14,613 research outputs found

    Complexity of Propositional Proofs under a Promise

    Get PDF
    We study -- within the framework of propositional proof complexity -- the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where ``many'' stands for an explicitly specified function \Lam in the number of variables nn. To this end, we develop propositional proof systems under different measures of promises (that is, different \Lam) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: 1. Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is \eps\cd2^n, for any constant 0<\eps<1. 2. There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn2^{\delta n} (and the number of clauses is o(n3/2)o(n^{3/2})), for any constant 0<δ<10<\delta<1.Comment: 32 pages; a preliminary version appeared in the Proceedings of ICALP'0

    On the relative proof complexity of deep inference via atomic flows

    Get PDF
    We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show that these systems, as well as bounded-depth Frege systems, cannot polynomially simulate KS, by giving polynomial-size proofs of certain variants of the propositional pigeonhole principle in KS.Comment: 27 pages, 2 figures, full version of conference pape

    Complexity of Propositional Proofs Under a Promise

    Get PDF
    Abstract. We study – within the framework of propositional proof complexity – the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where “many ” stands for an explicitly specified function Λ in the number of variables n. To this end, we develop propositional proof systems under different measures of promises (that is, different Λ) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: (1) Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is ε·2n, for any constant 0 &lt; ε &lt; 1. (2) There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn (and the number of clauses is o(n3/2)), for any constan

    On transformations of constant depth propositional proofs

    Get PDF
    This paper studies the complexity of constant depth propositional proofs in the cedent and sequent calculus. We discuss the relationships between the size of tree-like proofs, the size of dag-like proofs, and the heights of proofs. The main result is to correct a proof construction in an earlier paper about transformations from proofs with polylogarithmic height and constantly many formulas per cedent

    A Complexity Gap for Tree-Resolution

    Get PDF
    It is shown that any sequence  psi_n of tautologies which expresses thevalidity of a fixed combinatorial principle either is "easy" i.e. has polynomialsize tree-resolution proofs or is "difficult" i.e requires exponentialsize tree-resolution proofs. It is shown that the class of tautologies whichare hard (for tree-resolution) is identical to the class of tautologies whichare based on combinatorial principles which are violated for infinite sets.Actually it is shown that the gap-phenomena is valid for tautologies basedon infinite mathematical theories (i.e. not just based on a single proposition).We clarify the link between translating combinatorial principles (ormore general statements from predicate logic) and the recent idea of using the symmetrical group to generate problems of propositional logic.Finally, we show that it is undecidable whether a sequence  psi_n (of thekind we consider) has polynomial size tree-resolution proofs or requiresexponential size tree-resolution proofs. Also we show that the degree ofthe polynomial in the polynomial size (in case it exists) is non-recursive,but semi-decidable.Keywords: Logical aspects of Complexity, Propositional proof complexity,Resolution proofs.
    • …
    corecore