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Abstract. We study—within the framework of propositional proof complexity—the prob-
lem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable
formula has many satisfying assignments, where “many” stands for an explicitly specified
function Λ in the number of variables n. To this end, we develop propositional proof systems
under different measures of promises (that is, different Λ) as extensions of resolution. This
is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth as-
signments defined by Boolean circuits. We then investigate the complexity of such systems,
obtaining an exponential separation in the average-case between resolution under different
size promises:

(1) Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when
the promise is ε·2n, for any constant 0 < ε < 1.

(2) There are no sub-exponential size resolution refutations for random 3CNF formulas,
when the promise is 2δn, for any constant 0 < δ < 1 (and the number of clauses is
O(n3/2−ε), for 0 < ε < 1

2 ).

“Goods Satisfactory or Money Refunded”
—The Eaton Promise

1. Introduction

Demonstrating unsatisfiability of propositional formulas is a fundamental problem in both
logic and complexity theory, as well as in hardware and software validation. Any standard
sound and complete propositional proof system has the ability to separate the set of unsat-
isfiable formulas in conjunctive normal form (CNF) from the set of CNF formulas having at
least one satisfying assignment, in the sense that every unsatisfiable CNF has a refutation
in the system, while no satisfiable CNF has one. Our goal is to develop and study, within
the framework of propositional proof complexity, systems that are “sound and complete”
in a relaxed sense: they can separate the set of unsatisfiable CNF formulas from the set of
CNF formulas having sufficiently many satisfying assignments (where the term “sufficiently
many” stands for an explicitly given function of the number of variables in the CNF). We call
such proof systems promise refutation systems, as they are complete and sound for the set
of CNF formulas promised to be either unsatisfiable or to have many satisfying assignments.

As the proof systems we develop here are intended for proving unsatisfiability of CNF
formulas (in other words, to refute them, which is the same as validating their negation),
throughout this paper we work solely with refutation systems, and speak about “refutations”
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and “proofs” interchangeably, always intending refutations, unless otherwise stated. In par-
ticular, we work with refutation systems that extend the widely studied resolution refutation
system.

Our first task is to introduce a natural model for promise propositional refutation systems.
This is accomplished by augmenting standard resolution (or any other propositional proof
system extending resolution) with an additional collection of axioms, the promise axioms.
Each refutation in a promise refutation system can make use of at most one promise axiom.
The promise axioms are meant to capture the idea that we can ignore or “discard” a certain
number of truth assignments from the space of all truth assignments, and still be able to
certify (due to the promise) whether or not the given CNF is unsatisfiable. The number of
assignments that a promise axiom is allowed to discard depends on the promise we are given,
and, specifically, it needs to be less than the number of assignments promised to satisfy a
given CNF (unless it is unsatisfiable).

Assuming we have a promise that a satisfiable CNF has more than Λ satisfying assign-
ments, we can discard up to Λ assignments. We refer to Λ as the promise. This way, the
refutation system is guaranteed not to contain refutations of CNF formulas having more than
Λ satisfying assignments, as even after discarding (at most Λ) assignments, we still have at
least one satisfying assignment left. On the other hand, any unsatisfiable CNF formula has
a refutation in the system, as resolution already has a refutation of it.

Our second task, besides introducing the model of promise refutation systems, is to in-
vestigate the basic properties of this model and in particular to determine its average-case
proof complexity with respect to different size of promises.

1.1. Background and Motivation. In propositional proof complexity theory, it is stan-
dard to consider an abstract or formal propositional proof system (usually called a Cook-
Reckhow proof system, following [CR79]) as a polynomial-time algorithm A that receives a
Boolean formula F (usually in CNF) and a string π over some finite alphabet (“the (pro-
posed) refutation” of F ), such that there exists a π with A(F, π) = 1 if and only if F is
unsatisfiable. (A string π for which A(F, π) = 1 is also called a witness for the unsatisfia-
bility of F .) Equipped with this abstract definition of propositional proof systems, showing
that for every abstract proof system there exists some family of formulas F for which there
is no polynomially-bounded family of proofs π of F is equivalent to showing NP 6= co-NP.

For this reason (among others), it is customary in proof complexity theory to concen-
trate on specific (sometimes provably weaker) proof systems for which proofs have a simple
structure. This makes the complexity analysis of such proof systems simpler. Prominent
examples of such systems are Frege systems and weaker subsystems of Frege, the most no-
table being the resolution refutation system [Rob65], which also plays an important rôle in
many automated theorem provers. In accordance with this, we shall be interested in the
present paper not with abstract proof systems (that is, not with finding general witnesses
for unsatisfiability, possibly under a promise), but rather with specific and more structured
proof systems, and specifically with refutation systems built up as extensions of resolution.

A natural relaxation of the problem of unsatisfiability certification is to require that, if a
CNF is satisfiable, then it actually has many satisfying assignments. As mentioned above, we
call the specific number of assignments (as a function of the number of variables n) required
to satisfy a satisfiable CNF formula, the “promise”. Accordingly, one can define an abstract
promise proof system in an analogous manner to the definition of an abstract proof system.
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It is thus natural to ask whether giving such a promise can help in obtaining shorter proofs
of unsatisfiability.

In the case of a big promise, that is, a constant fraction of the space of all truth assignments
(Λ = ε · 2n, for a constant 0 < ε < 1), there is already a deterministic polynomial-time
algorithm for any fixed natural number k that certifies the unsatisfiability of all unsatisfiable
kCNF formulas under the promise: the algorithm receives a kCNF that is either unsatisfiable
or has more than Λ satisfying assignments and answers whether the formula is unsatisfiable
(in case the formula is satisfiable the algorithm provides a satisfying assignment). See [Hir98,
Tre04] for such efficient algorithms.1 This trivially implies the existence of polynomial-size
witnesses for any unsatisfiable kCNF under the promise ε · 2n. But does resolution already
admit such short witnesses of unsatisfiability (that is, resolution refutations) under a big
promise?

In the case of a smaller promise, by which we mean Λ = 2δn for a constant 0 < δ < 1, it is
possible to efficiently transform any CNF over n variables to a new CNF with n′ = dn/(1−δ)e
variables, such that the original CNF is satisfiable if and only if the new CNF has at least 2δn

′

satisfying assignments.2 Thus, the worst-case complexity of certifying CNF unsatisfiability
under such a promise is polynomially equivalent to the worst-case complexity of certifying
CNF unsatisfiability without a promise. However, it is still possible that a promise of 2δn

might give some advantage (that is, a super-polynomial speedup over refutations without a
promise) in certifying the unsatisfiability of certain (but not all) CNF formulas; for instance,
in the average-case.3

Feige, Kim, and Ofek [FKO06] have shown that when the number of clauses is Ω(n7/5)
there exist polynomial-size witnesses to the unsatisfiability of 3CNF formulas in the average-
case. On the other hand, Beame, Karp, Pitassi, and Saks [BKPS02] and Ben-Sasson and
Wigderson [BSW01] showed that resolution does not provide sub-exponential refutations
for 3CNF formulas in the average-case when the number of clauses is at most n(3/2)−ε, for
any constant 0 < ε < 1/2.4 This shows that general witnessing of 3CNF unsatisfiability is
strictly stronger than resolution refutations. But is it possible that, under a promise of 2δn,
resolution can do better in the average-case?

There are two main motivations for studying propositional proofs under a given promise
and their complexity. The first is to answer the natural question whether CNF unsatisfiability
certification enjoys any advantage given a certain promise. As already mentioned, the answer
is positive when the promise is a constant fraction of all the truth assignments, and our results

1In the case the promise is Λ = 2n/poly(n), the algorithm in [Hir98] also gives a deterministic sub-
exponential time procedure for unsatisfiability certification of kCNF formulas (for a constant k).

2 This can be achieved simply by adding new (n′ − n) “dummy variables”. For instance, by adding the
clauses of a tautological CNF in these dummy variables to the original CNF. This way, if the original CNF
has at least one satisfying assignment then the new CNF has at least 2n

′−n ≥ 2δn
′

satisfying assignments.
3Note that if we add dummy variables to a 3CNF then we obtain an “atypical instance” of a 3CNF. Thus,

assuming we have polynomial-size witnesses of unsatisfiability of 3CNF formulas under a small promise in
the average-case (that is, the “typical case”), the reduction alone (that is, adding dummy variables) does
not automatically yield polynomial-size witnesses for 3CNF formulas in the average-case without a promise
as well.

4Beame et al. [BKPS02] showed such a lower bound for n(5/4)−ε number of clauses (for any constant
0 < ε < 1/4). Ben-Sasson and Wigderson [BSW01] introduced the size-width tradeoff that enables one
to prove an exponential lower bound for random 3CNF formulas with n(3/2)−ε number of clauses (for any
constant 0 < ε < 1/2), but the actual proof for this specific clause-number appears in [BS01].

3



imply that this phenomenon already occurs for resolution. For a small promise of 2δn, we can
show that, at least in the case of resolution refutations of most 3CNF formulas (of certain
clause-to-variable density), the answer is negative. In fact, we can show that the answer stays

negative even when the promise is bigger than 2δn, and specifically when Λ = 2n/2n
ξ

for some
constant 0 < ξ < 1. Overall, our results establish the first unsatisfiability certification model
in which a promise of a certain given size is known to help (that is, allow more efficient
certifications) in the average-case, while promises of smaller sizes do not help.

The second motivation is more intrinsic to proof complexity theory. It is a general goal
to develop natural frameworks for propositional proofs that are not sound in the strict
sense, but rather possess an approximate notion of soundness (like showing that certain
“approximations” give speed-ups). For this purpose, the proof systems we propose formalize
— in a natural way — the notion of separating unsatisfiable CNF formulas from those that
have many satisfying assignments. Also, the promise axioms we present allow for a natural
way of controlling the size of the promise.

1.2. Overview of the Model of Refutations under a Promise. We now explain (some-
what informally) what it means to “discard” assignments and how promise axioms formulate
the notion of discarding the correct number of truth assignments. Essentially, we say that
a truth assignment a is discarded by some Boolean formula if a falsifies the formula. More
formally, let X := {x1, ..., xn} be the set of underlying variables of a given CNF, called the
original variables. Let A be some CNF formula in the variables X, and assume that A
also contains variables not from X, called extension variables. Let a ∈ {0, 1}n be a truth
assignment for the X variables, and assume that there is no extension of a (assigning values
to the extension variables) that satisfies A. Thus, any assignment satisfying A must also
satisfy X 6≡ a (that is, A |= X 6≡ a), and so any (implicationally) complete proof system can
prove X 6≡ a from A, or, in the case of a refutation system, can refute X ≡ a, given A. In
this case, we say that the assignment a is discarded by A.

The promise axioms we present enjoy two main properties:

(1) They discard assignments from the space of possible assignments to the variables X.
(2) They express the fact that not too many assignments to the variables X are being

discarded (in a manner made precise).

The first property is achieved as follows: let C be any Boolean circuit with n output bits.
Then we can formulate a CNF formula A (using extension variables) expressing the statement
that the output of C is (equal to) the vector of variables X. This enables A to discard every
truth assignment to the variables of X that is outside the image of the Boolean map defined
by C, because, if an assignment a to X is not in the image of C, then no extension of a
can satisfy A—assuming the formulation of A is correct. (For technical reasons, the actual
definition is a bit different than what is described here; see Section 3.)

The second property is achieved as follows: assume we can make explicit the statement
that the domain of the map defined by the Boolean circuit C above is of size at least 2n−Λ.
(See Section 3 for more details.) Then, for the second property to hold, it is sufficient that
the axiom formulates the statement that the circuit C defines an injective map (and thus the
image of the map contains enough truth assignments), which can be done quite naturally.

Given a certain promise and its associated promise axiom, we call a refutation of resolution,
augmented with the promise axiom, a resolution refutation under the (given) promise.
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1.3. Results. We show that resolution refutations are already enough to efficiently separate
unsatisfiable 3CNF formulas from those 3CNF formulas with an arbitrarily small constant
fraction of satisfying assignments. In particular, in Section 4, we show the following:

Main Result 1: Let 0 < ε < 1 be a constant and let Λ = ε·2n be the given promise. Then
every unsatisfiable 3CNF with n variables has a polynomial-size (in n) resolution refutation
under the promise Λ.

In contrast to the case of a big promise, the results show that, at least for resolution, a
small promise of Λ = 2δn (for any constant 0 < δ < 1) does not give any advantage over
standard resolution (that is, resolution without the promise axioms) in most cases (that is,
in the average-case). Specifically, in Section 5 we show the following:

Main Result 2: Let 0 < δ < 1 be a constant and let Λ = 2δn be the given promise. Then,
there is an exponential lower bound on the size of resolution refutations of random 3CNF
formulas under the promise Λ, when the number of clauses is O(n3/2−ε), for 0 < ε < 1

2
.

This lower bound actually applies to a more general model of promise proofs. It remains
valid even if we allow (somehow) the promise proofs to discard arbitrarily chosen sets of
truth assignments (of size Λ = 2δn), and not necessarily those sets that are definable by
(small) Boolean circuits. In other words, the lower bound is semantic. Furthermore, the

lower bound applies even to a bigger promise of Λ = 2n−n
ξ
, for some constant 0 < ξ < 1.

It is important to note that these two main results show that the decision to discard
sets of truth assignments defined by Boolean circuits does not affect the results in any way,
and thus should not be regarded as a restriction of the model of promise refutations (at
least not for resolution). To see this, note that we could allow a promise refutation to
discard arbitrarily chosen sets of truth assignments (of the appropriate size determined by
the given promise), that is, sets of truth assignments that are not necessarily definable by
(small) Boolean circuits. However, although this modification strengthens the model, it is
not really necessary for the upper bound in Main Result 1, as this upper bound is already
valid when one discards sets of truth assignments by (small) Boolean circuits. On the other
hand, as mentioned above, the lower bound in Main Result 2 is already valid when one
allows a promise refutation to discard any arbitrarily chosen set of truth assignments (of the
appropriate size).

2. Preliminaries

2.1. Notations. For natural number m, we use [m] to denote the set {1, . . . ,m} of naturals.
Let A,B be two propositional formulas. We write A ≡ B as an abbreviation for (A →

B) ∧ (B → A). The notation A 6≡ B abbreviates ¬(A ≡ B). We say that A semantically
implies B, denoted by A |= B, iff every satisfying assignment to A also satisfies B.

A CNF formula over the variables x1, . . . , xn is defined as follows: a literal is a variable xi
or its negation ¬xi. A clause is a disjunction of literals. We treat a clause as a set of literals,
that is, we delete multiple occurrences of the same literal in a clause. A CNF formula is
a conjunction of clauses (sometimes treated also as a set of clauses, where the conjunction
between these clauses is implicit). A kCNF formula is a CNF with all clauses containing k
literals each.
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The width of a clause D is the number of literals in it, denoted |D|. The size of a CNF
formula K is the total number of clauses in it, denoted |K|. The width of a CNF formula
K is the maximum width of a clause in K.

We denote by K ′ ⊆ K that K ′ is a sub-collection of clauses from K.

2.2. Resolution Refutation Systems. Resolution is a complete and sound proof system
for unsatisfiable CNF formulas.

Let C and D be two clauses containing neither xi nor ¬xi. The resolution rule allows one
to derive C ∨D from C ∨ xi and D ∨ ¬xi. The clause C ∨D is called the resolvent of the
clauses C ∨ xi and D∨¬xi on the variable xi, and we also say that C ∨ xi and D∨¬xi were
resolved over xi.

The weakening rule allows one to derive the clause C ∨D from the clause C, for any two
clauses C,D.

Definition 2.1 (Resolution). A resolution proof of the clause D from a CNF formula K is
a sequence of clauses D1, D2, . . . , D` , such that: (1) each clause Dj is either a clause of K
or a resolvent of two previous clauses in the sequence or derived by the weakening rule from
a previous clause in the sequence; (2) the last clause D` = D. The size of a resolution proof
is the total number of clauses in it. The width of a resolution proof is the maximal width
of a clause in it. A resolution refutation of a CNF formula K is a resolution proof of the
empty clause 2 from K. (The empty clause stands for false; that is, the empty clause has
no satisfying assignments.)

Let K be an unsatisfiable CNF formula. The resolution refutation size of K is the minimal
size of a resolution refutation of K and is denoted S(K). Similarly, the resolution refutation
width of K is the minimal width of a resolution refutation of K and is denoted w(K). If K
has a polynomial-size resolution refutation we say that resolution can efficiently certify the
unsatisfiability of K. Similarly, if the clause D has a polynomial-size resolution proof from
K we say that D is efficiently provable from K.

2.3. Size-Width Tradeoffs. We recall now the approach for proving size lower bounds on
resolution refutations developed by Ben-Sasson and Wigderson [BSW01]. The basic idea is
that a lower bound on the resolution refutation width of a CNF formula K implies a lower
bound on the resolution refutation size of K:

Theorem 1 ([BSW01]). Let K be a CNF formula of width r, then

S(K) = exp

(
Ω

(
(w(K)− r)2

n

))
.

2.4. Boolean Circuit Encoding. The promise axioms we introduce use Boolean circuits
to define the sets of assignments to be discarded (see Section 3). Therefore, as resolution
operates only with clauses, we need to encode Boolean circuits as collections of clauses (CNF
formulas). We assume that all Boolean circuits use only three gates: ∨,∧,¬ (though this is
not necessary) where ∨ (denoting or) and ∧ (denoting and) have fan-in 2 and ¬ (denoting
not) has fan-in 1. Let C : {0, 1}m → {0, 1}n be a Boolean circuit with m input bits and
n output bits. Let W = {w1, . . . , wm} be the m input variables of C and let X denote the
n variables {x1, . . . , xn}. We consider the n output bits of C as the outputs of n distinct
circuits C1(W ), . . . , Cn(W ) in the W variables, and we write C(W ) ≡ X to mean that X
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equals the output of C(W ) (that is, C1(W ) ≡ x1 ∧ · · · ∧ Cn(W ) ≡ xn). This notation can
be extended in a similar manner to C(W1) ≡ C ′(W2) and C(W1) 6≡ C ′(W2).

There exists a CNF formula F (in both the W variables and new extension variables)
that encodes the circuit C. This means that there are n new extension variables (among
other extension variables) y1, . . . , yn in F , such that for all assignments a (where a is an
assignment to all the variables in F , including all extension variables): if F (a) = 1 then
C(w1(a), . . . , wm(a)) = (y1(a), . . . , yn(a)), where we denote by wi(a) the truth value of wi
under the assignment a. In other words, F expresses the fact that y1, . . . , yn are the output
bits of C. Moreover, if C is of size polynomial in n then F is also of size polynomial in n.
We denote by ‖C(W )‖ the CNF formula F that encodes C(W ).

For most purposes, we will not need an explicit description of how the encoding of Boolean
circuits as CNF formulas is done through ‖C(W )‖. Nevertheless, in Section 4 we need to
ensure that resolution can efficiently prove several basic facts about the encoded circuits. For
this reason, and for the sake of concreteness of the promise axioms (Definitions 3.3 and 3.4)
we provide the precise definition of the encoding in the Appendix (Section A.1), in addition
to proving some of the encoding’s basic (proof theoretical) properties.

3. Promise Proof Systems

In this section we define precisely the model of refutations under a promise. We work with
the resolution refutation system as our underlying system and augment it with a new set of
axioms that we call the promise axioms. We call this proof system promise resolution. The
promise axioms are meant to express the fact that we can discard a certain number of truth
assignments from the space of all truth assignments and still be able to certify (due to the
promise) whether the input CNF is unsatisfiable or not. Each promise resolution refutation
can use at most one promise axiom.

From now on, throughout the paper, unless otherwise stated, we shall assume that the
underlying variables of the CNF formulas that are meant to be refuted are taken from the
set X := {x1, . . . , xn}. The X variables are called the original variables. Any other variable
that appears in a (promise resolution) refutation is called an extension variable.

Definition 3.1 (CNF formulas under a promise). Let Λ be some function of n (the number
of X variables) such that 0 ≤ Λ(n) ≤ 2n. The function Λ is called the promise. The set of
CNF formulas under the promise Λ consists of all CNF formulas in the X variables that are
either unsatisfiable or have more then Λ(n) satisfying assignments (for n = |X|).

The refutation systems we build are sound and complete for the set of CNF formulas
under a (given) promise. That is, every unsatisfiable CNF formula has a refutation in the
system (this corresponds to completeness), while no CNF having n variables and more than
Λ(n) satisfying assignments has a refutation in it (this corresponds to soundness under the
promise). Soundness (under the promise) is achieved by requiring that resolution should
prove the fact that we discard the right number of assignments.

Definition 3.2 (Assignment discarding). Let A be a CNF in the X variables that can
contain (but does not necessarily contain) extension variables (that is, variables not from
X). We say that an assignment to the X variables a is discarded by A if there is no extension
of a (to the extension variables in A) that satisfies A.
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3.1. Promise Axioms.

3.1.1. Big promise. We first concentrate on a promise of a constant fraction of assignments
(for a smaller promise the axiom is similar; see below).

Let the promise (Definition 3.1) be Λ = ε · 2n, for a constant 0 < ε < 1 (we fix this Λ
throughout this subsection), and let r = dlog(1/ε)e and t = 2r − 1. Let C be a sequence
of Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i) has n− r input bits and n
output bits and computes the Boolean map fi : {0, 1}n−r → {0, 1}n. Assume further that
the fi’s are all injective maps and that the images of all these maps are pairwise disjoint.
Denote by Im(fi) the image of the map fi. We call the union ∪ti=1Im(fi) the image of C and
denote it by Im(C). By definition 2n−r = 2n−dlog(1/ε)e, and since

ε · 2n−1 = 2n−1−log(1/ε) ≤ 2n−dlog(1/ε)e ≤ 2n−log(1/ε) = ε · 2n ,

we have
ε

2
· 2n ≤ 2n−r ≤ ε · 2n .

By the injectivity and pairwise disjointness of the images of the fi’s we have |Im(C)| =
t · 2n−r = (2r − 1) · 2n−r = 2n − 2n−r, and so

2n − ε · 2n ≤ |Im(C)| ≤ 2n − ε

2
· 2n . (1)

Therefore, we can treat Im(C) as the set of all possible truth assignments for the original
variables X, without losing soundness : if K is unsatisfiable then there is no assignment in
Im(C) that satisfies K; and if K is satisfiable then according to the promise it has more
than Λ satisfying assignments, which means that there is at least one assignment in Im(C)
that satisfies K. This idea is formulated as a propositional formula as follows:

Definition 3.3 (Promise Axiom for Λ = ε ·2n). Let the promise be Λ = ε ·2n, for a constant
0 < ε < 1, and let r = dlog(1/ε)e and t = 2r − 1. Let C be a sequence of Boolean circuits
C := (C(1), . . . , C(t)). Assume that each C(i) has n−r input bits and n output bits and let W1

and W2 be two disjoint sets of n− r extension variables each. The promise axiom PRM C,Λ

is the CNF encoding of the following Boolean formula (the encoding of this formula as a
CNF is shown explicitly in Section A.1, and uses encoding of Boolean circuits as illustrated
in Section 2.4; the latter is defined explicitly in Definition A.1):(

t∧
i=1

(
C(i)(W1) ≡ C(i)(W2)→ W1 ≡ W2

)
∧

∧
1≤i<j≤t

C(i)(W1) 6≡ C(j)(W2)

)
−→

t∨
i=1

C(i)(W1) ≡ X.

The promise axiom PRMC,Λ expresses the fact that if each circuit in C computes an
injective map (this is formulated as ∧ti=1(C(i)(W1) ≡ C(i)(W2) → W1 ≡ W2)), and if the
images of the maps computed by each pair of circuits in C are disjoint (this is formulated
as ∧1≤i<j≤tC

(i)(W1) 6≡ C(j)(W2)), then we can assume that the assignments to the original
variables X are taken from the image of C (this is formulated as ∨ti=1C

(i)(W1) ≡ X). The
fact that the image of C is of size at least 2n − Λ is expressed (due to Equation (1)) by the
number of input bits (that is, n − r) of each circuit in C and the number of circuits in C
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(that is, t). Also note that the promise axiom is of polynomial-size as long as the circuits in
C are (since 1/ε is a constant).

The following claim shows that the promise axioms are sound with respect to the promise
Λ, in the sense that they do not discard too many truth assignments:

Proposition 2. The promise axiom PRMC,Λ discards at most Λ truth assignments. That is,
there are at most Λ distinct assignments a to the X variables such that PRMC,Λ |= X 6≡ a.

Proof. Assume that some Boolean map computed by some circuit in C is not injective.
Then any assignment to the X variables has an extension ρ (to the extension variables in
the promise axiom) that falsifies the premise of the main implication in PRMC,Λ and thus ρ
satisfies PRMC,Λ. Therefore no assignments to X are discarded.

Similarly, assume that the images of some pair of maps computed by two circuits in C are
not disjoint. Then, again, any assignment to the X variables has an extension that satisfies
PRMC,Λ, and so no assignments to X are discarded.

Assume that all the Boolean maps computed by circuits in C are injective and have
pairwise disjoint images. Then every assignment satisfies the premise of the main implication
in the promise axiom PRMC,Λ. Therefore, it suffices to show that the consequence of the
main implication of the axiom (that is, ∨ti=1C

(i)(W1) ≡ X ) discards at most Λ assignments
to the X variables. By definition (of the encoding of the circuits) for all assignments a to
the X variables that are in Im(C) there is an extension of a that satisfies ∨ti=1C

(i)(W1) ≡ X.
Now, all the circuits C(i) compute injective maps with pairwise disjoint images, and thus
by Equation (1) there are at least 2n − Λ distinct elements (that is, assignments) in Im(C).
Hence, at least 2n − Λ assignments to the X variables are not discarded. �

3.1.2. Smaller promise. Here we formulate promise axioms for promises smaller than ε · 2n.
Specifically, we work with a promise of Λ = 2δn for a constant 0 < δ < 1. For such a promise,
the promise axiom is similar to Definition 3.3, except that the number of input bits of each
circuit in C needs to be modified accordingly. (We use the same terminology as that used
above for the Big Promise.)

Definition 3.4 (Promise Axiom for Λ = 2δn). Let the promise be Λ = 2δn, for a constant 1 <
δ < 1, and let t = d(1− δ)ne. Let C be a sequence of Boolean circuits C := (C(1), . . . , C(t)).
Assume that for each 1 ≤ i ≤ t the circuit C(i) has n− i input bits and n output bits. Let
W1, . . . ,Wt and W ′

1, . . . ,W
′
t be 2t disjoint sets of extension variables5, where for all 1 ≤ i ≤ t,

Wi,W
′
i consist of n − i variables each. The promise axiom PRM C,Λ is a CNF encoding of

the following Boolean formula:(
t∧
i=1

(
C(i)(Wi) ≡ C(i)(W ′

i )→ Wi ≡ W ′
i

)
∧

∧
1≤i<j≤t

C(i)(Wi) 6≡ C(j)(Wj)

)
−→

t∨
i=1

C(i)(Wi) ≡ X.

Note that the promise axiom is of polynomial size as long as the circuits in C are (since
t ≤ n).

Also note that the proof of Proposition 2 did not use the parameters r and t (which
determine the number of input bits in the circuits in C and the number of circuits in C,

5We have not been very economical in adding extension variables here; but this is not essential.
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respectively) but only the size |Im(C)|. Thus, the same claim holds also for the promise
axiom in Definition 3.4, which means that this promise axiom discards at most 2n− |Im(C)|
truth assignments, for some sequence of circuits in C that compute injective maps with
pairwise disjoint images. Therefore, we need to verify that |Im(C)| ≥ 2n − Λ, for all C that
consists of circuits computing injective maps with pairwise disjoint images.

Notice that for all 1 ≤ i ≤ t the circuit C(i) computes a Boolean map, denoted fi, such
that fi : {0, 1}n−i → {0, 1}n. Assume that all the fi’s are injective and that the images of
each pair of functions fi, fj, for 1 ≤ i 6= j ≤ t, are disjoint. Then, we have:

|Im(C)| =

(
1

2
+

1

22
+

1

23
+ · · ·+ 1

2t

)
· 2n =

(
1− 1

2t

)
· 2n (2)

= 2n − 2n−d(1−δ)ne ≥ 2n − 2δn = 2n − Λ

Also note that |Im(C)| ≤ 2n − 2δn−1 and so if the circuit in C are injective with pairwise
disjoint images then PRMC,Λ discards at least 2δn/2 truth assignments.

3.2. Promise Resolution.

Definition 3.5 (Promise resolution). Let Λ be the promise (Definition 3.1) and let K be a
CNF in the X variables. A promise resolution (under the promise Λ) proof of the clause D
from a CNF formula K is a sequence of clauses D1, D2, . . . , D` such that:

(1) Each clause Dj is either a clause of K or a clause of a promise axiom PRM C,Λ (where
PRM C,Λ is either a big or a smaller promise axiom as defined in Definitions 3.3
and 3.4 and C is an arbitrary sequence of circuits with the prescribed input and
output number of bits) or a resolvent of two previous clauses in the sequence;

(2) The sequence contains (the clauses of) at most one promise axiom;
(3) The last clause D` = D .

The size, width and refutations of promise resolution is defined the same as in resolution.

Note that promise resolution is a Cook-Reckhow proof system (see the first paragraph in
Section 1.1 for a definition): it is possible to efficiently verify whether a given CNF is an
instance of the promise axiom, and hence to verify whether a sequence of clauses constitute
a legitimate promise refutation. This can be done by “decoding” the CNF that encodes the
promise axiom PRMC,Λ and then checking that each circuit in C has the right number of
input and output bits (we discuss this issue in some more detail in the appendix).

Proposition 3. Let Λ be the promise (where Λ is either ε·2n or 2δn, for 0 < ε, δ < 1). Then
promise resolution under the promise Λ is a sound and complete proof system for the set of
CNF formulas under the promise Λ. In other words, every unsatisfiable CNF has a promise
resolution refutation and every CNF that has more than Λ satisfying assignments does not
have promise resolution refutations.

Proof. Completeness stems from completeness of resolution. Soundness under the promise
Λ stems from Proposition 2 (which, by the notes after Definition 3.4, holds for both the big
and the smaller promise axioms). �
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3.3. Discussion. Let K be an unsatisfiable CNF formula in n variables, PRMC,Λ a promise
axiom (where the circuits in C all compute injective and pairwise disjoint Boolean maps)
and let Im(C) ⊆ {0, 1}n be such that |Im(C)| ≥ 2n − Λ. Then, intuitively, one can think of
a promise resolution refutation of K that makes use of the axiom PRMC,Λ as containing two
parts (in what follows we say that resolution proves a certain statement or formula, meaning
that resolution refutes the negation of the formulas):

(i) A resolution proof that |Im(C)| ≥ 2n − Λ. This corresponds to proving in resolution
the (CNF encoding of the) premise of the main implication in the promise axioms.

(ii) A resolution “refutation” of K where the space of truth assignments is restricted
to Im(C). This corresponds to the refutation of the CNF consisting of the clauses
of both K and the clauses of the (CNF encoding of the) conclusion of the main
implication in the promise axioms: ∨ti=1C

(i)(W ) ≡ X.

Note that if we want to consider promise resolution as having only part (i), then we
can modify (actually, strengthen) the promise axiom to consists of only ∨ti=1C

(i)(W ) ≡ X.
However, this choice means losing the soundness of the proof system under the promise (that
is, the soundness with respect to CNF formulas under a promise as defined in Definition 3.1),
since we do not have any guarantee that the circuit C discards at most Λ assignments (and
so CNF formulas with more than Λ satisfying assignments might have refutations in such a
system).

It is possible to use any number of axioms of the form C(i)(W ) ≡ X, as long as resolution
can prove both the injectivity of each of the maps computed by the circuits C(i) introduced
and the pairwise disjointness of these maps (as formulated by a propositional formula similar
to the formulation in the promise axioms), and provided that the circuits C(i) have number
of input bits that induce the right size of domains (that is, that the total size of their domains
is at least 2n − Λ).

It is also possible to modify the promise axioms to suit any chosen size of promise Λ
(possibly, only an approximation of Λ). This can be achieved by choosing a sequence of
circuits with the appropriate size of domain (explicitly expressed by the number of input
bits in each circuit in the sequence, and the total number of circuits).

Some comments about the formulation of the promise axioms are in order.

Comment 1. Note that we could not use only a single circuit C in the promise axioms (in
contrast to a sequence of circuits), because that way we would not have the possibility of
controlling the size of the domain of C and efficiently verifying that this size is the correct
one inside resolution. To see this, notice that if the number of input variables to C is n (the
number of original variables) and the map computed by C is (provably) injective then C
does not discard any assignment. If, on the other hand, the number of input variables to C
is less than n, then C discards at least half the truth assignments, which might be too many.

Comment 2. Also note that in order to discard assignments we cannot use a seemingly
more natural axiom of the form C(W ) 6≡ X for some circuit C (with domain of size Λ). The
reason is that this would not discard assignments in the image of C: it is not necessarily
true that C(W ) 6≡ X |= X 6≡ b for all b ∈ {0, 1}n such that b ∈ Im(C) (notice that even for
such a b there might be some assignment a for which C(a) 6≡ b).

On the other hand, Jan Kraj́ıček [Kra07] observed that it is possible to discard assignments
by an axiom of the form C(W ) 6≡ X, where C is a fixed circuit with domain of size at most
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Λ (that is, it has k < n number of input bits, where 2k ≤ Λ), and where the rule of using this
axiom is that we can introduce any instance of C(W ) 6≡ X where all the variables in W are
substituted by constants 0, 1 and variables from X. This choice of axioms simplifies somewhat
the actual formulation of the promise axioms, as it does not require that C computes an
injective Boolean map. However, a possible drawback of such a formulation is the following:
it is possible that for certain circuits (of the appropriate number of input and output bits)
we shall need to use exponentially many such axiom instances to discard all (or most of)
the assignments pertaining to the image of the circuits. In contrast to this, our formulation
of the promise axioms above enables a single instance of a promise axiom using any circuit
(more correctly, a sequence of circuits of the appropriate number of input and output bits)
to discard all the assignments outside the image of the circuit.

4. Big Promise: Upper Bound

In this section, we show that under the promise Λ = ε · 2n , for any constant 0 < ε < 1,
resolution can efficiently certify the unsatisfiability of all unsatisfiable 3CNF formulas. The
proof method resembles the algorithm presented by Trevisan [Tre04]. For a constant k, this
algorithm receives a kCNF formula K and deterministically approximates the fraction of
satisfying assignments of K within an additive error of ε. The running time of the algorithm
is linear in the size of K and polynomial in 1/ε.

The idea behind the refutations is based on the following observation: given an unsatisfi-
able 3CNF formula K and a constant c, either there are 3(c− 1) variables that hit6 all the
clauses in K or there are at least c clauses in K over 3c distinct variables denoted by K ′ (that
is, each variable in K ′ appears only once). In the first case, we can consider all the possible
truth assignments to the 3c variables inside resolution: if K is unsatisfiable then any such
truth assignment yields an unsatisfiable 2CNF formula, which can be efficiently refuted in
resolution (cf. [Coo71]). In the second case, we can make use of a promise axiom to efficiently
refute K ′ (this set of clauses has less then Λ satisfying assignments, for sufficiently large c).
Specifically, in the second case, we construct a sequence of small circuits C for which any
satisfying assignment for K ′ is provably in resolution (with polynomial-size proofs) outside
the image of C.

The following is the main result of this section:

Theorem 4. Let 0 < ε < 1 be a constant and let Λ = ε · 2n be the given promise. Then
every unsatisfiable 3CNF with n variables has a polynomial-size (in n) resolution refutation
under the promise Λ.

The proof of this theorem is given as a sequence of lemmas in the rest of this section.

Lemma 5. Let K be a 3CNF formula. For every integer c one of the following holds:

(i) There is a set of at most 3(c− 1) variables that hit all the clauses in K.
(ii) There is a sub-collection of clauses from K, denoted K ′, with at least c clauses and

where each variable appears only once in K ′.

6A set of variables S that “hit all the clauses in a CNF formula K” is a set of variables for which every
clause in K contains some

variable from S.
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Proof. Assume that c > 2 (other wise the lemma is trivial). Suppose that there is no set
of at most 3(c − 1) variables that hit all the clauses in K and let D1 be some clause in K.
Then, there ought to be a clause D2 from K that contains 3 variables that are not already in
D1 (or otherwise, the 3 (distinct) variables in D1 hit all the clauses in K, which contradicts
the assumption). In a similar manner we can continue to add new clauses from K until we
reach a set of c clauses D1, D2, . . . , Dc, where no variable appears more than once in this set
of clauses. �

For the rest of this section, we fix the value of c to be the following constant (independent
of n):

c = dlog7/8(ε/2)e . (3)

We show that for any unsatisfiable 3CNF K with n variables, in each of the two cases in
Lemma 5 (for c as in (3)), there is a polynomial-size refutation (in n) of K under the promise
ε · 2n.

Case (i) in Lemma 5 holds. The following lemma suffices to efficiently refute the 3CNF
K in this case:

Lemma 6. Let K be an unsatisfiable 3CNF formula in the X variables (where n = |X|).
Assume that there is a set S ⊆ X of at most 3(c− 1) variables that hit all the clauses in K.
Then, there is a polynomial-size (in n) resolution refutation of K.

Proof sketch: We simply run through all truth assignments to the variables in S (since
|S| ≤ 3(c − 1), there are only constant number of such truth assignments). Under each
truth assignment to the S variables, K becomes an unsatisfiable 2CNF. It is known that any
unsatisfiable 2CNF has a polynomial-size resolution refutation (cf. [Coo71]). Thus, we can
refute K with a polynomial-size resolution refutation. 2

Case (ii) in Lemma 5 holds. The two lemmas that follow suffice to conclude that the
3CNF K has a polynomial-size (in n) resolution refutation under the promise (in this case).

Lemma 7. Let K ′ be the 3CNF from case (ii) in Lemma 5, with variables x1, . . . , x3c. Then,

(a) K ′ has less than an ε/2 fraction of satisfying assignments; and
(b) K ′ has a constant-size (independent of n) resolution refutation under the promise

ε · 23c (that is, there exist a promise axiom A, such that A ∪K ′ has a constant-size
resolution refutation).7

Proof. (a) Observe that the fraction of distinct assignments that satisfy K ′ is equal to the
probability (over all truth assignments to K ′) that a uniformly chosen random truth assign-
ment satisfies all the c clauses in K ′, which is equal to(

7

8

)c
=

(
7

8

)dlog7/8(ε/2)e

≤
(

7

8

)log7/8(ε/2)

= ε/2 . (4)

(b) By (a), K ′ has at most ε
2
· 23c satisfying assignment. By Equation (1) in Section 3.1.1,

there exists a sequence of (injective and with pairwise disjoint images) circuits C such that

7We abuse the terminology here. We defined a refutation of a CNF under a promise only for unsatisfiable
CNFs, though here K ′ is satisfiable. The point here is that there exits an appropriate promise axiom that
can discard all the satisfying assignments of K ′, and so there is a refutation of K ′ given the axiom.
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the promise axiom PRMC, ε·23c discards all the ε
2
· 23c satisfying truth assignments of K ′.

Thus, (the CNF consisting of the clauses of both) K ′ (which contains only the variables
x1, . . . , x3c) and PRMC, ε·23c has resolution refutation. Since c is a constant (independent of
n), this refutation is also of constant size. �

We now show that the refutation of K ′ from Lemma 7 can be extended with only a
polynomial (in n) increase in size to a refutation of the same K ′ under the promise ε · 2n,
that is, when the set of formal variables in the refutation is extended from {x1, . . . , x3c} to
{x1, . . . , xn} (for n > 3c) (there are also extension variables from the promise axioms). This
will conclude the proof of Theorem 4.

Lemma 8. Let K ′ be the 3CNF from case (ii) in Lemma 5, with variables x1, . . . , x3c. Then,
for any n ≥ 3c, K ′ has a resolution refutation of polynomial-size (in n) under the promise
ε · 2n, where the formal variables in the refutation are x1, . . . , xn (as well as the extended
variables in the promise axioms).8

Proof. By Lemma 7 Item (b), there exists a promise axiom PRMC, ε·23c consisting of a se-
quence of injective and with pairwise disjoint images circuits C such that PRMC, ε·23c discards
all the (at most ε

2
· 23c) satisfying truth assignments of K ′. Thus, letting r = dlog(1/ε)e

and t = 2r−1, we have that C = (C(1), . . . , C(t)) such that C(i)(w1, . . . , w3c−r) : {0, 1}3c−r →
{0, 1}3c, for all i ∈ [t]. Let W 0 = {w1, . . . , w3c−r}. We write C as follows:

C
(1)
1 (W 0), . . . , C

(1)
3c (W 0)

...

C
(t)
1 (W 0), . . . , C

(t)
3c (W 0) ,

where C
(i)
j denotes the jth output of the ith circuits C(i) in C. Let B ⊆ {0, 1}3c be the set

of truth assignments that falsify K ′. By assumption that the circuits in C discard all the
satisfying truth assignments in K ′, Im(C) ⊆ B.

We now construct a sequence of circuits C ′ for the promise axiom PRMC′, ε·2n that discard
all the satisfying truth assignments of K ′ considered as a 3CNF over the variables x1, . . . , xn.
The sequence C ′ consists of the following circuits:

C
(1)
1 (W 0), . . . , C

(1)
3c (W 0),

C
(1)
3c+1(w3c−r+1) = w3c−r+1, . . . , C

(1)
n (wn−r) = wn−r

...
...

C
(t)
1 (W 0), . . . , C

(t)
3c (W 0),

C
(t)
3c+1(w3c−r+1) = w3c−r+1, . . . , C

(t)
n (wn−r) = wn−r,

(5)

where C
(i)
j (wk) = wk denotes the fact that C

(i)
j outputs the (input) variable wk (in which

case we assume that the circuit C
(i)
j consists of only a single gate: the variable wk).

Note that the circuits in C ′ indeed compute t injective Boolean maps (each with domain
{0, 1}n−r and range {0, 1}n) that have pairwise disjoint images and that C ′ discards all the
satisfying truth assignments of K ′. Disjointness of images stems from the fact that the
original sequence of circuits C all have disjoint images, and injectivity stems from the fact

8Again, as in Lemma 7, we abuse the terminology of “a refutation under a promise” here.
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that the original sequence of circuits C are all injective and that for each 1 ≤ i ≤ t, the

Boolean map computed by (C
(i)
3c+1, . . . , C

(i)
n ) is exactly the identity map id : {0, 1}n−3c →

{0, 1}n−3c, over the variables w3c−r+1, . . . , wn−r.
To complete the proof of Lemma 8, we need to show that there are resolution proofs of

polynomial-size in n for the formulas expressing that the circuits in C ′ all compute injective
Boolean maps and have pairwise disjoint images (as well as to efficiently refute K ′ when
assuming that X can take only assignments from the image of C ′). This is done in the
following claim:

Claim 1. Let C ′ be the sequence of circuits as devised above, and let PRMC′, ε·2n be the
corresponding promise axiom. Then, there is a resolution refutation of K ′∪PRMC′, ε·2n with
size polynomial in n.

The proof of this claim follows by considering the encoding of the promise axiom
PRMC′, ε·2n via the encoding scheme in the Appendix (Section A.1) and showing how reso-
lution can prove the empty clause from K ′ and this axiom. Here we shall sketch the proof
in a less formal manner; more details can be found in the appendix.

Proof sketch of Claim 1: First we need resolution to prove (formally, to refute its negation;
that is, derive the empty clause) from the (encoding of the) premise of the main implication
in PRMC′,ε·2n . This breaks into two refutations corresponding to the two conjuncts in the

premise of the promise axiom PRMC′, ε·2n :
∧t
i=1

(
C(i)(W1) ≡ C(i)(W2)→ W1 ≡ W2

)
and∧

1≤i<j≤tC
(i)(W1) 6≡ C(j)(W2).

For the first part, we need to refute the statement expressing that C ′ contains some circuit
C(i) that computes a non-injective Boolean map. This can be efficiently refuted in resolution:
assume (inside resolution) that C(i)(W 1) ≡ C(i)(W 2) , for some 1 ≤ i ≤ t, then by (5) we can
prove (inside resolution; that is, refute its negation) with a polynomial-size in n refutation

that for all d− r+ 1 ≤ j ≤ n− r it happens that w
(1)
j ≡ w

(2)
j (where w

(1)
j is the jth variable

in W 1, and w
(2)
j is the jth variable in W 2) (see details in the appendix, and in particular

Section A.1.3). Thus, it remains to refute the statement that for some 1 ≤ j ≤ d − r it

happens that w
(1)
j 6≡ w

(2)
j . This is indeed a contradiction by definition of the circuits in the

(original) C (as they compute injective maps). Since this statement is formulated by the
circuits in C, then by assumption such a contradiction can be refuted with a constant-size
(independent of n) resolution refutation.

The disjointness of the images of the (maps computed by the) circuits in C ′ is also effi-
ciently provable inside resolution in a similar manner, and we omit the details.

Therefore, we arrive (inside resolution) at the consequence of the main implication in the
promise axiom: ∨ti=1C

(i)(W 1) ≡ X. It remains to refute the conjunction of K ′ and

t∨
i=1

C(i)(W 1) ≡ X . (6)

The 3CNF T contains only the variables x1, . . . , x3c. Consider the part of the (CNF encoding)
of (6) that consists of (the encoding of) the circuits from C ′ that output to the variables

x1, . . . , x3c. This encoding consists of only the (encodings of) circuits C
(i)
1 , . . . , C

(i)
3c for all

1 ≤ i ≤ t, which are precisely the sequence of circuits C (from the original promise axiom
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PRMC,ε·23c). Denote by Z this encoding. By Lemma 7 Item (b), there is a constant-size
(independent of n) resolution refutation of K ′ and Z, and we are done. Claim

This concludes the proof of Lemma 8. �

Comment 3. We have defined our promise proof systems to be sound and complete for the
set of CNF formulas under the promise (Definition 3.1). However, it is interesting to look
at what happens if we consider “promise proofs” of formulas that are satisfiable but that
have less than Λ (the promise) many satisfying truth assignments. Here we face a difficulty,
since we are not always able to discard the precise number of assignments we would like to
discard. That is, using the big promise axiom we can discard ε · 2n assignments only for ε a
power of 1

2
(in other words, we always discard the biggest power of 2 that does not exceed

the promise). For example, if our promise is 1
3
· 2n then the corresponding promise axiom

discards only 1
4
· 2n assignments. This means that we cannot treat our promise proof system

as a sound proof system for all formulas (that is, even those that are satisfiable) having
at most Λ satisfying assignments: if the promise ε · 2n is not a power of 2, then we must
discard less than ε · 2n assignments, which means for instance that formulas with precisely
ε · 2n satisfying assignments will not be refutable even when having the promise axiom as an
assumption in the refutation (since the conjunction of the promise axiom and the formula
would clearly still be satisfiable).

It is also worth noting that there is another difficulty with refuting satisfiable formulas
under a promise. The difficulty is that the polynomial-size refutation demonstrated above
(in the proof of Theorem 4) for (unsatisfiable) 3CNF formulas under a big promise does not
constitute a refutation when the 3CNF is satisfiable and has less than the promise satisfying
assignments (even when the promise is a power of 2).9

5. Smaller Promise: Lower Bound

In this section, we prove an exponential lower bound on the size of resolution refutations
under the promise 2δn, for any constant 0 ≤ δ ≤ 1. The lower bound applies to random 3CNF
formulas with O(n3/2−ε) number of clauses, for 0 < ε < 1

2
(where n is the number of variables

in the 3CNF). This lower bound matches the known lower bound on resolution refutation-
size for random 3CNF formula (without any promise). Basically, the proof strategy of our
lower bound is similar to that of Ben-Sasson and Wigderson [BSW01], except that we need
to take care that every step in the proof works with the augmented (smaller) promise axiom.

The lower bound is somewhat stronger than described above in two respects. First, we
show that restricting the set of all truth assignments 2n to any smaller set (that is, not just
those sets defined by small circuits) that consists of 2n − 2δn assignments (for any constant
0 ≤ δ ≤ 1), does not give resolution any advantage in the average-case. One can think

9The reason for this is as follows. Assuming we are given a promise ε · 2n which is a power of 2 and we
are asked to refute in resolution under this promise a satisfiable CNF K having at most ε · 2n satisfying
assignments. Then, we cannot follow our refutation described in the proof of Theorem 4. For, assume that
there is a set of at most 3(c − 1) variables that hit all the clauses in K (as in case (i) in Lemma 5). Then
we wish to continue in a similar manner as shown above in the proof of Lemma 6: that is, consider each
of the constant number of possible assignments to the set of hitting variables, which then reduces K to a
2CNF. But now the problem is that when reducing K to a 2CNF we might still get a satisfiable formula (in
contrast to the case in Lemma 6, where we assume from the start that K is unsatisfiable); thus, we cannot
simply refute the resulted 2CNF using the known short refutations for 2CNFs as in [Coo71].
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of such a restriction as modifying the semantic implication relation |= to take into account
only assignments from some prescribed set of assignments S, such that |S| = 2n − 2δn (in
other words, for two formulas A,B, we have that A |= B under the restriction to S iff any
truth assignment from S that satisfies A also satisfies B). Formally, this means that the
lower bound does not use the fact that the restricted domain of size 2n − 2δn is defined by
a sequence C of polynomial-size circuits (nor the fact that the circuits in C ought to have
polynomial-size resolution proofs of their injectivity and pairwise disjointness).

Second, the lower bound rate can be improved as noted in Remark 1 below.
The following defines the usual average-case setting of 3CNF formulas (there are other

definitions, that are essentially similar):

Definition 5.1 (Random 3CNF formulas). For a 3CNF formula K with n variables X and
β ·n clauses, we say that β is the density of K. A random 3CNF formula on n variables and
density β is defined by picking β ·n clauses from the set of all 23 ·

(
n
3

)
clauses, independently

and indistinguishably distributed, with repetitions.

We say that an event (usually a property of a 3CNF in n variables and density β) happens
with high probability if it happens with 1−o(n) probability in the specified probability space
(usually random 3CNF formulas as defined in Definition 5.1).

Our goal is to prove a lower bound on the average-case refutation-size of 3CNF formulas
taken from the set of 3CNF formulas under a promise as defined in Definition 3.1 (note that
the probability space defined in Definition 5.1 is defined over a different set of 3CNF, that
is, the set of all 3CNF formulas). For this purpose, we define a probability space over the
set of 3CNF formulas under a promise: the distribution of random 3CNF formulas under
a promise Λ on n variables and density β is the distribution of random 3CNF formulas in
Definition 5.1 conditioned on the event that the 3CNF is either unsatisfiable or has more
than Λ(n) satisfying assignments.

We now argue that to satisfy our goal to prove a lower bound on the average-case proof
complexity of 3CNF formulas under a promise, it is sufficient to prove the lower bound result
considering the distribution of random 3CNF formulas as defined in Definition 5.1.

It is well known that almost all 3CNF formulas with a density β above a certain constant
threshold (say, 5) are unsatisfiable. This means that any property of a 3CNF (with density
above the threshold) that happens with high probability in the distribution in Definition 5.1
also happens with high probability in the distribution of random 3CNF formulas under a
promise Λ(n) (as defined above); this is because there are only a fraction o(1) of 3CNF
formulas (with a given fixed number of variables n and a given fixed density β above the
threshold) that are satisfiable (and moreover have at least one satisfying assignment but less
than Λ(n) satisfying assignments). Thus, if we prove that with high probability a random
3CNF formula has no small promise resolution refutation then it implies also that with
high probability a random 3CNF formula under a promise has no small promise resolution
refutation. Therefore, we shall consider from now on only the distribution of 3CNF formulas
as defined in Definition 5.1, and forget about the other distribution.

5.1. The Lower Bound. Throughout this section we fix 0 < δ < 1 and let Λ = 2δn. For
K a CNF formula, we denote by Vars(K) the set of variables that occur in K.

The following is the main theorem of this section. The lower bound matches that appearing
in [BSW01] for resolution.
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Theorem 9. Let 0 < δ < 1 and 0 < ε < 1/2. With high probability a random 3CNF formula
with β = n1/2−ε requires a size exp(Ω(β−4/(1−ε) · n)) resolution refutation under the promise
Λ = 2δn.

Remark 1. We could allow in Theorem 9 for a promise that is bigger than 2δn, and precisely

for a promise of 2n(1− 1

n1−ξ ) = 2n/2n
ξ
, for any constant ξ such that ε

(1−ε) < ξ < 1 (for instance,

this allows for a promise of 2n/2n
1/3

).
The actual proof of the lower bound uses the smaller promise of 2δn, but the proof for

a 2n/2n
ξ

promise is the same. (Although we have not defined precisely how the promise

axioms are formulated in the case of a promise equal to 2n/2n
ξ
, it is possible to formulate

such promise axioms along the same lines described in Definition 3.4.)

The proof strategy of Theorem 9 is to show that with high probability for a random 3CNF
formula K with density β = n1/2−ε, a resolution refutation under the promise 2δn of K must
contain some clause D of large width (no matter which promise axioms PRMC,2δn we use).
Then we can apply the size-width tradeoff from Theorem 1 to reach the appropriate size
lower bound.

To illustrate an exponential lower bound via the size-width tradeoff of Theorem 1, we
need to guarantee that all the initial clauses (that is, all the axiom clauses) are of constant
width. The 3CNF formula K is clearly of constant width, but the clauses pertaining to
the promise axiom PRMC,Λ might not be (see the appendix for a detailed specification of
these clauses). To solve this problem we add yet more extension variables to encode the
clauses of the promise axiom with new constant width clauses. Second, we note that the
original clauses of the promise axiom can be derived by a linear-size resolution proof from
the new constant width version of the promise axiom (therefore, if there is a polynomial-size
resolution refutation of K using the original promise axiom, then there is also a polynomial-
size resolution refutation of K using the new constant width version of the promise axiom).
Finally, we prove the exponential lower bound on resolution augmented with the constant
width version of the promise axiom (instead of the original clauses pertaining to the promise
axiom).

We now explain the standard way how to get the new constant-width promise axiom from
the clauses pertaining to the original promise axiom from Definition 3.4 (as depicted in the
appendix). Let E = `1 ∨ . . . ∨ `m be a clause in the promise axiom that has more than
constant width (that is, `i’s are literals and m = ω(1)). Then, we replace the clause E with
the following collection of clauses:

`1 ∨ e1, ¬e1 ∨ `2 ∨ e2, ¬e2 ∨ `3 ∨ e3, . . . ,¬em−1 ∨ `m, (7)

where the ei’s are new extension variables. By resolving on the ei variables, one after the
other, it is possible to derive with a linear-size resolution proof the original clause E from the
clauses in (7) (consider the first two clauses (from left) in (7), and resolve over the variable
e1, then the resolvent of this step is resolved over the variable e2 with the third clause in
(7), and so forth). (Note that every truth assignment that satisfies (7) also satisfies E, and
so any clause that is semantically implied by E (see the preliminaries, Section 2) is also
semantically implied by (7). This means that the new constant width version of the promise
axiom discards the same truth assignments to the variables X as the original version of the
promise axiom.)
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Thus, from now on in this section we assume that the promise axiom consists of clauses
of a constant width.

The rest of this section is devoted to the proof of Theorem 9.
Let n be the number of (original, x1, . . . , xn) variables, Λ = 2δn and let PRMC,Λ be some

given promise axiom (of constant width, independent of n). For a clause D define:

η(D) := min
{
|K ′|

∣∣∣ K ′ ⊆ K and (PRMC,Λ ∪K
′) |= D

}
.

Remark 2. We use the symbol η to distinguish it from a similar measure µ used in [BSW01]:
here we require the minimal set of clauses from K that combined with the axiom PRMC,Λ

semantically imply D.

We show that with high probability for a random 3CNF formula with density β = n1/2−ε,
for 0 < ε < 1/2, the following is true:

(1) Let k = 2n · (80β)−2/(1−ε). Then η(2) ≥ k.
(2) Any refutation of K must contain a clause D such that k/2 ≤ η(D) ≤ k.
(3) Any clause D from 2 must have large width, and specifically |D| ≥ εn(80β)−2/(1−ε)

(which, by Theorem 1, concludes the proof).

The following two definitions are similar to those in [BSW01] (we refer directly to 3CNF
formulas instead of 3-uniform hypergraphs):

Definition 5.2 (CNF Expansion). For a 3CNF formula K with density β = n1/2−ε, for
0 < ε < 1/2, the expansion of K is

e(K) := min

2|Vars(K ′)| − 3|K ′|

∣∣∣∣∣
K ′ ⊂ K and
n · (80β)−2/(1−ε) ≤ |K ′|
≤ 2n · (80β)−2/(1−ε)

 .

Definition 5.3 (Partial matchability). A 3CNF formula K with density β = n1/2−ε, for
0 < ε < 1/2, is called partially matchable if for all K ′ ⊂ K such that |K ′| ≤ 2n · (80β)−2/(1−ε)

we have |Vars(K ′)| ≥ |K ′|.

The next lemma gives two properties of random 3CNF formulas that occur with high
probability (see the appendix of [BSW01] for a proof). We then use this lemma to show that
with high probability 1,2,3 above hold.

Lemma 10 ([BKPS02]). Let 0 < ε < 1/2 and let K be a random 3CNF with n variables
and density β = n1/2−ε, then with high probability:

(i) e(K) ≥ εn(80β)−2/(1−ε); and
(ii) K is partially matchable.

Proof of (1). In light of part (ii) in Lemma 10, in order to prove that with high probabil-
ity (1) holds it is sufficient to prove the following:

Lemma 11. Let K be a 3CNF formula in the X variables with density β = n1/2−ε, for
0 < ε < 1/2. If K is partially matchable then η(2) ≥ 2n · (80β)−2/(1−ε).

Proof. By partial matchability of K, for all K ′ ⊂ K such that |K ′| ≤ 2n · (80β)−2/(1−ε)

it happens that |Vars(K ′)| ≥ |K ′|. Thus, by Hall’s Theorem we can choose a distinct
variable (representative) from each clause in K ′ and set it to satisfy its clause. Clearly,
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|Vars(K ′)| ≤ 3|K ′| ≤ 6n · (80β)−2/(1−ε), and so there is a (partial) truth assignment ρ to at
most 6n · (80β)−2/(1−ε) variables in X that satisfies K ′. Since β = n1/2−ε,

6n · (80β)−2/(1−ε) = 6 · 80−2/(1−ε) · nε/(1−ε), (8)

which, by 0 < ε < 1/2, is equal to O(nλ) for some 0 < λ < 1. Thus for sufficiently large n
there are more than δn variables from X not set by ρ, which means that there are more than
2δn different ways to extend ρ into truth assignments (to all the variables in X) that satisfy
K ′.10 Since the promise axiom PRMC,Λ can discard up to 2δn truth assignments to the X
variables, we get that PRMC,Λ ∪K ′ is satisfiable (any assignment to X that is not discarded
by PRMC,Λ can be extended to the extension variables in a way that satisfies PRMC,Λ).

We have thus showed that every collection K ′ containing at most 2n · (80β)−2/(1−ε) clauses
from K and augmented with the promise axiom PRMC,Λ is satisfiable. This implies in
particular that η(2) ≥ 2n · (80β)−2/(1−ε). �

Proof of (2). Note that the resolution rule is sub-additive with respect to η in the sense
that for all three clauses E,F,D such that D is a resolvent of E and F , it holds that

η(E) + η(F ) ≥ η(D).

We also clearly have that for every axiom clause E (either from K or from the promise
axiom):

η(E) = 1.

Let

k = 2n · (80β)−2/(1−ε).

By Lemma 11, with high probability for a 3CNF formula K with density β = n1/2−ε (for
0 < ε < 1/2) it happens that η(2) ≥ k. By sub-additivity of the resolution rule with respect
to η, in any resolution refutation of K under the promise Λ, there ought to be some clause
D such that

k/2 ≤ η(D) ≤ k.

Proof of (3). Let D be a clause such that k/2 ≤ η(D) ≤ k from 2 and let K ′ be the
(minimal) set of clauses from K for which PRMC,Λ ∪K ′ |= D and k/2 ≤ |K ′| ≤ k. We shall
prove that (with high probability for a random 3CNF) |D| ≥ εn(80β)−2/(1−ε). In light of
Lemma 10 part (i), in order to prove this, it is sufficient to prove the next two lemmas.

Define ∂K ′, called the boundary of K ′, to be the set of variables in K ′ that occur only
once in K ′ (in other words, each variable in ∂K ′ appears only in one clause in K ′).

Lemma 12. |∂K ′| ≥ e(K).

Proof. Every variable not in ∂K ′ must be covered by at least two distinct clauses in K ′, and
so |Vars(K ′)| ≤ |∂K ′|+ 1

2
·(3|K ′|−|∂K ′|). Thus, we have |∂K ′| ≥ 2|Vars(K ′)|−3|K ′| ≥ e(K)

(where the last inequality is by Definition 5.2 and since k/2 ≤ |K ′| ≤ k). �

Lemma 13. |D| ≥ |∂K ′|.

10Actually, for sufficiently large n there are more than Ω(n− nε/(1−ε)) such variables, from which we can
assume the bigger promise Λ = 2n/2n

ξ

, for any ε
(1−ε) < ξ < 1, as noted in Remark 1.
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Proof. Let xi ∈ ∂K ′, for some 1 ≤ i ≤ n, and denote by Ki the (unique) clause from K ′ that
contains xi. Assume by a way of contradiction that xi does not occur in D.

By minimality of K ′ with respect to η and D there exists an assignment α (here we treat
α as a total truth assignment, that is, a truth assignment to both the X variables and the
extension variables in the promise axiom) such that

(K ′ \Ki)(α) = 1 and D(α) = 0 (9)

(as otherwise (K ′ \ Ki) |= D which clearly implies PRMC,Λ ∪ (K ′ \ Ki) |= D, which then
contradicts the minimality of K ′ with respect to η and D).

By assumption, xi occurs neither in K ′ \Ki nor in D. Hence, we can flip the value of α
on xi so that Ki(α) = 1 while still keeping (9) true. We thus have:

K ′(α) = 1 and D(α) = 0 (10)

Since |K ′| ≤ k, we have that |Vars(K ′)| ≤ 3k = 6n · (80β)−2/(1−ε) (recall that |K ′| is the
number of clauses in K ′). If |D| ≥ |∂K ′| we are done. Otherwise,

|Vars(K ′)|+ |D| < |Vars(K ′)|+ |∂K ′| ≤ 2|Vars(K ′)| ≤ 12n · (80β)−2/(1−ε).

Thus, similar to equation (8), for sufficiently large n, the total number of distinct variables
in K ′ and D is at most |Vars(K ′)|+ |D| = O(nλ), for some 0 < λ < 1. This means that for
sufficiently large n there are more than δn variables from X for which flipping the value of
α on them still validates (10).11 Hence, there are more than 2δn distinct assignments to the
X variables for which (10) holds.

The promise axiom PRMC,Λ discards at most 2δn assignments to the X variables. This
means that there are at most 2δn assignments ρ to the X variables that falsify PRMC,Λ (that
is, that every extension of ρ to all the extension variables falsifies PRMC,Λ), while all other
assignments ρ to the X variables have an extension (to all the the extension variables) that
satisfies PRMC,Λ. Thus, by the previous paragraph there ought to be at least one assignment
ρ to the X variables that has an extension ρ′ to the extension variables, such that

PRMC,Λ(ρ′) = 1 , K ′(ρ′) = 1 and D(ρ′) = 0, (11)

which contradicts the assumption that PRMC,Λ ∪K ′ |= D. �

6. Conclusion

This paper establishes a new framework of propositional proof systems that are able to
separate the unsatisfiable CNF formulas from the set of CNF formulas having many satisfying
assignments. We were able to analyze the complexity of basic cases pertaining to such proof
systems, such as the case of a big promise (a constant fraction of all truth assignments) and
the average-case proof complexity of refutations under a smaller promise (that is, a promise
of 2δn, for any constant 0 < δ < 1).

One question we have not addressed is what can be gained (if at all) when we augment a
stronger proof system than resolution, like bounded-depth Frege proof system or Frege proof
system, with the promise axioms (for a small promise like 2δn, as for a big promise already
resolution can efficiently refute all unsatisfiable 3CNF formulas).

11Again, similar to what was noted in the proof of Lemma 11, for sufficiently large n there are actually
more than Ω(n− nε/(1−ε)) such variables.
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Another question that arises is whether the fact that we require the Boolean circuits in
the promise axioms to be provably injective and to provably posses disjoint images (that is,
provably inside resolution) constitutes a real restriction. (Note that the lower bound for
resolution under the promise 2δn in Section 5 did not use at all these requirements.) In other
words, we ask whether there is a sequence of circuits C(1), . . . , C(t) for which adding the
axiom ∨ti=1C

(i)(W ) ≡ X (where the parameter t and the number of variables in m are taken
from the smaller promise axiom 3.4) to resolution (or a stronger proof system) gives a super-
polynomial speed-up for some contradictory family of formulas over standard resolution (or
the stronger proof system); but that we cannot prove efficiently in resolution (or the stronger
proof system) that C(1), . . . , C(t) are injective or that they have pairwise disjoint images?

A different and more general task is to come up with other natural models of propositional
proof systems that capture a “relaxed” notion of soundness. For instance, Pitassi [Pit06]
suggested considering “approximate proofs” in the framework of algebraic proof systems.

Finally, we have not dealt directly in this paper with the promise Λ = 2n/poly(n),
though it is most likely that a similar upper bound (with a similar proof) to that shown
in Section 4 also holds for this promise (when the promise axiom is modified accord-
ingly). In this respect it is worth mentioning that Kraj́ıček [Kra07] observed that the
work of Razborov and Rudich [RR97] implies the existence (under a cryptographic con-
jecture) of a Boolean function g with nδ input bits (denoted by y1, . . . , ynδ) and n output
bits (denoted by g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ)), for any constant 0 < δ < 1, that has
the following property: given any CNF formula K in n variables x1, . . . , xn, substituting
g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ) for the original xi variables in K yields a new CNF for-
mula that is unsatisfiable only if K has at most 2n/nω(1) satisfying assignments. This means
that under the promise 2n/poly(n) the substitution g is sound : any unsatisfiable CNF for-
mula (clearly) stays unsatisfiable after the substitution, while any CNF with more than
2n/poly(n) satisfying assignments stays satisfiable after the substitution.

Appendix A. Encodings

A.1. Encoding of Boolean Circuits and Promise Axioms. In this section we describe
in detail how the promise axioms are encoded as CNF formulas. We require that resolution
should be able to efficiently prove some basic facts about the encoded circuits.

A.1.1. Boolean circuit encoding. The following definition is similar to the circuit encoding
defined in Alekhnovich et al. in [ABSRW04] (note that it deals with a single output bit
Boolean circuit):

Definition A.1 (Encoding of Boolean circuits). Let C(W ) be a Boolean circuit (with ∨,∧
as fan-in two gates and ¬ a fan-in one gate) and m input variables W := w1, . . . , wm and a
single output bit. For every gate v of the circuit C we introduce a special extension variable
yv. For input gates wj (1 ≤ j ≤ m) we identify ywj with wj. We denote by y1 the literal y

and by y0 the literal ¬y. The CNF formula ‖C(W )‖ consists of the following clauses:

(i) yε̄1v1 ∨ y
ε̄2
v2
∨ yπ◦(ε1,ε2)

v , where v is a ◦ ∈ {∨,∧} gate in C and v1, v2 are the two input

gates of v in C and 〈ε1, ε2〉 is any vector in {0, 1}2 and π◦ is the truth table function of ◦
(and 0̄ = 1, 1̄ = 0);

(ii) yε̄1v1 ∨ y
π¬(ε1)
v , where v is a ¬ gate in C and v1 is the single input gates of v in C, and

ε1 ∈ {0, 1} and π¬ is the truth table function of ¬.
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We write ‖C(W )‖(y) to indicate explicitly that the output gate v of C is encoded by the
extension variable y.

A.1.2. Encoding of the promise axioms. We now give a detailed description of how the
promise axioms are encoded as CNF formulas. We consider only the big promise axiom
(Definition 3.3), but the other variant (Definition 3.4) is similar. We encode the promise
axioms in a bottom-up manner, encoding the sub-formulas separately, and then combining
all of them together.

We assume that a Boolean circuit C(W ) with n output bits is encoded as n distinct
circuits and we write ‖C(W )‖(Y ) to indicate explicitly that the output gates v1, . . . , vn of C
are encoded by the extension variables y1, . . . , yn (where Y := {y1, . . . , yn}). This means that
‖C(W )‖(Y ) is the CNF formula ∧ni=1‖Ci(W )‖(yi), where Ci(W ) is the circuit computing the
ith output bit of C(W ) and yi is the variable that encodes (see Definition A.1) the (single)
output bit of Ci(W ). We also require that if the (function computed by the) circuit C(W )
does not depend12, on some input bit wi, then wi does not occur in the encoding of C(W ).

Let 1 ≤ k ≤ t (where the parameter t is taken from Definition 3.3). We first encode as a
CNF formula the negation of the following sub-formula from the promise axiom:

C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2 .

We denote this CNF encoding by ¬INJk (where INJ stands for injective).

Definition A.2 (¬INJk). Let 1 ≤ k ≤ t and m = n− r (all the parameters are taken from

Definition 3.3). Let W 1 := {w(1)
1 , . . . , w

(1)
m } , W 2 := {w(2)

1 , . . . , w
(2)
m } , Y k := {y(k)

1 , . . . , y
(k)
n }

and Zk := {z(k)
1 , . . . , z

(k)
n } be sets of new distinct extension variables. The CNF formula

¬INJ k consists of the following set of clauses:

(1) ||C(k)(W 1)||(Y k); ||C(k)(W 2)||(Zk) (expresses that Y k, Zk are the output bits of
C(k)(W 1), C(k)(W 2), respectively);

(2) ¬ui ∨ ¬y(k)
i ∨ z

(k)
i ; ¬ui ∨ y(k)

i ∨ ¬z
(k)
i , for all 1 ≤ i ≤ n (expresses that ui implies

y
(k)
i ≡ z

(k)
i );

(3) vi ∨ w(1)
i ∨ w

(2)
i ; vi ∨ ¬w(1)

i ∨ ¬w
(2)
i ; for al 1 ≤ i ≤ m (expresses that ¬vi implies

w
(1)
i 6≡ w

(2)

i );
(4) u1, . . . , un (expresses that Y ≡ Z);
(5) ¬v1 ∨ . . . ∨ ¬vm (expresses that W 1 6≡ W 2);

For simplicity of writing we introduce the following notation: let ` be a literal and let A
be a CNF formula. We denote by `©∨A the set of clauses (that is, the CNF formula) that
results by adding to each clause of A the literal `.

We now encode as a CNF formula denoted by ¬INJ the negation of
t∧

k=1

(
C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2

)
.

Definition A.3 (¬INJ). The CNF formula ¬INJ consists of the following set of clauses:

(1) ¬pk©∨¬INJk for al 1 ≤ k ≤ t (expresses that INJk implies ¬pk);
12We say that a Boolean function f does not depend on an input bit wi if for all input assignments α to

f , flipping the truth value of wi in α does not change the value of f .
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(2) p1 ∨ . . . ∨ pt (expresses ∨tk=1¬INJk.)

In a similar manner one can encode as a CNF the negation of the formula∧
1≤i<j≤t

(
C(i)(W 1) 6≡ C(j)(W 2)

)
,

denoted by ¬DSJ (where DSJ stands for disjoint). We shall not develop the encoding
precisely, as this is pretty much similar to ¬INJ.

The last part of the promise axiom we need to encode is the formula

t∨
i=1

C(i)(W 1) ≡ X.

We denote the CNF encoding of this formula by RST (which stands for restriction). Again,
this is similar to the encoding of ¬INJ, but we show how to encode it anyway, since we would
like to illustrate in the sequel how resolution can use RST to efficiently prove some basic
facts about the X variables (in the case the circuits in C have certain simple form).

Definition A.4 (RST). For every 1 ≤ k ≤ t, recall that Y k := {y(k)
1 , . . . , y

(k)
n } are the

output variables of ||C(k)(W 1)|| from Definition A.2. The CNF formula RST consists of the
following set of clauses:

(1) ¬f (k)
i ∨ ¬y

(k)
i ∨ xi; ¬f

(k)
i ∨ y

(k)
i ∨ ¬xi , for all 1 ≤ i ≤ n (expresses that f

(k)
i implies

y
(k)
i ≡ xi);

(2) ¬hk ∨ f (k)
1 , . . . ,¬hk ∨ f (k)

n (expresses that hk implies Y k ≡ X);

(3) h1 ∨ . . . ∨ ht (expresses
t∨
i=1

Y k ≡ X.)

Finally, the promise axiom PRMC,Λ is the following CNF formula:

Definition A.5 (CNF encoding of PRMC,Λ). The CNF encoding of the promise axiom
PRMC,Λ consists of the following clauses:

(1) ¬q1©∨¬INJ (expresses that q1 implies ¬INJ);
(2) ¬q2©∨¬DSJ (expresses that q2 implies ¬DSJ);
(3) q1©∨ (q2©∨RST) (expresses ¬INJ∨¬DSJ∨RST, which is equivalent to INJ∧DSJ→

RST ).

A.1.3. Proving basic facts about encoded circuits inside resolution. The following simple
claim illustrates how one can reason inside resolution, and specifically can “eliminate impli-
cations” inside resolution. Consider, for instance, line (1) in PRMC,Λ (Definition A.5). This
line is logically equivalent to INJ→ ¬q1. Assume that we already know INJ (which formally
means that we have a resolution refutation of ¬INJ). We would like to arrive inside resolution
at ¬q1. The following straightforward claim illustrates how to do this in resolution.

Claim 2. Let A be an unsatisfiable CNF formula with a resolution refutation of size s and
let ` be any literal. Then there is a resolution proof of ` from `©∨A of size s.

Proof of claim: Assume that the resolution refutation of A is the sequence of clauses
A1, . . . , As, where As = 2 (the empty clause). Then ` ∨ A1, . . . , ` ∨ As is a resolution proof
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of ` ∨ 2 = ` from `©∨A (we assume that ` is not in any Ai; or else, by the weakening rule,
the claim also holds). Claim

Note that Claim 2 implies that if there is a refutation of ¬INJ of size s, then there is also
a proof of ¬q1 of size s, from line (1) in PRMC,Λ (Definition A.5).

We now illustrate how resolution can efficiently prove a certain simple fact about simple
circuits. This is needed (among other efficient proofs of similar simple facts) in order to
show the upper bound in Section 4 (and specifically, it is used in Claim 1). Other similar
facts about the Boolean circuits constructed in Section 4 can be proved inside resolution in
a similar manner.

For some 1 ≤ k ≤ t, let C(k) be a circuit from a sequence of circuits C (as in the promise
axioms), where m and n are the number of input and output variables of C(k), respectively.
Assume that the ith output bit of C(k) computes the jth input bit wj for some 1 ≤ j ≤ m and
1 ≤ i ≤ n. We require that resolution can efficiently refute (the encoding via Definition A.2
of):

C(k)(W 1) ≡ C(k)(W 2) ∧ w(1)
j 6≡ w

(2)
j

(note that by assumption this is clearly a contradiction).

Since C
(k)
i just computes the jth input bit wj, then in fact we can assume that the encoding

‖C(k)
i (W )‖(yi) consists of only the single clause wj (remember that by Definition A.1 we

identify between the variable encoding an input gate with the input variable wj itself; and
here we know that wj is also the output variable). Thus, by (2) in Definition A.2 we have

that the output bit yj of C
(k)
i (W 1) equals the output bit zj of C

(k)
i (W 2), and yj is actually

w
(1)
j and zj is actually w

(2)
j . Therefore, by Definition A.2 (3), we can prove vj. So, by one

resolution rule applied to A.2 (5), we are left with ∨i∈[m]\{j}vi .

Assume that all but a number d of the output bits of C(k) compute some (distinct) input bit
wj, for some 1 ≤ j ≤ m (this assumption corresponds to the circuits we build in Section 4).
Then the process described in the previous paragraphs can be iterated for all such output
bits of C(k), in order to cut off (that is, resolve over) all the vj variables in clause (5) in
Definition A.2, until we reach only a disjunction of d variables vj instead of clause (5) in A.2.
We are thus left with d circuits. (Therefore, [by assumptions made in Lemma 8] we can now
refute with a size s resolution refutation the encoding of

C(k)(W 1) ≡ C(k)(W 2) ∧W 1 6≡ W 2 (12)

[if indeed the circuit C(k) computes an injective map, which means that (12) is unsatisfiable].)

A.1.4. Comments on decoding the encoded promise axioms. In order to assert that promise
resolution is a Cook-Reckhow proof system (see the first paragraph in Section 1.1 for a
definition) we need to make sure that a promise resolution refutation can be identified as
such in polynomial-time. For this, one needs to be able to verify whether a given CNF is an
instance of the promise axiom.

This can be done by “decoding” the CNF that encodes the promise axiom PRMC,Λ and
then checking that each circuit in C has the right number of input and output bits. Here we
illustrate how this can be achieved.
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First, it is possible to identify which are the clauses pertaining to the promise axioms out
of all the clauses in the refutation (for instance, these are clauses used as axioms that are not
part of the clauses of the CNF meant to be refuted). Second, it is also possible to identify
which are the clauses of the promise axiom that are part of the circuit encoding (that is,
clauses in line 1 in Definition A.2). It is then possible to check that the circuits are legitimate
ones and have the intended number of input and output variables (we omit the details).
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