
Complexity of Propositional Proofs
with Counting: Resolution over

Linear Equations and
Semi-Algebraic Proofs

Fedor Part

Royal Holloway, University of London

A thesis submitted for the degree of

Doctor of Philosophy

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/294771723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank Iddo Tzameret for his invaluable support and super-

vision.

Abstract

Propositional proof complexity studies the hardness of certifying that

propositional statements are tautologies. One of its most important con-

cerns is to answer the following question: is it possible to specify what

counts as a proof of a tautology in such a way that all proofs are polynomial-

time checkable and for every tautology there exists a proof of polynomial

size? The negative answer to this question would imply the separation of

complexity classes coNP and NP and, therefore, P and NP. Proof sizes

have been extensively studied for various proof systems and for a number

of weak systems the question above has been answered negatively. Many

known examples of hard formulas, for which superpolynomial lower bounds

on sizes of proofs in weak systems were obtained, are based on counting

principles such as, for example, the Pigeonhole Principle or unsolvable

linear systems. This is one of the reasons why exploration of the power of

stronger proof systems that, loosely speaking, “can count” is one of the

central topics in proof complexity.

In the first part of the thesis we develop new lower bounds techniques for

resolution over linear equations and extend existing ones to work over dif-

ferent rings. We obtain a host of new lower bounds, separations and upper

bounds, while calibrating the relative strength of different sub-systems.

We first establish, over fields of characteristic zero, exponential-size dag-

like lower bounds against resolution over linear equations refutations of

instances with large coefficients. Specifically, we demonstrate that the

subset sum principle α1x1 + · · · + αnxn = β, for β not in the image of

the linear form, requires refutations proportional to the size of the image.

Moreover, for instances with small coefficients, we separate the tree and

dag-like versions of Res(linF), when F is of characteristic zero, by employing

the notion of essential covering of the hypercube from [48], among other

techniques.

We then study resolution over linear equations over different finite fields,

extending the work of Itsykson and Sokolov [40] who developed tree-

like Res(linF2) lower bounds techniques. We obtain new lower bounds

and separations as follows: (i) exponential-size lower bounds for tree-

like Res(linFp) refutations of Tseitin mod q formulas, for every pair of

distinct primes p, q. As a corollary we obtain an exponential-size separation

between tree-like Res(linFp) and tree-like Res(linFq); (ii) exponential-size

lower bounds for tree-like Res(linFp) refutations of random k-CNF formulas,

for every prime p and constant k; and (iii) exponential-size lower bounds

for tree-like Res(linF) refutations of the pigeonhole principle, for every field

F.

Another important aspect of proof complexity is the study of weak “count-

ing” proof systems, for which exponential lower bounds are already known,

and specifically algebraic proof systems based on Hilbert’s Nullstellensatz

and semi-algebraic proof systems. Algorithms for certain central problems

give rise to proof searching algorithms for these systems. For example,

Groebner basis computation is dual to Polynomial Calculus (PCR) proof

search, while the branch-and-cut algorithm for integer programming is

dual to Cutting Planes proof search and so on.

The so-called Sum-of-Squares (SoS) (meta-)algorithm, which is in duality

with the SoS proof system, has become a cornerstone in the study of the

complexity of optimization problems due to its conjectured optimality for

a large class of problems. Analysis of the SoS algorithm often reduces to

finding proofs of statements from, say, Boolean analysis in small degree SoS,

which is a propositional proof system. Propositional proofs are complicated

combinatorial objects and they can be hard to construct and understand.

In the second part of the thesis we investigate a formulation of first-order

theories TPCR and TSoS that would correspond, via translation a la Paris-

Wilkie, to constant degree PCR and SoS, respectively. We define these

theories and show, that proofs in TPCR admit propositional translation

to constant degree PCR if R is a field of positive characteristic. For all

other rings R we define a translation to the constant degree PCrad
R , which

extends PCR with the radical rule.

4

Contents

Contents i

1 Introduction 1

1.1 Background . 1

1.1.1 Proof Complexity . 3

1.1.1.1 Resolution and Its Extensions 4

1.1.1.2 Algebraic and Semi-algebraic Proof Systems 6

1.1.1.3 Bounded Arithmetic 8

1.1.2 Complexity of optimization 9

1.2 Contributions . 11

1.2.1 Resolution over Linear Equations 12

1.2.1.1 Lower Bounds and Separations in Finite Fields . . . 17

1.2.2 Complexity of Linear Systems 19

1.2.2.1 Nondeterministic Linear Decision Trees 21

1.2.3 First-Order Theories for (Semi-)Algebraic Proof Systems . . . 21

1.2.3.1 Theory for PCR,d . 22

1.2.3.2 Theory for SoSd . 24

2 Preliminaries 26

2.1 Notation . 26

2.2 Propositional Proof Systems . 27

2.2.1 Hard Instances . 28

2.2.1.1 Pigeonhole Principle 28

2.2.1.2 Mod p Tseitin Formulas 29

2.2.1.3 Random k-CNFs . 30

2.2.2 Error-Correcting Codes . 30

2.2.3 Complexity of Linear Systems 30

2.2.4 Semi-Algebraic Proof Systems 31

i

2.3 Sequent Calculus LK . 32

2.4 Propositional Translations . 34

3 Resolution over Linear Equations 35

3.1 Resolution with Linear Equations over General Rings 35

3.1.1 Basic Counting in Res(linR) and Ressw(linR) 38

3.1.2 CNF Upper Bounds for Res(linR) 41

3.2 Dag-Like Lower Bounds . 43

3.2.1 Dag-Like Lower Bounds for the Subset Sum Principle 43

3.2.2 Linear Systems with Small Coefficients 47

3.2.2.1 An Upper Bound . 48

3.2.2.2 Lower Bound for Restricted Tree-Like Res(linF) . . . 48

3.3 Tree-Like Lower Bounds . 50

3.3.1 Nondeterministic Linear Decision Trees 50

3.3.2 Prover-Delayer Games . 56

3.3.3 Lower Bounds for the Subset Sum with Small Coefficients . . 58

3.3.4 Lower Bounds for the Pigeonhole Principle 62

3.4 Size-Width Relation and Simulation by PC 65

4 First-Order Theories for Constant Degree PCR and SoS 70

4.1 The Theory for Constant Degree PCR 70

4.1.1 The Language LR= of TPCR 70

4.1.2 The Axioms of TPCR . 71

4.1.3 Propositional Translation for TPCR 72

4.1.3.1 Extension of PCR with The Radical Rule 72

4.1.3.2 Translation of Terms and Formulas 73

4.1.3.3 Propositional Translation of TPCR Proofs 73

4.2 Theories for Constant Degree SoS . 76

4.2.1 Extensions of PCrad
R . 77

4.2.1.1 The system PC+ . 77

4.2.1.2 The system PC+,P 78

4.2.2 Theory TSoS . 80

4.2.2.1 Soundness of SoSd in TSoS 80

4.2.2.2 Theory TSoS≥ . 82

5 Conclusion and Open Problems 85

ii

Index 87

Bibliography 88

iii

Chapter 1

Introduction

1.1 Background

A fundamental concept, arising in many areas of science and engineering, is that of an

algorithm. Informally, an algorithm is a sequence of steps, required to perform certain

task. A simple example – the task of multiplication of natural numbers. There is an

elementary algorithm, learned by school children - a sequence of shifts and additions

of digits (with carry), resulting in the product. If it starts with two n-digit numbers,

the number of steps would be proportional to n2, that is O(n2). But is there a better

algorithm, performing less amount of shifts and additions of digits? It turns out, that

there exists non-elementary algorithm, based on Fast Fourier Transform, performing

O(n · log n · log(log n)) steps [30]. There are number of algorithms, which slightly

improve on this bound, but never do better than O(n log n). Thus, it is reasonable to

ask whether we can prove that any other algorithm would perform at least Ω(n · log n)

steps.

This kind of questions are addressed by computational complexity theory, which

studies resources necessary for algorithms that solve a computational problem and

classifies the problems accordingly. The mathematical study of computation is based

on rigorous formulation of what an algorithm is. There is a number of mathematically

precise definitions, that turn out to be equivalent to each other [37]. The most

prominent of them is that of Turing machine, which closely matches the intuition:

it consists of an infinite tape1, where symbols from a finite alphabet can be read

and written in line by the head, and a finite number of states, each of which contain

specification either of whether the execution should halt or of what should be done by

the head at the current step and which other state to jump to depending on what

1Or several tapes.

1

has been read at the current position of the head [7]. At the start, the tape contains

an input of a computational problem and the output of the execution is defined to

be the content of the tape once the execution has halted or is undefined in case the

execution never halts. This simple mathematical abstraction is powerful enough to

capture informal descriptions of algorithms as well as anything that can be written in

programming languages as expressive as, for example, Kotlin or C.

Typically a computational problem is either a decision problem or can be efficiently

reduced to one. A decision problem is a problem of the following form: given an input

encoded as a finite bit string x ∈ {0, 1}∗, decide whether x satisfies some property and

output 1 or 0 if the answer is “yes” or “no”, respectively. Clearly, the statement of a

decision problem is just a subset L ⊆ {0, 1}∗, called language, and can be identified

with it.

One of the main goals of complexity theory is to determine for a given decision

problem L whether efficient algorithms exist for L according to some measure of

complexity of algorithms. The most important such measure is the worst-case time

complexity of an algorithm A – the function f(n) such that the maximal number of

steps the Turing machine, corresponding to A, performs on inputs of length n is f(n).

Consider the following problem. Suppose there are n cities and we are given

distances between any two of them. The Traveling Salesman Problem asks to find

a circular path of minimal length such that it passes through all the cities at most

once [6]. It is easy to see, that this search problem can be reduced to the decision

problem of checking whether there exists a path as above of length at most L by using

binary search on L. The trivial brute force algorithm, just enumerating all paths and

comparing their lengths, is of enormous time complexity O(n!), clearly, it is highly

infeasible. There are a bit smarter algorithms of complexity O(2n) [6], but they still

can hardly be called feasible: already for 100 cities 2100 ∼= 1030 steps seem too much

even for modern supercomputers to be performed in a reasonable time.

It is a common agreement in complexity theory to classify an algorithm as feasible if

its time complexity f(n) grows polynomially, that is f(n) = O(nc) for some c ∈ N. For

that reason the class P of all decision problems, that can be solved by some polynomial-

time Turing machine, plays an important role in complexity theory. Whether defined

above TSP decision problem is solvable by a feasible algorithm is thus the question

of whether TSP ∈ P. The answer is not known and this question is of tremendous

importance as we explain below.

Whether TSP ∈ P is not an isolated question, there is a vast number of important

decision problems that admit polynomial-time reductions to and from TSP [32].

2

Although these problems are seemingly unrelated, they bear the following similarity:

for each such problem L there exists a notion of effectively checkable “solution” such

that x ∈ L iff there exists a “solution” y ∈ {0, 1}∗ that can be checked in time

polynomial in |x|. For example, for TSP a solution is any circular path of length

at most L passing through all the cities at most once. Formally, the class NP of

decision problems with a notion of effectively checkable “solution” or certificate can

be defined as follows: L ∈ NP iff there exists a polynomial-time Turing machine

M(x, y) and c ∈ N such that x ∈ L iff there exists y ∈ {0, 1}∗, |y| = O(|x|c) such

that M(x, y) = 1. It is easy to see that P ⊆ NP. Also, TSP ∈ NP and it possess the

property, called NP-hardness, that every problem in NP is polynomial-time reducible

to it. A decision problem L is called NP-complete iff L ∈ NP and L is NP-hard.

Thus, TSP is NP-complete and, as mentioned above, there are many other important

problems that are NP-complete. If any of these problems is shown to be in P, then

P = NP and therefore, informally, whenever a solution to a problem can be checked

effeciently it can be also found effeciently. Apart from the common sense, stating

that it should be much more hard to find a solution than just to check it, there is a

plenty of evidence in complexity theory that supports the conjecture P 6= NP. Proving

P 6= NP is one of the major open problems in complexity theory [7].

The canonical NP-complete problems are: CIRCUIT-SAT - satisfiability of a

formula (or circuit) of propositional logic, and (k-)SAT - satisfiability of a (k-)CNF

formula, k ≥ 3. There are rather trivial reductions from CIRCUIT-SAT to (k-)SAT

and vise versa. On the one hand SAT has rather simple statement, on the other hand

it is universal, because it is often easy to reduce a specific NP problem to SAT. These

two qualities of SAT have been motivating an active development of SAT-solving

algorithms [51].

1.1.1 Proof Complexity

The connection of computational complexity to propositional proof complexity becomes

apparent once we turn our attention to the class coNP := {L |L ∈ NP} - the class dual

to NP. Consider the language of all unsatisfiable CNF formulas UNSAT = SAT ∈ coNP

and the language TAUT ∈ coNP of all tautological DNF formulas. Clearly, these two

languages are coNP-complete and reducible to each other via φ 7→ ¬φ.

Observe, that, by definition of NP, a language L ∈ NP iff there is a way to certify

x ∈ L by some polynomial-time checkable proof π of size bounded by a polynomial on

|x|. In [28] Cook and Reckhow suggested to define a proof system for a language L as

a polynomial-time Turing machine V such that x ∈ L iff there exists a V -proof π for x,

3

namely π such that V (x, π) = 1. For example, standard propositional proof systems

like the sequent calculus PK or Hilbert-style systems are Cook-Reckhow systems for

TAUT. Also, Cook-Reckhow proof system for UNSAT, which are called refutation

systems, can be trivially interpreted as propositional proof systems via a trivial

bijection between UNSAT and TAUT. The condition that L ∈ NP is then equivalent

to the existence of a proof system V for L such that any x ∈ L can be certified

by a polynomial-size proof π in V . In this case V is called polynomially bounded

proof system. Thus, in particular, TAUT ∈ NP iff there exists polynomially bounded

propositional proof system. The negation of the latter condition implies TAUT /∈ NP,

therefore coNP 6= NP and P 6= NP. This means that by proving superpolynomial lower

bounds on lengths of proofs in stronger and stronger propositional proof systems we

get supposedly closer to proving P 6= NP.

1.1.1.1 Resolution and Its Extensions

The resolution refutation system is among the most prominent and well-studied

propositional proof systems, and for good reasons: it is a natural and simple refutation

system, that, at least in practice, is capable of being easily automatized. Furthermore,

while being non-trivial, it is simple enough to succumb to many lower bound techniques.

Formally, a resolution refutation of an unsatisfiable CNF formula is a sequence

of clauses D1, . . . , Dl = ∅, where ∅ is the empty clause, such that each Di is either a

clause of the CNF or is derived from previous clauses Dj, Dk, j ≤ k < i by means of

applying the following resolution rule: from the clauses C∨x and D∨¬x derive C∨D.

The general, unrestricted resolution refutations are refered to as dag-like refutations.

The tree-like version of resolution, where every occurrence of a clause in the

refutation is used at most once as a premise of a rule, is of particular importance,

since it helps us to understand certain kind of satisfiability algorithms known as DPLL

algorithms. DPLL algorithms are simple recursive algorithms for solving SAT. The

transcript of a run of DPLL on an unsatisfiable formula is a decision tree, which

can be interpreted as a tree-like resolution refutation. Thus, lower bounds on the

size of tree-like resolution refutations imply lower bounds on the run-time of DPLL

algorithms.

Modern SAT-solvers are quite sophisticated and employ advanced techniques,

which are beyond the scope of DPLL algorithms. For example, CDCL algorithms

try to avoid deriving same clauses several times by using clause learning techniques.

Such algorithms produce dag-like resolution refutations on unsatisfiable formulas and,

4

thus, dag-like resolution lower bounds imply lower bounds on the run-time of these

algorithms (cf. [51]).

In contrast to the apparent practical success of SAT-solvers, a variety of hard

instances that require exponential-size refutations have been found for resolution during

the years. Many classes of such hard instances are based on principles expressing some

sort of counting. One famous example is the pigeonhole principle, denoted PHPm
n ,

expressing that there is no (total) injective map from a set with cardinality m to a set

with cardinality n if m > n [36]. Another important example is Tseitin tautologies,

denoted TSG, expressing that the sum of the degrees of vertices in a graph G must be

even [64].

Since such counting tautologies are a source of hard instances for resolution, it is

useful to study extensions of resolution that can efficiently count, so to speak. This

is important firstly, because such systems may become the basis of more efficient

SAT-solvers and secondly, in order to extend the frontiers of lower bound techniques

against stronger and stronger propositional proof systems. Indeed, there are quite a few

works dedicated to the study of weak systems operating with De Morgan formulas with

counting connectives; these are variations of resolution that operate with disjunctions

of certain arithmetic expressions.

One such extension of resolution was introduced by Raz and Tzameret [60] under

the name resolution over linear equations in which literals are replaced by linear

equations. Specifically, the system R(lin), which operates with disjunctions of linear

equations over Z and which contains Boolean axioms for variables xi = 0∨xi = 1, was

studied in [60]. This work demonstrated the power of resolution with counting over

the integers, and specifically provided polynomial upper bounds for the pigeonhole

principle and the Tseitin formulas, as well as other basic counting formulas. It also

established exponential lower bounds for a subsystem of R(lin), denoted R0(lin).

Subsequently, Itsykson and Sokolov [40] studied resolution over linear equations over

F2, denoted Res(⊕). They demonstrated the power of resolution with counting mod

2 as well as its limitations by means of several upper and tree-like lower bounds.

Moreover, [40] introduces DPLL algorithms, which can “branch” on arbitrary linear

forms over F2, as well as parity decision trees, and showed a correspondence between

parity decision trees and tree-like Res(⊕) refutations. In both [60] and [40] the dag-like

lower bound question for resolution over linear equations remained open.

As it happens, resolution over linear equations, holds a special place in the

theory of proof complexity: it can be viewed as a natural “minimal” subsystem

of important propositional proof systems, as we now explain. Resolution operates

5

with clauses, which are De Morgan formulas (¬, unbounded fan-in ∨ and ∧) of a

particular kind, namely, of depth 1. Thus, from the perspective of the theory of proof

complexity, resolution is a fairly weak version of the propositional-calculus, where

the latter operates with arbitrary De Morgan formulas. Under a natural and general

definition, propositional-calculus systems go under the name Frege systems : they can

be (axiomatic) Hilbert-style systems or sequent-calculus style systems. The task of

proving lower bounds for general Frege systems is notoriously hard: no nontrivial

lower bounds are known to date. Basically, the strongest fragment of Frege systems,

for which lower bounds are known are AC0-Frege systems, which are Frege proofs

operating with constant-depth formulas. For example, both PHPm
n and TSG do not

admit sub-exponential proofs in AC0-Frege [1, 55, 47, 15]. However, if we extend

the De Morgan language with counting connectives such as unbounded fan-in mod p

(AC0[p]-Frege) or threshold gates (TC0-Frege), then we step again into the darkness:

proving super-polynomial lower bounds for these systems is a long-standing open

problem on what can be characterized as the “frontiers” of proof complexity. In

this sense, resolution over linear equations over prime fields and over the integers is

interesting as a first step towards AC0[p]-Frege lower and TC0-Frege lower bounds,

respectively. Works by Kraj́ıček [43], Garlik-Ko lodziejczyk [33] and Kraj́ıček-Oliveira

[44] had suggested possible approaches to attack dag-like Res(linF2) lower bounds.

1.1.1.2 Algebraic and Semi-algebraic Proof Systems

Algebraic proof systems arise as ways of certifying unsolvability of systems of polyno-

mial equations over a ring or a field. One of such ways to certify unsolvability of a

system F = {f1 = 0, . . . , fm = 0} of polynomial equations over a field F is based on a

weak version of Hilbert’s Nullstellensatz Theorem [9]. It follows from this theorem that

F has no solutions over algebraic closure of F iff there exist polynomials g1, . . . , gm

over F such that f1 · g1 + . . .+ fm · gm = 1. These tuples of polynomials (g1, . . . , gm)

are thus proofs of unsolvability of F and the corresponding proof system NSF is called

Nullstellensatz system [13]. It is naturally a Cook-Reckhow proof system for the

coNP-complete language of unsolvable systems of polynomial equations over F.

NSF is also a Cook-Reckhow propositional proof system for (k-)UNSAT: if φ =

{C1, . . . , Cm} is a set of clauses with variables x1, . . . , xn, then φ is unsatisfiable iff the

system of polynomial equations a(C1) = 0, . . . , a(Cm) = 0, x2
1−x1 = 0, . . . , x2

n−xn = 0

is unsolvable over the algebraic closure of F, where a(ψ1 ∨ ψ2) := a(ψ1) · a(ψ2),

a(xi) := xi and a(¬xi) = 1− xi.

6

Another related algebraic proof system is the Polynomial Calculus (PCR), where R
is a ring. A refutation of F in PCR is a sequence of polynomials (p1, . . . , ps = 1), where

every polynomial pi is either from F or is obtained from previous polynomials as a

linear combination of two of them or by multiplication by a variable. In contrast to the

static form of NSF refutations, where all coefficients in a decomposition of 1 through

f1, . . . , fm are written at once, PCF refutations dynamically derive consequences from

F line-by-line. This makes PCF stronger than NSF because of the possibility to cancel

the monomials [25].

The size S(π) of a NSF or PCR refutation π is the total number of monomials in it

and the degree d(π) is the maximal degree of monomials in it. The size and degree of

refutations π : F ` 1 = 0 in these systems are related: d(π) − d(F) = O(logS(π)),

where d(F) is the maximal degree of polynomials in F ([25]). A number of linear

lower bounds on degree and, thus, exponential lower bounds on size have been proven

in [61, 38, 25, 23].

Consideration of unsolvability proofs for systems H = {h1 ≥ 0, . . . , hk ≥ 0} of

polynomial inequalities leads to much stronger propositional proof systems. One of the

most prominent such systems has its roots in real algebraic geometry and is based on the

Positivstellensatz Theorem [20]. It follows from this theorem that whenever a system

F ,H of real polynomial equalities and inequalities is unsolvable there exist a1, . . . , am ∈
R[x1, . . . , xn] and {uα}α∈{0,1}k ⊂ Σ2

R[x1, . . . , xn], where Σ2
R[x1, . . . , xn] denotes the set

of sums of squares of real polynomials, such that
∑

α∈{0,1}k
uα·hα1

1 ·. . .·hαmk +
m∑
i=1

ai·fi = −1.

The proof system PS for unsatisfiable systems (F ,H), where proofs are tuples of

polynomial coefficients {ai}i∈[m], {uα}α∈{0,1}k as above, is called Positivstellensatz

proof system. A resricted version of PS, where uα = 0 whenever α contains more than

one 1, is called Sum-of-Squares proofs system (SoS) [34].

Like NSF, systems PS and SoS are static. There is also a dynamic version of PS –

the system PC> where refutations of (F ,H) are PCR derivations of
∑

α∈{0,1}k
uα · hα1

1 ·

. . . · hαmk + 1. Note that PC> is only dynamic on equalities. The full dynamic system,

which is dynamic on both equalities and inequalities, is very strong, the degree and

size lower bounds for this system seem to be far beyond existing methods.

The system PC> is also a dynamic version of SoS in case H = ∅. A remarkable

peculiarity of these semi-algebraic proof systems: although PCF is strictly stronger

than NSF, in semi-algebraic setting PC> is equivalent to PS [16].

Linear lower bounds on the degree of proofs in these systems are known [34],

however no non-trivial lower bounds on size are known to date. In contrast to

7

algebraic case, lower bounds on degrees of semi-algebraic proofs do not imply lower

bounds on sizes.

Other, weak, semi-algebraic proof systems include: the Cutting-Planes (CP) proof

system, operating with linear inequalities over integers, and the Lovasz-Schrijver (LS)

proof system, which is degree 2 fragment of the full dynamic PS[35].

Semi-algebraic systems, including weak ones for which exponential lower bounds

were proven, have been extensively studied due to their connection to integer pro-

gramming, namely to LP and SDP hierarchies [29], [49]. And the connection between

complexity of SoS proofs and approximability of NP combinatorial optimisation prob-

lems has placed SoS at the frontiers of current research in complexity theory [12].

1.1.1.3 Bounded Arithmetic

As explained above, there are close connections between propositional proof complexity

and computational complexity. These two, in turn, can be studied via weak fragments

of arithmetic. One of the key works in the origins of this approach is the work

of Buss [21], where theories Si2 and T i2 of bounded arithmetic were defined. These

theories are defined over the language of Peano Arithmetic (PA) plus function symbols

bx/2c, |x|, x#y. The axioms of Si2, T
i
2 are axioms for the new function symbols plus the

axioms of PA but for induction, which is different from that of PA and is a cornerstone

in the definition of these theories. In Si2 and T i2 induction is restricted to Σb
i -formulas

with not more than i alternating bounded quantifiers of the form ∃(y < t(x)) and

∀(y < t(x)), where t is a term, and without unbounded quantifiers. The induction

in T i2 is just the normal induction axiom scheme for Σb
i -formulas and the induction

axiom scheme for Si2 is:

φ(0) ∧ (φ (bx/2c) ⊃ φ(x)) ⊃ ∀xφ(x)

where φ is a Σb
i -formula.

Theories Si2 are intimately related to the polynomial hierarchy PH. For example,

one of the main results in [21] states that a function f is strongly Σb
i -definable in Si2

iff f ∈ FPΣpi−1 (functional version of PH). In the work [46] it was proved that collapse

of the hierarchy of the theories implies a collapse of PH. Subsequently, this result was

strengthened independently in [22] and [65] by showing that S2 =
⋃
i S

i
2 is finitely

axiomatizable iff PH collapses and this collapse is provable in S2.

The connection of bounded arithmetic to propositional proof complexity is made

by a propositional translation of first-order formulas with bounded quantifiers and

proofs to propositional formulas and proofs of polynomial size respectively. There

8

are several such translations: for example, by Paris and Wilkie [54], by Cook [26]

and by Krajicek and Pudlak [45]. These translations allow to apply thechniques from

logic, in particular, from model theory to prove upper and lower bounds on sizes of

propositional proofs. For example, one of the strongest results in propositional proof

complexity – super-polynomial lower bounds on AC0-Frege system [1] – was achived

by this method.

1.1.2 Complexity of optimization

A large class of problems, studied in theoretical computer science, is spanned by

combinatorial optimization problems. These problems have the following form: given

some disrcete structure and some set of objects, associated to it, the task is to find

the optimal object according to some measure. Consider the following examples:

1. (Minimal spanning tree). Given a connected weighted graph G = (V,E,

ω : E → N), among trees T = (V,E ′ ⊆ E) such that T is connected (called

spanning trees of G) find a tree of minimal weight ω(T) =
∑
e∈E′

ω(e).

2. (Maximal independent set). Given a graph G = (V,E), find a set V ′ ⊆ V

with maximal cardinality |V ′| such that E(V ′, V ′) = ∅, that is there is no edges

between them.

3. (Sparsest cut). Given a d-regular graph G = (V,E), find it’s expansion φG =

min
S⊆V

φG(S), where φG(S) := |E(S,V \S)|
d·min{|S|,|V \S|} , and a set S∗ ⊆ V such that φG =

φG(S∗).

The complexity of the first two problems is fairly well-understood. The first one is

easy: there are well-known classical polynomial-time algorithms for finding the minimal

spanning tree, for example Prim’s or Kruskal’s algorithms [30]. And the second one

is hard: unless the exponential time hypothesis fails, there is no algorithm, which

given a graph G with n vertices and a number k checks that G has an independent

set of size at least k in time no(k), and, thus, it is impossible to beat the brute-force

algorithm of time complexity O(nk) [24]. Once we know, that we probably cannot

efficiently solve an optimization problem exactly, it is natural to ask whether at least

an efficient approximation algorithm exists with a guarantee that the ratio between

the value of a suggested solution and optimal value (approximation factor) is nicely

bounded. However, unless NP ⊆ ZPTIME(2(logn)O(1)
) the best approximation factor

for the maximal independent set a polynomial-time algorithm can achieve, namely

n1−o(n), is close to the trivial one with approximation factor n [41].

9

The status of the third problem is less clear. Certainly, as the problem is NP-

hard, it cannot be solved in polynomial time unless P=NP. And it also cannot be

approximated with arbitrarily high precision, or, formally, it is not in class PTAS,

unless SAT ∈ BPTIME(2o(n)) [5]. But there exist polynomial-time computable non-

trivial approximations to φG. For example, Cheeger inequality for φG implies the

existence of a polynomial-time algorithm, which finds S such that φG(S) = O(
√
φG)

[3]. Alternatively, the bound φG(S) = O(
√

log n ·φG) can be achieved by the algorithm

of Arora, Rao, Vazirani [8]. However, the best known approximation factor is given by

Cheeger inequality and it is not known, whether this bound is optimal. The precise

characterisation of approximability of this problem is yet to be discovered.

Sparsest cut is not an isolated example. Usually, if there is a polynomial-time

algorithm with non-trivial approximation factor for an optimization problem, which

is not in PTAS under certain widely believed conjectures, then there is no proof of

its optimality. In 2002 Khot formulated the Unique Games Conjecture, which is a

conjecture on hardness of the Unique Games problem [42]. Since then, in a series

of works, tightness of upper bounds have been derived from UGC for a number of

problems. In particular, UGC implies optimality of the Cheeger inequality algorithm

for the sparsest cut problem [59] and Raghavendra proved, assuming UGC, optimality

results for all Constraint Satisfaction Problems [57].

A remarkable outcome of this research is that all problems in a certain class can

be solved by a single “meta-algorithm”, whose optimality follows from UGC. This

meta-algorithm is based on semidefinite programming and, as soon as it phrased in this

terms, it suggests a natural generalisation: the SoS algorithm. It applies to problems

of the form:

min
x∈K

g(x)

where g ∈ R[x] and K is an algebraic set: K = {x ∈ Rn | f1(x) = . . . = fm(x) = 0}
for some f1, . . . , fm ∈ R[x]. The degree-d Sum-of-Squares algorithm finds via binary

search the largest L(d) such that the system of polynomial equations g(x) − L(d) =

0, f1(x) = 0, . . . , fm(x) = 0 has a degree-d SoS refutation. This is a polynomial

time procedure because of automatizability of constant degree SoS via semidefinite

programming [12]. With the increase of d, the SoS algorithm gets closer and closer to

the optimal value: L(2) ≤ L(4) ≤ . . . ≤ min
x∈K

g(x).

The best known algorithm for optimization problems, for which tightness of

approximation follows from UGC, is the degree-2 SoS algorithm. Thus, UGC implies

the optimality of degree-2 SoS algorithm on these problems and, in particular, means

that degree-d SoS algorithm for any constant d cannot beat degree-2 SoS algorithm.

10

Challenging this conjecture as well as providing supporting evidence often relies on

provability of certain inequalities, say, from Boolean analysis in low degree SoS. A

good source of examples of this kind of SoS-ing results from Boolean analysis for

approximability is the paper of O’Donnell and Zhou [52].

Consider Small Set Expansion Problem (SSEP). Like Sparsest Cut, it asks to find a

set S ⊂ V of minimal expansion φG(S), but under the condition that |S| ≤ δ · |V | for

some δ. Recall, that in case of Sparsest Cut, Cheeger Inequality gives approximation

of φG(S) via second largest eigenvalue λ2(G) of the adjacency matrix of G and thus

reduces approximation to computing eigenvalues. Although it looks similar to Sparsest

Cut, eigenvalues and similar methods do not work in this setting and, therefore,

Cheeger Inequality cannot be applied. Small Set Expansion Hypothesis (SSEH) is

equivalent to UGC and states that small set expansion is hard to approximate.

SSEP is a special case of finding “sparse” vectors in a linear space. Specifically,

for p > 1 and δ ∈ (0, 1) call a vector x ∈ Rn (δ, p)-sparse if (‖x‖2p)
2p ≥ δ1−p · (‖x‖2)2p.

Fix any p ≥ 2 and φ ∈ (0, 1). Then if there exists S ⊆ V with |S| = o(|V |) and

φG(S) ≤ φ then there exists an (o(1), p)-sparse vector x ∈ Wφ+o(1), where for every λ

W≤λ denotes the span of eigenvectors of the Laplacian matrix of G with eigenvalues at

most λ. Conversely, if there exists a (o(1), p)-sparse vector x ∈ Wφ, then there exists

S ⊂ V with S = o(|V |) and φG(S) < ρ for some constant ρ < 1, depending on φ [10].

Thus we can say whether minimum of φG(S) is close to one or close to zero

by estimating the maximum of the norm ‖x‖2p over all unit vectors in some linear

subspace. Therefore, potentially SSEH and UGC can be resolved by estimating the

degree needed for SoS proofs to certify an inequality on ‖x‖2p for unit vectors x in

some linear W ⊆ Rn. One such inequality is provided by the (2,4) hypercontractivity

theorem [53], which states that for every d and every polynomial f with t variables

and of degree at most d the subspace Wd ⊂ R2t of evaluations of f on {−1,+1}t does

not contain (o(1), 2)-sparse vectors and satisfies for all x ∈ Wd:

(‖x‖4)4 ≤ 9t · (‖x‖2)2

The existence of constant degree SoS proofs of this inequality was used in a number

of works [58],[11] that showed that some hard instances are easy for SoS algorithm.

1.2 Contributions

This thesis contributes to the studies of the complexity of proofs, operating with

algebraic expressions. Two topics within the subject are addressed: complexity of

11

proofs in resolution over linear equations and a formulation of first-order theories,

capturing the strength of constant degree PCR and SoS. Although two stories, that

underlie motivation and particular developments of these two topics, are different,

there is a unifying objective behind the work: analysis of complexity of different forms

of algebraic and semi-algebraic reasoning in propositional proof systems.

The work on resolution over linear equations focuses on elementary combinatorial

approaches to the complexity of proofs. All lower bound techniques that have been

developed for systems, operating with De Morgan formulas, like Resolution or AC0-

Frege, fail to achieve strong lower bounds even for the case of minor extension of De

Morgan formulas with algebraic expressions as simple as linear equations. This part

of the thesis seeks for novel techniques, applicable in this context.

The second part of the thesis is devoted to a conceptual analysis of strength of

constant degree SoS. The objective of this research is to formulate a first-order theory,

corresponding to constant degree SoS under propositional translation, so that it is

naturally capable of some amount of “ZFC” reasoning, used in, say, standard proofs

of hypercontractive inequalities. Somewhat similar theory has been considered in [63]

for the studies of complexity of linear algebra. Our propositional translation is defined

in flavour of the one in [14].

1.2.1 Resolution over Linear Equations

In this part of the thesis we continue the study of the power of resolution over linear

equations, while extending it to different rings R, denoted Res(linR), both finite and

infinite. We prove a host of new lower bounds, separations and upper bounds for

resolution over linear equations, including dag-like refutations. We focus mainly on

finite fields Fq, for different primes q, and fields of characteristic 0, most importantly

the rational numbers Q. Using our notation, R(lin) from [60] is simply Res(linZ) and

Res(⊕) from [40] is Res(linF2).

The refutation system Res(linR) is defined as follows (see [60]). The proof-lines of

Res(linR) are linear clauses , that is, disjunctions of linear equations. More formally,

they are disjunctions of the form:(∑n

i=0
a1ixi + b1 = 0

)
∨ · · · ∨

(∑n

i=0
akixi + bk = 0

)
,

where k is some number (the width of the clause), and aji, bj ∈ R. The resolution rule

is the following:

from (C ∨ f = 0) and (D ∨ g = 0) derive (C ∨D ∨ (αf + βg) = 0),

12

where α, β ∈ R, and C,D some linear clauses. A Res(linR) refutation of an unsatisfiable

over 0-1 set of linear clauses C1, . . . , Cm is a sequence of proof-lines, where each proof-

line is either Ci, for i ∈ [m], a boolean axiom (xi = 0∨xi = 1) for a some variable xi, or

was derived from previous proof-lines by the above resolution rule, or by the weakening

rule that allows to extend clauses with arbitrary disjuncts, or a simplification rule

allowing to discard false constant linear forms (e.g., 1 = 0) from a linear clause. The

last proof-line in a refutation is the empty clause (standing for the truth value false).

We are interested in the following questions:

(Q1) For a given ring R, what kind of counting can be efficiently performed in

Res(linR) and tree-like Res(linR)?

(Q2) Can dag-like Res(linR) be separated from tree-like Res(linR)?

(Q3) Can tree-like systems for different rings R be separated?

In order to be able to do some non-trivial counting in tree-like versions of resolution

over linear equations we define a semantic version of the system as follows:

Tree-like Res(linR) with semantic weakening. The system Ressw(linR) is ob-

tained from Res(linR) by replacing the weakening and the simplification rules, as well

as the boolean axioms, with the semantic weakening rule (the symbol |= will denote

in this work semantic implication with respect to 0-1 assignments):

C (C |= D) .
D

Let k = char(R) be the characteristic of the ring R. In case k /∈ {1, 2, 3}, deciding

whether an R-linear clause D is a tautology (that is, holds for every 0-1 assignment

to its variables) is at least as hard as deciding whether a 3-DNF is a tautology

(because over characteristic k /∈ {1, 2, 3} linear equations can express conjunction of

three conjuncts). For this reason Ressw(linR) proofs cannot be checked in polynomial

time and thus Ressw(linR) is not a Cook-Reckhow proof system unless P = coNP

(namely, the correctness of proofs in the system cannot necessarily be checked in

polynomial-time, as required by a Cook-Reckhow propositional proof system [28]).

The reason for studying Ressw(linR) is mainly the following: Let Γ be an arbitrary

set of tautological R-linear clauses. Then, lower bounds for tree-like Ressw(linR) imply

lower bounds for tree-like Res(linR) with formulas in Γ as axioms. For example, in case

F is a field of characteristic 0, the possibility to do counting in tree-like Res(linF) is

13

quite limited. For instance, we show that 2x1 + . . .+ 2xn = 1 requires an exponential-

size in n refutations. On the other hand, such contradictions do admit short tree-like

Res(linF) refutations in the presence of the following generalized boolean axioms (which

is a tautological linear clause):

Im(f) :=
∨

A∈im2(f)
(f = A), (1.1)

where im2(f) is the image of f under 0-1 assignments. Similar to the way the Boolean

axioms (xi = 0) ∨ (xi = 1) state that the possible value of a variable is either zero or

one, the Im(f) axiom states all the possible values that the linear form f can take. If

a lower bound holds for tree-like Ressw(linF) it also holds, in particular, for tree-like

Res(linF) with the axioms Im(f), and this makes tree-like Ressw(linF) a useful system,

for which lower bounds against are sufficiently interesting.

Lower bounds and separations in characteristic zero. First, we show that

for Q, whenever α1x1 + · · · + αnxn + β = 0 is unsatisfiable (over 0-1 assignments),

it has polynomial dag-like Res(linQ) refutations if the coefficients are polynomially

bounded and it requires exponential dag-like Res(linQ) refutations if coefficients are

exponential. Note that α1x1 + · · ·+ αnxn + β = 0 expresses the subset sum principle:

α1x1 + · · ·+ αnxn = −β iff there is a subset of the integral coefficients αi whose sum

is precisely −β. The lower bound is stated in the following theorem:

Theorem (Theorem 23; Dag-like lower bound). All Res(linQ) refutations of x1 +2x2 +

· · ·+ 2nxn + 1 = 0 are of size 2Ω(n).

The proof of this theorem introduces a new lower bound argument. Specifically,

we show that every (dag- or tree-like) refutation π of a subset sum principle of the

form x1 + 2x2 + · · ·+ 2nxn + 1 = 0 can be transformed without much increase in size

into a derivation of a clause Cπ from Boolean axioms. We ensure that every disjunct

g = 0 of Cπ has at most 2cn 0-1 satisfying assignments for some c < 1. Because Cπ is

derived from Boolean axioms, it must be a Boolean tautology and therefore it must

contain at least 2(1−c)n disjuncts. As our constructed derivation is not much larger

than the original refutation, the size of the original refutation must be 2Ω(n).

This proof essentially relies on the fact that coefficients of the linear form are

exponential: every contradiction of the form f = 0 can be shown to admit polynomial

size dag-like Res(linQ) refutations whenever coefficients of f are polynomially bounded.

A natural question is whether in case of bounded coefficients f = 0 can be effeciently

refuted already by tree-like Res(linQ) refutations. The question turnes out to be

non-trivial, we prove that the answer is negative:

14

Theorem (Theorem 35). Let f be any linear polynomial over Q, which depends on n

variables. Then tree-like Res(linQ) refutations of f = 0 are of size 2Ω(
√
n).

The proof is in two stages.

First, we use a transformation analogous to the one used for dag-like bound to

reduce lower bound problem for refutations of f = 0 to lower bound problem for

derivations of clauses of certain kind. Namely, we transform any tree-like refutation π

of f = 0 to a tree-like derivation of Cπ from Boolean axioms without much increase in

size. The only difference is that this time we ensure that in every disjunct g = 0 of

Cπ linear polynomial g depends on at least n
2

variables.

Second, we prove that tree-like Res(linQ) derivations of such Cπ are large:

Theorem (Theorem 33). Any tree-like Res(linQ) derivation of any tautology of the

form
∨

j∈[N]

gj = 0, where each gj is linear over Q and depends on at least n
2

variables,

is of size 2Ω(
√
n).

To prove this, as well as some other lower bounds, we extend the Prover-Delayer

game technique as originated in Pudlak-Impagliazzo [56] for resolution, and developed

further by Itsykson-Sokolov [40] for Res(linF2), to general rings, including characteristic

zero rings. We define a non-trivial strategy for Delayer in the corresponding game and

prove that it gurantees
√
n coins using a bound on size of essential coverings of the

hypercube ([48]). The relation between Prover-Delayer games and tree-like Res(linQ)

refutations allows to conclude that the size of tree-like Res(linQ) refutations must be

2Ω(
√
n).

Also, as a corollary of Theorem 33 we obtain a lower bound on tree-like Res(linQ)

derivations of Im(f):

Corollary (Corollary 34). Let f be any linear polynomial over Q, which depends on

n variables. Then tree-like Res(linQ) derivations of Im(f) are of size 2Ω(
√
n).

We also use Prover-Delayer games to prove an exponential-size 2Ω(n) lower bound

on tree-like Ressw(linF) refutations of the pigeonhole principle PHPm
n for every field

F (including finite fields). This extends a previous result by Itsykson and Sokolov

[40] for tree-like Res(linF2). Together with the polynomial upper bound for PHPm
n

refutations in dag-like Res(linF) for fields F of characteristic zero demonstrated in [60],

our results establish a separation between dag-like Res(linF) and tree-like Ressw(linF)

for characteristic zero fields.

15

Theorem (Theorem 38; Pigeonhole principle lower bounds). Let F be any field. Then

every tree-like Ressw(linF) refutation of ¬PHPm
n has size 2Ω(n−1

2).

Theorem (Theorem 19; Raz-Tzameret [60]; Short dag-like pigeonhole principle

refutations). For every ring R of characteristic zero there exists a Res(linR) refutation

of ¬PHPm
n of polynomial size.

To prove Theorem 38 we need to prove that Delayer’s strategy from [40] is successful

over any field. This argument is new, and uses a result of Alon-Füredi [4] about the

hyperplane coverings of the hypercube.

We prove another separation between dag-like Res(linF) and tree-like Ressw(linF),

as follows. We define the image avoidance principle to be:

ImAv (x1 + · · ·+ xn) := {〈x1 + · · ·+ xn 6= k〉}k∈{0,...,n},

where 〈x1 + · · ·+ xn 6= k〉 :=
∨
k′∈{0,...,n}, k 6=k′ x1 + · · ·+ xn = k′. In words, the image

avoidance principle expresses the contradictory statement that for every 0 ≤ i ≤ n,

x1 + . . .+ xn equals some element in {0, . . . , n} \ i.

Theorem (Theorem 15). For every ring R and every linear form f , there are

polynomial-size Res(linR) refutations of ImAv (f).

Theorem (Theorem 37). Let f = ε1x1 + · · ·+ εnxn, where εi ∈ {−1, 1} ⊂ F, and let F
be a field of characteristic zero. Then any tree-like Ressw(linF) refutation of ImAv (f)

is of size at least 2
n
4 .

The lower bound in Theorem 37 is one more novel application of the Prover-

Delayer game argument, combined with the notion of immunity from Alekhnovich

and Razborov [2], as we now explain briefly.

Let f be a linear form as in Theorem 37. We consider an instance of the Prover-

Delayer game for ImAv (f). A position in the game is determined by a set Φ of

linear non-equalities of the form g 6= 0, which we think of as the set of non-equalities

learned up to this point by Prover. In the beginning Φ is empty. We define Delayer’s

strategy in such a way that for Φ an end-game position, there is a satisfiable subset

Φ′ = {g1 6= 0, . . . , gm 6= 0} ⊆ Φ such that Φ′ |= f = A for some A ∈ F, and

Delayer earns at least |Φ′| = m coins. Because F is of characteristic zero, it follows

that f ≡ A+ 1 (mod 2) |=f 6= A |= g1 · . . . · gm = 0 and thus the n
4
-immunity of

f ≡ A + 1(mod 2) ([2]) implies m ≥ n
4
. To conclude, by a standard argument if

Delayer always earns n
4

coins, then the shortest proof is of size at least 2
n
4 .

Table 1.1 sums up our knowledge up to this point with respect to characteristic 0

fields.

16

n∑
i=1

2xi = 1
n∑
i=1

2ixi = −1 ImAv

(
n∑
i=1

xi

)
PHPm

n Im

(
n∑
i=1

xi

)
t-l Res(linF) 2Ω(

√
n) 2Ω(n) 2Ω(n) 2Ω(n) 2Ω(

√
n)

t-l Ressw(linF) poly poly 2Ω(n) 2Ω(n) poly

Res(linF) poly 2Ω(n) poly poly [60] poly

Table 1.1: Lower and upper bounds for fields of characteristic 0. The notation t-l Res(linR)
stands for tree-like Res(linR). The rightmost column describes bounds on derivations, in
contract to refutations.

1.2.1.1 Lower Bounds and Separations in Finite Fields

We now turn to resolution over linear equations in finite fields. We obtain many new

tree-like lower bounds over finite fields (Table 1.2).

We have already discussed above lower bounds for the pigeonhole principle which

hold both for infinite and finite fields. We furthermore prove a separation between

tree-like Res(linFpk) (resp. tree-like Ressw(linFpk)) and tree-like Res(linFql) (resp. tree-

like Ressw(linFql)) for every pair of distinct primes p 6= q and every k, l ∈ N \ {0}.
The separating instances are mod p Tseitin formulas TS

(p)
G,σ (written as CNFs), which

are reformulations of the standard Tseitin graph formulas TSG for counting mod p.

Furthermore, we establish an exponential lower bound for tree-like Ressw(linFpk) on

random k-CNFs.2

The lower bounds for tree-like Res(linF) for finite fields F are obtained via a

variant of the size-width relation for tree-like Res(linF) together with a translation to

polynomial calculus over the field F, denoted PCF [25], such that Res(linF) proofs of

width ω are translated to PCF proofs of degree ω (the width ω of a clause is defined

to be the total number of disjuncts in a clause). This establishes the lower bounds for

the size of tree-like Res(linF) proofs via lower bounds on PCF degrees.

We show that

ω0(φ `⊥) = O
(
ω0(φ) + logSt-l Res(linR)(φ `⊥)

)
,

where ω0 is what we call the principal width, which counts the number of linear

equations in clauses when we treat as identical those defining parallel hyperplanes,

2We thank Dmitry Itsykson for telling us about the lower bound for random k-CNF for the
case of tree-like Res(linF2

), that was proved by Garlik and Ko lodziejczyk using size-width relations
(unpublished note). Our result extends Garlik and Ko lodziejczyk’s result to all finite fields. Similar
to their result, we use a size-width argument and simulation by the polynomial calculus to establish
the lower bound.

17

and St-l Res(linR)(φ `⊥) denotes the minimal size of a tree-like Res(linR) refutation of

φ.

Specifically, over finite fields the following upper and lower bounds provide expo-

nential separations:

Theorem (Theorem 44; Size-width relation). Assume φ is an unsatisfiable CNF

formula. The following relation between principal width and size holds for tree-like

Res(linF) and tree-like tree-like Ressw(linF): S(φ `⊥) = 2Ω(ω0(φ`⊥)−ω0(φ)). If F is a

finite field, then the same relation holds for the (standard) width of a clause ω.

This extends to every field a result by Garlik-Ko lodziejczyk [33, Theorem 14] who

showed a size-width relation for a system denoted tree-like PKid
O(1)(⊕), which is a

system extending tree-like Res(linF2) by allowing arbitrary constant-depth De Morgan

formulas as inputs to ⊕ (XOR gates) (though note that our result does not deal with

arbitrary constant-depth formulas).

Theorem (Theorem 45). Let F be a field and π be a Res(linF) refutation of an unsat-

isfiable CNF formula φ. Then, there exists a PCF refutation π′ of (the arithmetization

of) φ of degree ω(π).

Corollary (Corollary 46; Tseitin mod p lower bounds). For any fixed prime p there

exists a constant d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular

directed graph satisfying certain expansion properties, and F is a finite field such that

char(F) 6= p, then every tree-like Res(linF) refutation of the Tseitin mod p formula

¬TS
(p)
G,σ has size 2Ω(dn).

Corollary (Corollary 47; Random k-CNF formulas lower bounds). Let φ be a randomly

generated k-CNF with clause-variable ratio ∆, and where ∆ = ∆(n) is such that

∆ = o
(
n
k−2

2

)
, and let F be a finite field. Then, every tree-like Res(linF) refutation of

φ has size 2
Ω

(
n

∆2/(k−2)·log ∆

)
with probability 1− o(1).

Remark 1. We would like to stress that the size-width relation of Theorem 44 cannot

be used for transfering PCF degree lower bounds to tree-like Res(linF) size lower bounds

in case char(F) = 0. This is due to the essential difference between principal width

and width in this case. Thus, all the lower bounds that we prove using Prover-Delayer

games techniques in case char(F) = 0 do not follow from lower bounds for PCF.

Table 1.2 shows the results for Res(linR) over finite fields.

18

Ax = b TS
(−)
G,σ TS

(q)
G,σ random k-CNF PHPm

n

t-l Res(linFpk) 2Ω(dn) poly 2Ω(dn) 2
Ω

(
n

∆2/(k−2)·log ∆

)
2Ω(n)

t-l Res(⊕) poly [40] poly [40] 2Ω(dn) 2
Ω

(
n

∆2/(k−2)·log ∆

)
[33] 2Ω(n)

[40]

t-l Ressw(linFpk) poly poly ? ? 2Ω(n)

Table 1.2: Lower bounds over finite fields. Here G is d-regular graph and ∆ is the clause
density (number of clauses divided by the number of variables), Ax = b stands for a linear
system over Fpk that has no 0-1 solutions in the first and the third rows, and in the second

row the linear system Ax = b is over F2. The notation TS
(−)
G,σ stands for TS

(p)
G,σ in the

first and the third rows and for TS
(2)
G,σ in the second raw. t-l Res(linR) stands for tree-like

Res(linR), and p 6= q are primes (in the second raw and third column we assume q 6= 2).
Circled “?” denotes an open problem. The results marked with [40, 33] were proved in the
corresponding papers. All other results are from the current work.

1.2.2 Complexity of Linear Systems

The tree-like Res(linF) upper bounds for mod p Tseitin formulas in the case char(F) = p

stem from the following proposition:

Proposition (Proposition 16; Upper bounds on unsatisfiable linear systems). Let F
be a field and assume that the linear system Ax = b, where A is a k × n matrix over

F, has no solutions (over F). Let φ be a CNF formula encoding the linear system

Ax = b. Then, there exist tree-like Res(linF) refutations of φ of size polynomial in the

sum of sizes of encodings of all coefficients in A.

The upper bound in Proposition 16 applies only to linear systems that are un-

satisfiable over the whole field F. But does any system Ax = b over F that has a

satisfying assignment over F, but not over 0-1 assignments, admit polynomial-size

Res(linF) refutations?

For fields F with char(F) ≥ 5 or char(F) = 0 it is known that 0-1 satisfiability

of Ax = b is NP-complete (see Sec 2.2.3). This means that unless P = NP there

exist 0-1 unsatisfiable linear systems that require superpolynomial dag-like Res(linF)

refutations. Moreover, the reduction R from k-UNSAT is such that φ ∈ k-UNSAT

has Res(linF) refutations of size S iff the system R(φ) has Res(linF) refutations of size

O(S). Thus, in general proving lower bounds for linear systems can be as hard as

proving lower bounds for CNFs: lower bounds for some linear systems imply lower

bounds for CNFs.

19

An unconditional explicit bound for tree-like Res(linF) can be obtained via PCF

using size-width relation for finite fields (Theorem 44) and Proposition 7. In particular,

hard instances of the form Ax = b can be constructed by applying the reduction

in the proof of NP-completeness of 0-1 satisfiability of linear systems to, say, mod 2

Tseitin formulas. Our work implies an exponential lower bound for the size of tree-like

Res(linF) refutations of these systems (for large enough, but constant, characteristic)

and we conjecture that they are hard for dag-like Res(linF) as well.

We prove an upper bound for linear systems and suggest another, more direct,

construction of a hard candidate, using error-correcting codes.

Theorem (Theorem 24; Upper bound on 0-1 unsatisfiable linear systems). Let

Af1,...,fm : Fn → Fm be an affine map x 7→ (f1(x), . . . , fm(x)), where f1, . . . , fm

are linear forms. If the system f1 = 0, . . . , fm = 0 is unsatisfiable over 0-1, that is,

if 0 /∈ im2(Af1,...,fm x), then there exists a Res(linF) refutation of this system of size

poly(n+ |im2(Af1,...,fm x)|).

The instance is constructed specifically to be provably hard for a simple and

natural model of decision trees, which can be simulated both by tree-like Res(linF) and

PCF and reflects a natural strategy to refute 0-1 unsatisfiable linear systems. Such a

strategy for refuting Ax = b can informally be described as follows: select variables

and try to assign them 0-1 values until the system (Ax = b) �ρ becomes unsatisfiable

over F, where ρ is the current assignment, and refute it by a polynomial-size refutation,

guaranteed by Proposition 16 (above). Formally, a decision tree for Ax = b is a binary

decision tree, where every leaf is marked with unsatisfiable over F system (Ax = b) �ρ,

where ρ consists of variable assignments on the path from the root to the leaf.

The matrix A of the instance is constructed as a generator matrix of a linear

error-correcting (n, k, d)q code, where n is the code length, k is the dimension of the

code space, d is the minimal distance of the code and q = |F|. The parameter k is

chosen to be large enough to ensure that qk > 2n and thus there exists some b such

that Ax = b has no 0-1 solutions. On the other hand, d = Ω(n
logn

) is chosen to be

large enough to ensure that all the leaves of a decision tree for Ax = b are sufficiently

deep in the tree: if ρ assigns at most k < d variables, then the code generated by A �ρ
has a minimal distance at least d− k and therefore A �ρ has full rank. The existence

of this code is guaranteed by the Gilbert bound.

Theorem (Theorem 26; Lower bound for decision trees on linear systems). For every

n ∈ N there exists a 0-1 unsatisfiable linear system Ax = b over a finite field Fq,
q > 2, with n variables, such that any decision tree for this system is of size 2Ω(n

logn).

20

1.2.2.1 Nondeterministic Linear Decision Trees

There is well-known size preserving (up to a constant factor) correspondence between

tree-like resolution refutations for unsatisfiable formulas φ and decision trees, which

solve the following problem: given an assignment ρ for the variables of φ, determine

which clause C ∈ φ is falsified by querying values of the variables under the assignment

ρ. In Itsykson-Sokolov [40] this correspondence was generalized to tree-like Res(⊕)

refutations and parity decision trees. In the current work we initiate the study of linear

decision trees and their properties over different characteristics, extending the corre-

spondence to a correspondence between tree-like Res(linR) (and tree-like Ressw(linR))

derivations to what we call nondeterministic linear decision trees (NLDT).

NLDTs for an unsatisfiable set of linear clauses φ are binary rooted trees, where

every edge is labeled with a non-equality f 6= 0 for a linear form f and every leaf

is labeled with a linear clause C ∈ φ, which is violated by the non-equalities on the

path from the root to the leaf. (Note that in the same manner that in a (boolean)

decision tree (which corresponds to a tree-like resolution refutation) we go along a

path from the root to a leaf, choosing those edges that violate a literal xi or ¬xi, in an

NLDT we branch along a path that violates equalities f = 0, or equivalently, certifies

non-equalities of the form f 6= 0.)

Theorem (Theorem 28). If φ is an unsatisfiable CNF formula, then every tree-like

Res(linR) or tree-like Ressw(linR) refutation can be transformed into an NLDT for φ

of the same size up to a constant factor, and vise versa.

This is joint work with Iddo Tzameret.

1.2.3 First-Order Theories for (Semi-)Algebraic Proof
Systems

As we explained in Section 1.1.2, better understanding of what we can prove in

constant degree SoS would contribute to our understanding of SoS algorithm and

might, potentially, lead to a refutation of UGC. In certain cases, as, for example,

shown in [52], whether we can obtain approximability results depends on whether

some known theorems from, say, Boolean analysis can be formulated and proven in

constant degree SoS. For the sake of adopting and adjusting known proofs or, perhaps,

finding new proofs of such theorems for SoSd, namely SoS of constant degree, it would

be helpful to identify, what kind of reasoning patterns are feasible for SoSd. For

example, can we perform case analysis, can we reason by induction, can we reason

21

about fractional powers in SoSd, and so on. We address this matter by defining a

first-order theory TSoS such that proofs in this theory can be translated to a variant

of SoSd by a propositional translation. Our goal is to come up with a natural theory

with a language as rich as possible and axioms and rules as strong as possible, provided

refutations in the theory still can be translated to refutations in SoSd.

1.2.3.1 Theory for PCR,d

We first define a theory TPCR for constant degree polynomial calculus, where R is a

ring, and then obtain a theory TSoS for SoSd as an extension of TPCR. Theory TPCR

is a two-sorted first-order theory over the language LR= with ring sort for elements of a

ring and index sort for natural numbers. Polynomials over R are represented as ring

sort terms. For example, polynomial (x1 + . . .+ xn) · (xk − a) + b, where a, b ∈ R, is

represented as the term
∑

i(X(i), n) · (X(k)− a) + b, where k, n are index-terms; i is

index-variable;
∑

i(r, n) ∈ LR= is the summation symbol for sums with varied number

of summands; +,−, · ∈ LR= are symbols for standard ring operations; a, b ∈ R ⊂ LR=
are ring constants and X(i) ∈ LR= is a symbol for ring-sort valued oracle3, which

represents a sequence of variables. For the index sort LR= contains a symbol for every

function f : N → N such that f = O(nc) for some c. It follows that LR= contains

index-sort function symbols for all polynomially bounded k-ary functions.

Atomic formulas of TPCR are just equality predicates =rng,=ind∈ LR= for the ring

sort and index sort respectively (we omit subscripts). Arbitrary index sort predicates

are represented as the formula f(n1, . . . , nk) = 1 for some f : Nk → {0, 1}. The

logical language of TPCR apart from the usual elements of two-sorted first-order logic

contains bounded index-sort universal quantifier ∀(i < s), where i is an index-variable

and s is any index-term such that i does not appear free in s.

The axioms of TPCR include, for instance, ring axioms for +,−, ·, integral domain

axioms; axioms for
∑

i; axioms for all true sentences4, not containing occurrences of

the oracle X and free ring-variables. The theory TPCR has also induction rule for

a class of LR=-formulas, which we denote ΦR= . Every formula φ(i, y) ∈ ΦR= , where i

and y are free index- and ring-variables respectively, is such that for every n ∈ N
φ(n, y) describes a property of the oracle X and ring-variables y, which can also be

defined by systems Pn of degree d polynomial equations with variables X(0), X(1), . . .

and y. Technically, these formulas are LR=-formulas with connectives ∨,∧, bounded

index quantifier ∀(i < s) and arbitrary subformulas as long as they do not contain

3Oracle is just a function symbol.
4True in the standard model.

22

occurrences of X or free ring-variables. This completes the sketch of the definition of

TPCR.

In order to relate first-order reasoning in TPCR to PCR,d derivations we do the

following. For all formulas φ(i) in ΦR= we define a translation of φ to the family

{〈φ〉n}n of systems of polynomial equations of degree d with variables x0, . . . , xs(n) for

some polynomially bounded s(n). These translations 〈φ〉n are natural phrasings of

φ(n) in terms of systems of polynomial equations in the sense that atomic formulas

〈t(i) = 0〉n are translated to “equivalent” polynomial equations, where X(0), X(1), . . .

are replaced with variables x0, x1, . . ., and formula forming operations ∀(i < s),∧,∨
are translated to semantically equivalent operations on systems. For example, we define

〈φ ∨ ψ〉n := 〈φ〉n · 〈ψ〉n, where 〈φ〉n · 〈ψ〉n := {p · q = 0 | p = 0 ∈ 〈φ〉n, q = 0 ∈ 〈ψ〉n}.
Next, the goal is to define a translation of TPCR derivations φ(i) ` ψ(i), where

φ, ψ ∈ ΦR= , to families of PCR,d derivations 〈φ〉n ` 〈ψ〉n. By such a translation, once a

family Pn of unsatisfiable systems of polynomial equations is phrased in a uniform

way as a formula φ(i) ∈ ΦR= such that 〈φ〉n = Pn, refuting Pn in PCR,d can be reduced

to refuting φ(i) in TPCR.

In order to define this translation we represent TPCR derivations in the two-sorted

version of sequent calculus LK. By the free-cut elimination theorem for the two-sorted

first-order sequent calculus, every derivable sequent is derivable by free-cut free proofs.

Free-cut free proofs possess the following subformula property, which is very useful

for the translation: every formula in a free-cut free proof is a subformula of either a

formula in the endsequent or a formula in an axiom. As we can represent every axiom

of TPCR as a sequent, where all formulas are in ΦR= and the induction rule is defined

for ΦR= formulas, the free-cut elimination theorem guarantees that if all formulas in

a derivable sequent are in ΦR= , then there is a derivation of this sequent, where all

formulas are in ΦR= .

It is, thus, enough to define the translation on free-cut free proofs, and this can

be done inductively step by step. However, depending on the ring R, some rules of

LK can admit no translation to operations on PCR,d derivations. For example, the

contraction rule says that the sequent t = 0 −→ r = 0 ∨ r = 0 derives the sequent

t = 0 −→ r = 0. In order to translate this rule, once we have a PCR,d derivation

〈t = 0〉n ` 〈r = 0 ∨ r = 0〉n, where 〈r = 0 ∨ r = 0〉n = 〈r = 0〉2n, we should be able to

construct a PCR,d derivation 〈t = 0〉n ` 〈r = 0〉n. This can be done iff it is possible to

derive p = 0 from p2 = 0 in PCR,d for all polynomials p.

In case Fq is a field of characteristic q > 0, there exist PCFq ,d derivations p2 =

0 ` p = 0 (Proposition 49) and, consequently, we show that TPCFq derivations admit

23

a translation to PCFq ,d derivations. On the other hand, it follows from the work

in [31], that for fields F of characteristic 0, derivations (x1 + . . . + xn + 1)2 = 0 `
(x1 + . . .+xn+1) = 0 are of degree Ω(n) (Proposition 48). In this case, the translation

requires PCF,d to be extended with the radical rule p2 = 0 ` p = 0. We denote this

extension PCrad
R,d. The translation is thus given by the following theorem:

Theorem (Theorem 51). Let Π be a TPCR derivation of the sequent Γ −→ ∆ such

that all formulas in Γ and ∆ are in ΦR= and have free index-variable i. Then there

exist d ∈ N such that for every n ∈ N there exists PCrad
R,d (PCR,d in case R = Fq, q > 0)

derivation:

〈
∧
φ∈Γ

φ〉n ` 〈
∨
φ∈∆

φ〉n

Unfortunately, this translation does not yet quite reach the original goal for

F, char(F) = 0 as its destination PCrad
F,d is not PCF,d. However, although PCrad

F,d is

strictly stronger than PCF,d as a derivation system (Proposition 48), it still might

happen that PCrad
F,d is not stronger than PCF,d as a refutation system. This requires

further investigation on the power of the radical rule.

1.2.3.2 Theory for SoSd

We define two theories, which are built on top of a variant of TPCR and correspond to

constant degree SoS: TSoS and TSoS≥.

Theory TSoS is a “minimalistic” theory for SoSd: it is TPCR, extended with the

following axiom for every term t(i):
n∑
i=0

t(i)2 = 0 ⊃ ∀(i ≤ n) t(i)2 = 0. Propositional

translation of TPCR trivially extends to a translation of TSoS to an extension of

PCrad
R , which we denote PC+. The system PC+ adds to PCrad

R the following rule:

f 2
1 + · · ·+ f 2

m = 0 ` f 2
1 = 0. We extend the simulation of PCR by SoS, proven in [16],

to a simulation of PC+ by SoS:

Theorem (Theorem 54). If there exists a PC+ refutation of degree d of a set of

equalities F , then there exists SoS refutation of F of degree 2d.

We also prove that TSoS has the right strength in the sense that it formalizes

soundness of constant degree SoS:

Theorem (Theorem 57, Informal). TSoS proves soundness of constant degree SoS.

Despite of all this, the theory TSoS is too poor and provides a little insight on

strength of constant degree SoS. We introduce intuitionistic theory TSoS≥, which

24

contains the theory TPCR as a subtheory, except for the integral domain axiom and

induction axiom scheme. TSoS≥ has marked inequality symbols {≥d}d∈N and the

square root
√
x function symbol in the language. Expression t ≥d 0 has informal

meaning “t is equal to a sum of squares of degree at most d”. Additional axioms

of TSoS≥ are axioms of partially ordered ring for relations ≥d, axioms for
√
x and

induction axiom scheme for formulas with connectives ∀,∧ and atomic formulas of

the form t = r and t ≥d r and all formulas without ring oracle or ring variables. We

prove that this theory can be translated to PC+,{2}, which extends PC+ with auxiliary

variables for square roots, and that PC+,{2} is conservative over PC+:

Theorem (Theorem 58). Let Π be a TSoS≥ derivation of the sequent Γ −→ ∆ such

that all formulas in Γ and ∆ are in ΦSDP and have free index-variables i. Then there

exist d ∈ N such that for every assignment α for i and every witnessing function Wα

for 〈Γ〉Lα there exists a witnessing function W ′
α for 〈∆〉Rα and the following PC+,{2}

derivation of degree d:

〈Γ〉Lα(Wα) ` 〈∆〉Rα (W ′
α)

Theorem (Theorem 55). Let f1, . . . , fm, g be real polynomials, not containing auxiliary

variables of PC+,{2}. If there exist a PC+,{2} derivation π : f1 = 0, . . . , fm = 0 ` g = 0

of degree d and size S, then there exists PC+ derivation π′ : f1 = 0, . . . , fm = 0 ` g = 0

of degree d2O(D)
and size 2O(D)S, where D is the maximal level of nesting of square

roots.

This is joint work with Iddo Tzameret and Neil Thapen.

25

Chapter 2

Preliminaries

2.1 Notation

Denote by [n] the set {1, . . . , n}. We use x1, x2, . . . to denote variables, both proposi-

tional and algebraic. Let f be a linear polynomial (equivalently, an affine function)

over a ring R, that is, a function of the form
∑n

i=1 aixi + a0 with ai ∈ R. We

sometimes refer to a linear form as a hyperplane, since a linear form determines a

hyperplane. We denote by im2(f) the image of f under 0-1 assignments to its variables;

〈f 6= A〉 :=
∨
A 6=B∈im2(f)(f = B), where A ∈ R.

For φ a set of clauses or linear clauses (i.e., disjunctions of linear equations; see

Section ??), vars(φ) denotes the set of variables occurring in φ and let Vars denote

the set of all variables.

Let A be a matrix over a ring. We introduce the notation Ax + b for a system of

linear non-equalities, where a non-equality means 6= (note the difference between

Ax + b, which stands for Ai · x 6= bi, for all rows Ai in A, and Ax 6= b, which stands

for Ai · x 6= bi, for some row Ai in A).

If f is a linear polynomial over R and A is a matrix over R, denote by |f | the sum

of sizes of encodings of coefficients in f and by |A| the sum of sizes of encodings of

elements in A.

If C = (
∨
i∈[m] fi = 0) is a linear clause, denote by ¬C the set of non-equalities

{fi 6= 0}i∈[m]. Conversely, if Φ = {fi 6= 0}i∈[n] is a set of non-equalities, denote

¬Φ :=
∨
i∈[m] fi = 0.

If φ is a set of linear clauses over a ring R and D is a linear clause over R, denote

by
∧
C∈φC |= D and

∧
C∈φC |=R D semantic entailment over 0-1 and R-valued

assignments respectively.

Let l be a linear polynomial not containing the variable x. If C is a linear clause,

denote by C �x←l the linear clause, which is obtained from C by substituting l for x

26

everywhere in C. If φ = {Ci}i∈I is a set of clauses, denote φ �x←l:= {Ci �x←l}i∈I . We

define a linear substitution ρ to be a sequence (x1 ← l1, . . . , xn ← ln) such that each

linear polynomial li does not depend on xi. For a clause or a set of clauses φ we define

φ �ρ:= (. . . ((φ �x1←l1) �x2←l2) . . .) �xn←ln .

2.2 Propositional Proof Systems

A clause is an expression of the form l1 ∨ · · · ∨ lk, where li is a literal, where a literal

is a propositional variable x or its negation ¬x. A formula is in Conjunctive Normal

Form (CNF) if it is a conjunction of clauses. A CNF can thus be defined simply as a

set of clauses. The choice of a reasonable binary encoding of sets of clauses allows us to

define the language UNSAT ⊂ {0, 1}∗ of unsatisfiable propositional formulas in CNF.

We sometimes interpret an element in UNSAT as a formula and sometimes as a set of

clauses. Dually, a formula is in Disjunctive Normal Form (DNF) if it is a disjunction

of conjunctions of literals and TAUT is the language of tautological propositional

formulas in DNF. There is a bijection between TAUT and UNSAT, which preserves

the size of the formula, given by negation.

A formula is in k-CNF (resp. k-DNF) if it is in CNF (resp. DNF) and every clause

(resp. conjunct) has at most k literals. k-UNSAT (resp. k-TAUT) is the language of

unsatisfiable (resp. tautological) formulas in k-CNF (resp. k-DNF).

Definition 1 (Cook-Reckhow propositional proof system [28]). A propositional proof

system Π is a polynomial time computable onto function Π : {0, 1}∗ → TAUT.

Π-proofs of φ ∈ TAUT are elements in Π−1(φ). Definition 1 can be generalized to

arbitrary languages: proof system for a language L is polynomial time computable

onto function Π : {0, 1}∗ → L. In particular, a refutation system Π is a proof system

for UNSAT. Post-composition with negation turns a propositional proof system into a

refutation system and vise versa.

Denote by S(π), and alternatively by |π|, the size of the binary encoding of a

proof π in a proof system Π. For φ ∈ UNSAT and a refutation system Π denote by

SΠ(φ `⊥) (we sometimes omit the subscript Π when it is clear from the context) the

minimal size of a Π-refutation of φ.

The resolution system (which we denote also by Res) is a refutation system, based

on the following rule, allowing to derive new clauses from given ones:

C ∨ x D ∨ ¬x (Resolution rule).
C ∨D

27

A resolution derivation of a clause D from a set of clauses φ is a sequence of clauses

(D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or Di is obtained

from previous clauses by applying the resolution rule. A resolution refutation of

φ ∈ UNSAT is a resolution derivation of the empty clause from φ, which stands for

the truth value False.

A resolution derivation is tree-like if every clause in it is used at most once as a

premise of a rule. Accordingly, tree-like resolution is the resolution system allowing

only tree-like refutations.

Let F be a field. A polynomial calculus [25] derivation of a polynomial q ∈
F[x1, . . . , xn] from a set of polynomials P ⊆ F[x1, . . . , xn] is a sequence (p1, . . . , ps), pi ∈
F[x1, . . . , xn] such that for every 1 ≤ i ≤ s either pi = x2

j −xj , pi ∈ P or pi is obtained

from previous polynomials by applying one of the following rules:

f g
(α, β ∈ F, f, g ∈ F[x1, . . . , xn])

αf + βg

f
(f ∈ F[x1, . . . , xn]) .

x · f

A polynomial calculus refutation of P ⊆ F[x1, . . . , xn] is a derivation of 1. The degree

d(π) of a polynomial calculus derivation π is the maximal total degree of a polynomial

appearing in it. This defines the proof system PCF for the language of unsatisfiable

systems of polynomial equations over F. It can be turned into a proof system for

k-UNSAT via arithmetization of clauses as follows: (x1 ∨ . . . ∨ xk ∨ ¬y1 ∨ . . . ∨ ¬yl) is

represented as (1− x1) · . . . · (1− xk) · y1 · . . . · yl = 0.

2.2.1 Hard Instances

2.2.1.1 Pigeonhole Principle

The pigeonhole principle states that there is no injective mapping from the set [m] to the

set [n] for m > n. Elements of the former and the latter sets are referred to as pigeons

and holes, respectively. The CNF formula, denoted PHPm
n , encoding the negation of

this principle is defined as follows. Let the set of propositional variables {xi,j}i∈[m],j∈[n]

correspond to the mapping from [m] to [n], that is, xi,j = 1 iff the ith pigeon is mapped

to the jth hole. Then ¬PHPm
n := Holesmn ∪ Pigeonsmn ∈ UNSAT, where Pigeonsmn =

{
∨
j∈[n] xi,j}i∈[m] are axioms for pigeons and Holesmn = {¬xi,j ∨ ¬xi′,j}i 6=i′∈[m],j∈[n] are

axioms for holes.

Weaker (namely, easier to refute) versions of ¬PHPm
n are obtained by augmenting

it with the functionality axioms Funcmn := {¬xi,j ∨ ¬xi,j′}i∈[m],j 6=j′∈[n] (¬FPHPm
n) or

the surjectivity axioms Surjmn := {
∨
i∈[m] xi,j}j∈[n] (¬onto-PHPm

n).

28

2.2.1.2 Mod p Tseitin Formulas

We use the version given in [2] (which is different from the one in [23, 60]). Let G =

(V,E) be a directed d-regular graph, that is a graph with incoming and outgoing degrees

of every vertex are equal to d. We assign to every edge (u, v) ∈ E a corresponding

variable x(u,v). Let σ : V → Fp. The Tseitin mod p formulas ¬TS
(p)
G,σ are the CNF

encoding of the following equations for all u ∈ V :

∑
(u,v)∈E

x(u,v) −
∑

(v,u)∈E

x(v,u) ≡ σ(u) mod p . (2.1)

Note that we use the standard encoding of boolean functions as CNF formulas and

the number of clauses, required to encode these equations is O(2d|V |). ¬TS
(p)
G,σ is

unsatisfiable if and only if
∑

u∈V σ(u) 6≡ 0 mod p. To see this, note that if we sum

(2.1) over all nodes u ∈ V we obtain precisely
∑

u∈V σ(u) which is different from 0

mod p; but on the other hand, in this sum over all nodes u ∈ V each edge (u, v) ∈ E
appears once with a positive sign as an outgoing edge from u and with a negative sign

as an incoming edge to v, meaning the total sum is 0, which is a contradiction.

In particular, ¬TS
(2)
G,σ are the classical Tseitin formulas [64] and TS

(2)
G,1, where 1 is

the constant function v 7→ 1 (for all v ∈ V), expresses the fact that the sum of total

degrees (incoming + outgoing) of the vertices is even.

The proof complexity of Tseitin tautologies depends on the properties of the graph

G. For example, if G is just a union of Kd+1 (the complete graphs on d+ 1 vertices),

then they are easy to prove. On the other hand, they are known to be hard for some

proof systems if G satisfies certain expansion properties.

Let G = (V,E) be an undirected graph. For U,U ′ ⊆ V define e(U,U ′) := {(u, u′) ∈
E |u ∈ U, u′ ∈ U ′}. Consider the following measure of expansion for r ≥ 1:

cE(r,G) := min
|U |≤r

e(U, V \U)

|U |

G is (r, d, c)-expander if G is d-regular and cE(r,G) ≥ c. There are explicit construc-

tions of good expanders. For example:

Proposition 2 (Lubotzky et. al [50]). For any d, there exists an explicit construction

of d-regular graph G, called Ramanujan graph, which is (r, d, d(1 − r
n
) − 2

√
d− 1)-

expander for any r ≥ 1.

Proposition 3 (Alekhnovich-Razborov [2]). For any fixed prime p there exists a

constant d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular

29

Ramanujan graph on n vertices (augmented with arbitrary orientation of its edges)

and char(F) 6= p, then for every function σ such that ¬TS
(p)
G,σ ∈ UNSAT every PCF

refutation of ¬TS
(p)
G,σ has degree Ω(dn).

2.2.1.3 Random k-CNFs

A random k-CNF is a formula φ ∼ Fn,∆k with n variables that is generated by picking

randomly and independently ∆ · n clauses from the set of all
(
n
k

)
· 2k clauses.

Proposition 4 (Alekhnovich-Razborov [2]). Let φ ∼ Fn,∆k , k ≥ 3 and ∆ = ∆(n) is

such that ∆ = o
(
n
k−2

2

)
. Then every PCF refutation of φ has degree Ω

(
n

∆2/(k−2)·log ∆

)
with probability 1− o(1) for any field F.

2.2.2 Error-Correcting Codes

Definition 2 ([?]). Let A : Fkq ↪→ Fnq be a linear embedding. The image C = im(A)

of A is called (n, k, d)q-code if for any x, y ∈ C holds dH(x, y) ≥ d, where dH(x, y) =

|{i |xi 6= yi}| is the Hamming distance. The matrix of A is called generator matrix

for C.

Theorem 5 (Gilbert bound [?]). If q is a power of a prime and n, k, d ∈ N, n ≥ k

are such that inequality

d∑
i=1

(
n
i

)
· (q − 1)i < qn−k+1

holds, then there exists (n, k, d)q-code.

2.2.3 Complexity of Linear Systems

It is a well-known fact that deciding 0-1 satisfiability of linear systems over Fp, p ≥ 5

or of linear systems over Q (even if coefficients are small) are NP-complete problems.

Indeed, for example, the 3-clause (x1 ∨ ¬x2 ∨ x3) can be represented as the linear

equation with additional Boolean variables y1, y2: x1+(1−x2)+x3 = 1+y1+y2. In this

way k-SAT reduces to 0-1 satisfiability of linear systems over a field of characteristic 0

or p > k.

Theorem 6. The problem of deciding 0-1 satisfiability of linear systems over a field

of characteristic 0 or p ≥ 5 is NP-complete. In case of characteristic 0 this also holds

if the size of coefficients is required to be bounded by a constant.

30

The mapping R of k-CNFs to linear systems described above can be used to

translate lower bounds on degree of PCF refutations from k-CNFs to linear systems.

Proposition 7. If φ ∈ k-UNSAT and F is a field such that char(F) > k or char(F) =

0, then φ admits PCF refutations of degree d iff R(φ) admits PCF refutations of degree

O(d).

Proof: Denote σ the mapping from literals to linear polynomials such that: σ(x) := x

and σ(¬x) := 1−x. Let τ be the following mapping from clauses to linear polynomials:

τ(l1 ∨ · · · ∨ ls) := σ(l1) + · · ·+ σ(ls)− 1− y(1)
l1∨···∨ls − · · · − y

(s−1)
l1∨···∨ls , where y

(i)
l1∨···∨ls are

auxiliary Boolean variables. Then R translates φ = {Ci}i∈[m] to the 0-1 unsatisfiable

linear system L: τ(C1) = 0, . . . , τ(Cm) = 0.

Assume L has PCF refutation π of degree d. If x1, . . . , xn are variables of φ, then

all the auxiliary variables y
(i)
Cj

can be substituted with polynomials v
(i)
Cj

(x1, . . . , xn) of

degree at most k such that Cj |= (τ(Cj) �ρv) = 0, where ρv stands for the substitution

and the entailment is over 0-1 assignments. It is easy to see that π can be extended to

the proof π �ρv of degree at most k · d, where all the auxiliary variables are substituted

with the corresponding polynomials. Due to implicational completeness of PCF, there

are PCF derivations πj : Cj ` (τ(Cj) �ρv) = 0 of degree at most k. Composition of

{πj}j∈[m] with π �ρv gives a PCF refutation of degree at most k · d.

Conversely, if π is a PCF refutation of φ of degree d, then the composition of

derivations τ(Cj) = 0 ` Cj with π gives a refutation of L of degree at most max(k, d).

2.2.4 Semi-Algebraic Proof Systems

Let F = {fi(x1, . . . , xn) = 0}i∈[m] and H = {hj(x1, . . . , xn) ≥ 0}j∈[k] be sets of

polynomial equalities and inequalities over R. We call the pair (F ,H) an SDP pair.

The following defines semi-algebraic analogue of the notion of ideal:

Definition 3. The cone c(h1, . . . , hk), generated by h1, . . . , hk ∈ R[x1, . . . , xn], is

the set of polynomials in R[x1, . . . , xn], derivable from h1, . . . , hk by a sequence of

applications of the following rules:

p q
p+ q

p q
p · q p2

31

Sum-of-squares(SoS):

A SoS derivation of q ≥ 0 from (F ,H) is a tuple (g1, . . . , gm, u0, . . . , uk) such that:∑
i∈[m]

gi · fi +
∑
i∈[k]

ui · hi + u0 = q

and all ui are sums of squares of polynomials. A SoS refutation of (F ,H) is a SoS

derivation of −1.

Positivstellensatz(PS):

A PS derivation of q ≥ 0 from (F ,H) is a SoS derivation of q ≥ 0 from (F , Ĥ),

where Ĥ = {
∏

i∈I hi}I⊆[k]. An inequality q ≥ 0 admits PS derivation from (F ,H) iff

q ∈ (f1, . . . , fm) + c(h1, . . . , hk). A PS refutation of (F ,H), which is a PS derivation

of −1, exists iff (F ,H) is unsatisfiable (Stengle’s Positivstellensatz).

Positivstellensatz calculus(PC>):

PC> is a dynamic version of the static system PS defined above. If q = f + h and

f ∈ (f1, . . . , fm), h ∈ c(h1, . . . , hk), then PC> derivation of q ≥ 0 is a PC derivation

of f from f1, . . . , fm together with a PS derivation of h from h1, . . . , hk.

The work in [16] shows that the static and dynamic versions of Positivstellensatz

system are equivalent:

Corollary 2.2 in [16]. If (F ,H) has PC> refutation of degree d and size S, then it

has a PS refutation of degree 2d and size poly(S).

2.3 Sequent Calculus LK

The logical symbols of LK are: ∧,∨,¬,⊃,∀,∃. A line in LK proof is called a sequent

and is of the form Γ −→ ∆, where Γ and ∆ are multisets of formulas. Γ and ∆ are

called cedents, Γ is called antecedent, ∆ is called succedent. The intended meaning of

sequent φ1, . . . , φn −→ ψ1, . . . , ψm is:

φ1 ∧ . . . ∧ φn ⊃ ψ1 ∨ . . . ∨ ψm

Definition 4. An LK proof is a tree of sequents, where leaves are sequents of the

form φ −→ φ (axioms), the root is what is proved and any sequent, that is not a leaf,

is obtained from its children by one of the following rules:

32

1. Structural rules:

Γ −→ ∆ (Left weakening)
Γ, φ −→ ∆

Γ −→ ∆ (Right weakening)
Γ −→ ∆, φ

Γ −→ ∆, φ, φ
(Contraction)

Γ −→ ∆, φ

2. Left and right ∧-introduction:

Γ −→ ∆, φ Γ −→ ∆, ψ
(Right)

Γ −→ ∆, φ ∧ ψ
φ,Γ −→ ∆

(Left)
φ ∧ ψ,Γ −→ ∆

3. Left and right ∨-introduction:

φ,Γ −→ ∆ ψ,Γ −→ ∆
(Left)

φ ∨ ψ,Γ −→ ∆

Γ −→ ∆, φ
(Right)

Γ −→ ∆, φ ∨ ψ

4. Left and right ⊃-introduction:

Γ −→ ∆, φ ψ,Γ −→ ∆
(Left)

φ ⊃ ψ,Γ −→ ∆

φ,Γ −→ ∆, ψ
(Right)

Γ −→ ∆, φ ⊃ ψ

5. Left and right ¬-introduction:

Γ −→ ∆, φ
(Left)¬φ,Γ −→ ∆

Γ, φ −→ ∆
(Right)

Γ −→ ∆,¬φ

6. Left and right ∃-introduction:

φ(b),Γ −→ ∆
(Left)

∃xφ(x),Γ −→ ∆

Γ −→ ∆, φ(t)
(Right)

Γ −→ ∆,∃xφ(x)

7. Left and right ∀-introduction:

33

φ(t),Γ −→ ∆
(Left)

∀xφ(x),Γ −→ ∆

Γ −→ ∆, φ(b)
(Right)

Γ −→ ∆,∀xφ(x)

Case 5: Cut rule:

Γ −→ ∆, φ φ −→ ∆
Γ −→ ∆

LK as defined above is sound and complete proof system for first-order logic. In

Chapter 4 we use two sorted (index sort and ring sort) version of LK extended with

index-sort bounded universal quantifier with rules:

φ(t),Γ −→ ∆
(Left)

t < s∀(x < s)φ(x),Γ −→ ∆

b < s,Γ −→ ∆, φ(b)
(Right)

Γ −→ ∆,∀(x < s)φ(x)

2.4 Propositional Translations

Here we sketch propositional translations, which are precursors to our translations in

Chapter 4.

One of the classical and most important propositional translations was given by

Paris and Wilkie [54] for the theories of bounded arithmetic Si2 and T i2. Every Σb
i

formula φ(x) with parameter x is translated to a family of propositional formulas

〈φ〉n, n ∈ N of Σ′-depth i 1. The proofs in Si2 and T i2 are translated to propositional

sequent calculus PK proofs of Σ′-depth i. The following theorem establishes formal

relation between bounded arithmetic proofs in Si2 and T i2 and PK proofs:

Theorem. Let φ(x) be a Σb
i formula.

1. Suppose Si2 ` φ(x). Then there exists a function S(n) = 2n
O(1)

such that for all

n 〈φ〉n has a PK proof of Σ′-depth i and of size S(n). This proof has height

O(log logS(n)).

2. Suppose T i2 ` φ(x). Then there exists a function S(n) = 2n
O(1)

such that for all

n 〈φ〉n has a PK proof of Σ′-depth i and of size S(n). This proof has height

O(logS(n)).

In [14] a theories Ud,k-IND were defined and for the theory U2,1-IND a rather simple

translation to resolution was established.
1Σ′-depth is a slightly adjusted version of depth of propositional formula, that is of maximal

nesting depth of ∧, ∨ blocks in it. It doesn’t count depth of small formulas at the bottom.

34

Chapter 3

Resolution over Linear Equations

3.1 Resolution with Linear Equations over Gen-

eral Rings

In this section we define and outline some basic properties of systems that are

extensions of resolution, where clauses are disjunctions of linear equations over a ring

R: (
∑n

i=0 a1ixi + b1 = 0) ∨ · · · ∨ (
∑n

i=0 akixi + bk = 0). Disjunctions of this form are

called linear clauses.

The rules of Res(linR) are as follows (cf. [60]):

C ∨ f(x) = 0 D ∨ g(x) = 0
(Resolution) (α, β ∈ R)

C ∨D ∨ (αf(x) + βg(x)) = 0

C ∨ a = 0(Simplification) (0 6= a ∈ R)
C

C(Weakening)
C ∨ f(x) = 0

where f(x), g(x) are linear forms over R and C,D are linear clauses. The Boolean

axioms are defined as follows:

xi = 0 ∨ xi = 1, for xi a variable

A Res(linR) derivation of a linear clause D from a set of linear clauses φ is a sequence

of linear clauses (D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or is a

Boolean axiom or Di is obtained from previous clauses by applying one of the rules

above. A Res(linR) refutation of an unsatisfiable set of linear clauses φ is a Res(linR)

derivation of the empty clause (which stands for false) from φ. The size of a Res(linR)

derivation is the total size of all the clauses in the derivation, where the size of a

clause is defined to be the total number of occurrences of variables in it plus the total

35

size of all the coefficient occurring in the clause. The size of a coefficient when using

integers (or integers embedded in characteristic zero rings) will be the standard size

of the binary representation of integers.

In this definition we assume that R is a non-trivial (R 6= 0) ring such that there are

polynomial-time algorithms for addition, multiplication and taking additive inverses.

Along with size, we will be dealing with two complexity measures of derivations:

width and principal width.

Definition 5. A clause C = (f1 = 0 ∨ · · · ∨ fm = 0) has width ω(C) = m and

principal width ω0(C) =
∣∣{fi}i∈[m]/∼

∣∣ where ∼ identifies R-linear forms fi = 0 and

fj = 0 if they define parallel hyperplanes, that is, if fi = Afj +B or fj = Afi +B for

some A,B ∈ R. For µ ∈ {ω, ω0}, the measure µ associated with a Res(linR) derivation

π = (D1, . . . , Ds) is µ(π) := max1≤i≤s µ(Di). For φ ∈ UNSAT, denote by µ(φ `⊥)

the minimal value of µ(π) over all Res(linR) refutations π.

Proposition 8. Res(linR) is sound and complete. It is also implicationally complete,

that is if φ is a set of linear clauses and C is a linear clause such that φ |= C, then

there exists a Res(linR) derivation of C from φ.

Proof: The soundness can be checked by inspecting that each rule of Res(linR) is sound.

Implicational completeness (and thus completeness) follows from Proposition 29.

We now define two systems of resolution with linear equations over a ring, where

some of the rules are semantic: Ressw(linR) and Sem-Res(linR). Ressw(linR) is obtained

from Res(linR) by replacing the boolean axioms with 0 = 0, discarding simplification

rule and replacing the weakening rule with the following semantic weakening rule:

C(Semantic weakening) (C |= D)
D

The system Sem-Res(linR) has no axioms except for 0 = 0, and has only the

following semantic resolution rule:

C C ′(Semantic resolution) (C ∧ C ′ |= D)
D

It is easy to see that Res(linR) ≤p Ressw(linR) ≤p Sem-Res(linR), where P ≤p Q
denotes that Q polynomially simulates P .

In contrast to the case R = F2 (see [40]), for rings R with char(R) /∈ {1, 2, 3} both

Ressw(linR) and Sem-Res(linR) are not Cook-Reckhow proof systems, unless P = NP:

36

Proposition 9. The following decision problem is coNP-complete: given a linear

clause over a ring R with char(R) /∈ {1, 2, 3} decide whether it is a tautology under

0-1 assignments.

Proof: Consider a 3-DNF φ and encode every conjunct (xσ1
i1
∧ · · · ∧ xσkik) ∈ φ, 1 ≤ k ≤

3, σi ∈ {0, 1} as the equation (1 − 2σ1)x1 + · · · + (1 − 2σk)xk = k − (σ1 + · · · + σk),

where x0 := x, x1 := ¬x. Then φ is tautological if and only if the disjunction of these

linear equations is tautological (that is, for every 0-1 assignment to the variables at

least one of the equations hold, when the equations are computed over a ring with

characteristic zero or finite characteristic bigger than 3).

We leave it as an open question to determine the complexity of verifying a correct

application of the semantic weakening in case char(R) = 3 or in case char(R) = 2

and R 6= F2. In the case R = F2 the negation of a clause is a system of linear

equations and thus the existence of solutions for it can be checked in polynomial time.

Therefore Ressw(linF2) is a Cook-Reckhow propositional proof system. The definitions

of Res(linF2), Ressw(linF2) and Sem-Res(linF2) coincide with the definitions of syntactic

Res(⊕), Res(⊕) and Ressem(⊕) from [40], respectively1. As showed in [40], Res(linF2),

Ressw(linF2) and Sem-Res(linF2) are polynomially equivalent.

We now show that if char(R) /∈ {1, 2, 3}, then Ressw(linR) is polynomially bounded

as a proof system for 3-UNSAT (that is, admits polynomial-size refutation for every

instance):

Proposition 10. If char(R) /∈ {1, 2, 3}, then dag-like Ressw(linR) and tree-like Sem-

Res(linR) are polynomially bounded (not necessarily Cook-Reckhow) propositionally

proof systems for 3-UNSAT.

Proof: Let φ(x1, . . . , xn) = {Ci}i∈[m] ∈ 3-UNSAT. Given C = (xσ1
j1
∨ . . . ∨ xσkjk)

define lin(¬C) := ((2σ1 − 1)xj1 + . . .+ (2σk − 1)xjk − (σ1 + . . .+ σk)) where σi ∈
{0, 1}, jl ∈ [n], x0 := x, x1 := ¬x. The linear clause lin(¬φ) :=

∨
i∈[m] lin(¬Ci) = 0 is

a tautology (under 0-1 assignments) and thus can be derived in Ressw(linR) in a single

step as a weakening of 0 = 0 or resolving 0 = 0 with 0 = 0 in tree-like Sem-Res(linR).

In tree-like Sem-Res(linR) the disjunct lin(¬Ci) = 0 can be eliminated from lin(¬φ)

by a single resolution with Ci, thus the empty clause is derived by a sequence of m

resolutions of lin(¬φ) with C1, . . . , Cm.

1There is, however, one minor difference in the formulation of syntactic Res(⊕) and Res(linF2
):

the former does not have the boolean axioms, but has an extra rule (addition rule).

37

Similarly, the disjuncts lin(¬Ci) = 0 are eliminated from lin(¬φ) in Ressw(linR),

but with a few more steps. Let D0 be the empty clause and Ds+1 := Ds∨ lin(¬Cs+1) =

0, 0 ≤ s < m. Assume Ds+1 is derived and assume without loss of generality,

that Cs+1 = (x1 = 1 ∨ . . . ∨ xk = 1) and thus lin(¬Cs+1) = (−x1 − . . .− xk).
Derive Ds as follows. Resolve Ds+1 with Cs+1 on lin(¬Cs+1) + (xk − 1) to get

the clause E1 := Ds ∨ (−x1 − . . .− xk−1 − 1) = 0 ∨ x1 = 1 ∨ . . . ∨ xk−1 = 1 and

apply semantic weakening to get E ′1 := Ds ∨ x1 = 1 ∨ . . . ∨ xk−1 = 1. Resolve Ds+1

with E ′1 on lin(¬Cs+1) + (xk−1 − 1) and apply semantic weakening to get the clause

E ′2 := Ds ∨ x1 = 1 ∨ . . . ∨ xk−2 = 1. After k steps the clause Ds = E ′k can be

derived.

The following proposition is straightforward, but useful as it allows, for example,

to transfer results about Res(linQ) to Res(linZ).

Proposition 11. If R is an integral domain and Frac(R) is its field of fractions,

then Res(linR) is equivalent to Res(linFrac(R)) and tree-like Res(linR) is equivalent to

tree-like Res(linFrac(R)).

Proof: Every proof in tree-like Res(linR) is also a proof in tree-like Res(linFrac(R)). To

get the converse, just multiply every line by the least common multiple of all the

coefficients in the tree-like Res(linFrac(R)) proof.

3.1.1 Basic Counting in Res(linR) and Ressw(linR)

Here we introduce several unsatisfiable sets of linear clauses that express some counting

principles, and serve to exemplify the ability of dag-like Res(linR), tree-like Res(linR)

and tree-like Ressw(linR) to reason about counting, for a ring R. We then summarize

what we know about refutations of these instance in our different systems, proving

along the way some upper bounds and stating some lower bounds proved in the sequel.

Our unsatisfiable instances are the following:

Linear systems: If A = (B|b) is an m × (n + 1) matrix over R, where the B

sub-matrix

consists of the first n columns, such that Bx = b has no 0-1 solutions, then (Bi

is the ith row in B):

LinSys(A) := {Bi · x = bi}i∈[m] . (3.1)

38

Subset Sum: Let f be a linear form over R such that 0 /∈ im2(f). Then,

SubSum(f) := {f = 0} . (3.2)

Image avoidance: Let f be a linear form over R and recall the notation 〈f 6= A〉
from Sec. 2.1. We define

ImAv (f) := {〈f 6= A〉 : A ∈ im2(f)} . (3.3)

We also consider the following (tautological) generalization of the Boolean axiom

x = 0 ∨ x = 1.

Image axiom: For f a linear form, define

Im(f) :=
∨

A∈im2(f)

f = A . (3.4)

Dag-Like Res(linR)

Upper bounds. For any given linear form f , Im(f) has a Res(linR)-derivation of

polynomial-size (in the size of Im(f)):

Proposition 12. Let f =
∑n

i=1 aixi + b be a linear form over R. There exists a

Res(linR) derivation of Im(f) of size polynomial in |Im(f)| and of principal width at

most 3.

Proof: We construct derivations of Im
(∑k

i=1 aixi + b
)
, 0 ≤ k ≤ n, inductively on k.

Base case: k = 0. In this case Im(b) is just the axiom b = b and thus derived in one

step.

Induction step: Let fk :=
∑k

i=1 aixi + b and assume Im(fk) was already derived.

Derive C0 :=
(∨

A∈im2(fk) fk + ak+1xk+1 = A
)
∨ xk+1 = 1 from Im(fk) by |im2(fk)|

many resolution applications with xk+1 = 0 ∨ xk+1 = 1. Similarly derive C1 :=(∨
A∈im2(fk) fk + ak+1xk+1 = A+ ak+1

)
∨ xk+1 = 0 and obtain Im(fk+1) by resolving

C0 with C1 on xk+1. The size of the derivation is n · |Im(f)|, and as there is no

clause with more than 3 equations that determines non-parallel hyperplanes, hence

the principal width of the derivation is at most 3.

39

Proposition 13. For every linear form f such that 0 /∈ im2(f), the contradiction

SubSum(f) admits Res(linR) refutation of size polynomial in |Im(f)|.

Proof: First construct the shortest derivation of Im(f), and then by a sequence of

|im2(f)| many application of the resolution rule with f = 0 derive the empty clause.

By Proposition 12 the resulting refutation is of polynomial in |Im(f)| size.

Proposition 14. Let f be a linear form over R, a ∈ im2(f) and

φ = {〈f 6= b〉}b∈im2(f), b 6=a. Then there exists Res(linR) derivation π of f = a from φ,

such that S(π) = poly(|φ|) and ω0(π) ≤ 3.

Proof: Let A1, . . . , AN = a be an enumeration of all the elements in im2(f). By

Proposition 12 there exists a derivation of
(∨

i≥1 f = Ai
)

of principal width at most 3.

For 1 < k < N , we derive C :=
(∨

i≥k+1 f = Ai
)

from
(∨

i≥k f = Ai
)

= (C ∨ f = Ak)

and 〈f 6= Ak〉 = (C∨f = A1∨· · ·∨f = Ak−1) in k−1 steps as follows: at the sth step we

get (C∨f−f = As−Ak∨f = As+1∨· · ·∨f = Ak−1) = (C∨f = As+1∨· · ·∨f = Ak−1)

by resolving C∨f = As∨· · ·∨f = Ak−1 with C∨f = Ak. We thus obtain a derivation

of principal width ω0 ≤ 3 and of size (1 + · · ·+ (N − 2))|f | = (N−1)(N−2)
2

|f |.

Corollary 15. For every linear form f the contradiction ImAv (f) admits polynomial-

size Res(linR) refutations.

Proof: Pick some a ∈ im2(f). By Proposition 14 there is a derivation of f = a from

ImAv (f) of polynomial size. This derivation can be extended to a refutation of ImAv (f)

by a sequence of resolution rule applications of f = a with 〈f 6= a〉 ∈ ImAv (f).

In Section 3.2.2.1 we prove an upper bound for LinSys(A) in terms of the size of

the image of the affine map, corresponding to A (Theorem 24). All other Res(linR)

upper bounds for LinSys(A) are tree-like. So for more LinSys(A) upper bounds we

refer the reader to the tree-like Res(linR) upper bounds further in this section.

Lower bounds. In Sec. 3.2.1 we prove an exponential lower bound for SubSum(f) in

case f is a linear form with large coefficients (Theorem 23).

Tree-Like Res(linR)

Upper bounds. In case R is a finite ring, in Sec. 3.3.1 we prove that the clauses in

Im(f) admit derivations of polynomial size (Theorem 30). Obviously, in that case

(R is finite) any unsatisfiable R-linear equation f = 0 has at most |R| variables and

SubSum(f) are always refutable in constant size. In contrast, in case R = Q we

40

prove a lower bound for Im(f), SubSum(f) and ImAv (f) for a specific f with small

coefficients (see the lower bounds below).

In case a matrix A = (B|b) with entries in a field F defines a system of equations

Bx = b, that is unsatisfiable under arbitrary F-valued assignments (not just under 0-1

assignments), we prove a polynomial upper bound for tree-like Res(linF) refutations

of LinSys(A).

Proposition 16. If a m× (n+ 1) matrix A = (B|b) with entries in a field F is such

that Bx = b has no F-valued solutions, then there exists tree-like Res(linF) refutation

of LinSys(A) of linear size.

Proof: It is a well-known fact from linear algebra that Bx = b has no F-valued solutions

iff there exists α ∈ Fm such that αTB = 0 and αT b = 1. Therefore, by m−1 resolutions

ofB1x−b1 = 0, . . . , Bmx−bm = 0 we can derive−α1(B1x−b1)−. . .−αm(Bmx−bm) = 0,

which is 1 = 0.

Lower bounds. In Sec. 3.2.1 we prove tree-like Res(linQ) exponential-size lower bounds

for derivations of Im(f) and refutations of SubSum(f) for any f (Corollary 34 and

Theorem 35). For ImAv (f) whenever f is of the form f = ε1x1 + . . . + εnxn − A

for some εi ∈ {−1, 1}, A ∈ F the lower bound holds even for the stronger system

tree-like Ressw(linF) (see below).

Tree-Like Ressw(linR)

Upper bounds. Most of the instances above admit short derivations/refutations in

tree-like Ressw(linR): Im(f) is semantic weakening of 0 = 0 and thus derivable in one

step; The empty clause is a semantic weakening of SubSum(f) and LinSys(A) and thus

can be refuted via deriving
∨
i∈[m]〈Aix− bi 6= 0〉 as a semantic weakening of 0 = 0 and

resolving it with equalities in LinSys(A) = {Aix− bi = 0}i∈[m].

Lower bounds. In case F is a field of characteristic zero, ImAv (f) are hard even for

tree-like Ressw(linR) whenever f is of the form f = ε1x1 + . . . + εnxn − A for some

εi ∈ {−1, 1}, A ∈ F (Theorem 37).

3.1.2 CNF Upper Bounds for Res(linR)

In this section we outline two basic polynomial upper bounds, which we use to establish

our separations in subsequent sections: short tree-like Res(linR) refutations for CNF

encodings of linear systems over a ring R, and short Res(linR) refutations for ¬PHPm
n .

Together with our lower bounds, these imply the separation between tree-like Res(linF)

41

and tree-like Res(linF′), where F,F′ are fields of positive characteristic such that

char(F) 6= char(F′). The short refutation of the pigeonhole principle will imply a

separation between dag-like and tree-like Res(linF) for fields F of characteristic 0.

In what follows we consider standard CNF encodings of linear equations f = 0

where the linear equations are considered as Boolean functions (i.e., functions from

0-1 assignments to {0, 1}); we do not use extension variable in these encodings.

Proposition 17. Let F be a field and Ax = b be a system of linear equations that

has no solution over F, where A is k × n matrix with entries in F, and Ai denotes

the ith row in A. Assume that φi is a CNF encoding of Ai · x − bi = 0, for i ∈ [k].

Then, there exists a tree-like Res(linF) refutation of φ = {φi}i∈[k] of size polynomial in

|φ|+
∑

i∈[k]

∣∣Ai · x− bi = 0
∣∣.

Proof: The idea is to derive the actual linear system of equations from their CNF

encoding, and then refute the linear system using a previous upper bound (Proposi-

tion 16).

If ni is the number of variables in Ai · x − bi = 0, then |φi| = Θ(2ni). By

Proposition 29 proved in the sequel there exists a tree-like Res(linF) derivation of

Ai · x− bi = 0 from φi of size O(2ni |Ai · x− bi = 0|) = O(|φi| ·
∣∣Ai · x− bi = 0

∣∣).
By Proposition 16 there exists a tree-like Res(linF) refutation

of {Ai · x− bi = 0}i∈[k] of size O
(∑

i∈[k] |Ai · x− bi = 0|
)

. The total

size of the resulting refutation of φ is O
(∑

i∈[k]

∣∣φi| · |Ai · x− bi = 0
∣∣)

and thus is O

((∑
i∈[k] |φi|+

∑
i∈[k] |Ai · x− bi = 0|

)2
)

=

O

((
|φ|+

∑
i∈[k] |Ai · x− bi = 0|

)2
)

.

As a corollary we get the polynomial upper bound for the Tseitin formulas (see

Sec. 2.2.1.2 for the definition):

Theorem 18. Let G = (V,E) be a d-regular directed graph, p a prime number,

σ : V → Fp such that
∑

u∈V σ(u) 6≡ 0 (mod p), then ¬TS
(p)
G,σ admit tree-like Res(linFp)

refutations of polynomial size.

Proof: ¬TS
(p)
G,σ is an unsatisfiable system of linear equations over Fp (note that no

assignment of F-elements to the variables in ¬TS
(p)
G,σ is satisfying, and so we do not

need to use the (non-linear) Boolean axioms to get the unsatisfiability of the system of

equations). Therefore, by Proposition 17 there exists a tree-like Res(linFp) refutation

of ¬TS
(p)
G,σ of polynomial size.

42

Theorem 19 ([60]). Let R be a ring such that char(R) = 0. There exists a Res(linR)

refutation of ¬PHPm
n of polynomial size.

Proof: This follows from the upper bound of [60] for Res(linZ) and the fact that any

Res(linZ) proof can be interpreted as Res(linR) if R is of characteristic 0.

3.2 Dag-Like Lower Bounds

3.2.1 Dag-Like Lower Bounds for the Subset Sum Principle

In this section we prove an exponential lower bound on the size of dag-like Res(linQ)

refutations of SubSum(f), where f = 1 + x1 + · · ·+ 2nxn.

The lower bound is obtained by defining a mapping, which sends every refutation

π of f = 0 to a derivation π′ of some clause Cπ from Boolean axioms, in such a way

that π′ satisfies two properties:

1. π′ is at most polynomially larger than π.

2. Cπ must be exponentially large.

We ensure that the second property holds by defining the construction of π′ in

such a way that every disjunct g = 0 in Cπ has small number Zg of 0-1 solutions,

namely Zg is at most 2cn for some c < 1. This together with the oservation that Cπ

must be a Boolean tautology, because it is derivable from Boolean axioms, implies

that Cπ must be of exponential size. Therefore, by the first property, π must be of

exponential size.

The fact that f has exponentially large coefficients is essential in our proof that Cπ

is of exponential size. All contradictions of the form f = 0, where f has polynomially

bounded coefficients, have polynomial dag-like Res(linQ) refutations and, thus, there

is no hope to prove strong bounds for dag-like refutations in this case. However, in

Sec 3.3 we prove that any f = 0, as long as f depends on n variables, must have

tree-like Res(linQ) refutations of size at least 2Ω(
√
n). The argument relies on the

similar transformation from refutations π of f = 0 to derivations of some Cπ and in

this way reduces the problem to proving tree-like Res(linQ) lower bound on the size

derivations of Cπ from Boolean axioms.

For that reason we formulate and prove generalised statement about the translation.

For both dag-like and tree-like bounds we essentially need that for all the disjuncts

g = 0 in Cπ some specific predicate P holds for g. In case of the dag-like bound

43

P(g) = 1 iff g = 0 has at most 2cn 0-1 solutions and in case of tree-like bound P(g) = 1

iff g depends on at least n
2

variables. In Theorem 20 we prove that the translation can

be done as long as P satisfies certain properties.

Theorem 20. Let f be a linear polynomial over a field F with n variables and

let P : P(F[x1, . . . , xn]≤1) → {0, 1} be a predicate on the projective space of linear

polynomials over F satisfying the following properties:

1. for all linear polynomials g and for all but at most one a ∈ F: P(g + af) = 1;

2. for all b ∈ F: P(b+ f) = 1.

If there exists Res(linF) (resp. tree-like Res(linF)) refutation of f = 0 of size S, then

there exists Res(linF) (resp. tree-like Res(linF)) derivation of size O(n · S3) of a clause∨
j∈[N]

gj = 0, where P(gj) = 1 for every j.

Proof: We now sketch the plan of the proof. Assume π is a Res(linF) refutation of

f = 0. By taking out resolutions with f = 0 we transform π into a derivation π′ of

some clause C such that P(g) = 1 for every disjunct g = 0 in C. We do this in such a

way that π′ is not much larger than π: |π′| = O(n · |π|3).

Denote π≤k the fragment of π, consisting of the first k lines of π. By induction on

k we define the sequence π′k of derivations of some clauses Dk from Boolean axioms.

Derivations π′k are defined together with a surjective function τk from lines of π≤k to

lines of π′k such that if D =

(∨
t∈[m]

gt = 0

)
is a line in π≤k, then

τk(D) =

 ∨
t∈[m]

gt + atf = 0

 ∨ ∨
s∈[m′]

hs = 0

is a line in π′k, where at ∈ F and each hs is a linear function. Moreover, τk(D) satisfy

the following properties:

1. For each hs = 0: P(hs) = 1.

2. The sets HD of disjuncts hs = 0 in τk(D) are not too large: |
⋃
D∈π≤k HD| ≤

2|π≤k|.

3. The numbers at and coefficients of hs are not too large: their size does not

exceed the maximal size of coefficients in π.

44

Before we proceed to the inductive definition of π′k, we finish the proof assuming

π′k described above exist. If l is the length of π, then π′ := π′l contains a derivation of

τl(∅), where ∅ denotes the empty clause.

We now turn to the inductive definition of π′k.

Base case: Define π′0 to be the empty derivation.

Induction step: Assume π′k and τk satisfy the properties above and k is smaller than

the lenght of π. If D is the last line of π≤k+1, then τk+1 extends τk to D and π′k+1

either extends π′k with τk+1(D) or coincides with π′k. Consider possible cases in which

the last line D of π≤k+1 is derived:

Case 1: Boolean axiom: D = (xi = 0 ∨ xi = 1). Then π′k+1 extends π′k with D and

τk+1(D) = D.

Case 2: D = (f = 0). Then π′k+1 extends π′k with the axiom 0 = 0 and τk+1(D) =

(f − f = 0).

Case 3: D is derived by resolution: D = (C1 ∨ C2 ∨ αG1 + βG2 = 0) for some lines

(C1 ∨G1 = 0) and (C2 ∨G2 = 0) in π≤k.

If Ci =
∨

t∈[mi]

g
(i)
t = 0, by induction hypothesis τk(Ci ∨ Gi = 0) is of the form

(i = 1, 2):

τk(Ci ∨Gi = 0) =

Gi + Aif = 0 ∨
∨
t∈[mi]

g
(i)
t + a

(i)
t f = 0

 ∨ ∨
s∈[m′i]

h(i)
s = 0

Define τk+1(D) to be the following resolution of τk(C1 ∨ G1 = 0) ∈ π′k with

τk(C2 ∨G2 = 0) ∈ π′k:

τk+1(D) :=

αG1 + βG2 + (αA1 + βA2)f = 0 ∨
∨
i=1,2

∨
t∈[mi]

g
(i)
t + a

(i)
t f = 0

∨
∨
∨
i=1,2

∨
s∈[m′i]

h(i)
s = 0

The derivation π′k+1 extends π′k with τk+1(D). It remains to be shown that τk+1(D) is

of required form and that τk+1 satisfies the required properties.

If we consider the clause (αG1 + βG2 = 0 ∨ C1 ∨ C2) as a multiset of disjuncts

and C1, C2, as usual, as sets of disjuncts, there can be up to three identical copies of

g = 0 (from C1, from C2 and from {αG1 + βG2 = 0}), that are contracted to a single

element in the set D. In τk+1(D) these copies can be different because of different

+af terms and, thus, can be non-contractible.

45

For every disjunct g = 0 in D, denote Fg the set of disjuncts in τk+1(D) that

correspond to g, namely, (g
(i)
j + a

(i)
j f = 0) ∈ Fg iff g

(i)
j = g and (αG1 + βG2 + (αA1 +

βA2)f = 0) ∈ Fg iff αG1 + βG2 = g. For every g = 0 ∈ D, pick one element

g + af = 0 ∈ Fg, which minimises P(g + af), and denote X the set of these elements.

Denote Y :=
(⋃

g=0∈D Fg
)
\X. Write τk+1(D) as follows:

τk+1(D) =

(∨
g+af=0∈X

g + af = 0

)
∨

∨
i=1,2

∨
s∈[m′i]

h(i)
s = 0 ∨

∨
g+af=0∈Y

g + af = 0

We now show that τk+1 satisfies all desired properties:

1. For every h
(i)
s = 0 P(h

(i)
s) = 1 holds by induction hypothesis. For every

g + af = 0 ∈ Y P(g + af) = 1 holds by definition of Y .

2. Note that |HD\{h(i)
s = 0}i,s| ≤ 2|D|. By induction hypothesis |

⋃
D̃∈π≤k HD̃| ≤

2|π≤k|.

It follows that |
⋃
D̃∈π≤k HD̃ ∪ HD| = |

⋃
D̃∈π≤k HD̃ ∪ (HD\{h(i)

s = 0}i,s)| ≤
|
⋃
D̃∈π≤k HD̃|+ |HD\{h(i)

s = 0}i,s| ≤ 2|π≤k|+ 2|D| ≤ 2|π≤k+1|.

3. The absolute values of coefficients in π′k+1 do not exceed the maximal absolute

value of coefficients in π.

Case 4: D is derived by simplification from a line D ∨ b = 0 in π≤k. If D =(∨
t∈[m]

gt = 0

)
, then τk(D∨b = 0) has the form: τk(D∨b = 0) =

(∨
t∈[m]

gt + atf = 0

)
∨

b+ af = 0.

If a = 0, we apply simplification to τk(D ∨ b = 0) to derive τk+1(D) :=(∨
t∈[m]

gt + atf = 0

)
and let π′k+1 extend π′k .

Otherwise, if a 6= 0, we define τk+1(D) to be τk+1(D) := τk(D ∨ b = 0) and

π′k+1 := π′k.

Case 5: D is derived by weakening from a line C of π≤k: D = (C ∨ g = 0) for some

g. Define τk+1(D) := (τk(C) ∨ g = 0) and let π′k+1 extend π′k with τk+1(D).

Lemma 21. Let g : Zn → Z be a linear function. For the sets I(g) := im2(g) and

K(g) := g−1(0) ∩ {0, 1}n holds |I(g)| · |K(g)| ≤ 3n.

Proof: For every element a ∈ I(g) choose some va ∈ {0, 1}n such that g(va) = a.

Consider the set X := {va + u}a∈I(g),u∈K(g) ⊂ {0, 1, 2}n.

46

It is easy to see that |X| = |I(g)| · |K(g)|. Indeed, if va + u = va′ + u′, then

g(va) + g(u) − g(0) = g(va + u) = g(va′ + u′) = g(va′) + g(u′) − g(0) and therefore

a = a′, va = va′ , u = u′.

On the other hand, |X| ≤ 3n.

Lemma 22. Let f = 1 + 2x1 + · · ·+ 2nxn and g : Zn → Z be a linear function. For

any a ∈ Z\{0} one of the following holds:

1. g = 0 has at most 3
n
2 0-1 solutions.

2. g + af = 0 has at most 3
n
2 0-1 solutions.

Proof: For every b ∈ Z, there exists at most one Boolean assignment that satisfies

both g = b and b+ af = 0. Therefore the number of 0-1 solutions of g + af = 0 is at

most the size of the Boolean image im2(g) of g. By Lemma 21 either |im2(g)| ≤ 3
n
2

or |g−1(0) ∩ {0, 1}n| ≤ 3
n
2 .

Theorem 23. Let f = 1 + 2x1 + · · ·+ 2nxn. Any Res(linQ) refutation of f = 0 is of

size 2Ω(n).

Proof: Define the predicate P(g) on linear polynomials over Q as follows: P(g) = 1

iff g = 0 has at most 2(0.5·log 3)n 0-1 solutions. By Lemma 22 P satisifes the properties

in Theorem 20. Therefore, by Theorem 20, if π is a refutation of f = 0, then there

exists a derivation π′ of some clause C =
∨

j∈[N]

gj = 0 from Boolean axioms, where

each gj = 0 has at most 2(0.5·log 3)n 0-1 solutions. Moreover |π′| = O(n · |π|3). As C

must be a Boolean tautology, it must contain at least 2(1−0.5·log 3)n disjuncts. Therefore

|π| = 2Ω(n).

3.2.2 Linear Systems with Small Coefficients

In this section we study 0-1 unsatisfiable linear systems over finite fields.

Firslty, we prove an upper bound, which is polynomial in |im2(Ax)|, where

A = Af1,...,fm : Fn → Fm is affine map x 7→ (f1(x), . . . , fm(x)). In contrast to the case

of a single equation f = 0, the size of the image |im2(Ax)| does not fully characterise

the size of the shortest Res(linF) refutation of f1 = 0, . . . , fm = 0: there is an example,

where |im2(Ax)| is large, but S(f1 = 0, . . . , fm = 0 ` ∅) is small.

Secondly, we prove a superpolynomial lower bound on a linear system for a

restricted tree-like Res(linF).

47

3.2.2.1 An Upper Bound

Denote 〈Af1,...,fm x 6= 0〉 the linear clause (〈f1 6= 0〉 ∨ · · · ∨ 〈fm 6= 0〉). The clause

〈Af1,...,fm x 6= 0〉 is a tautology iff the system f1 = 0, . . . , fm = 0 is 0-1 unsatisfiable.

Therefore, any 0-1 unsatisfiable system f1 = 0, . . . , fm = 0 can be refuted by first

deriving 〈Af1,...,fm x 6= 0〉 from Boolean axioms and then resolving it with f1 =

0, . . . , fm = 0. We now prove an upper bound for derivations of 〈Ax 6= 0〉 in terms of

|im2(Ax)|.

Theorem 24. Let f1 = 0, . . . , fm = 0 be a 0-1 unsatisfiable system with n variables.

There exists a derivation of 〈Af1,...,fm x 6= 0〉 of size poly(n+ |im2(Af1,...,fm x)|).

Proof: We arrange the derivation in n layers L0, . . . , Ln in such a way that L0 :=

{〈Af1,...,fm x 6= 0〉} and

Lk := {(〈f1 �x1←ε1,...,xk←εk 6= 0〉 ∨ . . . ∨ 〈fm �x1←ε1,...,xk←εk 6= 0〉)}ε∈{0,1}k

It is easy to see, that the following map is an embedding Lk ↪→ im2(Af1,...,fm x):

(〈f1 �x1←ε1,...,xk←εk 6= 0〉 ∨ . . . ∨ 〈fm �x1←ε1,...,xk←εk 6= 0〉) 7→

(f1(ε1, . . . , εk, 0, . . . , 0), . . . , fm(ε1, . . . , εk, 0, . . . , 0))

Therefore |Lk| ≤ |im2(Af1,...,fm x)|.
It remains to note that every clause in Lk can be derived from clauses in Lk+1 in

O(|im2(Af1,...,fm x)|) steps. Indeed, if C ∈ Lk, then C �xk+1←0∈ Lk+1 and C �xk+1←1∈
Lk+1, and C can be derived from C �xk+1←0 and C �xk+1←1 and the axiom (xk+1 =

0 ∨ xk+1 = 1) in a standard way.

Remark 25. In contrast to the case of a single equation, dag-like Res(linF) refutations

of f1 = 0, . . . , fm = 0 for m ≥ 2 are not lower-bounded by |im2(Af1,...,fm x)| in general.

For example, the system x1−2xn+1 = 0, xn−2x2n = 0, x2n+1 +xn+1 + . . .+x2n−2 = 0

has refutation of size O(n), but |im2(Af1,...,fm x)| = 2Ω(n).

3.2.2.2 Lower Bound for Restricted Tree-Like Res(linF)

We define the following natural model of decision trees, certifying 0-1 unsatisfiability

of linear systems over F:

Definition 6. Let Ax = b be a 0-1 unsatisfiable linear system over F. A decision tree

T for Ax = b is a binary tree, such that:

48

• Every internal node is labelled with a variable xi and two branches correspond

to assignments xi ← 0 and xi ← 1.

• If ρv is the variable assignment made along the path from the root to a leaf v, the

system (Ax = b) �ρv is unsatisfiable over the whole field F (not just over 0-1).

It is easy to see that this model of decision trees can be simulated by tree-like

Res(linF). We argue that this model captures the strength of a natural fragment of

tree-like Res(linF). If T is a decision tree for the system f1 = 0, . . . , fm = 0 then a

corresponding tree-like proof π for every leaf v in T derives the set of clauses
fk �ρv= 0 ∨

∨
i∈[n]|ρv(i)6=∗

xi = 1− ρv(i)

k∈[m]

where ρv : [n] 7→ {0, 1, ∗} (ρv(i) = ∗ iff xi is unassigned) is the assignment at v. By

the leaf condition in Definition 6 the system f1 �ρv= 0, . . . , fm �ρv= 0 is unsatisfiable

over F, therefore there exist a1, . . . , am ∈ F such that a1f1 �ρv + · · · + amfm �ρv= 1

and the proof π uses this to derive further the clause
∨

i∈[n]|ρv(i) 6=∗
xi = 1− ρv(i) from

the clauses above for every leaf v. This is the only place, where counting is essentially

used in π, the rest of the proof is just a standard resolution refutation obtained from

T by the well-known correspondence between decision trees and tree-like resolution

refutations. It is an interesting question whether this fragment is strictly weaker than

full tree-like Res(linF).

We now prove a sub-exponential lower bound for this model and, consequently, for

the corresponding fragment of tree-like Res(linF).

Theorem 26. For every n ∈ N there exists a 0-1 unsatisfiable linear system Ax = b

over a finite field Fq, q > 2 with n variables such that any decision tree for this system

is of size 2Ω(n
logn).

Proof: We construct the matrix A as a generator matrix of a linear (n, k, d)q =

(n, n
log q

+ 1,Ω(n
logn

))q error-correcting code (Definition 2).

The condition k > n
log q

, which this code satisfies, assures that qk > 2n and therefore

there exists b ∈ Fkq such that Ax = b is 0-1 unsatisfiable.

Note that depths of all leaves in any decision tree for Ax = b are at least d. Indeed,

if k < d variables are substituted at v by ρv, then the minimal distance of the code,

generated by A �ρv , is at least d− k and, in particular, A �ρv has full rank, therefore v

is not a leaf. Thus any decision tree for Ax = b has size at least 2d = 2Ω(n
logn

).

49

The existence of such a code is guaranteed by the Gilbert bound (Theorem 5).

Recall that the Gilbert bound claims the existence of a linear (n, k, d)q code whenever

d∑
i=1

(
n
i

)
· (q − 1)i < qn−k+1

holds. In our case, if we assign d = n
10 logn

:

d∑
i=1

(
n
i

)
· (q − 1)i < d · q

d logn
log q · qd ≤ n

10 log n
· qn(1

10 log q
+ 1

logn
) < qn(1− 1

log q
)+1 .

3.3 Tree-Like Lower Bounds

3.3.1 Nondeterministic Linear Decision Trees

In this section we extend the classical correspondence between tree-like resolution

refutations and decision trees to tree-like Res(linR) and tree-like Ressw(linR). We

define nondeterministic linear decision trees (NLDT), which generalize parity decision

trees, proposed in [40] for R = F2, to arbitrary rings.

Both the Definition 7 of NLTDs and the proof of Theorem 28 are straightforward

generalisations of standard decision trees and the proof of the correspondence between

them and tree-like resolution respectively. We shall need these trees in the sequel to

establish some of our novel upper and lower bounds.

Let φ be a set of linear clauses (that we wish to refute) and Φ a set of linear

non-equalities over R (that we take as assumptions). Consider the following two

decision problems:

DP1 Assume Φ |= ¬φ. Given a satisfying Boolean assignment ρ to Φ, determine

which clause C ∈ φ is violated by ρ by making queries of the form: which of

f |ρ 6= 0 or g|ρ 6= 0 hold for linear forms f, g in case f |ρ + g|ρ 6= 0.

DP2 Similar to DP1, only that we assume Φ |=R ¬φ, and given R-valued assignment

ρ, satisfying Φ, we ask to find a clause C ∈ φ falsified by ρ.

Below we define NLDTs of types DTsw(R) and DT(R), which provide solutions to

DP1 and DP2, respectively. The root of a tree is labeled with a system Φ, the edges

in a tree are labeled with linear non-equalities of the form f 6= 0 and the leaves are

labeled with clauses C ∈ φ. Informally, at every node v there is a set Φv of all learned

50

non-equalities, which is the union of Φ and the set of non-equalities along the path

from the root to the node. If v is an internal node, two outgoing edges f 6= 0 and

g 6= 0 define a query to be made at v, where f + g 6= 0 is a consequence of Φv. If v is

a leaf, then Φv ∪ Φ contradicts a clause C ∈ φ.

Starting from the root, based on the assignment ρ, we go along a path, from the

root to a leaf, by choosing in each node to go along the left edge f 6= 0 or the right

edge g 6= 0, depending on whether f |ρ 6= 0 or g|ρ 6= 0. Note that f |ρ 6= 0 and g|ρ 6= 0

may not be mutually exclusive, and this is why the decision made in each node may

be nondeterministic.

Definition 7 (Nondeterministic linear decision tree NLDT; DT(R), DTsw(R)). Let

φ be a set of linear clauses and Φ be a set of linear non-equalities over a ring R. A

nondeterministic linear decision tree T of type DT(R) and of type DTsw(R) for (φ,Φ)

is a binary rooted tree, where every edge is labeled with some linear non-equality f 6= 0,

in such a way that the conditions below hold. In what follows, for a node v, we denote

by Φr;v the set of non-equalities along the path from the root r to v and by Φv the set

Φr;v ∪ Φ. We say that Φv is the set of learned non-equalities at v.

1. Let v be an internal node. Then v has two outgoing edges labeled by linear

non-equalities fv 6= 0 and gv 6= 0, such that:

• If T ∈ DT(R), then αfv + βgv 6= 0 ∈ Φv ∪ {a 6= 0 | a ∈ R \ 0} for some

α, β ∈ R.

• If T ∈ DTsw(R), then Φv |= αfv + βgv 6= 0 for some α, β ∈ R.

2. A node v is a leaf if there is a linear clause C ∈ φ ∪ {0 = 0} which is violated

by Φv in the following sense:

• If T ∈ DT(R), then ¬C ⊆ Φv ∪ {a 6= 0 | a ∈ R \ 0}.

• If T ∈ DTsw(R), then Φv |= ¬C.

In case Φ is empty, we sometimes simply write that the NLDT is for φ instead of

(φ, ∅).
Assume Φ |= ¬φ. Then an NLDT for (φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)},Φ) of

type DT(R) can be converted into an NLDT of type DTsw(R) for (φ,Φ) by truncating

all maximal subtrees with all leaves from {x = 0 ∨ x = 1 |x ∈ vars(φ)} and marking

their roots with arbitrary clauses from φ.

Below we give several examples (and basic properties) of NLDTs.

51

Example 1 Let φ be a set of clauses, representing unsatisfiable CNF. Then any

standard decision tree on Boolean variables is an NLDT for φ ∪ {x = 0 ∨ x = 1 |x ∈
vars(φ)} of type DT(R), where a branching on the value of a variable x is realized by

branching on (1− x) + x 6= 0 to either 1− x 6= 0 or x 6= 0. This is illustrated by (the

proof of) the following proposition:

Proposition 27. If Φ is a set of linear non-equalities and φ is a set of linear clauses

over R such that Φ |= ¬φ, then there exists a DT(R) tree for (φ∪ {x = 0∨ x = 1 |x ∈
vars(φ ∪ {¬Φ})},Φ) of size O(2n|Φ|), where n = |vars(φ ∪ {¬Φ})|.

Proof: Let vars(φ ∪ {¬Φ}) = {x1, . . . , xn} and fix an ordering on these variables.

Construct a tree T0 with 2n nodes, that branches on x1, . . . , xn, in this order. Thus,

in every leaf v of T0 a total assignment to the variables is determined (i.e., Φv = {xi 6=
νi}i∈[n] ∪ Φ for some νi ∈ {0, 1}). Since Φ |= ¬φ, this assignment violates either some

clause C = (f1 = 0∨ · · · ∨ fm = 0) in φ or some non-equality g 6= 0 in Φ. We augment

T0 to T by attaching a subtree to every leaf v of T0 depending on whether the former

or latter condition holds for v, as follows:

Case 1: {xi 6= νi}i∈[n] |= ¬C. We attach a subtree to v that makes m sequences of

branches as follows. If fi = a1x1 +. . .+anxn+b then a1(1−ν1)+. . .+an(1−νn)+b 6= 0

holds and the ith sequence is the following sequence of “substitutions”: (a1x1 + a2(1−
ν2)+. . .+an(1−νn)+b)+(a1(1−ν1)−a1x1) 6= 0 to a1x1+a2(1−ν2)+. . .+an(1−νn)+b 6=
0 and a1(1−ν1)−a1x1 6= 0, . . . , (a1x1 + . . .+an−1xn−1 +an(1−νn)+b)+(an(1−νn)−
anxn) 6= 0 to fi 6= 0 and an(1− νn)− anxn 6= 0. All the right branches lead to nodes

u such that {xi 6= 0, xi 6= 1} ⊆ Φu for some i ∈ [n] and thus they satisfy the DT(R)

leaf condition in Definition 7. Such a sequence indeed performs substitutions: the

edge to the leftmost node is fi 6= 0 and as we go upwards, we apply the substitutions

xn ← 1− νn, . . . , x1 ← 1− ν1 to this non-equality.

In the leftmost node w in the end of the mth sequence, {f1 6= 0, . . . , fm 6= 0} ⊆ Φw

holds and thus again C is violated at w in the sense of Definition 7 and therefore w is

a legal DT(R)-leaf.

Case 2: {xi 6= νi}i∈[n] |= g = 0, where g 6= 0 ∈ Φv. Let g = a1x1 + . . . + anxn + b.

Attach to v a subtree that makes the following branches: (a1(1−ν1)+a2x2+. . .+anxn+

b)−(a1(1−ν1)−a1x1) 6= 0 to (a1(1−ν1)+a2x2+. . .+anxn+b) 6= 0 and a1(1−ν1)−a1x1 6=
0,. . . , (a1(1− ν1) + . . .+ an−1(1− νn−1) + an(1− νn) + b)− (an(1− νn)− anxn) 6= 0

to 1 6= 0 and a1(1− ν1)− a1x1 6= 0. All leaves of the subtree satisfy the condition for

DT(R) leaves in Definition 7.

The tree T is a DT(R) tree for (φ,Φ).

52

Example 2 Let φ be as in Example 1. Parity decision trees, as defined in [40],

are NLDTs for φ of type DTsw(F2): branching on the value of an F2-linear form f

is realized by branching from (1 − f) + f 6= 0 to 1 − f 6= 0 and f 6= 0. And the

converse also holds: a branching of f + g 6= 0 to f 6= 0 and g 6= 0, where, say, f is a

non-constant F2-linear form, is equivalent to branching on the value of f .

Example 3 Let φ = {f1 = 0, . . . , fm = 0}, where f1, . . . , fm are R-linear forms such

that f1 + . . .+ fm = 1. Then a polynomial-size NLDT of type DT(R) for φ makes the

following branchings, where all right edges lead to a leaf: (f1 + . . .+ fm−1) + fm 6= 0

(this is just 1 6= 0) to f1 + . . .+ fm−1 6= 0 and fm 6= 0, . . . , f1 + f2 6= 0 to f1 6= 0 and

f2 6= 0.

We now show the equivalence between NLDTs and tree-like Res(linR) proofs.

Theorem 28. Let φ be a set of linear clauses over a ring R and Φ be a set of linear

non-equalities over R. Then, there exist decision trees DT(R) (resp. DTsw(R)) for

(φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)},Φ) (resp. (φ,Φ)) of size s iff there exist tree-like

Res(linR) (resp. tree-like Ressw(linR)) derivations of the clause ¬Φ =
∨
f 6=0∈Φ f = 0

from φ of size O(s).

Proof: (⇒) Let Tφ be an NLDT of type DT(R) or DTsw(R) for φ. We construct a

tree-like Res(linR) or tree-like Ressw(linR) derivation from Tφ, respectively, as follows.

Consider the tree of clauses π0, obtained from Tφ by replacing every vertex u with the

clause ¬Φu. This tree is not a valid tree-like derivation yet. We augment it to a valid

derivation π by appropriate insertions of applications of weakening and simplification

rules.

Case 1: If ¬Φu ∈ π0 is a leaf, then Φu violates a clause D ∈ φ ∪ {0 = 0}. By

condition 2 in Definition 7, ¬Φu must be a weakening of D (syntactic for Tφ ∈ DT(R)

and semantic for Tφ ∈ DTsw(R)) and we add D as the only child of this node.

Case 2: Let ¬Φu ∈ π0 be an internal node with two outgoing edges labeled with

fu 6= 0 and gu 6= 0.

If Tφ ∈ DT(R), then αfu+βgu 6= 0 ∈ Φu∪{a 6= 0 | a ∈ R \ 0}. Apply resolution to

¬Φl(u) = (¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) to derive ¬Φu ∨ αfu + βgu = 0.

In case αfu + βgu 6= 0 ∈ Φu this clause coincides with ¬Φu and no additional steps

are required. In case αfu + βgu 6= 0 ∈ {a 6= 0 | a ∈ R \ 0} insert an application of the

simplification rule to get a derivation of ¬Φu.

53

If Tφ ∈ DTsw(R), Φu |= αfu + βgu 6= 0, we derive ¬Φu ∨ αfu + βgu = 0 from

¬Φl(u) = (¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) by an application of the

resolution rule and then deriving ¬Φu by an application of the semantic weakening

rule.

(⇐) Conversely, assume π is a tree-like Res(linR) or a tree-like Ressw(linR) derivation

of a (possibly empty) clause C from φ. In what follows, when we say weakening we

mean syntactic or semantic weakening depending on π being a tree-like Res(linR) or a

tree-like Ressw(linR) derivation, respectively.

Let the edges in the proof-tree of π be directed from conclusion to premises. We

turn this proof-tree into a decision tree Tπ for (φ,¬C) as follows. Every node of

outgoing degree 2 in the proof-tree π is a clause obtained from its children by a

resolution rule. For each such node C ∨D ∨ (αf + βg = 0) we label its outgoing edges

to C ∨ f = 0 and D ∨ g = 0 with f 6= 0 and g 6= 0, respectively. We contract all

unlabeled edges, which are precisely those corresponding to applications of weakening

and simplification rules. If C1, . . . , Ck is a maximal (with respect to inclusion) sequence

of weakening and simplification rule applications (the latter occur only in Res(linR)

derivations), then we contract it to Ck. In this way we obtain the tree Tπ, where every

edge is labeled with linear non-equality and every node u is labeled with a clause Cu

such that if f 6= 0 and g 6= 0 are labels of edges to the left l(u) and to the right r(u)

children respectively, then Cu is a weakening and a simplification (the latter again in

case of Res(linR)) of the clause C ∨D ∨ αf + βg = 0 for some α, β ∈ R, such that

Cl(u) = (C ∨ f = 0), Cr(u) = (D ∨ g = 0).

We now prove that Tπ is a valid decision tree of type DT(R) (respectively, DTsw(R))

if π is a tree-like Res(linR) derivation (respectively, tree-like Ressw(linR) derivation).

Case 1: Assume π is tree-like Res(linR) derivation. We prove inductively that for

every node u in Tπ we have ¬Cu ⊆ Φu.

Base case: u is the root r. We have Φr = ¬C = ¬Cr.
Induction step: For any other node u assume ¬Cp ⊆ Φp ∪ {a 6= 0 | a ∈ R \ 0} holds

for its parent node p. Let f 6= 0 be the label on the edge from p to u. Then

Cu = (C ∨ f = 0) for some clause C and Cp must be of the form (C ∨D) for some

clause D, and hence ¬Cu ⊆ ¬C ∪ {f 6= 0} ⊆ ¬Cp ∪ {f 6= 0} ⊆ Φp ∪ {f 6= 0} = Φu.

Now we show that Tπ satisfies the conditions of Definition 7 for DT(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled

with f 6= 0 and g 6= 0. Cu must be both a weakening and a simplification of

(C∨αf+βg = 0) for some α, β ∈ R and a linear clause C. If αf+βg 6= 0 ∈ {a 6=

54

0 | a ∈ R \ 0}, then the condition trivially holds, otherwise αf + βg = 0 cannot

be eliminated via simplification and thus αf + βg 6= 0 ∈ ¬Cu and ¬Cu ⊆ Φu

imply αf + βg 6= 0 ∈ Φu and the condition for internal nodes in Definition 7 is

satisfied.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be both a weakening and a

simplification of some clause C in φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)} ∪ {0 = 0},
that is Cu = (C ∨D) for some clause D. Therefore ¬Cu ⊆ Φu implies that C is

falsified by Φu.

Case 2: Assume π is a tree-like Ressw(linR) derivation. We prove inductively that

for every node u in Tπ, Cu |= ¬Φu holds.

Base case: u is the root r and we have ¬Φr = C = Cr.

Induction step: u is a node which is not the root. If Cp |= ¬Φp holds for its parent p

and f 6= 0 is the label on the edge from p to u, then (C ∨D ∨ αf + βg = 0) |= Cp,

Cu = (C ∨ f = 0) for some α, β ∈ R a linear form g and some linear clauses C,D.

Therefore, Cu = (C ∨ f = 0) |= (Cp ∨ f = 0) |= (¬Φp ∨ f = 0) = ¬Φu.

We now show that Tπ satisfies the conditions of Definition 7 for DTsw(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled

with f 6= 0 and g 6= 0. Then (C ∨ αf + βg = 0) |= Cu for some α, β ∈ R and a

linear clause C. Therefore Cu |= ¬Φu implies Φu |= αf + βg 6= 0.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be a weakening of some clause C

in φ ∪ {0 = 0}, that is, Cu = (C ∨D) for some clause D. Therefore Cu |= ¬Φu

implies that C is falsified by Φu.

An immediate corollary is this:

Proposition 29. If φ∪ {C} is a set of linear clauses over a ring R such that φ |= C,

then there exists a tree-like Res(linR) derivation of C from φ of size O(2n|C|), where

n =
∣∣vars(φ ∪ {C})∣∣.

Proof: By Proposition 27 there exists a DT(R) tree for (φ ∪ {x = 0 ∨ x = 1 |x ∈
vars(φ∪{C})},¬C) of size O(2n|C|) and, thus, by Theorem 28 there exists a tree-like

Res(linR) derivation of C from φ of size O(2n|C|).

We construct an NLDT to prove the following upper bound:

55

Proposition 30. Let R be a finite ring, f = a1x1 + · · · + anxn a linear form over

R, sf the size of Im(f) (i.e., the size of its encoding) and df = |im2(f)|. Then, there

exists a tree-like Res(linR) derivation of Im(f) of size O(sfn
2df).

Proof: We construct a decision tree of type DT(R) of size O(sfn
2df) with the system

Φr = {f 6= A}A∈im2(f) at its root r. By Theorem 28 this implies the existence of a

tree-like Res(linR) proof of Im(f) of the same size.

Let f (1) := a1x1 + · · · + abn
2
cxbn

2
c and f (2) := abn

2
c+1xbn

2
c+1 + · · · + anxn. The

decision tree for Im(f) is constructed recursively as a tree of height 2df , where a

subtree for Im
(
f (1)
)

or for Im
(
f (2)
)

is hanged from each leaf. At every node u of

depth d the system of non-equalities is of the form: Φu = Φr ∪ Φ
(1)
u ∪ Φ

(2)
u , where

Φ
(i)
u ⊆ {f (i) 6= A}A∈im2(f (i)), i ∈ {1, 2} and |Φ(1)

u |+ |Φ(2)
u | = d. A node u is a leaf if and

only if Φ
(i)
u = {f (i) 6= A}A∈im2(f (i)) for some i ∈ {1, 2}. The branching at an internal

node u is made by the non-equality f (1) −A1 + f (2) −A2 6= 0, for some Ai ∈ im2(f (i))

where f (i) − Ai /∈ Φ
(i)
u , i ∈ {1, 2}. The size sn of this tree can be upper bounded as

follows: sn ≤ 22df sbn
2
c+1 + sf2

2df = O(sfn
2df).

3.3.2 Prover-Delayer Games

The Prover-Delayer game is an approach to obtain lower bounds on resolution refuta-

tions introduced by Pudlák and Impagliazzo [56]. The idea is that the non-existence of

small decision trees, and hence small tree-like resolution refutations, for an unsatisfiable

formula, can be phrased in terms of the existence of a certain strategy for Delayer in

a game against Prover, associated to the unsatisfiable formula. We define such games

GR and GR
sw for decision trees DT(R) and DTsw(R), respectively. Below we show

(Lemma 31) that the existence of certain strategies for the Delayer in GR and GR
sw

imply lower bounds on the size of DT(R) and DTsw(R) trees, respectively. Just as for

NLDTs, our definition of Prover-Delayer games is not novel and is a straightforward

generalisation of standard Prover-Delayer games as defined by Pudlák and Impagliazzo.

They provide a handy language for tree-like Res(linR) lower bound arguments. Very

similar games for tree-like Res(⊕) (that is tree-like Res(linF2) in our notation) were

also studied in [40] and [39].

The game. Let φ be a set of linear clauses and Φs be a set of linear non-equalities.

Consider the following game between two parties called Prover and Delayer. The game

goes in rounds, consisting of one move of Prover followed by one move of Delayer. The

56

position in the game is determined by a system of linear non-equalities Φ, which is

extended by one non-equality after every round. The starting position is Φs.

In each round, Prover presents to Delayer a possible branching f 6= 0 and g 6= 0

over a linear non-equality f + g 6= 0, such that f + g 6= 0 ∈ Φ ∪ {a 6= 0 | a ∈ R \ 0} or

Φ |= f + g 6= 0 in GR and GR
sw, respectively. After that, Delayer chooses either f 6= 0

or g 6= 0 to be added to Φ, or leaves the choice to the Prover and thus earns a coin.

The game GR finishes, when ¬C ⊆ Φ for some C ∈ φ ∪ {0 = 0}, and GR
sw finishes,

when Φ |= ¬C for some clause C ∈ φ ∪ {0 = 0}.

Lemma 31. If there exists a strategy with a starting position Φs for Delayer in the

game GR (respectively, GR
sw) that guarantees at least c coins on a set of linear clauses

φ, then the size of a DT(R) (respectively DTsw(R)) tree for φ, with the system Φs in

the root, must be at least 2c.

Proof: Assume that T is a tree of type DT(R) (respectively, DTsw(R)) for φ. We

define an embedding of the full binary tree Bc of height c to T inductively as follows.

We simulate Prover in the game GR (respectively, GR
sw) by choosing branchings from

T and following to a subtree chosen by the Delayer until Delayer decides to earn a

coin and leaves the choice to the Prover or until the game finishes. In case we are at a

position where Delayer earns a coin, and which corresponds to a vertex u in T , we

map the root of Bc to u and proceed inductively by embedding two trees Bc−1 to the

left and right subtrees of u, corresponding to two choices of the Prover.

Remark. The game, defined above, does not fully characterise the size of shortest

NLDTs in the sense that lower bounds on size of NLDTs do not necessarily imply

existence of a good strategy for Delayer. The characterisation gives tight bounds only

for formulas, shortest NLDTs of which are symmetric, that is the size of the largest

full binary tree, embedded in a shortest NLDT, is not much different from the size

of shortest NLDT. In order to overcome this limitation, asymmetric Prover-Delayer

games were introduced in [17], [18], [19] for the case of decision trees and tree-like

resolution. At each round of such a game Prover and Delayer do the following:

1. Prover chooses an unassigned variable x.

2. Delayer assigns nonnegative weights p0 and p1, such that p0 + p1 = 1, to the two

possible choices of the value for x.

3. Prover chooses value b, x is assigned to b and the score of Delayer is updated by

log 1
pb

.

57

The standard game of Pudlák and Impagliazzo is a symmetric case of this game,

where Delayer is only allowed to chooose weights (1, 0), (0, 1) or (1
2
, 1

2
). In [18] it was

shown that this asymmetric game fully characterises decision trees. Namely, it was

proved that:

1. If φ is unsatisfiable CNF, which has tree-like resolution refutation of size at most

S, then there exists a strategy for Prover such that every strategy of Delayer

scores at most logdS
2
e.

2. If φ is unsatisfiable CNF with shortest tree-like resolution refutation of size S.

Then there is Delayer strategy, which scores at least logdS
2
e against any strategy

of the Prover.

Asymmetric games can similarly be defined for NLDTs and tree-like Res(linR). An

analogue of the statement (1.) trivially holds in this setting as well. It is interesting,

though, whether an analogue of (2.) also holds. This is beyond the scope of our work,

as the technique of symmetric games is enough for our needs.

3.3.3 Lower Bounds for the Subset Sum with Small Coeffi-
cients

We now turn to tree-like lower bounds. In this section we prove tree-like Res(linQ)

lower bound for SubSum(f) including instances, where coefficients of f are small, and

tree-like Ressw(linF) lower bound for ImAv (±x1 ± · · · ± xn).

The proof of tree-like Res(linQ) lower bound for SubSum(f) goes in two stages.

Assume f depends on n variables. First, as in the proof of dag-like lower bound in

Sec 3.2 we use Theorem 20 to transform refutations π of f = 0 to derivations π′ of

a clause Cπ from Boolean axioms. We ensure that π′ is not much larger than π and

Cπ posesses the following property, which makes it hard to derive: for every disjunct

g = 0 in Cπ the linear polynomial g depends on at least n
2

variables. Second, we use

Prover-Delayer games to prove the lower bound for derivations of any clause with this

property. The proof that Delayer’s strategy succeeds to earn sufficiently many coins is

guaranteed by a bound on size of essential coverings of hypercubes.

Definition 8. Let H be a set of hyperplanes in Qn. We say that F forms essential

cover of the cube Bn = {0, 1}n if:

• Every point of Bn is covered by some hyperplane in H.

58

• No proper subset H′ (H covers Bn.

• No axis in Qn is parallel to all hyperplanes in H. In other words, if H =

{H1, . . . , Hm} and fi = 0 is the linear equation defining Hi, i ∈ [m], then every

variable xj, j ∈ [n], occurs with nonzero coefficient in some fi.

Theorem 32. [[48]] Any essential cover of the cube Bn in Qn must contain at least
1
2
(
√

4n+ 1 + 1) hyperplanes.

We use Prover-Delayer games to prove the lower bounds below.

Theorem 33. Any tree-like Res(linQ) derivation of any tautology of the form
∨

j∈[N]

gj =

0, where each gj is linear over Q and depends on at least n
2

variables, is of size 2Ω(
√
n).

Proof: According to definitions in Sec. 3.3.2 the corresponding Prover-Delayer game

is on 0 = 0 and starts with the position

Φr = {gj 6= 0 | j ∈ [N]} .

The game finishes at a position Φ, where {xi 6= 0, xi 6= 1} ⊆ Φ for some i ∈ [n] or

0 6= 0 ∈ Φ.

We now define a Delayer’s strategy that guarantees Ω(
√
n) coins and by Lemma 31

obtain the lower bound.

If Φ is a position in the game, denote Φc ⊂ Φ the subset of “coin” non-equalities,

that is non-equalities that were chosen by Prover when Delayer decided to leave the

choice to Prover and earned a coin. The number |Φc| is then precisely the number of

coins earned by Delayer at Φ. Over the game Delayer constructs a partial assignment

ρI for variables in I ⊆ [n] and a set of non-equalities ΦI ⊆ Φc such that |ΦI | = Ω(
√
|I|),

for all g 6= 0 ∈ (Φ �ρI) \ (Φc �ρI) function g depends on at least n
2
− |I| variables, ΦI

contains variables only from I and Φc �ρI is 0-1 satisfiable. In the beginning both ρI

and ΦI are empty.

Let the position in the game be defined by a system Φ and let the branching

chosen by the Prover be g1 6= 0 and g2 6= 0, where g1 + g2 6= 0 ∈ Φ. Delayer does the

following. Before making any decision Delayer checks if there exists some nonconstant

linear g with variables in [n] \ I such that (Φc �ρI) ∪ {g 6= 0} is unsatisfiable over 0-1.

In case it holds, Ψ := (Φc \ΦI) �ρI ∪{g 6= 0} must be 0-1 unsatisfiable. Consider a

minimal subset Ψ′ ⊆ Ψ such that Ψ′ is 0-1 unsatisfiable and denote I ′ ⊆ [n] the set of

variables that occur in Ψ′. As Ψ′′ := Ψ′ \ {g 6= 0} is 0-1 satisfiable, there exists an

59

assignment ρI′ for variables in I ′, which satisfies Ψ′′. Delayer extends the assignment

ρI with ρI′ to ρI∪I′ and defines ΦI∪I′ := ΦI ∪Ψ′′.

If Ψ′ = {g1 6= 0, . . . , gk 6= 0}, then hyperplanes H1, . . . , Hk defined by equations

g1 = 0, . . . , gk = 0 form an essential cover of the cube B|I′|. Therefore, by Theorem 32

|Ψ′′| = |Ψ′| − 1 ≥
√
|I ′| and thus |ΦI∪I′ | ≥

√
|I|+

√
|I ′| ≥

√
|I ∪ I ′|.

If necessary, Delayer repeats the above procedure constructing extensions ρI1 ⊂
. . . ⊂ ρIL and ΦI1 ⊂ . . . ⊂ ΦIL , where I1 = I ⊂ . . . ⊂ IL, until there is no g 6= 0

inconsistent with Φc �ρIL as described above. The new value of I is set to IL. After

that Delayer does the following:

1. if g1 �ρI= 0, then choose g2 6= 0;

2. otherwise, if g2 �ρI= 0, then choose g1 6= 0;

3. if none of the above cases hold, leave the choice to Prover and earn a coin.

Denote Φ′ and Φ′c ⊆ Φ′ the new position and the subset of “coin” non-equalities

respectively after the choice is made. It is easy to see that the property that any

g 6= 0 ∈ (Φ′ �ρI) \ (Φ′c �ρI) depends on at least n
2
− |I| variables still holds.

It follows from the definition of Delayer’s strategy that Φc is always 0-1 satisfiable.

Therefore if Φ is the endgame position, that is if 0 6= 0 ∈ Φ or {xi 6= 0, xi 6= 1} ⊂ Φ

for some i ∈ [n], then 0 6= 0 ∈ (Φ �ρI) \ (Φc �ρI) or {xi 6= 0, xi 6= 1} ⊂ (Φ �ρI) \ (Φc �ρI)

respectively. This implies that |I| ≥ n
2
− 1 and therefore |Φc| ≥ |ΦI | ≥

√
|I| = Ω(

√
n).

Thus the number of coins earned by Delayer is Ω(
√
n).

Corollary 34. If f is a linear polynomial over Q, which depends on n variables, then

tree-like Res(linQ) derivations of Im(f) are of size 2Ω(
√
n).

Theorem 35. If f is a linear polynomial over Q, which depends on n variables, and

0 /∈ im2(f) then any tree-like Res(linQ) refutation of f = 0 is of size 2Ω(
√
n).

Proof: Consider the following predicate P on linear polynomials: P(g) = 1 iff g

depends on at least n
2

variables. It is easy to see that P satisfies conditions in

Theorem 20 with respect to f . Therefore by Theorem 20 for every refutation π of

f = 0 there exists a derivation π′ of a clause Cπ from Boolean axioms such that

|π′| = O(n · |π|3) and P(g) for every g = 0 in Cπ. Thus by Theorem 33 |π′| = 2Ω(
√
n)

and |π| = 2Ω(
√
n).

60

Lemma 36. Let Φ be a satisfiable system of m non-equalities over F. If Φ |=
ε1x1 + · · ·+ εnxn = A for some εi ∈ {−1, 1} ⊂ F, A ∈ F, then m ≥ n

4
.

Note that A must be an integer (inside F), since the coefficients of variables are

all −1, 1, and the variables themselves are Boolean (since |= stands for semantic

implication over 0-1 assignments only).

Proof: Let Φ = {a1 · x + b1 6= 0, . . . , am · x + bm 6= 0} and put σ = A mod 2,

f = ε1x1 + · · ·+ εnxn. Then

f ≡ 1− σ (mod 2) |= f 6= A

|= (a1 · x+ b1) · . . . · (am · x+ bm) = 0.

By Theorem 4.4 in Alekhnovich-Razborov [2], the function f ≡ 1− σ (mod 2) is n
4
-

immune, that is, the degree of any non-zero polynomial g such that f ≡ 1−σ (mod 2) |=
g = 0 must be at least n

4
. Therefore m ≥ n

4
.

Theorem 37. Let f be a linear function over F, which depends on n variables. Then

tree-like Ressw(linF) refutation of ImAv (f) is of size 2Ω(n).

Proof: According to definitions in Sec. 3.3.2 the corresponding Prover-Delayer game

is on ImAv (f) and starts with the empty position. The game finishes at a position Φ,

where Φ |= f − A = 0 for some A ∈ im2(f).

We now define a Delayer’s strategy that guarantees n
4

coins and by Lemma 31

obtain the lower bound.

The strategy is as follows. Let the position in the game be defined by a system Φ

and let the branching chosen by the Prover be g1 6= 0 and g2 6= 0, where Φ |= g1+g2 6= 0.

Delayer does the following:

1. if g2 6= 0 is inconsistent with Φ, but g1 6= 0 is not inconsistent with Φ, then

choose g1 6= 0;

2. if g1 6= 0 is inconsistent with Φ, but g2 6= 0 is not inconsistent with Φ, then

choose g2 6= 0;

3. if none of the above holds, then leave the choice to the Prover and earn a coin.

We now prove that this strategy guarantees the required number of coins.

Suppose that the game has finished at a position Φ. The strategy of Delayer

guarantees that Φ is satisfiable and Φ contradicts a clause 〈f 6= A〉 of ImAv (f), that

61

is Φ |= f − A = 0 for some A ∈ im2(f). Let ζ1, . . . , ζ` be the set of non-equalities in

Φ, in the order they were added to Φ. Let Ψ ⊆ Φ be the set of all ζi, i ∈ [`], such that

ζi is not implied by previous non-equalities ζj, for j < i. Then, Delayer earns at least

|Ψ| coins, Ψ |= f = A, and by Lemma 36 we conclude that |Ψ| ≥ n
4
.

3.3.4 Lower Bounds for the Pigeonhole Principle

Here we prove that every tree-like Ressw(linF) refutations of ¬PHPm
n must have size

at least 2
n−1

2 (see Sec. 2.2.1.1 for the definition of ¬PHPm
n). Together with the upper

bound for dag-like Res(linF) (see Sec. 3.1.2) this provides a separation between tree-

like and dag-like Ressw(linF) in the case char(F) = 0. The lower bound argument is

comprised of exhibiting a strategy for Delayer in the Prover-Delayer game. Delayer’s

strategy is similar to that in [40]. However, the proof that Delayer’s strategy guarantees

sufficiently many coins relies on Lemma 39, which is a generalization of Lemma 3.3 in

[40] for arbitrary fields. Since the proof of Lemma 3.3 in [40] for the F2 case does not

apply to arbitrary fields, our proof is different, and uses a result from Alon-Füredi [4]

on the hyperplane coverings of the hypercube.

Theorem 38. For every field F, the shortest tree-like Ressw(linF) refutation of ¬PHPm
n

has size at least 2
n−1

2 .

Proof: We prove that there exists a strategy for Delayer in the ¬PHPm
n game, which

guarantees Delayer to earn n−1
2

coins. Following the terminology in [40], we call an

assignment xi,j 7→ αij, for α ∈ {0, 1}mn, proper if it does not violate Holesmn , namely,

if it does not send two distinct pigeons to the same hole. We need to prove several

lemmas before concluding the theorem.

Lemma 39. Let Ax + b be a system of k linear non-equalities over a field F with n

variables and where x = 0 is a solution, that is, 0 + b. If k < n, then there exists a

non-zero boolean solution to this system.

Proof: Let a1, . . . , ak be the rows of the matrix A. The boolean solutions to the system

Ax + b are all the points of the n-dimensional boolean hypercube Bn := {0, 1}n ⊂ Fn,

that are not covered by the hyperplanes H := {a1x− b1 = 0, . . . , akx− bk = 0}. We

need to show that if k < n and 0 ∈ Bn is not covered by H, then some other point in

Bn is not covered by H as well. This follows from [4]:

62

Corollary from Alon-Füredi [4, Theorem 4]. Let

Y (l) :=

{
(y1, . . . , yn) ∈ Fn | ∀i ∈ [n], 0 < yi ≤ 2, and

n∑
i=1

yi ≥ l

}
.

For any field F, if k hyperplanes in Fn do not cover Bn completely, then they do not

cover at least M(2n− k) points from Bn, where

M(l) := min
(y1,...,yn)∈Y (l)

∏
1≤i≤n

yi .

Thus, if k < n hyperplanes do not cover Bn completely, then they do not cover at

least M(n+ 1) points. The set Y (n+ 1) in the Corollary above consists of all tuples

(y1, . . . , yn), where yi = 2 for some i ∈ [n] and yj = 1 for j ∈ [n], j 6= i. Therefore

M(n+ 1) = 2.

For two Boolean assignments α, β ∈ {0, 1}n, denote by α⊕ β the bitwise xor of

the two assignments.

Lemma 40. Let Ax + b be a system of k linear non-equalities over a field F with

n > k variables and let α ∈ {0, 1}n be a solution to the system. Then, for every choice

I of k+1 bits in α, there exists at least one i ∈ I so that flipping the ith bit in α results

in a new solution to Ax + b. In other words, if I ⊆ [n] is such that |I| = k + 1, then

there exists a boolean assignment β 6= 0 such that {i | βi = 1} ⊆ I and A(α⊕ β) + b.

Proof: Let I ⊆ {0, 1}n. Denote by A?I the matrix with columns {(1− 2αi)ai | i ∈ I},
where ai is the ith column of A. That is, A?I is the matrix A restricted to columns i

with i ∈ I and where column i flips its sign iff αi is 1.

Assume that β ∈ {0, 1}n is nonzero and all its 1’s must appear in the indices in I,

that is, {i | βi = 1} ⊆ I. Given a set of indices J ⊆ [n], denote by βJ the restriction

of β to the indices in J . Similarly, for a vector v ∈ Fn, vJ denotes the restriction of v

to the indices in J .

Claim. A(α⊕ β) + b iff A?IβI + b− Aα.

Proof of claim: We prove that A(α⊕ β) = A?IβI + Aα. Consider any row v in A, and

the corresponding row v?I in A?I . Notice that v · (α ⊕ β) (for “·” the dot product)

equals the dot product of v and α⊕ β, where both vectors are restricted only to those

entries in which α and β differ. Considering entries outside I, by assumption we have

β[n]\I = 0, which implies that

v[n]\I · (α⊕ β)[n]\I = v[n]\I · α[n]\I . (3.5)

63

On the other hand, considering entries inside I, we have

vI · (α⊕ β)I = vI · αI + v?I · βI . (3.6)

Equation (3.6) can be verified by inspecting all four cases for the ith bits in α, β,

for i ∈ I, as follows: for those indices i ∈ I, such that αi = 1 and βi = 0, only

vI · α contributes to the right hand side in (3.6). If αi = 1 and βi = 1, then by the

definition of A?I , the two summands in the right hand side in (3.6) cancel out. The

cases αi = 0, βi = 1 and αi = βi = 0, can also be inspected to contribute the same

values to both sides of (3.6).

The two equations (3.5) and (3.6) concludes the claim. Claim

We know that Aα + b, and we wish to show that for some nonzero β ∈ {0, 1}n

where {i | βi = 1} ⊆ I, it holds that A(α⊕ β) + b. By the claim above it remains to

show the existence of such β where A?IβI + b−Aα. But notice that b−Aα + 0, since

Aα + b, and that A?IβI is a matrix of dimension k × (k + 1). Therefore, by Lemma

39, the system A?IβI + b−Aα has a nonzero solution, that is, there exists a β 6= 0 for

which all ones are in the I entries, such that A?IβI + b− Aα.

Lemma 41. Assume that a system Ax + b of k ≤ n−1
2

non-equalities over F with

variables {xi,j}(i,j)∈[m]×[n] has a proper solution. Then, for every i ∈ [m] there exists a

proper solution to the system, that satisfies the clause
∨
j∈[n] xi,j. In other words, for

every pigeon, there exists a proper solution that sends the pigeon to some hole.

Proof: We first show that if there exists a proper solution of Ax + b, then there exists

a proper solution of this system with at most k ones. Let α be a proper solution with

at least k + 1 ones. If I is a subset of k + 1 ones in α, then Lemma 40 assures us that

some other proper solution can be obtained from α by flipping some of these ones

(note that flipping one to zero preserves the properness of assignments). Thus the

number of ones can always be reduced until it is at most k.

Let α be a proper solution with at most k ones. The condition k ≤ n−1
2

implies

that there are n− k ≥ k + 1 free holes. Let J be a subset of size k + 1 of the set of

indices of free holes. Then for any i ∈ [m] some of the bits in I = {(i, j) | j ∈ J} can

be flipped and still satisfy Ax + b, by Lemma 40. (As before, flipping from one to

zero maintains the properness of the solution.) Hence, the resulting proper solution

must satisfy the clause
∨
j∈[n] xi,j.

We now describe the desired strategy for Delayer.

64

Delayer’s Strategy: Let a position in the game be defined by the system of non-

equalities Φ and assume that the branching chosen by Prover is f0 6= 0 or f1 6= 0,

where Φ |= f0 + f1 6= 0. The only objective of Delayer is to ensure that the system

Φ has proper solutions. Delayer uses the opportunity to earn a coin whenever both

Φ ∪ {f0 6= 0} and Φ ∪ {f1 6= 0} have proper solutions by leaving the choice to Prover.

Otherwise, in case Φ ∧ Holesmn |= fi = 0, for some i ∈ {0, 1}, Delayer chooses f1−i 6= 0,

which must satisfy Φ ∧ Holesmn |= f1−i 6= 0, and so the sets of proper solutions of Φ

and Φ ∪ {f1−i 6= 0} are identical.

This strategy ensures, that for every end-game position Φ, Φ has proper solutions

and Φ |= ¬Pigeonsmn . Note that Φ has the same proper solutions as Φ′, obtained by

throwing away from Φ all non-equalities that were added by Delayer when making

a choice. Therefore, if Φ |= ¬Pigeonsmn , then Φ′ ∧ Holesmn |= ¬Pigeonsmn and thus

|Φ′| > n−1
2

by Lemma 41.

Since |Φ′| is precisely the number of coins earned by Delayer, this gives the desired

lower bound.

3.4 Size-Width Relation and Simulation by PC

In this section we prove a size-width relation for tree-like Res(linR) (Theorem 44),

which then implies an exponential lower bound on the size of tree-like Ressw(linR)

refutations in terms of the principal width of refutations (Definition 5). The connection

between the principal width and the degree of PC refutations for finite fields F, together

with lower bounds on degree of PC refutations from [2] on Tseitin mod p formulas and

random CNFs, imply exponential lower bounds for the size of tree-like Ressw(linF) for

these instances (Corollaries 46 and 47).

Proposition 42. Let φ = {Ci}1≤i≤m be a set of linear clauses and x ∈ vars(φ).

Assume that l is a linear form in the variables vars(φ) \ {x}. Then, there is a

Res(linR) derivation π of {Ci �x←l ∨〈x− l 6= 0〉}1≤i≤m from φ of size polynomial in

|φ|+ |Im(l)| and such that ω0(π) ≤ ω0(φ) + 2.

Proof: The clause x− l = 0 ∨ 〈x− l 6= 0〉 is derivable in Res(linR) in polynomial in

|Im(l)| size by Proposition 12. Assume

C =

(∨
j∈[k]

fj + ajx+ b
(1)
j = 0 ∨ · · · ∨ fj + ajx+ b

(Nj)
j = 0

)
,

where x /∈ vars(fi) and we have grouped disjuncts so that ω0(C) = k. Then we

resolve these groups one by one with x− l = 0 ∨ 〈x− l 6= 0〉 and after N1 + . . .+Nk

65

steps yield
(∨

j∈[k] fj + ajl + b
(1)
j = 0 ∨ · · · ∨ fj + ajl + b

(Nj)
j = 0 ∨ 〈x− l 6= 0〉

)
. It is

easy to see that the principal width never exceeds k + 2 along the way. Therefore

ω0(π) ≤ ω0(φ) + 2.

Corollary 43. Let φ = {Ci}1≤i≤m be a set of linear clauses and x ∈ vars(φ). Suppose

that l is a linear form with variables vars(φ)\{x} and that π is a Res(linR) refutation of

φ �x←l ∪{l = 0∨l = 1}. Then, there exists a Res(linR) derivation π̂ of 〈x− l 6= 0〉 from

φ, such that S(π̂) = O(S(π) + |Im(l)|) and ω0(π̂) ≤ max (ω0(π) + 1, ω0(φ) + 2). Addi-

tionally, there is a refutation π̂′ of φ∪{x−l = 0} where ω0(π̂′) ≤ max(ω0(π), ω0(φ)+2).

Proof: By Proposition 42 there exists a derivation πs of

{Ci �x←l ∨〈x− l 6= 0〉}1≤i≤m ∪ {l = 0 ∨ l = 1 ∨ 〈x− l 6= 0〉}

from φ of width at most ω0(φ) + 2. Composing πs with π ∨ 〈x − l 6= 0〉 yields the

derivation π̂ of 〈x− l 6= 0〉 from φ.

Moreover, by taking the derivation πs and adding to it the axiom x− l = 0, and

then using a sequence of resolutions of πs with x− l = 0, we obtain a derivation of

φ �x←l ∪{l = 0 ∨ l = 1} from φ ∪ {x− l = 0}. The latter derivation composed with π

yields the refutation π̂′ of φ∪{x− l = 0} of width at most max(ω0(π), ω0(φ) + 2).

Theorem 44. Let φ be an unsatisfiable set of linear clauses over a field F. The

following size-width relation holds for both tree-like Res(linF) and tree-like Ressw(linF):

S(φ `⊥) = 2Ω(ω0(φ`⊥)−ω0(φ)) .

Proof: We prove by induction on n, the number of variables in φ, the following:

ω0(φ `⊥) ≤ dlog2 S(φ `⊥)e+ ω0(φ) + 2 .

Base case: n = 0. Thus φ must contain only linear clauses a = 0, for a ∈ F, and the

principal width for refuting φ is therefore 1.

Induction step: Let π be a tree-like refutation of φ = {C1, . . . , Cm} such that

S(π) = S(φ `⊥) (i.e., π is of minimal size). Without loss of generality, we as-

sume that the resolution rule in π is only applied to simplified clauses, that is clauses

not containing disjuncts 1 = 0 in case of tree-like Res(linF) and not containing un-

satisfiable f = 0, 0 /∈ im2(f) in case of tree-like Ressw(linF). The former can be

eliminated by the simplification rule and the latter by the semantic weakening rule.

66

By this assumption, the empty clause at the root of π is derived in tree-like Res(linF)

(resp. tree-like Ressw(linF)) as a simplification (resp. weakening) of an unsatisfiable

h = 0 (1 = 0 in case of tree-like Res(linF)) equation, which is derived by application of

the resolution rule. Denote the left and right subtrees, corresponding to the premises

of h = 0, by π1 and π2, respectively.

The roots of π1 and π2 must be of the form f1 = 0 and f2 = 0, respectively, where

f1 − f2 = h. Therefore,

f1 = l(x1, . . . , xn−1) + anxn and f2 = l(x1, . . . , xn−1) + anxn − h ,

for some l(x1, . . . , xn−1) =
∑n−1

i=1 aixi +B, where ai, B ∈ F.

Assume without loss of generality that an 6= 0 and S(π1) ≤ S(π2). We now use

the induction hypothesis to construct a narrow derivation π•1 of f1 = 0 such that

ω0(π•1) ≤ dlog2 S(π1)e+ 1 + ω0(φ) + 2

≤ dlog2 S(π)e+ ω0(φ) + 2 .

For every nonzero A ∈ im2(f1) define the partial linear substitution ρA as xn ←
(A− l(x1, . . . , xn−1))a−1

n . Thus, f1 � ρA = A. The set of linear clauses

φ �ρA ∪
{

(A− l)a−1
n = 0 ∨ (A− l)a−1

n = 1
}

(3.7)

is unsatisfiable and has n− 1 variables, and is refuted by π1 �ρA .

By induction hypothesis there exists a (narrow) refutation πA1 of (3.7) with

ω0(πA1) ≤ dlog2 S(π1 �ρA)e+ ω0(φ) + 2

≤ dlog2 S(π1)e+ ω0(φ) + 2 .

By Corollary 43 there exists a derivation π̂A1 of 〈l + anxn 6= A〉 from φ such that

ω0(π̂A1) ≤ max(ω0(πA1) + 1, ω0(φ) + 2) ≤ dlog2 S(π1)e+ ω0(φ) + 3. By Proposition 14

there exists a derivation π•1 of f1 = 0 such that ω0(π•1) ≤ dlog2 S(π1)e+ ω0(φ) + 3 ≤
dlog2 S(π)e+ ω0(φ) + 2.

Consider the following substitution ρ: xn ← −l · a−1
n . Then, π2|ρ is a derivation of

h = 0 from φ|ρ ∪ {−l · a−1
n = 0 ∨ −l · a−1

n = 1}, which we augment to refutation π′2 by

taking composition with simplification (resp. weakening) in case of tree-like Res(linF)

(resp. tree-like Ressw(linF)). By induction hypothesis there exists a refutation π•2 of

width

ω0(π•2) ≤ dlog2(S(π′2) + 1)e+ ω0(φ) + 2

≤ dlog2 S(π)e+ ω0(φ) + 2 ,

67

and thus by Corollary 43 there exists a refutation π̂•2 of φ ∪ {f1 = 0} of width

ω0(π̂•2) ≤ dlog2 S(π)e+ ω0(φ) + 2. The combination of π̂•2 and π•1 gives a refutation of

φ of the desired width.

Theorem 45. Let F be a field and π be a Res(linF) refutation of an unsatisfiable set

of linear clauses φ. Then, there exists a PCF refutation π′ of (the arithmetization of)

φ of degree ω(π).

Proof: The idea is to replace every clause C = (f1 = 0 ∨ . . . ∨ fm = 0) in π by its

arithmetization a(C) := f1 · . . . · fm, and then augment this sequence to a valid PCF

derivation by simulating all the rule applications in π by several PCF rule applications.

Case 1: If D = (C ∨ g1 = 0 ∨ . . . ∨ gm = 0) is a weakening of C, then apply the

product and the addition rules to derive a(D) = a(C) · g1 · . . . · gm from a(C).

Case 2: If D is a simplification of D ∨ 1 = 0, then a(D) = a(D ∨ 1 = 0).

Case 3: If D = (x = 0 ∨ x = 1) is a a Boolean axiom, then a(D) = x2 − x is an

axiom of PCF.

Case 4: If D = (C ∨C ′∨E ∨αf +βg = 0) is a result of resolution of (C ∨E ∨ f = 0)

and (C ′ ∨ E ∨ g = 0), where C and C ′ do not contain the same disjuncts, then

by the product and addition rules of PC we derive a(C) · a(C ′) · a(E) · f from

a(C ∨ E ∨ f = 0) = a(C) · a(E) · f , and also derive a(C) · a(C ′) · a(E) · g from

a(C ′ ∨ E ∨ f = 0) = a(C ′) · a(E) · f , and then apply the addition rule to derive

a(C) · a(C ′) · a(E) · (αf + βg) = a(D).

It is easy to see that the degree of the resulting PCF refutation is at most ω(π).

As a consequence of Theorems 44 and 45, and the relation ω0 ≥ 1
|F|ω as well as the

results from [2], we have the following:

Corollary 46. For every prime p there exists a constant d0 = d0(p) such that the

following holds. If d ≥ d0, G is a d-regular Ramanujan graph on n vertices (augmented

with arbitrary orientation to its edges) and F is a finite field with char(F) 6= p, then

for every function σ such that ¬TS
(p)
G,σ ∈ UNSAT, every tree-like Res(linF) refutation

of ¬TS
(p)
G,σ has size 2Ω(dn).

Proof: Corollary 4.5 from [2] states that the degree of PCF refutations of ¬TS
(p)
G,σ is

Ω(dn). Theorem 45 implies that the principal width of Res(linF) refutations of ¬TS
(p)
G,σ

is Ω(1
|F|dn) = Ω(dn) and thus by Theorem 44 the size is 2Ω(dn).

68

Corollary 47. Let φ ∼ Fn,∆k , k ≥ 3 and ∆ = ∆(n) be such that ∆ = o(n
k−2

2)

and let F be any finite field. Then every tree-like Res(linF) refutation of φ has size

2
Ω

(
n

∆2/(k−2)·log ∆

)
with probability 1− o(1).

Proof: Corollary 4.7 from [2] states that the degree of PCF refutations of φ ∼ Fn,∆k ,

where k ≥ 3, is Ω(dn) with probability 1−o(1). Theorem 45 implies that the principal

width of Res(linF) refutations of φ ∼ Fn,∆k is Ω(1
|F|dn) = Ω(dn) and thus by Theorem 44

the size of the refutations is 2Ω(dn) with probability 1− o(1).

69

Chapter 4

First-Order Theories for Constant
Degree PCR and SoS

In this chapter we present a formulation of first-order theories TPCR and TSoS, which

are uniform versions of constant degree PCR and SoS, respectively. We start with the

definition of TPCR and subsequently use TPCR as a basis for the definition of TSoS.

4.1 The Theory for Constant Degree PCR

For a fixed ring R, the theory TPCR is a two-sorted theory over the language LR= . Its

two sorts are ring sort and index sort.

4.1.1 The Language LR= of TPCR

Index sort symbols:

• Index sort function symbols f for all functions f : N→ N. It follows that LR= , in

particular, contains index sort constants for all n ∈ N and symbols f(n1, . . . , nk)

for polynomially bounded functions of several arguments.

• Equality predicate symbol =ind. We usually omit the subsrcipt.

Ring sort symbols:

• Constants for all a ∈ R.

• Function symbols for all functions f : N→ R.

• Function symbols +,−, · for ring operations.

70

• Function symbol
∑

i,t(n) for every index variable i and ring-term t(i), where n

is an index argument. Intended meaning: if t(i) is ring term with free variable

i and n is index term, then
∑

i,t(n + 1) := t(0) + . . . + t(n),
∑

i,t(0) := 0. We

write sum-terms in the conventional form
n∑
i=0

t(i).

• Oracle1 X(i), where i is index argument. Intended meaning: X(i) states for ith

variable in the sequence of variables X.

• Equality predicate symbol =rng. We usually omit the subscript.

4.1.2 The Axioms of TPCR

Basic axioms:

• Every true sentence2, not containing occurrences of the oracle X and ring-

variables.

• Ring-sort and index-sort equalities axiom scheme:

∀x ∀y ∀i ∀j x = y, i = j, t(x, i) = 0 ⊃ t(y, j) = 0

• Standard ring axioms for 0, 1 ∈ R and +,−, ·.

• The big sum defining axiom schemes:

j+1∑
i=0

t(i) =
j∑
i=0

t(i) + t(j)
0∑
i=0

t(i) = 0

Induction axiom:

For every formula φ(i) in the class ΦR= , which we define below, the axiom:

φ(0) ∧ (∀i φ(i) ⊃ φ(i+ 1)) ⊃ ∀nφ(n)

Definition 9. The class ΦR= of LR=-formulas is defined by induction on complexity of

formulas as follows:

• All atomic formulas are in ΦR= and all formulas not containing occurrences of

the oracle X or ring-variables are in ΦR= .

• If φ1, φ2 ∈ ΦR= , then φ1 ∨ φ2 ∈ ΦR= and φ1 ∧ φ2 ∈ ΦR= .

• If φ(i) ∈ ΦR= , then ∀(i < s)φ(i) ∈ ΦR= .
1Technically, just a function symbol without any defining axioms.
2True in the standard model.

71

4.1.3 Propositional Translation for TPCR

In this section we establish a connection between first-order TPCR derivations and

propositional PCR,d or PCrad
R,d derivations. Given an assignment α for index-variables i,

we define a translation of LR=-formulas φ(i, y1, . . . , yn) ∈ ΦR= with free index-variables

i and free ring-variables y1, . . . , yn to sets of polynomial equations 〈φ〉α = {f1 =

0, . . . , fm = 0}, fi ∈ R[x0, . . . , xs(α), y1, . . . , yn] such that

{(a1, . . . , as(α), b1, . . . , bn) |φ(α(i), b1, . . . , bn) �X(j)←aj ,j∈[s(α)]= True} = V (〈φ〉α)

where V denotes the set of solutions of a system of polynomial equations. We then

show, that a first-order refutation of a set of formulas φ1(i), . . . , φk(i) ∈ ΦR= can be

translated to a family πα of constant degree refutations of {〈φ1〉α, . . . , 〈φk〉α}α in PCR,d

or in its extension PCrad
R,d.

4.1.3.1 Extension of PCR with The Radical Rule

The system PCrad
R (respectively PCrad

R,d) extends the system PCR (respectively PCR,d)

with the following radical rule:

f 2 = 0

f = 0

This extension makes the system strictly stronger with respect to derivations (even

with Boolean axioms) in case of fields of characteristic 0 as shown in the following

proposition:

Proposition 48. If F is a field of characteristic 0, then PCF derivations

{x2
i − xi = 0}, (x1 + . . .+ xn + 1)2 = 0 ` x1 + . . .+ xn + 1 = 0

are of degree Ω(n).

Proof: Write such a derivation in static form as (x1 + . . .+xn+ 1) = a · (x1 + . . .+xn+

1)2 +
∑

i hi · (x2
i −xi), where a, hi are some polynomials. Clearly, a on 0-1 assignments

is the function a(x) ≡ 1
x1+...+xn+1

. From Corollary 5.4 in [31] it follows that the degree

of a is Ω(n).

However, whether in this case the system PCrad
F is strictly stronger than PCF as a

refutation system is still an open question.

The following proposition shows that in case of fields of positive characteristic the

situation is different:

72

Proposition 49. If F is a field of positive characteristic, then there exist PCF deriva-

tions f 2 = 0 ` f = 0 of degree O(deg(f)).

Proof: The derivation is f = fp−2 · f 2, where p is characteristic of F.

4.1.3.2 Translation of Terms and Formulas

Translation of terms. Let α be an assignment for index variables i. By induction

on terms, we define the translation 〈t(i, y)〉α to polynomials over R of terms with free

index-variables i and free ring-variables y as follows:

• All the constants a ∈ R are translated to the corresponding element in the

ring R. For i ∈ N, X(i) is translated to the variable xi. A ring-variable yi is

translated to the variable yi.

• Operations +,−, · are translated to the corresponding operations on polynomials.

• 〈
∑

i(t(i), n)〉α := 〈t(1)〉α + . . .+ 〈t(n)〉α.

Translation of formulas. If φ is a formula in ΦR= we define propositional translation

φ to a set of polynomial equations 〈φ〉α as follows:

• If φ is atomic formula t = r, then 〈φ〉α := {〈t〉α − 〈r〉α = 0}.

• If φ is a formula, not containing occurrences of the oracle X or ring-variables,

then 〈φ〉α := {0 = 0} if φ �α= True and 〈φ〉α := {1 = 0} otherwise.

• If φ = ψ ∧ ψ′, then 〈φ〉α := 〈ψ〉α ∪ 〈ψ′〉α.

• If φ = ψ ∨ ψ′, then 〈φ〉α := 〈ψ〉α · 〈ψ′〉α, where the product of two sets of

polynomials is defined to be P · Q := {p · q = 0 | p = 0 ∈ P , q = 0 ∈ Q}.

• If φ = ∀(i < s)ψ(i), then 〈φ〉α := {〈ψ(v)〉α}v<s�α

4.1.3.3 Propositional Translation of TPCR Proofs

We work with TPCR proofs as the sequent calculus LK derivations. If Γ is an antecedent,

denote 〈Γ〉Lα := 〈
∧
φ∈Γ φ〉α and if ∆ is a succedent denote 〈∆〉Rα := 〈

∨
φ∈∆ φ〉α. The

following Lemma is a routine verification:

Lemma 50. Every basic axiom of TPCR can be written as a sequent, where all

formulas are in ΦR= . The induction axiom can be defined by the rule:

73

φ(i) −→ φ(i+ 1)

φ(0) −→ φ(i)

The following theorem relates TPC derivations to PCrad
d derivations:

Theorem 51. Let Π be a TPCR derivation of the sequent Γ −→ ∆ such that all

formulas in Γ and ∆ are in ΦR= and have free index-variables i. Then there exist d ∈ N
such that for every assignment α for i there exists PCrad

R,d (PCR,d in case R is a field

of positive characteristic) derivation:

〈Γ〉Lα ` 〈∆〉Rα

Proof: By the free-cut elimination theorem for two-sorted LK, there exists free-cut free

proof Π′ of Γ −→ ∆. By Lemma 50, all axioms of TPCR can be written as sequents,

where all formulas are in ΦR= . Additionally, all formulas appearing in the induction

rule are from ΦR= . Therefore, by the subformula property of free-cut free proofs, all

formulas in Π′ must be in ΦR= .

The proof is by induction on the number of steps in Π′.

Base case: It is easy to see, that if t is a term, then 〈t〉α is a family of polynomials

with degree bounded by a constant. All axioms but for equality axioms are translated

to trivial statements. Recall the equality axiom:

x = y, i = j, t(x, i) = 0 −→ t(y, j) = 0

Denote Γ= antecedent above. In case α(i) 6= α(j), 1 is in 〈Γ=〉Lα. Otherwise 〈Γ=〉Lα =

{x − y, p(x)}, where p(x) := 〈t(x, α(i))〉α = 〈t(x, α(j))〉α, and there is an obvious

derivation {x− y, p(x)} ` p(y) in PCrad
R,d.

Induction step: The cases of structural rules (weakening and contraction) are trivial,

except for the contraction rule:

Γ −→ ∆, φ, φ
(Contraction)

Γ −→ ∆, φ

By induction hypothesis there exists PCrad
R,d derivation 〈Γ〉Lα ` 〈∆〉Rα · 〈φ〉2α. Applying

the radical rule we obtain 〈Γ〉Lα ` 〈∆〉Rα · 〈φ〉α.

Other rules are handled as follows:

Case 1: Left and right ∧-introduction:

Γ −→ ∆, φ Γ −→ ∆, ψ
(Right)

Γ −→ ∆, φ ∧ ψ
φ,Γ −→ ∆

(Left)
φ ∧ ψ,Γ −→ ∆

74

(Left) We just use the proof of 〈φ,Γ〉Lα ` 〈∆〉Rα as the proof of 〈φ ∧ ψ,Γ〉Lα ` 〈∆〉Rα .

(Right) The PCrad
R,d derivation of 〈Γ〉Lα ` 〈∆, φ ∧ ψ〉Rα = 〈∆, φ〉Rα ∪ 〈∆, ψ〉Rα is just the

union of PCrad
R,d derivations of 〈Γ〉Rα ` 〈∆, φ〉Rα and of 〈Γ〉Lα ` 〈∆, ψ〉Rα .

Case 2: Left and right ∨-introduction:

φ,Γ −→ ∆ ψ,Γ −→ ∆
(Left)

φ ∨ ψ,Γ −→ ∆

Γ −→ ∆, φ
(Right)

Γ −→ ∆, φ ∨ ψ

(Right) By induction hypothesis there is PCrad
R,d derivation π : 〈Γ〉Lα ` 〈∆〉Rα · 〈φ〉α. It is

trivially extended to a derivation of 〈∆〉Rα · 〈φ〉α · 〈ψ〉α.

(Left) By induction hypothesis there are derivations π1 : 〈φ〉α, 〈Γ〉Lα ` 〈∆〉Rα and

π2 : 〈ψ〉α, 〈Γ〉Lα ` 〈∆〉Rα . Obvious composition of π1 and π2 yields 〈φ〉α · 〈ψ〉α, 〈Γ〉Lα `
(〈∆〉Rα)2 ` 〈∆〉Rα .

Case 3: Left and right bounded index ∀-introduction:

φ(l),Γ −→ ∆
(Left)

l < s,∀i<sφ(i),Γ −→ ∆

i < s,Γ −→ ∆, φ(i)
(Right)

Γ −→ ∆,∀j<sφ(j)

where variable i does not occur in Γ or ∆ in the (Right) rule.

(Left) If l �α≥ s �α, then 1 ∈ 〈l < s, ∀i<sφ(i),Γ〉Lα. Otherwise, 〈φ(l)〉α is subset of

〈∀i<sφ(i),Γ〉α and the statement trivially follows.

(Right) By induction hypothesis there exists derivation 〈i < s,Γ〉Lα[i←v] ` 〈∆, φ(i)〉Rα[i←v]

for all v ∈ N and all assignments α. The family of derivations {〈Γ〉Lα ` 〈∆〉Rα ·
〈φ(v)〉α}v<s�α constitute the derivation 〈Γ〉Lα ` 〈∆〉Rα · {〈φ(v)〉α}v<s�α = 〈∆〉Rα ·
〈∀j<sφ(j)〉α.

Case 4: Induction rule:

Γ, φ(i) −→ φ(i+ 1),∆

Γ, φ(0) −→ φ(i),∆

where variable i does not occur in Γ or ∆.

Let α be assignments and let n := α(i). By induction hypothesis there are

derivations πv : 〈Γ〉Lα ∪ 〈φ(i)〉α[i←v] ` 〈φ(i + 1)〉α[i←v] · 〈∆〉Rα . By multiplying πv by

〈∆〉Rα and applying radical rule we obtain derivation π′v : 〈Γ〉Lα · 〈∆〉Rα ∪ 〈φ(i)〉α[i←v] ·
〈∆〉Rα ` 〈φ(i + 1)〉α[i←v] · (〈∆〉Rα)2 ` 〈φ(i + 1)〉α[i←v] · 〈∆〉Rα . Multiplication by 〈∆〉Rα
and concatenation with π′0, . . . , π

′
n−1 results in the derivation 〈Γ〉Lα ∪ 〈φ(0)〉α ` 〈Γ〉Lα ·

〈∆〉Rα ∪ 〈φ(0)〉α · 〈∆〉Rα ` . . . ` 〈φ(n)〉α · 〈∆〉Rα .

Case 5: Cut rule:

Γ −→ ∆, φ φ,Γ −→ ∆
Γ −→ ∆

75

By induction hypothesis there are derivations π1 : 〈Γ〉Lα ` 〈∆〉Rα · 〈φ〉α and π2 :

〈φ〉α ∪ 〈Γ〉Lα ` 〈∆〉Rα . Construct the desired derivation as follows: 〈Γ〉Lα ` 〈∆〉Rα · 〈φ〉α ∪
〈Γ〉Lα · 〈∆〉Rα ` 〈∆〉Rα .

4.2 Theories for Constant Degree SoS

We define TSoS as a minimalistic extension of TPCR, which reflects the strength of

SoSd. The theory TSoS extends TPCR with just one axiom, expressing that if a sum

of squares is zero, then every square in the sum is zero. We ensure that TSoS is strong

enough by showing that TSoS proves soundness of SoSd.

Subsequently, we discuss possible formulations of theories with inequality symbol

in the language.

Theory TSoS≥ is the strongest theory with inequality, for which we can prove the

existence of a translation to SoS. The language of TSoS≥ contains marked inequalities

{≥d}d∈N and square root function symbol
√
x. Expression t ≥d r informally means

“t− r is a sum-of-squares of degree at most d”. TSoS≥ is intuitionistic and is built on

top of restricted version of TPCR: TPCR without integral domain axiom and induction

axiom scheme restricted to formulas with ∀,∧ connectives (that is without ∨). It also

contains axioms of partially ordered ring for marked inequality relations ≥d and natural

axioms for square root
√
x, excluding monotonicity axiom: x ≥d y ⊃

√
x ≥d

√
y.

Induction axiom scheme is defined for formulas of the form ∀x
∧
i ti(x) ≥d 0 ∧ φ,

where φ is a (∀,∧)-formula, where all atomic subformulas are equalities. The proofs in

TSoS1
≥ are naturally translated to constant degree derivations in an extension of PCrad

R,d.

We extend one of the results in [16] to show that these extensions are simulated by

SoS.

One might consider the following modifications to the theory TSoS≥:

1. Replace marked inequalities {≥d}d∈N with a single unmarked inequality ≥.

2. Remove universal quantifier for inequalities in induction.

3. Add integral domain axiom for equalities and ∨ connective in formulas in

induction.

4. Add totality axiom for inequality.

5. Allow classical reasoning.

6. Add monotonicity axiom for
√
x.

76

7. Add other fractional powers 1/k, k ≥ 3.

All modification, except for (2), are strengthenings. Currently, we only know that

if we apply one of (1), (3) or (4) and do not apply (2), then the resulting theory T

will be too strong, because T proves soundness of resolution. All other comibations

are not yet ruled out by a proof that corresponding theory is stronger than constant

degree SoS.

4.2.1 Extensions of PCrad
R

4.2.1.1 The system PC+

This system extends PCrad
R with the following rule:

f 2
1 + . . .+ f 2

m = 0

f 2
1 = 0

We show that PC+ can be simulated by SoS. Our argument is an extension of

simulation of PCR in SoS described in [16]. The following lemma demonstrates that

SoS “almost simulates” the radical rule.

Lemma 52. Let f be a polynomial of degree d/2. Then for every ε > 0 there exist

degree d SoSd derivations of f 2 = 0 ` f ≥ −ε and f 2 = 0 ` f ≤ ε. Moreover the

coefficient of f 2 in the derivation is a negative real number.

Proof: Let ε > 0. The following is SoSd derivation of ε± f ≥ 0:

ε± f =
1

4ε
· (−f 2 + (2ε± f)2)

Using this lemma we prove that SoS “almost simulates” PC+ with respect to

derivations.

Proposition 53. Let r1 = 0, . . . , rL = 0 be PC+ derivation of degree d from a set of

equalities F = {f1, . . . , fm}. Then for every ε > 0 there exists degree 2d SoS derivation

of −r2
L + ε ≥ 0 from F .

Proof: We prove by induction on L that −r2
L + ε ≥ 0 has SoS proof of degree 2d.

Consider all possible ways of how rL = 0 is derived. In case rL = 0 is an axiom from

F or a Boolean axiom, the SoS derivation is trivial.

77

Let rL = 0 be derived by variable rule from rk = 0: rL = xjrk for some variable xj .

By induction hypothesis there exists SoS derivation π of −r2
k + ε ≥ 0 of degree 2d. We

derive −r2
L by adding to π the following expression: (rk − xjrk)2 + (−2r2

k)(x
2
j − xj).

Let rL = 0 be derived from rk = 0 and rk′ = 0 by sum rule: rL = ark + brk′ , where

a, b ∈ R. By induction hypothesis there exist SoS derivations π of −r2
k + ε

2a2 ≥ 0 and

π′ of −r2
k′ +

ε
2b2
≥ 0 both of degree 2d. The following is a derivation of −r2

L + ε ≥ 0:

2a2π + 2b2π′ + (ark − brk′)2.

Let rL = 0 be derived from rk = 0 by the radical rule: r2
L = rk. By induction

hypothesis there exists an SoS derivation of −r4
L + δ ≥ 0 for every δ > 0. From the

proof of Lemma 52 we conclude that there exists SoS derivation of −r2
L + 2ε′ ≥ 0

from −r4
L + 4ε′2 ≥ 0 for every ε′ > 0 and, in particular, for ε′ =

√
δ

2
. Thus there exists

derivation of −r2
L +
√
δ ≥ 0, where we choose δ = ε2.

Let rL = 0 be derived from rk = 0, where rL = f 2
1 and rk = f 2

1 + · · · + f 2
m,

by sum-of-squares rule. By induction hypothesis there exists an SoS derivation of

−(f 2
1 + · · ·+f 2

m)2 +δ ≥ 0 for every δ > 0. It follows that there exists an SoS derivation

of −f 4
1 + δ ≥ 0 for every δ ≥ 0.

As a corollary we obtain that SoS simulates PC+.

Theorem 54. If there exists a PC+ refutation of degree d of a set of equalities F ,

then there exists SoS refutation of F of degree 2d.

4.2.1.2 The system PC+,P

Let V = {x1, . . . , xn, . . .} be the set of variables used in systems of polynomials

being refuted. The system PC+,P extends PC+ with auxiliary variables Xk,Q for Q1/k

for every k ∈ P ⊆ N\{0, 1} and every polynomial Q, possibly containing auxiliary

variables. Circularity is avoided by arranging variables of PC+,P in the family of sets

Ui: U0 = V and Ui+1 consists of all variables Xk,Q, where Q is a real polynomial with

variables in
⋃
j≤i Uj. For all k ∈ P, all polynomials P,Q and all s.o.s polynomials A,

not containing Xk,Q, PC+,P has the rules:

Q− A = 0

(Xk,Q)k −Q = 0
Q− A = 0

Xk,Qk −Q = 0

if k is even and

(Xk,Q)k −Q = 0 Xk,Qk −Q = 0

78

if k is odd.

We now prove that PC+,{2} is a conservative extension of PC+.

Theorem 55. Let f1, . . . , fm, g be real polynomials, not containing auxiliary variables

of PC+,{2}. If there exist a PC+,{2} derivation π : f1 = 0, . . . , fm = 0 ` g = 0 of degree

d and size S, then there exists PC+ derivation π′ : f1 = 0, . . . , fm = 0 ` g = 0 of

degree d2O(D)
and size 2O(D)S, where D is the maximal level of nesting of square roots.

Proof: Let x1, . . . , xn be variables of f1, . . . , fm, g. Denote z1, . . . , zM the auxiliary

variables in π of the maximal nesting level D and y1, . . . , yN all other auxiliary variables.

We prove, that π can be converted to a proof π′ without variables z of degree O(d2)

and size O(S). The claim will follow by induction on D.

Denote Qi(x, y) the square of zi and πi the derivation of Qi −
∑

j u
2
i,j = 0, that is

subderivation of π. Denote I the ideal, generated by {z2
i −Qi}. By induction on the

steps in π we show that if p = 0 is a line in π and p ≡
∑

I⊆[M]

PI(x, y)zI mod I, where

zI =
∏
i∈I
zi, then for each I ⊆ [M] there exist a proof πI of PI ·QI , where QI =

∏
i∈I
Qi.

Moreover, each πI is of degree at most O(d2) and size O(S).

The base case is obvious. Consider rules of PC+,{2} one by one:

Case 1: Sum rule. This case is obvious.

Case 2: Variable rule. For xi or yi variables the case is obvious. Assuming the

statement holds for p = 0, we prove that it also holds for p · zi = 0. We multily

separatly each monomial. For all monomials zI such that i /∈ I, PI ·QI ·Qi is derived

by multiplication of PI ·QI by Qi. If i ∈ I, then PI · zI · zi ≡ PI ·Qi · zI\{i} mod I
and PI ·QI derivable by hypothesis.

Case 3: Radical rule. Assuming the statement holds for p2 = 0, we prove it for p = 0.

Note that p2 ≡
∑

I

(∑
J,J ′:J∆J ′=I

PJ · PJ ′ ·QJ∩J ′

)
zI mod I. By induction hypothesis

we know that
∑

J,J ′:J∆J ′=I

PJ ·PJ ′ ·QJ∩J ′ ·QI =
∑

J,J ′:J∆J ′=I

PJ ·PJ ′ ·QJ∪J ′ = 0 are derivable

for every I. In particular, for I = ∅,
∑
J

P 2
J ·QJ = 0 is derivable. Because

∑
J

P 2
J ·QJ is

a sum of squares (each QJ is sum of squares as a product of sums of squares Qi, i ∈ J
by proofs πi, i ∈ J), by sum-of-squares rule PJ ·QJ = 0.

Case 4: Sum-of-squares rule. Analogous to the previous case.

Case 5: Auxiliary variables rules. This case is trivial.

79

4.2.2 Theory TSoS

The languages of TSoS and TPCR coincide, inequality t ≥ 0 is phrased in TSoS by

means of saying that t equals to a sum of squares.

The axioms of TSoS are axioms of TPCR plus the following axiom for all terms t(i):

n∑
i

t(i)2 = 0 ∧ j < n ⊃ t(j) = 0

The translation of TPCR trivially extends to a translation from TSoS to PC+.

4.2.2.1 Soundness of SoSd in TSoS

We show that whenever there exists an SoSd refutation π of a system of equations

F , the TSoS encoding of the statement that F has satisfying assignment A can be

refuted in TSoS using the TSoS encoding of π.

We first describe TSoS phrasing of the statement. Let n be an index-variable

and let a polynomial3 P ∈ R[x1, . . . , xn]d of degree at most d be represented in TSoS

as a ring-sort function symbol aP (i, n), where aP (i, n) represents the coefficient of

ith monomial in P and monomials are ordered according to the deglex ordering. In

particular, linear combination αP +βQ and product P ·Q are represented by functions

aαP+βQ(i, n) and aP ·Q(i, n) respectively, and the following equalities are axioms of

TSoS:

aαP+βQ(i, n) = αaP (i, n) + βaQ(i, n) aP ·Q(i, n) =
Md(n)∑
j,k

δ�(j,k,i,n) · aP (j, n) · aQ(k, n)

where Md(n) is the function symbol for the number of monomials with n variables

and of degree at most d, and �(j, k, i, n) is the predicate symbol, expressing that ith

monomial is the product of jth monomial and kth monomial.

An assignment for variables is represented by the ring-oracle A: xi is assigned

to A(i). Let ν1(i, n), . . . , νd(i, n) be functions such that ν1(i, n) ≤ . . . ≤ νd(i, n) and

mi is the monomial
∏

j|νj(i,n)>0

xνj(i,n). The evaluation mi[A]d of ith monomial mi on A

depends on the chosen upper bound d for the degree and is defined as follows:

mi[A]d :=
∏

1≤j≤d

(
δνj(i,n)>0 · (A(νj(i, n))− 1) + 1

)
This extends to evaluation P [A]d :=

∑
i aP (i, n)mi[A]d of a polynomial P on A.

3Actually, a family of polynomials parameterized by n. We refer to it as a polynomial for brevity.

80

Lemma 56. Let P,Q be some polynomials of degree at most d ∈ N. TSoS proves

(P +Q)[A]d = P [A]d +Q[A]d and (P ·Q)[A]2d = P [A]2d ·Q[A]2d.

Proof: (P +Q)[A]d = P [A]d +Q[A]d follows from
N∑
i=0

(t(i) + r(i)) =
N∑
i=0

t(i) +
N∑
i=0

r(i)

for any terms t and r, which is in turn provable by induction in TSoS.

The destributivity

(
N∑
i=0

t(i)

)
· r =

N∑
i=0

t(i) · r for sum-terms is provable by induction

in TSoS. It follows that TSoS proves:

P [A]2d ·Q[A]2d =

M2d(n)∑
i=0

aP (i, n)mi[A]2d

 ·
M2d(n)∑

i=0

aQ(i, n)mi[A]2d

 =

=

M2d(n)∑
i=0

M2d(n)∑
j=0

aP (i, n) · aQ(j, n) ·mi[A]2d ·mj[A]2d

Degree bounds deg(P) ≤ d and deg(Q) ≤ d imply that the following statement

is an axiom of TSoS:

(∧
s≤d

νs(i, n) = 0 ∧
∧
s≤d

νs(j, n) = 0

)
∨ (aP (i, n) · aQ(j, n) = 0).

Both disjuncts imply aP (i, n)·aQ(j, n)·mi[A]2d·mj [A]2d = aP (i, n)·aQ(j, n)·mk(i,j)[A]2d,

where mk(i,j) is the product of mi and mj. Therefore:

P [A]2d ·Q[A]2d =

M2d(n)∑
i=0

M2d(n)∑
j=0

aP (i, n) · aQ(j, n) ·mk(i,j)[A]2d

 =

=

M2d(n)∑
i=0

M2d(n)∑
j=0

M2d(n)∑
k=0

aP (i, n) · aQ(j, n) · δk=k(i,j) ·mk[A]2d

 =

=

M2d(n)∑
k=0

mk[A]2d ·

M2d(n)∑
i=0

M2d(n)∑
j=0

aP (i, n) · aQ(j, n) · δ�(i,j,k)

 = (P ·Q)[A]2d

We now prove the soundness:

Theorem 57. If there exists a family πn = ({gi,n}, {uk,n}k∈[Mn]) of SoSd refutations

of Fn = {fi,n = 0}i∈[Nn], that is
∑

i gi,nfi,n +
∑

k u
2
k,n = −1, then TSoS proves:

∀n∃(i < Nn) ¬(fi,n[A]2d = 0)

.

81

Proof: Assume, for contradiction, ∀(i < Nn) fi,n[A]2d = 0 and derive(
Nn∑
i=1

fi,ngi,n

)
[A]2d = 0 using Lemma 56 and the induction of TSoS. As a conse-

quence we derive

(
Mn∑
k=1

u2
k,n + 1

)
[A]2d = 0, which, in turn, by Lemma 56 and TSoS

induction implies
Mn∑
k=1

(uk,n[A]2d)
2 + 1 = 0 and by the sum-of-squares rule this implies

1 = 0.

4.2.2.2 Theory TSoS≥

The language of TSoS≥ extends the language of TPCR with predicate symbols {≥d}d∈N
and function symbol

√
x. The underlying logic of TSoS≥ is intuitionistic, that is

excluded middle φ ∨ ¬φ is not an axiom.

Axioms of TSoS≥

• All axioms of TPCR, except for integral domain axioms and induction, are also

axioms of TSoS≥.

• Axioms of partial order for ≥d.

• Axioms of interaction of ≥d with ring operations:

∀x∀y∀z x ≥d y ⊃ x+ z ≥d y + z

∀x∀y x ≥d 0 ∧ y ≥d′ 0 ⊃ x · y ≥d+d′ 0

• Axioms ∀x∀y x ≥d y ⊃ x ≥d+d′ y.

• Squares are nonnegative: if t is a term of degree d (i.e. supα deg(〈t〉α) = d), then

t2 ≥2d 0.

• Axioms for square roots
√
x:

∀x x ≥d 0 ⊃
√
x ≥d 0

∀x x ≥d 0 ⊃ (
√
x)2 = x

∀x x ≥d 0 ⊃
√
x2 = x

• Induction axiom scheme for formulas with connectives ∀ and ∧. We denote ΦSDP

the resulting set of formulas for TSoS≥d induction.

82

Propositional translation for TSoS≥

The propositional translation for formulas of TSoS≥ extends inductive definition

of the translation of formulas of TSoS to atomic formulas of the form t ≥d 0. The

translation 〈t ≥d 0〉α(u) is parameterized by a sum of squares u and is defined to

be 〈t〉α − u = 0. Consequently, if φ is a formula, then its translation 〈φ〉α(Wα) is

parameterized by a witnessing function Wα : t ≥d 0 7→ (ut), where the domain of

Wα includes all inequalities in the corresponding formula and the degree bound is

respected: deg(ut) ≤ d. This gives rise to a translation of cedents with inequalities.

Theorem 58. Let Π be a TSoS≥ derivation of the sequent Γ −→ ∆ such that all

formulas in Γ and ∆ are in ΦSDP and have free index-variables i. Then there exist

d ∈ N such that for every assignment α for i and every witnessing function Wα

for 〈Γ〉Lα there exists a witnessing function W ′
α for 〈∆〉Rα and the following PC+,{2}

derivation of degree d:

〈Γ〉Lα(Wα) ` 〈∆〉Rα (W ′
α)

Proof: The cut-elimination theorem for LK implies that there exists a free-cut free

derivation Π′ of Γ −→ ∆. By the subformula property of free-cut free proofs all

formulas in Π′ are from ΦSDP.

The proof is by induction on the number of steps in Π′.

Base case: The proof for all axioms of TPCR is the same as in Theorem 51. The

proofs for most of axioms for ≥d are trivial. We give the proof for the case of the

following axioms:

Case 1: Antisymmetry for ≥d: t ≥d r, r ≥d t −→ r = t. We need to prove that for all

sums-of-squares A, B of degree at most d holds 〈t〉α−〈r〉α−A = 0, 〈r〉α−〈t〉α−B =

0 ` 〈t〉α − 〈r〉α = 0. Indeed, the sum of the premises is A + B = 0, which by the

sum-of-squares rule imples A = 0 and B = 0.

Case 2: Axiom t ≥d 0, r ≥d′ 0 −→ t · r ≥d+d′ 0. For any SoS A of degree ≤ d and any

SoS B of degree ≤ d′ we derive 〈t〉α · 〈r〉α −A ·B = 0 as follows: 〈t〉α · 〈r〉α −A ·B =

(〈t〉α − A) · (〈r〉α −B) + A · (〈r〉α −B) +B · (〈t〉α − A).

Case 3: Axioms for suqare root are interpreted using corresponding rules for auxiliary

variables in PC+,{2}.

Induction step: The cases of structural rules are trivial. Other rules are handled as

follows:

83

Case 1: Left and right ∧-introduction. This case is trivial, the argument is as in

Theorem 51.

Case 2: Left and right bounded index ∀-introduction. Analogous to the argument in

Theorem 51.

Case 3: Induction rule:

Γ, φ(i) −→ φ(i+ 1)

Γ, φ(0) −→ φ(j)

where variable j does not occur in Γ.

Let α be assignments and let n := α(j). By induction hypothesis, there

exists d ∈ N such that for every v ∈ N and every witnessing function

Wα[i←v] of degree ≤ d there exists W ′
α[i←v] of degree ≤ d and a derivation

πv(Wα[i←v]) : 〈Γ〉Lα(Wα[i←v]) ∪ 〈φ(i)〉α[i←v](Wα[i←v]) ` 〈φ(i + 1)〉α[i←v](W
′
α[i←v]). Con-

catenation of π0(Wα[i←0]), π1(W ′
α[i←1]), . . . gives a derivation 〈Γ〉Lα ∪ 〈φ(0)〉α(Wα[i←0]) `

〈φ(n)〉α(W
(n)
α[i←n]).

Case 4: Cut rule:

Γ −→ φ φ,Γ −→ ψ

Γ −→ ψ

By induction hypothesis there are derivations π1(Wα) : 〈Γ〉Lα(Wα) ` 〈φ〉α(W ′
α) and

π2(Wα) : 〈φ〉α(Wα) ∪ 〈Γ〉Lα(Wα) ` 〈ψ〉Rα (W ′
α). Construct the desired derivation as

follows: 〈Γ〉Lα(Wα) ` 〈φ〉α(W ′
α)∪ 〈Γ〉Lα(W ′

α) ` 〈ψ〉Rα (W ′′
α), where 〈Γ〉Lα(W ′

α) = 〈Γ〉Lα(Wα).

84

Chapter 5

Conclusion and Open Problems

This thesis contributes to better understanding of counting in propositional proof

complexity, but also broadens perspectives of what is yet to be discovered.

We demonstrated limitations of dag- and tree-like Res(linR) via a number of

upper and lower bounds on some basic contradictions. Of course, the picture is far

from complete and there are many open questions, but one question seems to be

standing out. In this work we proved an exponential lower bound for dag-like Res(linF)

refutation for a single 0-1 unsatisfiable equation with large coefficients, where F of

characteristic 0. It is interesting to find out, whether this result can be extended to

0-1 unsatisfiable systems of equations over fields of different characteristics, where

coefficients are polynomially bounded. It would be particularly interesting to prove

dag-like lower bound for a system, which is in the image of the reduction from 3-SAT

to 0-1 unsatisfiable linear systems over Fp, p ≥ 5, because this lower bound would

imply CNF lower bound.

Another interesting question is whether separations between tree-like Res(linFp)

and tree-like Res(linFq) for p 6= q can be proven directly, not via PCF degree lower

bounds. Perhaps the technique, employed by Razborov and Alekhnovich for PCF, can

inspire some direct argument, proving lower bound on Res(linFp) width. And, of course,

separation between tree-like Res(linFp) and tree-like Res(linF), where char(F) = 0, is

still missing.

Finally, it would be interesting to develop further Prover-Delayer games technique

and to extend it to, for example, Tseitin formulas.

The work on first-order theories completely resolves the question of what should

be a first-order theory for constant degree PCR if R is a field of positive characteristic.

For field F of characteristic 0 we only know that we can translate the theory TPCF to

an extension PCrad
F,d of PCF,d with the radical rule. Although we know, that there is a

85

lower bound on derivations f 2 = 0 ` f = 0, we do not know whether PCrad
F is strictly

stronger than PCF,d as a refutation system.

In case of constant degree SoS it is much less clear how the right theory for it

should look like. The gap between the theory TSoS≥, which we can translate to SoSd,

and theories, which we know are too string, is quite substantial.

Currently we show that a theory T is too strong by showing that it proves

soundness of resolution. Alternatively, one can show that T proves some statement, for

propositional translation of which there is ω(1) SoS degree lower bound. For example,

linear degree SoS lower bounds are known for the Subset Sum principle and Tseitin

tautologies, therefore T should not be able to prove them.

Attempts to prove that T is too strong raise new SoS degree lower bound questions

in this way. For example, the modification TSoS1
≥ of TSoS≥, where marked inequalities

≥d are replaced with unmarked one ≥, is too strong, because it simulates resolution. If

we restrict induction of TSoS1
≥ to formulas without universally quantified inequalities

∀x t(x) ≥ 0 (but possibly with inequalities t ≥ 0), it does not prove soundness of

resolution, but it still proves a statement, which is supposedly beyond SoSd. Namely,

it proves the following statement a la telescopic system: X(1) ≤ ε ∧ ∀(0 ≤ i <

n)X(i+ 1) = X(i)2 ⊃ X(n) ≤ ε2
n
.

From the other side, one may try to show that a theory T is not stronger than

SoSd, even though proofs in T cannot be directly translated to SoSd, by proving that

T conservatively extends TSoS with inequality. A possible way to approach this is via

extending any model of TSoS with an ordering, satisfying axioms in T .

86

Index

bounded arithmetic, 8

class coNP, 3

class NP, 2

clause, 25

Conjunctive Normal Form, 25

Cook-Reckhow proof system, 3, 25

Disjunctive Normal Form, 25

DPLL, 4

Frege proof system, 5

image avoidance principle, 15, 35

image axiom, 15, 35

linear clause, 31

nondeterministic linear decision tree, 18,

40

normal form transformation, 14, 47

Nullstellensatz proof system, 6

pigeonhole principle, 5, 18, 26

polynomial calculus, 6, 26

Positivstellensatz calculus, 7, 29

Positivstellensatz proof system, 7, 28

principal width of a linear clause, 32

propositional translation, 8

Prover-Delayer game, 16, 45

random formulas, 28

resolution, 4, 25

resolution over linear equations, 5, 12, 31

SAT, 3

semantic resolution, 32

semantic weakening, 13, 32

Sequent Calculus LK, 29

SoS algorithm, 10

subset sum principle, 14, 35

Sum-of-Squares proof system, 8, 28

theory TSoS≥, 22

theory TPCR, 20

theory TSoS, 22

tree-like resolution, 4, 26

Tseitin formulas, 18, 27

Tseitin tautologies, 5

unique games conjecture, 10

width of a linear clause, 32

87

Bibliography

[1] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of

the IEEE 29th Annual Symposium on Foundations of Computer Science, pages

346–355, 1988. 1.1.1.1, 1.1.1.3

[2] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial

calculus: non-binomial case. In Proceedings of the 42nd IEEE Symposium on

Foundations of Computer Science (Las Vegas, NV, 2001), pages 190–199. IEEE

Computer Soc., Los Alamitos, CA, 2001. 1.2.1, 2.2.1.2, 3, 4, 3.3.3, 3.4, 3.4, 3.4,

3.4

[3] Noga Alon. Decomposition of the completer -graph into completer -partiter -graphs.

Graphs and Combinatorics, 2(1):95–100, 1986. 1.1.2

[4] Noga Alon and Zoltán Füredi. Covering the cube by affine hyperplanes. Eur. J.

Comb., 14(2):79–83, March 1993. 1.2.1, 3.3.4, 3.3.4

[5] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability

results for sparsest cut, optimal linear arrangement, and precedence constrained

scheduling. In Proceedings of the 48th Annual IEEE Symposium on Foundations

of Computer Science, FOCS ’07, pages 329–337, Washington, DC, USA, 2007.

IEEE Computer Society. 1.1.2

[6] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook.

The Traveling Salesman Problem: A Computational Study (Princeton Series in

Applied Mathematics). Princeton University Press, Princeton, NJ, USA, 2007. 1.1

[7] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, New York, NY, USA, 1st edition, 2009. 1.1

[8] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric

embeddings and graph partitioning. J. ACM, 56(2):5:1–5:37, April 2009. 1.1.2

88

[9] Michael Francis Atiyah and I. G. MacDonald. Introduction to commutative

algebra. Addison-Wesley-Longman, 1969. 1.1.1.2

[10] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A.

Kelner, David Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs,

and their applications. In STOC, pages 307–326. ACM, 2012. 1.1.2

[11] Boaz Barak, Parikshit Gopalan, Johan H̊astad, Raghu Meka, Prasad Raghavendra,

and David Steurer. Making the long code shorter. SIAM J. Comput., 44(5):1287–

1324, 2015. 1.1.2

[12] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward

optimal algorithms. CoRR, abs/1404.5236, 2014. 1.1.1.2, 1.1.2

[13] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel

Pudlák. Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc.

London Math. Soc. (3), 73(1):1–26, 1996. 1.1.1.2

[14] Arnold Beckmann, Pavel Pudlák, and Neil Thapen. Parity games and proposi-

tional proofs. ACM Transactions on Computational Logic. 1.2, 2.4

[15] Eli Ben-Sasson. Hard examples for the bounded depth Frege proof system.

Comput. Complexity, 11(3-4):109–136, 2002. 1.1.1.1

[16] Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams,

and Sum-of-Squares Proofs. In Rolf Niedermeier and Brigitte Vallée, editors,

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),

volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages

11:1–11:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik. 1.1.1.2, 1.2.3.2, 2.2.4, 4.2, 4.2.1.1

[17] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the

pigeonhole principle in tree-like resolution by asymmetric prover-delayer games.

Electronic Colloquium on Computational Complexity (ECCC), 17:81, 2010. 3.3.2

[18] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of

tree-like resolution size. Inf. Process. Lett., 113(18):666–671, 2013. 3.3.2, 3.3.2

[19] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity

of DPLL search procedures. ACM Trans. Comput. Log., 14(3):20:1–20:21, 2013.

3.3.2

89

[20] J. Bochnak, M. Coste, and M-F. Roy. Real Algebraic Geometry. Springer, 1998.

1.1.1.2

[21] Samuel R. Buss. Bounded Arithmetic, volume 3 of Studies in Proof Theory.

Bibliopolis, 1986. 1.1.1.3

[22] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierarchies.

Ann. Pure Appl. Logic, 75(1-2):67–77, 1995. Proof theory, provability logic, and

computation (Berne, 1994). 1.1.1.3

[23] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.

Linear gaps between degrees for the polynomial calculus modulo distinct primes.

J. Comput. System Sci., 62(2):267–289, 2001. Special issue on the 14th Annual

IEEE Conference on Computational Complexity (Atlanta, GA, 1999). 1.1.1.2,

2.2.1.2

[24] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational

lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–

1367, December 2006. 1.1.2

[25] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner

basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual

ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages

174–183, New York, 1996. ACM. 1.1.1.2, 1.2.1.1, 2.2

[26] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus

(preliminary version). In STOC, pages 83–97, 1975. 1.1.1.3

[27] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the

propositional calculus (preliminary version). In 1974, pages 135–148, 1974. For

corrections see Cook-Reckhow [?]. 28

[28] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional

proof systems. J. Symb. Log., 44(1):36–50, 1979. This is a journal-version of

Cook-Reckhow [27] and Reckhow [62]. 1.1.1, 1.2.1, 1

[29] W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane

proofs. Discrete Applied Mathematics, 18:25–38, 1987. 1.1.1.2

90

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. 1.1,

1.1.2

[31] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof

complexity lower bounds from algebraic circuit complexity. In Conference on Com-

putational Complexity, volume 50 of LIPIcs, pages 32:1–32:17. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016. 1.2.3.1, 4.1.3.1

[32] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1979. 1.1

[33] M. Garlik and L. A. Ko lodziejczyk. Some subsystems of constant-depth Frege

with parity. 2017. Unpublished manuscript. 1.1.1.1, 1.2.1.1, 1.2.1.1, 1.2

[34] Dima Grigo riev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz

proofs. Ann. Pure Appl. Logic, 113(1-3):153–160, 2002. First St. Petersburg

Conference on Days of Logic and Computability (1999). 1.1.1.2

[35] Dima Grigoriev, Edward Hirsch, and Dmitrii Pasechnik. Complexity of semi-

algebraic proofs. 09 2002. 1.1.1.2

[36] Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-

3):297–308, 1985. 1.1.1.1

[37] R. Herken, editor. A Half-century Survey on The Universal Turing Machine, New

York, NY, USA, 1988. Oxford University Press, Inc. 1.1

[38] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial

calculus and the gröbner basis algorithm. ComputationalComplexity, 8(2):127–144,

1999. 1.1.1.2

[39] Dmitry Itsykson and Alexander Knop. Hard satisfiable formulas for splittings

by linear combinations. In Serge Gaspers and Toby Walsh, editors, Theory

and Applications of Satisfiability Testing – SAT 2017, pages 53–61. Springer

International Publishing, 2017. 3.3.2

[40] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear

combinations. In Mathematical Foundations of Computer Science 2014 - 39th

International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.

91

Proceedings, Part II, pages 372–383, 2014. (document), 1.1.1.1, 1.2.1, 1.2.1, 1.2.1.1,

1.2, 1.2.2.1, 3.1, 3.1, 3.3.1, 3.3.1, 3.3.2, 3.3.4, 3.3.4

[41] S. Khot. Improved inapproximability results for MaxClique, chromatic number

and approximate graph coloring. In Proceedings of the 42Nd IEEE Symposium

on Foundations of Computer Science, FOCS ’01, pages 600–, Washington, DC,

USA, 2001. IEEE Computer Society. 1.1.2

[42] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings

of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC

’02, pages 767–775, New York, NY, USA, 2002. ACM. 1.1.2

[43] Jan Kraj́ıcek. Randomized feasible interpolation and monotone circuits with a

local oracle. CoRR, abs/1611.08680, 2016. 1.1.1.1

[44] Jan Kraj́ıcek and Igor Carboni Oliveira. On monotone circuits with local oracles

and clique lower bounds. Chicago J. Theor. Comput. Sci., 2018, 2018. 1.1.1.1

[45] Jan Kraj́ıcek and Pavel Pudlák. Quantified propositional calculi and fragments

of bounded arithmetic. Math. Log. Q., 36(1):29–46, 1990. 1.1.1.3

[46] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the

polynomial hierarchy. Ann. Pure Appl. Logic, 52(1-2):143–153, 1991. International

Symposium on Mathematical Logic and its Applications (Nagoya, 1988). 1.1.1.3

[47] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to

the size of bounded depth Frege proofs of the pigeonhole principle. Random

Structures Algorithms, 7(1):15–39, 1995. 1.1.1.1

[48] Nathan Linial and Jaikumar Radhakrishnan. Essential covers of the cube by

hyperplanes. Journal of Combinatorial Theory, Series A, 109. (document), 1.2.1,

32

[49] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and

0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. 1.1.1.2

[50] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,

8(3):261–277, Sep 1988. 2

[51] Jakob Nordström. On the interplay between proof complexity and sat solving.

ACM SIGLOG News, 2(3):19–44, August 2015. 1.1, 1.1.1.1

92

[52] R. O’Donnell and Y. Zhou. Approximability and proof complexity. In Proceedings

of SODA, 2013. 1.1.2, 1.2.3

[53] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,

New York, NY, USA, 2014. 1.1.2

[54] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Methods

in mathematical logic (Caracas, 1983), volume 1130 of Lecture Notes in Math.,

pages 317–340. Springer, Berlin, 1985. 1.1.1.3, 2.4

[55] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds

for the pigeonhole principle. Comput. Complexity, 3(2):97–140, 1993. 1.1.1.1

[56] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for

k -sat (preliminary version). In Proceedings of the Eleventh Annual ACM-SIAM

Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA,

USA., pages 128–136, 2000. 1.2.1, 3.3.2

[57] Prasad Raghavendra. Optimal algorithms and inapproximability results for every

csp? In STOC, pages 245–254. ACM, 2008. 1.1.2

[58] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relax-

ations of UNIQUE GAMES. In 50th Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,

pages 575–585, 2009. 1.1.2

[59] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between

expansion problems. In IEEE Conference on Computational Complexity, pages

64–73. IEEE Computer Society, 2012. 1.1.2

[60] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear

proofs. Ann. Pure Appl. Logic, 155(3):194–224, 2008. 1.1.1.1, 1.2.1, 1.2.1, 2.2.1.2,

3.1, 19, 3.1.2

[61] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput.

Complex., 7(4):291–324, December 1998. 1.1.1.2

[62] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD

thesis, University of Toronto, 1976. 28

93

[63] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann.

Pure Appl. Logic, 130(1-3):277–323, 2004. 1.2

[64] Grigori Tseitin. On the complexity of derivations in propositional calculus. Studies

in constructive mathematics and mathematical logic Part II. Consultants Bureau,

New-York-London, 1968. 1.1.1.1, 2.2.1.2

[65] Domenico Zambella. Notes on polynomially bounded arithmetic. The Journal of

Symbolic Logic, 61(3):942–966, 1996. 1.1.1.3

94

	Contents
	Introduction
	Background
	Proof Complexity
	Resolution and Its Extensions
	Algebraic and Semi-algebraic Proof Systems
	Bounded Arithmetic

	Complexity of optimization

	Contributions
	Resolution over Linear Equations
	Lower Bounds and Separations in Finite Fields

	Complexity of Linear Systems
	Nondeterministic Linear Decision Trees

	First-Order Theories for (Semi-)Algebraic Proof Systems
	Theory for PCR,d
	Theory for SoSd

	Preliminaries
	Notation
	Propositional Proof Systems
	Hard Instances
	Pigeonhole Principle
	Mod p Tseitin Formulas
	Random k-CNFs

	Error-Correcting Codes
	Complexity of Linear Systems
	Semi-Algebraic Proof Systems

	Sequent Calculus LK
	Propositional Translations

	Resolution over Linear Equations
	Resolution with Linear Equations over General Rings
	Basic Counting in Res(linR) and Ressw(linR)
	CNF Upper Bounds for Res(linR)

	Dag-Like Lower Bounds
	Dag-Like Lower Bounds for the Subset Sum Principle
	Linear Systems with Small Coefficients
	An Upper Bound
	Lower Bound for Restricted Tree-Like Res(linF)

	Tree-Like Lower Bounds
	Nondeterministic Linear Decision Trees
	Prover-Delayer Games
	Lower Bounds for the Subset Sum with Small Coefficients
	Lower Bounds for the Pigeonhole Principle

	Size-Width Relation and Simulation by PC

	First-Order Theories for Constant Degree PCR and SoS
	The Theory for Constant Degree PCR
	The Language L=R of TPCR
	The Axioms of TPCR
	Propositional Translation for TPCR
	Extension of PCR with The Radical Rule
	Translation of Terms and Formulas
	Propositional Translation of TPCR Proofs

	Theories for Constant Degree SoS
	Extensions of PCradR
	The system PC+
	The system PC+,P

	Theory TSoS
	Soundness of SoSd in TSoS
	Theory TSoS

	Conclusion and Open Problems
	Index
	Bibliography

