has been performed in [10] and [61]. As

reported by [10], SVM provides the best tradeoff between predictive performance and compu-

tational complexity.

Algorithm Adaption

In this subsection, we will review some multi-label learning algorithms by adapting existing

single-label classification algorithms in the literature. One key issue in algorithm adaption is

how to process the label overlapping and improve prediction performance by considering the

correlation among different labels in the label space.
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Algorithms based on Decision Tree

In [43], the classical decision tree algorithm C4.5 is adapted to handle multi-label problems. For

a given data set, the entropy is redefined to process instances associated with multiple labels.

Formally, given a set of instances associated with multiple labels L = {C1, . . . ,Ck}, the entropy

is defined as

Entropy(L )
△
=−

k

∑
i=1

(P(Ci) logP(Ci)+(1−P(Ci) log(1−P(Ci)))) , (1.2)

where P(Ci) is the probability (relative frequency) of class Ci, and 1−P(Ci) is the probability

of not being member of class Ci.

Following the rule of maximum information gain which is the difference of entropy

after splitting, we can construct a decision tree to handle the multi-label data set. On the other

hand, in multi-label learning we have to allow leaves of the tree to potentially be a set of labels,

i.e., the outcome of a classification of an instance can be a set of labels.

In [5], the entropy is further extended to handle hierarchial multi-label classification

where the labels are organized in a hierarchical structure.

Algorithms based on Probabilistic Framework

In [1] a Bayesian classification approach is proposed for multi-label classification. Specifically,

a probabilistic generative model is constructed to model multiple labels associated with each

document. The words in a document are produced by a mixture of word distributions, one for

each topic (label). In the generative model, it first selects a set of classes (instead of only one

class) associated with this document; it then produces a set of mixture weights for these selected

classes. Based on these weights we can generate each word in the document as follows: we first

select a class for this document using these weights, and then generate a single word based on

the selected class. In classification, the Bayes rule is applied to predict the most probable class

set given the document. In terms of parameter estimation in this generative model, the EM

algorithm is applied to learn the distribution over mixture weights and the word distribution

in each class’s mixture component. Compared with single-label classification algorithms, the

proposed generative model explicitly takes the correlations among different labels into account.
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Two types of generative models called Parametric Mixture Models (PMMs) are also

proposed in [21] for multi-label text categorization. The basic assumption of PMMs is very

similar to that in [1]. Namely, the words in a document belonging to a label set can be regarded

as a mixture of characteristic words related to each of these labels. For example, a document

that belongs to both “sports” and “music” would consist of a mixture of characteristic words

mainly related to both categories. Also efficient learning and prediction algorithms have been

proposed for PMMs in [21].

Compared with other multi-label learning algorithms, both generative models proposed

in [1] and [21] can only be applied for text categorization. More general models are desirable

to handle the general multi-label learning problem.

Algorithms based on Support Vector Machines

In [28] an algorithm based on Support Vector Machines (SVM) called RankSVM is proposed.

RankSVM tries to control the model complexity while minimizing the empirical error. In fact,

it shares a lot of common properties with SVM. The key idea of the RankSVM algorithm is to

use a novel ranking loss function to capture the characteristics of multi-label learning problem

and then solve the resulting optimization problem accordingly.

Formally, for each label C j, we construct a linear model:

f j(xi) = sgn(wT
j xi +b j).

Next we consider the ith sample (xi,yi) in the training data set, where xi ∈ Rd and its corre-

sponding label vector yi ∈ Rk is

yi = [yi(1),yi(2), . . . ,yi(k)]
T ,

where yi( j) is either 1 or 0 indicating the association of xi to the jth label. Denote Yi =

{ j|yi( j) = 1} and Ȳi = { j|yi( j) = 0}, i.e., Yi contains the label indices associated with xi

and Ȳi contains the label indices not associated with xi. Let the output of k linear models be

f (xi) = [ f1(xi)), f2(xi), . . . , fk(xi)]
T . The ranking loss function over (xi,yi) is defined as

RL( f ,xi,yi) =
n

∑
i=1

1
|Yi||Ȳi|

∣∣(q, l) ∈ (Yi× Ȳi) s. t. fq(xi)≤ fl(xi)
∣∣ . (1.3)
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The ranking loss defined in Eq. (1.3) measures the average fraction of pairs which are not

correctly ordered.

The basic idea of RankSVM is to find a series of linear models { f1(x), f2(x), · · · , fk(x)}

such that the ranking loss function is minimized while a large margin is also achieved. In multi-

label learning, the margin of xi,yi is defined as

min
q∈Yi,l∈Ȳi

(wq−wl)
T xi +bq−bl∥∥wq−wl

∥∥ . (1.4)

In fact, it is the signed ℓ2 distance of xi to the decision boundary. Similar to SVM, an optimiza-

tion problem can be formed and solved.

In the above discussion, we assume that f j(x) =wT
j x+b j(1≤ j≤ k) are linear models.

These linear models can be extended to the kernel induced feature space by applying the kernel

trick [62].

In [44] two methods for enhancing existing discriminative classifiers for multi-label

classification are proposed. Specifically, the first one exploits correlation among different labels

by combining text features and information about relationships between classes by constructing

a new kernel for SVMs with heterogeneous features. The second one improves the margin of

SVMs for better multi-label classification.

Algorithms based on Artificial Neural Network

In [2], a neural network algorithm called BP-MLL, i.e., BackPropagation for Multi-Label

Learning, is proposed. It extends the backpropagation algorithm for multi-label learning by

defining a novel error function which captures the characteristics of multi-label learning. Based

on the proposed error function, the resulting minimization problem can be solved by gradien-

t descent combined with the error backpropagation strategy [63]. Specifically, given the training

data set {(x1,y1),(x2,y2), . . . ,(xn,yn)}, let the output of the neural network be { f (x1), f (x2), . . . ,

f (xn)} where yi = [yi(1),yi(2), . . . ,yi(k)]
T , f (xi) = [ f1(xi)), f2(xi), · · · , fk(xi)]

T , and yi( j) is

either 1 or 0. Then the novel error function for multi-label learning in [2] is defined as follows:

Ez
△
=

n

∑
i=1

E(xi), (1.5)
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where Ei is defined as

E(xi)
△
=

n

∑
i=1

1
|Yi||Ȳi| ∑

q∈∈Yi,l∈Ȳi

exp(−( fq(xi)− fl(xi))) . (1.6)

In Eq. (1.6) Yi = { j|yi( j) = 1} and Ȳi = { j|yi( j) = 0}, i.e., Yi contains the label indices

associated with xi and Ȳi contains the label indices not associated with xi. Thus |Yi| is actually

the number of labels associated with the instance xi. Note that in Eq. (1.6) we use the index

q to denote the label index associated with xi and use the index l to denote the label index not

associated with xi. As a result, fq(xi)− fl(xi) measures the difference between the outputs of

the network on one label belonging to xi and another label not belonging to it. Clearly, a larger

difference between fq(xi) and fl(xi) leads to better classification performance. In Eq. (1.6) the

exponential function is employed to severely penalize the difference if fq(xi) is much smaller

than fl(xi) and make the error function smooth. Also note that there are |Yi||Ȳi| pairs of labels

with one associated with xi and another not associated with xi, thus we use 1
|Yi||Ȳi|

to normalize

the error. The intuitive idea behind this error function is that the labels associated with an

instance should be ranked higher than those not associated with that instance.

Algorithms based on k-Nearest Neighbor

In [45], a lazy learning algorithm named ML-kNN, i.e., Multi-Label k-Nearest Neighbor, which

extends the k-Nearest Neighbor (kNN) to handle multi-label data, is proposed. The basic idea

of ML-kNN is very similar to the traditional kNN. Specifically, the k nearest neighbors of a

unseen instance are identified first in ML-kNN. Based on the statistical information gained

from the label sets of these neighboring instances, the Maximum A Posterior (MAP) is applied

to predict the label set for the unseen instance. Compared with traditional kNN, one advantage

of ML-kNN is that the prior probabilities can be incorporated into the estimation.

In [46], a novel class balanced k-nearest neighbor approach for multi-label classifica-

tion by emphasizing balanced usage of data from all classes is proposed.

Algorithms based on Ensemble Learning

BoosTexter [19] extends the popular boosting algorithm AdaBoost [23] to multi-label learning

by the same authors. The basic idea of boosting is to combine many simple and less accurate

classifiers called weak classifiers into a single highly accurate classifier. Generally the weak
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classifiers are trained sequentially so that the instances more difficult to classify by the preced-

ing classifiers are focused. In the simplest version of AdaBoost for single-label classification,

the boosting algorithm maintains a set of important weights over training examples so that the

weak classifiers can concentrate on those examples which are difficult to classify. In BoosT-

exter, it maintains a set of weights over both training examples and labels to handle multiple

labels. In the boosting process, training examples and their corresponding labels which are d-

ifficult to classify get incrementally higher weights while examples and labels which are easy

to classify get lower weights. In other words, we force the weak learning algorithm to focus

on the combination of examples and labels which are difficult to predict and thus improve the

overall performance of the ensemble algorithm. Specifically, two different extensions of Ad-

aBoost have been proposed [19]. The first extension, AdaBoost.MH, focuses on the prediction

of all correct labels while the second one, AdaBoost.MR, focuses on label ranking.

As we discussed in Section 1.3, the label power-set transformation explicitly considers

the label correlation. Unfortunately, it suffers from the huge number of new labels and the

majority of them are associated with very few positive samples. To overcome the limitations

of the label power-set transformation, the RAndom k-labELsets (RAKEL) algorithm [48], an

ensemble method for multi-label classification, is proposed recently.

Given the label set L = {C1,C2, . . . ,Ck}, a set S⊆L with |S|= q is called a q-labelset.

The set of all distinct q-labelsets on L is denoted as L q. The RAKEL algorithm iteratively

constructs a single-label weak learner from X to the selected q-labelset. Specifically, in the

pth iteration of RAKEL, a q-labelset Sp is selected randomly from L q without replacement.

Then the weak learner constructs a single-label classifier hp : X → Sp. Two parameters are

specified by the user, e.g., the size of label set q and the number of iterations in RAKEL. It has

been shown in [48] by using small q and an adequate number of iterations, RAKEL can model

label correlations effectively. For the prediction of a new instance x, we first apply all weak

learners to obtain the binary decisions for all q-labelsets. Then RAKEL computes a ranking of

all original labels by averaging the predictions of all weak learners. The final positive decision

for a specific original label is made if the average is greater than a user-specified threshold.
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RAKEL explicitly considers the correlations among different labels. One disadvantage

of RAKEL is its efficiency. In the current RAKEL algorithm, the random selection is used to

speed up the computation. On the other hand, parameter selection is also an issue in its practical

application.

In [49], a multi-label learning algorithm called Model-Shared Subspace Boosting (MSS-

Boost) is proposed to reduce the information redundancy in the learning process. Specifically,

it learns a number of base models across multiple labels, and each model is based on a random

feature subspace and bootstrap data samples. By combining these shared subspace models, the

decision function for each label can be jointly estimated.

Recently, the ensemble learning has also been applied in hierarchical multi-label learn-

ing [50].

Other Algorithms

In [51], an algorithm called Correlated Label Propagation (CLP) is proposed to explicitly mod-

el interactions between labels. CLP simultaneously propagates multiple labels from training

data points to test data points. After formulating an optimization problem in CLP, an efficient

algorithm based on properties of submodular functions is proposed to find its optimal solution.

In [20], a multi-label classification algorithm for text categorization is proposed. It

generalizes the Maximal Figure-of-Merit (MFoM) [64] approach from binary classification to

multi-label classification. In particular, all MFoM classifiers are trained simultaneously. Com-

pared with binary MFoM classifiers which are trained independently, the resulting models are

more robust, especially for the labels with a very small number of positive training examples.

In [52], an algorithm based on the Conditional Random Field (CRF) classification mod-

el which directly parameterizes label co-occurrences in multi-label classification is proposed.

In [53], an algorithm is proposed to make use of the sparsity in the label space, i.e., the

majority of the data instances are only associated with a limited number of labels. The basic idea

is to project the label vector onto a lower-dimensional space using some random matrix. And

then the multi-label classification problem is transformed into a series of regression problem.

In particular, it has been shown that the number of regression problems is only logarithmic
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in the total number of possible labels. Using established theories and tools in compressed

sensing [65, 66], the prediction in the regression model can be recovered to the label vector in

the original label space.

In [57] a multi-label learning algorithm is proposed to solve the weak label problem.

The weak label problem is quite similar to multi-instance learning. In weak label problem, the

appearance of a label means that the instance is associated with this label, while the absence of

a label does not imply that this label is not proper for this instance. In other words, the label

information for a given instance in the training set is “partial”. In the algorithm proposed in [57],

a convex optimization problem is formulated to make sure that the classification boundary for

each label goes across low density regions. The novel part of the proposed algorithm is that

different similarities between instances are used for different labels. In addition, it is assumed

these similarities can be derived from a group of low-rank base similarities.

In multi-instance learning [67], each object is described by a number of instances.

Multi-instance learning has been successfully applied in many areas [68, 69]. Specifically, in

multi-instance learning, the label of the object is determined by the labels of its corresponding

instances. If all instances are negative, then the label of the object is negative. If there exists

at least one positive instance, then the corresponding object is labeled as positive. The task of

multi-instance learning is to learn a function which can predict the label for an unseen object

given its relevant instances.

In [70], the multi-instance multi-label problem is studied. In multi-instance multi-label

learning, each object is associated with not only multiple instances but also multiple labels. New

algorithms called MIMLBOOST and MIMLSVM are proposed to solve multi-instance multi-

label problems. The relationship between multi-instance multi-label learning and the traditional

multi-class learning, multi-instance learning, and multi-label learning is also studied in [70].

1.4 Dimensionality Reduction for Multi-Label Learning
Introduction to Dimensionality Reduction

Recent technological innovations have allowed us to collect massive amounts of data with a

large number of features, such as gene expression pattern images [71], microarray gene expres-

sion data [72], protein/gene sequences [73], text documents [74], and neuroimages [75]. The
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proliferation of such data has facilitated knowledge discovery and pattern prediction/analysis

using computational approaches [37, 72, 76, 77]. A common characteristic of such data is that

the number of features is much larger than the sample size. The objective of this thesis is to

study the theoretical and computational issues involved in high-dimensional data analysis in

multi-label learning. While this goal is challenging, its pursuit will have a significant impact,

as Donoho noted in [78]: “The trend today is towards more observations but even more so, to

radically larger numbers of variables .... Classical methods are simply not designed to cope

with this kind of explosive growth of dimensionality of the observation vector. We can say with

complete confidence that in the coming century, high-dimensional data analysis will be a very

signicant activity.”

One of the key issues in such data analysis is the so-called curse of dimensionality [11].

This term was coined by Bellman [11] to show that the number of samples required to estimate

a function with a given level of accuracy grows exponentially with dimensions that it compris-

es. In other words, the curse of dimensionality means that for a given sample size, there is a

maximum number of features above which the performance of an algorithm will degrade rather

than improve. In fact, many data mining algorithms fail when the dimensionality is high [78,79]

since data points become sparse and far apart from each other.

Dimensionality reduction, which extracts a small number of features by removing the

irrelevant, redundant, and noisy information, is an effective way to mitigate the curse of di-

mensionality. Basically, dimensionality reduction transforms the high-dimensional data into

a meaningful representation with a reduced dimensionality. Dimensionality reduction is im-

portant and widely used in many domains, such as data compression, noise removal, etc. By

applying dimensionality reduction, the size of the data can be reduced significantly which re-

quires less storage space and computational cost in the further processing while some important

properties of the original data set are preserved.

Data visualization is another important application of dimensionality reduction. It is the

study of the visual representation of data through graphical means and is effective in explorato-

ry data analysis [80–83]. In data visualization, the data in the original high-dimensional space

are represented as a data point in a 2- or 3-dimensional space. The task of data visualization is
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to construct the new representation in 2- or 3-dimensional space in such a way that the essential

properties or information in the original data space is preserved [81]. By applying dimension-

ality reduction, the data can be embedded into 2- or 3-dimensional space so that the analysts

can explore the data in an intuitive manner [80]. For example, the nonlinear dimensionality

reduction has been applied successfully in the visualization of gene expression compendia for

retrieving relevant experiments [80].

Dimensionality reduction has been studied extensively in many areas (reviewed in

[84–87]). These dimensionality reduction algorithms can be divided into different categories

based on different criteria, e.g., supervised and unsupervised dimensionality reduction algo-

rithms, linear and nonlinear dimensionality reduction algorithms, etc. In linear dimensionality

reduction algorithms, the data are projected onto a lower-dimensional space through a linear

mapping or transformation, e.g., Principal Component Analysis (PCA) [88] and Linear Dis-

criminant Analysis (LDA) [89, 90]. Recently, some nonlinear dimensionality reduction algo-

rithms have been proposed to reduce the data dimensionality in a nonlinear way [87, 91]. For

example, in manifold learning, the goal is to find a low-dimensional nonlinear manifold em-

bedded in the original high-dimensional space, which preserves the local properties of the data

distribution. In supervised dimensionality reduction the label information is used so that the

label discriminatory information can be preserved after projection, e.g., Linear Discriminan-

t Analysis (LDA) [89, 90]. In unsupervised dimensionality reduction, no label information is

used and the goal is to preserve some properties of the data, e.g., the variability in Principal

Component Analysis (PCA) [88] and the local properties in Isomap [92] and LLE [93].

The commonly-used dimensionality reduction methods include supervised approach-

es such as Linear Discriminant Analysis (LDA) [89, 90], Canonical Correlation Analysis (C-

CA) [94] and Partial Least Squares (PLS) [95–98], and unsupervised approaches such as Prin-

cipal Component Analysis (PCA) [88], Latent Semantic Indexing (LSI) [99], Nonnegative Ma-

trix Factorization (NMF) [100, 101], Latent Dirichlet Allocation [102], Independent Compo-

nent Analysis (ICA) [94,103,104], and additional spectral methods such as Multi-Dimensional

Scaling (MDS) [105], Locally Linear Embedding (LLE) [93], Isomap [92], Laplacian Eigen-

maps [106], Hessian Eigenmaps [107], Maximum Variance Unfolding (MVU) [108, 109], Lo-
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cal Tangent Space Alignment [110], and Kernel methods [62], as well as their extension-

s [111–117]. Multilayer neural networks can also be used to reduce the data dimensionali-

ty [118] . Canonical Correlation Analysis (CCA) [94] and Partial Least Squares (PLS) [95–98]

are classical techniques for modeling relations between multiple sets of observed variables. One

popular use of CCA and PLS is for multi-label classification, in which one set of variables is

derived from the data and the other set is derived from the class labels. In this thesis since we

are interested in the label information in the multi-label learning, we will focus on supervised

dimensionality reduction algorithms.

Linear and Nonlinear Dimensionality Reduction

Formally, dimensionality reduction studies the following problem: given the d-dimensional

variable x = [x1, . . . ,xd ]
T ∈ Rd , the goal is to find a lower-dimensional representation of x,

i.e., s = [s1, . . . ,sp]
T ∈ Rp where p≪ d is the new dimension, to preserve the information and

structure of the original data based on some criterion. In the thesis, we mainly focus on linear

dimensionality reduction. Specifically, in linear dimensionality reduction, each new feature is

a linear combination of all the input features, i.e.,

s = WT x, (1.7)

where W ∈ Rd×p is the so-called projection (transformation) matrix. By optimizing different

criteria, we can obtain different W’s.

In this thesis we mainly focus on supervised linear dimensionality reduction, i.e., the

dimensionality reduction in the feature space with the aid of the associated label information.

Note that the dimensionality reduction in the label space is also considered recently in the

literature [53, 59], but we restrict our attention to the dimensionality reduction in the feature

space in this thesis. A typical example of supervised linear dimensionality reduction is Linear

Discriminate Analysis (LDA) [89, 90], one of the most popular dimensionality reduction algo-

rithms. Specifically, LDA attempts to minimize the within-class variance while maximizing the

between-class variance after the linear projection. As a result, after linear projection, the data

points belonging to the same class tend to be close while the data points belonging to different

classes tend to be far away. Note that in LDA we assume that the classes are mutually exclusive.

As a result, LDA cannot be applied in multi-label dimensionality reduction directly.
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The nonlinear dimensionality reduction algorithms have attracted significant attention

in recent years [87]. These nonlinear algorithms are designed to deal with more complex da-

ta, especially the data which intrinsically lies in more complex lower-dimensional spaces, e.g.,

a lower-dimensional manifold [92]. For example, a set of images produced by the rotation

of a face through different angles can be considered as data points lying along a continuous 1-

dimensional curve. These nonlinear dimensionality reduction algorithms outperform traditional

linear algorithms on artificial data sets, e.g., the Swiss role data set which consists of a set of

data points lying on a spiral-like 2-dimensional manifold within a 3-dimensional space. Various

nonlinear dimensionality reduction algorithms have been compared with linear algorithms PCA

and LDA in [91] empirically. Unfortunately, these nonlinear algorithms do not outperform the

linear algorithms on many real-world data sets although they perform very well on selected arti-

ficial data sets. Despite the theoretical soundness of these nonlinear algorithms, it is concluded

in [91] that they may not capable of outperforming traditional linear algorithms.

Multi-Label Dimensionality Reduction

In many multi-label learning tasks, the high-dimensional data is frequently involved. Similar to

many machine learning and data mining tasks, multi-label learning also suffers from the curse

of dimensionality. In addition, in many applications of multi-label learning, e.g., text process-

ing [119], data visualization is an important tool to provide insights into the data. Although

numerous studies have been devoted to dimensionality reduction, most of them focus on either

the unsupervised or the multi-class setting. In addition, many real-world applications can be

cast as multi-label classification problems due to its generality. Some well-known examples

include scene classification, text categorization, functional genomics, and Drosophila gene ex-

pression pattern image annotation as discussed in Section 1.2. Multi-label classification has

also found applications in many other fields, including music retrieval and annotation [120] and

chemical informatics [121]. In comparison with the traditional binary or multi-class classifica-

tion which assumes mutually exclusive class membership and assigns each sample to a single

class, multi-label classification allows different classes to overlap with each other and therefore

is more challenging to perform dimensionality reduction.
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Next we introduce dimensionality reduction in text processing as an example. Dimen-

sionality reduction is widely used in text categorization and text visualization [119, 122]. In

text categorization and visualization, the documents are first transformed into some suitable

representation for learning algorithms. A popular representation method is the vector space

model [123] where each document is represented as a vector with length |T | where T is the

set of terms that occur at least once in one document. In some applications, some words may

appear in one document over 100 times but may not appear in any of the other documents. Note

that all distinct terms are counted in this model, thus the dimensionality |T |may be prohibitive-

ly high and the resulting high-dimensional space using the vector space model is inherently

sparse, which are the major challenges for text processing [122]. In this case, it is necessary to

reduce the dimensionality via dimensionality reduction.

Unfortunately, existing dimensionality reduction algorithms are less effective for multi-

label learning problems. For example, the unsupervised dimensionality reduction algorithms,

e.g., PCA, ignore the label information; the supervised dimensionality reduction algorithms,

e.g., LDA, typically assume that mutually exclusive labels. One possible solution is to use the

problem transformation approaches discussed in Section 1.3 so that the traditional supervised

dimensionality reduction algorithms can be applied after transformation. A drawback of this

approach is that the label correlations are often ignored in the transformation and meanwhile

the computational cost is increased dramatically. For example, some dimensionality reduction

algorithms have been proposed for text categorization and visualization in the literature [122],

such as term selection methods based on document frequency, information gain, etc. However,

the overlapping between labels in the label space is not considered in existing algorithms.

As we discussed in Section 1.3, one fundamental challenge in multi-label learning is

how to effectively exploit the label structure for improved classification performance. This is

also the case for dimensionality reduction since we expect that after projection the label discrim-

inatory information is preserved in multi-label setting. Also note that dimensionality reduction

is a preprocessing step for classification. A natural question is whether we can combine dimen-

sionality reduction algorithms with some classification algorithms together for improved per-

formance. Another challenge is how to build interpretable models for dimensionality reduction.
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In traditional linear dimensionality reduction, since the new features are linear combinations of

all the original features, it is often difficult to interpret new features. Thus, it is desirable to

achieve the dimensionality reduction but also to reduce the number of explicitly used original

features. Recently, some sparse feature selection algorithms have been proposed [124–126]

via ℓ1-norm minimization. It is also of great interest to explore the use of ℓ1-norm minimiza-

tion in multi-label dimensionality reduction. Finally, the scalability of dimensionality reduction

algorithms is also an issue for large-scale problems.

Related Work on Multi-Label Dimensionality Reduction

So far few dimensionality reduction algorithms have been proposed for multi-label learning [12–

14, 46, 127]. In this subsection we briefly review these algorithms.

In [12], an algorithm called Multi-label informed Latent Semantic Indexing (MLSI)

which preserves the information of data and meanwhile captures the correlations between the

multiple labels is proposed. Note that Latent Semantic Indexing (LSI) is a purely unsupervised

dimensionality reduction algorithm. In order to incorporate the discriminatory information en-

coded in the labels, a projection is computed for both the data X and the corresponding label Y.

The difference between MLSI and Canonical Correlation Analysis (CCA) is that in CCA two

differen projections are computed simultaneously for X and Y respectively while in MLSI the

same projection is computed for both X and Y. As a result, MLSI obtains a new feature space

which captures both the information of the original feature space and the label space.

In [13], the sparse kernel orthonormalized partial least squares is proposed to handle

multi-label data by imposing sparsity constraints on kernel orthonormalized partial least squares

for feature extraction. When partial least squares is applied for supervised learning, one view

corresponds to the data X while the other view corresponds to the associated label Y. It has been

shown that orthonormalized PLS is competitive with various PLS variants [13]. The proposed

algorithm in [13] is claimed to be applicable for multi-label learning, although its applicability

is not discussed in detail and also no empirical result is reported.

In [14] a dimensionality reduction algorithm called Multi-label Dimensionality reduc-

tion via Dependence Maximization (MDDM) is proposed. In MDDM, the goal is to find a

projection such that the dependence between the feature (data) and the corresponding label is
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maximized after projection. In particular, the Hilbert-Schmidt independence criterion [128] is

adopted to measure the dependence between the feature description and the corresponding la-

bels due to its simplicity and neat theoretical properties. Furthermore, it is shown in [14] that a

closed-form solution can be obtained for the resulting optimization problem in MDDM, which

leads to efficient and effective implementations of the proposed algorithm.

In [46], a dimensionality reduction technique called class balanced linear discriminant

analysis is proposed. The key idea of classed balanced LDA is to define within-class scatter

matrix and between-class scatter matrix for multi-label learning. Since each instance belongs

to multiple labels, the traditional definition of within-class and between-class scatter matrices

cannot be applied. In fact, the proposed class balanced LDA is equivalent to traditional LDA

performed on the data set after applying the copy transformation.

Specifically, in [46] the multi-label within-class scatter matrix Sw is defined as:

Sw =
k

∑
j=1

S( j)
w , where S( j)

w =
n

∑
i=1

yi( j)(xi−m j), (1.8)

and m j is the mean of label j and it is defined as follows:

m j =
∑n

i=1 yi( j)xi

∑n
i=1 yi( j)

. (1.9)

In other words, all instances relevant to label j are counted in the computation of the label mean

m j. The multi-label between-class scatter matrix Sb is defined as:

Sb =
k

∑
j=1

S( j)
b , where S( j)

b =

(
n

∑
i=1

yi( j)

)
(m j−m)(m j−m)T , (1.10)

where m is the global mean of the data set for multi-label learning, and it is defined as:

m =
∑k

j=1 ∑n
i=1 yi( j)xi

∑k
j=1 ∑n

i=1 yi( j)
. (1.11)

Note that the definition of the global mean m also considers the multiple counts for instances

belonging to multiple labels, thus it is different from the global mean in the traditional multi-

class learning as in standard LDA.

Based on the revised definitions of the within-class and between-class scatter matrices

for multi-label learning, the transformation matrix W can be computed readily by following the
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standard LDA algorithm. Namely, W ∈ Rd×r consists of the top r eigenvectors of the matrix

S†
wSb, where r is the reduced dimensionality.

Interestingly, the class balanced LDA can be considered as a special case of our Hyper-

graph Spectral Learning approach, which will be discussed in detail in Chapter 4.

The LDA is also extended for multi-label learning in [127] by applying the copy trans-

formation.

1.5 Contributions

In this thesis, we study multi-label dimensionality reduction. Although dimensionality reduc-

tion is well studied in the literature, limited progress has been made on multi-label dimen-

sionality reduction [12–14]. In this thesis, we focus on the following fundamental research

questions: (1) How to fully exploit the class label correlation for effective dimensionality re-

duction in multi-label learning? (2) How to scale dimensionality reduction algorithms to large-

scale multi-label problems? (3) How to derive sparse dimensionality reduction algorithms to

enhance model interpretability?

Specifically, the thesis can be roughly divided into three parts:

• The design and analysis of dimensionality reduction algorithms for multi-label learning;

• Efficient implementations of dimensionality reduction algorithms, including both exist-

ing algorithms and newly proposed ones;

• The application of proposed algorithms on the Drosophila gene expression pattern image

annotation.

In the remaining of this section, we will discuss each part in more detail.

Design and Analysis of Algorithms for Multi-Label Dimensionality Reduction

Canonical Correlation Analysis (CCA) [129] is a well-known technique for finding the corre-

lations between two sets of multi-dimensional variables. CCA can be applied as a multi-label

dimensionality reduction tool in which the two sets of variables are derived from the data and

the class labels, respectively. By maximizing the correlation between the data and the associat-
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ed label information, the data can be projected onto a lower-dimensional space directed by the

label information. In this thesis, we study CCA and reveal some of its interesting properties.

In particular, we show that the CCA projection for one set of variables is independent of the

regularization on the other set of multi-dimensional variables, providing new insights on the

effect of regularization on CCA [130, 131]. The relationship between CCA and Partial Least

Squares (PLS) is also investigated in this thesis [130].

In this thesis, we propose Hypergraph Spectral Learning (HSL) to perform dimension-

ality reduction for multi-label data by exploiting correlations among different labels using a

hypergraph [56]. A hypergraph [132–134] is a generalization of the traditional graph in which

the edges, called hyperedges, are arbitrary non-empty subsets of the vertex set. In comparison

with the traditional graph, the hyperedge can contain more than 2 vertices. As the discrete ana-

log of the Laplace-Beltrami operator on compact Riemannian manifolds [135], the Laplacian

matrix can be defined on the hypergraph [132]. Specifically, one can either define hypergraph

Laplacian directly using the analogies from traditional 2-graph or expand it into a 2-graph.

In order to model multi-label learning problems using the hypergraph, we construct a

hyperedge for each label and include all data points relevant to this label into the hyperedge to

capture the correlation among labels. Based on the Laplacian of the constructed hypergraph, we

propose the hypergraph spectral learning framework for learning a low-dimensional embedding

through a linear transformation by solving an optimization problem. Specifically, the objective

function in the optimization problem attempts to preserve the inherent relationship among data

points captured by the hypergraph Laplacian. Intuitively, data points that share many common

labels tend to be close to each other in the embedded space. HSL is a rather general dimension-

ality reduction algorithm since different definitions of the hypergraph Laplacian can be used in

HSL. For example, it can be shown that CCA is a special case of HSL by defining a specific

Laplacian matrix.

Scalable Implementations of Multi-Label Dimensionality Reduction

Both HSL and CCA can be formulated as a generalized eigenvalue problem. In addition, many

popular dimensionality reduction algorithms can also be cast as the same type of generalized

eigenvalue problem, such as Orthonormalized Partial Least Squares (OPLS) and Linear Dis-
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criminant Analysis (LDA). It is well-known that solving large-scale generalized eigenvalue

problems is much more challenging than the standard eigenvalue problems [136, 137]. In prac-

tical applications, scalability becomes a major concern when the size of data increases.

In this thesis, we propose a direct least squares formulation to efficiently solve a class

of dimensionality reduction algorithms, including HSL, CCA, OPLS and LDA as special cas-

es [138, 139]. Specifically, we show that under a mild condition4, the generalized eigenvalue

problem involved in a class of dimensionality reduction algorithms can be formulated as an

equivalent least squares problem with a specific target matrix. Based on the equivalent least

squares formulation, we extend these dimensionality reduction algorithms by incorporating dif-

ferent regularization terms into the least squares formulation. For example, sparse dimensional-

ity reduction algorithms can be obtained by incorporating ℓ1-norm penalty. After transforming

it into the least squares formulation, we can then apply the iterative conjugate gradient algorithm

to solve it efficiently.

One limitation of the direct least squares approach is that the equivalence relationship

only holds when the data points are linearly independent, which may not be the case for low-

dimensional data. Furthermore, the equivalence relationship between the least squares formula-

tion and the original generalized eigenvalue problem fails when the regularization is considered.

We further propose a scalable two-stage approach for the same class of dimensionality reduc-

tion algorithms. One appealing feature of the two-stage approach is that it can be applied in the

regularization setting without any assumption [140].

To facilitate the use of efficient implementations for the proposed dimensionality reduc-

tion algorithms, we have developed a multi-label dimensionality reduction toolbox in Matlab.

The whole package is already available online5. In this package, the following dimensionality

reduction algorithms are included:

• Canonical Correlation Analysis (CCA);

• Partial Least Squares (PLS);

4It states that {xi}n
i=1 are linearly independent before centering, i.e., rank(X) = n−1 after the data is centered

(of zero mean).
5http://www.public.asu.edu/ lsun27/Code/DMPack.html
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• Hypergraph Spectral Learning (HSL);

• Linear Discriminant Analysis (LDA).

For each dimensionality reduction algorithm, we provide four different implementations:

• The implementation which solves the generalized eigenvalue problem directly;

• The direct least squares approach;

• The two-stage approach;

• The implementation based on online algorithms.

Applications of Multi-Label Dimensionality Reduction

We have applied hypergraph spectral learning to annotate the Drosophila gene expression pat-

terns images, which are described in Section 1.2. Note that the annotated labels are anatomical

and developmental ontology terms from a controlled vocabulary, thus they can be treated as

labels and the annotation problem can be modeled as a multi-label learning problem. In the

current high-throughput database, annotation terms are assigned to groups of patterns rather

than to individual images. We propose to extract invariant features from images, and construct

pyramid match kernels to measure the similarity between sets of patterns. To exploit the com-

plementary information conveyed by different features and incorporate the correlation among

patterns sharing common structures, we propose efficient convex formulations to integrate the

kernels derived from various features. In particular, the hypergraph spectral learning is applied

to predict annotated terms. The proposed framework is evaluated by comparing its annotation

with that of human curators, and promising performance in terms of F1 score has been reported.

We will discuss more details on this application in Chapter 6.

1.6 Notations

Throughout the thesis, all matrices are boldface uppercase, and vectors are boldface lowercase.

n is the number of samples in the training data set, d is the data dimensionality, and k is the

number of classes (or labels). The ith sample in the training data set is denoted as xi ∈ Rd ,

and its corresponding label is denoted as yi ∈ Rk, where yi( j) = 1 if xi belongs to class j and
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yi( j) = 0 otherwise. The label set is denoted as L = {C1,C2, . . . ,Ck}. X = [x1,x2, · · · ,xn] ∈

Rd×n represents the data matrix, and Y = [y1,y2, · · · ,yn] ∈ Rk×n is the matrix representation

for the label information. The training data set with n multi-label examples is denoted as D =

{(x1,y1), . . . ,(xn,yn)}. Ip is the p-by-p identity matrix, and 1p ∈ Rp is the vector of all ones.

Note that the subscript p may be omitted when the size is clear from the context.

1.7 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 discusses Partial Least Squares (PLS) and its applications in classification.

• Chapter 3 provides in-depth study of Canonical Correlation Analysis (CCA). Its relation-

ship between PLS is also discussed.

• Chapter 4 introduces Hypergraph Spectral Learning (HSL) for multi-label dimension-

ality reduction. The equivalent least squares formulation for a class of dimensionality

reduction algorithms, including HSL, CCA, Orthonormalized PLS (OPLS) and Linear

Discriminant Analysis (LDA), is also discussed. An efficient algorithm based on the

equivalent least squares formulation is also presented in this chapter.

• Chapter 5 introduces an efficient two-stage approach for the same class of dimensionality

reduction algorithms as in Chapter 4.

• Chapter 6 introduces the application of multi-label dimensionality reduction algorithms

in Drosophila gene expression pattern image annotation.

• Chapter 7 summarizes the contributions, concludes the thesis and discusses some future

work.
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Chapter 2

PARTIAL LEAST SQUARES

2.1 Introduction

Partial Least Squares (PLS) originates from Herman Wold’s nonlinear iterative partial least

squares algorithm [95]. Similar to canonical correlation analysis, it is a family of methods for

modeling the relationships between two sets of variables [98, 141, 142]. One of the appealing

features of PLS is that it can analyze data with much higher dimensionality than the sample

size and with massive collinearity among the variables [143, 144]. PLS is also resistant to

overfitting, and it is fast and easy to implement. In comparison to Principal Component Analysis

(PCA), which extracts the variance of the input data, PLS extracts latent features from data by

maximizing the covariance between the two blocks of variables.

The basic assumption in PLS is that the high multi-collinearity exists among the vari-

ables, and this can be deduced by dimensionality reduction via latent variables. It is a popular

tool for regression, classification, and dimensionality reduction [97, 145, 146], especially in

the field of chemometrics. PLS can be applied to classification problems by encoding the class

membership in an appropriate indicator matrix. There is a close relationship between PLS and

linear discriminant analysis [145]. It can also be applied as a dimensionality reduction tool.

After relevant latent vectors are extracted, an appropriate classifier, such as Support Vector Ma-

chines (SVM) [62] can be applied for classification [147]. PLS can also be extended to regres-

sion problems by treating each of the predictor and response variables as a block of variables.

Furthermore, it has been shown that the PLS regression yields a shrinkage estimator [146].

PLS computes orthogonal score vectors (also called latent vectors) by maximizing the

covariance between different sets of variables. This is commonly done through an iterative

procedure or solving an eigenvalue problem. Given the latent variables, the data sets are then

transformed in a process where information contained in the latent variables is subtracted. This

process, often referred to as deflation, can be done in various ways, resulting in many variants

of PLS, such as PLS Mode A [148], PLS2 [149], Orthonormalized PLS (OPLS) [150], PLS-

SB [151], SIMPLS [152]. All these variants will be discussed in detail in Section 2.3.
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PLS has recently gained a lot of attention in the analysis of high dimensional data in

many fields [153–156], such as bioinformatics [157–161]. PLS has been extended to the kernel-

induced feature space. This leads to kernel PLS, which has been applied in many domains [147,

156,162–165]. In addition, sparse PLS has been developed [156–158,162], since sparsity often

leads to easy interpretation and a good generalization ability [79]. In this chapter, we will

focus on the basic concepts of PLS, including many popular variants of PLS. Its applications in

regression and classification will also be discussed.

The rest of this chapter is organized as follows. We introduce the basics of PLS in

Section 2.2. Several PLS variants including PLS Mode A, PLS2, PLS1, PLS-SB, SIMPLS and

Orthonormalized PLS (OPLS) are introduced in Section 2.3. The OPLS and its relationship

with other variants are also discussed in Section 2.3. The PLS regression is discussed in Sec-

tion 2.4, in which the shrinkage properties of PLS regression are studied in comparison with

Ordinary Least Squares (OLS), Principal Component Regression (PCR) and ridge regression.

The PLS classification is discussed in Section 2.5, where we study the connections between

PLS and linear discriminant analysis [166]. In Section 2.6, the relationship between PLS and

CCA is discussed.

2.2 Basic Models of Partial Least Squares

Similar to CCA, PLS models the relationship between two data sets, or two blocks of variables.

We denote the two data sets as X ∈Rd×n and Y ∈Rk×n, where n is the number of samples, and

d and k are the dimensionality of X and Y, respectively. Without loss of generality, we assume

that both X and Y are centered, i.e., X1 = 0, and Y1 = 0, where 1 is a vector of all ones, and 0 is

a vector of all zeros. In the general model of PLS, we assume that X and Y can be decomposed

into the following form:

X = PTT +E (2.1)

Y = QUT +F, (2.2)

where T = [t1, t2, . . . , tp] ∈ Rn×p and U = [u1,u2, . . . ,up] ∈ Rn×p denote the score vectors, or

latent vectors of X and Y, respectively, P = [p1,p2, . . . ,pp] ∈ Rd×p and Q = [q1,q2, . . . ,qp] ∈

Rk×p are called loadings for X and Y, respectively, E∈Rd×n and F∈Rk×n are called residuals.

The assumption in PLS is that the latent variables T and U capture the underlying information
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Algorithm 1 The NIPALS Algorithm
Input: X, Y
Output: t, u, p, q
Initialize u
repeat

w = Xu
w = w

∥w∥2

t = XT w
c = Yt
c = c

∥c∥2

u = YT c
until convergence
p = Xt

tT t , q = Yu
uT u

of the original blocks X and Y. The difference between PLS and PCA is that the latent scores

T and U are extracted by considering the two blocks X and Y simultaneously in PLS whereas

only one block is considered in PCA.

In the past several decades, various PLS variants have been proposed [96, 97]. In the

following, we discuss the classical formulation, known as the Nonlinear Iterative Partial Least

Squares (NIPALS) [148].

The NIPALS algorithm

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [148] is the classical PLS

formulation, and it is considered as the basis of other PLS variants. The NIPALS algorithm is

described in Algorithm 1. Note that in this framework, only one pair of (t,p) and (u,q) are

computed. In order to compute a sequence of the pairs, the deflation scheme can be applied

to update X and Y so that different pairs can be obtained by applying the NIPALS algorithm

repeatedly.

The key of the NIPALS algorithm is that w and c are updated by making use of both

blocks X and Y. In fact, NIPALS tries to maximize the covariance between t and u as

max
t,u

cov(t,u) = max
w,c

cov(XT w,YT c) = max
w,c

wT XYT c.

Thus, in the NIPALS algorithm, we update c by setting it as c = YXT w and update w as w =

XYT c. Based on w and c, the score vectors t and u can be updated accordingly.
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One important consequence of the NIPALS algorithm is that the solution of the NIPALS

algorithm can be computed directly by solving some eigenvalue problems. It follows from the

procedure of NIPALS in Algorithm 1 that

w ∝ Xu ∝ XYT c ∝ XYT Yt ∝ XYT YXT w.

Thus, w corresponds to the eigenvector of the following eigenvalue problem:

XYT YXT w = λw. (2.3)

Note that t = XT w, which implies that t corresponds to the eigenvector of the following eigen-

value problem:

XT XYT Yt = λ t. (2.4)

Similarly, we can show that c corresponds to the eigenvector of the following eigenvalue prob-

lem:

YXT XYT c = λc, (2.5)

and u corresponds to the eigenvector of the following eigenvalue problem:

YT YXT Xu = λu. (2.6)

2.3 Partial Least Squares Variants

PLS is an iterative process. After the first pair of score vectors (t,u) is obtained, the next step

is to compute the next pair of score vectors. Various deflation schemes have been proposed to

compute the score vector pairs sequentially [96–98]. Different deflation schemes define differ-

ent variants of PLS, including PLS Mode A, PLS2, PLS-SB, SIMPLS, and orthonormalized

PLS, which are briefly reviewed below.

PLS Mode A

The key of PLS Mode A is to deflate X and Y by subtracting the rank-one approximation using

the corresponding score and loading vectors. Specifically, the loading vectors p and q, which

form the columns of P and Q, respectively, are computed as the coefficients of regressing X on

t and Y on u, respectively:

p = Xt/(tT t),

q = Yu/(uT u).
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Algorithm 2 PLS Mode A
Input: X, Y, p.
Output: T, U, P, Q.
Initialize T, U, P, and Q:

T = [],U = [],P = [],Q = []

for i = 1 to p do
Compute the first pair of singular vectors of XYT corresponding to the largest singular
value: (w,c).
Compute the score vectors as:

t = XT w,u = YT c.

Regress X on t and Y on u:

p =
Xt
tT t

,q =
Yu
uT u

.

Subtract the rank-one approximation to deflate X and Y:

X← X−ptT ,Y← Y−quT .

Update T, U, P, and Q as:

T← [T, t],U← [U,u],P← [P,p],Q← [Q,q].

if X == 0 or Y == 0 then
break;

end if
end for

At each iteration of PLS Mode A, we update X and Y as follows:

X ← X−ptT ,

Y ← Y−quT .

The full procedure of PLS Mode A is described in Algorithm 2, where p is the number of

extracted pairs of score vectors.

An important property of PLS Mode A is that the extracted score vectors {ti}p
i=1 and

{ui}p
i=1 are mutually orthogonal, which is summarized in the following theorem:

Theorem 2.1 For i ̸= j, the score vectors obtained at the ith and the jth steps of PLS Mode A

are mutually orthogonal, that is,

tTi t j = 0, uT
i u j = 0.

37



Proof We use the superscript i to denote the variables at the ith iteration. For example, the data

matrices X and Y at the ith iteration are denoted as X(i) and Y(i), respectively. It follows from

Algorithm 2 that

X(i+1) = X(i)−p(i)t(i)
T

= X(i)−X(i) t(i)t(i)T

t(i)T t(i)

= X(i)−X(i) t(i)w(i)T X(i)

t(i)T t(i)

=

(
I−X(i) t(i)w(i)T

t(i)T t(i)

)
X(i)

= B(i)X(i),

where B(i) = I−X(i) t(i)w(i)T

t(i)T t(i)
. Without loss of generality, we assume that i < j. Thus, we have

X( j) = B( j−1)X( j−1)

= B( j−1)B( j−2)X( j−2)

= · · ·

= B( j−1) · · ·B(i+1)X(i+1)

= ZX(i+1),

where Z = B( j−1) · · ·B(i+1). Then the inner product between t(i) and t( j) for i ̸= j can be com-

puted as follows:

t(i)
T

t( j) = t(i)
T

X( j)T
w( j)

= t(i)
T

X(i+1)T
ZT w( j)

= t(i)
T (

X(i)−p(i)t(i)
T)T

ZT w( j)

= t(i)
T
(

X(i)−X(i) t(i)t(i)T

t(i)T t(i)

)T

ZT w( j)

= t(i)
T
(

I− t(i)t(i)T

t(i)T t(i)

)
X(i)T

ZT w( j)

=

(
t(i)

T − t(i)
T t(i)t(i)T

t(i)T t(i)

)
X(i)T

ZT w( j)

= 0.

Similarly, we can show that u(i)T u( j) = 0 for i ̸= j.
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PLS2

PLS2 is one of the most popular PLS formulations for regression [149], especially in chemo-

metrics [96]. Unlike the PLS Mode A, the relationship between X and Y in PLS2 is asymmetric,

and the extracted latent vectors of X are assumed to be good predictors of Y. In particular, a

linear relationship between the score vectors T and U is assumed as

U = TD+H, (2.7)

where D is a p× p diagonal matrix and H denotes the matrix of residuals. As a result, we

can deflate Y using t directly instead of using u. Specifically, at each iteration, the following

deflation scheme is applied on X and Y:

X ← X−ptT ,

Y ← Y− Yt
tT t

tT .

Similar to PLS Mode A, this deflation scheme guarantees the mutual orthogonality of the ex-

tracted score vectors {ti}k
i=1.

PLS1

PLS1 [167–169] is a special case of PLS2 in which one of the blocks contains only a single

variable. Without loss of generality, we assume that Y ∈ R1×n, i.e., k = 1. In fact, PLS1 can

be considered as a regularization technique similar to ridge regression and principal component

regression [96], which will be discussed in detail in Section 2.4. In particular, the deflation of Y

is not necessary, since Y contains only one column [149]. In PLS1, the mutual orthogonality of

{ti}p
i=1 is preserved, and PLS1 essentially finds a direction in the space of regression coefficients

that are orthogonal to all previous coefficients.

PLS-SB

PLS-SB was introduced in behavioral teratology by Sampson et al. [151] (S denotes Sampson

and B denotes Bookstein who proposed this PLS variant). The overall procedure of PLS-SB

is similar to that of PLS Mode A. The major difference between PLS-SB and PLS Mode A is

that in PLS-SB, X and Y are not updated at each iteration. Instead, we update the covariance

matrix XYT at each iteration. Unlike PLS Mode A, all singular vectors of the covariance matrix
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XYT are computed at once in PLS-SB, whereas only the singular vectors corresponding to

the largest singular value are computed at each iteration in PLS Mode A. In contrast to PLS2

and PLS Mode A, the extracted score vectors {ti}p
i=1 are in general not mutually orthogonal,

since ti = Xwi, where {wi}p
i=1 are left singular vectors of XYT , and are mutually orthogonal.

Similarly, the orthogonality property does not hold for the score vectors {u}p
i=1 for the other

block Y.

SIMPLS

SIMPLS [152] was proposed to avoid the deflation steps at each iteration of PLS2 by directly

computing the weight vectors {wi}p
i=1 such that t = XT w. Since no deflation is performed, w is

applied to the original matrix X before deflation directly. At each iteration of SIMPLS, the SVD

of the sample covariance XYT is computed under some constraint that the mutual orthogonality

of score vectors {ti}p
i=1 is preserved. It has been shown that SIMPLS is equivalent to PLS1 but

differs from PLS2 when applied to the multi-dimensional matrix Y [152].

Orthonormalized PLS

Recall that the objective function in the NIPALS algorithm can be expressed as

cov
(
XT w,YT c

)2
= var

(
XT w

)
corr

(
XT w,YT c

)2
var
(
YT c

)
. (2.8)

This can be considered as a penalized version of CCA in which only the correlation term is

maximized. If the penalty term var
(
XT w

)
is removed, we obtain the following optimization

problem for orthonormalized PLS [150]:

(w∗,c∗) = argmax
∥w∥=∥c∥=1

var
(
YT c

)
corr

(
XT w,YT c

)2

= argmax
∥w∥=∥c∥=1

cov
(
XT w,YT c

)2

var
(
XT w

) . (2.9)

Since the objective function is invariant to the scaling of w and c, OPLS can be formulated

equivalently as the following optimization problem:

max
w,c

wT XYT c

s. t. wT XXT w = 1 (2.10)

cT c = 1.

40



Based on this constrained optimization problem, we can construct the Lagrangian function

L(w,λx,λy) = wT XYT c− λx

2
(
wT XXT w−1

)
−

λy

2
(
cT c−1

)
,

where λx and λy are Lagrange multipliers. Taking the derivatives of L with respect to λx and λy,

and setting them to zero, we obtain the following equations:

XYT c−λxXXT w = 0 (2.11)

YXT w−λyc = 0. (2.12)

Hence, we have

λx = λx
(
wT XXT w

)
= wT (λxXXT w

)
= wT XYT c

= cT YXT w

= cT (λyc)

= λy,

where we have made use of Eqs. (2.11) and (2.12). In the following discussion, we use λ to

denote both λx and λy as they are identical.

In the supervised learning, X typically corresponds to the data while Y corresponds

to the label. As a result, the weight vectors for X is of more interest. Next we derive an

optimization problem involving only the weight vector w. It follows from Eq. (2.12) that

c =
1
λ

YXT w. (2.13)

Substituting this into Eq. (2.11), we obtain the following generalized eigenvalue problem:

XYT YXT w = λ 2XXT w. (2.14)

We can substitute Eq. (2.13) into the original problem in Eq. (2.10), resulting in the following

optimization problem:

max
w

wT XYT YXT w (2.15)

s. t. wT XXT w = 1.
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Multiple weight vectors {wi}p
i=1 for X in OPLS can be computed simultaneously by solving the

following optimization problem [13]:

max
W

Tr
(
WT XYT YXT W

)
s. t. WT XXT W = Ip, (2.16)

where W = [w1, . . . ,wp] ∈ Rd×p is the weight matrix and Ip ∈ Rp×p is the identity matrix.

OPLS can be used for multi-regression problems when X contains the input data and

Y contains the response variables. Similar to other PLS variants discussed above, OPLS can

also be used for dimensionality reduction in supervised classification problems when Y en-

codes the class membership information. It has been shown to be competitive with other PLS

variants [13].

Relationship between OPLS and Other PLS Models

OPLS is closely related to several other PLS variants discussed in Section 2.3. It has been

shown that PLS2 maximizes the same objective function as SIMPLS, but with different (and

less intuitive) constraints [170]. Denote

W(i−1) = [w1, . . . ,wi−1]. (2.17)

Then the ith weight vector wi in PLS2 and SIMPLS can be computed by solving the following

optimization problem:

max
w

wT XYT YXT w (2.18)

s. t. wT XXT w j = 0, for j = 1, . . . , i−1,

wT Lw = 1,

for some matrix L. The difference between PLS2 and SIMPLS lies in the use of different matrix

L. In particular,

L = Id−W(i−1)
(

W(i−1)
)†

and L = Id,

are used in PLS2 and SIMPLS, respectively, where (W(i))† denotes the pseudoinverse of W(i).

By setting L = XXT , we obtain a PLS formulation identical to the one in Eq. (2.16) for OPLS.

We show in the following theorem that by setting L=XXT , a PLS formulation identical

to the one in Eq. (2.16) can be obtained.
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Theorem 2.2 Let W(i−1), X, and Y be defined as above, and let wi solves the optimization

problem in Eq. (2.18) with L = XXT . Then W(p) = [w1, . . . ,wp] solves the optimization problem

in Eq. (2.16).

Proof Define the Lagrangian function for the optimization problem in Eq. (2.18) as:

L(w,λ ,γ) = wT XYT YXT w−
i−1

∑
j=1

λ jwT XXT w j

−γ(wT Lw−1). (2.19)

Taking the derivative of L with respect to w and setting it to zero, we obtain

2XYT YXT w−XXT W(i−1)Λ−2γLw = 0, (2.20)

where Λ = [λ1, . . . ,λi]
T . Multiplying Eq. (2.20) by W(i−1)T

on the left side, we have

Λ = 2(W(i−1)T
XXT W(i−1))−1

(
W(i−1)T

XYT YXT − γW(i−1)T
L
)

w. (2.21)

It follows that

(
I−XXT W(i−1)(W(i−1)T

XXT W(i−1))−1W(i−1)T)
XYT YXw

= γ(I−XXT W(i−1)(W(i−1)T
XXT W(i−1))−1W(i−1)T

)Lw. (2.22)

This completes the proof of the theorem.

It follows from the above discussion that OPLS optimizes the same objective function

as PLS2 and SIMPLS, and the orthogonality property, i.e.,

wT
i XXT w j = 0, for i ̸= j,

is enforced in all of the three PLS formulations. The difference lies in how the length, denoted

as

∥w∥L =
√

wT Lw,

of each weight vector is measured based on the different choices of L.
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2.4 Partial Least Squares Regression

PLS has been used as a popular tool for regression in many fields, especially in chemomet-

rics [171]. In this section, we discuss the variant PLS1 in the regression setting, where the

response Y ∈ R1×n consists of a single variable and the deflation is not performed on Y. Sim-

ilar to Principal Component Regression (PCR) and ridge regression, PLS regression yields a

shrinkage estimator. PLS regression extracts components from the data X that have a high co-

variance with the response Y. Unlike the linear estimators produced by Ordinary Least Squares

(OLS), PCR, and ridge regression, the estimator computed by PLS regression depends on the

response Y nonlinearly. As a result, it is not straightforward to obtain the shrinkage factors for

PLS. In this section, we give a detailed overview of the shrinkage properties of PLS regres-

sion. In particular, we show how to derive the shrinkage factors for PLS regression. The effects

of shrinkage factors for the mean squared error of estimators produced by different regression

models are also discussed.

Basics of PLS Regression

In PLS regression, the latent variables of X are assumed to be predictive of Y. In addition,

we assume that there is a linear relationship between the latent scores t and u. This linear

relationship leads to a deflation scheme for both X and Y. Specifically, we assume that

U = TD+H. (2.23)

Substituting Eq. (2.23) into Eq. (2.2), we obtain that

Y = QDT TT +
(
QHT +F

)
. (2.24)

As a result, we can assume a linear relationship between Y and T, and QHT +F can be consid-

ered as the residual. In the following discussion, we primarily focus on the PLS1 regression. As

we discuss in Section 2.3, PLS1 [167–169] is a special case of PLS2 when Y ∈R1×n contains a

single variable. Thus, we do not perform deflation for Y; otherwise the algorithm will terminate

in one step. We give the detailed procedure of PLS1 for regression in Algorithm 3. Note that in

Algorithm 3, p is the number of components extracted by PLS1. At the ith iteration, we denote

the weight vectors and latent vectors as

T(i) =
[
t(1), . . . , t(i)

]
, W(i) =

[
w(1), . . . ,w(i)

]
. (2.25)
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Algorithm 3 The PLS1 Algorithm for Regression
Input: X, Y, p
Output: β
T = []
for i = 0 to p do

w = XYT

t = XT w
X = X− XttT

tT t
T = [T, t]

end for

The weight vectors W(i) will be used extensively in the discussion of the shrinkage properties

of PLS regression. Let the compact SVD of X be

X = U1ΣVT
1 , (2.26)

where U1 = [u1, . . . ,ur]∈Rd×r, V1 = [v1, . . . ,vr]∈Rn×r are matrices with orthonormal column-

s, Σ = diag(σ1, . . . ,σr)(σ1 > σ2 > .. . > σr > 0), and r = rank(X). Given U1 = [u1, . . . ,ur] ∈

Rd×r, there exists a matrix U⊥1 ∈ Rd×(d−r) with orthonormal columns such that [U1,U⊥1 ] is an

orthogonal matrix [172], i.e., U1UT
1 +U⊥1 U⊥1

T
= Id and U⊥1

T U⊥1 = Id−r. We denote U⊥1 as

U⊥1 = [ur+1, . . . ,ud ] in the following discussion.

Shrinkage in Regression

The shrinkage regression methods are particularly effective when there is multicollinearity a-

mong the regressors. We assume that θ ∈Rd is the parameter to be estimated and our estimator

is θ̂ . We can compute the expectation error θ̂ − θ at each point and average over all feasible

points, leading to the mean squared error (MSE) for the estimation θ̂ :

MSE(θ̂) = E
[
Tr
(
(θ̂ −θ)(θ̂ −θ)T )]

= E
[
(θ̂ −θ)T (θ̂ −θ)

]
= E

[
θ̂ T θ̂ −E[θ̂ ]TE[θ̂ ]+E[θ̂ ]TE[θ̂ ]−2θ̂ T θ +θ T θ

]
= E

[(
θ̂ −E[θ̂ ]

)T (θ̂ −E[θ̂ ]
)]

+(E[θ̂ ]−θ)T (E[θ̂ ]−θ)

= var(θ̂)+bias2(θ̂), (2.27)

where

var(θ̂) = E
[(

θ̂ −E[θ̂ ]
)T (θ̂ −E[θ̂ ]

)]
,

bias2(θ̂) = (E[θ̂ ]−θ)T (E[θ̂ ]−θ).
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This decomposition of MSE is called the bias-variance decomposition [79], in which the MSE

is decomposed into two components: variance and squared bias. Following this decomposition,

an estimator θ̂ is called unbiased if bias(θ̂) = 0 and biased otherwise.

It is well-known that Ordinary Least Squares (OLS) produces the minimum variance

among all linear unbiased estimators in regression. It follows from the bias-variance decom-

position that there may exist some biased estimators with small variance, which results in a

smaller MSE compared to OLS. In other words, we hope to decrease var(θ̂) even when bias(θ̂)

is increased. The biased estimators are very popular in statistics and machine learning [79,173].

In linear regression, we are given the regressors X ∈Rd×n and response Y ∈R1×n. We

assume there is a linear relationship between X and Y:

Y = β T X+ ε , (2.28)

where ε ∈R1×n is the error term with E[ε] = 0 and cov(ε) = σ 2In. As a result, we can compute

the expectation and covariance of Y as

E[Y] = E[β T X+ ε ] = β T X,

cov(Y) = E
[
(Y−E[Y])T (Y−E[Y])

]
= σ 2In.

We investigate the linear estimator θ̂ = SYT . Note that throughout the discussion,

we assume that X is fixed and the focus is Y. Assume that S is independent on Y, then the

expectation and the covariance of θ̂ can be computed as follows:

E[θ̂ ] = E[SYT ]

= SE[YT ]

= SXT β . (2.29)

var(θ̂) = E
[
(θ̂ −E[θ̂ ])T (θ̂ −E[θ̂ ])

]
= E

[
(SYT −SXT β )T (SYT −SXT β )

]
= E

[
(SεT )T (Sε)

]
= σ 2 Tr(SST ). (2.30)
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In OLS, the estimator β̂ OLS is given as follows:

β̂ OLS =
(
XXT )† XYT = U1Σ−1VT

1 YT =
r

∑
i=1

1
σi

ui(vT
i YT ) =

r

∑
i=1

bi, (2.31)

where bi =
1
σi

ui(vT
i YT ) ∈Rd . Defining SOLS =

(
XXT )† X and using Eqs. (2.29) and (2.30), we

obtain that

E[β̂ OLS] = SOLSXT β =
(
XXT )† XXT β = U1UT

1 β , (2.32)

var(β̂ OLS) = σ2 Tr(SOLSST
OLS)

= σ2 Tr
((

XXT )† X
((

XXT )† X
)T
)

= σ2 Tr(U1Σ−2UT
1 )

= σ2
r

∑
i=1

1
σ2

i
. (2.33)

Note that when β ∈R(X) =R(U1), E[β̂ OLS] = U1UT
1 β = β , which implies that OLS produces

an unbiased estimator β̂ OLS.

One consequence of Eq. (2.33) is that small singular values of X may lead to high vari-

ance of the estimator β̂ OLS. In order to investigate the MSE of the general shrinkage estimator,

we consider the shrinkage estimator β̂ s in the following form:

β̂ s =
r

∑
i=1

f (σi)bi, (2.34)

where b = 1
σi

ui(vT
i YT ) ∈ Rd and f (σi)(i = 1, . . . ,r) are called shrinkage factors, which can be

represented in the following matrix form:

β̂ s = U1Σ−1GVT
1 YT , (2.35)

where G = diag( f (σ1), . . . , f (σr)) ∈ Rr×r. Thus, we define Ss as follows:

Ss = U1Σ−1GVT
1 = U1GΣ−1VT

1 . (2.36)

Based on the above discussion, we can estimate the MSEs of estimators β̂ s and Ŷs,

which is summarized in the following theorem [146]:
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Theorem 2.3 Given the shrinkage estimator β̂ s defined in Eq. (2.34), the MSEs of β̂ s and Ŷs

are given as:

MSE(β̂ s) = σ 2
r

∑
i=1

f (σi)
2

σ2
i

+
r

∑
i=1

( f (σi)−1)2(uT
i β )2 +

d

∑
i=r+1

(uT
i β )2 (2.37)

MSE(Ŷs) = σ 2
r

∑
i=1

f (σi)
2 +

r

∑
i=1

σ 2
i ( f (σi)−1)2(uT

i β )2 +
d

∑
i=r+1

(uT
i β )2. (2.38)

Proof Based on the matrix representation of Ss in Eq. (2.36), we can simplify Tr(SsST
s ) as

Tr(SsST
s ) = Tr(U1Σ−1GVT

1 V1GΣ−1UT
1 )

= Tr(U1Σ−2G2UT
1 )

= Tr(Σ−2G2)

=
r

∑
i=1

f (σi)
2

σ 2
i

.

Following Eq. (2.30), the variance of β̂ s is

var(β̂ s) = σ2 Tr(SsST
s )

= σ2
r

∑
i=1

f (σi)
2

σ 2
i

.

Next we analyze the squared bias of the estimator β̂ s:

bias2(β̂ s) = (E[β̂ s]−β )T (E[β̂ s]−β )

= (SsXT β −β )T (SsXT β −β )

= (U1GUT
1 β −β )T (U1GUT

1 β −β )

= (U1GUT
1 β − [U1,U⊥1 ][U1,U⊥1 ]

T β )T (U1GUT
1 β − [U1,U⊥1 ][U1,U⊥1 ]

T β )

= β T U1(G− I)2UT
1 β +β T U⊥1 U⊥1

T β

=
r

∑
i=1

( f (σi)−1)2(uT
i β )2 +

d

∑
i=r+1

(uT
i β )2.

To summarize, the MSE of β̂ s is

MSE(β̂ s) = σ 2
r

∑
i=1

f (σi)
2

σ2
i

+
r

∑
i=1

( f (σi)−1)2(uT
i β )2 +

d

∑
i=r+1

(uT
i β )2.
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Similarly, we can compute the variance and squared bias for the estimator Ŷs = β̂
T
s X

as

var(Ŷs) = σ 2 Tr(SsST
s ) = σ 2

r

∑
i=1

f (σi)
2

σ 2
i

bias2(Ŷs) =
r

∑
i=1

σ2
i ( f (σi)−1)2(uT

i β )2 +
d

∑
i=r+1

(uT
i β )2.

Thus, the MSE of Ŷs is:

MSE(Ŷs) = var(Ŷs)+bias2(Ŷs)

= σ 2
r

∑
i=1

f (σi)
2 +

r

∑
i=1

σ2
i ( f (σi)−1)2(uT

i β )2 +
d

∑
i=r+1

(uT
i β )2.

This completes the proof of this theorem.

Theorem 2.3 shows that when f (σi) = 1 for all i, then the bias is minimized. Note that

| f (σi) < 1| decreases the variance while | f (σi) > 1| increases the variance. As a result, we

typically set | f (σi)< 1| to decrease the MSE of the estimator.

Principal Component Regression

Both Principal Component Regression (PCR) and PLS regression involve selecting a subspace

onto which the response vector Y is projected. The major difference is that the subspace in

PLS regression is determined by both X and Y, while in PCR the first p components are used

to approximate the data X. Recall that in PLS1 regression in Algorithm 3, we select w that

achieves the maximum covariance between X and Y at each step. In PCR, the approximation

of X is given below if only the first p (p≤ r = rank(X)) principal components are used:

X̃ = U1(:,1 : p)Σ(1 : p,1 : p)V1(:,1 : p)T =
p

∑
i=1

σiuivT
i , (2.39)

where U1(:,1 : p) and V1(:,1 : p) contain the first p columns of U1 and V1, respectively, Σ(1 :

p,1 : p) contains the first p rows and first p columns of Σ, i.e., Σ(1 : p,1 : p) = diag(σ1, . . . ,σp).
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Based on the approximate formulation X̃, we perform ordinary least squares by regress-

ing Y on X̃, leading to the following estimator β̂ PCR:

β̂ PCR =
(

X̃X̃T
)†

X̃YT

= U1(:,1 : p)Σ(1 : p,1 : p)−1V1(:,1 : p)T YT

=
p

∑
i=1

1
σi

uivT
i YT

=
p

∑
i=1

bi. (2.40)

It follows from Eq. (2.40) that the estimator β̂ PCR can be expressed equivalently in the following

form:

β̂ PCR =
r

∑
i=1

f (σi)bi, (2.41)

where the shrinkage factors f (σi) (i = 1, . . . ,r) in PCR are defined as

f (σi) =


1, if i≤ p

0, otherwise,
(2.42)

where p ≤ rank(X) is the number of selected principal components. Compared with OLS, the

bi associated with small singular values are removed in PCR. Thus, the variance of the estimator

β̂ PCR is reduced at the cost of increased bias.

Ridge Regression

In ridge regression, the regression coefficients are shrunk by imposing a penalty on the ℓ2-

norm of the regression coefficients. Specifically, ridge regression minimizes the following loss

function:

β̂ RR = argmin
β
∥β T X−Y∥2

2 +λ∥β∥2
2, (2.43)

where λ > 0 is called the regularization parameter, or complexity parameter, which controls

the shrinkage of β̂ RR. It is clear that λ = 0 corresponds to the OLS. It has been shown that the

optimization problem in Eq. (2.43) is equivalent to the following problem [79, 173]:

minβ ∥β T X−Y∥

s. t. ∥β∥ ≤ t, (2.44)
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for some parameter t which depends on λ . It has also been shown that there is a one-to-one

correspondence between the complexity parameter λ in Eq. (2.43) and t in the problem in

Eq. (2.44) [173].

Note that the loss function in ridge regression can be expressed as

L(β ) = ∥β T X−Y∥2
2 +λ∥β∥2

2

= β T XXT β −2β T XYT +YYT +λβ T β .

Taking the derivative with respect to β and setting it to zero, we have(
XXT +λ I

)
β = XYT . (2.45)

Then the solution of ridge regression can be represented as

β̂ RR = (XXT +λ I)−1XYT

= U1(Σ2 +λ I)−1ΣVT
1 YT

=
r

∑
i=1

σ 2
i

σ 2
i +λ

ui(vT
i YT )

=
r

∑
i=1

f (σi)bi,

where the shrinkage factors f (σi) (i = 1, . . . ,r) are defined as

f (σi) =
σ2

i

σ2
i +λ

. (2.46)

Shrinkage Properties of PLS Regression

The shrinkage properties of PLS regression have been studied extensively in the literature [146,

167, 171, 174, 175]. In particular, the connection between PLS, the Lanczos algorithm and the

conjugate gradient algorithm [146, 165, 171] provides some insights into the shrinkage proper-

ties of PLS regression. In fact, PLS is identical to a common implementation of the conjugate

gradient algorithm for solving the normal equation [146]. In this subsection, we analyze the

shrinkage properties of PLS regression by making use of the connections between PLS and the

Lanczos algorithm.

In the following, the PLS estimator after the ith step is denoted as β̂
(i)
PLS. Similar to OLS

and ridge regression, in PLS we also assume that

β̂
(i)
PLS = S(i)

PLSYT .
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However, S(i)
PLS depends on Y in a complicated, nonlinear way. As a result, Theorem 2.3 does

not hold since its assumption is violated. It turns out that PLS regression also yields a shrinkage

estimator. Unfortunately, the shrinkage behavior of PLS regression is very complicated due to

the nonlinear relationship between SPLS and Y.

Next we consider the PLS regression estimator β̂
(i)
PLS from the perspective of the Lanc-

zos algorithm and the conjugate gradient algorithm. Consider the matrix K(i) that consists of

the Krylov sequence of A = XXT ∈ Rd×d and b = XYT ∈ Rd :

K(i)△=
[
A0b,A1b, . . . ,Ai−1b

]
∈ Rd×i. (2.47)

We denote the space spanned by the columns of K(i) by K (i). Define i∗ as

i∗ =
∣∣{σi|σi > 0,vT

i YT ̸= 0}
∣∣ . (2.48)

Following the definition of i∗, it is clear that i∗ ≤ r = rank(X). This inequality is strict if there

exists at least one singular vector vi such that vT
i YT = 0 or there is some singular value σi whose

multiplicity is greater than 1. The quantity i∗ is called the grade of b with respect to A [146].

Using the definition of the Krylov sequence, it is easy to verify the following results:

Lemma 2.1 Let K (i) and i∗ be defined as above, then we have

dimK (i) =


i, if i≤ i∗

i∗, if i > i∗.
(2.49)

Using the Krylov sequence K(i), it can be shown that the estimator β (i)
PLS after the ith

step of PLS can be expressed in the following form [169]:

Theorem 2.4 The PLS estimator after the ith step can be expressed in the following form:

β (i)
PLS = K(i)

[(
K(i)
)T

AK(i)
]†(

K(i)
)T

XYT . (2.50)

The proof of this theorem is rather involved, and thus it is skipped. The full proof can be found

in [169]. Note that any matrix M can be used in place of K(i) as long as M forms a basis for the

Krylov space K (i) [171]. Due to the equivalence between the space spanned by the columns
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of W(i) and the Krylov space K (i) [169,171], W(i) can be considered as an orthogonal basis of

K (i). In fact, W(i) is widely used in the discussion of the shrinkage properties of PLS regression

as W(i)T
AW(i) possesses a lot of appealing properties [146]. An equivalent formulation for

β̂
(i)
PLS is given in the following theorem:

Theorem 2.5 The PLS estimator β̂
(i)
PLS after the ith step can be obtained by solving the follow-

ing problem:

max
β

∥Y−β T X∥2 (2.51)

s. t. β ∈K (i).

A consequence of this theorem is that β̂
(i)
PLS = β̂ OLS if i ≥ i∗. Thus, in the following we focus

on the shrinkage property of PLS regression when i < i∗.

Define D(i) as

D(i)△=W(i)T
AW(i) ∈ Ri×i. (2.52)

It is clear that D(i) is symmetric and positive semidefinite. It can be further shown that D(i) is

a tridiagonal matrix [146]. Many appealing properties of D(i) are summarized in [146]. For

example, [146] shows that all eigenvalues of D(i) are distinct under a mild assumption. In

particular, we are interested in the eigenvalues of D(i). We denote the eigenvalues of D(i) by

µ(i)
1 ≥ µ(i)

2 ≥ . . .µ(i)
i ≥ 0. (2.53)

It turns out that more interesting properties hold for the eigenvalues of D(i) when i < i∗. In the

following, we discuss one important property regarding the eigenvalues of D(i) [146]:

Lemma 2.2 If i < i∗, then all eigenvalues of D(i) are positive and distinct. Thus, we have

µ(i)
1 > µ(i)

2 > .. .µ(i)
i > 0. (2.54)

The proof of this lemma can be found in [146].

Define the polynomial f (i)(λ ) of degree i as follows:

f (i)(λ )△=1−
i

∏
j=1

(
1− λ

µ i
j

)
= 1− g(i)(λ )

g(i)(0)
, (2.55)
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where the auxiliary function g(i) is defined as

g(i)(λ )△=
i

∑
j=1

(
µ(i)

j −λ
)
.

In fact, g(i) is the characteristic polynomial of the matrix D(i). It is clear that f (i)(0) = 0, which

implies that the polynomial f (i) can be represented as

f (i)(λ ) = λπ(i)(λ ),

where π(i) is a polynomial of degree i−1. Also note that for j = 1, . . . , i, we have

f (i)(µ(i)
j ) = 1,

which implies the following result:

µ(i)
j π (µ(i)

j ) = 1⇔ π(i)(µ(i)
j ) =

1

µ(i)
j

. (2.56)

It turns out that the shrinkage factors of PLS can be represented using the polynomial

π(i). The results are summarized the following theorem [146, 171]:

Theorem 2.6 The PLS estimator after the ith step for i < i∗ can be represented in the following

form:

β̂
(i)
PLS = π(i)(A)XYT . (2.57)

Proof Let the SVD of D(i) ∈ Ri×i be D(i) = UdiΣdiUT
di, where Udi ∈ Ri×i is an orthogonal

matrix and Σdi ∈ Ri×i is a diagonal matrix. Following the function defined for the matrix, we

have

D(i)−1
= Udi diag(µ(i)

1 , . . . ,µ(i)
i )−1UT

di

= Udi diag(µ(i)
1
−1
, . . . ,µ(i)

i
−1
)UT

di

= Udi diag(π(i)(µ(i)
1 ), . . . ,π(i)(µ(i)

i ))UT
di

= π(i)(D(i)), (2.58)

where in the third step we use the equation in Eq. (2.56).
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Recall that W(i) forms an orthonormal basis of K (i). Then we can set K(i) = W(i).

Substituting Eq. (2.58) into Eq. (2.50), we obtain

β (i)
PLS = K(i)

[(
K(i)

)T
AK(i)

]−1(
K(i)

)T
b

= W(i)
[(

W(i)
)T

AW(i)
]−1(

W(i)
)T

b

= W(i)D(i)−1(
W(i)

)T
b

= W(i)π(i)(D(i))
(

W(i)
)T

b. (2.59)

Note that W(i)W(i)T
is an orthogonal projection onto the space K (i), the space spanned by

{A0b,Ab, . . . ,Ai−1b}, thus we have

W(i)W(i)T
A jb = A jb, j = 0,1, . . . , i−1. (2.60)

Recall that π(i)(λ ) is a polynomial of degree i−1. We denote the polynomial π(i)(λ )

as

π(i)(λ ) = α0 +α1λ + . . .+αi−1λ i−1 = ∑
i

αiλ i.

By applying Eq. (2.60) for j times, we can obtain the following result for j < i:

W(i)
(

α jD(i) j)(
W(i)

)T
b

= α jW(i)
((

W(i)
)T

AW(i)
) j(

W(i)
)T

b

= α jA jb.

Thus Eq. (2.59) can be simplified as follows:

β (i)
PLS = W(i)π(i)(D(i))

(
W(i)

)T
b

= π(i)(A)b = π(i)(A)XYT . (2.61)

This completes the proof of this theorem.

Corollary 2.1 If dim(K(i)) = i, then

β̂
(i)
PLS =

r

∑
j=1

f (i)(σ2
j )b j, (2.62)

where f (i) is defined in Eq. (2.55).
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Proof It follows from the SVD of X in Eq. (2.26) and Theorem 2.6 that

β̂
(i)
PLS = π(i)(A)b

= π(i)(XXT )XYT

= π(i)(U1Σ2UT
1 )XYT

= U1π(i)(Σ2)UT
1 XYT

= U1 diag(π(i)(σ2
1 ), . . . ,π(i)(σ 2

r ))U
T
1 U1ΣVT

1 YT

= U1 diag(π(i)(σ2
1 ), . . . ,π(i)(σ 2

r ))ΣVT
1 YT

=
r

∑
j=1

π(i)(σ2
j )σ ju j(vT

j YT )

=
r

∑
j=1

π(i)(σ2
j )σ 2

j b j

=
r

∑
j=1

f (i)(σ2
j )b j,

where the last equality follows from f (i)(λ ) = π(i)(λ )λ for any λ ∈ R.

The shrinkage factors for PLS can be defined based on Corollary 2.1. By comparing the

PLS regression estimator β̂ PLS with the estimators obtained by OLS, PCR, and ridge regression,

we can observe that the main difference lies in the definitions for the shrinkage factors. Note that

all shrinkage factors in OLS, PCR, and ridge regression are not greater than 1. However, this is

not true for PLS regression, and some counterexamples are given in [146, 176]. Furthermore,

unlike OLS, PCR, and ridge regression, the shrinkage factors in PLS regression also depends

on the response Y nonlinearly. When Ss is independent of Y, Theorem 2.3 implies that it is

desirable to impose the constraint that | f (i)(σi)| < 1 to decrease the overall MSE. However,

it is not clear how to control the shrinkage factors in PLS regression, since Ss depends on

Y. [167] and [146] proposes to upper bound the absolute value of shrinkage factors by 1 in PLS

regression. As reported in [146], bounding the absolute value of the PLS shrinkage factors by

1 seems to yield a lower MSE empirically.

In the last part of this section, we give a result concerning the ℓ2-norm of the estimator

β̂
(i)
PLS in the PLS regression:
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Theorem 2.7

∥β̂ (1)
PLS∥2 ≤ ∥β̂

(2)
PLS∥2 ≤ . . .≤ ∥β̂ (i∗)

PLS∥2 = ∥β̂ OLS∥2. (2.63)

The algebraic proof of this theorem is given in [174]. Another geometric proof is also given

in [177], which shows that ∥β̂ (i)
PLS∥2 ≤ ∥β̂ OLS∥2. Two alternative proofs can also be found

in [171].

2.5 Partial Least Squares Classification

In this section we discuss the application of PLS for classification. In classification, X is typi-

cally the data while Y is called the indicator matrix that encodes the class membership for the

corresponding data in X. Linear Discriminant Analysis (LDA) [166] is a popular discriminative

tool [166], and it is well-known that CCA is equivalent to LDA under certain circumstances,

which was first recognized in 1938 by Bartlett [178]. Since PLS and CCA share many com-

mon features, PLS is also used widely in many applications as a classification tool [145, 179],

although it is not inherently designed for this purpose. Some typical applications of PLS in

classification include Alzheimer’s disease discrimination [180], classification between Arabica

and Robusta coffee beans [181], water pollution classification [182], separation between active

and inactive compounds in a quantitative structure-activity relationship study [183], hard red

wheat classification [184], microarray classification [160], and other applications in a variety of

other areas [185–188].

In the following, we consider the use of PLS for multi-class classification and discuss

the connections between PLS and LDA [166]. We denote the ith class as Ci, the sample size

of the ith class as ni = |Ci|, the mean of the ith class as x̄i =
1
ni

∑ j∈Ci x j, and the mean of all

samples as x̄ = 1
n X1. Since we assume X are centered, then x̄ = 0. Without loss of generality,

we assume that the data matrix X is organized according to k classes as X = [X1, . . . ,Xk], where

Xi ∈ Rd×ni contains all samples belonging to the ith class.

In LDA, the between-class covariance matrix Sb and the within-class covariance matrix

Sw are defined as follows:

Sb =
k

∑
i=1

ni(x̄i− x̄)(x̄i− x̄)T , (2.64)

Sw =
k

∑
i=1

∑
x j∈Ci

(x j− x̄i)(x j− x̄i)
T . (2.65)
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Based on the between-class covariance matrix Sb and the within-class covariance matrix Sw,

the total covariance matrix St can be decomposed as the sum of Sb and Sw:

St =
n

∑
i=1

(xi− x̄)(xi− x̄)T = Sb +Sw. (2.66)

The objective of LDA is to maximize the distance between instances belonging to differen-

t classes while minimizing the distance between instances belonging to the same class after

projection. Formally, LDA solves the following optimization problem:

maxJ(w) =
wT Sbw
wT Sww

, (2.67)

where w ∈ Rd is the linear projection. It has been shown that LDA reduces to computing the

eigenvectors corresponding the largest nonzero eigenvalues of the matrix S†
t Sb.

When PLS is applied for classification, one block of variables corresponds to the data

matrix X while the other block encodes the class membership information. The commonly used

scheme to encode the class membership information is the 1-of-k binary coding scheme [173]:

Y0 =



1n1 0 . . . 0

0 1n2 . . . 0
...

...
. . .

...

0 0 . . . 1nk .



T

∈ Rk×n. (2.68)

Note that in our discussion of PLS, we typically assume the columns of Y is centered, i.e.,

Y1n = 0. It is equivalent to performing the centering operation for the matrix Y0 as

Y = Y0C, (2.69)

where C = I− 1
n 11T is called the centering matrix. Note that C = CT and C2 = C, which

implies that C is an orthogonal projection [172].

An alternative form of the indicator matrix as proposed in [145] is defined as follows:

Z0 =



1n1 0 . . . 0

0 1n2 . . .0
...

...
. . .

...

0 0 . . . 1nk−1

0 0 . . . 0



T

∈ R(k−1)×n. (2.70)
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The difference between Z0 and Y0 is that the last column in Y0 is deleted in Z0. Note that in

this section we focus on multi-class classification, where the classes are mutually exclusive. As

a result, Z0 still conveys the full membership information by deleting the last column of Y0.

Similarly, we also perform the centering operation for Z0 in the discussion of PLS:

Z = Z0C.

Note that for the sample covariance matrix Sy = YYT ∈ Rk×k, where the indicator

matrix Y is given in Eq. (2.68), we have rank(Sy) = k− 1 in multi-class classification and

rank(Sy) = k in multi-label classification. Similarly, for multi-classification, we have Sz =

ZZT ∈ R(k−1)×(k−1) and rank(Sz) = k− 1. As discussed in Section 2.2, the projection vector

w is the eigenvector of XYT YXT , and c is the eigenvector of YXT XYT . In classification, we

are more interested in the projection for the data matrix X. The following results, established

in [145], elucidate the connection between PLS and LDA.

Theorem 2.8 Given the data matrix X, and indicator matrices Y and Z as defined in Eqs. (2.68)

and (2.70), and assume that X, Y, and Z are all centered. Then we have

XYT YXT = H∗, where H∗ =
k

∑
i=1

n2
i (x̄i− x̄)(x̄i− x̄)T , (2.71)

XZT ZXT = H∗∗, where H∗∗ =
k−1

∑
i=1

n2
i (x̄i− x̄)(x̄i− x̄)T . (2.72)

Proof Since X has already been centered, we have XC = X. It follows that

XYT YXT = XCT YT
0 Y0CXT

= (XC)YT
0 Y0 (XC)T

= XYT
0 Y0X

=

[
X1,X2, . . . ,Xk

]


1n11T
n1

0 . . . 0

0 1n21T
n2

. . . 0
...

...
. . .

...

0 0 . . . 1nk 1
T
nk





XT
1

XT
2
...

XT
k


=

k

∑
i=1

Xi1ni1
T
ni

XT
i
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=
k

∑
i=1

(nix̄i)(nix̄i)
T

=
k

∑
i=1

n2
i x̄i(x̄i)

T

=
k

∑
i=1

n2
i (x̄i− x̄)(x̄i− x̄)T

= H∗.

In the above derivation we made use of the fact that xi =
1
ni

Xi1ni and x̄ = 0 as X is centered.

Similarly, we can show that

XZT ZXT =
k−1

∑
i=1

n2
i (x̄i− x̄)(x̄i− x̄)T = H∗∗.

This completes the proof of this theorem.

Theorem 2.8 shows that the projection vector for X, i.e., w, is the eigenvector of H∗

if the indicator matrix is defined in Eq. (2.68). Note that H∗ is similar to the between-class

covariance matrix Sb, while the weights are different. This connection to LDA reveals the

success of PLS in classification. The argument also holds for H∗∗ if the indicator matrix is

defined in Eq. (2.70). Although the eigenstructures of the matrix H∗ and H∗∗ are computed in

PLS, they are still different from the between-class covariance matrix Sb.

Theorem 2.9 Given the data matrix X, and the class indicator matrix Z as defined in Eq. (2.70),

and assume that X and Z are centered. Then we have

XZT (ZZT )−1ZXT = Sb =
k

∑
i=1

ni(x̄i− x̄)(x̄i− x̄)T . (2.73)

Proof Denote SZ = ZZT . Then we can simplify SZ as follows:

SZ = ZZT

= Z0CCT ZT
0

= Z0CZ0

= Z0

(
I− 1

n
1n1T

n

)
ZT

0

= Z0ZT
0 −

1
n

Z01n1T
n ZT

0
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=



n1 0 . . . 0

0 n2 . . . 0
...

...
. . .

...

0 0 . . . nk−1


− 1

n



n1

n2

...

nk−1


[

n1 n2 . . . nk−1

]

= D− 1
n

vvT ,

where D = diag(n1,n2, . . . ,nk−1) ∈ R(k−1)×(k−1) and v = [n1,n2, . . . ,nk−1]
T ∈ Rk−1. Using the

Sherman-Morrison formula [172], we can compute the inverse of SZ as

S−1
Z =

(
D− 1

n
vvT
)−1

= D−1 +
1

n−vT D−1v
(
D−1vvT D−1)

= D−1 +
1

n−∑k−1
i=1 ni

(
1k−11T

k−1
)

= D−1 +
1
nk

(
1k−11T

k−1
)
.

It also follows that

XZT
0 = [X1,X2, . . . ,Xk]Z0

=
[
X11n1 ,X21n2 , . . . ,Xk−11nk−1

]
= [n1x̄1,n2x̄2, . . . ,nk−1x̄k−1] .

Therefore, we can rewrite XZ(ZZT )−1ZXT as follows:

XZT (ZZT )−1ZXT = XCT ZT
0

(
D−1 +

1
nk

(
1k−11T

k−1
))

Z0CXT

= XZT
0

(
D−1 +

1
nk

(
1k−11T

k−1
))

Z0XT

= XZT
0 D−1Z0XT +

1
nk

XZT
0 1k−11T

k−1Z0XT

=
k−1

∑
i=1

nix̄ix̄T
i +

1
nk

k−1

∑
i=1

nix̄i

(
k−1

∑
i=1

nix̄i

)T

=
k−1

∑
i=1

nix̄ix̄T
i +

1
nk
(−nkx̄k)((−nkx̄k))

T
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=
k

∑
i=1

nix̄ix̄T
i

=
k

∑
i=1

ni(x̄i− x̄)(x̄i− x̄)T

= Sb

In the above derivation we have made use of the fact that ∑k
i=1 nix̄i = ∑n

i=1 xi = 0, which implies

that ∑k−1
i=1 nix̄i =−nkx̄k. This completes the proof of this theorem.

Recall that in PLS we try to maximize the covariance between two blocks of variables

after projection. In contrast, CCA tries to maximize the correlation. Note that the objective

function of PLS can be expressed as

cov
(
XT w,YT c

)2
= var

(
XT w

)
corr

(
XT w,YT c

)2
var
(
YT c

)
,

which can be considered as penalized version of CCA, with PCA for X and Y simultaneously.

In classification tasks, it is not necessary to analyze the variance of the indicator matrix Y. Thus,

we can consider the following objective function:

cov
(
XT w,YT c

)2

var
(
YT c

) = var
(
XT w

)
corr

(
XT w,YT c

)2
. (2.74)

The optimal weight vector w∗ can be obtained by solving the following optimization problem:

max
w,c

wT XYT c (2.75)

s. t. wT w = 1

cT YYT c = 1.

Using the Lagrange dual function in optimization theory, it can be shown that w∗ is the eigen-

vector corresponding to the largest eigenvalue of the following eigenvalue problem:

XYT (YYT )−1 YXT w = λw. (2.76)

It can also be shown that multiple weight vectors {wi}ℓi=1(ℓ < k) under the orthogonality con-

straint wT
i w j = δi j can be obtained by computing eigenvectors corresponding to the largest ℓ

eigenvalues of XYT (YYT )−1 YXT , where δi j = 0 if i ̸= j and δi j = 1 otherwise.

Using the modified objective function in Eq. (2.74) and the new indicator matrix in

Eq. (2.70), we can show that the revised PLS amounts to solving the eigenvector of the between-

class covariance matrix Sb in LDA. The main results are summarized in the following theorem:
62



Theorem 2.10 If the modified objective function given in Eq. (2.74) is used in PLS classifica-

tion, and the indicator matrix is defined as Z0 in Eq. (2.70), then the weight vector for X is the

eigenvector of the between-class covariance matrix Sb associated with the largest eigenvalue.

Proof As discussed above, the weight vector w for X is the eigenvector of the following eigen-

value problem associated with the largest eigenvalue:

XZT (ZZT )−1 ZXT w = λw, (2.77)

where Z = Z0C. It follows from Theorem 2.9 that XZT (ZZT )−1 ZXT = Sb. This completes

the proof of this theorem.

2.6 Relationship between PLS and CCA

In this section we discuss the relationship between PLS and CCA by establishing a unified

framework using the canonical ridge analysis [189]. The equivalence relationship between

CCA and orthonormalized PLS will be discussed in detail in Chapter 3.

CCA and PLS share many common features. They both model the relationship between

two blocks of variables by seeking the optimal projections. However, CCA finds the optimal

projection by maximizing the correlation coefficient after projection while PLS maximizes the

covariance after the projection. CCA reduces to a generalized eigenvalue problem while PLS

involves an iterative procedure. At each iteration of PLS, it also reduces to eigenvalue problems

in Eqs. (2.3) and (2.6). However, different deflation schemes are applied in PLS, resulting in

different variants of PLS.

Table 2.1: A list of algorithms derived from different combinations of γx and γy in the unified
framework.

Algorithm γx γy

Canonical Correlation Analysis 0 0
Regularized CCA λ

1+λ 0
Orthonormalized PLS 0 1
Regularized OPLS λ

1+λ 1
Partial Least Squares 1 1

The similarities between PLS and CCA have been observed for long time [96,97,190].

For example, a unified framework for PCA, PLS, CCA and Multiple Linear Regression (MLR)
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is proposed in [190], where each technique can be obtained by selecting a different parame-

ter value. In this section, we focus on the unified framework established in [189] using the

canonical ridge analysis, which considers the following problem:

max
|wx|=|wy|=1

cov(wT
x X,wT

y Y)√
([1− γx]var(wT

x X)+ γx)
(
[1− γy]var(wT

y Y)+ γy
) , (2.78)

where 0 ≤ γx, γy ≤ 1 are the regularization parameters, and wx ∈ Rd , wy ∈ Rk are projection

vectors (or weight vectors) for X and Y, respectively. It can be verified that the optimization

problem in Eq. (2.78) reduces to the following eigenvalue problem:

(
[1− γx]XXT + γxI

)−1 XYT ([1− γx]YYT + γyI
)−1 YXT wx = λwx. (2.79)

By choosing different values for γx and γy, the unified framework encompasses PLS, OPLS and

CCA, as summarized in Table 2.1. From the unified framework, PLS can be considered as a

special case of “regularized OPLS” in which λ →+∞.

64



Chapter 3

CANONICAL CORRELATION ANALYSIS

3.1 Introduction

Canonical Correlation Analysis (CCA) is a classical technique for finding the correlations be-

tween two sets of multi-dimensional variables [191]. Being considered as a classical technique,

CCA has been studied and applied extensively in a variety of domains such as computational

biology and information retrieval recently. CCA makes use of two views of the same set of

objects and projects them onto lower-dimensional spaces in which they are maximally corre-

lated. It is becoming a powerful tool to analyze the so-called paired data (X,Y), where X and

Y are two different representations of the same set of objects [192]. Such scenario arises in

many real-world applications. In parallel corpus [193], there are texts in two languages that

are similar in content, which can be considered as the paired data set. Specifically, the texts in

different languages correspond to different views of the same semantics. In the content-based

image retrieval [15], the image and the associated texts can be considered as two different views

of the same semantic representation. CCA extracts features from both views such that the un-

derlying semantics of different representations can be captured. In [15, 194] CCA is applied to

combine image and text data together to enable the retrieval of images from a text query with-

out reference to the label information associated with images and promising results have been

achieved. CCA has been used effectively to combine multiple assays, including the DNA copy

number (or comparative genomic hybridization, CGH), gene expression, and Single Nucleotide

Polymorphism (SNP) data, on the same set of patient samples [195]. In supervised learning,

the data and labels can be considered as the paired views for the underlying objects.

Various extensions of CCA have been proposed, such as kernel CCA [194], and sparse

CCA [138,196–198]. In addition, theoretical properties of CCA have been established. For ex-

ample, the probabilistic interpretation of CCA has been proposed [199], and the connection be-

tween CCA and the least squares formulation has been established in the general setting [138].

The sparse CCA formulations have been used to identify genes whose expression is correlated

with other data. For example, in [198, 200, 201] sparse CCA identifies gene with expression

correlated with regions of DNA copy number change; In [202] sparse CCA identifies genes
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that have expression correlated with SNPs; In [196] sparse CCA identifies sets of genes on two

different microarray platforms that have correlated expression.

When CCA is used in supervised dimensionality reduction, one view is derived from

the data and the other view is derived from the class labels. In this setting, the projection of

the data onto the lower-dimensional space is directed by the label information, leading to the

extraction of discriminative features. In contrast to multi-class classification, where the classes

are mutually exclusive, the classes in multi-label learning are overlapped and correlated, making

it challenging to predict all relevant labels for a given instance. One appealing feature of CCA

in multi-label learning is that the label correlations can be captured, resulting in informative

projection for the data [138, 197, 203].

CCA reduces to a generalized eigenvalue problem, which is computationally expensive

to solve. Many popular dimensionality reduction techniques in machine learning, including par-

tial least squares [98], hypergraph spectral learning [56], and linear discriminant analysis [166],

can be formulated as a generalized eigenvalue problem [204]. In this chapter, we will investi-

gate a class of generalized eigenvalue problems, which include all these formulations as special

cases. In addition, we will discuss its relationship with the generalized Rayleigh quotient cost

function and some numerical algorithms such as the incomplete Cholesky decomposition.

The rest of this chapter is organized as follows. The classical CCA is introduced in

Section 3.2. The recent developments of sparse CCA are summarized in Section 3.3. The

relationship between CCA and orthonormalized PLS is discussed in Section 3.4. We study a

family of generalized eigenvalue problems in Section 3.6. Also in the discussion of CCA, we

assume that both {xi}n
1 and {yi}n

1 are centered, i.e., ∑n
i=1 xi = 0, and ∑n

i=1 yi = 0.

3.2 Classical Canonical Correlation Analysis

CCA is a classical technique to assess the relationship between two sets of variables. Before

discussing the CCA formulation, we first introduce the linear correlation coefficient, which

measures the linear dependence between two sets of variables.
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Linear Correlation Coefficient

The linear correlation coefficient between two variables x and y (x,y ∈ R) is defined as the

covariance of the two variables divided by the product of their standard deviations:

ρ =
cov(x,y)

std(x)std(y)
=

E[(x− x)(y− y)]
std(x)std(y)

, (3.1)

where E[z] denotes the expectation of variable z, std(x) and std(y) are the standard deviations

of x and y, and x and y are the means of x and y, respectively. Given the samples {xi}n
i=1

and {yi}n
i=1, the sample correlation coefficient, or the Pearson’s product-moment correlation

coefficient between x and y, is defined as

ρ =
∑n

i=1(xi− x)(yi− y)√
∑n

i=1(xi− x)2
√

∑n
i=1(yi− y)2

. (3.2)

Note that when x = y = 0, the sample correlation coefficient can be simplified as:

ρ =
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

, (3.3)

which can be expressed in the following vector form:

ρ =
xT y

∥x∥2∥y∥2
, (3.4)

where x = [x1, . . . ,xn]
T and y = [y1, . . . ,yn]

T .

The linear correlation coefficient measures the strength of the linear association be-

tween two variables x and y. In fact, the sample correlation coefficient is the standardized

version of the sample covariance. It can be verified easily that the correlation coefficient is

between −1 and +1 using Eq. (3.4). The sign of ρ shows the direction of the association. A

negative value of ρ indicates a negative correlation while a positive value of ρ implies a positive

association between x and y. In particular, the value of −1 implies a perfect negative correla-

tion while the value of +1 shows a perfect positive correlation. The value of 0 indicates a lack

of linear association. Figure 3.1 gives some sample distributions and the corresponding linear

correlation coefficients.

Intuitively, the correlation coefficient measures the extent to which the two variables

can be fitted by a straight line. The line is also called the regression line or the least squares
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line, since the sum of squared distances from all data points to the line is minimized. This

definition of correlation coefficients also reveals some interesting connections between correla-

tion coefficient and linear regression. Note that the correlation coefficient can only capture the

linear association between two variables. Thus, nonlinear association cannot be revealed by the

correlation coefficient.
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Figure 3.1: Illustration of the linear correlation coefficient.

The Maximum Correlation Formulation for CCA

Canonical Correlation Analysis (CCA) [129] is a classical dimensionality reduction technique

developed in statistics [191] and machine learning [194]. The motivation of CCA is that the

linear relationship between variables may not be obvious in the original space, even though

they are highly correlated. In order to capture the underlying linear association, CCA tries to

find basis vectors for the two sets of variables such that they are maximally correlated after they

are projected onto the basis vectors.

Let X ∈ Rd×n and Y ∈ Rk×n be the matrix representations for two different sets of

variables, where xi and yi correspond to the ith sample. CCA computes two projection vectors,

wx ∈ Rd and wy ∈ Rk, such that the correlation coefficient

ρ =
wT

x XYT wy

∥wT
x X∥∥wT

y Y∥
(3.5)
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is maximized. Here we apply Eq. (3.4) to compute the correlation coefficient between wT
x X and

wT
y Y, since we assume that both {xi}n

i=1 and {yi}n
i=1 are centered. Note that (wT

x X,wT
y Y) is

often called the pair of canonical variables, or canonical variate pair [191].

Since ρ is invariant to the scaling of wx and wy, CCA can be formulated equivalently

as the following optimization problem:

max
wx,wy

wT
x XYT wy (3.6)

s. t. wT
x XXT wx = 1,

wT
y YYT wy = 1.

The Lagrangian L associated with the problem in (3.6) is

L(wx,wy,λx,λy) = wT
x XYT wy−

λx

2
(wT

x XXT wx−1)−
λy

2
(wT

y YYT wy−1). (3.7)

We compute the derivatives of L with respect to wx and wy and set them to zero. This leads to

the following equations:

XYT wy−λxXXT wx = 0, (3.8)

YXT wx−λyYYT wy = 0. (3.9)

As a result, we have

λx = λxwT
x XXT wx

= wT
x (λxXXT wx)

= wT
x XYT wy

= wT
y YXT wx

= wT
y (λyYYT wy)

= λy(wT
y YYT wy)

= λy

In the following discussion, we hence use λ to denote both λx and λy as they are always i-

dentical. The equalities in Eqs. (3.8) and (3.9) can be formulated equivalently in the following
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form: XXT XYT

YXT YYT


wx

wy

= (λ +1)

XXT 0

0 YYT


wx

wy

 . (3.10)

Thus, the projections wx and wy can be computed simultaneously by solving the generalized

eigenvalue problem in Eq. (3.10). This formulation also suggests the generalization of CCA to

multiple sets of variables, which will be discussed in detail in Section 3.2.

Since we focus on the use of CCA in multi-label learning, where X corresponds to

the data and Y corresponds to the associated label information, the projection of X is of more

interests. Assume that YYT is nonsingular. It follows from Eq. (3.9) that

wy =
1
λ
(
YYT )−1 YXT wx. (3.11)

Substituting Eq. (3.11) into Eq. (3.8), we obtain the following genearalized eigenvalue problem:

XYT (YYT )−1 YXT wx = λ 2XXT wx. (3.12)

It is clear that wx can also be obtained by solving the following optimization problem:

max
wx

wT
x XYT (YYT )−1 YXT wx (3.13)

s. t. wT
x XXT wx = 1.

After determining the first pair of (wx,wy), we next focus on the second pair. We

denote the ith pair of projection vectors as (w(i)
x ,w(i)

y ). We impose the constraint that the ith pair

of canonical variables, (w(i)
x

T
X,w(i)

y
T

Y), is the pair of linear combinations having unit variance

and maximizing the correlation among all choices that are uncorrelated with the previous i−1

pairs of canonical variables. Formally, we solve the following optimization problem in order to

obtain the second pair of projection vectors (w(2)
x ,w(2)

y ):

max
wx,wy

w(2)
x

T
XYT w(2)

y (3.14)

s. t. w(2)
x

T
XXT w(2)

x = 1,

w(2)
y

T
YYT w(2)

y = 1,

w(2)
x

T
XXT w(1)

x = 0,

w(2)
y

T
YYT w(1)

y = 0.
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Similarly, we can construct the Lagrangian:

L(w(2)
x ,w(2)

y ,λx,λy,αx,αy)

= w(2)
x

T
XYT w(2)

y −
λx

2
(w(2)

x
T

XXT w(2)
x −1)−

λy

2
(w(2)

y
T

YYT w(2)
y −1)

−αxw(2)
x

T
XXT w(1)

x −αyw(2)
y

T
YYT w(1)

y .

Taking the derivatives of L with respect to w(2)
x and w(2)

y and setting them to zero, we have

XYT w(2)
y −λxXXT w(2)

x −αxXXT w(1)
x = 0 (3.15)

YXT w(2)
x −λyYYT w(2)

y −αyYYT w(1)
y = 0. (3.16)

It follows from Eq. (3.15) that

λx = λxw(2)
x

T
XXT w(2)

x

= w(2)
x

T (
XYT w(2)

y −αxXXT w(1)
x

)
= w(2)

x
T

XYT w(2)
y −αxw(2)

x
T

XXT w(1)
x

= w(2)
x

T
XYT w(2)

y ,

and

αx = αxw(1)
x

T
XXT w(1)

x

= w(1)
x

T (
XYT w(2)

y −λxXXT w(2)
x

)
= w(1)

x
T

XYT w(2)
y

= λw(1)
y YYT w(2)

y

= 0.

In the above derivation we use the fact that w(1)
x

T
XYT = λw(1)

y YYT based on Eq. (3.9). Simi-

larly, it follows from Eq. (3.16) that

λy = w(2)
y

T
YXT w(2)

x , and αy = 0.

Thus, we have λx = λy and denote it as λ as before. Using similar arguments as in the discussion

of the first pair of projection vectors, we can show that [w(2)
x ;w(2)

y ] is the second eigenvector of

the eigenvalue problem in Eq. (3.10), and w(2)
x is the second eigenvector of the generalized

eigenvalue problem in Eq. (3.12).
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Following the previous discussions, we can show that multiple projection vectors un-

der the orthonormality constraints can be computed simultaneously by solving the general-

ized eigenvalue problem in Eq. (3.12), which is equivalent to the following optimization prob-

lem [194]:

max
W∈Rd×ℓ

Tr(WT XYT (YYT )−1YXT W) (3.17)

s. t. WT XXT W = Iℓ,

where W ∈ Rd×ℓ is the projection matrix for X, ℓ is the number of projection vectors, and Iℓ is

the identity matrix. The solution to the optimization problem in Eq. (3.17) consists of the top ℓ

eigenvectors of the generalized eigenvalue problem in Eq. (3.12).

The Distance Minimization Formulation for CCA

The optimization problem in Eq. (3.6) can be expressed as a distance minimization problem,

where we try to minimize the distance between two views X and Y after they are projected onto

the lower-dimensional space:

min
wx,wy

∥wT
x X−wT

y Y∥2 (3.18)

s. t. wT
x XXT wx = 1,

wT
y XXT wy = 1.

The equivalence relationship between the optimization problems in Eqs. (3.6) and (3.18) can be

verified as follows:

∥wT
x X−wT

y Y∥2
2 = wT

x XXT wx +wT
y YYT wy−2wT

x XYT wy

= 2−2wT
x XYT wy,

where we use the constraints that wT
x XXT wx = wT

y XXT wy = 1. Thus, maximizing wT
x XYT wy

is equivalent to minimizing ∥wT
x X−wT

y Y∥2
2 or ∥wT

x X−wT
y Y∥2.

When multiple projection vectors are required, it can be shown that the optimization

problem in Eq. (3.17) can also be formulated as a distance minimization problem in which the
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Frobenius norm is used instead:

min
Wx,Wy

∥WT
x X−WT

y Y∥F (3.19)

s. t. WT
x XXT Wx = I

WT
y XXT Wy = I.

Similarly, we can verify the equivalence relationship between the distance minimization formu-

lation and the original optimization problem in Eq. (3.17) as follows:

∥WT
x X−WT

y Y∥2
F

= Tr
(
(WT

x X−WT
y Y)(WT

x X−WT
y Y)T )

= Tr(WT
x XXT Wx)+Tr(WT

y YYT Wy)−2Tr(WT
x XYT WT )

= 2Tr(I)−2Tr(WT
x XYT WT ).

The distance minimization formulation possesses a number of appealing properties,

which make its connections to other classical problems, such as linear regression, apparent.

Thus, different variants of CCA can be obtained by incorporating some penalty terms [201],

including the ℓ2-norm regularization, the ℓ1-norm regularization [124], and the elastic net regu-

larization [126].

Regularized CCA

In practice, the performance of CCA critically depends on the regularization, especially when

the sample size is relatively small as compared to the data dimensionality. Note that the gen-

eralized eigenvalue problem in Eq. (3.12) can be transformed into an eigenvalue problem by

multiplying (XXT )−1 on both sides, where XXT is the sample covariance matrix. The solution

to the eigenvalue problem may not be reliable if XXT is close to be singular. To improve the

robustness and prevent overfitting, one common approach is to add a scaled identity matrix to

the sample covariance matrices XXT and YYT [103,204], resulting in the following generalized

eigenvalue problem:

XYT (YYT + γyI)−1YXT wx = λ 2(XXT + γxI)wx, (3.20)

where γx > 0 and γy > 0 are the regularization parameters. The regularization employed in CCA

can also be interpreted from the Bayesian perspective [199].
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In the above discussions, the regularization terms on both X and Y are considered. In

fact, only the regularization on X affects the computation of Wx. We will discuss the effects of

regularization on X and Y in detail in Section 3.4.

CCA for Multiple Sets of Variables

In traditional CCA, only two sets of variables are considered. In fact, CCA can be generalized to

deal with problems with more than two sets of variables. The CCA formulation for multiple sets

of variables can compute linear projections for multiple sets of variables simultaneously [205].

We will discuss CCA for multiple sets of variables based on the minimum distance formation

in the following.

Let X(i) ∈Rdi×n be the ith view, for i = 1, . . . ,K, where K is the number of views. CCA

for multiple sets of variables involves the following optimization problem [205, 206]:

min
W(1),...,W(K)

K

∑
i, j=1,i ̸= j

∥W(i)T
X(i)−W( j)T

X(i)∥F (3.21)

s. t. W(i)T
X(i)X(i)T

W(i) = I, i = 1, . . . ,K,

where W(i) is the projection matrix for the ith view X(i). The main idea of the generalized

CCA for multiple sets of variables is that the sum of all pairwise distances between different

views in the projected subspace is minimized. Similar to the traditional CCA discussed above,

it can be shown that the optimization problem in Eq. (3.21) reduces to the following generalized

eigenvalue problem [192]:

C11 C12 · · · C1K

C21 C22 · · · C2K

...
...

. . .
...

CK1 CK2 · · · CKK





w(1)

w(2)

...

w(K)


=(λ +1)



C11 0 · · · 0

0 C22 · · · 0
...

...
. . .

...

0 0 · · · CKK





w(1)

w(2)

...

w(K)


where Ci j = X(i)X( j)T

is the sample covariance matrix between the ith set of variables and the

jth set of variables. It reduces to the generalized eigenvalue problem in Eq. (3.10) for traditional

CCA when K = 2.

3.3 Sparse Canonical Correlation Analysis

Recently, many extensions of CCA have been proposed as new problems arise in various appli-

cations. For example, as multiple assays on the same set of patients become more popular, it
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requires effective tools to integrate the data and select important features in genomic data anal-

ysis [207]. One challenge on the analysis of genomic data is that the dimensionality is much

larger than the sample size. To circumvent this problem, various sparse CCA formulations have

been proposed in the past.

Sparsity attracts a lot of attention in statistics and machine learning recently [79, 124,

208]. Sparsity often leads to easy interpretation, and it has been incorporated into many for-

mulations such as multivariate linear regression [124], principal component analysis [125], and

CCA [138,196–198,200–202,207,209–211]. Sparse CCA computes pairs of linear projections

such that the maximal correlation is achieved in the reduced subspace with a small number of

variables being involved in each projection. Indeed, it has been shown that a significant propor-

tion of the correlations can be captured using a relatively small number of variables [209].

The existing sparse CCA formulations can be roughly categorized into three classes:

• The first approach formulates CCA as an equivalent least squares problem and then ap-

plies the ℓ1-norm regularization [124] to the resulting least squares formulation.

• The second approach employs the iterative greedy scheme to compute the projection

vectors sequentially.

• The third approach extends the CCA formulation based on the probabilistic interpretation

of CCA from the Bayesian perspective.

Sparse CCA via Linear Regression

It has been shown in [138] that CCA is equivalent to the least squares formulation given the

target matrix

T̃ = YT (YYT )−
1
2 ∈ Rn×k. (3.22)

The detailed proof of this equivalence relationship will be given in Chapter 4. Based on the

equivalence relationship between CCA and the least squares formulation, sparsity in CCA can

be achieved by applying an appropriate regularization to the least squares formulation. It is

well-known that the ℓ1-norm regularization can induce sparse solutions [124, 208], and it has

been introduced into the least squares formulation, resulting in the so-called lasso [124]. Based
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Algorithm 4 The Greedy Iterative Sparse CCA Algorithm
Input: X, Y, ℓ, and other control parameters.
Output: Wx, Wy.
for i = 1 to ℓ do

Compute w(i)
x and w(i)

y using the greedy algorithm.
Update X and Y using w(i)

x and w(i)
y .

end for
Set Wx = [w(1)

x , . . . ,w(ℓ)
x ] and Wy = [w(1)

y , . . . ,w(ℓ)
y ].

on the equivalence relationship between CCA and least squares, the ℓ1-norm regularized least

squares CCA formulation, called “LS-CCA1”, has been developed, which minimizes the fol-

lowing objective function:

L1(W,λ ) =
k

∑
j=1

(
n

∑
i=1

(xT
i w j− T̃i j)

2 +λ∥w j∥1

)
. (3.23)

LS-CCA1 can be solved efficiently using existing solvers for the ℓ1 regularized linear regres-

sion [212–214].

Sparse CCA via Iterative Greedy Algorithms

The second approach employs greedy schemes to compute sparse projections iteratively [196,

198, 200, 202, 207, 209, 210]. The overall structure of this type of algorithms is summarized

in Algorithm 4, where ℓ is the number of pairs of projection vectors (wx,wy). This approach

computes the projection vectors in a sequential fashion, and at each step the projection pair

(wx,wy) is computed using a greedy algorithm. The major difference among different sparse

CCA algorithms lies in the different greedy algorithms used to compute (wx,wy).

In [209], the greedy algorithm selects the pairs of features from X and Y such that

the correlation between X and Y after projection is maximized. At each stage, this greedy

algorithm selects two index sets I and J using a forward and stepwise subset selection method,

where I and J correspond to the chosen indices in X and Y, respectively. Initially, I and J are

set to be the empty set. At each iteration, the algorithm selects one index from X or Y such that

the resulting correlation after projection is maximized. The procedure is terminated until the

required number of features have been selected at each stage.

In [200,201,210], the projection vectors (wx,wy) are computed based on the minimum

distance formulation of CCA using an alternating algorithm. At each iteration, one of wx and
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wy is fixed while the other one is optimized. Note that in this case, the minimum distance

formulation reduces to the least squares problem. Sparse solutions can be obtained by incorpo-

rating the ℓ1-norm regularization. This procedure is repeated until convergence, resulting in the

projection pair (wx,wy) at that stage.

In [198,202,207], an iterative sparse algorithm is developed by estimating the singular

vectors of XYT . At each step, the singular vectors of XYT are estimated using soft-thresholding.

In [207], the sparse CCA is further extended to analyze multiple data sets simultaneously, and a

technique called sparse supervised CCA is proposed to integrate different views as well as some

label information. Note that many other extensions of CCA can be derived based on Algorithm

4. For example, the nonnegative CCA algorithms have been proposed by imposing the nonneg-

ativity constraint in the greedy framework to compute the projection pairs (wx,wy) [207, 215].

Sparse CCA via Bayesian Learning

The third approach is based on the probabilistic interpretation of CCA [197, 199, 211]. Follow-

ing the probabilistic interpretation of CCA [199], a nonparametric, fully Bayesian framework is

proposed to capture the sparsity underlying the projections [197]. The sparse CCA framework

proposed in [197] can automatically select the number of correlation components using the In-

dian Buffet Process (IBP) [216]. In addition, this framework can be applied for semi-supervised

dimensionality reduction by making use of partial labels.

3.4 Relationship between CCA and Orthonormalized PLS

CCA is closely related orthonormalized PLS (OPLS). We show that the difference between

the CCA solution and the OPLS solution is a mere orthogonal transformation. Unlike the

discussions in [145], which focuses on discrimination only, the analysis here can be applied to

regression and dimensionality reduction as well. We further extend the equivalence relationship

to the case when regularization is applied for both sets of variables.

In the following discussion, we use the subscript cca and pls to distinguish the variables

associated with CCA and OPLS, respectively. We first define two key matrices as follows:

Hcca = YT (YYT )−
1
2 ∈ Rn×k, (3.24)

Hpls = YT ∈ Rn×k. (3.25)
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The Equivalence Relationship without Regularization

We assume that Y has full row rank, i.e., rank(Y) = k. Thus, (YYT )−
1
2 is well-defined. It

follows from Section 2.2 and Section 3.2 that the solutions to both CCA and OPLS can be

expressed as the eigenvectors corresponding to the top eigenvalues of the following matrix:

(XXT )†(XHHT XT ), (3.26)

where H=Hcca for CCA and H=Hpls for OPLS. We next derive the solution to this eigenvalue

problem.

First we derive the principal eigenvectors of the generalized eigenvalue problem in

Eq. (3.26). Let the SVD of X be

X = UΣVT = U1Σ1VT
1 , (3.27)

where U ∈ Rd×d and V ∈ Rn×n are orthogonal, U1 ∈ Rd×r and V1 ∈ Rn×r have orthonormal

columns, Σ ∈ Rd×n and Σ1 ∈ Rr×r are diagonal, and r = rank(X). Denote

A = Σ−1
1 UT

1 XH = Σ−1
1 UT

1 U1Σ1VT
1 H = VT

1 H ∈ Rr×k, (3.28)

and let the SVD of A be A = PΣAQT , where P ∈ Rr×r and Q ∈ Rk×k are orthogonal and

ΣA ∈ Rr×k is diagonal. Then we have

AAT = PΣAΣT
APT . (3.29)

Lemma 3.1 The eigenvectors corresponding to the top ℓ eigenvalues of (XXT )†(XHHT XT ) are

given by

W = U1Σ−1
1 Pℓ, (3.30)

where Pℓ consists of the first ℓ (ℓ≤ rank(A)) columns of P.
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Proof We can decompose (XXT )†(XHHT XT ) as follows:

(XXT )†(XHHT XT ) = U1Σ−2
1 UT

1 XHHT XT

= U1Σ−1
1 AHT V1Σ1UT

1

= U

Ir

0

Σ−1
1 AAT Σ1

[
Ir 0

]
UT

= U

Σ−1
1 AAT Σ1 0

0 0

UT

= U

Σ−1
1 P 0

0 I


ΣAΣT

A 0

0 0


PT Σ1 0

0 I

UT ,

where the last equality follows from Eq. (3.29). It is clear that the eigenvectors corresponding

to the top ℓ eigenvalues of (XXT )†(XHHT XT ) are given by

W = U1Σ−1
1 Pℓ.

This completes the proof of the lemma.

It follows from Lemma 3.1 that U1 and Σ1 are determined by X. Thus the only differ-

ence between the projections computed by CCA and OPLS lies in Pℓ. The following lemma

reveals the property of Pℓ:

Lemma 3.2 Let Hcca and Hpls be defined in Eqs. (3.24) and (3.25). Let Acca = VT
1 Hcca and

Apls = VT
1 Hpls be the matrix A defined in Eq. (5.12) for CCA and OPLS, respectively. Then the

range spaces of Acca and Apls are the same.

Proof Let the SVD of Y be

Y = UyΣyVT
y , (3.31)

where Uy ∈ Rk×k, Vy ∈ Rn×k, and Σy ∈ Rk×k is diagonal. Since Y is assumed to have full

column rank, all the diagonal elements of Σy are positive. Thus,

Acca = VT
1 Hcca = VT

1 VyUT
y

Apls = VT
1 Hpls = VT

1 VyΣyUT
y .
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It follows that Acca = AplsUyΣ−1
y UT

y and Apls = AccaUyΣyUT
y . Thus, the range spaces of Acca

and Apls are the same.

With this lemma, we can explicate the relationship between the projections computed

by CCA and OPLS, as summarized in the following theorem:

Theorem 3.1 Let the SVD of Acca and Apls be

Acca = PccaΣAccaQT
cca,

Apls = PplsΣAplsQ
T
pls,

where Pcca,Ppls ∈ Rr×rA , and rA = rank(Acca) = rank(Apls). Then there exists an orthogonal

matrix R ∈ RrA×rA such that Pcca = PplsR.

Proof It is clear that PccaPT
cca and PplsPT

pls are the orthogonal projections onto the range spaces

of Acca and Apls, respectively. It follows from lemma 3.2 that both PccaPT
cca and PplsPT

pls are

orthogonal projections onto the same subspace. Since the orthogonal projection onto a subspace

is unique [172], we have

PccaPT
cca = PplsPT

pls. (3.32)

Therefore,

Pcca = PccaPT
ccaPcca = PplsPT

plsPcca = PplsR,

where R = PT
plsPcca ∈ RrA×rA . It is easy to verify that R is orthogonal.

If we retain all the eigenvectors corresponding to the nonzero eigenvalues, i.e., ℓ= rA,

the difference between CCA and OPLS lies in the orthogonal transformation R∈RrA×rA . In this

case, CCA and OPLS are essentially equivalent, since an orthogonal transformation preserves

all pairwise distances.

The Equivalence Relationship with Regularization

The equivalence relationship still holds when the regularization is employed. We consider the

regularization on X and Y separately.
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Regularization on X

Recall that regularized CCA (rCCA) and regularized OPLS (rOPLS) compute the principal

eigenvectors of the following matrix:

(XXT + γI)−1(XHHT XT ). (3.33)

Lemma 3.3 Define the matrix B ∈ Rr×k as

B = (Σ2
1 + γI)−1/2Σ1VT

1 H (3.34)

and denote its SVD as B = PBΣBQT
B , where PB ∈ Rr×r and QB ∈ Rk×k are orthogonal, and

ΣB ∈ Rr×k is diagonal. Then the eigenvectors corresponding to the top ℓ eigenvalues of matrix

(XXT + γI)−1(XHHT XT ) are given by

W = U1(Σ2
1 + γI)−1/2PBℓ, (3.35)

where PBℓ consists of the first ℓ (ℓ≤ rank(B)) columns of PB.

Proof We can decompose (XXT + γI)−1(XHHT XT ) as follows:

(XXT + γI)−1(XHHT XT )

= U1(Σ2
1 + γI)−1Σ1VT

1 HHT V1Σ1UT
1

= U1(Σ2
1 + γI)−1/2(Σ2

1 + γI)−1/2Σ1VT
1 HHT

V1Σ1(Σ2
1 + γI)−1/2(Σ2

1 + γI)1/2UT
1

= U1(Σ2
1 + γI)−1/2BBT (Σ2

1 + γI)1/2UT
1

= U

Ir

0

(Σ2
1 + γI)−1/2BBT (Σ2

1 + γI)1/2
[

Ir 0

]
UT

= U

(Σ2
1 + γI)−1/2BBT (Σ2

1 + γI)1/2 0

0 0

UT

= U

(Σ2
1 + γI)−1/2PB 0

0 I


ΣBΣT

B 0

0 0


PT

B(Σ2
1 + γI)1/2 0

0 I

UT .
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Thus, the eigenvectors corresponding to the top ℓ eigenvalues of

(XXT + γI)−1(XHHT XT )

are given by U1(Σ2
1 + γI)−1/2PBℓ.

Using Lemma 3.3 we can show that the equivalence relationship between CCA and

OPLS still holds when the regularization on X is applied. The main results are summarized in

Lemma 3.4 and Theorem 3.2 below (proofs are similar to the ones in Lemma 3.2 and Theo-

rem 3.1 and are omitted).

Lemma 3.4 Let Bcca and Bpls be defined as follows:

Bcca = (Σ2
1 + γI)−1/2Σ1VT

1 Hcca

Bpls = (Σ2
1 + γI)−1/2Σ1VT

1 Hpls.

Then the range spaces of Bcca and Bpls are the same.

Theorem 3.2 Let the SVD of Bcca and Bpls be

Bcca = PB
ccaΣB

cca(Q
B
cca)

T ,

Bpls = PB
plsΣ

B
pls(Q

B
Bpls)

T ,

where PB
cca,PB

pls ∈ Rr×rB , and rB = rank(Bcca) = rank(Bpls). Then there exists an orthogonal

matrix RB ∈ RrB×rB such that PB
cca = PB

plsR
B.

Regularization on Y

With the regularization applied on YYT , we consider the eigendecomposition of following ma-

trix:

(XXT )†XYT (YYT + γI)−1YXT . (3.36)

The above formulation corresponds to a new matrix Hrcca for rCCA:

Hrcca = YT (YYT + γI)−1/2. (3.37)

We establish the equivalence relationship between CCA and OPLS when the regularization is

applied on Y.
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Lemma 3.5 Let Hcca,Hpls, and Hrcca be defined as in Eqs. (3.24), (3.25), and (3.37), respec-

tively. Then the range spaces of Hcca, Hpls, and Hrcca are the same.

Proof The proof follows directly from the definitions.

Lemma 3.5 shows that the regularization on Y does not change the range space of

Acca. Thus, the equivalence relationship between CCA and OPLS still holds. Similarly, the

regularization on Y does not change the range space of Bcca when a regularization on X is

applied. Therefore, the established equivalence relationship holds when the regularization is

applied on both X and Y.

Analysis of Regularization on CCA

Regularization is commonly employed to control the complexity of a learning model and it has

been applied in various machine learning algorithms such as Support Vector Machines (SVM)

[62]. In particular, regularization is crucial to kernel CCA [194] in order to avoid the trivial

solution. Moreover, the use of regularization in CCA has natural statistical interpretations [103].

The established equivalence relationship between CCA and OPLS provides novel in-

sights into the effect of regularization in CCA. In addition, it leads to a significant reduction

in the computations involved in CCA. Regularization is commonly applied on both views in

CCA [192, 194], since it is commonly believed that the CCA solution is dependent on both

regularization terms. It follows from Lemma 3.5 that the range space of Hrcca is invariant to

the regularization parameter γy. Thus, the range spaces of Acca and Apls are the same and the

projection for X computed by rCCA is independent of γy. Similarly, we can show that the pro-

jection for Y is independent of the regularization on X. Therefore, an important consequence

from the equivalence relationship between CCA and OPLS is that the projection of CCA for

one view is independent of the regularization on the other view.

Recall that the CCA formulation reduces to a generalized eigenvalue problem. In this

formulation, we need to compute the inverse of the matrix YYT ∈ Rk×k, which may cause

numerical problems. Moreover, the dimensionality k of the data in Y may be large, and thus

computing the inverse can be computationally expensive. For example, in the content-based
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image retrieval [15], the two views correspond to text and image data that are both of high-

dimensionality. Another important consequence of the established equivalence relationship

between CCA and OPLS is that if only the projection for one view is required and the other

view is only used to guide the projection on this view, then the inverse of a possibly large

matrix can be effectively avoided.

3.5 Applications of Canonical Correlation Analysis

Canonical correlation analysis and its extensions have been used widely in a variety of areas [15,

194, 207, 215]. Here we describe some new applications of CCA.

As a classical tool to learn the underlying semantics from different views [193], CCA

can be used to learn semantics of multimedia content by combining image and text data together.

In [15, 194], the image data and text data are considered as two views, and the underlying

semantics is learned to enable the retrieval of images from a text query but without reference to

any labeling associated with the image. It is shown that kernel CCA can successfully retrieves

the appropriate images given the text input [15, 194].

Canonical correlation analysis and many of its variants have gained popularity in the

areas of bioinformatics and medical research [196, 198, 200–202, 207]. In particular, CCA and

its various extensions are widely used in the genomic data analysis, in which multiple assays

on the same set of patient samples becomes more common. Some typical examples include

DNA copy number (or comparative genomic hybridization, CGH), gene expression, and single

nucleotide polymorphism (SNP) data. Thus, CCA is an ideal tool to perform such task. So far,

some variants of sparse CCA have been used to identify genes with expression correlated with

other data. For example, [198,200,201] identifies gene with expression correlated with regions

of DNA copy number change, [202] identifies genes that have expression correlated with SNPs,

and [196] identifies sets of genes on two different microarray platforms that have correlated

expression.

3.6 The Generalized Eigenvalue Problem

Recall that CCA reduces to a generalized eigenvalue problem as in Eq. (3.12). In fact, several

other algorithms in dimensionality reduction can also be formulated as generalized eigenvalue

problems [204], including linear discriminant analysis, partial least squares, and hypergraph
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spectral learning, etc. In this section, we investigate a class of generalized eigenvalue prob-

lems encompassing these algorithms. In addition, we discuss its relationship with some cost

functions.

Formally, we are interested in the generalized eigenvalue problem in the following

form:

Aw = λBw, (3.38)

where A ∈ Rd×d and B ∈ Rd×d are symmetric matrices. The generalized eigenvalue problem

arises in many scenarios [137], and many algorithms have been proposed to solve it in the

literature [137, 172]. In CCA, we have A = XYT (YYT )−1YXT and B = XXT for computing

the projection on X.

The Generalized Rayleigh Quotient Cost Function

An important family of cost functions in machine learning and pattern recognition is the so-

called generalized Rayleigh quotient [204]:

f (w) =
wT Aw
wT Bw

. (3.39)

For example, the objective function in linear discriminant analysis [166] is in the form of the

generalized Rayleigh quotient. It turns out that the generalized eigenvalue problems in E-

q. (3.38) provides an efficient way to optimize the generalized Rayleigh quotient cost function.

In the following, we analyze the connection between the generalized eigenvalue prob-

lem in Eq. (3.38) and the cost function f (w) in Eq. (3.39). It is clear that the scaling of w does

not affect the objective function f (w). Hence, the optimization problem can be expressed in the

following form:

max
w

wT Aw (3.40)

s. t. wT Bw = 1.

Applying the Lagrange multiplier technique gives rise to

L = wT Aw− λ
2
(wT Bw−1).
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Taking the derivative with respect to w and setting it to zero, we obtain

Aw−λBw = 0

⇔ Aw = λBw.

Note that the maximum value obtained by the original optimization problem in Eq. (3.39) is the

largest eigenvalue λ in the generalized eigenvalue problem in Eq. (3.38).

The discussion above can be extended to the more general case when more than one

eigenpairs of the generalized eigenvalue problem in Eq. (3.38) are of interest. In this case, these

eigenpairs correspond to the following cost function:

f (W) =
Tr(WT AW)

Tr(WT BW)
, (3.41)

where each column of W corresponds to an eigenvector of the generalized eigenvalue problem

in Eq. (3.38).

Properties of the Generalized Eigenvalue Problem

It is well-known that the eigenvalues of the symmetric real eigenvalue problem Aw = λw are

real, and the resulting eigenvectors are real and orthogonal. However, the orthogonality of

eigenvectors generally does not hold for the generalized eigenvalue problem in Eq. (3.38) even

when both A and B are real and symmetric. Interestingly, the so-called generalized orthogonal-

ity properties hold, which are summarized in the following theorem:

Theorem 3.3 Let the ith eigenpair of the generalized eigenvalue problem Aw= λBw be (λi,wi).

If A ∈ Rn×n is symmetric and and B ∈ Rn×n is symmetric and positive definite, then the follow-

ing generalized orthogonality properties hold:

wT
i Aw j = δi jλi (3.42)

wT
i Bw j = δi j, (3.43)

where δi j = 1 if i = j and 0 otherwise.

Proof Since B ∈ Rn×n is symmetric and positive definite, then B1/2 is well-defined and non-

singular. Define u = B1/2w, then the generalized eigenvalue problem Aw = λBw can be trans-
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formed into a symmetric eigenvalue problem:

B−1/2AB−1/2u = λu.

Note that the ith eigenpair of this symmetric eigenvalue problem can be denoted as (λi,ui)

where ui = B1/2wi. It follows from the properties of symmetric eigenvalue problem that

uT
i u j = δi j.

Therefore, for i ̸= j, we have

0 = uT
i u j = wT

i B1/2B1/2w j = wT
i Bw j =

1
λ j

wT
i Aw j.

Next we consider the case that i = j:

λi = λiuT
i ui = λiwT

i B1/2B1/2wi = λiwT
i Bwi = wT

i Awi.

This completes the proof.

In the case that B is singular, an alternative formulation used frequently in machine

learning is

B†Aw = λw, (3.44)

where B† is the pseudoinverse of B. The connection between the eigenvalue problem in E-

q. (3.44) and the generalized eigenvalue problem Aw = λBw is summarized in the following

theorem:

Theorem 3.4 Let A ∈ Sd×d and B ∈ Sd×d , and assume that R(A) ⊆R(B), where R(A) and

R(B) are range spaces of A and B, respectively. If (λ ,w)(λ ̸= 0) is an eigenpair of the eigen-

value problem in Eq. (3.44), then (λ ,w) is also the eigenpair of the generalized eigenvalue

problem Aw = λBw. Conversely, if (λ ,w)(λ ̸= 0) is an eigenpair of the generalized eigen-

value problem Aw = λBw, then (λ ,BB†w) is also the eigenpair of the eigenvalue problem in

Eq. (3.44).

Proof First, we show that A = BB†A. Let the compact SVD of B be B = UBΣBVB, where

UB ∈ Rd×rB , VB ∈ Rd×rB , ΣB ∈ RrB×rB is diagonal and rB = rank(B). Thus, we have R(B) =
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R(UB). Since R(A) ⊆R(B) = R(UB), there exists a matrix R ∈ RrB×d such that A = UBR.

Thus, we have

BB†A = BB†UBR

= UBΣBVT
BVBΣ−1

B UT
BUBR

= UBR

= A.

Note that we assume that A and B are symmetric, then we have A = BB†A = AB†B.

Suppose (λ ,w)(λ ̸= 0) is an eigenpair of the eigenvalue problem B†Aw = λw, then

we have

B†Aw = λw

⇔ VBΣ−1
B UT

BUBRw = λw

⇒ Rw = λΣBVT
Bw

⇒ UBRw = λUBΣBVT w

⇔ Aw = λBw,

which implies that (λ ,w) is also the eigenpair of the generalized eigenvalue problem Aw =

λBw.

Next we prove the second part of this theorem. Suppose (λ ,w)(λ ̸= 0) is an eigenpair

of the generalized eigenvalue problem Aw = λBw. Then we have

Aw = λBw

⇒ AB†Bw = λBw

⇒ B†A
(
B†Bw

)
= λB†Bw,

which implies that (λ ,BB†w) is also the eigenpair of the eigenvalue problem B†Aw = λw.

Note that in the derivation we use the fact that A = AB†B. This completes the proof of this

theorem.

88



Algorithms for the Generalized Eigenvalue Problem

Many algorithms have been developed to solve the generalized eigenvalue problem in Eq. (3.38) [217].

A natural method to solve the generalized eigenvalue problem when B is nonsingular is to trans-

form it into the following eigenvalue problem:

B−1Aw = λw. (3.45)

However, this approach suffers from several limitations. First, the eigenvalues computed by

Eq. (3.45) could deviate from true eigenvalues significantly when B−1A is ill-conditioned. In

addition, B−1A is usually not symmetric, thus many efficient methods for symmetric eigenvalue

problems cannot be applied [172]. In addition, when A and B are sparse, such sparsity is not

preserved in B−1A, since the inverse of a sparse matrix may not be sparse.

In numerical linear algebra, the Cholesky decomposition is commonly applied to solve

the symmetric generalized eigenvalue problem by transforming it into a symmetric eigenvalue

problem [137, 217]. Assume that both A and B are symmetric and B is positive definite. In

this case, the pair (A,B) is called a symmetric pair. As a result, we can obtain the Cholesky

decomposition of B as

B = LLT , (3.46)

where L is a lower triangular matrix and all its diagonal entries are positive. Denote v = LT w.

Then w = L−T v. The generalized eigenvalue problem can be transformed into the following

eigenvalue problem:

Aw = λBw⇔ AL−T v = λLv⇔ L−1AL−T v = λv. (3.47)

One benefit of the Cholesky decomposition is that the resulting eigenvalue problem in Eq. (3.47)

is symmetric. Thus, efficient algorithms for symmetric eigenvalue problem, such as the Lanczos

method [172, 217], can be applied. In addition, it is shown that the eigenvalues for the original

generalized eigenvalue problem are real based on Eq. (3.47). However, the eigenvalues may not

be real when B is not positive definite [137].

In order to further improve the efficiency, some algorithms based on the incomplete

Cholesky decomposition have been proposed to solve CCA and kernel CCA recently [103,194].
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The key idea of the incomplete decomposition is to find a lower triangular matrix L̃∈Rd×d̃(d̃ <

d) for small d̃ such that

B≈ L̃L̃T . (3.48)

In other words, the norm of the difference B− L̃L̃T is less than some threshold. In terms of

the implementation, the pivots below a certain threshold are skipped in comparison with the

standard Cholesky decomposition.

Although the incomplete Cholesky decomposition provides an efficient method for

solving the generalized eigenvalue problem, it cannot scale to large-size data sets and only

approximate solution is obtained. It turns out that a class of dimensionality reduction tech-

niques, including CCA, in the form of the generalized eigenvalue problem in Eq. (3.38), can

be transformed equivalently into a least squares problem [138, 139]. As a result, efficient al-

gorithms for solving the least squares, such as the conjugate gradient algorithm [172], can be

applied. We postpone the discussion of the equivalence relationship and the resulting efficient

implementations in Chapter 4 an Chapter 5.
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Chapter 4

HYPERGRAPH SPECTRAL LEARNING

4.1 Introduction

One of the challenges of multi-label learning is how to effectively utilize the correlation among

different labels in classification. In this chapter, we employ hypergraph [132] to capture the

correlation among different labels for improved classification performance. A hypergraph is a

generalization of the traditional graph in which the edges are arbitrary non-empty subsets of the

vertex set. It has been applied for domains where higher-order relations such as co-authorship

exist [132, 218]. We employ hypergraphs to exploit the higher-order relations among multiple

instances sharing the same label in multi-label learning. Specifically, we construct a hyperedge

for each label, and include all instances annotated with a common label into one hyperedge,

thus capturing their joint similarity. Following the spectral graph embedding theory [135], we

compute the lower-dimensional embedding through a linear transformation, which preserves

the instance-label relations captured by the hypergraph. The projection is guided by the label

information encoded in the hypergraph.

The resulting hypergraph learning formulation amounts to solving a generalized eigen-

value problem, which may be computationally expensive for large-scale problems. It turns

out that a class of dimensionality reduction algorithms in machine learning can be formulated

as generalized eigenvalue problems. Such algorithms include Canonical Correlation Analysis

(CCA) [129], Orthonormalized Partial Least Squares (OPLS) [97], and Linear Discriminant

Analysis (LDA) [166]. Although well-established algorithms in numerical linear algebra have

been developed to solve generalized eigenvalue problems, they are in general computationally

expensive and hence may not scale to large-scale machine learning problems. In addition, it is

challenging to directly incorporate the sparsity constraint into the mathematical formulation of

these algorithms. Sparsity often leads to easy interpretation and a good generalization ability. It

has been used successfully in several algorithms including linear regression [124], and Principal

Component Analysis (PCA) [125].

Multivariate Linear Regression (MLR) that minimizes the sum-of-squares error func-

tion, called least squares, is a classical technique for regression problems. It can also be applied
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for classification problems by defining an appropriate class indicator matrix [173]. The solu-

tion to the least squares problem can be obtained by solving a linear system of equations, and

a number of algorithms, including the conjugate gradient algorithm, can be applied to solve it

efficiently [172]. Furthermore, the least squares formulation can be readily extended using the

regularization technique. For example, the ℓ1-norm regularization can be incorporated into the

least squares formulation to improve sparsity and control model complexity [173].

Motivated by the mathematical and numerical properties of the generalized eigenvalue

problem and the least squares formulation, several researchers have attempted to connect these

two approaches. In particular, it has been shown that there is close relationship between LDA,

CCA, and least squares [79, 138, 173, 219, 220]. However, the intrinsic relationship between

least squares and other algorithms involving generalized eigenvalue problems mentioned above

remains unclear. In this chapter, we also study the relationship between the least squares formu-

lation and a class of dimensionality reduction algorithms in machine learning. In particular, we

establish the equivalence relationship between these two formulations under a mild condition.

As a result, various regularization techniques such as the ℓ1-norm and ℓ2-norm regularization

can be readily incorporated into the formulation to improve model sparsity and generalization

ability. In addition, this equivalence relationship leads to efficient and scalable implementations

for these generalized eigenvalue problems based on the iterative conjugate gradient algorithms

such as LSQR [221]. An incremental implementation for this class of dimensionality reduction

algorithms is also proposed based on the equivalent least squares formulation.

We have conducted experiments using some benchmark data sets, and our results demon-

strate the effectiveness of the proposed hypergraph spectral learning formulation for multi-label

classification. The experiments on benchmark data sets confirm the equivalence relationship

between the generalized eigenvalue problem and the corresponding least squares formulation

for all dimensionality reduction algorithms addressed in this chapter under the given assump-

tion. Our results show that even when the assumption does not hold, the performance of these

two models is still very close. Results also demonstrate the efficiency and effectiveness of the

equivalent least squares formulation and its extensions.
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The rest of this chapter is organized as follows. We review the basics of hypergraph and

hypergraph Laplacian in Section 4.2, and we present our multi-label learning formulation based

on hypergraph in Section 4.3. The class of dimensionality reduction algorithms are reviewed

in Section 4.4, and the equivalence relationship between the generalized eigenvalue problem

and the corresponding least squares formulation is established in Section 4.5. The extensions

based on the least squares formulation are discussed in Section 4.6. We present the efficient

implementation for the class of dimensionality reduction algorithms in Section 4.7. The incre-

mental implementation based on the least squares formation is discussed in Section 4.8. The

experimental results are reported in Section 4.9, and this chapter concludes in Section 4.10.

4.2 Backgrounds

We review the basics of hypergraph in this section. In particular, we discuss three different

approaches to defining the Laplacian for the hypergraph, including the star expansion, the clique

expansion and some direct definitions of hypergraph Laplacian.

Basics of Hypergraph

A hypergraph [132–134] is a generalization of the traditional graph in which the edges, called

hyperedges, are arbitrary non-empty subsets of the vertex set. In a hypergraph G = (V,E), V is

the vertex set and E is the edge set, where each e ∈ E is a subset of V . A hyperedge e is said

to be incident with a vertex v when v ∈ e. The degree of a hyperedge e, denoted as δ (e), is the

number of vertices in e, i.e.,

δ (e) = |e|. (4.1)

The degree of every edge in a traditional graph is 2, and it is therefore called a “2-graph”. The

degree of a vertex v ∈V , d(v), is defined as

d(v) = ∑
v∈e,e∈E

w(e), (4.2)

where w(e) is the weight associated with the hyperedge e ∈ E. The degree of an edge δ (e) is

defined as

δ (e) = |e|. (4.3)
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The diagonal matrix forms for δ (e), d(v), w(e) are denoted as De, Dv, WH , respectively. The

vertex-edge incidence matrix J ∈ R|V |×|E| is defined as

J(v,e) =


1 if v ∈ e

0 otherwise.
(4.4)

Based on the above definitions, the following equations can be verified:

d(v) = ∑
e∈E

w(e)J(v,e), (4.5)

δ (e) = ∑
v∈V

J(v,e). (4.6)

The adjacency matrix A is defined as

A = JWHJT −Dv. (4.7)

As the discrete analog of the Laplace-Beltrami operator on compact Riemannian man-

ifolds [135], the graph Laplacian is extensively used in machine learning and data mining,

especially in semi-supervised learning [222] and spectral clustering [223,224]. Since the graph

Laplacian matrix plays an important role in learning, a key issue of hypergraph is how to define

the graph Laplacian matrix for the hypergraph.

The graph Laplacian has already been extended to higher-order structures [225]. Simi-

lar to traditional 2-graph, the Laplacian can be defined for hypergraph using the analogies from

the Laplace-Beltrami operator on Riemannian manifolds. Formally, a function is called p-chain

if it is defined for simplices with size p. For example, in traditional 2-graph f : V → R is

0-chain, and f : E → R is 1-chain. The general definition of the pth Laplacian operator on

p−chains in hypergraph can be defined as:

Lp = ∂p+1∂ T
p+1 +∂ T

p ∂p, (4.8)

where ∂p is the boundary operator that maps on p-chains to (p− 1)-chains, and ∂ T
p is the co-

boundary operator that maps on (p−1)-chains to p-chains. In fact, Lp measures the change of

functions defined on p-sized subsets of the vertex set, i.e. p-chains. Note that this definition is

the same as the Laplace operator on p−forms on a Riemannian manifold [226]. When p = 0,

the Laplacian defined in Eq. (4.8) reduces to the normally used Laplacian matrix in machine

learning [222].
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One drawback of the definition in Eq. (4.8) is that it cannot capture useful information

in the learning process. It follows from the definition in Eq. (4.8) that Lp only considers p-

chains and p−1 chains. However, in machine learning one fundamental goal is the learning of

the vertex function, i.e., 0-chain. For example, in classification we are interested in the class

label for each vertex, which is typically a 0-chain. Thus, Lp(p > 1) cannot give information for

0-chain, and may not be useful in practice.

In order to capture the underlying information from hypergraph for learning 0-chains,

many hypergraph Laplacian matrices are proposed [132]. Specifically, one can either define

hypergraph Laplacian directly using the analogies from traditional 2-graph or expand it into

a 2-graph. It has been shown that the Laplacians defined in both ways are similar [132]. In

addition, the eigenvectors of these Laplacians have been shown to be useful for learning higher-

order relations, and that there is a close relationship between their hypergraph Laplacians and

the structure of the hypergraph. In this section, we discuss two commonly used expansions as

well as some hypergraph Laplacian defined directly.

The Clique Expansion

In graph theory, a clique in an undirected graph G is a set of vertices C such that for every

two vertices in C, there exists an edge connecting the two. This is equivalent to saying that the

subgraph induced by C is a complete graph. In clique expansion, each hyperedge is expanded

into a clique. Denote by Gc = (Vc,Ec) the 2-graph expanded from hypergraph G = (V,E) using

the clique expansion. We have Vc =V and Ec = {(u,v) : u ∈ e,v ∈ e,e ∈ E}. The edge weight

wc(u,v) of Gc is given by

wc(u,v) = ∑
u,v∈e,e∈E

w(e). (4.9)

Thus, the adjacency matrix in the clique expansion can be written in the following matrix form:

Ac = JWHJT . (4.10)

The vertex degree in the expanded 2-graph Gc = (Vc,Ec) can be expressed as

dc(u) = ∑
v∈V

wc(u,v) = ∑
e∈E

J(u,e)(δ (e)−1)w(e). (4.11)
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Let Dc be the diagonal matrix form for dc(u). Then the normalized Laplacian of Gc is

given by

Lc = D−1/2
c (Dc−Ac)D

−1/2
c = I−Sc,

where Sc is defined as

Sc = D−1/2
c AcD−1/2

c = D−1/2
c JWHJT D−1/2

c . (4.12)

Intuitively, the similarity between two vertices in clique expansion is proportional to the weights

of common labels, thus capturing the instance-label relations.

The Star Expansion

In star expansion, a new vertex is introduced for each hyperedge and this new vertex is connect-

ed to each vertex in this hyperedge. Specifically, for a hypergraph G = (V,E), the vertex and

edge sets of the star-expanded 2-graph, denoted as V∗ and E∗, are defined as V∗ = V ∪E and

E∗ = {(u,e) : u ∈ e,e ∈ E}, respectively. Thus, each hyperedge in G is expanded into a star in

G∗, which is a bipartite graph.

The weight w∗(u,e) of edge (u,e) in G∗ is defined as

w∗(u,e)
△
=

w(e)
δ (e)

, (4.13)

where w(e) and δ (e) are the weight and degree of hyperedge e, respectively. Since V∗ =V ∪E,

we can assume that in V∗, all v ∈ V are ordered before v ∈ E. Then the adjacency matrix

A∗ ∈ R(|V |+|E|)×(|V |+|E|) can be formulated as

A∗ =

 0 M

MT 0

 , (4.14)

where M ∈ R|V |×|E| and its (u,e) entry is given as follows:

M(u,e)
△
=

J(u,e)w(e)
δ (e)

. (4.15)

The degree of each vertex in the star-expanded graph G∗ can be computed as follows:

d∗(u) = ∑
e∈E

J(u,e)w(e)
δ (e)

, if u ∈V, (4.16)

d∗(e) = ∑
u∈e

w(e)
δ (e)

= w(e), if e ∈ E. (4.17)
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We use D∗v and D∗e to denote the diagonal matrices of vertex degrees for vertices in V

and E, respectively. Thus, the normalized Laplacian for G∗ can be expressed as follows:

L∗ = I−

 D∗v 0

0 D∗e


− 1

2

A∗

 D∗v 0

0 D∗e


− 1

2

. (4.18)

By substituting Eq. (4.14) into Eq. (4.18), it can be shown that L∗ can be simplified as

L∗ =

 I −B

−BT I

 , (4.19)

where B = D−1/2
∗v MD−1/2

∗e , or its (u,e)th entry is

B(u,e) =
M(u,e)√

d∗(u)
√

d∗(e)
=

J(u,e)w(e)√
d∗(u)

√
d∗(e)δ (e)

. (4.20)

Suppose xT = [xT
v ,xT

e ] is an eigenvector of Laplacian L∗ with corresponding eigenvalue

γ , where L∗ is the normalized Laplacian for the expanded graph, then we have I −B

−BT I


xv

xe

= γ

xv

xe

 .
This eigenvalue problem can be simplified as follows:

xv−Bxe = γxv,−BT xv +xe = γxe

⇔ Bxe = (1− γ)xv, BT xv = (1− γ)xe

⇒ BBT xv = (γ−1)2xv. (4.21)

In spectral learning, the eigenpair of the Laplacian L∗ is essential for learning. Recall that

only xv corresponds to the real vertices in the original hypergraph while xe corresponds to the

constructed vertices, thus xv and its corresponding eigenvalue are more important for learning.

It follows from Eq. (4.21) that we can obtain the eigenpair (xv,γ) from BBT and simplify the

computation. We denote S∗ = BBT in the following discussion, and the equivalent matrix form

is

S∗ = D∗v−1/2MD∗e−1MT D∗v−1/2. (4.22)

Intuitively, the constructed vertices connect to the vertices from the corresponding la-

bel in star expansion, capturing the interaction between the data points and the labels. Thus,
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(B) Graph representation
      of hypergraph

(C) Clique expansion (D) Star expansion
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(A) Table representation
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Figure 4.1: Illustration of a hypergraph and two hypergraph extensions (clique and star)

in multi-label learning the relationship among different labels can then be captured by their

interactions with the data points. More details can be found in [132, 227].

A hypergraph example, including its table representation, graph representation, as well

as the corespoinding clique expansion and star expansion, is demonstrated in Figure 4.1.

Hypergraph Laplacian

Several other definitions of hypergraph Laplacian have been proposed using analogies from the

graph Laplacian for traditional 2-graph, such as Bolla’s Laplacian [228], Rodriguez’s Lapla-

cian [229,230] and Zhou’s Laplacian [218]. In the following, we discuss Zhou’s Laplacian due

to its popularity and good performance [218, 231].

Following the random walk model, Zhou et al. [218] proposed the following normalized

hypergraph Laplacian Lz:

Lz = I−Sz, (4.23)

where

Sz = D−
1
2

v JWHD−1
e JT D−

1
2

v .

In the random walk model, given the current position u∈V , the walker first chooses a hyperedge

e over all hyperedges incident with u with the probability proportional to w(e), and then chooses

a vertex v ∈ e uniformly at random. Note that each label corresponds to a hyperedge in our

framework. The transition probability between the nodes associated with two labels captures

their similarity. More details can be found in [218].

98



Multivariate Linear Regression and Least Squares

We have discussed regression techniques in Chapter 2, including Ordinary Least Squares (OLS),

Principal Component Regression (PCR), ridge regression and PLS regression. In this subsec-

tion, we discuss ordinary least squares, which is a classical technique for both regression and

classification [173]. Given a set of observations xi ∈ Rd (1 ≤ i ≤ n) and their corresponding

targets ti ∈ Rk (1≤ i≤ n), the goal is to fit a linear model

t = WT x+b

to the data, where b ∈ Rk is the bias vector, and W ∈ Rd×k is the weight matrix. Assuming

that both the observations {xi}n
i=1 and the targets {ti}n

i=1 are centered, the bias term becomes

zero and can be ignored. The optimal W can be computed by minimizing the following sum-

of-squares error function:

n

∑
i=1
∥WT xi− ti∥2

2 = ∥WT X−T∥2
F , (4.24)

where T = [t1, . . . , tn] ∈ Rk×n. The optimal matrix W is

Wls = (XXT )†XTT . (4.25)

When least squares is applied for classification, T is known as the class indicator matrix. Typi-

cally the 1-of-k binary coding scheme is applied: Ti j = 1 if t j belongs the the ith class or label,

otherwise Ti j = 0.

Least squares problems can be solved efficiently using existing techniques, which is

very attractive for large-scale data analysis. Many iterative algorithms, including the conjugate

gradient method, have been proposed in the literature [172, 221]. Compared with the direct

methods, these iterative algorithms converge very fast for large and sparse problems.

4.3 Multi-label Learning with Hypergraph

In this section, we present our multi-label learning formulation based on hypergraph. We pro-

pose to learn from multi-label data by exploiting the spectral property of hypergraph that en-

codes the correlation information among labels. To capture the correlation among labels, we

create a hyperedge for each label and include all data points relevant to this label into the
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hyperedge. Based on the Laplacian of the constructed hypergraph, we propose the hypergraph

spectral learning framework for learning a lower-dimensional embedding through a linear trans-

formation W by solving the following optimization problem:

min
W

Tr(WT XL XT W) (4.26)

s. t. WT XXT W = Ik,

where L is the normalized Laplacian of the hypergraph, and W ∈ Rd×k is the projection ma-

trix. In this formulation, the objective function in Eq. (4.26) attempts to preserve the inherent

relationship among data points captured by the Laplacian [232]. It follows from the traditional

spectral graph embedding theory [135] that data points sharing many common labels tend to be

close to each other in the embedded space.

Define the matrix S as

S = I−L . (4.27)

It follows from the property of the normalized Laplacian L that S ∈ Rn×n reflects the nor-

malized similarities between different instances (or vertices). Hence, the original optimization

problem in Eq. (4.26) can be reformulated equivalently into the following form:

max
W

Tr(WT XSXT W) (4.28)

s. t. WT XXT W = Ik.

It can be verified that the optimal W∗ to Eq. (4.28) consists of the eigenvectors corresponding

to the largest eigenvalues of the following generalized eigenvalue problem:

XSXT w = λXXT w, (4.29)

where γ ∈ R denotes the eigenvalue. In this chapter, we focus on the equivalent eigenvalue

problem formulation:

(XXT )†(XSXT )w = λw. (4.30)

To avoid the singularity of XXT , a regularization term γI with γ > 0 is commonly

added. This leads to the following regularized hypergraph spectral learning problem:

(
(XXT + γI)−1(XSXT )

)
w = λw. (4.31)
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Recall from Section 4.2 that different Laplacians can be constructed from the hypergraph that

encodes the label information, resulting in different spectral learning algorithms.

4.4 A Class of Generalized Eigenvalue Problems

We have investigated the generalized eigenvalue problem in Chapter 3. In this section, we focus

on a particular class of generalized eigenvalue problems in the following form:

XSXT w = λXXT w, (4.32)

where S ∈ Rn×n is a symmetric and positive semi-definite matrix. In general, we are interested

in the principal eigenvectors corresponding to nonzero eigenvalues. The generalized eigenvalue

problem in Eq. (4.32) is often reformulated as the following eigenvalue problem:

(XXT )†XSXT w = λw, (4.33)

where (XXT )† is the Moore-Penrose pseudoinverse of XXT . In addition, the generalized eigen-

value problem in Eq. (4.32) can also be formulated as the following optimization problem:

max
W

Tr(WT XSXT W) (4.34)

s. t. WT XXT W = I.

In the following derivation, we generally use the formulation in Eq.(4.33). Many existing di-

mensionality reduction algorithms exhibit the form in Eqs. (4.32) or (4.33). In particular, the

matrix S can be represented in the following form in supervised learning:

S = HHT , (4.35)

where H ∈Rn×k is often constructed from the label information for the data. In order to control

model complexity and avoid the singularity of XXT , a regularization term γId with γ > 0 is

generally added to XXT in Eq. (4.32), leading to the following generalized eigenvalue problem:

XSXT w = λ (XXT + γId)w. (4.36)

We discuss several dimensionality reduction algorithms involving the generalized eigen-

value problem in the form of Eq. (4.32). Specifically, they include Canonical Correlation Anal-

ysis (CCA), Orthonormalized Partial Least Squares (OPLS), Hypergraph Spectral Learning
101



(HSL), and Linear Discriminant Analysis (LDA). For supervised learning methods, the label

information is encoded in the matrix Y = [y1,y2, · · · ,yn] ∈ Rk×n, where yi( j) = 1 if xi belongs

to class j and yi( j) = 0 otherwise.

Canonical Correlation Analysis

Assume that YYT is nonsingular in CCA, as discussed in Eq. (3.12) in Chapter 3. The projec-

tion vector wx for X is the first principal eigenvector of the following generalized eigenvalue

problem:

XYT (YYT )−1YXT wx = λXXT wx. (4.37)

Multiple projection vectors can be obtained simultaneously by computing the first ℓ principal

eigenvectors of the generalized eigenvalue problem in Eq. (4.37). It can be observed that CCA

is in the form of the generalized eigenvalue problem in Eq. (4.32), and the matrices S and H are

defined as

S = YT (YYT )−1Y (4.38)

H = YT (YYT )−1/2. (4.39)

Orthonormalized Partial Least Squares

As we discussed in Eq. (2.14) in Chapter 2, the orthonormalized PLS involves the following

generalized eigenvalue problem:

XYT YXT w = λXXT w. (4.40)

It follows from Eq. (4.40) that orthonormalized PLS involves a generalized eigenvalue problem

in Eq. (4.32), and the matrices S and H are defined as

S = YT Y (4.41)

H = YT . (4.42)

Hypergraph Spectral Learning

Given the normalized Laplacian L for the constructed hypergraph, HSL involves the following

generalized eigenvalue problem:

XSXT w = λ (XXT )w, where S = I−L . (4.43)
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It turns out that the matrix S is symmetric and positive semi-definite for all three Laplacian

matrices, which can be represented as S = HHT , where H ∈ Rn×k. In all cases, the matrix

H is constructed from the label information Y explicitly without using matrix decomposition.

Specifically, the definitions of H for different Laplacian definitions are given as follows:

H∗ = D∗v−1/2MD∗e−1/2, (4.44)

Hc = D−1/2
c JW1/2

H , (4.45)

Hz = D−
1
2

v JW1/2
H D−1/2

e , (4.46)

where the definitions H∗, Hc, and Hz can be found in the discussions of the star expansion, the

clique expansion, and the Zhou’s Laplacian, respectively.

Linear Discriminant Analysis

As a supervised dimensionality reduction algorithm, LDA attempts to minimize the within-class

variance while maximizing the between-class variance after the linear projection. It has been

shown that the optimal linear projection consists of the top eigenvectors of S†
t Sb corresponding

to nonzero eigenvalues [166], where St is the total covariance matrix and Sb is the between-class

covariance matrix. Assuming that X is centered, i.e., ∑n
i=1 xi = 0, the matrices St and Sb can be

defined as follows:

St =
1
n

XXT , (4.47)

Sb =
1
n

k

∑
j=1

n jx̄ jx̄T
j , (4.48)

where x̄ j is the centroid of the jth class. We also assume that the data matrix X is partitioned

into k classes as X = [X1, · · · ,Xk], where X j ∈ Rd×n j corresponds to the data points from the

jth class, n j is the size of the jth class, and ∑k
j=1 n j = n. Note that x̄ j =

1
n j

X j1 j, where 1 j is a

vector of all ones with length n j. Thus, we have

nSb =
k

∑
j=1

1
n j

X j1 j1T
j XT

j

=
k

∑
j=1

X j

(
1
n j

1 j1T
j

)
XT

j

=
k

∑
j=1

X jS jXT
j = XSXT ,
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where S j =
1
n j

1 j1T
j , and S is defined as diag(S1,S2, · · · ,Sk) for LDA. Therefore, S†

t Sb can also

be expressed in the following form:

S†
t Sb = (XXT )†(XSXT ). (4.49)

It can be verified that S = HHT , where

H = diag(
1
√

n1
11,

1
√

n2
12, · · · ,

1
√

nk
1k) ∈ Rn×k. (4.50)

4.5 Generalized Eigenvalue Problem versus the Least Squares Problem

In this section, we investigate the relationship between the generalized eigenvalue problem in

Eq. (4.32) or its equivalent formulation in Eq. (4.33) and the least squares formulation. In

particular, we show that under a mild condition1, the eigenvalue problem in Eq. (4.33) can be

formulated as a least squares problem with a specific target matrix.

Matrix Orthonormality Property

To simplify the discussion, we define matrices CX and CS as follows:

CX = XXT ∈ Rd×d , (4.51)

CS = XSXT ∈ Rd×d . (4.52)

The eigenvalue problem in Eq. (4.33) can then be expressed as

C†
X CSw = λw. (4.53)

Recall that S is symmetric and positive semi-definite, thus it can be decomposed as

S = HHT , (4.54)

where H ∈ Rn×s, and s ≤ n. For all examples discussed in Section 4.4, the closed-form of H

can be obtained and s = k≪ n.

1It states that {xi}n
i=1 are linearly independent before centering, i.e., rank(X) = n−1 after the data is centered

(of zero mean).
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Since X is centered, i.e., X1= 0, we have XC=X, where C= I− 1
n 11T is the centering

matrix satisfying CT = C, and C1 = 0. It follows that

CS = XSXT

= (XC)S(XC)T

= X(CSCT )XT

= X(CT SC)XT

= XS̃XT , (4.55)

where S̃ = CT SC. Note that

1T S̃1 = 1T CT SC1 = 0. (4.56)

Thus, we can assume that 1T S1 = 0, that is, both columns and rows of S are centered. Before

presenting the main results, we have the following lemmas.

Lemma 4.1 Assume that 1T S1 = 0. Let H be defined in Eq. (4.54). Let HP = QR be the QR

decomposition of H with column pivoting, where Q∈Rn×r has orthonormal columns, R∈Rr×k

is upper triangular, r = rank(H) ≤ k, and P ∈ Rk×k is a permutation matrix. Then we have

QT 1 = 0.

Proof Since P is a permutation matrix, we have PT P = PPT = Ik. Then H can be reformulated

as follows:

H = H(PPT )

= QRPT .

Hence, we have

1T S1 = 1T HHT 1

= 1T QRPT PRT QT 1

= 1T QRRT QT 1

= 0.
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Note that RRT is positive definite, therefore, we can conclude that QT 1 = 0. This completes

the proof of this lemma.

Lemma 4.2 Let A ∈ Rm×(m−1) and B ∈ Rm×p (p ≤ m) be two matrices satisfying AT 1 = 0,

AT A = Im−1, BT B = Ip, and BT 1 = 0. Let F = AT B. Then FT F = Ip.

Proof Since AT 1 = 0 and AT A = Im−1, we can construct the orthogonal matrix Ax as follows:

Ax =

[
A,

1√
m

1
]
∈ Rm×m. (4.57)

Then we have

Im = AxAT
x = AAT +

1
m

11T ⇔ AAT = Im−
1
m

11T .

Since BT 1 = 0 and BT B = Ip, we obtain that

FT F = BT AAT B

= BT
(

Im−
1
m

11T
)

B

= BT B− 1
m
(BT 1)(BT 1)T

= Ip.

This completes the proof of this lemma.

Let R = URΣRVT
R be the thin singular value decomposition (SVD) of R ∈ Rr×k, where

UR ∈ Rr×r is orthogonal, VR ∈ Rk×r has orthonormal columns, and ΣR ∈ Rr×r is diagonal. It

follows that (QUR)
T (QUR) = Ir, and the SVD of S can be derived as follows:

S = HHT

= QRRT QT

= QURΣ2
RUT

RQT

= (QUR)Σ2
R (QUR)

T . (4.58)

Assume that the columns of X are centered, i.e., X1 = 0, and rank(X) = n−1. Let

X = UΣVT = U1Σ1VT
1
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be the SVD of X, where U and V are orthogonal, Σ ∈Rd×n is diagonal, U1Σ1VT
1 is the compact

SVD of X, U1 ∈ Rd×(n−1), V1 ∈ Rn×(n−1), and Σ1 ∈ R(n−1)×(n−1) is diagonal. Define M1 as

M1 = VT
1 (QUR) ∈ R(n−1)×r. (4.59)

It can be shown that the columns of M1 are orthonormal as summarized in the following lemma:

Lemma 4.3 Let M1 be defined as above. Then MT
1 M1 = Ir.

Proof Since X1 = 0, we have VT
1 1 = 0. Also note that VT

1 V1 = In−1 and (QUR)
T (QUR) = Ir.

It follows from Lemma 4.1 that

(QUR)
T 1 = UT

RQT 1 = 0.

Then we have from Lemma 4.2 that MT
1 M1 = Ir.

The Equivalence Relationship

We first derive the solution to the eigenvalue problem in Eq. (4.33) in the following theorem:

Theorem 4.1 Let U1, Σ1, V1, Q, ΣR, and UR be defined as above. Assume that the columns

of X are centered, i.e., X1 = 0, and rank(X) = n− 1. Then the nonzero eigenvalues of the

eigenvalue problem in Eq. (4.33) are diag(Σ2
R), and the corresponding eigenvectors are Weig =

U1Σ−1
1 VT

1 QUR.

Proof It follows from Lemma 4.3 that the columns of M1 ∈R(n−1)×r are orthonormal. Hence,

there exists M2 ∈ R(n−1)×(n−1−r) such that M = [M1,M2] ∈ R(n−1)×(n−1) is orthogonal [172].

Then we can derive the eigen-decomposition of the matrix C†
X CS as follows:

C†
X CS

=
(
XXT )† XSXT

= (U1Σ−2
1 UT

1 )U1Σ1VT
1 (QUR)Σ2

R (QUR)
T V1Σ1UT

1

= U1Σ−1
1 VT

1 (QUR)Σ2
R (QUR)

T V1Σ1UT
1

= U1Σ−1
1 M1Σ2

RMT
1 Σ1UT

1
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= U

In−1

0

Σ−1
1

[
M1 M2

]Σ2
R 0

0 0n−1−r


MT

1

MT
2

Σ1[In−1,0]UT

= U

In−1

0

Σ−1
1 M

Σ2
R 0

0 0n−1−r

MT Σ1[In−1,0]UT

= U

Σ−1
1 M

1


Σ2

R

0n−r


MT Σ1

1

UT . (4.60)

There are r nonzero eigenvalues, which are diag(Σ2
R), and the corresponding eigenvectors are

Weig = U1Σ−1
1 M1 = U1Σ−1

1 VT
1 QUR. (4.61)

This completes the proof of the theorem.

We summarize the main result of this section in the following theorem:

Theorem 4.2 Assume that the class indicator matrix T for least squares classification is defined

as

T = UT
RQT ∈ Rr×n. (4.62)

Then the solution to the least squares formulation in Eq. (4.24) is given by

Wls = U1Σ−1
1 VT

1 QUR. (4.63)

Thus, the eigenvalue problem and the least squares problem are equivalent.

Proof When T is used as the class indicator matrix, then the solution to the least squares

problem is

Wls = (XXT )†XTT

= (XXT )†XQUR

= U1Σ−2
1 UT

1 U1Σ1VT
1 QUR

= U1Σ−1
1 VT

1 QUR.

It follows from Eq. (4.61) that Wls = Weig. This completes the proof of the theorem.
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Remark 4.1 The analysis in [138, 219] is based on a key assumption that the H matrix in S =

HHT as defined in Eq. (4.54) has orthonormal columns, which is the case for LDA and CCA.

However, this is in general not true, e.g., the H matrix in OPLS and HSL. The equivalence result

established in this chapter significantly improves previous work by relaxing this assumption.

The matrix Weig is applied for dimensionality reduction (projection) for all examples

of Eq. (4.32). The weight matrix Wls in least squares can also be used for dimensionality

reduction. If T = QT is used as the class indicator matrix, the weight matrix becomes W̃ls =

U1Σ−1
1 VT

1 Q. Thus, the difference between Weig and W̃ls is the orthogonal matrix UR. Note

that the Euclidean distance is invariant to any orthogonal transformation. If a classifier, such

as k-Nearest-Neighbor (kNN) and linear Support Vector Machines (SVM) [62] based on the

Euclidean distance, is applied on the dimensionality-reduced data via Weig and W̃ls, they will

achieve the same classification performance.

In some cases, the number of nonzero eigenvalues, i.e. r, is large (comparable to n). It

is common to use the top eigenvectors corresponding the largest ℓ < r eigenvalues as in PCA.

From Theorems 4.1 and 4.2, if we keep the top ℓ singular vectors of S as the class indicator

matrix, the equivalence relationship between the generalized eigenvalue problem and the least

squares problem holds, as summarized below:

Corollary 4.1 The top ℓ < r eigenvectors in Eq. (4.33) can be computed by solving a least

squares problem with the top ℓ singular vectors of S employed as the class indicator matrix.

4.6 Extensions

Based on the equivalence relationship established in Section 4.5, the original generalized eigen-

value problem in Eq. (4.32) can be extended using the regularization technique. Regularization

is commonly used to control the complexity of the model and improve the generalization per-

formance. As we discussed in Chapter 2, ridge regression [79] minimizes the penalized sum-of-

squares error function by incorporating the ℓ2-norm regularization. By using the target matrix

T in Eq. (4.62), we obtain the ℓ2-norm regularized least squares formulation by minimizing the
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following objective function:

L2(W,γ) = ∥WT X−T∥2
F + γ

k

∑
j=1
∥w j∥2

2, (4.64)

where W = [w1, . . . ,wk] and γ > 0 is the regularization parameter. We can then apply the LSQR

algorithm, a conjugate gradient method proposed in [221] for solving large-scale sparse least-

squares problems. The complexity analysis is discussed in detail in the next section.

It is well-known that model sparsity can often be achieved by applying the ℓ1-norm

regularization [124, 208]. This has been introduced into the least squares formulation and the

resulting model is called lasso [124]. Based on the established equivalence relationship between

the original generalized eigenvalue problem and the least squares formulation, we derive the ℓ1-

norm regularized least squares formulation by minimizing the following objective function:

L1 = ∥WT X−T∥2
F + γ

k

∑
j=1
∥w j∥1, (4.65)

for some tuning parameter γ > 0 [124]. The lasso can be solved efficiently using the state-of-

the-art algorithms [212–214]. In addition, the entire solution path for all values of γ can be

obtained by applying the least angle regression algorithm [233].

In the following discussion, the equivalent least squares formulation for all dimension-

ality reduction algorithms are named using a prefix “LS” such as “LS-Star”, and the resulting

ℓ1-norm and ℓ2-norm regularized formulations are named by adding subscripts 1 and 2, respec-

tively, e.g., “LS-Star1” and “LS-Star2”. For the original eigenvalue problem with regularization

in Eq. (4.31), we name it using a prefix “r” before the corresponding method, e.g., “rStar”.

4.7 Efficient Implementation via LSQR

Recall that we deal with the generalized eigenvalue problem in Eq. (4.32), although an equiva-

lent eigenvalue problem in Eq. (4.33) is used in our theoretical derivation. Large-scale general-

ized eigenvalue problems are known to be much harder than regular eigenvalue problems [234].

There are two options to transform the problem in Eq. (4.32) into a standard eigenvalue prob-

lem [234]: (1) factor XXT ; and (2) employ the standard Lanczos algorithm for the matrix

(XXT )−1XSXT using the XXT inner product. The second option has its own issue for singular

matrices, which is the case for high-dimensional problems with a small regularization. Thus,

we factor XXT and solve a symmetric eigenvalue problem using the Lanczos algorithm.
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Algorithm 5 Efficient Implementation of the GEP via LSQR
Input: X, H.
Output: W.

Compute the QR decomposition of H: HP = QR.
Compute the SVD of R: R = URΣRVT

R .
Compute the class indicator matrix T = UT

RQT .
Compute W by regressing X on T using LSQR.

The equivalent least squares formulation leads to an efficient implementation. The

pseudo-code of the algorithm is given in Algorithm 5. Next we analyze the time complexity of

the Algorithm 5. The complexity of the QR decomposition in the first step is O(nk2). Note that

k is the number of classes (or labels), and k≪ n. The SVD of R costs O(k3). In the last step, we

solve k least squares problems. In our implementation, we use the LSQR algorithm proposed

in [221], which is a conjugate gradient method for solving large-scale least squares problems.

In practice, the original data matrix X ∈ Rd×n may be sparse in many applications such as text

document modeling. Note that the centering of X is necessary in some techniques such as CCA.

However, X is no longer sparse after centering. In order to keep the sparsity of X, we follow the

method proposed in [220] to augment the vector xi by an additional component as x̃T
i = [1,xT

i ],

and the extended data matrix X is denoted as X̃ ∈ R(d+1)×n. This new component acts as the

bias for least squares. The revised least squares problem is formulated as

min
W̃
∥W̃T X̃−T∥2

F , (4.66)

where W̃ ∈ R(d+1)×k. For a new data point x ∈ Rd , its projection is given by W̃T
[1;x].

For the dense data matrix, the overall computational cost of each iteration of LSQR is

O(3n+ 5d + 2dn) [221]. Since the least squares problems are solved k times, the overall cost

of LSQR is O(Nk(3n+5d +2dn)), where N is the total number of iterations. When the matrix

X̃ is sparse, the cost is significantly reduced. Let the number of nonzero elements in X̃ be z,

then the overall cost of LSQR is reduced to O(Nk(3n+ 5d + 2z)). In summary, the total time

complexity for solving the least squares formulation via LSQR is O(nk2 +Nk(3n+5d +2z)).

4.8 Incremental Dimensionality Reduction Algorithms

Most of dimensionality reduction algorithms work in a batch or offline mode, i.e., they assume

that the whole data set is available in advance from the beginning. However, in many data
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mining and machine learning tasks, the data accumulates over time. When the new data points

arrive, one needs to rerun the entire algorithm with the updated data set, which is prohibitively

expensive especially for large-scale problems. Hence, the batch algorithms are unsuitable for

sequentially coming data. In this case, it is suitable to apply the incremental algorithms, or

online algorithms to process the accumulated data and update the model sequentially. The

online or incremental algorithms process the input piece-by-piece in a serial fashion since the

entire training data set is not available in the beginning. The basic idea of online algorithms is to

maintain a model which can be updated incrementally by the information conveyed by the new

data points with low computational cost. Recently, some incremental dimensionality reduction

algorithms have been proposed in the literature, such as incremental algorithms for LDA [235–

239]. Unfortunately, most incremental algorithms for LDA only provide approximate solutions.

In this section, we present an incremental implementation for the same class of di-

mensionality reduction algorithms discussed in this chapter using the equivalence relationship

between them and the corresponding least squares formulation. Under the assumption that all

data points are linearly independent before centering, the solution to the generalized eigen-

value problem in Eq. (4.32) can be computed as follows using the target matrix T defined in

Eq. (4.62):

W = (XXT )†XTT = X†TT . (4.67)

Thus, in the incremental dimensionality reduction algorithms, the key is to update X† and T

incrementally as new data point arrives sequentially. Compared with existing online dimen-

sionality reduction algorithms, one advantage of the proposed implementation is that the exact

solution can be obtained in each step.

Formally, assume that at the pth(1 ≤ p ≤ n) step, the data point (xp,yp) arrives. The

data matrix and the label matrix are denoted as Xp = [x1,x2, . . . ,xp] and Yp = [y1,y2, . . . ,yp],

respectively. Throughout the algorithm, we assume that all the acquired data points are linearly

independent, i.e., rank(Xp) = p before centering. In the following, we will discuss how to

update X†
p and Yp incrementally.
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Update X† Incrementally

Denote Xp−1 = [x1,x2, . . . ,xp−1] ∈ Rd×(p−1) at the (p−1)th step. When the new data point xp

arrives, the data matrix Xp is updated as

Xp = [Xp−1,xp] ∈ Rd×p. (4.68)

Applying the method proposed in [240], we can update the pseudoinverse of Xp using the

following formula:

X†
p =

X†
p−1−dpbp

bp

 ,
where dp, cp and bp are defined as follows:

dp = X†
p−1xp,

cp = xp−Xp−1dp,

bp =


c†

p, if cp ̸= 0

dT
p X†

p−1

1+dT
p dp

, if cp = 0.

Note that we assume that rank(Xp)− rank(Xp−1) = 1, thus bp = c†
p =

cp
cT

p cp
. Another issue is

the centering of Xp using the current mean x̄p =
1
p ∑p

i=1 xi. In this case we maintain the mean

x̄p at the pth step, and update Xp and X†
p accordingly.

Update T Incrementally

Denote Yp−1 = [y1,y2, . . . ,yp−1]∈Rd×(p−1) at the (p−1)th step. When the new data yp arrives,

the data matrix Xp is updated as

Yp =
[
Yp−1,yp

]
∈ Rk×p. (4.69)

Note that k≪ n and k≪ d where k is the number of labels. Thus we can apply the procedures

in Algorithm 5 to compute the updated target matrix Tp explicitly at the pth step.

Note that for some specific dimensionality reduction algorithm, e.g., LDA, the update

of the target matrix can be performed more efficiently by utilizing special properties of the

corresponding target matrix. More details can be found in [241].
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Table 4.1: Summary of statistics of the data sets.

Data Set n d k
Scene 2407 294 6
Yeast 2417 103 14
USPS 9298 256 10
Yahoo\Arts&Humanities 3712 23146 26
Yahoo\Computers&Internet 6270 34096 33

4.9 Experiments

In this section, we empirically evaluate the effectiveness and efficiency of hypergraph spectral

learning. We also report experimental results that validate the established equivalence relation-

ship for all dimensionality reduction algorithms exhibiting the form of the generalized eigen-

value problem in Eq. (4.32). The scalability of the proposed least squares extensions is also

demonstrated.

Experimental Setup

These dimensionality reduction algorithms discussed in Section 4.4 can be divided into two cat-

egories: (1) CCA, PLS, and HSL for multi-label learning; and (2) LDA for multi-class learning.

We use both multi-label and multi-class data sets in the experiments, including the Scene data

set [4], the Yeast data set [28], the USPS data set [242], and two high-dimensional document

data sets [21, 22]. The Scene, Yeast and USPS data sets and the two document data sets from

Yahoo! are available online2,3. For all data sets, the labels that contain less than 50 instances

are removed. We follow the feature selection methods studied in [122] for text documents and

extract different numbers of terms to investigate the performance of algorithms. The statistic-

s of these data sets are summarized in Table 4.1, where n is number of data points, d is the

dimensionality, and k is the number of labels or classes.

For each data set, a transformation matrix W is learned from the training set, and it is

then used to project the test data onto a lower-dimensional space. The linear Support Vector

Machine (SVM) is applied for each label separately for classification. The Receiver Operating

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
3http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
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Characteristic (ROC) score and classification accuracy are used to evaluate the performance

of multi-label and multi-class tasks, respectively. Ten random partitions of the data sets into

training and test sets are generated in the experiments, and the mean performance over all labels

and all partitions are reported. All experiments are performed on a PC with Intel Core 2 Duo

T7200 2.0G CPU and 2G RAM. All algorithms in our experiments are implemented in Matlab.

Performance of Hypergraph Spectral Learning

In this section we investigate the performance of hypergraph spectral learning on multi-label

data sets. Three different Laplacian matrices of the constructed hypergraph are studied, includ-

ing clique expansion, star expansion and Zhou’s Laplacian matrix. The performance of HSL is
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Figure 4.2: Comparison of different formulations in terms of ROC scores for different algo-
rithms on the Yeast data set. CCA, OPLS and HSL are applied on the Yeast data set. For regular-
ized algorithms, the optimal value of γ is estimated from {1e−6,1e−4,1e−2,1,10,100,1000}
using cross validation.
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Figure 4.3: Comparison of different formulations in terms of accuracies for LDA on the USPS
data set. For regularized algorithms, the optimal value of γ is estimated from {1e− 6,1e−
4,1e−2,1,10,100,1000} using cross validation.

compared with CCA and Rank-SVM [28]. We also apply SVM to each label independently and

our results show that it is less effective than Rank-SVM and is thus omitted in the table. For all

algorithms with regularization, three-fold cross validation is applied to select the optimal value

of the regularization parameter. All the features of the Scene and Yeast data sets are used while

the most frequent 2000 terms of the Arts and Computers data sets are used. We report the mean

ROC score over all labels and all partitions for each algorithm in Table 4.2.

Note that for all data sets and the training/test partitions, the assumption that rank(X) =

n−1 is not satisfied, thus the equivalence relationship between the generalized eigenvalue for-

mulation in Eq. (4.32) and the corresponding least squares formulation does not hold. We can

observe from Table 4.2 that the performance of the hypergraph spectral learning formulations

and the corresponding least squares formulations is different, although very close in all cas-

es. Moreover, regularized algorithms always outperform those without regularization, which

justifies the use of regularization. Results in Table 4.2 show that the proposed methods with

regularization perform better than the Rank-SVM algorithm. Results also show that three dif-

ferent Laplacian matrices lead to similar performance, which is consistent with the theoretical

analysis in [132].
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Table 4.2: Summary of mean ROC scores over all labels of HSL, CCA and RankSVM.

Algorithm Scene Yeast Arts Computers
Training size 900 900 2000 2000
Clique 0.8548 0.6460 0.5215 0.5369
rClique 0.9216 0.6496 0.8106 0.7968
LS-Clique 0.8598 0.6493 0.5213 0.5375
LS-Clique2 0.9255 0.6523 0.8130 0.7996
Star 0.8546 0.6529 0.5209 0.5384
rStar 0.9216 0.6558 0.8051 0.7970
LS-Star 0.8597 0.6540 0.5209 0.5381
LS-Star2 0.9255 0.6565 0.8067 0.7999
Zhou 0.8547 0.6518 0.5206 0.5389
rZhou 0.9216 0.6521 0.8074 0.7991
LS-Zhou 0.8597 0.6537 0.5205 0.5389
LS-Zhou2 0.9254 0.6559 0.8087 0.8025
CCA 0.8538 0.6547 0.5213 0.5341
rCCA 0.9215 0.6555 0.8015 0.7917
LS-CCA 0.8586 0.6561 0.5215 0.5340
LS-CCA2 0.9255 0.6568 0.8036 0.7952
Rank-SVM 0.9001 0.6294 0.8073 0.7893

Evaluation of the Equivalence Relationship

In this experiment, we show the equivalence relationship between the generalized eigenvalue

problem and its corresponding least squares formulation for all dimensionality reduction algo-

rithms discussed in Section 4.4, i.e., CCA, OPLS, HSL and LDA. We observe that for all data

sets, when the data dimensionality d is larger than the sample size n, rank(X) = n−1 is likely

to hold. We also observe that the generalized eigenvalue problem and its corresponding least

squares formulation achieve the same performance when rank(X) = n− 1 holds. These are

consistent with the theoretical results in Theorems 4.1 and 4.2.

We compare the performance of the generalized eigenvalue problem and the corre-

sponding least squares formulation when the assumption in Theorems 4.1 and 4.2 is violated.

Figure 4.2 shows the mean ROC score over all labels of different formulations when the size

of training set varies from 100 to 900 with a step size about 100 on the Yeast data set. The

performance of CCA, OPLS and two variants of HSL is summarized in Figure 4.2. We can
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observe from the figure that when n is small, the assumption in Theorem 4.1 holds and the two

formulations achieve the same performance; when n is large, the assumption in Theorem 4.1

does not hold and the two formulations achieve different performance, although the difference

is always very small in the experiment. We can also observe from Figure 4.2 that the regularized

methods outperform the unregularized ones, which validates the effectiveness of regularization.

Similar experiment is performed for LDA on the multi-class USPS data, and its perfor-

mance is summarized in Figure 4.3. From Figure 4.3 we can make the similar observations.

Evaluation of Scalability

In this experiment, we compare the scalability of the original generalized eigenvalue problem

and the equivalent least squares formulation. Since regularization is commonly employed in

practice, we compare the regularized version of the generalized eigenvalue problem and its

corresponding ℓ2-norm regularized least squares formulation. The least squares problem is

solved by the LSQR algorithm [221]. We solve the original generalized eigenvalue problem by

factoring XXT and solving a symmetric eigenvalue problem using the Lanczos method [234].

The computation time of the two formulations on the high-dimensional multi-label Ya-

hoo! data set is shown in Figure 4.4, where the data dimensionality increases and the training

sample size is fixed at 1000. All dimensionality reduction algorithms applid for multi-label data

are tesetd. It can be observed that the computation time for both algorithms increases steadi-

ly as the data dimensionality increases. However, the computation time of the least squares

formulation is substantially less than that of the original one.

We also evaluate the scalability of the two formulations in terms of the training sample

size. Figure 4.5 shows the computation time of the two formulations on the Yahoo! data set

as the training sample size increases with the data dimensionality fixed at 5000. We can also

observe that the least squares formulation is much more scalable than the original one.

4.10 Conclusions

In this chapter we present a hypergraph spectral learning formulation for multi-label classifi-

cation. In this formulation, a hypergraph is constructed to capture the correlation contained in

different labels. We show that HSL reduces to a generalized eigenvalue problem, which may
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be computationally expensive for large-scale problems. To reduce the computational cost, we

propose an efficient least squares formulation, which is shown to be equivalent to hypergraph

spectral learning under a mild condition. Furthermore, we show that a class of dimensionality

reduction algorithms exhibiting the form of the generalized eigenvalue problem similar to H-

SL are equivalent to the least squares formulation. This class of algorithms include Canonical

Correlation Analysis (CCA), Orthonormalized PLS (OLS), and Linear Discriminant Analysis

(LDA). Based on the least squares formulation, efficient algorithms for solving least squares

problems can be applied to scale these techniques to very large data sets. In addition, existing

regularization techniques for least squares can be incorporated to improve the generalization

ability and induce sparsity in the resulting model.

We have conducted experiments using benchmark data sets, and experimental results

show that hypergraph spectral learning is effective in capturing the higher-order relations in

multi-label problems. Our experimental results confirm the established equivalence relationship

under the given assumption for all dimensionality reduction algorithms exhibiting the form

of the generalized eigenvalue problem similar to HSL. Results show that the performance of

the least squares formulation and the original generalized eigenvalue problem is very close

even when the assumption is violated. Our experiments also demonstrate the effectiveness and

scalability of the least squares extensions.
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Figure 4.4: Computation time (in seconds) of the generalized eigenvalue problem and the cor-
responding least squares formulation on the Yahoo\Arts&Humanities data set as the data di-
mensionality increases. The x-axis represents the data dimensionality and the y-axis represents
the computation time.
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Figure 4.5: Computation time (in seconds) of the generalized eigenvalue problem and the cor-
responding least squares formulation on the Yahoo\Arts&Humanities data set as the training
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Chapter 5

THE SCALABLE TWO-STAGE APPROACH

5.1 Introduction

Recent technological innovations have allowed us to collect massive amounts of data with a

large number of features. One of the key issues in such data analysis is the curse of dimen-

sionality [11], i.e., an enormous number of samples is required to perform accurate prediction

on problems with large numbers of features. Dimensionality reduction, which extracts a small

number of features by removing the irrelevant, redundant, and noisy information, is an effec-

tive way to overcome the curse of dimensionality. Many dimensionality reduction algorithms

have been proposed in the past, including Canonical Correlation Analysis (CCA) [129], Partial

Least Squares (PLS) [97], Linear Discriminant Analysis (LDA) [166] and Hypergraph Spectral

Learning (HSL) [56]. A common characteristic of these algorithms is that they can be formu-

lated as a generalized eigenvalue problem. Although well-established algorithms in numerical

linear algebra exist to solve generalized eigenvalue problems [172, 234], they are in general

computationally expensive to solve and hence may not scale to large-size problems.

There have been several recent attempts to improve the scalability of dimensionali-

ty reduction algorithms [56, 138, 139, 220]. In Chapter 4, we transform some dimensionality

reduction techniques that exhibit the form of the generalized eigenvalue problem into an e-

quivalent least squares formulation, which can be solved efficiently using existing algorithms

such as the iterative conjugate gradient algorithm [172, 221]. However, it suffers from several

drawbacks, which limits its applicability in practice. First, the equivalent transformation relies

on a key assumption that all the data points are linear independent. This assumption tends to

hold for high-dimensional data, but it is likely to fail for (relatively) lower-dimensional data.

Secondly, the equivalence relationship between the least squares formulation and the original

formulation does not hold when the regularization is employed. However, regularization has

been shown to be effective in practice, and it has been used in many data mining and machine

learning algorithms including support vector machines [62].

In this chapter, we introduce an efficient two-stage approach to solve a class of di-

mensionality reduction algorithms, including CCA, OPLS, LDA and HSL. In the first stage we
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solve a least squares problem using the iterative conjugate gradient algorithm [172, 221]. The

distinct property of this stage is its low time complexity. In the second stage, the original data is

projected onto a lower-dimensional space, and then we solve a generalized eigenvalue problem

with a significantly reduced size. The proposed two-stage approach scales linearly in terms of

both the sample size and the data dimensionality, thus applicable for large-size problems. The

main contributions include:

• We rigorously prove the equivalence relationship between the two-stage approach and

the direct approach which solves the generalized eigenvalue problem directly. Compared

with previous work, the two-stage approach does not require any assumption and can be

applied in all cases.

• We show that the two-stage approach can be further extended to the regularization setting.

The equivalence relationship is also rigorously proved in this case.

We have conducted extensive experiments to evaluate the proposed two-stage approach using

both synthetic and real-world benchmark data sets. Our experimental results confirm the equiv-

alence relationship established in this chapter. Results also demonstrate the scalability of the

proposed two-stage approach.

The rest of this chapter is organized as follows: Section 5.2 reviews the class of dimen-

sionality reduction algorithms discussed in the chapter. In Section 5.3, we present the two-stage

approach and establish the equivalence relationship. We further extend the two-stage approach

to the regularization setting in Section 5.4. A comprehensive empirical study is reported in

Section 5.5. Finally, we conclude in Section 5.6.

5.2 A Class of dimensionality reduction algorithms

In this section we discuss a class of dimensionality reduction techniques. More details about

these techniques have been presented in Section 4.4. Specifically, the class of generalized

eigenvalue problems considered in this chapter are in the following form:

XSXT w = λXXT w, (5.1)
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where S ∈ Rn×n is a symmetric and positive semi-definite matrix. The principal eigenvectors

corresponding to nonzero eigenvalues of this generalized eigenvalue problem are of great inter-

est in machine learning and data mining. Typically, we reformulate the generalized eigenvalue

problem in Eq. (5.1) into the following standard eigenvalue problem:

(XXT )†XSXT w = λw, (5.2)

where (XXT )† is the Moore-Penrose pseudoinverse of XXT . As discussed in Section 3.6, we

can formulate the generalized eigenvalue problem in Eq. (5.1) equivalently as an optimization

problem:

max
W

Tr(WT XSXT W) (5.3)

s. t. WT XXT W = I.

Many existing dimensionality reduction algorithms are in the form in Eq. (4.32) or

(4.33), including CCA, OPLS, HSL and LDA. In particular, the matrix S can be expressed in

the following form:

S = HHT , (5.4)

where H ∈Rn×k is often constructed from the label information for the data. The definitions of

S and H for different dimensionality reduction algorithms are given in Section 4.4.

Regularization is commonly used to improve the generalization performance and con-

trol the model complexity. Specifically, a regularization term γId with γ > 0 is added to XXT

in Eq. (4.32) to avoid the singularity of XXT , resulting in the following generalized eigenvalue

problem with regularization:

XSXT w = λ (XXT + γId)w. (5.5)

5.3 The Two-Stage Approach without Regularization

In this section, we present our two-stage approach and show that this approach is equivalent to

the direct approach, which solves the generalized eigenvalue problem in Eq. (5.1).

The Algorithm

In the two-stage approach, we first solve a least squares problem by regressing X on HT . In other

words, HT can be considered as the “latent target” encoded by the label information Y. After
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Algorithm 6 The Two-Stage Approach without Regularization
Input: X, H.
Output: W.
Stage 1: Solve the following least squares problem:

min
W1
∥WT

1 X−HT∥2
F . (5.6)

Stage 2: Compute X̃ = WT
1 X, and solve the following optimization problem:

max
W2

Tr(WT
2 X̃HHT X̃T W2) (5.7)

s. t. WT
2 X̃X̃T W2 = Iℓ.

Compute W = W1W2 as the final solution.

projecting the data matrix X onto the subspace, we solve the resulting generalized eigenvalue

problem by replacing the data matrix in Eq. (5.1) with the projected data matrix. Note that the

data dimensionality is reduced dramatically after the projection, thus the resulting generalized

eigenvalue problem in the second step can be solved efficiently. The two-stage approach is

summarized in Algorithm 6.

Time Complexity Analysis

In our implementation, we apply the LSQR algorithm [221], a conjugate gradient method for

solving the least squares problem in the first stage. Previous studies have shown that LSQR is

reliable even for ill-conditioned problems [221]. In addition, when the data matrix X is sparse,

the least squares can be solved very efficiently using LSQR. Note that k least squares problem

are solved in the first stage of Algorithm 6, thus the total computational cost of the first stage is

O(Nk(3n+5d+2dn)) using LSQR when X is dense, where N is the total number of iterations.

When the data matrix X is sparse, the cost of LSQR is reduced to O(Nk(3n+5d +2z)), where

z is number of nonzero entries in X.

In the second stage, the cost of computing X̃ is O(ndk) when X is dense or O(kz) when

X is sparse. Since the size of X̃ is significantly reduced, the cost of solving the optimization

problem is O(nk2). The cost of combining W1 and W2 is O(nkℓ), where ℓ(ℓ≤ k) is the number

of final projection vectors. Therefore, the total computational cost is O(Nk(3n+5d +2z)+ kz)

when X is sparse.
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The Equivalence Relationship

Next we show the equivalence relationship between the two-stage approach and the direct ap-

proach, which solves the original eigenvalue problem in Eq.(4.33). It follows from the standard

techniques in linear algebra that the solution to the least squares problem in Eq. (5.6) is given

by

W1 = (XXT )†XH ∈ Rd×k. (5.8)

Let the singular value decomposition (SVD) [172] of X be

X = UΣVT = U1Σ1VT
1 , (5.9)

where U ∈ Rd×d and V ∈ Rn×n are orthogonal, U1 ∈ Rd×r and V1 ∈ Rn×r have orthonormal

columns, Σ ∈ Rd×n and Σ1 ∈ Rr×r are diagonal, and r = rank(X). Then W1 can be represented

as

W1 = U1Σ−1
1 VT

1 H. (5.10)

It follows that X̃ can be expressed as

X̃ = WT
1 X = HT V1Σ−1

1 UT
1 U1Σ1VT

1 = HT V1VT
1 , (5.11)

and

X̃X̃T
= HT V1VT

1 V1VT
1 H = HT V1VT

1 H.

Thus, the optimization problem in Eq. (5.7) can be simplified into the following form:

max
W2

Tr(WT
2 HT V1VT

1 HHT V1VT
1 HW2)

s. t. WT
2 HT V1VT

1 HW2 = Iℓ.

Denote

A = HT V1 ∈ Rk×r. (5.12)

Then the optimization problem in the second stage can be reformulated as follows:

max
W2

Tr(WT
2 AAT AAT W2) (5.13)

s. t. WT
2 AAT W2 = Iℓ.
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Let the compact SVD of A be

A = UAΣAVT
A , (5.14)

where UA ∈ Rk×t , ΣA ∈ Rt×t , VA ∈ Rr×t , and t = rank(A). Based on the above definitions, the

solution to the two-stage approach is summarized in the following theorem.

Theorem 5.1 The top ℓ projection vectors computed by Eq. (5.7) are given by

W2 = (UAΣ−1
A )ℓ, (5.15)

where (UAΣ−1
A )ℓ consists of the first ℓ(ℓ≤ rank(A)) columns of (UAΣ−1

A ). Thus, the projection

vectors computed by the two-stage approach are

W = W1W2 = U1Σ−1
1 VAℓ. (5.16)

When ℓ= rank(A), W can be simplified as

W = U1Σ−1
1 VA. (5.17)

Proof It follows from the Lagrange dual function in optimization theory that the optimization

problem in Eq. (5.13) can be expressed as the following eigenvalue problem:

(
AAT )† AAT AAT w2 = λw2. (5.18)

Next we derive the eigendecomposition of the matrix
(
AAT

)† AAT AAT as follows:

(
AAT )† AAT AAT

=
(
UAΣ2

AUT
A
)† UAΣ2

AUT
AUAΣ2

AUT
A

= UAΣ−2
A UT

AUAΣ4
AUT

A

= UAΣ2
AUA

= [UA,U⊥A ]

Σ2
A 0

0 0

 [UA,U⊥A ]
T ,

where [UA,U⊥A ] ∈ Rk×k is orthogonal. Thus, the eigenvectors corresponding to the top ℓ eigen-

values are given by

W2 = UAℓ,
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where UAℓ consists of the first ℓ columns of UA. To ensure that the constraint in Eq. (5.13) is

satisfied, we normalize the columns of W2 without affecting the range space of WT
2 :

W2 = (UAΣ−1
A )ℓ.

Combing Eqs. (5.10) and (5.15), we have

W = W1W2 = U1Σ−1
1 AT (UAΣ−1

A )ℓ = U1Σ−1
1 VAℓ.

When ℓ = rank(A), we have VAℓ = VA and W = U1Σ−1
1 VA. This completes the proof of this

theorem.

Note that the solution to the generalized eigenvalue problem in Eq. (5.1) consists of

the principal eigenvectors of matrix (XXT )†(XHHT XT ). We follow [138] to derive the eigen-

decomposition of (XXT )†(XHHT XT ) and show the equivalence relationship between the two-

stage approach and the direct approach. The results are summarized in the following theorem:

Theorem 5.2 The eigenvectors corresponding to the top ℓ eigenvalues of (XXT )†(XHHT XT )

are given by

W0 = U1Σ−1
1 VAℓ, (5.19)

where VAℓ consists of the first ℓ columns of VA. Thus, the two-stage approach produces the

same solution as the direct approach which solves the original generalized eigenvalue problem

directly.

Proof Given VA ∈ Rr×t with orthonormal columns, there exists V⊥A ∈ Rr×(r−t) such that

[VA,V⊥A ] ∈ Rr×r is an orthogonal matrix [172]. Hereafter, we denote [VA,V⊥A ] = Vs
A.

We can decompose (XXT )†(XHHT XT ) as follows:

(XXT )†(XHHT XT )

= U1Σ−2
1 UT

1 XHHT XT

= U1Σ−2
1 UT

1 U1Σ1VT
1 HHT V1Σ1UT

1

= U1Σ−1
1 AT AΣ1UT

1
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= U

Ir

0

Σ−1
1 AT AΣ1

[
Ir 0

]
UT

= U

Σ−1
1 AT AΣ1 0

0 0

UT

= U

Σ−1
1 Vs

A 0

0 I


Σ2

A 0

0 0


Vs

A
T Σ1 0

0 I

UT .

It is clear that the eigenvectors corresponding to the top ℓ eigenvalues of (XXT )†(XHHT XT )

are given by

W0 = U1Σ−1
1 VAℓ.

The equivalence relationship follows from Eqs. (5.16) and (5.19). This completes the proof of

the theorem.

A consequence of Theorem 5.1 is that solving the optimization problem in Eq. (5.7) in

the second stage amounts to computing the SVD of the matrix A. Note that A ∈ Rk×r, where

r = rank(X)≤min{d,n}, thus the computational cost of the SVD of A is quite low. In practice

we can perform SVD on A directly instead of solving the optimization problem in Eq. (5.7).

Remark 5.1 In Chapter 4 we discussed a equivalent least squares formulation for the same

class of dimensionality reduction algorithms, which is with the same computational cost as the

two-stage approach discussed in this chapter. However, the analysis in Chapter 4 assumes that

the data matrix X is of full rank (before centering). This tends to fail for (relatively) lower-

dimensional data. In particular, when the number of data points is larger than the number of

dimensions, this assumption is likely to be violated. The two-stage algorithm presented in this

chapter significantly improves previous work by relaxing this assumption.

5.4 The Two-Stage Approach with Regularization

Regularization is commonly employed to control the model complexity and avoid overfitting.

In this section we present the two-stage approach with regularization. We show the equiva-

lence relationship between the two-stage approach and the direct approach, which solves the

regularized generalized eigenvalue problem in Eq. (5.5).
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Algorithm 7 The Two-Stage Approach with Regularization
Input: X, H, γ .
Output: W.
Stage 1: Solve the following least squares problem:

min
W1
∥WT

1 X−HT∥2
F + γ∥W1∥2

F . (5.20)

Stage 2: Compute X̃ = WT
1 X and D = X̃H. Compute the compact SVD of D = UDΣDUT

D

and set W2 = UDΣ−1/2
D .

Compute W = W1W2 as the final solution.

The Algorithm

To handle the regularization in the generalized eigenvalue problem in Eq. (5.5), we solve a

penalized least squares problem, or ridge regression [79] in the first step. Note that the “latent

target” is the same as the one used in Algorithm 6, and the difference is the regularization term

included in the least squares problem. After projecting the data matrix X onto the subspace,

we compute an auxiliary matrix D ∈ Rk×k and its SVD. Intuitively, the SVD computation of D

amounts to solving the original optimization problem by replacing X with X̃. Note that the size

of D is very small, thus the cost of computing the SVD of D is relatively low. The algorithm

outline is summarized in Algorithm 7.

Time Complexity Analysis

Similar to Algorithm 6, the least squares problem in the first stage is solved using the LSQR

algorithm [221] with the same cost. In the second stage, since k≪ d, the most expensive part

is the computation of X̃ with a cost of O(kdn) if X is dense or O(kz) if X is sparse, where z is

the number of nonzero entries in the data matrix X. Therefore, the total computational cost is

O(Nk(3n+5d +2z)+ kz) if X is sparse.

The Equivalence Relationship

Next we show that the two-stage approach with regularization yields the same solution as the

direct approach, which solves the regularized generalized eigenvalue problem in Eq. (5.5). Fol-

lowing the standard techniques in linear algebra, the solution to the least squares problem with

regularization in Eq. (5.20) is given by

W1 = (XXT + γI)†XH = U1
(
Σ2

1 + γI
)−1 Σ1VT

1 H. (5.21)
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Then X̃ can be expressed as

X̃ = WT
1 X = HT V1Σ1

(
Σ2

1 + γI
)−1 Σ1VT

1 , (5.22)

and the matrix D ∈ Rk×k can be represented as:

D = X̃H = HT V1Σ1
(
Σ2

1 + γI
)−1 Σ1VT

1 H = BBT , (5.23)

where B ∈ Rk×r is defined as

B = HT V1Σ1
(
Σ2

1 + γI
)−1/2

. (5.24)

The solution to the two-stage approach in Algorithm 7 is summarized in the following

theorem:

Theorem 5.3 Let the compact SVD of B be

B = UBΣBVT
B , (5.25)

where UB ∈Rk×q, ΣB ∈Rq×q, VB ∈Rr×q, and q = rank(B). The top ℓ (ℓ≤ rank(B)) projection

vectors computed by Algorithm 7 are given by

W = W1W2 = U1(Σ2
1 + γI)−1/2VBℓ, (5.26)

where

W2 = (UBΣ−1
B )ℓ, (5.27)

VBℓ consists of the first ℓ columns of VB, and (UBΣ−1
B )ℓ consists of the first ℓ columns of UBΣ−1

B .

When ℓ= rank(B), W can be simplified as

W = U1(Σ2
1 + γI)−1/2VB. (5.28)

Proof Note that D = BBT . The SVD of D can be obtained based on the SVD of B as follows:

D = UBΣ2
BUT

B = UDΣDUT
D. (5.29)

It follows from Algorithm 7 that

W2 = UBΣ−1
B .
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Recall that W1 can also be represented using B as:

W1 = U1
(
Σ2

1 + γI
)−1 Σ1VT

1 H = U1
(
Σ2

1 + γI
)−1/2 BT .

We can thus derive W as follows:

W = W1W2

= U1
(
Σ2

1 + γI
)−1/2 BT UBΣ−1

B

= U1
(
Σ2

1 + γI
)−1/2 VBΣBUT

BUBΣ−1
B

= U1
(
Σ2

1 + γI
)−1/2 VB.

If only the first ℓ projection vectors are required, then the resulting W is given by

W = U1(Σ2
1 + γI)−1/2VBℓ.

This completes the proof of the theorem.

We follow [130] for the eigendecomposition of the matrix
(
XXT + γI

)−1
(XHHT XT ).

The eigendecomposition is summarized in the following theorem, based on which we also ob-

tain the equivalence relationship between the two-stage approach and the direct approach.

Theorem 5.4 The eigenvectors corresponding to the top ℓ (ℓ≤ rank(B)) eigenvalues of matrix

(XXT + γI)−1(XHHT XT ) are given by

W0 = U1(Σ2
1 + γI)−1/2VBℓ, (5.30)

where VBℓ consists of the first ℓ columns of VB. Thus, the two-stage approach in Algorithm

7 is equivalent to the direct approach, which solves the generalized eigenvalue problem with

regularization directly.

Proof Given VB ∈ Rr×q with orthonormal columns, there exists V⊥B ∈ Rr×(r−q) such that

[VB,V⊥B ] ∈ Rr×r is an orthogonal matrix. Hereafter, we denote [VB,V⊥B ] = Vs
B. We can di-
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agonalize (XXT + γI)−1(XHHT XT ) as follows:

(XXT + γI)−1(XHHT XT )

= U1(Σ2
1 + γI)−1Σ1VT

1 HHT V1Σ1UT
1

= U1(Σ2
1 + γI)−1/2(Σ2

1 + γI)−1/2Σ1VT
1 HHT

V1Σ1(Σ2
1 + γI)−1/2(Σ2

1 + γI)1/2UT
1

= U1(Σ2
1 + γI)−1/2BT B(Σ2

1 + γI)1/2UT
1

= U

Ir

0

(Σ2
1 + γI)−1/2BT B(Σ2

1 +λ I)1/2
[

Ir 0

]
UT

= U

(Σ2
1 + γI)−1/2BT B(Σ2

1 + γI)1/2 0

0 0

UT

= U

(Σ2
1 +λ I)−1/2Vs

B 0

0 I


Σ2

B 0

0 0


Vs

B
T (Σ2

1 + γI)1/2 0

0 I

UT .

Thus, the eigenvectors corresponding to the top ℓ eigenvalues of (XXT + γI)−1(XHHT XT ) are

given by U1(Σ2
1 + γI)−1/2VBℓ. The equivalence between the two-stage approach and the direct

approach follows from Eqs. (5.26) and (5.30). This completes the proof of the theorem.

Remark 5.2 The least squares algorithm discussed in Chapter 4 only works for dimensionality

reduction algorithms without regularization. This drawback limits its applicability in practice,

since the regularized algorithms are more effective in practice due to its better generalization

performance. The two-stage algorithm presented in this chapter significantly improves previous

work by extending the equivalence to the regularization setting.

Remark 5.3 The two-stage approach can be extended to the kernel-induced feature space by

following the trick in [204]. The equivalence relationship still holds for all dimensionality

reduction techniques discussed above with and without regularization. Due to the space con-

straint, we skip detailed proof in this chapter.

5.5 Experiments

We have performed extensive experiments to verify the established equivalence relationship

and demonstrate the scalability of the proposed two-stage approach. All the experiments are
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Table 5.1: Statistics of the data sets: n is the number of samples, d is the data dimensionality,
and k is the number of labels (classes).

Data Set Type n d k
Syn1 Multi-class 1000 100 5
Syn2 Multi-class 1000 5000 5
Syn3 Multi-label 1000 100 5
Syn4 Multi-label 1000 5000 5
Ionosphere Multi-class 351 34 2
Optical digits Multi-class 5620 64 10
Satimage Multi-class 6435 36 6
USPS Multi-class 9298 256 10
Wine Multi-class 178 13 3
Scene Multi-label 2407 294 6
Yeast Multi-label 2417 103 14
News20 Multi-class 15935 62061 20
RCV1-v2 Multi-label 3000 47236 101

Table 5.2: The value of ∥WWT −W0WT
0 ∥2 under different values of the regularization parameter γ

on the synthetic and real-world data sets. W0 is the solution of the generalized eigenvalue problem in
Eq. (4.36) by solving it directly, and W is the solution of Eq. (4.36) by solving it using the two-stage
approach. Each row corresponds to a specific algorithm and each column corresponds to a specific value
of the regularization parameter γ .

Data Technique 0 1.0e-6 1.0e-4 1.0e-2 1.0e+0 1.0e+2 1.0e+4 1.0e+6

Syn1 LDA 2.9e-18 3.6e-18 3.4e-18 3.1e-18 2.6e-18 2.5e-18 3.1e-19 3.0e-21
Syn2 LDA 5.8e-19 1.4e-18 1.2e-18 8.9e-19 1.2e-18 9.9e-19 2.3e-19 2.9e-21

Syn3

CCA 4.9e-18 8.4e-18 7.0e-18 6.5e-18 9.5e-18 6.0e-18 5.1e-19 7.2e-21
OPLS 4.6e-18 5.0e-18 8.7e-18 5.0e-18 6.6e-18 6.1e-18 5.4e-19 5.0e-21
HSL-Clique 1.0e-17 1.8e-17 1.2e-17 1.2e-17 1.5e-17 1.4e-17 2.9e-18 2.5e-20
HSL-Star 1.4e-17 2.4e-17 9.3e-18 2.6e-17 2.1e-17 5.0e-17 9.8e-19 1.3e-20

Syn4

CCA 1.3e-18 5.2e-18 3.2e-18 1.8e-18 1.3e-18 1.8e-18 4.2e-19 5.9e-21
OPLS 1.0e-18 1.1e-18 1.3e-18 1.5e-18 1.3e-18 1.3e-18 2.9e-19 5.9e-21
HSL-Clique 2.7e-18 2.9e-18 2.7e-18 5.0e-18 3.2e-18 2.7e-18 8.9e-19 1.4e-20
HSL-Star 2.5e-18 3.7e-18 2.9e-18 5.7e-18 4.1e-18 2.9e-18 1.1e-18 3.1e-20

Scene

CCA 2.4e-15 2.1e-15 6.1e-15 3.7e-15 1.2e-15 1.8e-16 6.0e-18 9.0e-20
OPLS 2.0e-15 3.4e-15 3.8e-15 2.5e-15 1.1e-15 2.3e-16 1.1e-17 1.4e-19
HSL-Clique 4.5e-15 9.1e-15 2.6e-14 1.2e-14 3.6e-15 1.3e-15 5.9e-17 1.0e-18
HSL-Star 4.6e-15 3.3e-14 2.1e-14 7.7e-15 1.1e-14 2.5e-16 1.0e-16 6.5e-19

Yeast

CCA 1.6e-12 1.5e-11 1.2e-12 1.4e-15 6.9e-16 5.9e-17 1.7e-18 1.4e-20
OPLS 4.1e-12 1.6e-11 3.7e-12 1.2e-14 1.5e-15 3.7e-16 3.2e-18 2.9e-20
HSL-Clique 1.5e-12 1.4e-11 3.7e-12 3.9e-15 1.6e-15 2.7e-16 5.1e-18 2.5e-20
HSL-Star 2.1e-12 1.0e-11 2.4e-12 1.1e-14 9.4e-15 1.1e-15 1.5e-17 4.4e-19

Wine LDA 5.9e-17 2.1e-16 2.3e-16 2.1e-16 3.2e-17 2.2e-18 1.3e-20 2.0e-20
Satimage LDA 4.6e-16 2.2e-15 8.4e-16 7.3e-16 7.7e-16 8.1e-17 3.9e-17 6.2e-19
Ionosphere LDA 8.5e-18 1.0e-17 4.3e-18 2.1e-17 6.8e-18 6.6e-18 6.6e-20 1.1e-21
Optical LDA 6.2e-18 7.2e-18 6.7e-18 5.7e-18 1.9e-18 1.5e-19 5.9e-20 5.6e-21
USPS LDA 7.0e-15 3.0e-14 2.6e-14 6.6e-15 1.1e-16 3.0e-18 4.1e-19 6.6e-21
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performed on a PC with Intel Core 2 Duo T9500 2.6G CPU and 4GB RAM. We implement all

algorithms in Matlab, and all codes and synthetic data sets are available online1.

−6−5−4−3−2−1 0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7
M

ea
n 

R
O

C

logγ

 

 

rCCA
2SrCCA

−6−5−4−3−2−1 0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

M
ea

n 
R

O
C

logγ

 

 

rOPSL
2SrOPLS

(A) CCA (B) OPLS

−6−5−4−3−2−1 0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

M
ea

n 
R

O
C

logγ

 

 

rClique
2SrClique

−6−5−4−3−2−1 0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

M
ea

n 
R

O
C

logγ

 

 

rStar
2SrStar

(C) HSL-Clique (D) HSL-Star

Figure 5.1: Comparison of different approaches in terms of average ROC score for different
techniques on the Yeast data set as the regularization parameter γ varies.

Experiment Setup

The dimensionality reduction algorithms discussed in this chapter can be divided into two cat-

egories: 1) LDA for multi-class classification; 2) HSL, CCA, and OPLS for multi-label classi-

fication. We use both multi-class and multi-label data sets, including synthetic and real-world

data sets, in the experiments. Two synthetic data sets for multi-class classification as well as two

synthetic data sets for multi-label classification are generated. In the synthetic data sets, each

entry of the data matrix X is generated independently from the standard Gaussian distribution

N (0,1). The number of classes is k = 5, and the labels are generated uniformly with random.
1www.public.asu.edu/˜lsun27/Code/TwoStage.html
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Five real-world data sets from UCI machine learning repository [243] and two benchmark data

sets in multi-label classification [4, 28] are used in our experiments. To investigate the scal-

ability of the two-stage approach, two large-scale data sets news20 [244] and RCV1-v2 [24]

are used. The statistics of all data sets are summarized in Table 5.1, where n is the number of

samples, d is the data dimensionality, and k is the number of labels (classes).

To distinguish different techniques tested in the experiments, we name the regularized

techniques using a prefix “r” before the corresponding technique, e.g., “rCCA”. The two-stage

approach version are named using a prefix “2S” (“2S” means two stage) such as “2SCCA” and

“2SrCCA”, which are the two-stage approach versions of CCA and regularized CCA, respec-

tively.

Performance Comparison
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Figure 5.2: Comparison of different approaches in terms of classification accuracy for LDA on
the Wine data set as the regularization parameter γ varies.

In this experiment, we compare the performance of different approaches for all tech-

niques using both synthetic and real-world data sets. Denote W0 as the solution of the gen-

eralized eigenvalue problem in Eq. (5.5) obtained directly, and W as the solution of Eq. (5.5)

obtained by using the two-stage approach.

To verify whether both approaches produce equivalent projections, we compute ∥W0WT
0 −

WWT∥2 under different values of the regularization parameter γ . We vary the value of γ from

1e-6 to 1e6. It follows from [130] that ∥W0WT
0 −WWT∥2 = 0 if and only if W0 = WR, where

R is an orthogonal matrix. Thus, both W and W0 project the original data onto the same lower-
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dimensional space. Note that a direct comparison between W and W0 is possible only when

the generalized eigenvalue problem in Eq. (5.5) admits a unique solution. This is not always

the case, e.g., when two eigenvalues coincide.

The values of ∥W0WT
0 −WWT∥2 for all data sets are summarized in Table 5.2. In

Table 5.2, each row corresponds to a specific technique and each column corresponds to a

specific value of the regularization parameter γ . Note that two different variants of HSL, i.e.,

HSL-Clique and HSL-Star, which compute the Laplacian using different expansion schemes,

are tested. It can be observed from Table 5.2 that for all values of the regularization parameter γ ,

∥W0WT
0 −WWT∥2 is always very small, which confirms the equivalence relationship between

W and W0 for projection.

Next, we investigate the classification performance of different techniques. We com-

pare the performance of different approaches on the multi-label data set Yeast [28]. The data

set is randomly partitioned into a training set and a test data set with equal size. After the

projection matrix is learned from the training set, the test data set is projected onto the lower-

dimensional space. In our experiments, the linear Support Vector Machines (SVM) is applied

for classification. The average ROC score, namely, the area under ROC curve, over all labels

are summarized in Figure 5.1 for all techniques. The regularization parameter γ varies from 1e-

6 to 1e6. From Figure 5.1 we conclude that the proposed two-stage approach always produces

the same classification results as the direct approach in all cases.

A similar experiment is performed on the multi-class data set Wine [243] for LDA. The

classification accuracies of LDA under different values of γ are summarized in Figure 5.2, and

similar observations can be made.

Scalability Comparison

In this experiment, we study the scalability of the two-stage approach in comparison with the

direct approach. Since regularization is commonly used in practice, we compare the scalability

of different algorithms with regularization. In terms of the implementation, the least squares

problem in the first stage of the two-stage approach is solved using the LSQR algorithm [221].

For the direct approach which solves the generalized eigenvalue problem directly, the Lanczos

algorithm [172] is applied. It is well-known that solving large-scale generalized eigenvalue
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Figure 5.3: Scalability comparison on the RCV1-v2 data set as the sample size increases. The
horizontal axis is the sample size, and the vertical axis is log(t), where t is the computation time
(in seconds).

problems is much more difficult than the regular eigenvalue problems [234]. In order to trans-

form the generalized eigenvalue problem into the regular eigenvalue problem, we can factor

XXT or apply the standard Lanczos algorithm for the matrix (XXT )−1XSXT using the XXT

inner product [234]. Due to the issue of singularity for high-dimensional data set with small

regularization for the second method, in this experiment we factor XXT and solve a symmetric

eigenvalue problem using the Lanczos algorithm.

The computation time (in log scale) of different techniques on the large-scale data set

RCV1-v2 is shown in Figures 5.3 and 5.4. In Figure 5.3, we increase the sample size from 500

to 3000 with a step size 500, and the dimensionality is fixed at 5000. The computation time of

both approaches increases as the sample size increases. However, it can be observed that the
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Figure 5.4: Scalability comparison on the RCV1-v2 data set as the dimensionality increases.
The horizontal axis is the dimensionality, and the vertical axis is log(t), where t is the compu-
tation time (in seconds).

computation time of the two-stage approach is significantly less than that of the direct approach.

In Figure 5.4 we fix the sample size at 3000 and increase the dimensionality from 500 to 5000

with a step size 500. Similar observations can be made from Figure 5.4.

We perform a similar experiment on the News20 data set for LDA (multi-class classi-

fication). The experimental results are summarized in Figure 5.5. In Figure 5.5 (left), we fix

the dimensionality at 5000 and increase the sample size from 500 to 3000 with a step size 500.

In Figure 5.5 (right), the dimensionality is increased from 500 to 3000 with a step size 500

while the sample size is fixed at 5000. It can be observed from these figures that the two-stage

approach is much more efficient than the direct approach.
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Figure 5.5: Scalability comparison on the News20 data set as the sample size (left) and dimen-
sionality (right) increase. The horizontal axis is the sample size (left) or the dimensionality
(right), and the vertical axis is log(t), where t is the computation time (in seconds).

5.6 Conclusions

In this chapter we present an efficient two-stage approach for a class of dimensionality reduc-

tion algorithms, including CCA, OPLS, HSL and LDA. We rigorously prove the equivalence

relationship between the two-stage approach and the direct approach solving the generalized

eigenvalue problem directly. Compared with previous work, one appealing feature of the two-

stage approach is that no assumption is required. In addition, the two-stage approach can be

further extended to the regularization setting. We show that the proposed two-stage approach

scales linearly in terms of both the sample size and data dimensionality. We have performed

extensive experiments on both synthetic and real-world data sets. Our experimental results con-

firm the established equivalence relationship. Results also demonstrate the scalability of the

proposed two-stage approach.
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Chapter 6

AUTOMATED ANNOTATION OF DROSOPHILA GENE EXPRESSION PATTERNS

6.1 Introduction

Detailed knowledge of the expression and interaction of genes is crucial to deciphering the

mechanisms underlying cell-fate specification and tissue differentiation. DNA microarrays and

RNA in situ hybridization are two primary methods for monitoring gene expression levels on a

large scale. Microarrays provide a quantitative overview of the relative changes of expression

levels of a large number of genes, but they do not often document the spatial information on

individual genes. In contrast, RNA in situ hybridization uses gene-specific probes and can de-

termine the spatial patterns of gene expression precisely. Recent high-throughput investigations

have yielded spatiotemporal information for thousands of genes in organisms such as Drosophi-

la [33, 71] and mouse [245, 246]. These data have the potential to provide significant insights

into the functions and interactions of genes [37, 247].

The Drosophila melanogaster is one of the model organisms in developmental biology,

and its patterns of gene expression have been studied extensively [30, 31, 33, 71]. The com-

prehensive atlas of spatial patterns of gene expression during Drosophila embryogenesis has

been created by in situ hybridization techniques, and the patterns are documented in the form of

digital images [34–36, 71]. Comparative analysis of gene expression pattern images can poten-

tially reveal new genetic interactions and yield insights into the complex regulatory networks

governing embryonic development [37–39, 71].

To facilitate pattern comparison and searching, the images of Drosophila gene expres-

sion patterns are annotated with anatomical and developmental ontology terms using a con-

trolled vocabulary [34, 71]. The basic requirement for annotation is to assign a unique term,

not only for each terminally differentiated embryonic structure, but also for the developmen-

tal intermediates that correspond to it. Four general classes of terms, called anlage in statu

nascendi, anlage, primordium, and organ (ordered in terms of developmental time), are used

in the annotation. Such an elaborate naming scheme describes a developing “path”, starting

from the cellular blastoderm stage until organs are formed, that documents the dynamic process

of Drosophila embryogenesis. Due to the overwhelming complexity of this task, the images
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Stage range BDGP terms

9-10 trunk mesoderm primordium
anterior endoderm primordium
posterior endoderm primordium
inclusive hindgut primordium

11-12 embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system
procephalic neuroblasts

Figure 6.1: Sample image groups and their associated terms in the Berkeley Drosophila
Genome Project (BDGP) database in two stage ranges. Only images taken from lateral view
with the anterior to the left are shown.

are currently annotated manually by human experts. However, the number of available images

produced by high-throughput in situ hybridization is now rapidly increasing [37, 38, 40–42]. It

is therefore tempting to design computational methods for the automated annotation of gene

expression patterns.

The automated annotation of Drosophila gene expression patterns was originally con-

sidered difficult due to the lack of a large reference data set from which to learn. Moreover, the

“variation in morphology and incomplete knowledge of the shape and position of various em-

bryonic structures” have made this task more elusive [71]. We attempt to address this problem

by resorting to advanced tools developed recently in the computer vision and machine learn-

ing research communities and on the large set of annotated data available from the Berkeley

Drosophila Genome Project (BDGP) [71]. There are several challenging questions that need

to be addressed when approaching this problem by computational methods. As has been stated

in [71], the first challenge is to deal with the issue that the same embryonic structure can ap-

pear in different shapes and positions due to the distortions caused by genetic variations and the

image acquisition process. Fortunately, recent advances in object recognition research have led

to robust methods that can detect regions of interest and extract features that are invariant to a

class of local transformations from these regions. These two correlated lines of research have

reached some maturity now (see [248] and [249] for an overview).

The second challenge of this task lies in the data representation. The embryogenesis

of Drosophila has been divided into six discrete stage ranges (1-3, 4-6, 7-8, 9-10, 11-12, and
142



13-16) in the BDGP high-throughput study [71]. Gene expression patterns are documented

collectively by a group of images in a specific stage range. Similarly, annotation terms are also

associated with a group of patterns sharing a subset of the named structures (Fig. 6.1). These

attributes of the existing biological data pose challenges, because traditional machine learning

tools require that each object in question be represented by a feature vector of fixed length. It is

challenging to encode the variable number of images in a group into a fixed-length vector. The

existing approach [250] is based on the simplifying assumption that terms are associated with

individual images instead of image groups. Kernel methods developed in machine learning are

a class of versatile tools for learning from unconventional data types, since they only require

that the similarity between objects be abstracted into the so-called kernel matrix [62]. Kernels

between various data types, e.g., strings, trees, graphs, and sets of vectors, have been proposed

in the literature [251–253]. We propose to extract a number of locally invariant features from

each gene expression pattern image, and to compute kernels between sets of images based on

the pyramid match algorithm [254].

A recent comprehensive study shows that when local features are used to compute

kernels between images, a combination of multiple feature types tends to yield better results

than even the most discriminative individual feature type [255]. This motivates us to extract

multiple feature types from each image and obtain multiple kernel matrices, one for each feature

type. Thus, the third challenge for automated gene expression pattern annotation is to develop

methods that can combine the multiple kernel matrices effectively. Automated methods for

combining multiple kernel matrices, called Multiple Kernel Learning (MKL), have been studied

in machine learning recently. In such a framework, the optimal kernel matrix is obtained as a

convex combination of a set of pre-defined candidate kernel matrices, and the coefficients for

the combination can be computed by optimizing certain criterion. Methods for MKL have been

proposed in the contexts of binary-class [256] and multi-class classification [257], and they have

been applied successfully to various biological applications [258,259]. For the problem of gene

expression pattern annotation, a variable number of terms from the controlled vocabulary can be

assigned to a group of patterns. Hence, this problem belongs to the more general framework of

multi-label learning. Thus, the final challenge for automated gene expression pattern annotation

is how to perform multi-label learning effectively and predict all relevant labels for a given
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Figure 6.2: Illustration of the framework for annotating gene expression patterns. We extract
multiple types of features from image groups and construct multiple kernels using the pyramid
match algorithm. The multiple kernels are then combined to annotate the image groups. D-
ifferent shapes represent different types of features, and filled and hollow shapes are used to
distinguish features from the two different image groups.

image group. In this chapter, we propose to apply Hypergraph Spectra Learning (HSL) to

project and combine the multiple kernel matrices for multi-label data. The overall flowchart of

the proposed framework is depicted in Fig. 6.2.

The rest of this chapter is organized as follows. We discuss feature generation and

kernel construction in Section 6.2. The formulation for multi-label multiple kernel learning is

presented in Section 6.3. We report the results on gene expression pattern annotation in Section

6.4, and conclude this chapter in Section 6.5.

6.2 Feature Generation and Kernel Construction

In this section, we present our methods for extracting features from gene expression pattern

images and constructing kernels between sets of patterns.

Feature Generation

There are two primary methods for extracting features. When the images are not well-aligned,

the covariant region detector is first applied on the images to detect regions of interest. Then,

local descriptor is used to extract features from the detected regions. An alternative approach is

to apply local descriptor on a dense regular grid, instead of regions of interest [260, 261]. Such
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an approach is motivated from the bag-of-words model from the text-modeling literature, and

competitive performance has been achieved on image applications [262]. Since the images in

our FlyExpress [35] database are already well-aligned, we take the second approach (Fig. 6.2).

Instead of tuning the local descriptor and grid size manually, we apply several popular local

descriptors on regular grids of different sizes, and rely on the MKL framework to select the

appropriate local descriptors and grid size. More details on feature generation are described in

Section 6.4.

Pyramid Match Kernels

In kernel methods, a symmetric function is called a “kernel function” if it satisfies the Mercer’s

condition [62]. When used for a finite number of samples in practice, this condition amounts

to requiring that the kernel matrix is positive semidefinite. The wide applicability of kernel

methods can be partially attributed to the fact that they only require the characterization of

similarities between objects.

The pyramid match algorithm [253, 254, 260] computes kernels for variable-sized set-

s of feature vectors. The main idea of this approach is to convert sets of feature vectors to

multi-dimensional, multi-resolution histograms, and then compute the similarity between the

corresponding histograms based on histogram intersections. The final similarity between two

sets of vectors is computed as a weighted sum of the similarities at the histogram levels. This

similarity is an approximation to the similarity of the best partial matching between the feature

sets. The resulting similarity matrix based on this measure is provably positive definite, and it

can be used in existing kernel-based learning algorithms.

In the pyramid match algorithm, the feature space is partitioned into bins (regions) with

increasingly larger granularity. At the finest level, all distinct vectors are guaranteed to be in d-

ifferent bins. The size of the bin increases gradually until a single bin occupies the entire feature

space. Each partition of the feature space results in a histogram, and the different partitions lead

to a hierarchy (pyramid) of histograms with increasingly coarser resolution. It follows from this

construction that no vectors share the same bin at the finest level of resolution while all vectors

share the same bin at the coarsest level. Hence, any two feature vectors from any two sets begin

to share a bin at some level in this histogram pyramid, and they are considered to be matched at
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this point. The distance between any two vectors can be bounded from above by the size of the

bin in which they are matched. Thus the pyramid match algorithm can extract an approximate

matching score between two sets of vectors without computing any of the pairwise similarities.

The original pyramid match algorithm proposed in [253] generates uniform bins over

the feature space, and the size of the bin is doubled at each of the successive steps in the pyramid.

Such a pre-determined construction fails to take advantage of the underlying structure in the

feature space, and it suffers from distortion factors that increase linearly with the dimension of

the features [254]. [254] proposed the vocabulary-guided pyramid match algorithm in which the

positions and sizes of bins in the multi-resolution histograms are determined by applying the

hierarchical clustering algorithm on the feature vectors. Each level in the hierarchical clustering

corresponds to one level in the histogram pyramid, and the position and size of each bin at a

particular level is determined by the clusters at that level. The weight for each match can also

be made data-adaptive by estimating the inter-feature distance geometrically. It was shown that

this data-dependent hierarchical decomposition scheme can maintain consistent accuracy when

the dimension of the feature space increases [254].

The pyramid match algorithms proposed in [253, 254, 260] treat the sets of features

to be matched as orderless. In some applications, the spatial layout of features within a set

may convey critical discriminative information. [261] proposed the spatial pyramid matching

algorithm to perform pyramid matching in the two-dimensional image space, thus taking the

spatial information into account directly. The main idea of this approach is to quantize the local

features in images into a number of discrete types by applying clustering algorithms, and then

place multi-resolution histogram pyramid on the two-dimensional images. It is also possible to

integrate geometric information directly into the original pyramid match algorithm by adding

the image coordinates as two additional dimensions into each feature vector [261], and we

adopt this approach. Note that the original pyramid match algorithms are proposed to match

two images, and that we extend them to match two sets of images.

6.3 Multi-label Multiple Kernel Learning

In this section, we present a multi-label multiple kernel learning formulation based on hyper-

graph for integrating the kernel matrices derived from various local descriptors. Results in
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Section 6.4 show that the integrated kernels yield better performance than that of the best indi-

vidual kernel.

Kernel Hypergraph Spectral Learning

Hypergraph generalizes traditional graph by allowing edges, known as “hyperedges”, to con-

nect more than two vertices, thus capturing the joint relationship among multiple vertices. We

propose to construct a hypergraph (for the collection of gene expression patterns in question) in

which each pattern is represented as a vertex. To document the joint similarity among patterns

annotated with a common term, we propose to construct a hyperedge for each term in the vo-

cabulary, and include all patterns annotated with a common term into one hyperedge. Hence,

the number of hyperedges in this hypergraph equals the number of terms in the vocabulary.

Laplacian is commonly used to learn from a graph [135]. To learn from a hypergraph,

one can either define hypergraph Laplacian directly, or expand it into a traditional graph for

which Laplacian is constructed. Since it has been shown that the Laplacians defined in both

ways are similar [132], we use the expansion-based approaches. The star and clique expansions

are two commonly-used schemes for expanding hypergraphs. Following the spectral graph

embedding theory [135], we propose to project the patterns into a lower-dimensional space in

which patterns sharing a common term are close to each other. Specifically, kernel hypergraph

spectral learning solves the following optimization problem:

max
B

Tr
(
BT (KCK)B

)
(6.1)

s. t. BT (K2 +λK)B = I,

where K ∈ Rn×n is the kernel matrix, n is the number of image sets, C = I−L in which L

is the normalized Laplacian matrix derived from the hypergraph, B is the coefficient matrix for

reconstructing the projection in feature space, and λ > 0 is the regularization parameter.

Kernel Canonical Correlation Analysis (kCCA) [194] is a widely-used method for di-

mensionality reduction. It can be shown that kCCA involves the following optimization prob-

lem:

max
B

Tr
(

BT K
(

YT (YYT )−1 Y
)

KB
)

(6.2)

s. t. BT (K2 +λK
)

B = I,
147



where Y is the label matrix. Thus, kCCA is a special case of kernel hypergraph spectral learn-

ing.

A Convex Formulation

It follows from the theory of reproducing kernels [62] that the kernel K in Eq. (6.1) uniquely

determines a mapping of the patterns to some feature space. Thus, kernel selection (learn-

ing) is one of the central issues in kernel methods. Following the multiple kernel learning

framework [256], we propose to obtain an optimal kernel matrix by integrating multiple ker-

nel matrices constructed from various features, that is, K = ∑p
j=1 θ jK j where {K j}p

j=1 are the

p kernels constructed from various local descriptors and {θ j}p
j=1 are the weights satisfying

∑p
j=1 θ j Tr(K j) = 1. We show that the optimal weights that maximize the objective function in

Eq. (6.1) can be obtained by solving a Semi-Infinite Linear Program (SILP) [263] in which a

linear objective is optimized subject to an infinite number of linear constraints. This is summa-

rized in the following theorem:

Theorem 6.1 Given a set of p kernel matrices K1, . . . ,Kp, the optimal kernel matrix, in the form

of a linear combination of the given p kernel matrices that maximizes the objective function in

Eq. (6.1), can be obtained by solving the following SILP problem:

max
θ ,γ

γ (6.3)

s. t. θ ≥ 0, θ T r = 1,
p

∑
j=1

θ jS j(Ψ)≥ γ, for all Ψ ∈ Rn×k, (6.4)

where S j(Ψ), for j = 1, · · · , p, is defined as

S j(Ψ) =
k

∑
i=1

(
r j

4
ψT

i ψ i +
1

4λ
ψT

i K jψ i− r jψT
i hi

)
, (6.5)

Ψ = [ψ1, . . . ,ψk], r = (r1, · · · ,rp)
T , and r j = Tr(K j).

We show in the following lemma that maximization of the objective function in E-

q. (6.1) is equivalent to the minimization of an alternative criterion.
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Lemma 6.1 The kernel matrix that maximizes the objective function in Eq. (6.1) is also the

minimizer of the following objective function:

F1(K,B) =
k

∑
i=1

(
∥Kβ i−hi∥2 +λβ T

i Kβ i

)
, (6.6)

where B = (β 1, . . . ,β k), hi is the ith column of H where HHT = C.

Proof Since the null space of K2 + λK lies in the null space of KCK, the optimal value

achieved by the optimization problem in Eq. (6.1) is given by Tr
(
(K2 +λK)+KCK

)
. Consider

the maximization of the following objective function with respect to B:

F2(K,B) =
k

∑
i=1

(
β T

i KHi

)2

β T
i
(
K2 +λK

)
β i

. (6.7)

The optimal β i is given by β ∗i = (K2 + λK)+Khi. Thus the maximum value of F2(B,K)

achieved by B∗ = [β ∗1, . . . ,β
∗
k ] is given by F∗2 (K) = Tr

(
(K2 +λK)+KCK

)
. This shows that,

when optimized with respect to B, the objective functions in Eqs. (6.1) and (6.7) achieve the

same value.

We next show the equivalence between objective functions in Eqs. (6.6) and (6.7). The

objective function F1(K,B) in Eq. (6.6) is the least squares cost function in the kernel-induced

feature space, and its optimal value is

F∗1 (K) =−
k

∑
i=1

(Khi)
T (K2 +λK)+Khi +hT

i hi. (6.8)

Thus maximizing ∑k
i=1 (Khi)

T (K2 +λK)+Khi with respect to K is equivalent to minimizing

F∗1 (K). This completes the proof.

Note that the matrix C obtained from standard clique and star expansions is symmetric

and positive semidefinite. Thus the matrix H is always well-defined. We are now ready to prove

Theorem 6.1.

Proof Let ξ i = Kβ i− hi. Define the Lagrangian function for the optimization problem in

Eq. (6.6) as follows:

L =
k

∑
i=1
∥ξ i∥2 +λ

k

∑
i=1

β T
i Kβ i−

k

∑
i=1

ψT
i (Kβ i−hi−ξ i), (6.9)
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where the ψ i’s are the vectors of Lagrangian dual variables. By following the standard La-

grangian technique, we get the Lagrangian dual function as

g(ψ1, . . . ,ψk) =
k

∑
i=1

(
−1

4
ψT

i

(
I+

1
λ

K
)

ψ i +ΨT hi

)
. (6.10)

The optimal ψ∗1, . . . ,ψ∗k can be obtained by maximizing the dual function. Since strong duality

holds, the primal and dual objectives coincide and the optimal K can be computed by solving

the following optimization problem:

min
θ :θ≥0,θ T

r=1
max

ψ1,...,ψ k

{
k

∑
i=1

(
−1

4
ψT

i

(
I+

1
λ

p

∑
j=1

θ jK j

)
ψ i +ψT

i hi

)}
.

Since ∑p
j=1 θ jr j = 1, the above objective function can be expressed as

p

∑
j=1

θ j

k

∑
i=1

(
−

r j

4
ψT

i ψ i−
1

4λ
ψT

i K jψ i + r jψT
i hi

)
,

Thus it follows from the definition of S j(Ψ) in Eq. (6.5) that the optimization problem in E-

q. (6.3) can be expressed equivalently as

max
θ :θ≥0,θ T

r=1
min
Ψ

p

∑
j=1

θ jS j(Ψ). (6.11)

Assume Ψ∗ is the optimal solution to the problem in Eq. (6.11), and define γ∗ = ∑p
j=1 θ jS j(Ψ∗)

as the minimum value. We have ∑p
j=1 θ jS j(Ψ)≥ γ∗ for allΨ. By defining γ =minΨ ∑p

j=1 θ jS j(Ψ)

and substituting γ into the objective, we prove this theorem.

6.4 Results

In this section, we apply the proposed framework for annotating gene expression patterns. We

use a collection of images obtained from the FlyExpress database [35], which contains stan-

dardized and aligned images. All the images used are taken from lateral view with the anterior

to the left. The size of each raw image is 128×320.

Experimental Setup

We apply nine local descriptors on regular grids of two different sizes on each image. The nine

local descriptors are SIFT, shape context, PCA-SIFT, spin image, steerable filters, differential

invariants, complex filters, moment invariants, and cross correlation. These local descriptors

are commonly used in objection recognition problems (more details can be found in [249]).
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The sizes of the grids we used are 16 and 32 pixels in radius and spacing (Fig. 6.2), and 133

and 27 local features are produced for each image, respectively.

It is known that local textures are important discriminative features of gene expression

pattern images, and features constructed from filter banks and raw pixel intensities are effective

in capturing such information [264]. We therefore apply Gabor filters with different wavelet s-

cales and filter orientations on each image to obtain global features of 384 and 2592 dimensions.

We also sample the pixel values of each image using a bilinear technique, and obtain features

of 10240, 2560, and 640 dimensions. The resulting features are called “global features”.

After generating the features, we apply the vocabulary-guided pyramid match algorith-

m [254] to construct kernels between image sets. A total of 23 kernel matrices (2 grid sizes ×

9 local descriptors + 2 Gabor + 3 pixel) are obtained. Then, the proposed MKL formulation

is employed to obtain the optimal integrated kernel matrix. The performance of kernel matri-

ces (either single or integrated) is evaluated by applying the Support Vector Machine (SVM)

for each term and treating image sets annotated with this term as positive, and all other image

sets as negative. We extract different numbers of terms from the FlyExpress database and use

various numbers of image sets annotated with the selected terms for the experiments.

Precision and recall are two commonly-used criteria for evaluating the performance of

multi-label classification systems [265]. For each term, let Π and Λ denote the indices of pat-

terns that are annotated with this term by the proposed framework and by human curators in

BDGP, respectively. Then, precision and recall for this term are defined to be P = |Π∩Λ|/|Π|

and R = |Π∩Λ|/|Λ|, respectively, where | · | denotes the set cardinality. The F1 score is the

harmonic mean of precision and recall as F1 = (2×P×R)/(P+R). To measure performance

across multiple terms, we use both the macro F1 (average of F1 across all terms) and the micro

F1 (F1 computed from the sum of per-term contingency tables) scores, which are commonly

used in text and image applications [265]. In each case, the entire data set is randomly par-

titioned into training and test sets with ratio 1:1. This process is repeated ten times, and the

averaged performance is reported.
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Annotation Results

We apply the proposed formulations (star, clique, and kCCA) to combine the various kernel

matrices derived from different local descriptors. The performance of multiple kernel learn-

ing based on the soft margin 1-norm SVM (SVM1) criterion proposed in [256] is also reported.

Since the SVM1 formulation is only applicable to binary-class problems, we apply the formula-

tion for each term by treating image sets annotated with this term as positive, and all other image

sets as negative. To demonstrate the effectiveness of the proposed formulation for integrating k-

ernels, we also report results obtained by combining the candidate kernels with uniform weight,

along with the performance of the best individual kernel (among the 23 kernels) for each da-

ta set. To compare with the existing method proposed in [250], we extract wavelet features

from images and apply the min-redundancy max-relevance feature selection algorithm to select

a subset of features. As was done in [250], we assign terms to individual images and apply

linear discriminant analysis to annotate each image. Note that this setup does not consider the

image group information and is the same as the one proposed in [250]. The annotation results

measured by F1 score, precision, and recall are summarized in Tables 6.1–6.4.

In this experiment, we first select a number of terms and then extract certain number

of image sets annotated with at least one of the selected terms. The number of terms used are

10, 20, 30, 40, 50, and 60, and the number of image sets used are 1000, 1500, and 2000 in each

case. The first three rows in Tables 6.1–6.4 report the performance obtained by kernels com-

bined with star expansion, clique expansion, and CCA, respectively. The fourth row presents

the performance achieved by kernels combined with the soft margin 1-norm SVM (SVM1) for-

mulation in which an optimal kernel is learned for each term separately. The fifth row shows the

performance achieved by kernels combined from the candidate kernels with uniform weights.

The performance of the best individual kernel (BIK) over all local descriptors and grid sizes

on the same data set is reported in the sixth row. The results obtained by the method proposed

in [250] are reported in the last row. The performance shown in Tables 6.1–6.4 is the averaged

scores over ten random partitions of the entire data set into training and test sets with ratio 1:1.
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Stage range BDGP terms Predicted terms

1-3 maternal maternal

4-6 cellular blastoderm cellular blastoderm

7-8 trunk mesoderm anlage
anterior endoderm anlage
posterior endoderm anlage
head mesoderm anlage

trunk mesoderm anlage
anterior endoderm anlage
posterior endoderm anlage

9-10 trunk mesoderm primordium
anterior endoderm primordium
posterior endoderm primordium
inclusive hindgut primordium

trunk mesoderm primordium
anterior endoderm primordium
posterior endoderm primordium

11-12 embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system
procephalic neuroblasts

embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system
procephalic neuroblasts
embryonic central brain neuron
lateral cord neuron

13-16 embryonic central nervous system
ventral nerve cord
embryonic central brain neuron
lateral cord neuron
ventral midline
lateral cord glia
embryonic central brain glia

embryonic central nervous system
ventral nerve cord
embryonic central brain neuron
lateral cord neuron
lateral cord glia
embryonic central brain glia
embryonic central brain

Figure 6.3: Annotation results for sample patterns in the six stage ranges. BDGP terms denote
terms that are assigned by human curators in the Berkeley Drosophila Genome Project [71],
and predicted terms denote terms predicted by the proposed computational framework. These
patterns are randomly sampled from each stage range, and hence they may not correspond to
the same gene.

It can be observed from the results that in terms of both macro and micro F1 scores, the

kernels integrated by either star or clique expansions achieve the highest performance on all but

one of the data sets. This shows that the proposed formulation is effective in combining mul-

tiple kernels and potentially exploiting the complementary information contained in different

kernels. For all data sets, the integrated kernels outperform the best individual kernel. In terms

of precision and recall, our results indicate that SVM1 and Uniform achieve higher precision

than the proposed formulations, while they both yield significantly lower recall. On the other

hand, the best individual kernel produces slightly higher recall than the proposed formulations,

while it yields significantly lower precision. Note that precision and recall are two competing

criteria, and one can always achieve a perfect score on one of them at the price of the other.

Hence, the proposed formulation achieves a harmonic balance between precision and recall, as

indicated by the F1 scores. Note that BIK can have both higher precision and higher recall than
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1 2 3 4 5

Figure 6.4: The original five images in stage range 13-16 from BDGP. The first and the third
images are taken from lateral view; the second and the fourth images are taken from ventral
view; the fifth image is taken from dorsal view. Only the first and the third images are used in
our experiments shown in the bottom of Fig. 6.3.

the proposed formulation, since we report the highest precision and the highest recall among all

of the candidate kernels separately. Hence, the BIK for precision and recall may not correspond

to the same kernel. For all the four measures, the proposed formulations outperform the method

proposed in [250] significantly. This shows that the annotation performance can be improved

by considering the image group information.

Fig. 6.3 shows some annotation results obtained by clique expansion for sample pat-

terns in each stage range. Note that the pyramid match algorithm can compute kernels between

variable-sized sets of images. Thus, terms can be predicted for image sets of any size. Overal-

l, the proposed computational framework achieves promising performance on annotating gene

expression patterns. Meanwhile, we realize that the current framework suffers from some po-

tential limitations. By comparing the BDGP terms and the predicted terms for patterns in stage

ranges 7-8 and 9-10, we can see that the structures related to endoderm are predicted correctly

while some of those related to mesoderm are prone to error. This may be due to the fact that,

when viewed laterally, structures related to mesoderm are more prone to be hidden than those

related to endoderm. This phenomenon becomes clearer when we examine the results for stage

range 13-16 in Figs. 6.3 and 6.4. As shown in Fig. 6.4, there are a total of five images in this

set in the original BDGP database. Among these five images, only two of them (the first and

third) are taken from the lateral view and hence are used in our experiments. The second and

the fourth images are taken from the ventral view, and the fifth image is taken from the dorsal

view. The structure ventral midline can only be documented by digital images taken from the

ventral view as can be seen from the second and the fourth images in Fig. 6.4. Since we only

use images from the lateral view, it can be seen from Fig. 6.3 that the proposed framework can-
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not predict this term correctly. This problem can potentially be solved by using images taken

from other views such as ventral and dorsal. However, incorporation of images with multiple

views may complicate the computational procedure, so requires a special care.

To evaluate the scalability of the proposed formulations, we vary the number of terms

and the number of image sets, and compare the change of computation time. On a machine

with Pentium 4 3.40 GHz CPU and 1 GB of RAM, when the number of terms is increased from

20 to 60 on a data set of 500 image sets, the computation time increases from approximately 4

seconds to 11 seconds. In terms of the number of image sets, data sets of 1500 and 2000 image

sets with 60 terms take around 3 and 4 minutes, respectively.

6.5 Conclusions and Discussions

In this chapter, we have presented a computational framework for annotating gene expression

patterns of Drosophila. We propose to extract invariant features from gene expression pattern

images and construct kernels between these sets of features. To integrate multiple kernels ef-

fectively, we propose multi-label, multiple kernel learning formulations based on kernel hyper-

graph spectral learning. Experimental evaluation shows that the integrated kernels consistently

outperform the best individual kernel and other representative methods. Currently, the annota-

tion of patterns by human curators requires multiple passes, and the proposed framework could

now be incorporated into the annotation process as a preprocessing step, which is then refined

by human curators.

In future work, we plan to perform a detailed analysis of the weights obtained by the

MKL formulation, and investigate how they are related to the relevance of each kernel. Our

experimental results show that features extracted on smaller grids tend to yield better results.

However, computational resource limitations prevent the use of a grid size smaller than 16 pix-

els. We plan to explore ways to overcome this problem. Retrieving gene expression patterns

by combining information from images and annotations is an interesting and challenging re-

search issue. The proposed framework can assign a probability of associating each term to each

image, producing a probability vector for unannotated images from various high-throughput ex-

periments. Such information can potentially be exploited to facilitate pattern retrieval. Detailed

analysis of the annotation results produced by the proposed framework indicates that integra-
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tion of gene expression pattern images taken from multiple views can potentially improve the

annotation performance. In this case, the current pyramid match algorithms need to be adapted

so that only images taken from the same view are matched. It can be seen from the third and

fifth images in Fig. 6.4 that the annotation terms can also be associated with partial patterns in

the images. These partial patterns have been removed in our FlyExpress database (Fig. 6.3), so

these terms cannot be predicted correctly by the proposed framework. We plan to explore ways

to incorporate these partial patterns in the future.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary of Contributions

Multi-label learning concerns the classification of data instances which may be associated with

multiple labels simultaneously. Compared with traditional binary and multi-class classification,

multi-label learning is more general and has many real-world applications, e.g., text categoriza-

tion, semantic scene classification, functional genomics and the Drosophila gene expression

pattern image annotation. Multi-label learning is more challenging than multi-class classifica-

tion due to possible overlapping between different labels. Similar to many machine learning and

data mining tasks, multi-label learning also suffers from the curse of dimensionality. Although

the dimensionality reduction is studied extensively in the literature, there is limited work on the

dimensionality reduction for multi-label learning.

In this dissertation we concentrate on multi-label dimensionality reduction. One funda-

mental challenge in multi-label dimensionality reduction is how to effectively exploit the label

structure to preserve label discriminatory information. In addition, as the data size increases,

how to perform dimensionality reduction efficiently is critical in the practice use of multi-label

dimensionality reduction. In this dissertation, we have made significant progress in addressing

these two challenges. Specifically, we have investigated multi-label dimensionality reduction in

the following three aspects: 1) the design and analysis of dimensionality reduction algorithms

for multi-label learning; 2) efficient implementations of dimensionality reduction algorithm-

s, including CCA, HSL, LDA and Orthonormalized PLS; and 3)the application of multi-label

dimensionality reduction on the Drosophila gene expression pattern image annotation. In addi-

tion, we have developed a Matlab toolbox for multi-label dimensionality reduction. The toolbox

integrates many popular dimensionality reduction algorithms in multi-label learning. In partic-

ular, it provides three different implementations and some extensions for them, including the

direct least squares approach, the two-stage approach and the online algorithm.

In this dissertation we first analyzed and investigated the use of the classical dimension-

ality reduction algorithm Canonical Correlation Analysis (CCA) in multi-label learning. The

effects of regularization on CCA and some important properties of CCA are elucidated in this
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dissertation. The relationship and comparison between CCA and PLS are also studied in depth.

To effectively capture the correlation among different labels in multi-label dimensionality re-

duction, we propose a novel multi-label dimensionality reduction algorithm called Hypergraph

Spectral Learning (HSL) to deal with multi-label data. HSL is a rather general dimensionality

reduction algorithm; for example, it can be shown that CCA is a special case of HSL by defining

a specific Laplacian matrix.

Canonical Correlation Analysis (CCA) is a classical dimensionality reduction algorith-

m in statistics and machine learning. In this dissertation, the relationship between CCA and

orthonormalized PLS has been investigated. Both CCA and PLS extract features from two sets

of multi-dimensional variables. They can be applied in multi-label dimensionality reduction

where the two sets of variables are derived from the data and the associated labels, respective-

ly. By optimizing certain criteria, the data can be projected onto a lower-dimensional space

directed by the label information. The fundamental difference between CCA and PLS is that

CCA maximizes the correlation while PLS maximizes the covariance. We have revealed the

equivalence relationship between CCA and orthonormalized PLS, a variant of PLS. We further

extend the equivalence relationship to the case when regularization is employed for both sets of

variables. In addition, we show that the CCA projection for one set of variables is independent

of the regularization on the other set of variables. A sparse extension of CCA is also proposed

in multi-label dimensionality reduction.

To effectively capture the correlation among different labels in multi-label dimension-

ality reduction, we propose hypergraph spectral learning. A hypergraph is a generalization of

the traditional graph in which the edges are arbitrary non-empty subsets of the vertex set. It

has been applied successfully to capture high-order relations in various domains. In hypergraph

spectral learning, each data instance is mapped to a vertex in the hypergraph. Then we construct

a hyperedge for each label and include all data points relevant to this label into the hyperedge.

By exploiting the spectral property of the constructed hypergraph which encodes the correlation

among different labels, the data are projected onto a lower-dimensional space. Intuitively, data

points that share many common labels tend to be close to each other in the embedded space.

In addition, different definitions of the hypergraph Laplacian can be applied in HSL, leading to
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different dimensionality reduction algorithms. For example, CCA can be considered as special

case of HSL by defining a specific Laplacian matrix for the hypergraph.

Many popular dimensionality reduction algorithms can be formulated as a Generalized

Eigenvalue Problem (GEP), e.g., CCA and HSL. Although well-established algorithms in nu-

merical linear algebra exist to solve generalized eigenvalue problems [172, 234], they are in

general computationally expensive to solve and hence may not scale to large-size problems. To

improve the scalability of these dimensionality reduction algorithms, we propose two different

approaches for solving a class of dimensionality reduction algorithms, including CCA, Or-

thonormalized Partial Least Squares (OPLS), Linear Discriminant Analysis (LDA), and HSL.

The first approach is a direct least squares approach which allows the use of different regular-

ization penalties. However, it is applicable under a certain assumption. We further propose a

scalable two-stage approach for the same class of dimensionality reduction algorithms. One

appealing feature of the two-stage approach is that it can be applied in the regularization setting

without any assumption.

The key idea of the proposed two efficient implementations is to transform the gener-

alized eigenvalue problem into an ordinary least squares problem. The ordinary least squares

which minimizes the sum-of-squares error function in Multivariate Linear Regression (MLR)

is a classical technique for both regression and classification [173]. In the literature, numerous

numerical algorithms have been proposed to solve the least squares efficiently [172], such as

the conjugate gradient algorithm [266]. The least squares formulation can be readily extended

using the regularization technique [79, 124, 126]. For example, the ℓ1-norm regularization can

be incorporated into the least squares formulation to improve the model sparsity and control

the model complexity [124, 267]. Motivated by the mathematical and numerical properties of

the generalized eigenvalue problem and the least squares formulation, several researchers have

attempted to connect these two approaches. In particular, it has been shown that there is close

relationship between LDA, CCA, and least squares [79, 138, 173, 219, 220, 268]. However, ex-

isting work either imposes strong assumption or is limited to specific dimensionality reduction

algorithms.
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In this dissertation, we first study the relationship between the least squares formula-

tion and a class of dimensionality reduction algorithms involving the generalized eigenvalue

problem, including CCA, OPLS, LDA and HSL. In particular, we establish the equivalence

relationship between these two formulations under a mild condition. Based on the equivalent

least squares formulation, we propose an efficient and scalable algorithm for these dimension-

ality reduction algorithms by applying the iterative conjugate gradient algorithm such as L-

SQR [221, 266]. In addition, we extend these dimensionality reduction algorithms by applying

the ℓ1-norm and ℓ2-norm regularization to improve the model sparsity and the generalization

ability.

However, the direct least squares formulation suffers from several drawbacks which

limit its applicability in practice. First, the equivalence relationship relies on a key assump-

tion that all the data points are linearly independent. This assumption tends to hold for high-

dimensional data, but it is likely to fail for (relatively) lower-dimensional data. Secondly, the

equivalence relationship does not hold when the regularization is employed. However, regu-

larization has been shown to be critical in many data mining and machine learning algorithms

including support vector machines [62].

In this dissertation, we further propose a two-stage approach for the same class of

dimensionality reduction algorithms, including CCA, OPLS, LDA and HSL. In the first stage

we solve a least squares problem using the iterative conjugate gradient algorithm [172,221,266].

The distinct property of this stage is its low time complexity. This stage is similar to the direct

least squares formulation. In the second stage, the original data is projected onto a lower-

dimensional space, and then we solve a generalized eigenvalue problem with a significantly

reduced size. The proposed two-stage approach is shown to scale linearly in terms of both

the sample size and the data dimensionality, thus it is applicable for large-size problems. We

rigorously prove the equivalence relationship between the two-stage approach and the direct

approach which solves the generalized eigenvalue problem directly. Compared with previous

work, the two-stage approach does not require any assumption. In addition, we show that

the two-stage approach can be further extended to the regularization setting. The equivalence

relationship is also rigorously proved in this case.
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The hypergraph spectral learning has been applied successfully in the Drosophila gene

expression pattern image annotation. In this dissertation, we present a novel computational

framework for annotating gene expression patterns using a controlled vocabulary to deal with

the increasing number of pattern images generated by high-throughput in situ hybridization.

The anatomical terms from the controlled vocabulary can be considered as labels, thus this

problem can be modeled as a multi-label classification problem. However, annotation terms are

assigned to groups of pattern images rather than to individual images in the currently available

high-throughput data. To process groups of pattern images, we propose to extract invariant fea-

tures from images, and construct pyramid match kernels to measure the similarity between sets

of patterns. To exploit the complementary information conveyed by different features and incor-

porate the correlation among patterns sharing common structures, we propose efficient convex

formulations to integrate the kernels derived from various features. The comparison between

our automated annotation results and those of human curators shows promising performance of

the proposed framework.

7.2 Future Work

One challenge in multi-label learning is how to deal with a large number of labels [53, 269].

Many popular multi-label algorithms assume that the number of labels is rather small [8]. In

many applications, such as text categorization [19], protein function classification [43] and

semantic annotation of multimedia [270], the label space is typically of high dimensionality

(e.g., 103, 104). In addition, the computational cost of many algorithms becomes burden or

even infeasible in this case. For example, the binary relevance approach [8, 55] is prohibitively

expensive due to a large number of labels.

Although much work has been done on multi-label learning, how to deal with a large

number of labels still remains an open question. Recently, some algorithms have been proposed

to attack this problem by utilizing the underlying structure of the label space [43, 53, 59, 269].

For example, [269] transforms the multi-label classification task with a large number of labels

into a tree-shaped hierarchy of simpler multi-label classification tasks which deals with a small

number of labels. In [59], the singular value decomposition is used to reduce the dimensionality

of the label space.
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As discussed early, the label information for each instance can be encoded by a vector

with length k, where k is the number of labels. In fact, although the total number of labels is very

large, the actual labels are often sparse, i.e., the label vector for each instance has small support.

In other words, the instances are only relevant to a small number of labels. Recent studies have

shown that compressed sensing [65, 66, 271] is an ideal tool to process the sparse structures.

Compressed sensing (CS), also known as compressive sampling, has recently received increas-

ing attention in many areas of science and engineering [66]. Recent theoretical studies in CS

show that one can recover certain sparse signals from far fewer samples or measurements than

traditional methods [65, 272], thus the dimensionality can be reduced significantly using CS.

For example, the dimensionality of label space is reduced using CS in the framework proposed

in [53]

In the future, I plan to study multi-label learning by taking advantage of the underlying

structure information in the label space. One promising direction is to effectively capture the

label information by utilizing the structured sparsity in label space, such as group sparsity [273],

and particularly the tree-structured sparsity structure [274,275], to reduce the dimensionality of

the label space. On the other hand, how to efficiently recover the label for the new instance in

the original label space remains an open problem. Although the label dimensionality is reduced

by using compressed sensing in the framework proposed in [53], the testing performance is

still prohibitively expensive since we have to run the reconstruction algorithm, e.g., Orthogonal

Matching Pursuit (OMP) [276], or Basis Pursuit (BP) [63], for each test instance to recover

the true label in original label space. I plan to investigate efficient reconstruction algorithms to

recover the true labels of test instances in the future.
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[146] N. Krämer, “An overview on the shrinkage properties of partial least squares regression,”
Computational Statistics, vol. 22, no. 2, pp. 249–273, 2007.

[147] R. Rosipal, L. Trejo, and B. Matthews, “Kernel PLS-SVC for linear and nonlinear clas-
sification,” in Proceedings of the 20th International Conference on Machine Learning
(ICML), 2003, pp. 640–647.

[148] H. Wold, “Path models with latent variables: The nipals approach,” in Quantitative So-
ciology: International Perspectives on Mathematical and Statistical Model Building,
B. et al., Ed. Academic Press, 1975, pp. 307–357.
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