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1. Introduction

Rule-based Systems (RBSs) constitute a powerful tool for specification of knowledge in de 
sign and implementation of knowledge-based systems (KBSs) in applied Artificial Intelli- 
gence (Al). They provide also a universal programming paradigm for domains such as in- 
telligent control, decision support, situation classification and operational knowledge enco- 
ding. Apart from off-line expert systems and deductive data-bases, one of the most useful 
and successful applications consists in development of wide spectrum of control and deci 
sion support systems [9].

In its basie version (considered here) a RBS for control or decision support consists of 
a single-layer set of rules and a simple inference engine; it works by selecting and execu- 
ting a single rule at a time, provided that the preconditions of the rule are satisfied in the 
current State. Possible applications include direct control and monitoring of dynamical pro- 
cesses [4], meta-level control (the so-called expert control), implementation of the Iow level 
part of any-time reactive systems, generation of operational decision support, etc. A RBS 
named Kheops [7], being one of classical examples of such systems was applied in the 
TIGER system [36] developed for gas turbinę monitoring.

The expressive power and scope of potential applications combined with modularity 
make RBSs a very generał and readily applicable mechanism. However, despite a vast 
spread-out in working systems, their theoretical analysis seems to constitute still an open is- 
sue with respect to analysis, design methodologies and verification of theoretical properties. 
Assuring reliability, safety, quality and efficiency of rule-based systems requires both the 
oretical insight and development of practical tools. The generał qualitative properties are 
translated into a number of morę detailed characteristics deftned in terms of logical conditions.
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In fact, in order to assure safe and reliable performance, such systems should satisfy certain 
formal reąuirements, including completeness and consistency. To achieve a reasonable 
level of efficiency (ąuality of the knowledge-base) the set of rules must be designed in an 
appropriate way. Several theoretical properties of rule-based systems seem to be worth 
investigating, both to provide a deeper theoretical insight into the understanding of their ca- 
pacities and assure their satisfactory performance, e.g. reliability and ąuality [1, 9, 28, 29, 
31, 39], Some most typical issues of theoretical verification include satisfaction of properties 
such as consistency, completeness, determinism, redundancy, subsumption, etc. (see [1, 26, 28]). 
Several papers investigate these problems presenting particular approaches [3, 29, 31, 39]. 
A selection of tools is presented in [32], Some modem approaches include [2, 41, 10].

The problems listed above become still morę important in case of rule-based methodo- 
logy applied to on-line, real-time control of dynamie systems (i.e. intelligent control, 
knowledge-based control) [9, 40], especially if safety issues are to be taken into account. 
Some of these problems may be of critical naturę; for example, in case of lack of complete 
ness, for certain States of the controlled system there are no ruleS to serve these States. This 
may make the system unreliable or unsafe. A recent painful example of such lack of safety" 
was the crash known as The Warsów Accident, when a piane hit on high speed into an earth 
bank after successful landing under heavy weather conditions; switching to reverse thrust 
and opening spoilers (both for efficient breaking down) were disabled. For certain values of 
the speed of wheel spinning and weight no action was designed to be undertaken. It can be 
argued that static analysis of theoretical characteristics of such a system, in our case chec- 
king for completeness, could perhaps throw some light on missing rules identification and 
frnding specification of gaps in the input State space served by the RBS applied for control.

1.1. Aims of this paper
This paper addresses the issue of analysis and verification of selected properties of a class 
of such systems in a systematic way. A uniform, tabular scheme of single-level rule-based 
systems is considered. Such systems can be applied as a generalized form of databases for 
specification of data patterns (unconditional knowledge), or can be used for defining attri- 
butive decision tables (conditional knowledge in form of rules). They can also serve as lo- 
wer-level components of a hierarchical, multi-level control and decision support knowled 
ge-based system. An algebraic knowledge representation form using extended tabular re- 
presentation, similar to relational database tables is presented and algebraic bases for sys 
tem analysis, verification and design support are outlined.

Several characteristics of RBSs are identified and analysed. Special attention is paid to 
completeness. The problem of completeness verification is mostly studied in [3, 29, 31, 39]. 
The approaches presented there are mostly based on exhaustive enumeration and examina- 
tion of possible combinations of input variables/conditions; combinatorial explosion is con 
trolled through restriction of the analysis to some local context. A morę efficient approach 
is presented in [33]; the approach proposed there concentrates on meaningful deficiencies 
and uses heuristics about the naturę of some likely deficiencies which improves its perfor 
mance and makes communication with the user morę elear. An interesting solution is used

" Causcd in our rough and subjcctivc interpretation by lack of completeness of the control algoritm; in fact the 
detailed analysis is morc complcx [37],
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in the K.HEOPS system [7]; its main idea consists in compiling the set of rules into a deci- 
sion-tree like structure. The principle goal of building such a representation is to have the 
possibility of efficient rule evaluation and obtaining an upper-bound for respond time in re- 
al-time applications (the response time is bounded by the time necessary for traversing the 
longest path in the tree). This solution allows also for limited checking of completeness and 
consistency. The methods, however, are mostly applicable to rules constructed with use of 
propositional logie (i.e. the zero-order logie) or slightly extended languages (e.g. finite do- 
main attribute-value languages).

1.2. Position statement and State of the art
RBSs provide a powerful tool for knowledge specification and development of practical ap 
plications. However, although the technology of RBSs becomes morę and morę widely ap- 
plied in practice, due to its relationship to first-order logie and sometimes complex rule pat- 
tems and inference mechanisms, they are still not well-accepted by industrial engineers. 
Further, the ‘correct’ use of them reąuires much intuition and domain experience, and 
knowledge acąuisition still constitutes a bottleneck for many potential applications. Softwa 
re systems for development of RBSs are seldom eąuipped with tools supporting design of 
the knowledge-base; for some exceptions see [38, 8]. A recent, new solution is proposed in 
[42], However, a serious problem consists in the fact that a complete analysis of properties 
remains still a problem, especially one supporting the design stage rather than the finał veri- 
fication. This is particularly visible in case of morę powerful knowledge representation lan 
guages, such as ones incorporating the fuli first order logie formalism.

Contrary to RBSs, Relational Data Base Systems (RDBSs) offer relatively simple, but 
matured data manipulation technology, employing widely accepted, intuitive knowledge re 
presentation in tabular form. It seems advantageous to make use of elements of this techno 
logy for simplifying certain operations conceming RBSs. Notę that from practical point of 
view any row of a RDBS table can be considered as a rule, provided that at least one attri- 
bute has been selected as an output (and there is a so-called functional dependency allowing 
for determination of the value of this attribute on the base of some other attributes). Thus, it 
seems that merging elements of RBSs and RDBS technologies can constitute an interesting 
research area of potential practical importance.

This paper investigates RBSs by means of RDBS-like tabular knowledge representa 
tion and algebraic rather than logical tools. A relatively simple approach derived from fir 
st-order logie, but incorporated into a RDBS-like framework, is proposed. Further, a hierar- 
chical structure (or even a network-like one) of the RBS can be assumed; for simplicity, 
only two levels are considered below. The organization of the system is as follows:

-  there is an upper level consisting of several contexts of work, defined with formula 
C ,,C2,...,C t ; selection of the context depends on current working conditions and the 
goal; selection of the current context can be performed by a meta-level decision me- 
chanism, while switching among contexts can be a side effect of lower level rule appli- 
cation;

-  for any context C, there is a simple, uniform (i.e. using the same scheme of attributes), 
tabular RBS, similar to a decision table, with knowledge representation based on attri 
butes. When the context is selected, the system identifies and applies a single rule; then 
the cycle is repeated.

15



The system is organized in a hierarchical way; in the simplest case above one has just 
two-level specification. The upper level provides context selection mechanism, while the 
lower level is responsible for rule selection and application. A graphical presentation of the 
idea of hierarchical system is presented in Figurę 1.

Fig. 1. Graphical presentation o f the idea of a hierarchical, two-level tabular rule-based system

In generał, one can consider any morę complex scheme, including several levels and nume- 
rous tables connected according to various pattems. Notę that such a multi-tabular system 
can be (at least potentially) reduced to one big table, similarly as in the case of RDB Sys 
tems. However, it would not be a reasonable approach, both ffom the knowledge representation 
and the analysis point of view -  most of the attributes would be useless in most of the rules. In- 
stead, it seems much morę appropriate to analyse any particular uniform tabular system within 
the appropriate context Q. Thus, the discussion presented in this paper is restricted to the level 
of a single tabular component; notę however, that the meta-knowledge conceming context 
switching can also be specified with use of appropriate tables.

A single-table system is assumed to be a forward-chaining one, operating according to 
the following scheme: for given input situation, an applicable rule is searched for, and if fo- 
und, the rule is fired. The environment of the system may be changed by the system itself, 
or changes may be due to dynamie environment, as in the case of rule-based control Sys 
tems [13, 16]. For the idea see Figurę 2.

This paper addresses the issues emerging during logical verification of theoretical pro- 
perties especially in case of such single-layer rule-based reactive systems; a geometrie in- 
terpretation of the work of the system is presented in Figurę 3.

RBSs defined and working as above constitute a class of applicable in a wide spec 
trum of control and decision support tasks [13, 9, 26], The right-hand side of any rule is 
normally a control action (sometimes also an assertion to or deletion from the fact base) or 
decision; no chaining among the rules takes place. Their standard working cycle proceeds 
as follows: the current State of the input environment is observed, then a single rule ma- 
tching the input pattem is selected, and, finally, the selected rule is executed. The whole 
cycle is repeated in a closed loop.
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Fig. 3. An abstract geometrie presentation o f the working scheme of a rule-based control system

Systems as above form a class of simple forward reasoning expert Systems with no chaining 
among rules (application of a single rule results in conclusions/actions). Such systems were 
discussed in f 13, 17, 26]; many example applications are given in [9], An important area of 
applications include intelligent control systems with control knowledge specified as a RBS. 
They can also constitute the lowest part of morę complex, hierarchically structured systems 
where they constitute the core inference tool for any context determined at higher level. For 
intuition, a system as one presented in Figurę 3 is complete, if the rectangles referring to 
rule precondition formulae cover the input space.
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The tabular systems discussed in this paper can also be used as extended RDB paradigm for 
unconditional knowledge specification. In such a way instead of extensional, data specifica- 
tion with atomie values of attributes, their intensional definition can be provided. In the ba 
sie case, set and interval values of attributes can be used to cover a number of specific 
cases. Depending on the knowledge representation language, also morę complex structures 
(e.g. records, objects, terms) can be used. In such a way data patterns, data covers or data 
templates can be defined. Both representation and analysis can be then much morę concise 
and efficient. An illustration for this idea is presented in Figurę 4.

Fig. 4. Graphical presentation o f the idea o f data templates representation replacing extensional data
specification

Notę that there are many common points in the analysis of such intensional, unconditional 
data representation and the verification of tabular RBS properties. For example, checking 
for determinism of a rule based systems reąuires verification if their precondition formulae 
are defming separate sets of States; the same check can be performed to verify if certain 
data templates describe disjoint sets of data. Analogous situation occurs in checks of com- 
pleteness, etc. This allows to present and discuss the problems of analysis simultaneously 
for data templates (extended database paradigm) end tabular systems using a common 
model for data and knowledge.

1.3. Principal ideas and organization of the paper

The main aim of the paper is to provide elements of algebraic approach for data and knowl 
edge specification and analysis. The main knowledge representation paradigm used thro- 
ughout this paper is the one of tabular attributive decision tables with non-atomic values of 
attributes. The so-called tabular systems may specify the lower components of a bigger sys 
tem, especially of the hierarchical tabular one, or may be considered as independent knowl-
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edge bases. There is an attempt to pass from the logical level of verification (as analyzed in 
e.g. ['4]) towards morę simple, algebraic level of analysis. The main goal of such 
algebraization is to simplify and make the analysis morę efficient, while keeping consis- 
tency with logical approach. Simultaneously, on-line verification of even partially specified 
system is assumed to support the design of such systems. This is achieved by constructive 
evaluation of anomalies which can occur, such as missing chunks of knowledge, overlap- 
ping ones, etc.

The organization of this paper is as follows. First, a taxonomy of verification issues is 
put forward and a brief overview of the problems is presented. Logical definitions of identi- 
fied anomalies are provided. Next, basie logical foundations are recapitulated in brief and 
the definition the so-called baekward dual resolution (an inference rule) is restated; the 
method itself is discussed in details in [14, 13, 16, 15]. Then simplified attribute-based ta- 
bular knowledge representation based on RDBSs scheme is put forward. The following di- 
scussion is aimed at supporting verification of RBSs for design of systems assuring satis- 
factory level of their reliability and ąuality; several issues containing redundancy, subsump- 
tion reduction, completeness, determinism, etc. are presented and algebraic verification 
methods are outlined. The paper is closed with concluding remarks.

2. A taxonomy of verification issues

In this section a new, generalized taxonomy of the issues concerning knowledge verifica- 
tion is put forward. The taxonomy covers most of the specific problems considered by other 
Authors, but groups together similar problems by taking into account the approach to per- 
form appropriate check and deal with a specific anomaly. Further, logical definitions of 
specific anomaly classes are provided.

2.1. Verification of RBS: a short review

In this section a short review of selected, most common anomalies is presented. A kind of 
review of the theoretical problems specified by the authors with respect to verification of 
RBSs properties is provided. The discussion is based mainly on the following positions 
[1,3, 27, 28, 34, 32, 33, 35, 26, 39]. However, contrary to typical presentations, the discus 
sion is functionality-oriented, i.e. we start from top-level, abstract characteristics reąuired 
to achieve. Further, practical experience and theoretical discussion as well as former au- 
thor’s papers are taken into account.

Some most generał classification of theoretical issues which undergo theoretical analy 
sis can be one referring to the degree of influence they may have on system performance, 
and ranging from problems of efficiency and elegance of knowledge representation (e.g. re 
dundancy and subsumption) to certain critical errors inside the encoded knowledge (e.g. 
incompleteness and inconsistency of specified knowledge). This point of view would be 
especially important when the analysis is to provide confidence about reliability and safety 
of an on-line (or even real-time) KBS working in safety-critical environment. On the other 
hand, reliability and safety are always to be considered w.r.t. KBS and its environment con 
sidered as two factors having joint influence on each other.
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Notę that, it is not the KBS itself, but always together with the controlled system and its 
environment which makes danger, crush or failure to occur. Thus, considering safety pro- 
blems should be based on morę global analysis covering not only the software system but 
its potential interaction with its environment. For example, redundancy, which is normally 
considered harmless, may slow down operation of a real-time critical system and lead to 
some serious conseąuences sińce the output would be delayed; on the other hand, even in- 
consistent or incomplete system can work well for a long time (even for years), provided 
that no use of its knowledge leading to direct manifestation of inconsistency is done or the 
uncovered inputs do not occur.

On the other hand, theoretical issues considered from the point of pure KBSs theory 
(such as correctness, incompleteness, inconsistency, consistency with reality) may appear 
“mathematically elegant” when analyzed at the level of theoretical defmitions, but may tum 
out to become less attractive and hard to formalize when it comes to practical applications 
and efficient analysis. Especially purely logical approaches, e.g. ones based on automated 
theorem proving, would seem promising, but are hardly applicable for realistic Systems. 
The same applies to software verification in generał case, where proving consistency of fi 
nał codę with initial specification is a hard, tedious, usually not a realistic task. But even if 
performed successfully, it is not the of the problems.

2.2. Functional quality assignment

The approach of this paper is relatively simple and conservative, based on good experience 
and success of RDB systems. Simultaneously, we try to be constructive: an engineering 
approach is pursued. An attempt is madę at presentation of working classification of gene 
rał issues of interest with respect to theoretical analysis, each of them having relatively 
different origin and ways to detect and deal with it.

Whenever appropriate, an idea of trouble detection procedurę is outlined and sugge- 
stions about potential Solutions are given. Further, the naturę of potential problems is expla- 
ined is case of omitting the analysis of a particular problem. In order to stay close to both 
engineering intuition and potential practical Solutions, the discussion tums around simpli- 
fied form of KBSs, i.e. tabular RBSs mentioned above.

From the point of view of top-level, desired functional specification, the following five 
characteristics are put forward:

1) safety, i.e. the design of the tabular system should assure that nothing dangerous would 
ever happen,

2) reliability, i.e. the system should work and achieve its goals, possibly under any exter- 
nal circumstances,

3) admissibility, i.e. the system should provide only admissible decisions or conclusions 
and should satisfy any constraints imposed on it,

4) cjuality i.e. the system should satisfy certain standards, especially satisfy explicit and 
implicit standards and user reąuirements,

5) efficiency, i.e. the system should work in possibly most efficient way (perhaps even 
optimal) and should be specified in an efficient way (e.g. with use of minimal number 
of rules, in the simplest form, etc.).
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These top level characteristics appear to be both pairwise dependent and perhaps inconsistent 
with one another, i.e. satisfaction of one may lead to violating another one. For example, a safe 
plain would be one which never flies, but such a plain would not be reliable, not to tell abo- 
ut efficiency. Further, unfortunately, these characteristics are hardly expressible with use of 
a formal specification. Thus, instead, the approach pursued in this paper consists in translating 
them into quite technical, static analysis of selected features which can be defined formally 
with use of logical specification. Below, a proposal of a generał taxonomy is presented.

2.3. A taxonomy for verification of logical characteristics
The technical classification of theoretical properties of databases (considered within the 
extended paradigm, i.e. as data templates or knowledge facts) and especially tabular rule 
based system should possibly cover the complete spectrum of potential deficiencies. At the 
same time, the structure of the taxonomy should reflect verification paradigms, i.e. features 
analysed with the same or similar tools should be grouped together. A proposal of a new 
taxonomy constituting an attempt at satisfying these principles and kept as transparent as 
possibly is presented below.

The proposed taxonomy is a hierarchical one (two-level), and functionally similar deta- 
iled features are grouped together. The classification is applicable both to facts representing 
unconditional knowledge and rules divided into preconditions (LHS) and conclusion (RHS).

-  Issues conceming adeąuacy of knowledge representation, including:
• repeated identical data templates or rules,
• redundant, equivalent data templates or rules,
• subsumed, less generał facts or rules,
• unnecessary attributes,
• too many attributes,
• unusable rules (ones never fired).

-  Issues conceming completeness of knowledge representation, including:
• logical (total) completeness,
• specific (partial) completeness,
• detection of incompleteness,
• identification of gaps,
• completeness of conclusions.

-  Issues conceming intemal consistency, including:
• determinism or uniqueness vs. ambivalence of results,
• conflict (overlapping) data templates or rules,
• logical inconsistency.

-  Issues conceming external consistency, problems of correctness, including:
• satisfaction of extemal local constraints,
• satisfaction of external global constraints,
• verification of consistency with specification (if applicable),
• consistency w.r.t. model (real world); verification w.r.t real system, especially 

validation and testing on selected examples.
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-  Issues of minimal knowledge representation:
• reduction of the set of data templates or rule,
• partial reduction of data templates or rules,
• specific partial reduction o f  data tem plates or rules,

• elimination of unnecessary attributes.

-  Issues of knowledge manipulation, including:
• com parison o f  tw o tabular Systems o f  data tem plates or rules, i.e. i f  one subsum es 

the other,

• perform ing operations (m ostly algebraic ones) on one, two or morę tabular Systems.

-  Issues of generalization and leaming, including:
• induction from positive examples, both in case of data templates and rules,
• induction from positive and negative examples, both in case of data templates and 

rules,
• induction from examples and background knowledge (knowledge-based induction).

-  Issues conceming similarity, including:

• finding similar examples of data templates and rules,
• flexible or soft, partial matching procedures,
• case-based reasoning and adaptation of results.

Recall that the above taxonomy is considered in the context of simple tabular systems, i.e. 
no rule chaining problems are taken into account (such as chains leading to contradiction, 
potential loops, dead-end condition, unreachable conclusion, etc.). Such problems usually 
reąuire morę complex analysis (e.g. recursive analysis of potential chains of rules'combined 
in our case with potential inputs occurring at any stage; in a worst case this may be equiva- 
lent to simulation of all potentially possible executions of the system, and as such it may be 
computationally intractable2).

The proposed classification is somewhat generał, but it covers many detailed cases 
mentioned in the literaturę. For example, subsumption of rules cover some four sub-cases 
of Redundancy in pairs o f rules [28]. The case of unnecessary IF conditions, as discussed 
in [26], is a specific case of rule reduction discussed in this paper. On the other hand, as 
mentioned above, some checks reąuiring recursive analysis are not considered here. Notę 
that in case of simple, reactive, forward-chaining systems it may be necessary to apply the 
same rule (or a seąuence of rules) many times in tum, until extemal event changes the input 
(for example, in a supervisory system waiting for a special event). Further, a “circular” rule

2) Weil, analysis of complctc set of cases of cxccution can be performed for ccrtain, not-too-largc systems; this, 
in fact, is carricd out by Prolog cxecution mechanism, and was also implcmcntcd in scvcral rule-bascd 
verification systems, such as CHECK [29] w.r.t. circular rules detection or COVER [33] for deficicncy 
dctcction in baekward chaining systems. Ccrtainly, a system oncc checked in a complctc modc can bc 
considered rcliablc and thcrcforc uscd safcly in futurę, perhaps in multiplc copics. On the other hand, we 
bclicvc that for morę complcx systems, such complctc chccking is rather infcasiblc, espccially if the system 
incorporatcs a languagc cquivalcnt to first-order logie with cquality and interpreted functions, but can bc dcalt 
with by kccping dynamie track of cxccutcd rules and results obtaincd at subscqucnt stages of infcrcncc.
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may in fact be equivalent to iteration which may be necessary to load a counter, etc. and fi- 
nishes only after expected amount of repetitions. Thus, “circular” rules are not necessarily 
considered harmful.

Let us briefly skim through the proposed taxonomy of anomalies. Below, we shall ana- 
lyse every class of problems in a brief way and we shall point to the principal checking ap- 
proach. If applicable, logical specification of the appropriate condition to be verified will be 
provided.

2.4. Adeąuacy of knowledge representation

The first group refers to issues conceming adeąuacy o f knowledge representation, i.e. 
whether and how the current representation is inefficient. This issue has mostly no influen 
ce on system correctness. However, it can slow down its operation, and become a source of 
problems during modification or extension of the knowledge base.

It is obvious that repeated identical data templates or rules should be eliminated, as 
well as redundant, equivalent data templates or rules', the letter may however be difficult to 
identify without a theory supporting the proof of equivalence. Redundant rules (not neces 
sarily identical -  see the further discussion) can be detected and removed, leaving no morę 
than one copy for each rule.

The most interesting is the case of subsumed, less generał facts or rules. A rule of the 
form (|) —» h subsumes (is morę generał than, or is stronger than) a rule <(>'—» h' if and only if 
it offers the possibility to draw stronger conclusions ffom weaker prerequisites, i.e. iff 
<j>' (= <() and h \= h1. This case will be analysed in details both using logical and algebraic 
approach. Subsumed rules also can be eliminated, which has no influence on logical infe- 
rence capability. However, in certain cases leaving a subsumed, morę specific rule in 
knowledge base may be purposeful, for example it may affect the conflict resolution me- 
chanism and inference control strategy [26].

The case of unnecessary attributes (too many attributes) is not necessarily easy to 
identify -  semantic, domain dependent knowledge is necessary. Such a case is the consequ- 
ence of existence of functional dependencies among attributes, and sińce it is relatively well 
studied in the theory of RDBs, it will not be considered here.

On the other hand, unusable rules (ones never fired) can be discovered only w ith use 
o f  analysis o f  feasible input States. Thus, i f  the States o f  infeasible (inadm issible) input Sta 
tes are described with som e formula T, then i f  T |=<|>, the rule <)>—>/! is unusable.

2.5. Issues concerning completeness of knowledge representation
The problem of completeness verification consists in our case in checking if all possible in- 
puts are served by at least one rule. Practically, this means that for any combination of input 
values and conditions, preconditions of at least one rule should be satisfied.

Logical (total) completeness means that the disjunction of preconditions of all the rules 
form a tautology, i.e. no matter what input combination occur, it will be served. If there are 
k rules of the form <j)( —> h ,, i = 1,2,..., k, then logical completeness means in fact that

1= <t>i v <|>2 v ... v <|>*.
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In practice, not all such combinations may be admissible, or the system may be designed to 
work only for certain inputs. Specific (partia!) completeness means that the scope of inputs 
such that the system is capable of dealing with is explicitly defined with a formula (restricting 
conditions) specifying the admissible input space. If VF is a formula defming some specific 
context, then the set of rules is specifically complete iff ¥  f= 4>i v <|)2 v ... v <ju.

In both cases, if the system does not satisfy completeness reąuirements, it may be of 
interest to determine gaps in the system input, i.e. generate a specification of unserved in 
puts; this means that detection o f  incompleteness and subseąuent identification o f gaps 
should be carried out. Logically, one would have to find formulae <)>', <j>'2,..., <(>'„,, such that

1= <t>i v <|>2 v ...V <(>i v (J)', v <j>'2 v  ... v  <t>'m,
but such that also

(<)>1 V (|)2 v  ... v <(>t) A (())', v <J)'2 v ... v <(>'„,)
is never satisfied.

The case of completeness o f  conclusions means that any conclusion which can be spe- 
cified with the accepted language can (possibly) be achieved. Morę precisely, having a set 
of rules as above this would mean that \= h\ v /i2 v ... v A*.

2.6. Issues concerning internal consistency

Problems of internal consistency refer to a case when consistent application of the rules 
may lead to ambiguous or inconsistent results.

The lack of determinism or uniąueness may lead to ambivalence o f results. Ambiguous 
results may have place in case of when two (or morę) rules can be applied for the same in 
put, but their outputs are different. It may be the case that such a result is harmless, or even 
intended, but in case of reactive control systems the situation like that should be carefully 
analyzed. From logical point of view, two rules <(>—>/! and <(>' —> h' are ambiguous iff <j) a  <j>' 

is a satisfiable formula.
A morę dangerous case is the one o f  conflicting (overlapping) data templates or rules, 

i.e. w hen the sim ultaneously produced outputs cannot both be correct w ith respect to the in 
tended interpretation I (extem al world). For exam ple, there are a number o f  devices which  
can be in one and only one State (belonging to som e specific set o f  States), and concluding  
that such a device takes sim ultaneously tw o different States leads to physical inconsistency. 
In the above case two ambivalent rules would be conflicting if  apart ffom  overlapping precon- 

ditions also the formula h a  h' would be unsatisfiable under the assumed interpretation.
The conflict may become logical inconsistency if some two conclusions are logically 

inconsistent, either in direct case (if one is the negation of the other), or in an indirect case 
(when assuming that both are simultaneously true allows for formal demonstration that the 
re is logical inconsistency). For obvious reasons such problems should be detected and ca 
refully analyzed.

2.7. Issues concerning external consistency, problems of correctness

Problems of extemal consistency and correctness refer to consistency with extemally speci- 
fied constraints and with the considered real world.
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Consistency or satisfaction o f  external local constraints, as well as satisfaction o f 
external global constraints, can be verified with logical and algebraic tools. Local consi 
stency usually applies to a single rule. If y is a local constraint, then local constraint satis 
faction can take the form y (= <j>, where <|) is a data template formula or rule precondition for 
mula, etc. Global constraint satisfaction concems the case of a set of rules as a whole. If T 
is a global constraint, than satisfaction of global constraints takes the form T |= d>, where d> 
is a formula representing set of data templates or set of formulae preconditions, etc.

Verification o f consistency with specification (if applicable) is a hard task; data templa 
tes and rule based systems are close to something like executable specifications, as they 
constitute in fact a kind of declarative knowledge expressed in a high level language. Ho- 
wever, if logical formal specification is provided, consistency with specification can be per- 
formed through checking of logical equivalence.

Consistency w.r.t. model (real world); verification w.r.t real system, especially valida- 
tion and testing on selected examples seems to be morę a practical issue. Consistency with 
real world can be checked only through testing and it is not of direct interest here; the dis- 
cussion of it goes far beyond the scope of this paper. Further, a generał and satisfactory so- 
lution of such problems seems to be hard to achieve. Partial Solutions may consist in verify- 
ing potential correctness [13, 17] through verification of some or all of the theoretical pro- 
perties mentioned above. It is practically impossible to perform verification against specifi 
cation sińce KBSs are close to executable specifications; (and this is the case of tabular en- 
coded RBSs considered here). On the other hand, limited testing can be performed (even on 
real plant or system), but this way of validation always leaves unanswered questions about 
the behaviour of the system in new, unexplored situations (e.g. unexpected faults). Some 
initial consideration referring to this issue are presented in [40],

2.8. Issues of minimal knowledge representation

Problems of minimal or maybe optimal representation refer to the possibility of transforma- 
tion of the initial knowledge table to some, possibly simplest, form, i.e. simplification. This 
can be obtained through reduction of the table. The reduced form, should, however, be logi- 
cally equivalent to the input table.

Reduction o f the set o f  data templates or rules means replacing two or morę items with 
a single, equivalent rule by an operation resembling “gluing” the preconditions of them. 
Notę that from logical point of view all of the activities referring to cleaning-up the above 
anomalies do lead to logically equivalent knowledge base, but a simpler (morę elegant) 
one. The reduction can be total (i.e. maximal; no further reduction is possible) or partial. 
Such partial reduction o f data templates or rules may lead to a specific, unique form, cal- 
led canonical form  [21], It can be noticed that the result of total reduction may be, in gene 
rał case, not unique. It may be wise then, to stop at some stage of partial reduction, but such 
that the result would be defined in a unique way. Morę on that can be found in [21],

Specific partial reduction ofdata templates or rules is a kind of reduction where two or 
morę values, tenns or formulae are replaced with another, morę generał one. Normally, re 
duction leads to elimination of unnecessary terms or formulae; in case of specific partial re 
duction the term or formula “survives” but it is generalised w.r.t. the original one.
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Elimination o f unnecessary attributes may be performed either with use of semantic 
knowledge about functional dependencies (as mentioned above) or through total reduction 
(if applicable). In such a case the output does not appear to depend on some attribute(s), 
which disappear during the reduction process.

2.9. Issues of knowledge manipulation
Having one or morę tabular systems, various operations on them are possible. In fact, it is 
possible to specify algebraic operations, analogous to one of the set algebra or relational da- 
tabase algebra. Such operations can be specified at extensional level or intensional level. 
The first category refers directly to relational database algebra. The second one requires 
that the operations are defined and implemented at the higher level of abstraction, but as 
such they can be much morę efficient and concise.

Two basie kinds of operations on tabular systems can be defined. The first one is com- 
parison o f  two tabular systems o f data templates or rules, i.e. if one subsumes the other, or, 
perhaps, they are equivalent. Logically, the check can be expressed as ¥  (= d>.

Further, having one, two, or morę tabular systems of the same attributive scheme, per 
forming operations (mostly algebraic ones) on one, two or morę tabular systems can be 
considered. Such operations may include sum, intersection, difference and completion, as 
well as morę complex ones. Some initial discussion of those topics is presented in [21].

2.10. Issues of generalization and learning

Generalization and leaming -  in contrast to classical understanding of \erijication, induc- 
tion and leaming (generalization) from a set of low-level rules were put together with other 
issues. This is in order to underline that \erification should be considered as a part of the 
RBSs synthesis. In fact, it seems reasonable to attempt at direct synthesis of “correct” RBS 
rather then afterward verification and correction.

One can consider induction from positive examples, both in case o f data templates and 
rules, induction from positive and negative examples, both in case o f  data templates and ru 
les, or induction from examples and background knowledge (knowledge-based induction). 
Notę that induction is not a valid logical inference rule, so induction as such may lead to in- 
correct results. Induction of a knowledge base <X> from a set of <j)i, (J>2, ..., <t>„ examples can be 
formally defined as an attempt to satisfy the condition <j)|, <j>2, ..., <()„ f=® while O should be 
significantly simpler (concise, readable, intentionally specified) than the input formulae de- 
fining specific cases.

Since this paper is devoted to basie logical analysis of “traditional” issues considered 
in verification and validation, these problems are left untouched. Even a very short analysis 
of abundant literaturę on rule induction from examples, inductive inference and leaming 
systems would go far beyond the intended contents of this paper, however certainly an at 
tempt at such an analysis would constitute a challenging issue for futurę investigations.

2.11. Issues concerning similarity
Last but not least, finding and reasoning w ith similar cases can be o f  practical interest. This 
area requires flexib le, soft data pattem m atching capabilities. Its potential applications con- 
cem s case-based reasoning, a technology o f  reuse o f  sim ilar Solutions for sim ilar problem s.

26



The issues of potential interest include finding similar examples o f data templates and rules, 
flexible or soft, partial matching procedures, and case-based reasoning and adaptation o f 
results. Such problems, although close to real-life applications, are hard to be expressed 
with simple logical means, and are outside the scope of interest of this paper. Some initial 
remarks on them can be found in [43],

In the further part of this paper only some of the problems specified above are conside- 
red; some other problems, such as induction or case-based reasoning, have wide literaturę 
study with no definite, generał Solutions, or are skipped as ones having no useful Solutions.

3. Logical foundations

Logical foundations for the approach presented in this paper come ffom the ideas of 
First Order Predicate Calculus (FOPC); some basie ideas are given, for example, in [5]. In 
practice, the interest here concems the concept of logical entailment ((=), subsumption, and 
an inference rule dual to resolution.

A simple, geometrie interpretation of logical formulae could provide intuitive interpre- 
tation useful in understanding the ideas outlined below. A universe of items (objects, enti- 
ties, States) is considered to be perceived as a kind of some space. Any point in this space is 
described with some formula of the accepted language. In order to define exactly one point, 
the formula must be as precise as possible. A morę generał formula describes perhaps a set 
of points, i.e. a subset of the space under consideration.

Let U be the universe of discourse, and let U\ and U2 be two subsets of U. Further, let 
4̂ 1 and TS be two formulae describing all the items of U\ and U2 respectively, and only the 
items belonging to these sets. Then, the logical entailment

'F,

is understood as the relation

U\ £  U2

in terms of the geometrie interpretation. This means that a morę generał formula (in our case TS) 
describes a wider spectrum (a bigger subset of U) then a formula which is morę specific. This 
kind of inteipretation comes directly ffom systems science and control theory, but it is univer- 
sal and omnipresent in common language as well. For details see [13, 16, 17].

For intuition, a very precise formula is one in the form of conjunction of atoms (or lite- 
rals); morę atoms in the conjunction provide morę reąuirements the underlying object must 
satisfy, so a smaller set of possible items is described. Formulae constructed as conjunc- 
tions of literals will be referred to as simple formulae, and if no negative literał occurs in 
such a formula they are also called positive simple formulae. For intuition, roughly spe- 
aking they correspond to records of a RDB table.

On the other hand, a formula having morę components in disjunction appears to describe 
a bigger subset of the universe of discourse, as it can be morę easily satisfied (by morę items). 
In terms of algebraic operations, conjunction corresponds thus to intersection (n ) of respec- 
tive subsets, disjunction -  to sum (u), and logical entailment to the subset relation (c).
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To complete the discussion, variables (iff any) occurring in the formulae are by default exi- 
stentially quantified. Negation of a formula means complement of the appropriate set.

For the purpose of this paper only two basie types of formulae will be used: these are 
simple formulae meaning simple conjunctions of literals (in generał, mostly positive literals 
will be considered; a literał is an atomie formula or its negation) and normal formulae be- 
ing disjunctions of simple formulae (i.e. the so-called Disjunctive Normal Form, DNF). In- 
ference will be based on subsumption (morę precisely B-subsumption in the purely logical 
case) and a generał method for logical inference which is here baekward dual resolution (or 
bd-resolution for short) [14, 15].

A simple formula y  subsumes simple formula ([> if and only if <)> (= y . It can be shown 
[6], that for certain class of formulae (ones which are not self-resolving, i.e. resolving with 
a copy of itself [6]), subsumption can be equivalently expressed by the following, simpler 
condition

y0 G <t> (1)
for some substitution 0 and provided that <j> is not a tautology. Since the formulae discussed 
in this paper are not self-resolvable (we assume independence of attributes used to form 
atoms), condition (1) will be used to check for subsumption. Notę that variables are consi 
dered to be existentially quantified, and this certain kind of uncertainty -  introduction of 
a variable in place of a constant term makes a formula morę generał. The condition of 
B-subsumption can replace logical entailment of the form <(> \= y , as it is a specific case of it 
for positive simple formulae.

The bd-resolution inference method [13,16,14, 15] is in fact dual to classical resolution 
described in [5]; furthermore, it works baekwards, in the sense that normally the disjunction 
of the parent formulae is a logical consequence of the generated bd-resolvent -  the direction 
of generation of new formulae is inverse with respect to the one of logical entailment.

For intuition, let us consider two propositional logie formulae, y , a  co and y 2 a  —>co, 
where co is a propositional symbol. The basie form of the bd-resolution rule is as follows

y , a  co, y  2 a  —.co

y  i A y  2

where yi a  y 2 is the bd-resolvent of the parent formulae. Contrary to classical resolution, 
the disjunction of the parent formulae is a logical consequence of their bd-resolvent. BD-re- 
solution can be directly applied to rule preconditions for completeness verification. For in 
tuition, if the parent formulae constitute preconditions of some two rules, the above inferen 
ce shows that they cover (morę precisely: constitute a complete set of rules for) any envi- 
ronment satisfying their bd-resolvent y i a  y 2; in fact, in any such environment either co or 
—ico must hołd. Baekward dual resolution constitutes a universal method of theorem proving 
[14, 13, 15, 16]; the particular forms of bd-resolution inference rule are also given there. 
Below, a definition of generalized bd-resolution for further use is given. For simplicity the 
problem of substitutions is omitted (it can be handled by appropriate use of the assumed 
(partial) interpretation I).
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Deflnition 1. (Generalized bd-resolution)

Let y , = y ' a  co',v(/2 = y 2 a  co2, vj/y = \\i J a  oy be some conjunctiveformulae, such that 

co', co2, coj are certain formulae satisfying the so-called completeness condition o f  the

form  cof=i co1 v  co2v ...v  co7. Thenformula

\j/ A V |/2 A . . . A  V|/7 ACO ( 2 )

will be called a generalized bd-resolvent o f  y ,, vj/ 2, . . y 7.

Again, the disjunction of parent formulae is a logical conseąuence of the bd-resolution 
under the assumed interpretation I.

Proposition 1

Let \j) be a formula defined by (2), where the completeness condition is satisfied as above. 
Then

y  a  cof=iy, v \|/2v...v  y..

This proposition provides in fact a possibility of specific “partial” resolution of the initial 
formulae. Roughly speaking, it provides the possibility of “gluing” several rules by fmding 
a common specialization (a “cover”) of selected components of the preconditions of mother 
formulae. For co being the empty formula (always true) we have the strongest, pure form of 
bd-resolution.

In case one would like to keep the logical equivalence, we have the following proposition. 

Proposition 2

Let y  be a formula defined by (2), where the completeness condition is satisfied as above, 
and let es be logically equivalent to co1 v co2v...vco'. Then y  a  esis logically equivalent to 
y , v y 2v...v  y .

Again, for co being the empty formula (always true) we have the strongest, pure form of 
bd-resolution, where logical equivalence is kept between the premises (the input formulae) 
and the conclusion (the output). The inference rule given in Proposition (2) constitutes in 
fact a very generał formulation of a principle allowing for reduction of detailed representa- 
tions of objects to a simpler but equivalent representation; its variants are used in automata 
theory for combinatorial circuit simplification (at the level of propositional logie) and in 
machinę leaming.

For checking logical entailment and verification of completeness the following two 
theorems may be further useful. The first theorem [13, 16] provides the possibility to split 
the generał problem for entailment checking among disjunctive formulae into a number of 
relatively simpler subproblems.
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Theorem 1. Separability of logical entailment

L eW  and O be two disjunctive normalformulae'.

4/ = \|/l vv |/2v y 3v...vv|/„ (3)

and
0  = <j),v <|>2 v <t>3v...v(|)m (4)

where \ |/ . and <j>;. are simple conjunctions o f literals for i — 1, 2, 3, n ,j  = 1, 2, 3, m. 
Then <$> \='¥ i f  and only i f  <t>; )=¥ for any j  e {1,2,3,..., m}.

The given above theorem makes the initial problem a bit simpler -  instead of checking 
if a normal formula o f the form (3) follows from another normal formula of the form (4), it 
is always enough to check whether (3) logically follows from any of the simple formulae 
constituting (4). Thus the generał case is split into a number (m) of simpler, separate pro- 
blems, where the task is to check if a generalization of the following form takes place

♦  K ?  (5)

and where 'P is still a normal formula given by (3), but is a simple formula. In terms of 
geometrie interpretation, the theorem simply means that a collection of sets is covered by 
another set if and only if every set of the collection is covered.

The second theorem provides a sufficient condition for proving logical entailment; it 
will be referred to as one conceming direct generalization, sińce it provides a condition 
(sufficient for generalization) which is possible to be checked almost directly, via a seąuen- 
ce of single matchings.

Theorem 2. Direct entailment

Lei 'F and <I> be two disjunctive normal formulae, defined by eąuations (3) and (4), respec- 
tively. Now, i f  fo r  any simple conjunctive formula <j) e O there exists a simple conjunctive 
formula vp e ¥ , such that <|> |= \|/, then 4> (=4*.

COROLLARY 1. Let ¥  and d> be two normal formulae given by (3) and (4), respectively. 
Then, if there exists some simple formula y  e T  such that <f> |= y  for any simple formula 
4> e d>, then O j= 4/.

The logical background provides a formal framework for knowledge representation 
and inference in FOPC and similar languages. For the sake of the paper they constitute the 
background underlying an algebraic approach followed in the rest of this paper in case of 
tabular systems.

4. Tabular knowledge representation
In the following part the knowledge representation formalism will be restricted to tabular 
systems, both for data templates and rule-based systems. For the price of somewhat limited 
expressive power we gain simpler, algebraic approach, easier to understand and present in 
a graphical form. Moreover, analysis should be computationally morę efficient. Certain 
practical extensions as explicit use of sets and intervals are also introduced.
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Tabular representation of RBSs is aimed at simplified, readable knowledge representation 
in a uniform manner. Since the selected format follows the RDBS pattem, both notation 
(language) and certain operations can be used. It is mostly appropriate for rules of uniform 
structure. Further, a table provides natural ffames for specification and analysis of rule-ba- 
sed systems. Thanks to its transparency the analysis becomes morę intuitive. Moreover, the 
uniform tabular shape allows for introduction of concise matrix notation.

Consider constant, finite set of attributes of interest, A = {A ,,A 2, ...,A n}. For any attri- 
bute A, let Z), denote the domain of this attribute, i' = l ,2,...,n . The domain can be a finite 
one, i.e. Z), = {d\ d 2, ..., d m<}, or infinite, e.g. Z) c  R, where R is the set of real numbers. 
Attributes A t, A 2, ...,A n denote some properties of interest, selected for expressing the do 
main knowledge of the analyzed system, when operating in a specific local context. They 
are aimed at representation of precondition knowledge for the rules. It is implicitly assumed 
that the attributes are independent on one another.

Further, let us consider a specific attribute H  with the domain D H = {h\ h 2, ...,
This attribute is aimed at describing the output of the rules, e.g. hypotheses, decisions or 
other output values.

In the basie statement, the structure of a single condition (atomie formula) is as simple as

■ (4 , = dj),

where A, is one of the attributes and dj is its current value. In a morę advanced formulation 
one can admit the following form of atomie formulae

*  (A ,  =  tj),

where tj is either a precise value fforn the domain of attribute A i (t) e Z),), or a subset of the 
domain of A, (tj ęz Z),.), or just underscore to denote any (unspecified) value from the 
domain (as in logie programming the so-called uniwersał variable).

Tabular system can be used both for data templates representation and for representa 
tion of rules. In the former case no decisional attribute H  is present; the particular rows of 
the table represent formulas describing individual items or sets of them (if some attribute 
takes a non-atomic value). In case of rules, a specific column with the decision or conclu- 
sion attribute H  is present, and the other attributes play the role of variables used in the spe 
cification of preconditions.

In generał, the tabular representation follows the pattem of RDB systems. They can be 
used to represent both Data and Knowledge (D&K), so they provide a common representa 
tion for those two classes of information [19,20].

4.1. What is data
An atomie data item is some piece of information represented in certain accepted language, 
and:

-  as precise as possible (within the selected language),
-  meaningful (having some interpretation),
-  positive (no negation is used),
-  unconditional.
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Examples of data items include: propositional formula, ground atomie formula of predicate 
calculus, 0-A-V fact, PROLOG fact, etc.

A data item is a conjunctive combination of atomie data items. Examples of data items 
include: ground conjunctive formulae, records (of atomie data items) in RDBs, etc.

Data are a collection of data items. Examples include RDB system tables, collections 
of ground conjunctive formulae, etc.

Data and knowledge can be differentiated by their intended interpretation: a data item 
(such as attribute value, record, table) is considered to be data if the main intended use of it 
is to provide static, detailed and precise image of some fragment of real world while a know 
ledge item (such as fact, simple conjunctive formula, DNF formula, and especially rules) is 
intended to provide morę generał knowledge defining universal or local properties of the 
world. From practical point of view, one can consider data to be the part of knowledge 
expressed with the finest granularity and unconditional.

4.2. What is knowledge

An atomie knowledge item is any data item and any morę generał elementary item of the 
accepted language, which:

-  may contain variables/sets/intervals/structures (according to the selected language),
-  meaningful (having some interpretation),
-  positive or negative,
-  perhaps conditional.

Examples of atomie knowledge items include: atomie formula of predicate calculus, exten- 
ded 0-A-V fact, PROLOG fact with variables, etc.

A knowledge item is a conjunctive combination of atomie knowledge items. Examples 
of knowledge items include: conjunctive formulae, records (of atomie knowledge items), etc.

Knowledge is a collection of knowledge items. Examples include relational database-like 
tables specifying data templates or rules, decision tables, collections of logical formulae, 
PROLOG programs.

If the specification contains variables (e.g. universally ąuantified, or defining some 
scope ones) or it is true only under certain conditions (e.g. takes the form of rules, allows 
for deduction or any other form of inference), then it should be normally considered to be 
knowledge. However, in the uniform, simplified model proposed in this paper explicit di- 
stinction is in fact not necessary. A RDB table would be normally considered as data, but it 
may be considered as most detailed knowledge as well. On the other hand, tabular system 
of data templates can be considered as extensional specification of data.

4.3. Rules in tabular Systems

Any rule in the system is assumed to be of the form

n'-(A i = O a ( ^ 2 =  12) a . . . a (A„  =  /„) - * H  = h k

and it States that if the values of attributes A\, A2, .... A„ are as specified above, then the out- 
put value of attribute H  is In.
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Now, taking into account the advantage of the uniform form of all the rules in the system, 
the set of rules can be specified in a transparent, tabular form (one resembling database for 
mat) as follows

rule A\ a 2 ■ A, . A„ H

n h\ tl2 t\j Un Ai
r2

R -
hi h i ty hn hi

n hi Ui ■ t j  . t,n ht

rm tm\ tm2 • tmj tmn hm

The above table represents m uniformly structured rules. Using the matrix notation one can 
also write B =[r O h], here r is the leftmost column vector of rules names, O  is the matrix 
of attribute values, and h is the rightmost column vector of conclusions (decisions). Further, 
the precondition matrix O  can be (logically) written as O = <(>, v <j>, v  <j>3 v .. ,v <|)ol , or in the 
matrix form as

where <j>, = ( At = tn) a  ( A2 = t i2) a  ... a  (An = t in). From now on d> will denote the logical 
formula corresponding to tabular form <I> and vice versa.

Altematively, system B can be represented in a decision tree form. A schematic pre- 
sentation is given in Figurę 5.

Al A2 A3 A4 A5 H

dli dl 2 d 13 d 14 d 15 hl
d2l d22 d23 d24 d25 h2
(131 d32
d41

d2l d22 d23 d24 d75 h7

d2l d22 d93 d94 d95 h9

Fig. 5. The idea o f tabular system and its tree-like form
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The tree is one with n branching levels (a level corresponds to an attribute), the root is nor- 
mally assigned the attribute A\, and the branches below correspond to the appropriate valu- 
es of this attribute (these may be both elementary items and complex ones, such as subsets, 
intervals, etc.). Similarly, any node of depth i corresponds to attribute A i, and the branches 
below such node correspond to different values of this attribute. Finally, the leaves are assi 
gned the h values, i.e. conclusions or decisions. Any path from root to a leaf node corre 
sponds to one row of the appropriate matrix and thus it represents one rule of the system.

4.4. Basic operations and properties

The basie operations include classical logical connectives, i.e. conjunction (a ), disjunction 
(v), and negation (—.). It is important, however, to point to some issues specific to the di- 
scussed knowledge representation scheme as well as to some notational Solutions.

First, any row of the matrix can be considered as a separate rule of the form

ri :(Al = t it)A (A 2 = t i2 ) a .. .a  (A„ = t j - + H  =hr

Notę that, using the proposed representation, all the rule preconditions are of the same 
length and they all have identical structure (the order of attributes). Thus, comparison of the 
rules becomes very simple and intuitive.

Second, in the extended representation, the values of attributes can be expressed by 
subsets of the respective domains. This allows for direct representation of disjunction 
through the so-called internal disjunction, which is based on the following notational trans- 
formation

[(AI = d t)v  (A / = d 2)v ...v  (A l = di)]= A l =D\

where D' = \d i, di, .... di). For simplicity, the notation A . =£)' is used instead of A, e £)', 
which would probably be morę correct from mathematical point of view. An analogous 
extension applies to interval representation. For example, A ; -[a ,b]  means that all the va- 
lues belonging to the interval [a,b] are covered (both in case of discrete and continuous do- 
main of the attribute).

Third, although negation is not represented explicitly in the tabular form, it can be re- 
presented implicitly due to the following equivalence

- i A j  = D ' )  =  ( A ) = D ' ) ,

where Di is the complement of D \ i.e. D' u  £)' = D ,., D'r\ D' = 0 .

Further, notę that there is also

( A j  = _ )  =  ( A : =  Dj)

having the consequence that —( A } =_) = (A t = 0).
Now. consider two rows of the system matrix, rk and r, defining data templates descri- 

bed with simple formulae <t»t and <\>t, respectively.
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Let:

•t1* = (^1 = ^*|)A (^2 = A ••• A (^/l = t̂n)
and

4*/ (^ | ^/|)A (^2 = t/l) A ■■• A (^„ = hii)
denote the appropriate formulae expressed within the attributive language. Since the terms tj 
representing the values of the attributes can be subsets (in fact, single elements, subsets or 
intervals) of the respective domains, the following proposition can be stated.

Proposition 3

Simple formula <)>* suhsumes simple formula <j)/ (<(>, |= <j>t ) i f  and only i f  t tj ę  tkJ for any
j  = 1,2

In the above proposition all the attributes are assumed to be different (no correlation) 
and, for simplicity, single values are considered equivalent to single element subsets of the 
respective domains. The check for subsumption is in fact stated in purely algebraic form.

Depending on the current needs, one can admit various notational possibilities, e.g. if the set 
of values for attribute A, is ordered, one can use typical algebraic symbols such as < ,> ,< ,> .  
For example, if Dt = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} then At = {0, 1, 2, 3} can be denoted as 
Aj < 3 and At = { 3,4, 5} can be denoted as 3 < A, < 5, or rather A t ę  [3, 5] etc.

No w, let us consider formulae

<t>, =<t>' A M, = <i),<l>2 = 4)2 A (̂ 4, = tj),..., ()>, =<t>'A(^, = tj).

Further, let t = r, u / 2 u  . . .u  tjy i.e. 1 covers all the possible values of attribute A, specified 
by the sum of t , , t 2, . . . , t r  The completeness condition is of the form 
{A i,=  t) = r,)u(y4,. = t2)^J... u ( A i = tj)', notę that verification of completeness
condition can be carried out with purely algebraic means.

Proposition 4

Ifthe completeness condition is satisfied, the bd-resolvent takes the form

<J>' A <|>2a  ... a  <J>ya (̂ 4, = t).

Of course, if t = Z)„ we have the most strong, pure bd-resolution; in such a case 
(A, = t)  is omitted in the bd-resolvent. Roughly speaking, as before the key issue for suc- 
cessful “gluing” of simple formulae is that certain attribute takes some or all of its possible 
values across these formulae. If in at least one formula <j),, the specification of the attribute 
value is empty (i.e. it is of the form At -  _), the completeness condition is also satisfied and 
the bd-resolvent defined as above can be generated.

Notę that the most interesting case is if <j>' = ej)1 =... = (j)' = <j>; in such a case the “reduc- 
tion” of the formulae is especially efficient and elegant and the resulting bd-resolvent takes 
the simple form of <|> A A, =t (orjust <jw/ 1  =£>,.).

Having in mind the geometrie interpretation of D&K representation within tabular Sys 
tems, one can consider algebraic operations on knowledge items, rows of the tables and 
even the tables themselves. An idea of such algebra is introduced in [21].
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The negation (classical) of the matrix O is defined as follows. Since O can be interpreted 
as the DNF of the rules preconditions (4> = <)>, v (j>2 v <|)3V...v <]>„,), then the_negation of O is 
the negation of a well-defined logical formula; it is denoted as —.O or as O. Notę that <t> is 
also the complement of <t> as understood in RDBS theory.

Calculation of O can be conveniently performed with use of the tree form of matrix <J>. 
The idea consists in considering the complete tree for the attributes A\, A2, ..., A„, and mar- 
king the paths covered by O . Since the initial tree corresponds to the DNF of true (the cano- 
nical form of true), the unmarked paths corresponds to O. Further, it is not necessary to con- 
sider most elementary version of the tree, i.e. one with the branchings corresponding to sin- 
gular values of any attribute -  the appropriate, disjoint and complete subsets can be conside- 
red, which makes the calculation of the negation much morę efficient. However, in generał calcu- 
lating the complement of a table may result in quite a computationally exhaustive procedurę.

Below, we shall discuss some morę interesting issues conceming the proposed taxono- 
my of anomalies. Some details conceming logical and algebraic defmitions will be provi- 
ded and approaches to build the appropriate checking procedures will be outlined.

5. Problems conceming adequacy of knowledge 
representation

5.1. Redundant rules

A rule is considered redundant if it succeeds in the same situation as another rule and both 
the rules have the same conclusions, e.g. [29, 39]. For example, two or morę identical rules 
are redundant, but there may two other sources of redundancy. First, the rules like 
p / \q  —> h and q a  p  —» h are logically equivalent, and thus redundant. Elimination of such 
a case in tabular RBSs is straightforward, it follows from the imposed order of attributes, 
the same for all rules. Second, redundancy may be an effect of the possibility to express 
some facts in morę than one way within the accepted language for knowledge representa 
tion. For example, the following rules are equivalent (and thus one of them is redundant), 
although they are not identical:^ e [2, 5] —» h , A e [2,4] u [3 , 5] —» h. This and similar sour 
ces of redundancy are eliminated in tabular Systems provided that simplification of attribute 
values to unique forms is carried out. Thus, for practical use it should be assumed that the 
values of attributes are reduced to a single item, like set or interval.

In generał, redundant rules can be eliminated without influencing the overall behaviour 
of the KBS; thus the number of rules can be reduced. Consider generał case of two equiva- 
lent rules; the rules can be replaced by a single rule according to the following scheme

r: <(> —> h 
r: <J>' —> h' 
r : <|) —> h

if it is possible to verify that <j>' (= <j>and 4> |= <j>' and simultaneously h' \=h and h \= h\ The veri- 
fication procedurę is based on the application of Proposition (3). In practice, if the language 
of tabular system is restricted to single, discrete values of attributes and single sets (unique 
way of notation of attribute values), redundant rules form identical rows of the table.
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5.2. Subsumption of rules

Let us consider the most generał case of subsumption; some particular defmitions are consi- 
dered in [1, 29, 39]. A rule subsumes another rule if the following conditions hołd:

-  the precondition part of the subsuming rule is weaker (morę generał) than the precondi- 
tion of the subsumed rule (the subsuming rule succeeds in morę situations than the sub- 
sumed one),

-  the conclusion part of the subsuming rule is stronger (morę specific) than the conclu- 
sion of the subsumed rule (the subsuming rule provides morę information than the sub 
sumed one).

Particular instances of subsumption follow ffom holding either the first or the second con- 
dition, while keeping equivalence or identity of the other parts of the rules. The case of re- 
dundant rules [1, 29, 39], i.e. when one of them succeeds in the same situation as another 
rule and both the rules have the same conclusions can be considered as the simplest case of 
subsumption.

Let the rules r and r', satisfy the following assumption: <j>' \= <j>and h |= h\ The subsumed 
rule can be eliminated according to the following scheme

/■:<()—> h 
r ; f  -> K 
r : <]> —> h

For intuition, a subsumed rule can be eliminated because it produces weaker results and 
reąuires stronger conditions to be satisfied; thus any of such results can be produced with 
the subsuming rule. Using matrix notation we have

rule A, 2̂ .. A, . ■ A„ H
r t\ h tj t„ h
r' V 4 4 c h'

rule A, a 2 . .. A, . ■ An H
r h h tj t„ h

The condition for subsumption in case of the above tabular format takes the form t ’ ę t (, 
for j  — 1,2,...,«and  h.

For example, in the following tabular system the first rule subsumes the second one

rule ^2 A> a 4 H
r 7 [2, 9] [3,5] {r, g, b} {a, b, c)
r' 7 [3,5] 4 {*. r) {a , c }

The check is based on pure algebraic test of Proposition 3. In generał case, the check for 
subsumption may reąuire m(m -  1 )/2 comparisons among rules (where m is the number of 
rules in the analyzed table), however most of them will fail ąuickly. In large tables, the ru 
les may be further structured w.r.t. partition of certain attributes, so that subsumption may 
be checked only within smaller subgroups of rules.
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6. Issues concerning completeness of knowledge 
representation

For intuition, a RBS is considered to be complete if there exists at least one rule succeeding 
for any possible input situation. In literaturę [1, 29, 39] there are two basie approaches to 
completeness verification. The most popular one consists in exhaustive enumeration of po 
ssible input data and systematic inspection of a given set of rules versus a table containing 
all possible parameters and conditions combinations. This kind of approach can be called 
an exhaustive completeness check [1]. Some examples of this approach are presented in 
[29, 39], The other approach consists in a run-time validation of the expert system with use 
of selected set of test cases [40]. Selected test problems should also provide an exhaustive 
list of possible cases. Some other approaches of this kind are also discussed in [1]. In [14, 
13, 16, 17] a morę generał, first-order logie based approach is presented. The approach does 
not reąuire exhaustive enumeration and testing of possible cases; instead, a proof-like pro 
cedurę based on baekward dual resolution is put forward.

In the following subsection logical (total) completeness, specific (partial) completeness 
and detection of missing rule preconditions will be discussed in tum. In all subsections the 
same set of rules will be considered, i.e.:

or equivalently, given by B (eąuation (6)). Further, in fact, only preconditions of the rules 
are of interest for completeness verification.

6.1. Logical completeness of a rule-base system

The approach proposed here comes from purely logical analysis [14, 22, 18] and does not 
require exhaustive enumeration of possible cases; instead a proof-like, algebraic procedurę 
is put forward.

Consider the joint disjunctive formula of rule precondition of the form

which simply means that d> is a tautology. However, recall that in tabular RBSs the nega- 
tion is usually not present explicitly. This means that no tautology of the type a  v - ia  can 
be present. and thus reduction to such type of tautology is not possible. Instead, reduction 
taking into account limited domains of system attributes can take place. However, contrary 
to the reduction operation aimed at minimizing the number of rules (and thus applied only

rt: ((),

r2- <t>2

—» h], 

— ^  h j '

r : 4) —» h .m  T m  n i

®  =  <t>l V  <t>2 V  • •■V <j),„.

The condition of logical completeness for the above system is

1= O (7)
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to rules having identical conclusions), this time reduction can be applied to all the rule pre- 
conditions, disregarding their conclusions.

Thus, the purely logical condition (7) can be replaced by a practical condition of the 
form

Red(<D) = D (8)

where Red(O) is the maximal reduction of table O and   denotes an empty table (for re 
duction of tabular systems see some following section).

6.2. Specific completeness

In most of practical cases the analyzed system may be logically incomplete. It can be desi- 
gned to work in some limited context C. The restrictions may follow from physical limita- 
tions on system parameters, specific “local” character of the situation to be served, limited 
knowledge of system designer or may be the conseąuence of physical infeasibility of certa- 
in inputs.

Let C denote the operating context for the above system. The specific (partial) comple 
teness condition can be stated as follows

Cb<t> (9)

where d> denotes the disjunction of precondition formulae. Again, from logical point of 
view the verification could be purely logical and it could be proved by means of automated 
deduction (e.g. by direct use of bd-resolution [13, 14]). However, taking into account the 
tabular knowledge representation, an algebraic method for specific completeness verifica- 
tion would be suggested.

First, instead of considering m rule preconditions, one can apply maximal reduction of 
the formulae; most likely partial reduction will be applied, and the operation will result 
with a smaller set of k rules. Formally, we have Red(<t>) = 0 * , where O ’ is the reduced 
A'-rows table. As above, reduction is carried out disregarding the rule conclusions (which 
are different from one another), i.e. any two (or morę) precondition formulae can be selec- 
ted for reduction.

Now, three outputs are possible: the resulting table can be empty (no problem, fuli lo 
gical completeness holds), it can have exactly one row, or it can have k rows, where k > 1. 
The case when k = 1 is again simple: the completeness check expressed by (9) can be replaced by

Ch® * (10)

Since d>* is a single-row formula (k = 1) the check of (10) is equivalent to subsumption 
checking; thus it can be performed with use of Proposition 3. If C consists of a several row 
table (logically: a disjunction of several simple formulae), than the subsumption check must 
hołd for any row of C.
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The most complex is the case of O * being a table of morę than one row (and perhaps fur- 
ther irreducible). In such a case, one has to make use of the theorem on separability of logi- 
cal entailment (Theorem 1) or the theorem on direct entailment (Theorem 2). Let C be the di- 
sjunction ofthe formC = c, v c2v ...v cc, where c, denotes the i-th row of C, i = 1 , 2 , c.

The sufficient condition for partial completeness takes the form

Vi  e { l ,  2, c } 3j  e { l ,  2, k }:  c,. ( H )

where <j)' denote the j-th  row of table O ’. The geometrie interpretation of condition (11) is 
straightforward -  any elementary context c, must be covered by precondition formula of 
some rule.

Notę that during reduction of the formulae also morę specific formulae can be used if 
necessary (i.e. subsumed ones). This may be crucial if some two formulae taken together 
cover certain formula c„ but they are irreducible in a direct way (e.g. some of their condi- 
tions are different; in such a case specialization of some conditions may be necessary to ob- 
tain identical parts of the formulae).

An altemative way may consist in splitting the context defining formula C into smaller 
parts, and this seems to be morę straightforward solution from computational point of view. 
In such a case, the separation values of selected attributes should be carefully selected so as 
to avoid too detailed split. A reasonable way may consists in selecting the values occurring in 
O*, i.e. ones which still exist in the description language after maximal possible reduction. 
This means that characteristic values of attributes can guide the split operation.

In practice, the splitting operation of every simple formula can be performed by the 
procedurę outlined below:

-  for any attribute A consider all its values (sets or intervals) appearing both in c, and the 
table O; denote the values as Vlt V2, ..., Vm\

-  generate partition of the domain of Aj as a collection of sets B = {B\, B2, ..., B„) (the 
so-called blocks), such that Bj = 0  and Bx u f i 2 u . . . u f i a = D f, the biggest ones 
but such that for every V,, i = 1, 2, ..., m there exist B \ B 1, . . . ,B k e  B such that 
Vj = B' U j3 2u ...u 5 ‘, i.e. every value V, can be expressed as a sum of some selection 
of blocks of B; generation of B for intervals can be done by finding all intersections of 
the type Vt r\ V ,, i , j e { 1, 2 ,..., m} but for nominał sets also intersections of three, 
four, five, etc. sets should be considered as possible candidates (any superset is imme- 
diately eliminated);

-  split every value of selected attribute At in c, into largest possible sets being sums of 
blocks, say B \ B 2, . . . ,B Cl and replace a particular row c, in with appropriate ci rows;

-  repeat the procedurę for every attribute A in c,;
-  for the resulting table being the output of the procedurę apply the check following from 

condition (11);
-  the system is specifically complete if every row is covered by some row of O.

To illustrate the idea one can employ a simple graphical inteipretation for visualisation of 
the completeness check. Every rule -  being a row of the table -  forms a path covering some 
selection of attribute values in the w-th dimensional attributes space (see Fig. 6). The values 
of specific attributes generate partitions of the domains of attributes.
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Fig. 6. The concept o f attribute space and interpretation o f rule as a path covering selection o f values

Further, notę that after performing the reduction of rule preconditions (if possible, a maximal 
one), the rules tends to cover bigger areas of selected attributes. In some best cases, certain 
attributes may also tum out to be unimportant, sińce all the values of them are covered.

Notę that in case of finite domains, the split could be done by taking into account sin 
gle elements of the attribute domains; this, however, would be equivalent to exhaustive 
enumeration of the input cases. The power of the algebraic approach consists in operating 
on sets of input cases which can be achieved by a high-level split (not too detailed one).

Finally, let us assume that the values of attributes to be covered were split w.r.t the par- 
tition, e.g. given by boundary values induced by the values appearing in rule preconditions 
and the constraints, after the rules have been maximally reduced (in fact, the preconditions 
of rules were reduced to a minimal number of maximally generał formulae). Now, the 
check for completeness consists in tracing if all the combinations resulting from the split of 
the context constraint is covered by some of the “thickened” paths generated by the reduced 
set of rules.

The graphical interpretation is in the Figurę 7.

Fig. 7. The idea of covering the attribute space with morę generał, reduced set o f  rules
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In generał, the check may suffer from combinatorial explosion; however, due to operating 
on blocks (sets, intervals) rather than on individual values, the number of detailed checks is 
significantly reduced with respect to the methods based on exhaustive enumeration.

6.3. Missing precondition identification

Determination of missing preconditions can be based on the above scheme for complete- 
ness verification. As before, assume that C is a tabular form of a formula specifying the 
reąuired area to be covered with preconditions of the rules. Further, let Red(<f>) =<f> ‘ , de- 
note the maximally reduced table of formulae preconditions. Considering any of the attribu- 
tes, say A„ let V,- denote the set of characteristic values of this attribute, still occurring in the 
preconditions after reduction. These may be boundary values defining boundaries of inter- 
vals (in case of ordered attributes) or simple subsets of attribute domain (in case of attribu- 
tes for which their domain is an unordered set). Notę that the stronger reduction is possible, 
the less characteristic values are still left.

Now let us use the values F, to split the domain of any attribute into (possibly maxi- 
mal) intervals or subsets. In case two intervals or subset overlap, a third interval or subset 
can be distinguished, so that the split forms a partition -  no two intervals/subsets overlap, 
and their sum gives the complete domain.

A simplified graphical interpretation of the idea is presented in Figurę 8.

Fig. 8. Systematic checking for completness with reduced rules in the space of attributes

The subareas of the attributes resulting after the split can be numbered in an arbitrary way; 
thus, to any path corresponding to a rule there corresponds a seąuence of numbers listing 
the covered areas for subseąuent attributes. If attribute A, is partitioned into k, subareas (and 
there are n attributes), then any seąuence is of the form a ' a 2... a"  (of length «), where 
a ' e { 1 , 2 , for some eliminated attribute A ta ’ =_. There are also kl k2...k lt possible

seąuences.
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Notę that certain preconditions can cover morę than one such seąuence; covering a seąuen- 
ce eliminates it from further consideration. The test for covering is straightforward -  it con- 
sists in a check for subsumption. Ali the seąuences which are not covered by some rule 
identify potential gaps in the system, i.e. define the uncovered inputs (incompleteness).

The outlined method for determining missing preconditions (possible for further ana- 
lysis) is constructive, but in case of larger systems may suffer from combinatorial explo- 
sion. This effect, however, is significantly minimized here in comparison to the approaches 
based on direct exhaustive enumeration. First, maximally reduced form of precondition ta- 
ble <J> ‘ is used only; this restricts the division of any attribute to limited number of areas, 
and not to all its possible values. Second, the method is aimed at analyzing a local system, 
operating in some well-defmed, rather narrow context C. This is possible thanks to intro- 
duction of hierarchical structure of the system. Third, splitting C is necessary only w.r.t. its 
rows which are not initially covered by O '.  Finally, for reduced preconditions where the 
values of certain attributes are unimportant (the attributes are eliminated), the number of 
potential paths covered is multiplied by the factor equivalent to the number of areas to 
which the attribute was split. From logical point of view, the way of determining incomple 
teness consists in generating the —-(O *) formula.

7. Issues concerning internal consistency
In this section the problem of determinism and two following issues, i.e. the one of conflict 
and inconsistency are discussed.

7.1. Determinism

A set of rules is deterministic iff no two different rules can succeed for the same State. A set 
of rules which is not deterministic is also referred to as ambivalent.

The idea of having a deterministic system consists in a priori elimination of “overlap- 
ping” rules, i.e. ones which operate on a common situation. The aim of analysis is obvious 
-  to detect (distinguish) the case of two or morę rules applicable in the same situation.

Consider the following two rules:

r: <j> —> h, 
r'\ <t»’ -> h \

From purely logical point of view the system is deterministic iff the conjunction of the precon 
dition formulae <()a  <j>' is unsatisfiable. For certain technical systems it is enough to check that 
such a conjunction is unsatisfiable under some specific interpretation referring to the doma- 
in of interest [13]. A typical example is of the form <[> = switch(on) and ())' = switch(ojf), and 
obviously the formula <(>a  <j»' is false under the intended interpretation -  the switch can be 
either on or ojf.

Consider now the case of attribute knowledge representation, as below:

r u l e 4 , A i ■ A ,  . . .  A „ H

r h h b In h

t \ f i l 'n h '
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Calculation of <j)A <)>' is straightforward: for any attribute Aj there is an atom of the form Aj = tj 
in <)) and A; = / ' in <j)', / = 1,2, Now, one has to find the intersection of tj and t) -  if at

least one of them is empty (e.g. two different values; morę generally tj n  = 0 ), then the 
rules are disjoint. The check is to be performed for any pair of rules.

7.2. Conflict and inconsistency

From practical point of view deterministic systems are easier for implementation. In case of 
indeterministic system there may be the case that two or morę rules are simultaneously appli- 
cable. It is the problem then of the so-called conflict resolution mechanism to select a single 
rule to be fired. Notę that if a system is deterministic, no conflict resolution mechanism is 
necessary. On the other hand, in certain systems indeterminism is inherent in the set of rules, 
while conflict situations are to be solved with appropriate inference control mechanism. In 
design of knowledge rule-based systems one can encounter further theoretical problems; 
two most important ones following from the lack of determinism are as follows (see also 
[29, 39]).

1) Conflict -  two (or morę) rules are applicable to the same input situation but the results 
are conflicting (under the assumed interpretation).

2) Inconsistency -  here understood as logical inconsistency (unsatisfiability under any in 
terpretation).

Notę that problems of conflicting and inconsistent rules [29, 39] are specific cases of inde 
terminism. In tabular systems with no explicit negation purely logical inconsistency cannot 
occur; it always follows from the intended interpretation and thus it falls into the class of 
conflicts.

The case of conflicting rules is a potential source of errors, e.g. ambiguous, and there- 
fore unpredictable behaviour. Conflicting rules, however, are a subclass of indeterministic 
ones; thus, any pair of such rules will be eventually discovered after checking for determi 
nism; they should be further analyzed by domain experts. This is so, sińce different conclu- 
sions of two overlapping rules do not necessarily mean “real conflict”, i.e. both suggested 
Solutions can be admissible. This is the typical case of Decision Support Systems suggesting 
one or several Solutions valid for certain situation. Depending on the inference strategy, 
either one of them (selected in an arbitrary way or according to some predeftned strategy) 
or even all of them can be applied. On the other hand, a real conflict exists usually in case 
of uniąue decision to be undertaken, e.g. if some resources are indivisible or some variables 
can be assigned a uniąue value only.

8. Issues concerning external consistency
Extemal consistency understood as satisfaction of extemal local constraints, as well as satis- 
faction of extemal global constraints, can be defined with use of constraint definition for 
mula T. In the tabular formalism it takes form of a tabular system. The constraint satisfac 
tion condition is of the form T f= O. Notę that, checking for satisfaction of extemal consis 
tency is -  from logical point of view -  analogous to checking for completeness. Thus the same 
approach as in the case of specific completeness can be applied.
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9. Issues of minimal knowledge representation

Minimization of knowledge representation can be achieved by elimination of redundant and 
subsumed rules and by appropriate joining together selected rules which are in certain sense 
“complementary”. The main idea of the second case is based on the principles of backward 
dual resolution and is referred to as reduction o f rules.

9.1. Total and partial reduction

Reduction of rules is an operation similar to finding minimal representation for propositio- 
nal calculus formulae or boolean combinatorial circuits. The main idea of reduction of rules 
is to minimize the number of rules without influencing the potential capabilities of the sys 
tem for inferring new knowledge. An interesting possibility consists in replacing a number 
of rules having the same conclusions with a single equivalent rule.

Consider k rules with the same conclusion, such that their preconditions differ only with 
respect co;, i = 1,2, where co, = (A / = t i;/) defines the value of the same single attribute A j .  

Assume that the following completeness condition holds, i.e. f= co, v co2 v  ...v  cot . With 
respect to Proposition 4 the following reduction scheme can be applied:

r': (J) A CO, -» h
r2: (J) A C02 —> h

rk: <()ACOt —> h
r: <!> —> h

For intuition, the preconditions of the formulae are replaced by a joint condition represen- 
ting the disjunction of them; roughly speaking, the sets described with the preconditions are 
“glued” together into a single set. The resulting rule is logically equivalent to the set of ini- 
tial rules.

Using the tabular knowledge representation, reduction takes the following form:

rule A2 -.. Aj . . A„ H
r' u h f\j t„ h
r2 u h ty t„ h

/ t\ h •• hj . tn h

rule A, At . .. Aj . A„ H
r h h ‘n h

provided that t 2J u ... u  tkj - D j .  Of course, the rules r \  r , ..., rk are just some selected 
rows of the original table containing all the rules. If B denotes the original table, its (maxi- 
mally) reduced form will be denoted as Red(B) = B*.
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Notę that some strong reąuirement for reduction consists in the fact that the values of attri- 
butes other than the reduced one must be identical. This is important if one insists on prese- 
rving logical equivalence. In some cases, however, it may be of interest to produce a new 
rule morę generał with respect to the selected attribute (i.e. making use of gluing its partial 
values), while admitting a “slight” restriction conceming the rest of the preconditions. On 
the base of Defmition 2, the following form of reduction can also be proposed:

r 1: (j)1 a  co, — > h

r 1: <j)2 a  co2 - > h

r k: <[)* a  C 0 j - > h
r :  <j>' a  <jra . ,.. A <j/ — » h

This may be reasonable provided that formula (j)1 a  <j>2 a  . . .  a  <|>* is useful and not too restric- 
tive, and may be applied in completeness verification. Notę that fuli logical equivalence 
may be no longer preserved, however, disjunction of the preconditions of mother rules fol- 
lows from the precondition of the reduced formula. If the resulting reduced rule can be ap 
plied, then at least one of the rules above can be applied as well, and the produced conclu- 
sion is of course identical.

In generał, the reduction can be total (maximal) or partial, depending on the needs. The 
total reduction may result in several, different results, sometimes hard to compare. Partial 
reduction can be stopped at certain point, e.g. when the canonical form is generated [21], 
which allows for easy comparison of results and further algebraic operations.

9.2. Specific partial reduction

In certain cases a complete reduction as shown above may tum out to be inapplicable; ho- 
wever, it may still be possible to simplify the set of rules if only the sub-formulae 
co,, i = \ ,2,...,k, can be replaced with a single equivalent formula. In our case, a collection 
of certain elements can be always replaced by a subset containing all of them (and nothing 
morę), while a collection of intervals can be replaced with their sum (which may be a sin 
gle, convex interval). In generał, let us assume that co, v co,v...vcot [=co, and 
co |= co, v co2 v .. ,v co*. The reduction can take the following logical form:

r :  (|)A co, -> h
r2: <|>a <o 2 -> h

rl : (|)a c o ,. -> h
r : ( j ) A  co -> h

Formula co must be expressible within the accepted language. In case of a single attribute 
the intemal disjunction can be applied just by specifying the appropriate subset.
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Using the tabular knowledge representation, partial reduction takes the following form:

rule A\ A:2 . . .  A, . A„ H
r' t\ h . . .  Uj - h h
S h h ty h h

/ U h . . .  hj . h h

rule A, Ai . . .  A, . ■ An H
r h t h h

provided that tXJ U f2J = t. As above, the rules r 1, r2, /  are just some selected
rows of the original table containing all the rules. Moreover, we extend the notation on par 
tial reduction as well, i.e. if B denotes the original table, its (maximally) reduced form using 
also partial reduction whenever possible will be denoted as Red(B) = B* (or Red(O) = O*).

Notę also that in the case of partial reduction generation of morę restrictive formulae is 
possible in a way analogous to the case of pure reduction. The transformation takes the form:

r 1: <j>’ a  <Oi —> h

r \  <j>2 a  (o2 -> h

(J)* A (Ojt —► h

r: i))1 a  <j)2 a  ... a  4>* a  co —> h

and it may be reasonable if the formula <j)' a  <j>2 a  ... a  <(>* a  cois not too restrictive. The idea 
of canonical form applies as well to specific partial reduction.

10. Supporting design of tabular rule based systems

In generał, the proposed approach can be used to support design of tabular system in the 
following two ways:

1) static, ex-post verification of the partially or completely developed system in order to 
suggest improvements; such a procedurę can be repeated in several cycles;

2) on-line, dynamie support of design by instant detection of anomalies occurring during the 
design process and generation of appropriate information for the developer of the system.

The first approach is rather obvious and may be applied in a rather straightforward way; in 
fact, to certain degree it is a part of todays practice in development of rule based systems. 
However, it suffers from obvious disadvantages, including repetition of the design procedurę. 
Moreover, errors in design discovered after completing edition of the knowledge base may 
result in hard to deal with problems, and improvement of the rules may cause new errors to 
appear.

The second approach, proposed initially in [11] and [12] seems to be much morę at- 
tractive and efficient. However, it reąuires development of a special software tool suppor 
ting the design.

47



10.1. An intuitive introduction

For intuition, let us consider a possible design process of a simple temperaturę control sys 
tem. This will be a rule based system capable of applying the two-valued and three-valued 
switch type algorithm (relay type) if stabilisation of some standard temperaturę is reąuired, 
or controlling the temperaturę towards its maximal or minimal value if reąuired. Ali of this 
takes place only if the control of temperaturę is reąuired.

In order to simplify systematic design we shall use a tree-like graphical representation 
for displaying combinations of various conditions. The idea is similar to standard binary de- 
cision trees\ however, the proposed construction is a bit morę generał and allows for use of 
any finite number of branching conditions, description of the branching conditions with 
first order level languages, and hierarchical design. The idea of such a tree corresponding to 
a part of the design process is presented in Figurę 9.

controll = off controll

> 6
tem p = std temp = min

ctype = two ( ( ctype = tl

tem p = m ax

t < a P < t

a « t  A t $  P

Fig. 9. An example vy-tree for design

The design process can proceed as follows. We start with the root node and select some 
predicate (or morę complex set of formulae) to define the initial branching. A reasonable 
idea is to select a formula of relatively high level, i.e. defining as generał conditions as 
possible, and providing contexts for further specification. In our case let it be the first condition 
specifying if the control is reąuired (control = on) or not (control = off). Now, leaving the 
left branch temporarily pending, we further develop the right branch; notę that now we are in 
the context defined by the formula control = on. The next selected formula may concem the 
modę of temperaturę regulation, i.e. if some steady temperaturę is reąuired (tem p = std), the 
minimal temperaturę should be achieved (tem p = m in) or the maximal one (tem p = max). 
Again, leaving the two right branches temporarily pending (possibly for further continu- 
ation of design), we develop the left branch. Notę, however, that now the context is defined 
by the conjunction of formulae assigned to the branches on the path from the root node to 
the current leaf node; in our case the formula is of the form control = on a  tem p = std. Now 
we have to select the controller type. Assume there are given two possibilities: a two-level
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one (ctype = two) and a three-level one (ctype = th ree). We can proceed with the design in 
an analogous way, but a reasonable idea may be to split the tree into the mother initial tree 
and several subtrees whose roots are joined to the leaves of the mother tree. In Figurę 9 we 
leave the context defined by vy = control = on a  tem p = std a  ctype = three and start 
development of a new, smaller child-tree for the context defined by ty. It will be referred to 
as a ly-tree, and it describes the design process for the context y. In our case the branching 
condition refers to the current temperaturę, and we have three possibilities:

1) t < a ,
2) (a <t ) A( t  <p \
3) P <t.

The finał step is to assign to any leaf node a control action to be undertaken. For example, 
for the finał result of the partial design process presented above (there are still pending leaf 
nodes to be developed), the following set of rules may be generated:

r 1: vy a  (t < a) set(heat, on),
r2: \y a  ( a  <t)/ \ (t  < P ) -> set(heat, off), set(cool, off),
r3: \y a ( P < / ) —> set(cool, on).

Obviously, when operating in the context defined by vy, the preconditions can be simplified 
to the formulae in parentheses.

Having in rnind the above example it would be worthwhile to analyze some steps of 
the design process. First, the formula defining the branching condition is selected to be po- 
ssibly generał and reasonable for the current design context; although there is no uniąue, 
well defined selection procedurę, this seems to be a reasonable, expert- acąuired way of de 
sign procedurę. Second, defining the precise branching altematives we take care to cover 
all the existing possibilities; from logical point of view, under the assumed technical inter- 
pretation I, the following conditions are satisfied:

|= i control =  off v control =  on,
)=i tem p = std v tem p = min v  tem p = max,
|= i ctype = two v  ctype = three,
|=i ( / < a ) v [ ( a < r ) A ( / < P ) ] v ( P < r ) .

In other words, we attempt at satisfying the local completeness condition when defining 
branching possibilities. Third, we also try to define them so that the altemative formulae do 
not overlap, i.e. no two of them can be satisfied at the same time. In fact, from logical point 
of view we have:

I* i control = off Acontrol = on,

1* i tem p = std a  tem p = min,

l*i tem p = min a  tem p = max,
ł*. tem p = std a  tem p = max,
t*. ctype = two a  ctype = three,

t* i ( t< a ) a  (a < t ) a (^ P ) ,
l*i ( a < t ) </•scaVI<

(P<0,
1*. ( ' < « )

Vca<
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Such procedurę is justified sińce we would like to obtain a complete and deterministic set 
of rules. For intuition, as the precondition formulae are defined by conjunctions of formulae 
assigned to branches on paths from the root to the leaf nodes, at any node we cover all the 
reasonable branching possibility; hence completeness is assured. Simultaneously, no two 
“paths” can be validated as true at the same time, sińce they must be different at at least one 
node and due to exclusion of the branching conditions they cannot be true at the same time. 
These problems are referred to in some details throughout this paper.

Finally, by splitting the design tree into a mother tree and several child-subtrees we 
achieve the possibility of performing hierarchical, two-level design. First we design the me- 
ta-rules, allowing for the so-called context-switching. Executing such a rule defines a con- 
text (set of States) and a subset of all the rules such that only rules of the subset can be used 
for the currently selected context. Then we defme the sets of rules for any specific contexts 
by development of a 'F-tree for any context defined by VF. Of course, this procedurę can be 
tum to several-level ones as well.

10.2. The 'F-trees for design support

In this section basie concepts conceming a specific form of semantic trees (to be called 
HMrees) used for design of complete sets of rules for some context *F are presented.

Let N  denote a set of nodes. We assume the common definition of a tree (there is a di- 
stinguished root node with no ancestor and any other node n' belonging to the tree has 
exactly one ancestor). A tree will be denoted with t, and t(N) will denote a tree build from 
nodes belonging to A; the set of all nodes of tree t(N) will be denoted with N(t). The root 
node of any tree t will be denoted with root(t).

No w let FOR denote a set of considered formulae, and let VF denote a distinguished for 
mula. By I we shall denote the set of intended interpretations.

Definition 2

Let f  denote any mapping o f  the form f . N —* FOR u  fF}. A 'F-tree is any finite tree t(N) sa- 
tisfying the following awciliary conditions:

-  f(root(t(N)))= %
-  fo r  any n e N(t),f(n) e FOR.

For intuition, a T-tree represents different (some or all) possible branchings into different 
morę detailed situations of the analyzed system for some stable context defined by *F. Any 
node n e N ( t )  represents a situation described with conjunction of all the formulae assigned 
to the nodes belonging to the path from root{t) to n (including *F and/(«)). Such formulae 
will be denoted with lower-case \\i or <)>. Roughly speaking, going down the tree along some 
path beginning in the root node we add some new reąuirements (defined by the formulae 
met on the way) to be satisfied in the described situation. Obviously, the greater the depth 
of a node is, the “morę particular” situation is described by the appropriate formula deter- 
mined by the path from root to this node. Finally, the paths ending with the leaf nodes de- 
termine a set of “most detailed” situations within the context situation defined by VF.

A T-tree can be used as a basie tool for guiding the generation of rules precondition by 
domain expert. The idea is to develop such a tree in a top-down modę in a systematic way.
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Altemative conditions referring to some predicate or formula are represented by branching 
in the tree. Along the paths from the root to leaves precondition formulae (conjunctions of 
the appropriate conditions) are synthesized.

Now, the most important idea consists in such a generation of the 4Mree that the set of 
the most detailed situations described by all the formulae assigned to paths ending with leaf 
nodes “cover” the initial situation defined by the context formula 'F. With respect to this 
problem the following definition is proposed.

Definition 3

Let y , , y 2, . . . , y t denote all the conjunctive formulae assigned to all the paths from  
root(t) to the leaf nodes o f some 'f-tree t. The tree is referred to as a complete 'f-tree ijf 
T(=, y , v v|/2 v ... v y t .

Notę that this definition assures in fact the specific completeness of the system (within 
the context defined by 'F. Further, the aim of the above definition is obvious -  any object of 
the considered system belonging to the context defined by 'F will be eventually covered by 
the subsets of the universe (morę precisely, by at least one of them) defined with formulae 
y , , y  2, t g * .  This is stated with the following proposition justifying the use of complete 
'F-trees for design of rule preconditions.

Proposition 5

A complete VF-tree assures specific completeness o f the developed rule-based system with 
respect to 'F.

With reference to the mentioned tool for proving completeness (i.e. bd-resolution), the 
goal of developing 'F-trees is obvious; a structure of a complete 'F-tree provides a straight- 
forward strategy of bd-resolution theorem proof for the condition defining completeness, 
i.e. iff'F[=i i |/ ,v \ |/2v . . . v \ | / t . The following proposition provides a sufficient condition 
for completeness of any considered'F-tree.

Proposition 6

A 'F-tree is complete i f  the following conditions hołd:
-  for any non-leaf node n being an immediate ancestor (parent) o f some leaf nodes and 

a conjunctive formula y  determined by the path from root to this node there is

y  |=i y 1 v V)/2 v  ...v  \\iJ (12)

i.e. the formulae satisfy the completeness condition (12) and therefore it is possible to 
resolve y ! y 2 ..., y ; generatingformula y  and,

-  the generated reduced in such a way tree is still complete;
here y ! y 2, ..., y 1 are the formulae assigned to all the child nodes o f  n.

The proof is by induction with respect to the tree size. The second condition is necessary 
only if some of the variables occurring in y  occurs also in the formulae y 1, y 2, y '  (re- 
solving the formulae may reąuire substituting for a variable and thus, by influencing the path 
above, it may violate the completeness of the tree resulting from bd-resolution application).

For intuition, the construction of a complete 'F-tree provides a strategy for a proof (de- 
rivation) of the root context formula 'F from the set of all formulae determined by the paths 
from root to leaf nodes.
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Further, let us take a closer look at the step consisting in developing some tree t' from a tree t 
by extending one of the leaf nodes belonging to t with a set of its successors; in fact this is a basie 
step in the design process. The problem is that not necessarily all the formulae v|/' determined 
by some paths in the extended tree must be satisfiable under the assumed set of interpreta- 
tions I. Let VF a  y , VF a  y ' denote the satisfiable formulae, and let

¥  a  y M, . . . , 'f 'A y j

denote the unsatisfiable ones (here the context defined by'F is taken into account). Of cour- 
se, there is no need to develop the initial tree t with respect to nodes n ,+l, being the fi 
nał nodes described by the unsatisfiable formulae A) a  y lH, ....A1 a. y ';  roughly speaking, 
pruning the unsatisfiable paths corresponds to deleting unsatisfiable formulae in a disjunc- 
tion (the one of Def. 3). The “partially” developed tree will be a complete tree as well; this 
is a weaker version of Proposition 6.

Proposition 7

A A*-tree is complete ifthe following conditions hołd:
-  for any non-leaf node n (being an immediate ancestor o f some leaf nodes) and a con- 

junctive formula y  determined by the path from root to this node there exist formulae 
y 1 ,y  2, y ' such that

y  h  y ' v  y 2 v  ...v  y y (13)

where y 1, ..., y ' are the formulae assigned to all the child nodes o f n and such that 
¥  a  y 1 is satisfiable for l = 1, 2 , ,  i, and where *F a  y 1 are unsatifiable formulae for  
any / = i + 1 ,... J ;

-  resohing (hypothetical) o f the formulae assigned to leaf nodes given by (13) leads to 
reduced but still complete A1-tree.

The above proposition may contribute to significant reduction of both the length of precon- 
dition formulae and, with respect to size of the tree, the number of rules as well.

Further, the ąuestion of determinism should be raised. As follows from the presented 
analysis, a sufficient condition for determinism is constituted by unsatisfiability of the con- 
junction of any two precondition formulae. Notę that if any branching in the tree incorpora- 
tes not only complete but exclusive set of conditions, e.g. as in the introductory example 
(under the assumed interpretation), then no two precondition formulae can be satisfied at 
the same time time. This can be recapitulated in the following proposition.

Proposition 8

A A?-tree t defines a deterministic set o f rules i f  one o f the following conditions hołd:
-  fo r  any non-leaf node n

y ^ y '  (14)

is an unsatisfiable formula, i.e. no two formulae describing diffrent paths can be sati 
sfied at the same time (i.e. exclusive branching conditions are always specified; 
y ' and y ' are the formulae assigned to the child nodes o f n), or

-  for any two paths going through a node with non-exclusive conditions immediately be 
lo w. exclusive conditions (for the paths) are added at some node(s) below.
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Thus, the T-tree can be used for simultaneous generation of not only complete set of rules, 
but by considering exclusive conditions at any branching node deterministic set of rules is ob- 
tained at the same time. In case overlapping conditions have to be used at some branching 
(e.g. for conditions simplification), the specific paths may be marked during design as ones 
potentially referring to nondeterministic rules. A further check can be done after the design.

In construction of deterministic and complete Systems, an inevitable occurring problem 
is the one of combinatorial explosion; obviously, a complete and deterministic system with 
State rather than situations used as preconditions, and based on n logical conditions (e.g ato 
mie formulae) should have 2" rules. Notę however, that in our case this problem is signifi- 
cantly reduced, because:

1) the representation language allows for representation of situations rather than States, so 
there is one rule for a subset of the State space, possible that one containing many States;

2) som e o f  the potential precondition formulae describe physically infeasib le States, and 
thus they can be omitted; the com pleteness is still assured by Proposition 2;

3) we discuss theoretical approach and ideał case; in practical design one can agree to 
partial completeness and incomplete determinism.

Further, the complexity problems can be significantly reduced by hierarchal design.
The problem of finding minimal representation (reduction) cannot be solved directly 

during generation of the tree in a generał way. This is because only rules with the same 
conclusions are likely to be reduced; the conclusions, however, are assigned to the precon 
dition formulae after the tree is generated. However, the use of'P-trees for design allows for 
immediate local minimization of the number of generated rules in a straightforward way.

The main idea of minimization consists in joining two or morę rules with “slightly 
differenf ’ preconditions. The idea of local minimization consist in performing this opera- 
tion at any branching node, directly after developing it -  the current leaf nodes leading to 
the same rule action can be joined at once. Or, even better, we simply do not perform “too 
detailed” branching, that’s all! This seems to be reasonable and efficient enough in most ca- 
ses, but in a generał case a post-design minimization may be necessary.

Notę that if any path in the tree is assigned different conclusion or action, no reduction 
is possible. If two or morę paths have the same conclusion, then they should be analyzed 
for possible reduction. Both reduction and partial reduction can be applied. Notę that due to 
the completeness condition and validity of bd-resolution, reduction of rules does not violate 
completeness -  the reduced set of rules must be complete as well. Further, if the set of rules 
was deterministic, the reduced set of rules will be deterministic as well.

10.3. OSIRIS -  a design tool
Based on the ideas presented above, an experimental tool for development of rule-based 
systems named OSIRIS was designed and implemented [42]. This tool was also described 
in [23] and [24], In [42] a new idea for graphical representation of combined tabular Sys 
tems (and their parts) together with decision trees was developed. These are the so-called 
tab-trees or tree-table representation.
The main idea of the tool consists in building a hierarchy of tabular systems [25]. This hie 
rarchy is based on the 'F-tree structure. Each row of a OAV table is right connected to the 
other OAV table. Such a connection implies logical AND relation in between.
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The component tabular Systems used in tree-table representation are divided into two kinds:
1) attribute tables,
2) action tables.

Attribute tables are the attribute part of a classical OAT, Action tables are the action part. 
There is one logical limitation. While attribute tables may have as many rows as needed (a 
number of columns depends on the number of attributes), action tables may have only one 
row, it means that the specified action, or set of actions if there is morę then one column, 
may have only one value set, which preserves consistency.

An example of a tree-table representation is given in Figurę 10. Please notę, that a tree- 
-table representation is similar to Relational-Data-Base (RDB) data representation scheme. 
The main features of the tree-table representation are very simple, readable and engineers 
acceptable knowledge representation, remaining in part the RDB tables, composed with:

-  hierarchical, tree-like representation,

Fig. 10. An example o f a tree-table representation

-  highly efficient way of visualisation with high data density,
-  power of the decision table representation,
-  analogies to the RDB data representation scheme.

The OSIRIS tool is a multi-module system designed for UNIX environments (tested under 
Debian GNU/Linux, Sun Solaris 2.5). It consists of: a graphical environment for Computer 
aided development of rules, a codę generator for Kheops system, a validator, which provi- 
des completeness checking and a run-time environment for created rules. The architecture 
of the OSIRIS and further details are described in [42] and also in [23] and [24].
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11. An example
After [30] let us consider the following system:

-  ^,: = age; Z), = {y,p,q), where:

y  -  young, 
p  -  pre-presbyotic, 
q -  presbyotic;

-  A 2: = spectacle; D2 = {m, h}, where:

m -  myope, 
h -  hypermyope;

-  A 3: = astigmatic; £>3 ={n,y},  where:

y  -  yes, 
n -  no;

-  A 4: = tear production ratę; D4 = {r, n}, where:

r  -  reduced, 
n -  normal;

-  D : = type of contact lenses (decision attribute); Dd = {H, S ,N), where:

H  -  hard contact lenses,
S  -  soft contact lenses,
N  -  no contact lenses.

Consider the following Optician’s Decision Table (Tab. 1), being a perfect example of a ta- 
bular system.

Table 1 can be regarded as a complete decision table (ready for use) or as a specifica- 
tion of some tabular rule based system. A brief analysis assures us that there are no redun- 
dant or subsumed rules. The system is deterministic and complete. The following reduction 
is possible.

Table 1

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y m y n H

2 y n y n H

3 p m y n H

4 q m y n H

5 y m n n S

6 y n n n S

7 p m n n s

8 p n n n s
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Table 1 cont.

Number Age Spectacle Astigmatic Tear p.r. Decision

9 q n n n S

10 y m n r N

11 y m y r N

12 y n n r N

13 y n y r N

14 p m n r N

15 p m y r N

16 p n n r N

17 p n y r N

18 p n y n N

19 q m n r N

O<N

q m n n N

21 q m y r N

22 q n n r N

23 q n y r N

24 q n y n N

Reduction to complete domains (total reduction in which no subsets of the domains are ad- 
missible) leads to Table 2.

Table 2

Number Age Spectacle Astigmatic Tear p.r. Decision j

1 y - y n H "1

2 - m y n H

3 y - n n s

4 p - n n s

5 - n n n s

6 - - - r N

7 p n y - N

8 q m n - N
9 q n y - N

A further total reduction is possible; as the result the Table 3 is obtained.
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Table 3

Number Age Spectacle Astigmatic Tear p.r. Decision

i y - y n H

2 - m y n H

3-4 {y, p> - n n S

5 - n n n S

6 - - - r N

7-9 (p ,q ) n y - N

8 q m n - N__________

The output table is in its minimal form (maximally reduced one). It is still complete (logi- 
cally equivalent to its input form) and deterministic.

12. Concluding remarks

The paper presents an extended outline of knowledge representation and inference for ana- 
lysis, verification and design of tabular Systems. Tabular sytems, follow the pattem of 
RDBs and attributive decision tables, and provide a powerful paradigm for data and 
knowledge representation. Logical characteristics of such systems are defined and some 
elements for algebraization of analysis and verification of theoretical properties of tabular 
rule-based systems are presented. A taxonomy of issues conceming formal verification is 
put forward. It is shown that several theoretical properties can be analysed through simple 
algebraic operations instead of logical inference. Algebraic notation, close to RDBS model, 
seems to be simpler and morę intuitive than pure logie, so it might be morę easily accepted 
by practitioners.

The main ideas and extensions proposed in this paper include:

-  extended, common model for data and knowledge (apart ffom atomie values, also sets 
and intervals can be used for values encoding);

-  hierarchical approach and limitation of the verification to local context; analysis of glo- 
bal contexts can also be performed at the higher level;

-  algebraic approach to analysis and verification of theoretical properties;
-  a new approach to design of rule-based systems promoting on-line verification during 

the design stage (a guided design);
-  a new taxonomy of anomalies in rule-based systems.

The size of the tabular rule-based systems is assumed to be limited, mainly thanks to the 
multi-level structure of the system. Due to limited size the local verification can be ąuite ef- 
ficient. A similar procedurę can be applied at the higher level for analysis of theoretical 
properties.
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