We study -- within the framework of propositional proof complexity -- the
problem of certifying unsatisfiability of CNF formulas under the promise that
any satisfiable formula has many satisfying assignments, where ``many'' stands
for an explicitly specified function \Lam in the number of variables n. To
this end, we develop propositional proof systems under different measures of
promises (that is, different \Lam) as extensions of resolution. This is done
by augmenting resolution with axioms that, roughly, can eliminate sets of truth
assignments defined by Boolean circuits. We then investigate the complexity of
such systems, obtaining an exponential separation in the average-case between
resolution under different size promises:
1. Resolution has polynomial-size refutations for all unsatisfiable 3CNF
formulas when the promise is \eps\cd2^n, for any constant 0<\eps<1.
2. There are no sub-exponential size resolution refutations for random 3CNF
formulas, when the promise is 2δn (and the number of clauses is
o(n3/2)), for any constant 0<δ<1.Comment: 32 pages; a preliminary version appeared in the Proceedings of
ICALP'0