
Association Pattern Analysis for Pattern 

Pruning, Clustering and Summarization 
 

 

 

by 

 

 

Chung Lam Li 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Electrical and Computer Engineering 

 

 

 

Waterloo, Ontario, Canada, 2008 

 

 

©Chung Lam Li 2008 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

Automatic pattern mining from databases and the analysis of the discovered patterns for useful 
information are important and in great demand in science, engineering and business. Today, effective 
pattern mining methods, such as association rule mining and pattern discovery, have been developed 
and widely used in various challenging industrial and business applications. These methods attempt to 
uncover the valuable information trapped in large collections of raw data. The patterns revealed 
provide significant and useful information for decision makers. Paradoxically, pattern mining itself 
can produce such huge amounts of data that poses a new knowledge management problem: to tackle 
thousands or even more patterns discovered and held in a data set. Unlike raw data, patterns often 
overlap, entangle and interrelate to each other in the databases. The relationship among them is 
usually complex and the notion of distance between them is difficult to qualify and quantify. Such 
phenomena pose great challenges to the existing data mining discipline. In this thesis, the analysis of 
patterns after their discovery by existing pattern mining methods is referred to as pattern post-
analysis since the patterns to be analyzed are first discovered. 

Due to the overwhelmingly huge volume of discovered patterns in pattern mining, it is virtually 
impossible for a human user to manually analyze them. Thus, the valuable trapped information in the 
data is shifted to a large collection of patterns. Hence, to automatically analyze the patterns 
discovered and present the results in a user-friendly manner such as pattern post-analysis is badly 
needed. This thesis attempts to solve the problems listed below. It addresses 1) the important factors 
contributing to the interrelating relationship among patterns and hence more accurate measurements 
of distances between them; 2) the objective pruning of redundant patterns from the discovered 
patterns; 3) the objective clustering of the patterns into coherent pattern clusters for better 
organization; 4) the automatic summarization of each pattern cluster for human interpretation; and 5) 
the application of pattern post-analysis to large database analysis and data mining. 

In this thesis, the conceptualization, theoretical formulation, algorithm design and system 
development of pattern post-analysis of categorical or discrete-valued data is presented. It starts with 
presenting a natural dual relationship between patterns and data. The relationship furnishes an explicit 
one-to-one correspondence between a pattern and its associated data and provides a base for an 
effective analysis of patterns by relating them back to the data. It then discusses the important factors 
that differentiate patterns and formulates the notion of distances among patterns using a formal 
graphical approach. To accurately measure the distances between patterns and their associated data, 
both the samples and the attributes matched by the patterns are considered. To achieve this, the 
distance measure between patterns has to account for the differences of their associated data clusters 
at the attribute value (i.e. item) level. Furthermore, to capture the degree of variation of the items 
matched by patterns, entropy-based distance measures are developed. It attempts to quantify the 
uncertainty of the matched items. Such distances render an accurate and robust distance measurement 
between patterns and their associated data. To understand the properties and behaviors of the new 
distance measures, the mathematical relation between the new distances and the existing sample-
matching distances is analytically derived. 
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The new pattern distances based on the dual pattern-data relationship and their related concepts are 
used and adapted to pattern pruning, pattern clustering and pattern summarization to furnish an 
integrated, flexible and generic framework for pattern post-analysis which is able to meet the 
challenges of today’s complex real-world problems. In pattern pruning, the system defines the 
amount of redundancy of a pattern with respect to another pattern at the item level. Such definition 
generalizes the classical closed itemset pruning and maximal itemset pruning which define 
redundancy at the sample level. A new generalized itemset pruning method is developed using the 
new definition. It includes the closed and maximal itemsets as two extreme special cases and provides 
a control parameter for the user to adjust the tradeoff between the number of patterns being pruned 
and the amount of information loss after pruning. The mathematical relation between the proposed 
generalized itemsets and the existing closed and maximal itemsets are also given. In pattern clustering, 
a dual clustering method, known as simultaneous pattern and data clustering, is developed using two 
common yet very different types of clustering algorithms: hierarchical clustering and k-means 
clustering. Hierarchical clustering generates the entire clustering hierarchy but it is slow and not 
scalable. K-means clustering produces only a partition so it is fast and scalable. They can be used to 
handle most real-world situations (i.e. speed and clustering quality). The new clustering method is 
able to simultaneously cluster patterns as well as their associated data while maintaining an explicit 
pattern-data relationship. Such relationship enables subsequent analysis of individual pattern clusters 
through their associated data clusters. One important analysis on a pattern cluster is pattern 
summarization. In pattern summarization, to summarize each pattern cluster, a subset of the 
representative patterns will be selected for the cluster. Again, the system measures how representative 
a pattern is at the item level and takes into account how the patterns overlap each other. The proposed 
method, called AreaCover, is extended from the well-known RuleCover algorithm. The relationship 
between the two methods is given. AreaCover is less prone to yield large, trivial patterns (large 
patterns may cause summary that is too general and not informative enough), and the resulting 
summary is more concise (with less duplicated attribute values among summary patterns) and more 
informative (describing more attribute values in the cluster and have longer summary patterns). 

The thesis also covers the implementation of the major ideas outlined in the pattern post-analysis 
framework in an integrated software system. It ends with a discussion on the experimental results of 
pattern post-analysis on both synthetic and real-world benchmark data. Compared with the existing 
systems, the new methodology that this thesis presents stands out, possessing significant and superior 
characteristics in pattern post-analysis and decision support. 
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Chapter 1 
Introduction 

The ability to automatically discover useful knowledge from data is central to human intelligence. 
Since data mining and knowledge discovery are concerned with the science of discovering useful 
knowledge from data [1] – [3], the discovery of previously unknown patterns/rules that lead to 
understanding in support of human comprehension, decision making and knowledge discovery has 
always been one of their ultimate goals. Figure 1 depicts the process of knowledge discovery which 
consists of an iterative sequence of steps. First of all, raw data is preprocessed to produce features 
relevant to a problem. Typical pre-processing tasks include data cleaning, feature selection and 
transformation. The features are then inputted to pattern/rule mining systems which automatically 
discover previously unknown patterns/rules from the preprocessed data (i.e. feature vectors). 
Representative examples of pattern/rule mining methods are association rule mining [4] – [9] and 
pattern discovery [10] – [14]. Finally, the discovered patterns/rules are post-analyzed to support 
further discovery of useful information. 

 

 

Figure 1. The process of knowledge discovery 
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The problem of pattern/rule mining has been extensively studied in data mining and knowledge 
discovery research area. There are well-developed methods and algorithms to discover different types 
of patterns such as association rules [4], [6] – [8], itemsets [4] – [9], correlation rules [15], [16] and 
association patterns [10] – [14]. In this thesis, to simplify the terminology, we collectively refer all 
these types of patterns or rules to as patterns unless otherwise stated. Similarly, all pattern or rule 
mining methods are collectively referred to as pattern mining. 

Up-to-date, association rule mining [4] – [9] is the most popular rule mining technique. It is very 
fast and scalable to accommodate very large databases. This is particularly attractive for today’s real-
world problems because of the availability of huge amount of data due to fast advancement in data 
generation and collections technologies. It is user-friendly since the rules produced are easy to 
understand for human users. Furthermore, association rule mining also assumes little knowledge 
about the data from the users. Hence, it is relatively practical and easy to use. Since its advent, 
association rule mining has been widely studied in research and commonly used in industry. As the 
technologies of association rule mining grows, variations such as emerging patterns [17], hyperclique 
patterns [18], etc emerge. 

One problem of association rule mining is that the use of confidence (i.e. the conditional 
probability of an association rule) does not capture the statistical correlation among items [15], [16]. 
Hence, association rule mining may discover strong rules that are not positively correlated at all (see 
more details in section 2.2.2). To capture correlation among items, Brin et al proposed correlation 
rule mining [15], [16] which uses chi-squared statistic as well as identify correlated items. Correlation 
rule mining is statistically sound; however, since chi-squared statistic is computed from the data of 
the entire contingency table, correlation rule mining is not accurate for high dimensional cases and is 
not scalable for large databases.  

Another method to capture statistical correlation among items is pattern discovery [10] – [14]. 
Pattern discovery employed residual analysis to capture statistical correlation among items. It is 
statistically sound. Although pattern discovery is slower than association rule mining, it is faster than 
correlation rule mining. It is accurate for high-dimensional contingency table data and is scalable for 
large databases. In pattern discovery, statistical hypothesis test is employed to define and capture 
association patterns. As a result, each pattern discovered is associated with Type I (false positive) and 
Type II errors (false negative). In other words, the probability that a pattern is in fact NOT a pattern is 
known (Type I error). For example, at 95% significance level, such probability is 5%. Hence, the 
patterns discovered are highly trustable (with a very small probability of error). This property is 
particularly important for critical problems, such as medical diagnosis, oil and gas production and 
petrochemical refining, where wrong patterns will lead to huge financial loss or health hazards. 

All of the above mentioned pattern mining methods suffer from the problem of rendering too many 
patterns or rules. Ironically, the number of patterns produced can be much more than the number of 
data samples. For instance, the Wine data set from UCI [19] has only 178 data samples but 
association rule mining can produce over 20,000 itemsets or association rules. Hence, it is very time-
consuming and expensive to analyze the overwhelming number of discovered patterns. Such 
consequence diminishes its attractiveness as an effective knowledge discovery tool. 
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1.1 Problems Raised by Pattern Mining 

While pattern mining has been studied extensively and new mining techniques continue to appear in 
literatures, the problem of the post-analysis of the discovered patterns has continually been attracting 
more and more attentions from both the academia and the industry. It is no doubt that pattern mining 
is a very important step towards knowledge discovery. However, the explosive amount of patterns 
discovered makes it virtually impossible for a human user to inspect them manually. Furthermore, 
unlike traditional data analysis where assumptions such as the independence and identical distribution 
(i.i.d.) assumption can be made to simplify the analysis, the discovered patterns often overlap, 
entangle and interrelate to each other within the data set. Hence, to my best knowledge, there is no 
assumption that can be made to simplify the relationship among patterns. Instead, new methods such 
as pattern post-analysis have to take into consideration the complex relationship among patterns. The 
complexity of the pattern post-analysis problem poses great challenges to existing data mining 
discipline – fundamental concepts, algorithms and techniques. 

This thesis deals with the problems of computer-aided pattern post-analysis discussed above. Since 
the number of patterns discovered can be very large, post-analysis of the discovered patterns is very 
important for automatic knowledge acquisition from the huge volume of discovered patterns. In real-
world applications, it is not uncommon to have hundreds and thousands of discovered patterns. This 
makes the domain experts virtually impossible to examine and comprehend all of them. In many 
situations, the domain experts will have to select a very small subset of patterns manually based on 
certain criteria such as support, confidence [4] – [9], h-confidence [18], chi-squared statistics [15], 
[16] and residual [10] – [14]. They have also to rely on their understanding about the patterns and 
their knowledge of the problem domain, etc. As the result, they will spend weeks and months to 
manually validate, inspect and interpret the patterns individually. 

One would anticipate that such manual approach is not very effective, yet, it would be surprising to 
learn that it is still one of the most common approaches in industries. The situation is quite obvious. 
First, the criteria the domain experts used to select a small subset of patterns for further investigation 
are heavily based on their experiences and knowledge. A common problem in the industry (e.g. oil 
and gas production and petrochemical refining) is that when senior engineers retire the junior 
engineers may not have enough experiences and knowledge to analyze the discovered patterns. For 
complex systems, knowledge transfer is not easy. Second, this manual approach is very time-
consuming and expensive. Usually, a team of senior experts is needed to spend a tremendous amount 
of times and efforts to interpret, validate and analyze the discovered patterns. Third, it is very easy for 
the domain experts to make mistakes during the investigation due to fatigue or other causes. 
Sometimes, they might be biased by their previous experiences. Since they need to look at a huge 
number of patterns manually for a very long period, it is almost inevitable for them to make 
occasional mistakes, which may lead to misleading, and, at worst, wrong conclusions. For many 
business applications, such consequences could cause hazards and huge financial loss. These pending 
problems create a huge hurdle for them to apply pattern mining systems to their problems. 

In response to such challenges, this dissertation work attempts to develop a system to solve the 
above problems. It is intended to automatically analyze the relationship among the patterns 
discovered by pattern mining and organize them in a way that human being can easily comprehend, 
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interpret and validate. Such a system, for instance, can help the junior engineers to interpret the 
discovered patterns easier, identify surprising patterns and obtain useful information from them. It 
could significantly save the amount of times and human resources as well as avoid unnecessary 
hazards and accidents caused by human mistakes. 

To develop an effective pattern post-analysis system, the key challenges must first be identified. 
When compared with traditional data analysis, pattern post-analysis would encounter even greater 
challenges from the following standpoints: 

1. the number of patterns is often much more than the number of raw data samples (the speed 
issue), and 

2. the interrelating relationship between patterns is often more complex than the raw data (the 
quality issue), 

While the first challenge concerns about the speed of the pattern post-analysis algorithms, the 
second concerns the quality of the results produced by the algorithms. An effective post-analysis 
method has to be fast and adequately scalable to handle a huge volume of patterns and to produce 
accurate results while taking the interrelating complex relationship among patterns into account. Like 
situations encountered in data analysis, there is always a tradeoff between speed and quality in pattern 
post-analysis. Hence, an effective and flexible system should allow the users to determine the tradeoff. 
To meet the above challenges, this thesis research focuses on the following pattern post-analysis 
problems: 

1. The measurement of the complex interrelating relationship among patterns, 

2. The automatic clustering of discovered patterns and their associated data into manageable 
groups, 

3. The automatic pruning of redundant patterns, 

4. The automatic summarization of patterns, and 

5. The easefulness of the understandability of the organized patterns. 

 

Further, to narrow down the pattern post-analysis problems, the following idealization and 
assumptions are imposed on the developed system. 

 

1. All the attributes (variables) describing the data assume categorical or discrete values. 

2. The number of samples in the data set is fixed and does not change during the pattern mining 
and post-analysis process. 

3. The number of attributes describing the data set is finite. The domain of each attribute is also 
finite. 

4. There is no order among the attributes. 

5. There is no order among the samples. 
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Simply put, the format of the data is a relational table commonly used in machine learning and data 
mining settings. It should be noted that a transaction database used in association rule mining can 
always be mapped to an equivalent relational table (see section 2.4 for details). Such mapping is 
commonly used in association rule mining (e.g. see [20] – [22]). Assumptions 4 and 5 follow the 
formalism of the analysis of pattern distance measures in chapter 3. 

It is not assumed that the data set is noise-free, complete or correct, or that the background 
knowledge of the domain and a discovering guide are available. 

1.2 Motivation and Objectives 

1.2.1 Thesis Motivation 

 Data is an extremely valuable asset, 

 but like a cash crop, 

 unless harvested, it is wasted. 

     – Sid Adelman 

 

The importance of pattern mining has been repeatedly emphasized by a number of researchers and 
will not be repeated here. In order to turn the data into valuable assets, it is very important to enable 
the human user to comprehend, interpret and validate the huge amount of discovered patterns. To 
achieve this, pattern post-analysis methods are developed for automatically analyzing, organizing and 
managing the discovered patterns so that the human user can obtain useful information from them. 

From the academic point of view, the discovery of useful information inherent from data is one of 
the ultimate goals in data mining and knowledge discovery. Either by being-told or by self-discovery, 
pattern post-analysis is a process the target of which is to obtain the behavioral phenomena or 
principles of the working domain from the huge amount of discovered patterns. The objective is to 
enable human to better comprehend the behavior in the same working domain.  

From the application point of view, pattern post-analysis has huge potential applications in various 
real-world problems. In fact, it is the pressing demand from the business and industry that motivates 
this research. In particular, the thesis research motivation comes from the following practical 
problems. Consider a company which has a large database. An oil and gas production company, for 
instance, may have logged hundreds of thousands of records about the oil and gas production process. 
Or an education institution may have a database of the students’ academic records. Suppose that these 
companies or institutions wish to understand the business better. The concerns they have in mind 
could be as follows. Could they use their existing databases to automatically derive the patterns for 
diagnosis or training purpose? Could they uncover the regularities that reflect the operations and 
performance of the companies? Could they find out the relationships among market demands and 
decision criteria? More specifically, for the oil and gas production company, what advices should the 
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system give when a new engineer with little experience of the existing production process needs to 
monitor the process? If there are existing models describing components A and B in an oil and gas 
production process but no model describing their interaction, can the system discover the relationship 
between these two components? 

With the advent of inexpensive electronic and magnetic storage media and the ever broadening use 
of computers in a vast spectrum of businesses, utilizing large databases is becoming a common 
practice. Nowadays, the average size of databases range from gigabytes to terabytes; however, 
analyzing these databases and providing the users with useful knowledge is very difficult in the 
meantime. The huge volume of data makes manual analysis virtually impossible. Since the number of 
patterns can be much larger than the number of data samples, the problem of pattern post-analysis can 
be even more challenging. The real-world characteristics of these databases such as noise, 
incompleteness, inconsistency and redundancy are open questions posed to today’s machine learning 
research. These demands and concerns create both a need and an opportunity to automatically extract 
knowledge from databases. It is quite clear that if a company has an existing database of its business 
records, such a pattern post-analysis system would be very useful. On the one hand, it uncovers the 
useful information trapped in the huge set of patterns. Such information may provide insights for even 
experienced decision makers. On the other hand, the uncovered information can compensate for the 
lack of experiences and/or knowledge of junior staff. Hence, useful information will not be lost when 
senior staff leaves the company or retires. 

Academically, this research targets some open problems in data mining and automatic knowledge 
acquisition from large databases. These challenging problems motivate the research and form the 
objectives of the research. Like data analysis, there are several common tasks for pattern post-analysis. 
For example, pattern pruning removes uninteresting and/or redundant patterns [8], [9], [20], [23] – 
[39]; pattern clustering groups similar patterns into clusters [23], [40] – [44]; pattern summarization 
builds a representative summary of the patterns [20], [21]; and visualization presents the patterns to 
the users in an easy-to-understand manner [40]. 

Fundamental to all of the above post-analysis tasks is how to measure the distance between 
discovered patterns effectively. Like the role that distance between data samples plays in data analysis, 
clustering and classification, the distance between patterns are crucial. It can be used for a wide 
variety of tasks such as: pruning redundancies in pattern pruning; grouping similar patterns for pattern 
clustering; and identifying representative patterns for summarization and visualization. 

This thesis first focuses on the crucial problem of measuring distances between patterns (including 
itemsets and association rules). Based on the developed pattern distances, algorithms for pattern 
pruning, pattern clustering and pattern summarization developed in the dissertation work are 
presented. In the literatures, it was found that the matched samples of the discovered patterns are a 
very good source to provide additional information about the patterns [8], [9], [20], [21], [23], [40]. 
To measure distance between association rules, Toivonen et al [23] proposed the well-known distance 
that counts the number of samples where patterns differ. Similarly, Gupta et al [40] developed a 
normalized distance that counts the number of samples where patterns share. Their distance was 
applied to the agglomerative chain clustering for pattern clustering and to the self-organizing map for 
pattern visualization. 
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The concept of samples matching has also been used in pattern pruning. In [24], the distance 
proposed by Gupta et al [40] was used for pattern pruning. Another representative method is 
RuleCover pruning [23]. Given a set Γ of association rules having the same consequent, its subset Δ is 
called a rule cover if the rules in Δ match the same set of samples matched by the original rules in Γ. 
In other words, a rule cover is a subset of the original set of association rules such that the cover 
matches all the samples that the original set matches. Furthermore, closed itemset pruning [8], [9], 
[29] – [31], which is widely used for pruning itemsets and for improving the speed of mining 
association rules, is also based on sample matching. An itemset is called a closed itemset if it is the 
superset of all pruned itemsets having the same number of matched samples (i.e. support). 

While sample-matching distances have been widely used in various pattern post-analysis tasks, 
they do not capture certain important characteristics of the discovered patterns. When applied to 
various pattern post-analysis tasks, misleading results may follow. The introduction of the new 
distance measures is an important step to advance effective pattern post-analysis of categorical data. 
As in the analysis of categorical data, the impediment of effective analysis is due to the lack of 
effective distance measures which should take into consideration of the probabilistic variation of the 
data. Similar impediment is also encountered in pattern post-analysis in order to further explore the 
problem and examine the difficulties. In this thesis, to overcome the weakness of sample-matching 
distance, I formally analyze the properties of sample-matching distances and propose new distance 
measures based on a dual pattern-data relationship. The dual relationship provides an explicit one-to-
one correspondence between patterns and their associated. Such explicit correspondence enables 
effective analysis of distances among patterns, resulting in two new distance measures, namely 
sample-attribute-matching distances and entropy-based distance. 

The practical problems of how the new distance measures and their related concepts can be used in 
pattern pruning, pattern clustering and pattern summarization are also addressed. The experimental 
works are extensively carried out. A comprehensive comparative study of the experimental results on 
carefully planned synthetic data and real-world data then follow. The objective of the study is to have 
a full grasp of the problem, identify the hurdles to overcome and layout the path for further 
development. The ultimate goal is to develop an integrated system that can automatically analyze the 
discovered patterns and present the results understandable by human. 

The following list gives a more detailed description to each of the research problems as stated in 
section 1.1. 

 

1. The quantitative description of the complex interrelating relationship among patterns. 

Since the relationship between patterns is realized in their associated data set, the crucial 
relationship between pattern and data has to be established explicitly before the distance 
between patterns can be meaningfully and accurately measured. Once such explicit pattern-
data relationship is established, formal analysis of distance measure among discovered 
patterns can be derived. Up-to-date, most of the existing pattern post-analysis systems 
developed use the sample-matching distances. Hence, they could not account for the 
number of attributes that two patterns differ nor the difference between two patterns 
attributed by noise or the variation of their associated data. In this thesis, an analysis of 
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sample-matching distances in categorical data is first presented. From the analysis, new 
concepts of sample-attribute matching and data variation within clusters are proposed for 
defining more accurate measurement of distances between patterns. These two concepts are 
used to develop effective and generalized algorithms for pattern pruning, pattern clustering 
and pattern summarization. 

2. The automatic clustering of discovered patterns and their associated data. 

A common task in pattern post-analysis is pattern clustering. It is an important task for 
organizing and analyzing the discovered patterns. In data clustering, the key function of 
clustering is to bring similar data together. In pattern clustering, the process that brings 
patterns together has to rely on the detected closeness of their associated data clusters. Thus, 
a good pattern clustering method needs to simultaneously cluster patterns as well as their 
associated data into coherent groups. The pattern-data relationship should be made explicit 
for further analysis. Hence, in this thesis, a dual clustering process is proposed which is able 
to cluster both patterns and their associated data while maintaining an explicit one-to-one 
pattern-data relationship. Such explicit pattern-data relationship enables further analysis of 
individual clusters including pattern summarization. 

Using the concepts of sample-attribute matching and data variation within clusters, the dual 
clustering process employs an entropy-based distance measures between patterns. The new 
distance measures are able to take into account the noise and data variation inherent in the 
data clusters. 

3. The automatic pruning of redundant patterns, 

Automatic pruning of redundant patterns is highly desirable because it can significantly 
reduce the complexity of the subsequent analyses. Due to the interrelating nature of patterns, 
the notion of redundancy has to be defined by considering how patterns overlap and 
entangle with each other in the data through the explicit pattern-data relationship. Once the 
notion of redundancy is defined, redundant patterns can be pruned. In this thesis, the 
concept of sample-attribute matching is used to define redundancy between patterns. 

4. The automatic summarization of patterns 

It is very useful in real world applications for a pattern post-analysis system to 
automatically generate a summary of the patterns. A concise and accessible informative 
summary could help a human user significantly in gaining a better grasp of the patterns 
discovered from the data. When searching for representative patterns for summarization, the 
interrelating relationship among patterns is taken into consideration. Here, the concept of 
sample-attribute matching is used to define how representative a pattern is by considering 
the overlapping nature of patterns. Then a set of representative patterns is selected to 
summarize the rest of the patterns. 

5. The easefulness of the understandability of the organized patterns. 

The ultimate goal of pattern post-analysis is to support easy and quick knowledge 
acquisition from the huge volume of patterns for the users. First, pattern post-analysis 
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system should produce results interpretable by human. Second, the post-analysis process 
should be made explicit and the results should be made transparent. Such demands are 
related to one of the natural requirement of learning transparency versus blackbox [45], [46]. 
Unlike regression or prediction, a black-box approach is not suitable for knowledge 
discovery and decision making support. With a transparent system, it is much easier to 
construct a meaningful explanation of the patterns and their relationships. Throughout the 
pattern post-analysis system, the analyses are made explicit and the results are transparent 
and understandable. The easefulness of the understandability is one of the most important 
aspects for a knowledge discovery and data mining system. 

1.2.2 Thesis Objectives 

The followings are the objectives of this study. This study will: 

• develop an integrated system which is able to automatically analyze and organize the discovered 
patterns from a given data set in a way that human can easily comprehend, interpret and validate; 

• develop an effective and robust dual clustering algorithm supported by effective distance 
measures between patterns. The algorithm is able to simultaneously cluster both patterns and 
their associated data and maintains an explicit one-to-one relationship between patterns and data 
for subsequent analysis; 

• develop the ability to prune redundant patterns with controllable tradeoff of information loss 
and the number of patterns retained; 

• develop the ability to generate a concise and informative summary describing a huge set of 
interrelating and entangling patterns; and 

• accomplish experimental demonstration and evaluation for analyzing the performance of the 
proposed method. 

1.3 Research Outline 

The research presented in this thesis can be subdivided into four sections. The first section focuses on 
the explicit dual relationship between patterns and their associated data, and the pattern distance 
measures derived from such pattern-data relationship. The rest of the three sections describe the use 
of pattern-data relationship and its related concepts including sample-attribute matching and data 
variation consideration in the problems of pattern clustering, pattern pruning and pattern 
summarization. 

In the first section, the dual relationship between patterns and their associated data is introduced 
through the discussion of sample-attribute matching and the impact of noise and variation inherent in 
the data. Using the pattern-data relationship, these concepts are naturally incorporated in the 
measurement of distances between patterns. Thus, two types of pattern distances are developed. The 
first is sample-attribute-matching distances which extend from the existing sample-matching 
distances [20], [23], [24], [26] – [28]. The second type is entropy-based distances which take into the 
consideration of noise and variation inherent in the data. In the second section, using the proposed 
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distance measures, a dual clustering algorithm is developed for clustering patterns as well as their 
associated data. In the third section, the concept of sample-attribute matching is used to develop a 
new type of itemsets in association rule mining which generalizes the classical closed [8], [9], [29] – 
[31] and maximal itemsets [32] – [35] for pattern pruning. In the fourth section, sample-attribute 
matching is again employed to develop a new pattern summarization method. It generalizes the 
RuleCover algorithm [23] into AreaCover algorithm to select patterns that would have better and 
more effective coverage in terms of both samples and attributes of the data sets. 

1.3.1 Dual Relationship between Patterns and Data and Its Related Concepts 

The first portion of the research introduces the dual relationship between patterns and their associated 
data. The relationship provides an explicit one-to-one correspondence between patterns and data. This 
provides an important base to measure the distance between patterns through the differences obtained 
from their associated data.  

With the pattern-data relationship, a formal analysis of distance measures between patterns is 
provided. Under the assumption that there is no order among samples and attributes in a relational 
table (see section 1.1), the data containing a pattern can always be considered as a continuous 
rectangular block by swapping the samples (rows) and attributes (columns) of the table. This 
assumption gives a simple and unified view of various distance measures in the literatures. Under this 
unified view, exiting distances measures, including item-matching distances and sample-matching 
distances [20], [23], [24], [26] – [28], are analyzed. 

From the analysis, we propose new pattern distance measures that take into consideration of the 
effects of attribute matching and data variation in clusters. The new distance measures are analyzed 
under the same unified view so that the relationship between the new measures and the existing ones 
are made clear. In particular, we show that the new measures are extended from the existing sample-
matching distances [20], [23], [24], [26] – [28] by considering additional important factors that have 
been overlooked. 

1.3.2 Simultaneous Pattern and Data Clustering 

The proposed dual pattern-data relationship is used to develop a dual clustering algorithm, known as 
simultaneous pattern and data clustering. The algorithm simultaneously clusters patterns as well as 
data while keeping an explicit dual pattern-data relationship. Two common clustering algorithms, 
namely hierarchical clustering and k-means clustering, are implemented. Like data clustering, 
hierarchical pattern clustering produces the entire clustering hierarchy and always produces the same 
result given the same distance measure. Hence, it is ideal for studying and comparing different 
distances. However, hierarchical pattern clustering is not scalable. In contrast, k-means pattern 
clustering is fast and scalable since it only produces a partition rather than the entire hierarchy. 
However, it requires users to set the number of clusters. It also involves a random cluster initialization. 
Hence, different executions of k-means will produce different clustering results, making evaluation 
and comparison difficult. Despite the limitations of the two methods, they are commonly used in 
clustering. The dual clustering algorithm is implemented using both methods. 
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1.3.3 Pattern Pruning 

It is common to prune redundant patterns before conducting other pattern post-analyses such as 
pattern clustering and pattern summarization. Today, most of the pruning algorithms are based on 
sample matching. Using the concept of sample-attribute matching, a new type of itemsets is proposed. 
It generalizes closed itemsets [8], [9], [29] – [31] and maximal itemsets [32] – [35] into generalized 
itemsets while considering them as two special extreme cases. It provides a way for the users to 
control the amount of information loss in pattern pruning, thus enabling them to balance the tradeoff 
between information loss in pruning and number of patterns pruned. The generalized itemsets 
provides a more general alterative to closed itemsets and maximal itemsets. 

1.3.4 Pattern Summarization 

One of the ultimate goals of pattern post-analysis is to support the discovery of useful knowledge 
from data. As stated in the introductory sections, a more desirable way of using knowledge is to be 
able to reveal it at a glance. Pattern summarization aims at automatically selecting a small subset of 
patterns that are representative to other patterns. Again, the concept of attribute matching is integrated 
with sample-matching to develop a method which summarizes each pattern cluster produced by 
pattern clustering. It is an extension of the RuleCover pruning algorithm [23] into what we call the 
AreaCover algorithm which considers both samples and attributes in the selection of the summary 
patterns for each cluster. 

1.4 Organization of the Thesis 

There are six chapters in this thesis including this introduction. 

To give a better understanding of the research field, a brief review of existing ideas relevant to 
pattern mining and post-analysis is presented in chapter 2. Discussions of individual approaches 
follow a general overview of pattern mining and post-analysis. The advantages and disadvantages of 
these methods are also examined with regard to the goals of this research. The preliminary concepts 
that will be used throughout the rest of this thesis are also presented. It describes the concepts and 
definitions of association rule mining and pattern discovery, two commonly used pattern mining 
methods. 

Chapters 3 and 4 embody the major part of this research. In chapter 3, the dual relationship 
between patterns and data is introduced. Then, a formal analysis of various distance measures 
between patterns is provided. It explains how item-matching distances and sample-matching distances 
measure the distances between patterns. The limitations of these existing distances are discussed 
leading to the necessity of sample-attribute matching and data variation consideration. Based on these 
concepts, new sample-attribute-matching distances and entropy-based distances based on the dual 
pattern-data relationship are proposed. Discussion regarding the properties and differences of various 
distance measures is followed with supportive demonstration. 

To demonstrate the efficacy and usefulness of the new distance measures, they are used to build an 
integrated pattern post-analysis system which consists of pattern pruning, simultaneous pattern and 
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data clustering and pattern summarization. The ultimate goal of the system is to help users to easily 
and quickly understand and interpret the patterns discovered and obtain useful knowledge from the 
huge volume of data and patterns. 

In chapter 3, the proposed distance measures are first applied to the problem of pattern clustering. 
A dual process, known as simultaneous pattern and data clustering, is developed for clustering similar 
patterns and their associated data simultaneously into clusters. Two common clustering algorithms 
are implemented using the proposed distance measures, namely, hierarchical clustering and k-means 
clustering. 

In chapter 4, the concept of sample-attribute matching is used to develop a new type of itemsets, 
known as generalized itemsets. It has been proven that generalized itemsets are a generalization of 
closed itemsets and maximal itemsets, two commonly used itemset pruning techniques. Generalized 
itemsets are a pattern pruning technique to remove redundant patterns. It can be applied before pattern 
clustering. Moreover, in this chapter, pattern summarization method, known as AreaCover, is 
developed to summarize each pattern cluster produced by pattern clustering. The method adopts the 
concept of sample-attribute matching to summarize patterns. It is an extension of the well-known 
RuleCover algorithm [23] 

In chapter 5, the proposed distances based on the dual pattern-data relationship are extensively 
tested in the context of pattern pruning, clustering and summarization. Both synthetic and real-world 
data sets were used in the experiments. The experiments are divided into four groups. In the first 
group, the pruning performance of generalized itemsets is tested and evaluated with ten benchmark 
data sets. The results are then compared with the well-known closed itemset and maximal itemset 
methods. How well the system can handle large data sets is investigated. In the second group, seven 
synthetic data sets were generated to study the differences between the proposed distance measures 
and the existing ones. In the third group, the new distance measures are implemented in hierarchical 
and k-means clustering algorithms. Their performances are tested and evaluated using the same ten 
benchmark data sets. The results are compared with the common sample-matching distances. In the 
fourth group, the summarization performance of the new AreaCover algorithm is tested with ten 
benchmark data sets. The results are compared with RuleCover algorithm. In all experiments, the 
speeds of various methods are reported. 

Chapter 6 highlights the contribution of this study and suggests the direction of future research in 
this area. 
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Chapter 2 
Review of Related Works 

2.1 An Overview of Pattern Mining and Post-Analysis 

This section gives an overview of the development history of pattern mining and its related fields. 
The development of pattern mining can be traced back to the classical data analysis in statistics. Data 
analysis has long been recognized as a significant research challenge by statisticians and more 
recently by researchers in artificial intelligence (AI). Pattern mining comes as an extension of data 
analysis. Later, it became a part of the activities in the broader disciplines of machine learning. While 
statisticians focuses on building models from data to characterize system behavior, AI researchers 
attempt to understand the system better by describing the discovered regularities in a way that 
humans can easily interpret. Numerous research papers and reports are now available. It is difficult to 
give a comprehensive comparison of those methods since different methods have different objectives 
based on different assumptions on the problems. However, they can be categorized along several 
broad directions from a more general viewpoint. 

Pattern mining aims at automatically discovering unknown regularities from data. In the ordinary 
sense, “discovering regularities” from a system, or a data set, simply involves grouping the data 
samples into classes according to the similarity of the samples [47]. Hence, discovering patterns is 
very similar to statistical clustering. However, these methods do not render conceptual descriptions of 
the clusters nor consider how humans would describe a pattern. In contrast, the AI approaches try to 
represent the discovered patterns in a form that can be naturally interpreted by humans. Two such 
commonly used representations of patterns are rules [47] and trees [48]. These representations can be 
used to support analytical tasks [49] such as classifying a new sample or predicting the missing value 
of an attribute. 

With the demand from applications of expert systems for automatic knowledge acquisition, AI 
researchers try to teach the machines to discover useful knowledge automatically from data. 
Unfortunately, traditional manual data analysis techniques are rather ad hoc and cannot easily meet 
the challenges of huge amount of data and the fast growing demand of knowledge. To address these 
issues, machine learning aims at automatically finding the relations among the attributes and/or 
among their values. In the literatures, such approaches are referred to as conceptual clustering [47], 
object classification [48], or rule induction [50]. The importance of learning in AI has been repeatedly 
and alternatively emphasized by a number of researchers [51] – [54]. There are several forms of 
learning, ranging from supervised learning to unsupervised learning [55]. In supervised learning, 
there is a teacher (often represented by class labels) supervising the learning. The learner is told 
explicitly what is to be learned. In unsupervised learning, there is no teacher (i.e. no class label is 
given). The learner discovers whatever they think is important (e.g. defined by objective functions). 
Traditionally, machine learning research pays more attention to supervised learning or classification 
problem. It only focuses on patterns that are related to the class labels assigned by an external teacher 
(i.e. the users). The desired performance of supervised learning is apparent, i.e. to improve the 
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prediction accuracy of class membership. In contrast, the performance of unsupervised learning is 
more difficult to measure. However, unsupervised learning can be applied to a wider range of 
applications where an external teacher (or class labels) is not given. Ideally, a good learning system 
should be able to learn patterns with and without an external teacher or explicit classification 
information. In other words, when classification information is not available, a learning system 
should be able to perform unsupervised learning. At the same times, it should be able to perform 
classification tasks when asked. 

The techniques of machine learning can be subdivided into two distinct categories, namely the 
symbolic approaches and the statistical approaches. Better known examples of symbolic techniques 
include Mitchell’s version space algorithm [56] and its later evolution, and the AQ family of 
algorithms of Michalski [57] including the concept clustering algorithm CLUSTER/2 [47]. Symbolic 
approaches assume that the learning environment is deterministic [58] – [61] and do not handle noises 
very well. Hence, their application areas are rather restrictive since most real-world problems 
involved noises by nature. To address this problem, statistical approaches were developed to handle 
noisy, incomplete and imperfect data commonly encountered in the real world. Representative works 
include Breiman’s CART [62], Quinlan’s ID3 [48] and its variations such as C4.5 [63] and CDP[64], 
Fisher’s COBWEB [65], Symth and Goodman’s ITRULE [50] and the Bayesian approaches [66]. In 
these methods, various statistical measures or hypothesis tests are applied to detect pattern and/or 
rules. 

In the past few decades, the explosive growth of technologies in data generation and collections 
provides a huge amount of information. The overwhelming amounts of data not only make traditional 
manual methods data analysis virtually infeasible, but also post a tremendous challenge to machine 
learning. Hence, knowledge discovery from database (KDD) [67] or data mining [1], [2], [68] 
become a challenging topic for researchers in machine learning, statistics and data analysis [69]. 
While KDD can be considered as a process from data selection to pattern interpretation/evaluation 
[69], pattern mining and post-analysis are two major components of the process. A number of 
statistical and machine learning methods have been adopted and integrated into a data mining system. 
Compared with traditional machine learning methods which focus more on classification problems, 
pattern mining and post-analysis in KDD are more general and sensitive to computational complexity 
due to large amount of data. 

2.2 Pattern Mining Methods 

In this section, a subset of common techniques in pattern mining are reviewed and discussed. The 
review is brief but provides insights into the current state-of-the-art of pattern mining. The discussion 
will be focused on KDD and data mining. 

2.2.1 Tree-Based Approaches 

Trees are commonly used in decision support tasks such as classification and concept generation. The 
idea behind is to represent a complex decision into a union of several simpler decisions represented in 
a tree or a forest. Classical examples are ID3 [48] and CART [62]. ID3 constructs a decision tree 
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using a divide-and-conquer approach [48]. It is simple and effective. In a decision tree, each node 
partitions the data samples based on the values of a single attribute. An information theoretical 
measure is employed to choose the attribute whose values improve the classification accuracy of the 
class membership. The original version of ID3 [59] was designed to include all the positive training 
samples and to exclude all the negative ones, leading to a potential problem of over-fitting. To avoid 
over-fitting, algorithms such as ASSISTANT [70], C4 [71] and C4.5 [63] use strategies such as pre-
pruning [70], [72] and post-pruning [53], [73] to remove the branches of the decision tree that are too 
detailed and specific. However, since the decision trees only use univariate splits, they can only be 
applied to a small portion of the functional models [69]. Complicated patterns such as the XOR 
problem are difficult to discover if only one attribute is split at each node. 

To allow the tree to split at a node when multiple variables are considered, CART [62] was 
developed. It is able to detect more complex patterns. However, CART is computationally expensive 
since it needs to generate multiple auxiliary subtrees. Other tree-based classification methods include 
those reported in [74] – [76]. A comprehensive survey of decision tree can be found in [77]. All 
decision tree methods are designed for supervised learning or classification problem. 

For unsupervised learning, trees are also widely used. Well-known examples are Michalski and 
Stepp’s CLUSTER/2 for conceptual clustering [47]. CLUSTER/2 generates a tree which partitions a 
set of data samples into K groups. A criterion called LEF is employed to guide the clustering process. 
Each node of the tree is a cluster at the leaf level and is described by logical complexes (a logical 
product of one or more attribute-value pairs). CLUSTER/2 is not scalable for large data sets and does 
not handle noise. To deal with noise, COBWEB was proposed by Fisher [65]. COBWEB incorporates 
a new sample into the class that best matches the samples. A criterion known as category utility is 
used to direct the clustering process. The generated result is a tree where each node represents a 
concept and the tree describes the relations between concepts. COBWEB is able to learn patterns 
from data with noise [78]; however, it does not work well in deterministic environment [79]. 

2.2.2 Rule-Based Approaches 

Rules are another commonly used representation in decision support tasks, especially for expert 
systems. Many researchers such as Smyth and Goodman [50] believe that rules offer a more flexible 
representation than trees. It is also easier to understand rules than trees especially when the trees are 
large and complex. Rules can be used for both supervised and unsupervised learning. 

In supervised learning, rules classify samples into classes at the consequence side. Typical 
examples are AQ with its extensions [51], [80] and CN2 [81], [82]. AQ represents classification rules 
by disjunctive complexes which are easy to understand by human. AQ works well in deterministic 
environment; however, it is slow and may not perform well in noisy environment. Another problem is 
that it requires users to have a good understanding of the problems for manipulating its parameters 
[81]. Such knowledge may not be available. To address some of the problems of AQ, CN2 [81], [82] 
and GREEDY3 [83] were proposed. CN2 also produces rules in the form of disjunctive complexes. It 
can handle noisy data because it uses a probabilistic measure to direct the process. However, both 
CN2 and GREEDY3 are very slow and not scalable for large data sets. 
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In unsupervised learning, Agrawel and Srikant developed association rule mining which discovers 
association rules from transaction databases in 90’s [4] – [6]. The method uses a user-defined support, 
which is basically the probability of an itemset, to determine if an itemset is frequent or not. Another 
user-defined confidence (conditional probability of an association rule) is used to determine if an 
association rule is strong or not. Association rule mining does not consider negative associations or 
missing items. To reduce the search space, an important property called the apriori property was used. 
Based on this property, very efficient algorithms have been developed for very large databases [5], [6]. 
Association rule mining has been extensively studied and widely used in various real world 
applications. It is a powerful tool to explore and analyze large data sets. 

Association rule mining is well-suited to applications such as market basket analysis. However, 
Brin et al [15] pointed out that, for some applications where item correlation is required, association 
rules may be misleading. For example, in Table 1, the association rule [Tea=Y]⇒[Coffee=Y] has 
20% support and 80% confidence [15]. With fairly high support and confidence, we may consider it 
as a valid rule and believe that customers who buy tea will also buy coffee. However, [Tea=Y] and 
[Coffee=Y] are actually negatively correlated since the ratio P{[Tea=Y] ∧ [Coffee=Y]}/ (P{[Tea=Y]} 
× P{[Coffee=Y]})= 0.2/(0.25 × 0.9) = 0.89 < 1. 

 

Table 1. The contingency table of the purchase of tea and coffee [15] 

 
 

To address this issue, Brin et al [15] proposed the use of chi-squared statistics to detect correlation 
rules from the contingency tables. However, since the chi-squared statistics obtained from the entire 
contingency table was designed for testing correlations among random variables rather than among 
events, correlation rule is less accurate if the contingency table data are sparse. 

Pattern discovery moves the hypothesis test from taking the entire contingency table to focusing on 
its individual cells [10] – [14]. In Table 1, to determine whether [Tea=Y, Coffee=Y] is a significant 
pattern, it tests the difference between the observed frequency o = 20 and the expected frequency 
under independence assumption e = 100 × P{[Tea=Y ]} × P{[Coffee=Y]} = 100 × 0.25 × 0.9 = 22.5. 
If the difference 20 – 22.5 = -2.5 is significant enough, we would conclude that [Tea=Y] and 
[Coffee=Y] are negatively associated. Since the difference, and hence the hypothesis test, is obtained 
from an individual cell in the table, pattern discovery can handle sparse contingency table data. The 
relation between pattern discovery, association rule mining and chi-squared statistics are given in 
appendixes A and B in more details. 
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2.2.3 Other Approaches 

There are many other pattern mining methods that produce neither trees nor rules. For example, 
graphical approaches represent probabilistic dependencies using graphs. A graph (pattern) encodes 
which variables that are dependent on each other. Most of these approaches are based on the Bayesian 
inference and their models are represented by networks such as Markov networks or Bayesian 
networks. Bayesian inference has a strong theoretical basis. It also provides a formal framework for 
reasoning with uncertainty and partial beliefs. Once a probabilistic network is built, the probability of 
an event conditioned by a set of observations can be derived for classification purpose. Since there is 
a large set of parameters to be estimated in the network, special methods are required to automatically 
construct the networks from data. For example, Fung and Crawford developed CONSTRUCTOR [84] 
to generate a discrete Markov networks from data automatically. Thus, the networks contain both a 
quantitative (i.e. probabilistic) characterization and a qualitative (i.e. structural) description of the 
data. The idea behind CONSTRUCTOR is simple. It finds the Markov boundary of each node (i.e. 
attribute) in the networks so that the effect of other nodes outside the boundary is minimized. The 
independence between a node and the nodes outside the boundary is tested using high dimensional 
contingency tables. A heuristics, known as composable distribution, is used to avoid checking for 
high order dependency. The problem of this approach is that Markov networks cannot represent all 
kinds of dependencies among variables [85]. More specifically, they cannot represent induced and 
non-transitive dependencies [85]. Furthermore, the use of contingency tables introduce very heavy 
computational burden for high order dependency. Most importantly, CONSTRUCTOR is a variable-
based method. It is worth pointing out that methods dealing with event-based dependencies such as 
the rule-based and the tree-based methods are more efficient than variable based methods [61], [86], 
[87]. From the inference point of view, Markov networks have to attach a matrix of joint probabilities 
to each edge of the network, otherwise, the original data will be used to estimate the joint 
probabilities for inference. If the domains of the variables are large, the matrix of joint probabilities 
will be large. This makes the networks difficult to handle. Since not all the joint events of two 
variables are significant, it is not necessary to store the information regarding all these events because 
more events not only require more storage spaces but also involve higher computational complexity. 

Since Markov networks cannot represent the induced and non-transitive dependencies [85], 
Bayesian networks use a richer language of directed graphs to improve the representative power. In 
Bayesian networks, the directions of the edges permit us to distinguish genuine dependencies from 
spurious dependencies induced by hypothetical observations [66], [85], [88], [89]. Bayesian networks 
are also variable-oriented approaches and therefore suffer from the same problems as the other 
variable-oriented methods. 

Many other systems which have been developed cannot be covered in this brief review. But most, 
if not all, of them can be found similar to one of the categories discussed above. For a good 
discussion on pattern mining methods, interested readers can refer to [69] for more details. 

2.3 Pattern Post-Analysis Methods 

Among all pattern mining methods, rule-based approach is one of the most common approaches. It 
has several advantages over other approaches. First, the rules produced are easy to understand for 
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non-experts such as business managers. Hence, they have been widely used in business and 
commercial applications. Second, the rule-based approaches assume very little knowledge about the 
data from the users. Thus, when the users do not have any a priori knowledge about a data set, rule-
based approaches are good starting points for them to explore the data. Third, the representation 
power of rules is strong. Fourth, effective and efficient rule-based mining algorithms, such as 
association rule mining [4] – [9], correlation rule mining [15], [16] and pattern discovery [10] – [14], 
are available, which can be applied to large, noisy and incomplete databases. 

Common to all rule-based mining methods is the problem of having too many rules or patterns 
which are often produced by them. Hence, pattern post-analysis, also known as interesting measures 
[90] – [92], is needed to support the discovery of useful knowledge from huge volume of patterns. In 
this section, a subset of commonly used techniques in pattern post-analysis are reviewed and 
discussed. Again, the review is brief but would provide insights into the current state-of-the-art of 
pattern post-analysis. 

2.3.1 Objective Approaches 

The problem of handling the overwhelming number of patterns has been widely studied by 
researchers in the AI, machine learning and data mining areas. Due to the popularity of association 
rule mining, most methods are designed for itemsets and association rules after its inception. In this 
thesis, although the proposed methods can be applied to various types of patterns, they will mainly be 
applied to itemsets [4] – [9] and their variants including closed itemsets [8], [9], [29] – [31] and 
maximal itemsets [32] – [35]. 

Pattern post-analysis is generally categorized into two major approaches: objective approaches 
based on the statistical strengths or properties of the discovered patterns inherent in the data and 
subjective approaches that are directed by user’s beliefs or expectations in their particular problem 
domain [90], [92]. Objective approaches do not require domain knowledge from the users about the 
problems, whereas subjective approaches do. Common tasks in objective approaches include pattern 
pruning [8], [9], [20], [23] – [39], pattern clustering [23], [40] – [42] and pattern summarization [20], 
[21]. Pattern pruning removes redundant and/or irrelevant patterns from the original set of discovered 
patterns. Pattern clustering groups similar and/or relevant patterns into clusters. Pattern 
summarization generates a comprehensive and representative summary for all discovered patterns. 
Other related tasks include pattern visualization [40]. 

In pattern post-analysis, pattern pruning is one of the most popular methods. In their well-known 
paper [23], Toivonen et al observed that the matched samples are a very good source for patterns 
relationship. They proposed the use of rule cover to prune redundant association rules sharing the 
same consequent. A greedy algorithm, known as RuleCover, was developed to find the close-to-
optimal rule cover. In addition, they also proposed the distance measure dT in support of the pattern 
clustering task (see section 3.3 for detailed discussion). Their methods have been widely used for 
pattern pruning and clustering and were extended by other researchers [24], [25], [40]. Since the 
RuleCover algorithm is a greedy algorithm, it only guarantees local optimal rule cover. In addition, 
the stepwise selection of a subsequent rule is dependent on which rules have been previously chosen. 
Hence, the final rule cover produced is dependent on the ordering of the rules. In [25], an integer 
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programming technique was proposed which always produces the same set of rules (i.e. rule cover) 
independent of any ordering of the rules and always results in the most optimal rule set. However, the 
algorithm is slower than RuleCover. In [40], Gupta et al normalized dT and proposed dG for pattern 
clustering and visualization. In [24], dG is used to prune association rules by representing rule 
direction as hyperedges. Other works along this line include [26], [27] and [28]. In [26], a distance 
metric between rules was used to select the most heterogeneous set of rules that together gives a good 
coverage of the instance space. The method, however, can only be applied to data with uniform 
distribution and is sensitive to outliers. There is no concrete guidance to specify the values of the 
three weight parameters in the distance function. In [27], the notion of representative association rules 
(RR) was introduced. RR is a least set of rules that covers all association rules. Subsequently, a user 
may be provided with the set of RR’s instead of the whole set of association rules. However, when 
needed, all usual association rules can be generated from the set of RR’s by means of a cover operator. 
In [28], a pruning strategy called redundancy exploitation was proposed. The idea is to prevent 
continued effort at classifying instances already classified by existing rules with high confidence. 

Before Toivonen et al‘s works, the concept of samples matching has been used in the classical 
closed itemsets for pruning itemsets and in improving the speed of mining association rules [8], [9], 
[29] – [31]. The advantage of the closed itemsets is that it is lossless from which the original itemsets 
can be recovered. An extreme case of closed itemsets is the maximal itemsets (also known as long 
patterns in some literatures such as [32], [33]), which have been used to significantly reduce the 
number of itemsets regardless of its possible loss of information [32] – [35]. 

Other methods of pattern pruning include the use of chi-squared statistics to measure the 
significance of association rules and the insignificant ones are pruned [20]. Bayardo et al [36] 
proposed to use minimum improvement (min_imp) in confidence to prune association rules. The idea 
is to mine only those rules whose confidence is at least min_imp greater than the confidence of any of 
its simplifications, where a simplification of a rule is formed by removing one or more conditions 
from its antecedent. In [20], [37], [38], a rule is pruned if its confidence is close to that of one of its 
subrules. In [39], the maximum entropy principle was used to prune redundant association rules. 

In the literatures, most pruning methods are designed for association rules. In practice, they can be 
combined with itemset pruning methods. For example, closed and maximal itemsets can be applied to 
prune redundant itemsets first. Then, association rule pruning methods can be applied to prune the 
generated association rules. There are also other types of patterns such as correlation rules [15], [16] 
and event association patterns [10] – [14]. In [93] – [95], a divide-and-conquer approach was used for 
analyzing event association patterns discovered by pattern discovery [10] – [14]. In the divide phase, 
association patterns and their associated data are simultaneously clustered, whereas in the conquer 
phase, individual clusters are further analyzed. 

Another common pattern post-analysis method is pattern clustering. In [23], similar patterns are 
grouped into clusters using a nonparametric density method. The sample-matching distance measure 
dT was first proposed (discussed in details in section 3.3). Later, in [40], a normalized version of dT, 
denoted as dG, was proposed. A dimensionless agglomerative chain clustering was developed to 
cluster patterns using dG. Dimensionless agglomerative chain clustering is a special case of 
agglomerative chain clustering (see chapter 3 in [41]). In this algorithm, a pattern is grouped to its 
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closest neighbor found from the distance matrix. This process is applied to all the patterns resulting in 
a collection of pattern clusters. Agglomerative chain clustering performs chaining at multiple levels. 
At the end of the algorithm, a tree structure describing the multiple levels of clustering is produced. It 
is similar to single link agglomerative clustering [1], [2], but differs in its bias. The tree produced is 
shorter and the clusters are more uniformly sized. In addition, at each level, more than two patterns 
can be merged. To visualize patterns using self-organizing map (SOM) [1], [2], the scalar distance dG 
between rules must first be converted into an embedded vector space since SOM needs a vector input. 
Hence, multi-dimensional scaling (MDL) was used to convert the distance information into an 
embedded space such that the distance information between rules is preserved. The embedded space 
obtained can then be used in SOM for pattern clustering and summarization.  

In [42], the problem of clustering two dimensional association rules was considered. A geometric-
based algorithm, known as BitOp, was proposed which uses heuristic methods based on the geometric 
properties of the two-dimensional grids to cluster association rules in two-dimensional space. The 
algorithm was designed for segmenting data. The quality of the segmentation was measured by the 
minimum description length principle of encoding the clusters on several databases. The algorithm is 
limited to only those rules with two fixed attributes in their antecedents. Another approach reported in 
[43] lifts the two-dimensional restriction. However, clustering is only based on numeric attributes. In 
[44], an algorithm, known as Objective Grouping (OG), was proposed. OG groups rules according to 
the syntactic structure of the rules without using any domain knowledge. 

Other pattern post-analysis tasks include pattern summarization. In [20], [21], a method was 
developed to find a special subset of all the association rules to form a summary of them. This subset 
of association rules is called the directional setting (DS) rules since they set the directions followed 
by the rest of the rules. The direction of a rule is the type of correlation it has (i.e. positive correlation, 
negative correlation or independence) which can be computed using chi-squared test. In experiments, 
it was shown that the number of DS rules is typically very small. They can be manually analyzed by a 
human user. 

Often, a single method is not adequate to solve the problem of having too many patterns. For 
example, the number of patterns after pruning may still be too large for human to handle. Other 
methods such as pattern clustering, summarization and visualization should be applied after pruning. 
Hence, a hybrid approach combining pattern pruning, clustering, summarizing and visualization is 
commonly used. In [23], pruning and clustering rules are used together so that only the pruned 
association rules are grouped. Similarly, in [20], [21], pruning and summarizing rules are used 
together. In [40], clustering and visualization are used together to visualize the pattern clusters. Table 
2 summarizes the hybrid methods found in the literatures. 
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Table 2 Common hybrid methods for pattern post-analysis 

 Approaches Measures/Methods 

Brin et al [15], 
[16] 

1. Searching supported, and 

2. correlated itemsets 

1. Support 

2. Chi-squared statistics 

Liu et. al [20], 
[21] 

1. Pruning, and 

2. Summarization 

1. Chi-squared statistics 

2. Chi-squared statistics and rules’ direction 

Toivonen et al 
[23] 

1. Pruning, and 

2. Clustering 

1. Rule cover based on the set of matched 
samples 

2. dr 

Gupta et al 
[40] 

1. Clustering, and 

2. Visualization 

1. dG 

2. Self-organizing map 

Wong & Li 
[93] – [95] 

1. Clusterin, and 

2. Analysis of individual 
clusters 

1. dR, dRC, dO or dD 

2. Standard discrete-valued data analysis 
techniques (eg. Subgrouping tree) 

 

 

In Table 2, chi-squared test for correlation has been widely used in various methods. The 
mathematical relationship between chi-squared test and residual analysis used in pattern discovery 
[10] – [14] is given in appendix B. 

2.3.2 Subjective Approaches 

All methods described in the previous section do not involve the domain knowledge of the users. 
They analyze patterns mainly based on the properties of the data sets (e.g. sample matching, supports, 
chi-squared statistics, minimum improvement in confidence, etc). Such methods are known as 
objective methods. Alternatively, there are subjective methods which require domain knowledge of 
the problems. These methods incorporate the domain knowledge of the users, which, if used properly, 
can significantly improve the effectiveness of the post-analysis and the usefulness of the results 
produced. For instance, subjective pattern pruning using templates or constraints [96], [106], [107] 
can usually prune more patterns than objective pattern pruning. If the templates or constraints are 
properly specified by the users, the results could be more relevant to the users than those produced by 
objective pattern pruning. However, the difficulty of subjective pruning lies in requiring the users to 
specify a good constraints, templates or criteria. In many cases, the users may not have a good 
knowledge about the data. Moreover, it is difficult to verify the knowledge provided by the users. 
Most existing methods simply assume that the users’ knowledge provided is correct. However, in 
practice, it is often not true since the users’ knowledge is simply based on experiences and impression, 
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which is ad hoc by nature. To my best knowledge, there is currently no good method to verify the 
domain knowledge provided by users. 

Subjective pattern post-analysis has been intensively studied. In the literatures, most of the research 
addresses the problem of subjective measures of interestingness of the discovered patterns [90] – 
[92]]. Piatetsky-Shapiro discussed the general issue of the interestingness of the discovered patterns 
in [98]. A general study of measures of rule interestingness can be found in [91], [99] – [101]. An 
overview of the interestingness of an association rule with respect to a set of constraints can be found 
in [38]. In [102], the authors proposed the method of random worlds and prove that in many 
important cases it is equivalent to the principle of maximum entropy. 

Some researchers suggest that additional specification from the users could be used to select the 
interesting patterns. In a paper [103], Silberschatz and Tuzhilin argue that interesting associations are 
those unexpected from the users. They proposed a method that asks the users to specify their existing 
knowledge and then search those unexpected associations for them. In [38], a rule is considered 
interesting with respect to some set of beliefs if it contradicts at least one of the rules in the beliefs 
under the monotonicity assumption. A detailed statistical analysis of interestingness of a rule with 
respect to a single subrule , and algorithms for finding rules interesting in this setting can be found in 
[104], [105]. 

One of the most common approaches in defining interestingness measures is to use 
templates/constraints to specify interesting or uninteresting patterns. Srikant et al. [96] used item 
constraints specified by the users to obtain interesting associations. Basically, the item constraints 
specify which items should appear in the association rules. In [106], Hoschka and Klosgen used 
templates for defining interesting knowledge. They proposed to use a few fixed statement types and 
partial ordering of attributes to specify the templates. In [107], Klemettinen et al proposed to use 
regular expression to specify the templates so that the users can specify what association rules they 
like. These approaches require users to specify clearly what they know or need. 

In [108], Piatetsky-Shapiro and Matheus proposed to group deviations from normative expectation 
by means of utility functions with the KEFIR system. The utility functions were quite easy to define, 
as their system was intended to save money in a health-care application. The interestingness measures 
were based on the actionability of a particular pattern by measuring the savings anticipated from 
taking a specific action. The system then recommended to the user the most cost-effective approach 
to take. In [109], Anand et al extends Piatetsky-Shapiro and Matheus‘s deviation approach by 
providing a methodology for the support of cross-sales in a commercial domain. In both systems, 
domain knowledge played an important role to determine the effectiveness of the deviation measures. 

In [110], Jaroszewicz and Simovici presented a method for pruning itemsets based on background 
knowledge represented by a Bayesian network. The interestingness of an itemset is defined as the 
absolute difference between its supports estimated from data and from the Bayesian network. 

In [44], a pattern clustering algorithm, known as Subjective Grouping (SG), was developed which 
incorporates domain knowledge and groups the rules according to the semantic information of the 
objects in the rules. 
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Just as in objective approaches, most subjective approaches are sample-matching based. However, 
there are a few attribute-oriented approaches in subjective approaches. In [111], an attribute-oriented 
approach is used to prune uninteresting relations. In [112], a similarity measure is defined based on an 
attribute hierarchy (a tree structure) provided by human expert. By specifying a rule aggregation level, 
the rules are generalized using the non-leaf nodes at the aggregation level and the rules with the same 
aggregated rule are grouped together. Hence each group can be described by the aggregated rule. 
However, this approach requires intensive user interaction during the grouping process, where the 
user must specify the aggregation level. When the attribute hierarchy is huge, the user may not have a 
clear idea about what could be the appropriate aggregation level. 

Subjective methods such as interestingness measures are interesting topics for pattern post-analysis. 
Nevertheless, the focus of this thesis is on objective methods. 

2.4 Introduction to Association Rule Mining and Pattern Discovery 

This section introduces two common types of pattern mining methods, namely, association rule 
mining (section 2.4.1) and pattern discovery (section 2.4.2) and their related definitions and concepts 
that will be used throughout the rest of the thesis. 

2.4.1 Introduction to Association Rule Mining 

This section introduces the concepts of frequent itemsets and association rules [4], [6] – [8] that will 
be used throughout the thesis. Consider a data set D that contains M data samples. A sample is 
denoted by x. Each sample is described by N discrete-valued attributes. Let X={X1 , … , XN} represent 
this attribute set. An item of an attribute Xi is a value of Xi and is denoted by xi. 

To represent a subset of attributes, let s be a subset of integers {1 , … , N } containing k elements (k 
≤ N). Then, Xs is a subset of X. That is, Xs = {Xi | i ∈ s} where s is called the attribute index set of Xs. 
An itemset is a set of items from a subset of attributes Xs and is denoted by xs. Let sx

o  be the 

observed frequency of occurrences of xs. The support of the itemset xs is [4] – [8] 

support(xs) = 
M
o sx      (1) 

where M is the total number of samples. An itemset xs is called frequent itemset if its support is 
greater than a pre-defined minimum support (abbreviated as min_sup). 

An association rule is an implication of the form A⇒B which denotes that the observation of A 
(known as antecedent) infers that B (known as consequent) is probably true. Let a and b be two 
subsets of integers {1, …, N} where a∩b = ∅. Then Xa and Xb are two disjoint subsets of X. That is, 

Xa = {Xj | j ∈ a } and Xb = {Xj | j ∈ b } and Xa ∩ Xb = ∅ 

Let xa and xb be the values of Xa and Xb. The confidence of an association rule xa⇒xb is 

confidence(xa ⇒ xb) = 
)(

)(
a

ba

xsupport
xxsupport ∪

   (2) 
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The support of an association rule xa ⇒ xb is defined as support(xa ∪ xb). A rule is called a strong 
association rule if its support is greater than the minimum support and its confidence is greater than a 
pre-defined minimum confidence (min_conf). By convention, the support and confidence values 
occur between 0% and 100%. For example, consider a relational database in Figure 2(a). There are 
totally 10 samples, each of which is described by 5 attributes X1 – X5. In Figure 2(b), the relational 
database is considered as a transactional database by mapping each attribute-value pair in Figure 2(a) 
to a distinct item. Figure 2(c) presents all frequent itemsets when the minimum support is 30% (i.e. 3 
samples). For example, the support of D4F5 is 50% because 5 out of the 10 samples contain it. Figure 
2(d) gives all strong association rules when the minimum support is 30% and minimum confidence is 
60%. For example, the confidence of F5⇒E3 is 60% because 3 out of the 5 samples containing F5 also 
contain E3. 

 

 

Figure 2. (a) A relational database (b) The corresponding transactional database (c) All 

frequent itemsets with min_sup = 30% (d) All strong rules with min_sup=30% and 

min_conf=60% 

2.4.2 Introduction to Pattern Discovery 

Pattern discovery uncovers itemsets that do not follow a pre-assumed model (or the null hypothesis). 
Any default model can be chosen according to the problem domain and the available knowledge. If a 
priori knowledge about the domain is not available, similar to chi-squared (χ2) statistic, a model 
assuming the independence of the random variables is normally used. Under this assumption, the 
expected frequency sx

e  of an itemset xs can be calculated as: 

∏
∈

=
s

s

xx
ix

i

xPMe )(      (3) 

where M is the sample size and  
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( )
M
o

xP ix
i =      (4) 

where 
ixo  is the observed frequency of the item xi. 

For an itemset xs, the difference ss xx
eo −  measures how xs deviates from the independence 

assumption. However, according to [113], [114], the absolute difference ss xx eo −  cannot be 

employed for evaluating the relative size of the discrepancy between sx
o  and sx

e  because the 

absolute difference may be affected by the marginal totals. Hence, the residual is first standardized 
before any analysis is conducted. The standardized residual sxz  is defined by 

s

ss

s

x

xx
x e

eo
z

−
=      (5) 

Standardized residual has an asymptotic normal distribution with a mean of approximately 0 and a 
variance of approximately 1. Hence, if sxz  exceeds 1.96, by conventional criteria, we conclude that 

the items of xs are “associated” and likely to occur together at 95% confidence level. xs is referred to 
as a positive association pattern, or simply a positive pattern. If it is less than -1.96, xs is referred to as 
a negative pattern. Standardized residual is considered as normally distributed only when the 
asymptotic variance of z is close to 1, otherwise, it has to be adjusted by its variance for a more 
precise analysis. The adjusted residual is expressed as: 

s

s

s

x

x
x v

z
d =       (6) 

where sxv  is the maximum likelihood estimate of the variance of sxz , obtained by: 
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The background of residual analysis can be found in [115]. Haberman [116] discussed the 
properties of residuals for contingency table analysis. The mathematical relation between chi-squared 
test and residual test is given in appendix B. The details of how sxv  is obtained in (7) can be found in 

[114]. In appendix A, the mathematical relation between association rule mining and pattern 
discovery is derived. Finally, in appendix B, the mathematical relation between chi-squared test and 
residual test is discussed. Here, to conclude this chapter, a simple example is used to illustrate the 
basic idea of pattern discovery. 

Consider an XOR data set containing 1000 data samples. Suppose that each item (e.g. [A=T]) of the 
data set occurs 500 times. The number of expected occurrences e of the itemset [A=T, B=T, C=F] is 
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0.5×0.5×0.5×1000 = 125. Suppose that its actual occurrence o is 250. The adjusted residual is 15.81, 
larger than 1.96 which is the value at the 95% significant level. Thus we conclude that this itemset is 
a positive third-order pattern. Back to the example in Table 1, the adjusted residual of [Tea=Y, 
Coffee=Y] is -1.92, larger than -1.96 but smaller than -1.65. Hence, we conclude that it is a negative 
pattern at 90% significant level. While pattern discovery can discover both positive and negative 
patterns, in this thesis, only the positive patterns are considered. Post-analysis of negative patterns is 
in the scope of future research. 

2.5 Summary 

Pattern mining and post-analysis is a board research area. The above discussions are mainly taken 
from the viewpoint of artificial intelligence and machine learning. Major rationale, focuses and 
endeavors devoted to the development of new systems from the preceding review are summarized as 
follow: 

• The ability to automatically analyze and organize the huge volume of discovered patterns 
produced by pattern mining methods is crucial for real-world applications. It is only when 
the discovered patterns can be interpreted and converted into useful knowledge or 
actionable plan that the discovered patterns would be meaningful and useful. 

• The measurement of the interrelating relationship among patterns, usually formulated as a 
distance/similarity measures between patterns, is crucial for pattern post-analysis. Once 
developed, an effective distance measure and/or its related concept can be applied to 
various post-analysis tasks such as pattern pruning, pattern clustering, pattern 
summarization and visualization. 

• Existing objective pattern post-analysis approaches are mainly based on matching samples, 
though a few attributed-oriented methods in subjective approaches have been reported.  

• Because of the complexity of the real-world problems, it is difficult and time-consuming 
for the users to specify their knowledge to the system. The objective approaches in pattern 
post-analysis are therefore highly desirable. 

• Most existing methods limit their applications to only a particular problem or a particular 
type of patterns, and are therefore not general enough to render an integrated post-analysis 
framework for real-world applications. 

• A single pattern post-analysis method is usually inadequate to solve the problem of “too 
many patterns”. An integrated, hybrid and flexible system combining different methods is 
needed for real-world problems. 
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Chapter 3 
Simultaneous Pattern and Data Clustering 

3.1 Introduction 

To solve the too many patterns problem, an integrated pattern post-analysis as shown in Figure 3 is 
developed in this thesis. It consists of three major components – pattern pruning, pattern clustering 
and pattern summarization. In this chapter, the pattern clustering component, known as simultaneous 
pattern and data clustering [93] – [95], or simply pattern clustering, is introduced. Its schematic 
representation is shown in Figure 4. Patten clustering is introduced first because its fundamental 
concepts will be used to build the algorithms in pattern pruning and pattern summarization as well, 
which will be presented in chapter 4. 

 

 

Figure 3. An overview of proposed pattern post-analysis system 

 

Simultaneous pattern and data clustering is a dual clustering process which is able to 
simultaneously cluster the discovered patterns and their associated data into clusters for pattern 
management, analysis and interpretation [93] – [95]. In Figure 4, once patterns (e.g. frequent itemsets 
[4] – [9], association rules [4], [6] – [8] or event association patterns [10] – [14]) are discovered, the 
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simultaneous pattern and data clustering method will cluster the patterns based on a distance measure 
derived from their associated data. When two patterns are clustered into a pattern cluster, the data 
associated with them will be simultaneously merged into a data cluster. Thus, both the patterns and 
their associated data are clustered and the relationship between them is made explicit through their 
one-to-one correspondence. At the end of the clustering process, the algorithm produces pattern 
clusters as well as their corresponding data clusters. The two types of clusters are collectively referred 
to as dual clusters. An important advantage of dual cluster is that the relationship between pattern 
clusters and their associated data clusters is made explicit. The explicit one-to-one correspondence 
makes it possible to analyze each dual cluster individually. This enables the summarization of each 
pattern cluster individually later by the method introduced in chapter 4.2. 

Since the proposed method clusters patterns and their associated data by a distance measure derived 
from data, the notion of distance measures between patterns is first addressed in sections 3.2 – 3.5. 
Sections 3.2 and 3.3 review the existing item-matching distances and the widely used sample-
matching distances respectively. Sections 3.4 and 3.5 then introduce the concepts of sample-attribute 
matching and data variation and derive the relationship between them and the existing distances. 
Later, in chapter 4, the concept of sample-attribute matching is used to develop efficient and 
generalized methods for pattern pruning and pattern summarization. In section 3.6, two commonly 
used clustering algorithms, namely hierarchical clustering (section 3.6.1) and k-means clustering 
(section 3.6.2), are used to implement the dual clustering process. 

 

 

Figure 4. The dual clustering process of simultaneous pattern and data clustering 
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3.2 Item-Matching Distances 

When defining distance between patterns, most distances in the literatures do not consider the 
direction of rules since direction is usually either considered as irrelevant to rule distance or can be 
dealt with separately. For instance, the rule [computer] => [science] is considered as an itemset 
[computer, science]. If we follow this view, the discussion on distance measures will be significantly 
simplified. This view also allows us to compare distance measures originally designed for different 
types of patterns (e.g. itemsets, association rules [4], [6] – [8], correlation rules [15], [16] and event 
association patterns [10] – [14]). Hence, from now on, we focus on non-directional patterns. 

A naïve approach to measure distance between patterns is by counting the number of common 
items shared by them. For example, in a text mining application, the patterns [computer, science] and 
[computer, language] share the item [computer] and so their distance is 1. However, this approach has 
two drawbacks. First, related patterns may not contain common items. For instance, [computer, 
science] and [programming, language] do not share any common items but programming language is 
an important subject in computer science. Second, unrelated patterns may contain common items. For 
instance, [computer, science] and [social, science] share a common item but computer science and 
social science are two separate fields. Hence, counting the number of common items may miss certain 
relationship between patterns and may produce misleading results. 

3.3 Sample-Matching Distances 

Due to the problems of item-matching distances, most pattern distances nowadays are based on 
sample matching. The idea is simple: it counts the number of samples where the patterns share or 
differ. A well-known example of sample-matching distances was proposed by Toivonen et. al [23]. 
Suppose that a set of patterns { ns

n
ss xxx ,...,, 21
21 } is discovered. Then, the set of samples matched by a 

pattern is
ix  is denoted by m(i) ={ is

ixxDx ⊇∈ | }. In Figure 5, m(i) and m(j) are matched by patterns 

is
ix  and js

jx  respectively. Note that 
( )

M
im

 = support( is
ix ). Let ri (rj) be the number of samples 

matched by is
ix  ( js

jx ) but not matched by js
jx  ( is

ix ). That is, ri = | m(i) \ m(j)| and rj = | m(j) \ m(i)|. 

Let rij be the number of samples matched by both is
ix  and js

jx . That is, rij = | m(i) ∩ m(j)|. The 

distance proposed by Toivonen et. al. is defined as [23]: 

dT(i,j)=ri + rj     (8) 
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Figure 5. Sample-matching distances 

 

In [40], Gupta et. al. pointed out that dT tends to give higher values for rules that are matched by 
more samples (i.e. high |m(i)|). For example, two pairs of rules, both consisting of non-overlapping 
rules, may have different distances. Pairs with higher |m(i)| will have a greater distance. To address 
this problem, they proposed a normalized distance [40]: 
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Note that 0 ≤ dG ≤ 1. dG = 0 if the two rules have an identical set of matched samples and dG = 1 if 
they have non-overlapping sets of matched samples. Obviously, one can have other variants of 
distances/similarity based on the set of matched samples. For instance, we find that the ratio: 
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works fairly well since it captures both the similarity (rij) and dissimilarity (ri + rj). 

3.4 Sample-Attribute-Matching Distances 

Sample-matching distances do not give special consideration to the attributes where two patterns 
share or differ. As an illustration, consider two pairs of patterns is

ix , js
jx  and ps

px , qs
qx  in Figure 6 (a) 

and (b) respectively. Let ci, cj and cij bear the same meaning for the set of matched attributes as ri, rj 
and rij for the set of matched samples. Now, suppose that ri = rp, rj = rq and rij = rpq, and cij > 0, cpq= 0. 
The measures dT, dG and dR will yield the same value for both pairs of patterns since ri = rp, rj = rq and 
rij = rpq. However, it seems more reasonable to consider that is

ix  and js
jx  are more similar since they 

share certain attributes (cij > 0) while ps
px  and qs

qx  do not (cpq = 0). 
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Figure 6. Sample-attribute matching distances 

 

This motivates us to introduce the concept of pattern-induced data cluster, which consider both the 
sets of matched samples and matched attributes. A pattern-induced data cluster of a pattern is

ix , or 

simply a data cluster, is a set of items containing is
ix . It is defined as: 

I(i)={xs ⊆ x | x ∈ m(i), s=si}    (11) 

As an example, in Figure 7, I(1) is a data cluster (the dark shaded block) induced by a pattern 
[eggs=1, aquatic=0, backbone=0, tail=0]. I(2) (the light shaded block) is induced by [milk=0, 
airborne=1, breathes=1, fins=0] and I(3) (the block bound by dashed lines) is induced by [eggs=1, 
aquatic=0, backbone=0, tail=0, milk=0, airborne=1, breathes=1, fins=0]. 
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Figure 7. Pattern-induced data clusters 

 

To measure the distance between two patterns, we need to merge individual data clusters. Let I(i) 
and I(j) be two data clusters induced by patterns is

ix  and js
jx  respectively. The merged data cluster of 

I(i) and I(j) is the union of their matched samples and matched attributes, expressed as: 

I(i,j)={xs ⊆ x | x ∈ m(i) ∪ m(j), s=si ∪ sj}   (12) 

The definition can be generalized to n patterns, i.e., I(1,…,n)={xs ⊆ x | x ∈ m(1) ∪…∪ m(n), 
s=s1∪…∪sn}. For instance, in Figure 7, I(1, 2) (the thick lined block) is merged from I(1) and I(2). 
Note that I(1,2,3), being merged from the 3 data clusters, is the same as I(1, 2). As another example, 
in Figure 6, the 4 highlighted rectangles are actually induced data clusters I(i),I(j), I(p) and I(q). When 
two data clusters, say I(i) and I(j), are merged, the items in the top-right and bottom-left corners are 
added into the merged data cluster. 

The pattern-induced data cluster establishes an explicit one-to-one correspondence between 
patterns and their associated data. In this thesis, such one-to-one correspondence is referred to as the 
dual relationship between patterns and data. The dual relationship will be used to develop a dual 
clustering algorithm later in this chapter as well as other efficient pattern pruning and summarization 
methods in chapter 4. 
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One possible measure that takes into account both the matched samples and attributes is: 
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where wr and wc are the weight of rows (samples) and columns (attributes) respectively. If we 
consider matched samples and matched attributes as equally important, we may set wr and wc to 0.5. 

3.5 Entropy-Based Distances 

One problem of the sample-attribute-matching distance measure dRC is that it does not consider the 
variation within the data clusters. The measures, including dT, dG, dR and dRC, discussed so far are 
designed to measure the distance among patterns. However, they do not measure the distance among 
the data associated with the patterns. It is worth stating at this point that clustering patterns without 
simultaneously clustering their associated data may lose insights about how patterns and data are 
interrelated. On the one hand, while most data analysis techniques are inapplicable to analyze pattern 
clusters, they can be applied to their associated data clusters once we know how patterns are realized 
in data. This duality allows us to analyze pattern clusters via their associated data clusters using 
standard data analysis techniques. In chapter 4, we also introduce an efficient pattern summarization 
method to summarize individual pattern clusters based on the data cluster associated with a pattern 
cluster (see [93] for other possible standard analysis techniques that have been used to analyze dual 
clusters.). On the other hand, knowing which set of patterns induce which data clusters allows users 
to use understandable patterns to interpret and validate the data clusters. In view of this, it is desirable 
to simultaneously cluster patterns and data and keep their relationship explicitly for further post-
analysis. 

Since sample-matching and sample-attribute-matching distances (e.g. dT, dG, dR and dRC) do not 
measure the variation inside the data clusters, they actually overlook certain very important factors 
when measuring distances between patterns and their data. For example, in Figures 8 (a) and (b), if 
the areas of the corner regions are the same for the two pairs of patterns, sample-matching and 
sample-attribute-matching distances will consider the two pairs as having equal distance. However, it 
is obvious that the second pair is closer than the first one because the second pair shares the same 
item B. As another example, consider two identical pattern pairs in Figure 9. The corners of the first 
pair contain mainly noises whereas the top-right corner of the second pair contains mainly items C 
and D with some noises. Even though the two pairs are the same, the second pair should have a closer 
distance than the first one because the items in the top-right corner are more consistent with the items 
among the patterns. In later experiments (section 5.2), artificial data are generated to further study the 
limitations of sample-matching and sample-attribute matching distances. 
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(a)      (b) 

Figure 8. The first pattern pair 

   
(a)      (b) 

Figure 9. The second pattern pair 

 

The above observation motivates us to take into account the variation within data clusters in pattern 
distance measure. A common measure of variation/uncertainty for discrete-valued data is entropy. In 
general, the entropy of a data cluster I(1, …, n) can be expressed as: 

∑
∈

−=
Ix

ss

s

xPxPIH )(log)()(     (14) 

where P(xs) is the joint probability distribution of the itemset xs and I is the abbreviation of I(1,…,n). 
The computation complexity of P(xs) is exponential (i.e. O(2|s|)). To reduce the complexity, we adopt 
a naïve assumption that the attributes are conditionally independent given a data cluster. The joint 
entropy is then estimated by summing up the entropy of individual attribute: 
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where s is the attribute index set of I. P(xi) is estimated by: 
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where 
ixo  is the observed frequency of xi in I and | I | is the number of itemsets in I. The 

computation complexity of H(I) in (15) is O(| I | | s |). Since | s | is usually much smaller than | I |, the 
complexity could be taken as O( | I |), which is linear. From (15), all constant clusters have zero 
entropy. For example, in Figure 7, we have H(I(1)) = 0 and H(I(2)) = 0. Note that H(I(1,2,3)) = H(I(1, 
2)) = 3.66 since merging I(1, 2) and I(3) results in the same data cluster as I(1, 2) (i.e. same amount of 
uncertainty). When all values in each attribute are equiprobable, the entropy is maximal. 

Note that ∑
∈

≤≤
si

imIH log)(0 , where mi is the number of possible values of the ith attribute. 

Hence, H(I) in (15) can be normalized as: 
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H(I) does not explicitly consider the numbers of matched samples and matched attributes. Hence, it 
should be weighted by the area of I. The distance measure then becomes: 

do(I)= | I || s | H(I)     (18) 

An appropriate weighting is important for comparing the normalized entropies in regions with 
different sizes. Intuitively, a larger region should have a greater impact than a smaller region and thus 
should be assigned with greater weight. For example, it may be acceptable to have a small region 
with high variation, but not as acceptable to have a large region with small variation. 

Table 3 summarizes the properties of all the distance measures. 

 

Table 3. Comparison of properties of patterns distance measures dT, dG, dR, dRC and dO. 

 Samples Matching Attributes Matching Data Variation Computation Complexity
dT [23] Yes No No O( | I |) 
dG [40] Yes No No O( | I |) 

dR Yes No No O( | I |) 
dRC Yes Yes No O( | I | + | s |) 
dO Yes Yes Yes O( | I | | s |) 
 

A final remark is that this section considers only those measures that ignore the rule direction and 
hence a rule can be considered as a pattern. Although this is true for most pattern distances, it is still 
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possible to include rule direction. In [24], rule direction is encoded by directed hyperedges. dG is then 
used to measure distances between two rules. Hence, to measure rule distance, rule direction can be 
augmented with the measures discussed in this section. However, in this paper, we focus on non-
directional pattern distances. Hence, rule direction is not used. 

3.6 The Clustering Algorithms 

A very important task in pattern post-analysis is pattern clustering. To solve the too many patterns 
problem after pattern mining, a natural task to follow is to organize the discovered patterns as well as 
their associated data into similar pattern clusters for easy management, analysis and interpretation. In 
the past, because of the lack of good pattern distance measures, this task was not very successful. In 
particular, both item-matching distances and sample-matching distance overlook certain important 
factors as discussed above. Hence, they miss to capture their subtle interacting relationship inherent in 
the data. It was this challenging demand that motivates the development of the new distance measures 
based on the dual pattern-data relationship as presented earlier in this chapter. Once the entropic 
distance measure is defined, it not only can enhance pattern clustering, but its related concept of 
sample-attribute matching can also be applied in the development of more efficient and generalized 
methods in other post-analysis tasks such as pattern pruning and summarization. 

In this chapter, to demonstrate the effectiveness and efficacy of the new distance measure in pattern 
clustering, both the hierarchical clustering and k-means clustering algorithms are implemented as dual 
clustering processes which cluster patterns as directed by the coherence of their associated data 
clusters based on the entropic distance developed. Similar to clustering on data, hierarchical pattern 
clustering produces the entire clustering hierarchy and always produces the same result given the 
same distance measure. Hence, it is ideal for studying and comparing different distances. However, 
hierarchical pattern clustering is not scalable. In contrast, k-means pattern clustering is fast and 
scalable since it only produces a partition rather than the entire hierarchy. However, it requires users 
to set the number of clusters. It also involves a random cluster initialization. Hence, different 
executions of k-means will produce different clustering results, making evaluation and comparison 
difficult. Despite the limitations of the two methods, they are commonly used in data clustering. I 
implemented both methods using the proposed distance measures.  

3.6.1 Hierarchical clustering 

Recalling that I(i) is a data cluster induced by pattern is
ix . Since there is a one-one correspondence 

between a pattern and its induced data cluster, I(i) is addressed as the pattern is
ix  in the algorithm. 

The major steps in hierarchical pattern clustering are contained in the following procedures [1] – [3], 
where c is the desired number of final clusters. 
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1. initialize c, c’ := n, I(i), i = 1,…, n 

2. do c’ := c – 1 

3.    find nearest pattern clusters, say, I(i) and I(j)  

4.    merge I(i) and I(j) 

5. until c = c’ 

6. return c clusters 

 

Since hierarchical clustering is well-studied, we present it here for reference only. More details can 
be found in [1], [2]. 

3.6.2 K-means Clustering 

The major steps in k-means pattern clustering are contained below[1], [2]. 

 

1. initialize k, I(i), i = 1,…, n 

2. take the first k I(i), i = 1,…, k as single-element pattern clusters c(i) 

3. for each of the remaining I(i), i = k+1,…,n do 

4.    find the nearest pattern cluster c(j) for I(i) and merge them 

5. end {for} 

6. repeat 

7.    for i := 1 to n do 

8.       find the nearest pattern cluster c(j) for I(i) 

9.       if I(i) is not contained in c(j) then 

10.          remove I(i) from its current pattern cluster, say c(k) 

11.          merge I(i) and c(j) 

12.       end {if} 

13.    end {for} 

14. until no new remove and merge operation occurs 

15. return k clusters c(i), i = 1,…, k 

 

For evaluation and comparison of different pattern distances in pattern clustering experiments, it is 
desirable to remove the randomness of k-means. Hence, in steps 2 – 5, we use a systematical 
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approach to initialize pattern clusters. This approach takes the first k patterns as initial single-element 
pattern clusters and merges the remaining (n-k) patterns to the nearest pattern clusters. This may not 
be the best approach for cluster initialization. In fact, a more common one is to randomly initialize the 
clusters. However, this approach allows us to fairly compare the performance of different pattern 
distances and hence will be used in our experiments later. Steps 6 – 15 are standard k-means 
procedures [1], [2]. 
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Chapter 4 
Pattern Pruning and Summarization 

This chapter presents pattern pruning and summarization methods based on the concept of sample-
attribute matching described in section 3.4. In section 4.1, an effective pattern pruning method, 
known as generalized itemset pruning, is developed which allows the users to control the tradeoff 
between information loss after pruning and the number of patterns pruned. In section 4.2, an effective 
pattern summarization method is developed which automatically generates an informative yet concise 
summary for a pattern cluster. 

4.1 Pattern Pruning 

In practice, pattern clustering itself is not adequate because the number of patterns in each pattern 
cluster can still be overwhelming. Hence, pattern pruning is usually performed before pattern 
clustering [8], [9], [20], [23] – [39] or summarization [20], [21]. In this section, section 4.1.1 first 
reviews the classical closed itemsets pruning [8], [9], [29] – [31] and maximal itemsets pruning [32] – 
[35] commonly used in pattern pruning in a graphical approach similar to the one in chapter 3. Then, 
a generalized itemsets pruning method is developed and presented in section 4.1.2. Using the concept 
of sample-attribute matching introduced in chapter 3, a new and unified perspective of closed itemset 
and maximal itemsets is formulated from the viewpoint of information loss. Such perspective helps to 
generalize both closed itemsets pruning and maximal itemsets pruning by considering them as two 
extreme special cases. It also explains why one can reconstruct all the original frequent itemsets from 
the closed itemsets alone – closed itemsets pruning does not lose any information. It also indicates 
that maximal itemsets pruning allows the maximal amount of information loss under certain 
conditions. The proposed generalized itemset pruning provides an alternative to closed itemset 
pruning and maximal itemset pruning by allowing the user to control the tradeoff between 
information loss and the number of patterns being pruned. 

4.1.1 Closed and Maximal Itemsets 

Two common pruning techniques are closed itemset pruning [8], [9], [29] – [31] and maximal itemset 
pruning [32] – [35]. Both of them are based on sample matching. A frequent itemset is

ix  is called 

maximal if it is not a subset of any other frequent itemsets [8]. A frequent itemset is
ix  is called closed 

if there exists no proper superset js
jx  ⊃ is

ix  with |m(i)| = |m(j)| [8]. In Figure 10, the 3 frequent 

itemsets B2, A1 and A1B2 in Figure 2(c) are reduced to one frequent closed itemset A1B2 since all of 
them are contained in the first 6 samples. By the same token, the 14 itemsets in Figure 2(c) are 
reduced to only 4 closed itemsets. Hence, 71% of itemsets are pruned. Furthermore, the closed 
itemsets A1B2 and A1B2C3 are reduced to one maximal itemset A1B2C3 since it is not a subset of other 
itemsets. Similarly, D4F5 and E3D4F5 are reduced to E3D4F5. Thus, 50% of closed itemsets are pruned. 
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Figure 10. An example of frequent itemsets, closed itemsets and maximal itemsets. 

 

It is more intuitive to represent closed and maximal itemsets graphically. In Figure 11, the pattern-
induced data clusters of the 4 closed itemsets in Figure 10 are shown as 4 highlighted blocks. Each 
data cluster contains the pattern-induced data clusters of all its corresponding frequent itemsets. For 
example, the data cluster of A1B2 contains the data clusters of A1 and B2. Similarly, the data cluster of 
A1B2C3 contains the data clusters of C3, B2C3 and A1C3. In this sense, closed itemset pruning will not 
lose any information. This is one major reason why it is widely used in pattern pruning. More 
precisely, closed itemset pruning does not lose information because we can always recover all the 
pruned frequent itemsets (see the algorithm in [8]). In this paper, we also prove that clustering closed 
itemsets using distance measures dT [23], dG [40], dR, dRC or dO will produce equivalent results to 
clustering all frequent itemsets (see appendix I). Hence, clustering closed itemsets is always better 
than clustering all frequent itemsets since it is faster and produces same clustering results. This is a 
good news since closed itemset pruning can prune fairly large number of itemsets, even though the 
actual number of itemsets pruned depends on the nature of the data sets. In our simple example, 
closed itemset pruning can reduce 71% of frequent itemsets. In practice, it was found that the number 
of frequent closed itemsets is usually of an order of magnitude lower than the number of frequent 
itemsets if the data set is dense [29] – [31]. 
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Figure 11. Pattern-induced data clusters of the closed itemsets and maximal itemsets in Figure 

10. 

 

The data clusters of maximal itemsets, however, do not contain the data clusters of all its 
corresponding frequent itemsets. For example, the data cluster of A1B2C3 does not contain the data 
clusters of A1B2, A1 or B2. Similarly, the data cluster of E3D4F5 does not contain the data clusters of 
D4F5, D4 or F5. Maximal itemset pruning will lose information since we cannot recover the pruned 
itemsets [32] – [35] and clustering maximal itemsets does not produce equivalent results to clustering 
all itemsets. However, maximal itemset pruning prunes more patterns than closed itemsets, even 
though the number of patterns pruned is also dependent on the data nature. 

4.1.2 Generalized Itemsets 

While closed itemset pruning is very conservative and information is preserved, maximal itemset 
pruning is more aggressive and can reduce more patterns (in many cases, many more patterns) than 
closed itemsets. However, maximal itemset pruning may lose too much information. Hence, we 
present a new type of itemsets that generalizes these two types of itemsets by including them as two 
special cases and providing a tradeoff between information loss and pattern number. 

We take the approach in section 3 to analyze closed and maximal itemsets. Figure 12 shows 2 
pattern-induced data clusters I(i) and I(j) (the 2 highlighted blocks) induced by itemsets is

ix  and js
jx  

respectively, where sj is a superset of si. If is
ix  is pruned and js

jx  is left behind, the shadow area (ri × 

cij) represents the information loss. Hence, one possible measure of information loss is: 
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Figure 12. Generalized itemests. 

 

When loss(i, j) = 0 (i.e. no information loss is allowed), js
jx  becomes a closed itemset. When loss(i, 

j) = 1 (i.e. maximal information loss is allowed), js
jx  becomes a maximal itemset (see appendix D for 

proofs). When 0 < loss(i, j) < 1, js
jx  is called a generalized itemset. loss(i, j) allows us to control the 

tradeoff between information loss and number of patterns. Using loss(i, j), a simple algorithm is 
developed to generate generalized itemsets. The major steps in the algorithm are shown below, where 
c is a user-specified threshold for controlling the maximal information loss allowed. When c is 0, the 
algorithm produces closed itemsets (i.e. 0% information loss is allowed). When c is 1, it produces 
maximal itemsets (i.e. a maximum of 100% information loss is allowed). When 0 < c < 1, it produces 
generalized itemsets having at most c×100% information loss. 

 

1. initialize c, is
ix , i = 1,…, n 

2. for i := 1 to n do 

3.    for j := 1 to n, i ≠ j do 

4.       if is
ix  is a superset of js

jx  and loss(i, j) < c then delete js
jx  

5.    end {for} 
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6. end {for} 

7. return remaining itemsets 

 

The complexity of the above algorithm is O(n2) where n is the number of patterns. The complexity 
of the operation for checking whether is

ix  is a superset of js
jx  is O(|si| |sj|) where |si| is the number of 

items in is
ix . Since |si| is very small (e.g. |si| = 3 for A1B2C3), the running time of this operation is 

negligible. According to (19), the complexity of loss(i, j) is O(| I |), which is usually larger than O(|si| 
|sj|) even though it is linear. In step 4, if is

ix  is not a superset of js
jx , it is not necessary to calculate 

loss(i, j) and thus the complexity is negligible (or O(|si| |sj|)). It is only when is
ix  is a superset of js

jx , 

the complexity of step 4 is O(| I |). Since each pattern is
ix  has only a few subset patterns, such 

situation only occurs a few times for each pattern. Otherwise, step 4 is very fast. Hence, the above 
algorithm is very efficient for pruning a large number of patterns. 

4.2 Pattern Summarization 

After pattern pruning, the remaining patterns are clustered using methods introduced in chapter 3. 
Although it is much easier to interpret the pattern clusters than the original set of patterns, each 
pattern cluster could still contain quite a large number of patterns. In practice, for a large data set, it is 
not uncommon that the number of frequent itemsets is more than 20,000 (e.g. Wine, Anneal and 
Letter data sets obtained from UCI). Pattern pruning could probably reduce half of the itemsets (the 
pruning performance will be extensively tested in later experiments in section 5.1). However, the 
number of remaining itemsets could still be more than 10,000. If these itemsets are clustered into 10 
clusters, on average, each cluster could contain 1000 itemsets. Hence, if the number of patterns after 
pruning is still large, methods are needed to summarize each pattern cluster. 

As mentioned in chapter 3, an important advantage of the proposed simultaneous pattern and data 
clustering method is that the dual clusters produced contain an explicit one-to-one correspondence 
between the pattern clusters and the data clusters. Hence, while it is difficult to analyze the pattern 
clusters directly, we can analyze their associated data clusters more easily. In this section, effective 
summarization techniques are proposed to summarize each individual pattern cluster. In section 4.2.1, 
the classical RuleCover pruning algorithm is reviewed. How the algorithm can be used for 
summarization and its limitation is also discussed. Section 4.2.2 then introduces a simple method to 
overcome the limitation of RuleCover algorithm when applying to summarizing pattern clusters. In 
section 4.2.3, the concept of sample-attribute-matching introduced in chapter 3 is used to develop an 
effective pattern summarization method. It is referred to as AreaCover, which is adapted from 
RuleCover. Finally, in section 4.2.4, the algorithm complexity of the summarization methods is 
discussed. A simple optimization technique is introduced to improve the algorithm speed. 
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4.2.1 RuleCover Summarization 

The objective of pattern summarization is to obtain a small subset of patterns that are representative 
to other patterns. In the literatures, most research works focus on pattern pruning rather than pattern 
summarization, although these two problems are highly related. Pattern summarization can be 
considered as a very aggressive pruning method where most patterns, except for a few representative 
patterns, are pruned. In practice, patterns are not really pruned. Instead, a few representative patterns 
are selected to summarize the other patterns. In [23], the RuleCover method was proposed to prune a 
group of association rules sharing the same consequent. A greedy algorithm was developed to find the 
close-to-optimal cover. In each iteration, the algorithm selects the rule that covers the largest number 
of samples which have not been covered by the rules in a rule cover Δ. The selected rule is then put in 
Δ. The algorithm stops when all samples matched by the original rules in Γ are matched by the rules 
in the rule cover Δ. For example, in Figure 13, the pattern-induced data clusters I(1, 2, … ,7) of a 
group of 7 rules sharing the consequent A is shown. RuleCover first selects rule 3 which induces I(3) 
since I(3) covers the largest number of samples (or rows). RuleCover then selects rule 1 since I(1) 
covers the largest number of samples not covered by rule 3. Note that rules 3 and 1 altogether have 
covered most samples in I(1, 2, … ,7). The remaining uncovered samples are marked by (*) in Figure 
13. The matched samples of other rules such as rules 4, 5, 6 and 7 have been covered by rules 3 and 1. 
Hence, RuleCover finally selects rule 2 which covers the uncovered samples in (*). It then stops since 
all samples in I(1, 2, …,7) have been covered by the rules in the rule cover Δ = {3, 1, 2}. 

 

 

Figure 13. RuleCover 

 

The major steps in the RuleCover algorithm are shown below [23], where Γ is the original set of 
rules, m(i) is the set of matched samples of the rule is

ix  and ε is the user-specified constant for 
specifying the desired portion of samples covered by the rule cover Δ: 
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1. initialize ε, Γ := { is
ix  | i = 1, …, n}, m(i), i = 1, …, n 

2. Δ := ∅ 

3. u := U
n

i

im
1

)(
=

 

4. o = | u | × (1 – ε) 

5. for i := 1 to n do 

6.    ui := m(i) 

7. end {for} 

8. repeat 

9.    choose is
ix  ∈ Γ so that | ui | is largest 

10.    Δ := Δ ∪ is
ix  

11.    Γ := Γ \ is
ix  

12.    for all is
ix  ∈ Γ do 

13.       ui := ui \ m(i) 

14.    end {for} 

15.    u := u \ m(i) 

16. until | u | ≤ o 

17. return the rule cover Δ 

 

The above algorithm gets as input the original set Γ of rules and the set of rows matched by each of 
these rules m(i). Rule cover Δ is initialized to an empty set. The set u is used to store those samples 
that are not matched by rules in Δ whereas the sets ui stores those samples in u that are matched by 
the rule is

ix . Iteratively, the rule in Γ that matches most of the samples in u is moved from the rule set 
Γ to the rule cover Δ. The samples matched by this rule are removed from u. This is repeated until the 
rules in Δ cover at least ε × 100% of the samples. 

The only parameter in RuleCover algorithm is ε, which is called minimum coverage. It specifies 
the minimum percentage of samples covered by the rule cover Δ. For example, in our example in 
Figure 13, ε is 100%, indicating that the rule cover will cover 100% of samples in I(1, 2, …, 7). 
RuleCover is a greedy algorithm. It always selects the rule covering the largest number of samples. 
Later selected rules will always cover less than the former selected ones. It can be useful to loose ε so 
that rules covering small uncovered samples are not included in the rule cover. For example, in Figure 
13, rule 3 covers around 50% of the samples while rule 1 covers around 30% of the samples. It may 
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be desirable to only cover 80% of the samples and not to move rule 2 to Δ since rule 2 only cover 
around 20% more samples as marked by (*). The time complexity of RuleCover is polynomial with 

respect to U
n

i

im
1

)(
=

 [23]. 

Given a set of rules, RuleCover prunes most rules and only a few patterns that cover the largest 
portions of samples are retained. RuleCover could be a good method for summarizing patterns. For 
example, in Figure 13, intuitively, rules 1, 2 and 3 can be used as a high-level summary of all the 7 
rules because they cover the 3 major portions of samples (rows) in I(1, 2, …,7). Rules 4, 5, 6, and 7 
matches some small portions of samples in I(1, 2, …, 7). They are the details not included in the 
summary. For convenience, the rules or patterns in the cover Δ are called summary rules or summary 
patterns respectively. 

RuleCover is most useful when applying to a small group of rules/patterns since it prunes 
aggressively and only a few rules/patterns are retained. That is one reason why it was originally 
applied to a group of association rules sharing the same consequent instead of all association rules 
[23]. In effect, the association rules are clustered accordingly to the consequent before applying 
RuleCover. The condition of same consequent is a strict grouping criterion since only rules sharing 
the same consequent are grouped together. Such criterion results in many small groups of rules, each 
of which is pruned by RuleCover separately. Hence, although RuleCover prunes most rules in each 
group, the total number of rules retains will not be very small. In general, the criterion of same 
consequent is not necessarily appropriate for clustering rules. This criterion is only used together with 
RuleCover algorithm to prune association rules. In [23], after applying RuleCover to prune 
association rules, the pattern distance dT was used for pattern clustering. The criterion of same 
consequent is not used in pattern clustering. 

In our case, we cluster patterns as described in chapter 3 before applying RuleCover. The criterion 
of same consequent (more precisely, consequent should be item here since a rule is considered as a 
pattern as discussed in section 3.2) is not used since it is not a good criterion for clustering similar 
patterns. In fact, such criterion is essentially comparing the common items shared by two patterns. As 
mentioned earlier, such approach may miss certain relationship between patterns and may produce 
misleading results. Moreover, ideally, like the number of classes of most real-world data sets is 
usually small, the number of clusters produced should not be too large. Otherwise, it is very time-
consuming to analyze all of them. However, the criterion may produce many small pattern clusters. 

4.2.2 Multi-level RuleCover Summarization 

When applying RuleCover to a pattern cluster, it could be too aggressive for large clusters (e.g. a 
cluster of 100 patterns). It may select only a few large and trivial patterns and miss other important 
patterns in a pattern cluster. In Figure 14, patterns 8 and 9 are added to the 7 patterns (patterns and 
rules are considered the same as discussed in section 3.2) in Figure 13. Note that the pattern clusters 
produced by the clustering methods in chapter 3 can contain patterns not sharing any item. RuleCover 
will produce either Δ = {9, 1} or Δ = {9, 8} depending on the implementation of the greedy algorithm. 
Regardless of which Δs it produces, the rule cover Δ, as a summary, misses many important patterns 
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(e.g. patterns 2 and 3) in the cluster. The problem is that pattern 9 covers most patterns, including 
patterns 2 and 3. Just like trivial and large clusters may cover other clusters in data clustering, large 
patterns may cover other patterns in pattern summarization. The resulting summary may be trivial or 
not detailed enough. 

 

 

Figure 14. Problem of RuleCover 

 

One simple method to solve the above problem is to remove the rules produced by the first run of 
RuleCover and then apply RuleCover again to find the second level of rules that summarize the other 
rules. For example, in the above example, suppose the RuleCover produces Δ1 = {9, 8} in the first run 
(the subscript 1 in Δ1 indicate that this rule cover is produced in the first run). Then, after removing 
rules 8 and 9, RuleCover will produce Δ2 = {3, 2, 1} in the second run. Note that if RuleCover 
produce Δ1 = {9, 1} in the first run, it will produce Δ2 = {3, 2, 8} in the second run. This procedure 
can be repeated. In the third run, RuleCover will produce Δ3 = {4, 5, 6, 7}. Note that the rules in Δ3 do 
not cover all samples I(1, 2,…, 7). The resulting algorithm is called multi-level RuleCover since it 
runs RuleCover with different levels (each run of RuleCover is one level). 

The major steps in multi-level RuleCover are contained in the following procedures where L is the 
level (the Lth run) of RuleCover: 
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1. initialize ε, L, Γ := { is
ix  | i = 1, …, n}, m(i), i = 1, …, n 

2. for i := 1 to L do 

3.    Δi := RuleCover(ε, Γ, {m(i)}) 

4.    Γ := Γ \ Δi 

5. end {for} 

6. return Δi , i = 1, …, L 

 

The algorithm runs RuleCover for L times. After each run of RuleCover, it removes the patterns in 
Δi  from Γ so that the patterns in Δi will not be selected again. If L is large enough, eventually all 
patterns will be selected. In effect, in the above algorithm, L controls the depth of the search and ε 
controls the width of the search at each level. 

4.2.3 AreaCover Summarization 

RuleCover is a sample-matching based method since it only covers the samples in the cluster. It can 
be easily extended to cover both the sets of matched samples and matched attributes. The resulting 
algorithm is called AreaCover since it considers the both the matched samples and matched attributes 
(i.e. an area) of each pattern. The major steps in AreaCover are contained in the following procedures: 

 

1. initialize ε, Γ := { is
ix  | i = 1, …, n}, I(i), i = 1, …, n 

2. Δ := ∅ 

3. u := I(1, …, n) 

4. o = | u | × (1 – ε) 

5. for i := 1 to n do 

6.    ui := I(i) 

7. end {for} 

8. repeat 

9.    choose is
ix  ∈ Γ so that | ui | is largest 

10.    Δ := Δ ∪ is
ix  

11.    Γ := Γ \ is
ix  

12.    for all is
ix  ∈ Γ do 
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13.       ui := ui \ I(i) 

14.    end {for} 

15.    u := u \ I(i) 

16. until | u | ≤ o 

17. return the rule cover Δ 

 

Basically, AreaCover is very similar to RuleCover. The only difference is that m(i) is replaced by 
I(i) since AreaCover considers both the set of matched samples and matched attributes. The algorithm 
is shown here for completeness. 

As an illustration of AreaCover, in Figure 13, AreaCover will select, in the order of the sequences, 
I(3), I(1), I(2), I(7), I(6), I(4) | I(5), where I(4) | I(5) means that either I(4) or I(5) is selected 
depending on the implementation of the algorithm since their uncovered areas are the same. Note that 
ε can be used to control the number of patterns in area cover Δ. For example, since I(1), I(2) and I(3) 
occupies approximately 60% of the total area of I(1, …, 7), ε = 60% will produce Δ = {3, 1, 2}. 
Moreover, in Figure 14, I(9) will not hide the patterns I(2), I(3), I(5), I(6) and I(7) if AreaCover is 
used. Hence, AreaCover is less prone to the problem of being hidden by large patterns since it 
considers matched samples as well as matched attributes. However, if necessary, AreaCover can also 
run multiple times as in multi-level RuleCover. The algorithm is exactly the same as the algorithm in 
multi-level RuleCover except that RuleCover is replaced by AreaCover. 

4.2.4 Algorithm Complexity 

A final remark in this section is about the time complexity of RuleCover and AreaCover. The time 

complexity of RuleCover reported in [23] is polynomial with respect to U
n

i

im
1

)(
=

. However, a simple 

optimization can be done in both RuleCover and AreaCover by adding the following statement after 
updating ui (between step 13 and step 14 in RuleCover and AreaCover): 

 

A、       if | ui | = 0 then Γ := Γ \ is
ix  

 

The above statement removes pattern is
ix  from Γ if the number of the uncovered matched samples | 

ui | is 0 (| ui | is the size of the uncovered matached area in AreaCover). The above operation is only of 
constant time. However, it could significantly speeds up the RuleCover (or AreaCover) algorithm 
depending on how the patterns overlap in the cluster. For example, in Figure 14, in level 1 (first run) 
of RuleCover, once pattern 9 is moved to Δ1, patterns 2, 3, 5, 6 and 7 will be removed from Γ by the 
above statement since their uncovered matched samples | ui | is 0. Likewise, in level 2 (second run), 
once pattern 3 is moved to Δ2, patterns 5, 6 and 7 are removed immediately. The effect of the above 
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statement is most significant in the lower levels (i.e. the first few runs). If there are a few large 
patterns in a given level, RuleCover and AreaCover can be significantly speeded up. However, in the 
worst case where all patterns have their own uncovered samples, the above statement cannot speed up 
the algorithm. A possible worst case scenario is shown in Figure 15 for RuleCover. An example of 
worst case scenario for AreaCover is Figure 14. 

 

 

Figure 15. Worst case scenario of the optimization method for RuleCover 
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Chapter 5 
Experiments 

The experimental results of generalized itemsets, closed itemsets [8], [9], [29] – [31] and maximal 
[32] – [35] itemsets are provided for 10 real-world data sets in section 5.1. In section 5.2, artificial 
data is generated to study the difference of various distance measures. In section 5.3, 10 real-world 
data is used to test the distance measures using both hierarchical clustering and k-means. 

5.1 Experiments of Pattern Pruning on Real-World Data Sets 

Table 4 reports the pruning results of closed itemset pruning (or simply closed pruning), generalized 
itemset pruning (or generalized pruning) and maximal itemset pruning (maximal pruning) on 10 real-
world data sets obtained from UCI Repository [19] when minimum support is 2%. The table consists 
of 6 columns. Column 1 shows the data set names. Column 2 gives the number of frequent itemsets. 
Column 3 gives the number of closed itemsets. Column 4 gives the number of generalized itemsets 
with maximal information loss (i.e. c× 100%) set to 25%, 50% and 75%. Column 5 gives the number 
of maximal itemsets. Finally, column 6 reports the average running times. 

Many data sets contain numeric attributes. We discretize these attributes into intervals. There are a 
number of discretization algorithms in literatures for this purpose. We use MLC++ [117] with the 
default settings. The experiments were run on a laptop computer with Intel Premium 1.73GHz and 
1GB RAM. For pruning, all experiments finished in 4 minutes. In Tables 4 and 5, the number of 75% 
generalized itemsets is almost the same as the number of maximal itemsets. This is reasonable 
because 100% information loss means there is no common area between the induced data clusters of 
the pruned itemsets and the renaming maximal itemsets. This is impossible since the pruned itemests 
are the subset of maximal itemsets, implying that their induced data clusters must have some common 
areas. The results show that most pruned patterns share at least 25% of the common data with the 
maximal itemsets. The experimental results are summarized below: 

Car: This is a car evaluation data set consisting of 1782 samples, 6 attributes and 4 classes. A car is 
evaluated based on factors such as price, maintenance fee, etc. In Table 4, closed pruning reduces 
about half ((1156 – 557) / 1156 × 100% = 52%) of the frequent itemsets. This result is desirable since 
we can cluster only half of the itemsets and obtain equivalent results as clustering all of them. If 
further pruning is preferred, maximal pruning reduces 83% of the itemsets. It is interesting to observe 
that 25% generalized pruning reduces 76%. Thus, maximal pruning sacrifices a possible 75% more 
information loss only for pruning an additional 6% (or 276–202=74) of the itemsets. 

Tic-Tac: This data set encodes the complete set of possible board configurations at the end of tic-
tac-toe games. It has 958 samples, 9 attributes and 2 classes. This data set is a good example where 
closed pruning does not perform well. In fact, from Tables 4 and 5, closed pruning cannot prune any 
itemsets since the data set is not dense. In Table 4, maximal pruning can reduce 40% of the itemsets. 
However, it suffers from large amount of information loss. In contrast, 50% generalized pruning has 
already pruned 36%. This may be a better choice if we want to avoid too much information loss. 
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Liver-disorder: This data set consists of 5 blood tests results and other information to classify liver 
disorders arisen from excessive alcohol consumption. It consists of 345 samples, 7 attributes and 2 
classes. From Table 4, very few frequent itemsets (only 1%) are pruned in closed pruning. In contrast, 
maximal pruning can prune 53% of the frequent itemsets. A better choice may be 50% generalized 
pruning since it has already pruned 44% of the itemsets. This data set shows that, when not many 
itemsets are pruned in closed pruning and too many itemsets are pruned in maximal pruning, 
generalized pruning provides an alternative method for us to control the tradeoff. 

Wine: This data set contains a chemical analysis result of wines grown in the same region in Italy 
but derived from 3 different cultivars. The data is used to determine the quantities of 13 constituents 
found in each of the 3 types of wines. It has 178 samples, 13 attributes and 3 classes. From Table 4, 
closed pruning reduces 33% of the itemsets, while maximal pruning reduces 44%. In between, 25% 
generalized pruning have already pruned 43%. This may be a better choice than maximal pruning. 

Glass: This is a glass identification data set consisting of 214 samples, 9 attributes and 6 classes (an 
Id# attribute was removed). The study of glass types was motivated by criminological investigation. 
At the scene of the crime, a correctly identified glass can be used as evidence. From Table 4, closed 
pruning reduces 37% of the itemsets while maximal pruning reduces 65%. 50% generalized pruning 
only prunes 1 itemset less than maximal pruning. This is definitely more preferable. 25% generalized 
pruning may also be a good choice since it only prunes 26 less than maximal pruning. 

Breast Cancer: This data set consists of 683 samples, 9 attributes and 2 classes. It is used to classify 
whether a patient has breast cancer or not. The 2 classes are known to be linearly separable. From 
Table 4, closed pruning reduces 11% of the frequent itemsets while maximal pruning reduces 61%. 
Again, a better choice balancing the tradeoff between information loss and number of itemsets may 
be 25% or 50% generalized pruning, which reduces 58% and 61% of the itemsets respectively. 

Auto: This data set is about city-cycle fuel consumption and is used in the 1983 American 
Statistical Association Exposition. It has 398 samples, 8 attributes and no class attribute. From Table 
4, closed pruning reduces 44% of the frequent itemsets while maximal pruning reduces 78%. 50% 
generalized pruning reduces 77%, which is evidently better than maximal pruning. 

Anneal: This data set contains 798 samples, 38 attributes and 6 classes. From Table 4, closed 
pruning reduces 76.2% of itemsets while maximal pruning reduces 80.3%. This data set is an example 
where closed pruning performs very well (76.2% is a huge pruning) and maximal pruning cannot 
prune many more (only 4.1% more). Thus, closed pruning is a good choice. Alternatively, 25% 
generalized pruning could be used since it only prunes 0.1% less than maximal pruning. 

Letter: This is a data set of characters image features. It has 20000 samples, 16 attributes and 26 
classes. From Table 4, 0.4% of the itemsets are pruned in closed pruning while 49.1% are pruned in 
maximal pruning. The pruning results are opposite to that obtained in Anneal data. In this case, the 
pruning result of closed pruning is not that good while that of maximal pruning looks very good. 
However, 25% and 50% generalized pruning reduces 39.4% and 48.9% of the itemsets respectively. 
Both of them seem better than maximal pruning if we want to avoid too much information loss. In 
particular, 50% generalized pruning only prunes 0.2% less than maximal pruning. 
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Iris: It consists of 150 samples, 4 attributes and 3 classes (Setosa, Versicolor and Virginica). The 
classes Versicolor and Virginica are highly overlapped while the class Setosa is linearly separable 
from the other two. Only 90 itemsets are discovered. Given the small number of itemsets, pruning is 
not necessary. However, it is still good to use the 50 closed itemsets since clustering them produces 
the same results as clustering all itemsets and it is easier to interrupt less itemsets. This data set is 
included in the experiments mainly because it is probably the best known data set in the literatures. 

 

Table 4. Number of Patterns Remained after Pruning (minimum support = 2%) 

Closed 
Itemsets 

Generalized itemsets Maximal 
Itemsets 

Data 
sets 

Freq 
Itemsets 

0% 25% 50% 75% 100% 

Average 
execution 
time (sec) 

Car 
Tic-Tac 

Liver disorder 
Wine 
Glass 

Breast Cancer 
Auto 

Anneal 
Letter 

Iris 

1156 
4024 
645 

27503 
3791 
3195 
1157 

23797 
21340 

90 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

276 
3908 
568 

15406 
1437 
1353 
402 

12963 
12936 

32 

202 
2556 
360 

15289 
1311 
1253 
269 

12955 
10910 

16 

202 
2404 
303 

15289 
1310 
1252 
256 

12955 
10869 

15 

202 
2404 
303 

15289 
1310 
1252 
256 

12955 
10869 

15 

0.032 
3.235 
0.020 

169.807 
0.224 
0.516 
0.031 

89.886 
190.068 

0.010 
Highlighted number marks the set of itemsets that will be used for hierarchical clustering later. 

 

Table 5 reports the pruning results when minimum support is 3%. The number of itemsets is 
reduced. The behavior of the results in this table is very similar to Table 4. 

 

Table 5. Number of Patterns Remained after Pruning (minimum support = 3%) 

Closed 
itemsets 

Generalized itemsets Maximal 
itemsets 

Data 
sets 

Freq 
itemsets 

0% 25% 50% 75% 100% 

Average 
execution 
time (sec) 

Car 
Tic-Tac 

Liver disorder 
Wine 
Glass 

Breast Cancer 
Auto 

Anneal 
Letter 

Iris 

593 
2080 
335 

17845 
2590 
2020 
384 

14657 
9807 

86 

313 
2080 
335 

11842 
1457 
1973 
384 

7943 
9785 

48 

144 
2060 
311 

9365 
946 
845 
236 

7454 
5743 

30 

102 
1322 
219 

9300 
866 
804 
158 

7448 
4841 

14 

102 
1174 
200 

9300 
865 
804 
154 

7448 
4828 

13 

102 
1174 
200 

9300 
865 
804 
154 

7448 
4821 

13 

0.015 
0.267 
0.005 

58.870 
0.114 
0.219 
0.016 

30.578 
43.193 
0.001 
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Highlighted number marks the set of itemsets that will be used for hierarchical clustering later. 

 

5.2 Experiments of Pattern Clustering on Artificial Data Sets 

In this section, 7 artificial data sets are generated to study the 5 measures. This provides insights into 
why one measure may work better than others in some circumstances. In Figure 16, the 7 data sets 
have 15 attributes and 500 samples. In Figure 16(a), the data set contains 2 well-separated clusters A 
and B. Both clusters have 4 attributes and 50 samples, with 10% (uniformly distributed) random 
noises added. As expected, all measures consider clusters A and B as separated. The 2 clusters are 
then made closer to each other. They share 2 attributes and 25 samples in Figure 16(b) and 3 
attributes and 75 samples in Figure 16(c). It turns out that all measures can still separate them. 
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(a)      (b) 

   
(c)      (b) 

   
(e)      (f) 

 
(g) 

Figure 16. Seven artificial data sets for the study of different distance measures. 
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In Figure 16(d), the data set contains 3 clusters A, B and C. Clusters B and C are originally taken 
from a larger cluster I which consists of 4 attributes and 75 samples (the enclosed dashed-line 
rectangle). Clusters B and C are obtained by adding random noises to cluster I. We want to see 
whether or not the measures can differentiate that clusters B and C come from cluster I. It turns out 
that dT [23], dG [40] and dR group clusters A and B together even though they do not share any 
attribute. Cluster C is left alone. This is because clusters A and B shares 30 samples, more than the 
sample shared between clusters B and C (25 samples). In contrast, dRC and dO groups cluster B and C 
together. dRC does so because clusters B and C share 1 attribute while clusters A and B do not share 
any. dO also does so not only because clusters B and C share 1 attribute but also the common attribute 
share the same value G, giving lower entropy. By the same token, in Figure 16(e), dT [23], dG [40] 
and dR group clusters B and C together even though they do not share any attribute. Cluster A and D 
are left alone. In contrast, dRC and dO groups cluster A and B as well as C and D together. Figures 
16(d) and 16(e) shows that sample-matching distances may be misleading because they overlook the 
contribution from attributes and data variation. 

In Figure 16(f), clusters B and C are originally taken from cluster I and share the attribute value F. 
Although clusters A and B also share 1 attribute, their attribute values (D in cluster A and E in cluster 
B) are different. dT [23], dG [40] and dR consider clusters A and B having equal distances as clusters B 
and C because both cluster pairs do not share any sample. Hence, depending on the order of input 
patterns, these measures may group clusters A and B first, leaving cluster C alone. dRC also consider 
the 2 cluster pairs as having equal distance since they both share 1 attribute. In contrast, dO groups 
clusters B and C first because their shared attribute have the same value F. 

In Figure 16(g), again, clusters B and C come from cluster I with random noises added to its 
corners. dT [23], dG [40] and dR group clusters A and B and leave cluster C alone because clusters A 
and B share 30 samples, more than the samples shared between clusters B and C (25 samples). dRC 
also makes the same mistake because both cluster pairs share 1 attribute. However, measures dO 
always groups clusters B and C first because the values in the top-right and bottom-left corners 
between clusters B and C are more consistent with the clusters, giving lower entropy. The last 2 data 
sets in Figures 16(f) and 16(g) show that measures based on data variation can distinguish difference 
that may be overlooked by measures based only on matched samples and/or attributes. 
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5.3 Experiments of Pattern Clustering on Real-World Data Sets 

To evaluate the proposed distances, the 10 real-world data sets in section 5.1 are used. Two popular 
measures of cluster “goodness” or quality, namely, cluster entropy [1] and Minkowski scores (MS) 
[1], [118], are reported for performance evaluation. Cluster entropy and MS scores are measures of 
the quality of a clustering solution given the true clustering. In all experiments, class labels are 
deleted and are only used for evaluation purpose. Suppose that a data set containing S classes is 
clustered into K clusters. Let nk be the number of samples in the kth cluster and nsk be the number of 
samples from the sth class in the kth cluster. The entropy of the kth cluster is defined as: 
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The total entropy for the set of K clusters is given by 
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where M is the total number of samples in the data set. 

The cluster entropy is a measure of the class purity of the clusters. The optimum value is 0, with 
lower values being “better”. MS score measures the consistency between a clustering solution and a 
given true clustering. To define MS, let T be the “true” solution and C the solution we wish to 
measure. Let n11 denote the number of pairs of samples that are in the same cluster in both C and T. 
Let n01 denote the number of pairs that are in the same cluster only in C and n10 denote the number of 
pairs that are in the same cluster in T. Minkowski score (MS) is then defined as 
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For MS, the optimum score is also 0, with lower scores being “better”.  

Both hierarchical clustering and k-mean described in section 3.6 are implemented using the 5 
distance measures. To remove the randomness in k-means, we use the systematic cluster initialization 
procedures described in section 3.6.2. Ideally, closed itemsets should be used for pattern clustering 
since clustering them produces equivalent results to clustering all itemsets. However, the numbers of 
closed itemsets of some data sets are too large for hierarchical clustering. To demonstrate that the 
distance measures can be applied to hierarchical-type clustering methods, we select around 2,000 
itemsets for hierarchical clustering. Later, k-means is used to cluster all closed itemsets. The selected 
itemsets are highlighted in Tables 4 and 5. For Wine, Anneal and Letter data, a hard limit of 2,000 is 
set to obtain the 2,000 closed itemsets having the highest supports. The number of itemsets used for 
clustering is shown in the second column of Table 6. 

Cluster entropy and MS score have different values for different number of clusters. In particular, 
cluster entropy tends to be smaller for more clusters since more clusters imply smaller and purer 
clusters. Hence, to fairly compare the cluster entropy and MS scores of the 5 measures, the cluster 
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number must be the same. Hence, we set the cluster number as the number of classes when running 
hierarchical clustering. In later experiments, the cluster number will be automatically determined. 
Here, we prescribe the cluster number only for the sake of comparison. Table 6 reports the cluster 
entropy (Ent) and MS scores of the 5 distance measures. The table consists of 8 columns. Column 1 is 
the data set name. Column 2 is the number of itemsets used for clustering. Column 3 is the prescribed 
number of clusters. Columns 4 – 8 contain both Ent and MS scores for each distance measure. Note 
that we set the cluster number as 5 for Anneal data even though Anneal data has 6 classes since class 
4 has no sample. In addition, for dRC, wr and wc are set to 0.5 in all experiments. 

From Table 6, for Car data, the Ent of dG and dR are the best while the MS of dO is the best. Hence, 
the clusters obtained by dG and dR are purer while the clusters obtained by dO best match the class 
labels. No single distance measure obtains both the best Ent and MS. For Tic-Tac data, the MS of dT is 
the best. dO obtains the best Ent and the second best MS. Considering both Ent and MS, the 
performance of dO is the best. For Liver data, the Ent of all distance measures are very closed (with 
only 0.004 difference). dO obtains the best MS score. For Wine data, both the Ent and MS values of all 
measures are very closed (with 0.01 difference in Ent and 0.005 difference in MS). Hence, all of them 
perform comparably. For Glass data, dRC obtains the best Ent and MS. For Cancer, Auto and Iris data, 
dO obtains the best Ent and MS. For Anneal data, dT obtains the best Ent while dRC obtains the best MS. 
Finally, for Letter data, dRC obtains the best Ent while dO obtains the best MS. 

Among the 10 data sets, dO performs the best in terms of Ent and MS in 3 data sets and works fairly 
well in other data sets. It is not known why dT seems to perform better than dG in some cases since dG 
is just a normalized version of dT. One interesting observation is that the performance of dG and dR are 
very similar. This can be explained by the fact that they measure distances very similarly. The only 
difference is that dR takes the dissimilarity into account while dG does not. However, the dissimilarity 
has been mostly reflected by the similarity. Another interesting observation is that dRC obtains the 
same Ent and MS as dG and dR in Iris data. It is not a coincidence because Iris data only has 4 
attributes. Recall that dRC is a sample-attribute-matching distance. When the dimension is low, it 
behaves like a sample-matching distance such as dG and dR. 
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Table 6. Cluster Entropy and MS (Hierarchical Clustering and Prescribed Cluster Numbers) 

dT [23] dG [40] dR dRC dO Data 
sets 

Item 
sets# 

Clu 
# Ent MS Ent MS Ent MS Ent MS Ent MS 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
2080 
636 
2000 
2045 
1353 
646 
2000 
2000 
50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

0.892
0.639
0.677
0.968
1.436
0.527
1.507
0.710
3.102
0.570

1.074
0.901
1.028
1.203
1.685
0.725
1.841
0.797
1.923
0.757

0.872
0.645 
0.679 
0.978 
1.352 
0.640 
1.537 
0.798 
3.005 
0.532

1.084
1.112
1.178
1.199
1.688
0.909
2.000
0.786
2.101
0.865

0.872
0.645 
0.679 
0.978 
1.352 
0.640 
1.537 
0.798 
3.005 
0.532

1.084
1.102
1.178
1.198
1.688
0.909
2.000
0.788
2.012
0.865

0.897 
0.647 
0.680 
0.969 
1.206 
0.645 
1.550 
0.799 
2.966 
0.532 

1.094 
1.031 
0.898 
1.201 
1.508 
0.909 
2.000 
0.725 
1.901 
0.865 

0.901
0.543
0.681
0.973
1.396
0.428
1.382
0.750
3.166
0.364

0.920
0.911
0.694
1.199
1.689
0.650
1.724
0.766
1.823
0.611

Highlighted number marks the lowest Ent or MS values among the 5 distances for each data set. 

 

The above results are obtained by prescribing the number of clusters. In practice, we do not assume 
that the number of classes is known. In hierarchical clustering, a common and simple method to 
determine the number of clusters is to stop clustering if the distance is noticeably increased after 
merging. The method is implemented to automatically stop hierarchical clustering. The resulting 
cluster entropy (Ent) and MS scores are reported in Table 7. 

From Table 7, for Car data, dO automatically produce 4 clusters, which is the actual number of 
clusters. It also obtains the best MS. The correct cluster number and best MS values indicate that dO 
obtains the best clustering results. Note that, although dRC obtains the best Ent, it produces 98 clusters. 
Since more clusters tend to have smaller and purer clusters, its lowest Ent does not mean that it is the 
best. Similar situation occurs in Liver, Wine, Cancer, Auto and Iris where dO obtains the closest 
cluster numbers and the best MS (the second best MS in Wine), indicating that it performs very well 
in these data sets (in Liver and Auto data, no distance measure obtains the correct cluster number. 
However, dO gets the closest one.). In some data sets (e.g. Liver, Cancer and Iris), dO even obtains the 
best Ent. In this set of experiments, it is evident that dO is better than the other measures. For the rest 
of the data sets, in Tic-Tac data, dT automatically produce the correct number of clusters (2). However, 
dO obtains 3, very close to 2. It also obtains the best MS. Hence, dO performs fairly well in Tic-Tac 
data. For Glass data, dRC obtains the correct cluster number and the best MS. Hence, it performs the 
best in this data set. For Anneal data, no distance obtains the correct cluster number. However, dR and 
dRC obtain the closest ones with dRC having the best MS. For Letter data, dR obtains the closest cluster 
number while dO obtains the best MS. 
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Table 7. Cluster Entropy and MS (Hierarchical Clustering and Automatic Termination) 

dT [23] dG [40] dR dRC dO Data 
sets 

# Ent MS # Ent MS # Ent MS # Ent MS # Ent MS 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

3 
2 
3 
2 
7 
2 
3 
3 
9 
3 

0.892 
0.639  
0.671 
0.995 
1.447 
0.527 
1.507 
0.712 
3.451 
0.570 

1.084 
0.901 
0.895 
1.397 
1.681 
0.725 
1.841 
0.816 
1.293 
0.757 

23 
58 
25 
12 
41 
9 
8 

11 
39 
5 

0.672 
0.628 
0.635 
0.813 
1.158 
0.594 
1.162 
0.450 
2.924 
0.516 

1.084
0.871
0.988
1.372
1.528
0.861
1.405
0.997
1.194
0.837

5 
4 
4 
3 
3 
3 
2 
4 
23
3 

0.824
0.644
0.674
0.978
1.465
0.631
1.600
0.779
3.141
0.532

1.084
0.818
0.976
1.198
1.657
0.909
2.000
0.726
1.215
0.865

98
83
6
5
6
8
7
6

47
4

0.612
0.600
0.632
0.920
1.206
0.503
1.208
0.595
2.856
0.514

0.994
0.911
0.974
1.396 
1.508
0.910
2.000
0.719
1.274
0.813

4 
3 
3 
3 
3 
2 
4 
3 

21 
3 

0.901 
0.643 
0.479 
0.973 
1.237 
0.428 
1.316 
0.783 
3.234 
0.364 

0.920
0.621
0.778
1.199 
1.518 
0.650
1.351
0.817 
1.189
0.611 

Highlighted number marks the cluster number closest to the actual cluster number and the lowest 

Ent or MS values of each data set. 

 

The problem of hierarchical clustering is that it is not scalable. Hence, we implemented k-means 
clustering for clustering a large set of itemsets. Table 8 reports the cluster entropy (Ent) and MS 
scores of the 5 distance measures when k-means is used to cluster all closed itemsets with 2% 
minimum support. In practice, the cluster number k can be determined by a number of methods. A 
simple and common one is to try different values of k and choose the best one. Other more 
sophisticated methods include ISODATA and its variants [1], [2]. All these methods involve 
heuristics that make the comparison of distance measures difficult. For comparison purpose, we 
simply set k equal to the class number. However, it is possible for applying the measures to these 
methods. 

From Table 8, among the 10 data sets, dO obtains the best Ent in 5 data sets and the best MS in 4 
sets. In particular, it obtains both the best Ent and MS in Cancer and Iris data. Although dO does not 
obtain the best scores in other data sets, it still performs fairly well. For example, it obtains the second 
best Ent and MS in 5 data sets. 
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Table 8. Cluster Entropy and MS (K-means and Prescribed Cluster Numbers) 

dT [23] dG [40] dR dRC dO Data 
sets 

Item 
sets # 

Clu 
# Ent MS Ent MS Ent MS Ent MS Ent MS 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

0.896
0.644
0.682
1.061
1.472
0.581
1.505
0.822
2.089
0.581

1.028
1.056
0.978
1.382
1.686
0.828
1.864
0.807
1.542
0.730

0.879 
0.651 
0.680
1.051 
1.516 
0.589 
1.479 
0.825 
2.215 
0.483

1.010
0.911
0.977
1.396
1.689
0.771
1.767
0.826
1.732
0.680

0.879 
0.649 
0.682 
1.049 
1.514 
0.594 
1.485 
0.819
2.221 
0.483

1.010
0.910
0.963
1.340
1.691
0.765
1.771
0.815
1.725
0.680

0.867 
0.646 
0.681 
1.049 
1.504 
0.590 
1.488 
0.891 
2.207 
0.481 

1.019 
0.813 
0.961 
1.315 
1.689 
0.773 
1.788 
0.817 
1.532 
0.655 

0.854
0.646
0.683
1.043
1.490
0.541
1.461
0.820
2.104
0.462

1.016
0.654
0.963
1.332
1.675
0.678
1.774
0.812
1.549
0.589

Highlighted number marks the lowest Ent or MS values among the 5 distances for each data set. 

 

For Tables 6 and 8, the execution times of the 2 clustering algorithms are reported in Table 9. We 
report the execution times of the experiments in these 2 tables because they have the same cluster 
number so that we can compare their speeds. The table consists of 9 columns. Column 1 is the data 
set names. Column 2 is the number of execution of the distance measures in hierarchical clustering 
for each data set. Note that the number of executions of the 5 distance measures is the same in 
hierarchical clustering. Column 3 is the average execution times of 3 sample-matching distances. We 
take an average of the execution times of the 3 distances because their times are close to each other. 
Columns 4 and 5 are the execution times of dRC and dO respectively. Column 6 is the average number 
of executions of the 5 distance measures in k-means. We take an average because the numbers of 
executions are not the same for different measures in k-means. Columns 7 – 8 are the (average) 
execution times of the 5 distance measures. From columns 2 and 6 in Table 9, the number of distance 
executions in hierarchical clustering is significantly larger than that in k-means. For the same number 
of executions, dT, dG and dR is the fastest whereas dO is the lowest. 
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Table 9. Execution Times of Clustering Algorithms (seconds) 

 Hierarchical Clustering in Table 6 K-means in Table 8 

Data 
Sets 

# of dist. 
cal. 

dT [23], 
dG [40], dR 

dRC dO Ave # of 
dist cal 

dT [23], dG 
[40], dR 

dRC dO 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

309135 
4322241 
403225 

4015716 
4177926 
1827904 
416019 

4015716 
4015716 

2208 

1.797 
40.6973 
1.931 

32.0587 
30.247 

14.5407 
2.4196 
46.148 

287.689 
0.016 

1.807 
50.476 
2.267 

51.842 
39.720 
21.276 
3.314 

67.783 
394.174 

0.016 

3.191 
93.927 
3.150 

64.347 
62.692 
30.871 
4.759 

97.948 
512.881 

0.018 

26727 
48284 
19076 

274536 
159474 
22820 
48425 

405245 
859854 

391 

0.047 
0.407 
0.095 
1.358 
0.605 
0.187 
0.219 

14.996 
31.315 
0.001 

0.061 
0.598 
0.120 
1.541 
0.879 
0.225 
0.315 

17.240
42.131
0.001 

0.114
1.171
0.261
2.758 
1.414 
0.410 
0.530 

31.231
72.231
0.001 

 

In summary, the proposed measures dO perform fairly well in most cases in our experiments, even 
though it is the slowest. In some cases, they even achieve the best clustering performance in terms of 
Ent and MS. However, the results may not reflect the whole picture of clustering quality. First, cluster 
entropy and MS scores cannot capture all aspects of clustering quality. In fact, many clustering quality 
may not be measurable at all. Second, the class labels may not necessarily be the “true” clustering. In 
fact, it is difficult to define “true” clustering. However, the experiment results suggest that the 
proposed measures are better than sample-matching distances in many cases. 

5.4 Experiments of Pattern Summarization on Real-World Data Sets 

Three pattern summarization methods including RuleCover[23], multi-level RuleCover and 
AreaCover are implemented. To evaluate these methods, the 10 real-world data sets are used again. 
To compare the performance of different methods in the 10 data sets, all summarization methods are 
applied to the set of pattern clusters produced by K-means using dO as distance measure with 
prescribed cluster numbers (i.e. the cluster entropy and MS of these sets of patterns clusters are shown 
in the last column of Table 8). In other words, for each data set, all closed itemsets are clustered 
before summarization. The summarization methods can be applied to pattern clusters produced by 
other clustering algorithms (e.g. hierarchical clustering) as well as other pattern distances (e.g. dT, dG, 
dR and dRC ). The pattern clusters in Table 8 are chosen because all closed itemsets are used. Hence, 
the speed of summarization methods can be tested against all of them. If hierarchical clustering is 
used, only around 2,000 itemsets are selected (see section 5.3 for details). dO is chosen as distance 
measures because it performs very well in our experiments. In practice, other measures can also be 
used. 

Table 10 gives the summarization results of RuleCover [23] with 100% minimum coverage. The 
table consists of 7 columns. As in Table 8, the first three columns are the data set names, number of 
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closed itemsets used for summarization and the prescribed number of clusters respectively. Column 4 
is the number of itemsets having 2 or less items (i.e. |s|-itemsets, |s| ≤2). We explicitly show this 
number because it is easier to interpret itemsets with fewer items. Hence, it is of interest to know how 
many short summary itemsets we have. We show both the total number of itemsets in all clusters and 
the average number of itemsets in each cluster. Column 5 is the number of all itemsets. Again, both 
the total number and the average number in each cluster are shown. Column 6 gives the average 
number of items in each itemset. Finally, column 7 gives the execution times of the summarization 
methods. We set 100% minimum coverage so that all summary itemsets are extracted. In practice, we 
often loose the minimum coverage to reduce the number of summary itemsets. Table 11 gives the 
summarization results of RuleCover [23] with 80% minimum coverage. From column 5 in Tables 10 
and 11, the average number of all summary itemsets is significantly reduced from 133 to 28 whereas 
the average number of all summary itemsets per cluster is reduced from 16.50 to 4.64. This indicates 
that, on average, each pattern cluster is summarized by 4.64 patterns if the minimum coverage is 80%. 
This small set of patterns can be interpreted manually by domain experts. Note that the number of 
summary itemsets in Letter is much more than other data sets. If Letter data is not considered, the 
average numbers of all summary itemsets per cluster for Tables 10 and 11 are 14.42 and 4.50 
respectively. 

Another observation from Tables 10 and 11 is that most summary itemsets have only a few items. 
For example, in Car data, of the 56 summary itemsets, 53 itemsets have 2 or less items. This is also 
reflected by the fact that the average number of items is only 2.07. For the 10 data sets, the average 
number of items in Tables 10 and 11 are 2.11 and 2.08 respectively. This indicates that most itemsets 
have only 2 items. On one the hand, short itemsets (itemsets having only a few items) are desirable 
since it is easier to interpret than long itemsets (itemsets having many items). On the other hand, short 
itemsets are less informative than long itemsets. For example, 2-itemsets only describe the 
relationship between 2 items. In Figure 14, Δ = {9, 8}. Such summary is too general and not 
informative enough because both patterns 9 and 8 do not describe the first several attributes in the 
cluster. The problem is that pattern 9 is a short summary itemset. This only provides very general and 
high-level description of the cluster. Many details are missed. In practices, it is desirable to have 
longer summary itemsets because they are more specific and informative. 
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Table 10. RuleCover [23] Summarization Results (Minimum Coverage = 100%) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec 
times 
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

53 
37 
59 
27 
48 
39 
86 
30 

763 
12 

13.25 
18.5 
29.5 

9 
  8 

19.5 
17.2 

6 
29.35 

4 

56 
37 
59 
28 
50 
39 
90 
43 

916 
12 

14 
18.5 
29.5 
9.33 
8.33 
19.5 
18 
8.6 

35.23 
4 

2.07 
2 
2 

2.04 
2.06 

2 
2.04 
2.61 
2.29 

2 

0.001 
0.028 
0.001 
0.137 
0.001 
0.036 
0.001 
0.089 

348.52 
0.001 

Total 6387 5.8 115.4 15.43 133 16.50 2.11 34.88 
 

Table 11. RuleCover [23] Summarization Results (Minimum Coverage = 80%) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec 
times 
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

14 
16 
20 
9 

17 
7 

26 
7 

142 
6 

3.5 
8 

10 
3 

2.83 
3.5 
5.2 
1.4 

5.46 
2 

15 
16 
20 
9 

17 
7 

27 
10 

153 
6 

3.75 
8 

10 
3 

2.83 
3.5 
5.4 
2 

5.89 
2 

2.07 
2 
2 
2 
2 
2 

2.04 
2.6 

2.10 
2 

0.001 
0.018 
0.001 
0.121 
0.001 
0.031 
0.001 
0.083 

191.53 
0.001 

Total 6387 5.8 26.4 4.49 28 4.64 2.08 19.18 
 

Tables 12 and 13 give the summarization results of multi-level RuleCover with 100% and 80% 
minimum coverages respectively. The average number of items is slightly higher than that in Tables 
10 and 11. This indicates that longer itemsets are extracted after removing the trivial and general 
itemsets discovered from the first run of RuleCover. However, the number of items is still small. This 
reflects that the summary is still general and not specific. While general summary is easy to 
understand, longer itemsets are required to obtain more specific and informative information. 
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Table 12. Multi-level RuleCover Summarization Results (Minimum Coverage = 100%, Level = 

2) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec  
times  
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

85 
74 

116 
54 
69 
69 

134 
39 

1288 
17 

21.25 
37 
58 
18 

11.5 
34.5 
26.8 
7.8 

49.54 
5.67 

119 
74 

124 
60 

111 
75 

168 
86 

2470 
21 

29.75 
37 
62 
20 

18.5 
37.5 
33.6 
17.2 
95.00 

7 

2.30 
2 

2.07 
2.13 
2.41 
2.08 
2.20 
2.92 
2.62 
2.19 

0.001 
0.042 
0.003 
0.312 
0.006 
0.027 
0.003 
0.142 

681.131 
0.001 

Total 6387 5.8 194.5 27.0 330.8 35.8 2.29 68.167 
 

Table 13. Multi-level RuleCover Summarization Results (Minimum Coverage = 80%, Level = 2) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec  
times  
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

32 
32 
43 
17 
36 
16 
58 
15 

308 
11 

8 
16 

21.5 
5.67 

6 
8 

11.6 
3 

11.85 
3.67 

36 
32 
44 
18 
44 
16 
68 
22 

344 
12 

9 
16 
22 
6 

7.33 
8 

13.6 
4.4 

13.23 
4 

2.11 
2 

2.02 
2.06 
2.21 

2 
2.15 
2.59 
2.15 
2.08 

0.001 
0.046 
0.001 
0.231 
0.004 
0.019 
0.001 
0.119 

358.413 
0.001 

Average 6387 5.8 56.8 9.53 63.6 10.36 2.14 35.884 
 

Tables 14 and 15 give the summarization results of AreaCover with 100% and 60% minimum 
coverage respectively. The average number of items is higher than that in Tables 10 – 13. It indicates 
that AreaCover extracts longer itemsets than RuleCover [23] and multi-level RuleCover. It can be 
explained by the fact that AreaCover considers matched attributes neglected by RuleCover. Hence, it 
tends to extract summary itemsets from all attributes. In RuleCover, it stops extracting summary 
itemsets if a certain percentage of samples (as specified by minimum coverage) are covered by the 
itemsets in RuleCover. However, in AreaCover, the algorithm will continue to extract summary 
itemsets as long as the items in other attributes have not been covered. Hence, the summary itemsets 
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will cover most attributes of the data cluster and tends to produce longer itemsets. Such desirable 
properties are not guaranteed by RuleCover or multi-level RuleCover. 

Moreover, in AreaCover, the summary patterns tend to cover different attributes in the cluster. As a 
result, most attributes in the clusters are described. In contrast, in RuleCover, it is possible that only a 
small subset of attributes is described. Such summary is not informative because it does not provide 
information about some of the attributes. Another advantage of AreaCover is that each pattern tends 
to describe different attribute values when compared with RuleCover and multi-level RuleCover. It 
can be explained by the fact that once an attribute value is covered by the patterns in Δ, pattern 
covering it do not contribute additional coverage. Hence, the description given by the summary 
patterns produced by AreaCover is less redundant than those produced by RuleCover and multi-level 
RuleCover. 

 

Table 14. AreaCover Summarization Results (Minimum Coverage = 100%) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec  
times  
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

91 
122 
171 
71 
73 

122 
154 
25 

1999 
14 

22.75 
61 

85.5 
23.67 
12.17 

61 
30.8 

5 
76.89 
4.67 

178 
228 
194 
191 
255 
151 
243 
271 

3053 
24 

44.5 
114 
97 

63.67 
42.5 
75.5 
48.6 
54.2 

117.42 
8 

2.68 
2.48 
2.13 
3.32 
3.14 
2.34 
2.49 
4.14 
2.52 
2.5 

0.024 
0.073 
0.021 
2.875 
0.061 
0.321 
0.022 
3.121 

739.781 
0.001 

Total 6387 5.8 284.2 38.35 478.8 66.54 2.77 74.63 
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Table 15. AreaCover Summarization Results (Minimum Coverage = 60%) 

Summary itemsets # 
(|s|≤2) 

All summary itemsets 
# (for all |s|) 

Data 
sets 

Item 
sets # 

Cluster 
# 

All Per Cluster All Per Cluster 

Ave 
items 

# 

Exec  
times  
(sec) 

Car 
TicTac 
Liver 
Wine 
Glass 

Cancer 
Auto 

Anneal 
Letter 

Iris 

557 
4024 
636 

18303 
2045 
2854 
646 

13509 
21244 

50 

4 
2 
2 
3 
6 
2 
5 
5 

26 
3 

22 
38 
46 
26 
20 
11 
65 
16 

1412 
3 

5.5 
19 
23 

8.67 
3.33 
5.5 
13 
3.2 

54.31 
1 

60 
50 
47 
62 
75 
22 
92 

258 
2053 

7 

15 
25 

23.5 
20.67 
12.5 
11 

18.4 
51.6 
78.96 
2.33 

2.92 
2.24 
2.02 
3.21 
3.35 
3.05 
2.49 
4.23 
2.52 
2.57 

0.021 
0.061 
0.012 
2.691 
0.058 
0.213 
0.019 
3.211 

683.636 
0.001 

Total 6387 5.8 165.9 13.65 272.6 25.90 2.86 68.992 
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Chapter 6 
Conclusion and Future Research 

The work described in this dissertation was motivated by the recognition of: (1) increasingly large 
amounts of raw data and discovered patterns which require the facilitation of an automatic pattern 
post-analysis system for a better understanding of the problem domain reflected by the data; (2) the 
pressing need to develop intelligent system which are able to support knowledge discovery and 
decision making from the huge volume of discovered patterns; (3) the potential applications of pattern 
post-analysis in both scientific and business worlds; (4) the inability of most available post-analysis 
methods to cope with large volume of patterns which are overlapping and entangling with each other; 
and (5) the application limitation of most existing systems which solve only a particular problem and 
therefore, not general enough to render an integrated post-analysis framework for real-world 
applications. 

The research presented in this thesis is an integrated and flexible framework for pattern post-
analysis. It proposes a new system of pattern post-analysis including pattern pruning, pattern 
clustering and pattern summarization to support effective analysis and interpretation of the discovered 
patterns. A dual space approach is introduced in which the explicit correspondence between patterns 
and data is maintained throughout the entire framework. Once this relationship is established and 
made explicit, the system is able to meaningfully and accurately measure the distances between 
patterns via the differences measured from their induced data. While the patterns provide human-
friendly expression to describe the statistical nature of the data, the data associated with the patterns 
provide a basis to analyze the patterns. Furthermore, the sample-attribute matching distances and the 
entropy-based distances in support of the dual space approach are developed. These distances are 
naturally extended from the existing sample-matching distances. 

In pattern pruning, using the concept of sample-attribute matching, a generalized itemset pruning 
method is developed which generalize the classical closed [8], [9], [29] – [31] and maximal itemset 
pruning [32] – [35]. The proposed method allows the users to control the tradeoff between the number 
of patterns being pruned and the amount of information loss after pruning. It furnishes a middle 
alternative, as closed itemset pruning removes not too many patterns while maximal itemset pruning 
loses too much information. For pattern clustering, a simultaneous pattern and data clustering method 
is developed which is able to cluster patterns as well as their associated data. The resulting dual 
clusters maintain an explicit one-to-one correspondence between patterns and data. Such explicit 
correspondence enables further analysis of individual dual clusters. The dual clustering process is 
implemented in two common clustering algorithms: k-mean clustering and hierarchical clustering. 
Both algorithms, using the entropy-based distances developed, are able to capture important factors 
that are overlooked by sample-matching distances. In our experiments on both synthetic and real data, 
it is found that the entropy-based distance performs the best, but it is the slowest. Finally, the concept 
of sample-attribute matching is used to develop an AreaCover summarization method. AreaCover 
method does not suffer from the problem of being sensitive to trivial large patterns as RuleCover does. 
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Hence, it can produce a concise yet detailed enough summary for each pattern cluster. The resulting 
summary can be easily interpreted by a human user. 

6.1 Summary of Contribution 

A good way to summarize the contributions of this research is to evaluate its outcomes against its 
objectives as stated at the outset of this thesis. The following statements are an account corresponding 
to the points outlined in section 1.2.2. 

1. The current research brings forth a general and versatile pattern post-analysis system [93] – [95], 
[126] and [127]. 

   In the system, redundant patterns are first pruned by generalized itemset pruning. To meet the    
needs of the complex real-world problems, the amount of information loss and the number of 
pattern being pruned can now be controlled by the users. Then, the retaining patterns and their 
associated data are simultaneously clustered using either sample-attribute-matching distances or 
entropy-based distances. To support the human interpretation, AreaCover is developed to 
generate a concise and descriptive summary for each pattern cluster. The summary produced can 
be manually inspected by a human user. The system is general enough to apply to various real-
world problems with different types of patterns including directional or non-directional patterns. 
By allowing users to control the tradeoff between speed and quality, the system is flexible 
enough to meet the complex needs of different real-world problems. Two fruitful contributions 
of the proposed works are: 1) the dual pattern-data relationship that furnishes robust and 
effective distance measures between patterns through their associated data, and 2) the 
applications of the dual relationship to pattern pruning, simultaneous pattern and data clustering 
and pattern summarization. The former provides the strong base for effective analysis of 
discovered patterns while the latter renders an integrated, flexible and automatic system to 
handle the huge volume of discovered patterns. 

2. An effective simultaneous pattern and data clustering algorithm is developed. The proposed 
pattern-data relationship furnishes the new sample-attribute-matching distances and the entropy-
based distances which are able to capture important factors overlooked by existing sample-
matching distances for more accurate distance measures. 

   By taking into consideration of both the matched samples and matched attributes of patterns, the 
sample-attribute-matching distances capture the attribute aspect of information that is overlooked 
by sample-matching distances. By further considering the data variation within the data 
associated with the pattern clusters, entropy-based distances takes into account the important 
factor reflecting the degree of variations/uncertainty in the data during the pattern clustering 
process. Such factors account for the subtle yet crucial differences between pattern/data clusters. 
By considering these additional factors, the proposed distance measures are more accurate and 
robust than the sample-matching distances. The dual clustering algorithm, supported by the 
proposed distance measures, is able to achieve effective pattern and data clustering. 

3. A new type of generalized itemsets is proposed based on the concept of sample-attribute 
matching. 
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   From the standpoint of information loss, the generalized itemsets generalize the classical closed 
itemsets and maximal itemsets by taking them as two special cases. While closed itemset pruning 
does not lose any information, maximal itemset pruning allows maximal amount of information 
loss. A nice property of generalized itemset pruning is that it allows the user to control the 
tradeoff between information loss and the amount of patterns retained. It thus furnishes a good 
alternative when closed itemset pruning produces too many patterns while maximal itemset 
pruning loses too much information. 

4. The multi-level RuleCover and AreaCover summarization methods proposed in this thesis render 
for each pattern cluster a concise and representative summary which can be interpreted manually 
by a human user. 

   By applying the well-known RuleCover pruning algorithm to select a few patterns in each pattern 
cluster, we propose an effective algorithm for pattern summarization. However, as observed, 
RuleCover is prone to render trivial patterns which cover large number of samples. Hence, the 
summarization results are less useful or interesting. To address this problem, a pattern 
summarization algorithm based on multi-level RuleCover is developed in this dissertation work. 
However, although the multi-level RuleCover algorithm yield better data coverage for pattern 
clusters than a single level RuleCover algorithm, the results are still not satisfactory. Using the 
concept of sample-attribute matching, AreaCover is developed in this thesis to further improve 
pattern summarization. By considering the attribute aspect as well as the sample aspect in the 
cluster, AreaCover has several advantages over the other methods. First, it tends to obtain longer 
and more descriptive patterns than those selected by RuleCover and multi-level RuleCover. 
Second, the patterns produced by AreaCover tend to take in different attribute values – richer in 
the pattern description. Hence, the descriptive pattern obtained by AreaCover is less redundant 
and more informative than those obtained by RuleCover and multi-level RuleCover. Third, 
AreaCover tends to cover all attributes in the clusters. Hence, the description of each attribute 
will not be missed in the summarization. Hence, AreaCover is able to provide concise yet 
descriptive summary of each complex pattern cluster. 

5. The information loss after pruning and the data not covered in the summarization can both be 
measured and controlled by the user. 

   The information loss after generalized itemset pruning can now be measured and controlled so 
that the user can decide on the tradeoff between the amount of information loss and the number 
of patterns retained. Similarly, the amount of data covered by RuleCover, multi-level RuleCover 
and AreaCover can be quantified and controlled by the user. Hence, the user has a sense of how 
representative the patterns are in the cover obtained. Such ability is important since information 
loss is inevitable during pattern pruning and summarization. 

6. Experiments on synthetic and real-world data sets indicated that the system is superior to many 
existing methods in term of performance of pruning, accuracy of clustering and quality of 
summarization. 

   For pattern pruning, empirical tests on real-world data sets indicated that the generalized itemset 
pruning provides a good alternative to closed and maximal itemset pruning. It allows the user to 
control the tradeoff of information loss and the amount of the patterns retained. For pattern 
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clustering, empirical tests on synthetic and real-world data sets indicated that the proposed 
sample-attribute-matching and entropy-based distance measures based on the dual pattern-data 
relationship are superior to existing sample-matching distances. Finally, for pattern 
summarization, experimental results showed that AreaCover produces more concise and 
informative description than other methods and is not prone to produce large trivial patterns 
covering a large number of samples 

7. A prototype of the pattern post-analysis software system has been implemented. The potential 
applications of such system are numerous. 

   The prototyped system can analyze patterns discovered by various pattern mining methods 
including both association rule mining [4] – [9] and pattern discovery [10] – [14]. It can 
automatically prune redundant patterns, cluster similar patterns into clusters and/or generate 
concise and descriptive summary for each pattern cluster at the request of the user. This system 
works well especially in situations where 1) no a priori knowledge is available, 2) the decision 
maker needs more information than that of a single pattern, and 3) transparent results are 
important. Some current applications of the system are listed below: 

- Analyzing patterns discovered from the operational data from an oil sand plant for 
improved performance, safety (including root cause analysis), environmental 
management and increased return on investment. 

- Analyzing student behavioral patterns discovered from academic record data from a 
school board for studying students’ learning behaviors and the efficiency of computer-
based tests such as Canadian Cognitive Abilities Test (CCAT), Canadian Achievement 
Test (CAT) and EQAO (Education Quality and Accountability Office) tests. 

- Analyzing patterns discovered from legal documents database from a law firm for 
automatic, effective and intelligent organization and management of legal documents. 

- Analyzing patterns discovered from biological data such as DNA sequences and protein 
sequences for discovering biologically meaningful patterns and structures. 

   Some other possible applications of the system are listed below: 

- Analyzing patterns from large databases such as stock market records, connection 
records of telecommunication companies and basket data of department stores for 
business planning. 

- Analyzing patterns for quality control, diagnosis, and decision support systems; and  

- Organizing, encoding and retrieving information from various data sets or databases. 

In addition to these contributions, there are some other points worth mentioning: 

• The proposed methods can be applied to a wide variety of patterns including directional and 
non-directional patterns. In this thesis, due to the popularity of frequent itemsets, the 
proposed methods are applied to them to demonstrate its capability. However, in [93] – 
[95], it has also been applied to event association patterns generated by pattern discovery 
[10] – [14]. Other possible applicable patterns include correlation rules. 
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• In practice, depending on the needs of the problems, the pattern pruning, clustering and 
summarization methods in the proposed system can be used either together or separately. 
For example, pattern clustering and summarization can be performed without pruning. 
Another example is that summarization can be applied to all patterns to generate a high 
level summary of all patterns. 

6.2 Suggested Future Research 

Several interesting problems related to this research are still open for future investigation. The 
following is a list of some possible directions presented as the conclusion of this thesis. 

1. Subjective pattern post-analysis using the proposed distance measures 

   Although this thesis focuses on the objective pattern post-analysis approaches, the proposed dual 
pattern-data relationship and the developed distance measures can also be adapted and used in 
subjective post-analysis approaches. For example, objective pattern pruning either prune a 
limited number of patterns or suffer from great information loss due to over pruning. To prune 
more patterns without losing the interesting ones, the use of domain knowledge or specification 
of the users’ expectation, if applicable, are significant. Existing subjective pruning algorithms 
focuses on the use of templates, constraints, or attribute hierarchy to specify the domain 
knowledge of the users (see section 2.3.2). However, it is difficult and time-consuming for the 
users to specify such templates, especially for complex real-world problems. One possible 
solution for subjective pattern clustering or pruning related to this dissertation work is to use a 
semi-supervised learning approach [2] for subjective pattern clustering or pattern pruning. Semi-
supervised learning has been widely used in data analysis. Effective semi-supervised clustering 
algorithms such as those in [2], [119] – [123] exist. With the proposed distance measures, a 
semi-supervised pattern clustering algorithm could be developed. The users can tell the 
algorithms whether certain patterns are interesting or uninteresting by just labeling them as 
“interesting” or “uninteresting” respectively. Then, patterns similar to uninteresting patterns are 
pruned, retaining only those patterns that are similar to the interesting patterns. The advantage of 
such approach is that it tolerates incomplete knowledge from the user. It makes the user much 
comfortable as he/she does not need to label all patterns. Instead, after the user labels a small 
portion of interesting and/or uninteresting patterns (e.g. 10% uninteresting patterns and 5% 
interesting patterns), the algorithm will fill in the missing labels of the rest (i.e. the 85% of the 
patterns). Moreover, the labeling can be aided by objective approaches. For example, the user 
can label the summary patterns produced by pattern summarization and the algorithm could 
determine the labels of the rest. Since summary patterns are representative to all other patterns, 
they are good candidates for labeling. In practice, we find that it is easier for a user to criticize 
than to construct (to discriminate than to ascertain). Hence, users prefer to label patterns as 
“uninteresting”. Nevertheless, in theory, this approach can incorporate both positive and negative 
comments from the users. 

2. Pattern visualization using the proposed distance measures 
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   The proposed distance measures can be used to support visualizing patterns and pattern clusters. 
One possible approach is to use multi-dimensional scaling (MDL) [1], [40] to convert the 
distances between patterns into an embedded vector space such that the distance information is 
preserved. Then self-organizing map can be used to visualize the patterns or pattern clusters in a 
two-dimensional grid. The problem is that we have to reduce the dimensions to two or three for 
visualization purposes since direct visualization ability of human eyes is limited to only three 
dimensions. If the patterns themselves by nature are not separable into two or three dimensions, 
multi-dimensional scaling will produce non-separable set of patterns. The quality of the scaling 
can be reflected by the stress factor [1], [40]. More research is needed to investigate how to 
visualize patterns that are not separable into two or three dimensional grids. 

3. Clustering of unseen samples to existing pattern clusters 

Once pattern clusters are formed, each of them is well described by its summary patterns. If the 
pattern clusters can be interpreted by domain experts, they become useful knowledge. When new, 
unseen samples come in, it is highly desirable to group them to the existing well-understood 
pattern clusters to investigate the properties of the new samples. To achieve this, a similarity 
measure between a sample and a pattern cluster has to be developed. One possible similarity 
measure is the number of patterns in a pattern cluster contained in a new sample. Intuitively, if 
there are many patterns in a pattern cluster contained in a new sample, the pattern cluster is 
similar to the sample. More sophisticated methods to relate new samples to pattern clusters 
include weighting of the sample-attribute-matching region of each pattern. 

4. Discretization of continuous attributes and mixed-mode data analysis 

   Discussion in the current research is limited to discrete attributes or discretized continuous 
attributes. The choice of discretization algorithms for continuous attributes is therefore very 
important for the performance of both the pattern mining and post-analysis processes. Although 
the earlier works [124], [125] yielded some insights into this problem, further investigations is 
definitely necessary. To analyze mixed-mode data, we either discretize the continuous attribute 
and then apply discrete analytical algorithms, or to analyze mixed-mode data directly without 
discretization. The tradeoff of the two choices is worth studying. 

5. More efficient implementation of the distance measures 

It is possible to integrate the pattern post-analysis system with the pattern mining system so that 
redundant computation can be eliminated. For example, the counting of the number of samples 
containing a pattern (i.e. supports) is usually available in the pattern mining process. Such 
information can be used to calculate the distance measures. Another method is to develop an 
effective data structure to store the counts for all possible attribute value pairs and their 
intersections or unions 

 

There are many other valuable research possibilities that are not mentioned here. Due to the 
challenging topics identified and the tremendous potential applications, pattern post-analysis will 
continue to gain more and more attention in both the scientific and the industrial worlds. 
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Appendices 

Appendix A 
Mathematical Relationship between Association Rule Mining and 

Pattern Discovery 

Association rule mining and pattern discovery are two highly related problems. In association rule 
mining, an itemset xs is said to be frequent if its observed frequency of occurrences sxo  is greater 

than a user specified threshold c. That is, 

cox ≥s      (23) 

In pattern discovery, recall from (5) and (6) that an itemset xs is said to be associated if  

sssss xxxxx
evedo +≥     (24) 

Comparing (23) and (24), association rule mining uses a constant threshold c to detect frequent 

itemsets whereas pattern discovery uses an adaptive threshold ssss xxxx
eved +  for each itemset. 

Since sx
d  is a constant and, from (3) and (7), sx

e  and sx
v  are dependent on the term ∏

∈ sxx
i

i

xP )(  

and a constant M, ssss xxxx
eved +  becomes a same constant for all itemsets xs if ∏

∈ sxx
i

i

xP )(  are 

the same for all xs. More precisely, the criterion of detecting significant patterns in pattern discovery 
is equivalent to the criterion of detecting frequent itemsets in association rule mining if 

∏
∈ sxx

i
i

xP )( =constant, ∀xs    (25) 

Hence, pattern discovery uses different thresholds for different itemsets xs, while association rule 
mining uses a fixed threshold for all itemsets. However, the cost of such customization is the lack of 
the important Apriori property. Hence, pattern discovery is slower than frequent itemset mining 
despite the use of several effective heuristics based on the statistical properties of contingency tables 
[10] – [14]. 
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Appendix B 
Mathematical Relationship between Chi-squared Test and Residual 

Test 

The chi-squared test for correlation has been widely used in various methods. It may be of interest to 
derive the relation between chi-squared statistics and the residuals in (5) and (6). The chi-squared 
statistics has the form of: 
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where sx
z  is the standardized residual in (5). Hence, standardized residual is the square root of 

values of the individual cells of χ2. Since χ2 distribution is the sum of squared standard normal 
distribution, sx

z  is normally distributed with zero mean and unit variance. To ensure sx
z  have unit 

variance sx
z  is normalized by its estimated variance sx

v  in (6) to obtain the adjusted residual. Hence, 

while chi-squared test is a test for correlation among attributes, the residual test is a test for 
correlation among the values of the attributes (i.e. items). 
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Appendix C 
Equivalent Clustering Results Produced by Clustering Closed 

Itemsets and Clustering All Itemsets 

If an itemset is
ix  is the closed itemset of js

jx , then, by the definition of closed itemsets (see section 

4.1.1), js
jx  ⊃ is

ix  and |m(i)| = |m(j)|. Hence, m(i) = m(j). By the definition of pattern-induced data 

clusters (see (11)), the data cluster induced by is
ix  completely contains the data cluster induced by 

js
jx . That is, I(i) ⊃ I(j). Hence, the measures dT, dG, dR, dRC and dO are all equal to 0. Since the 

distances between the 2 itemsets is 0, they must be first merged at the beginning of clustering. 
Moreover, the resulting merged data cluster will be the same as I(i). That is, I(i, j) = I(i) since si ⊃ sj 
and m(i) = m(j) (see (12)). Thus, all itemsets will be merged to their corresponding closed itemsets at 
the beginning of clustering and the resulting merged data cluster is just the data cluster induced by the 
closed itemsets. From then on, the clustering algorithm will cluster the data cluster of closed itemsets. 
Hence, clustering closed itemsets will produce equivalent results as clustering all frequent itemsets. 
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Appendix D 
Generalization Relation between the Generalized Itemsets and the 

Closed and the Maximal Itemsets 

Consider two itemsets is
ix  and js

jx  where sj ⊃ si. If loss(i, j) = 0, by (14), ri = 0. Hence, |m(i)| = |m(j)|. 

Hence, by definition (see section 4.1.1), js
jx  is a closed itemset of is

ix . If loss(i, j) = 1, by (19), rij = 0, 

indicating that it is not necessary for is
ix  and js

jx  to share any samples. Hence, by definition, js
jx  is a 

maximal itemset of is
ix  since sj ⊃ si. 
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