107 research outputs found

    Complexity of Monadic inf-datalog. Application to temporal logic.

    Get PDF
    In [11] we defined Inf-Datalog and characterized the fragments of Monadic inf-Datalog that have the same expressive power as Modal Logic (resp. CTLCTL, alternation-free Modal μ\mu-calculus and Modal μ\mu-calculus). We study here the time and space complexity of evaluation of Monadic inf-Datalog programs on finite models. We deduce a new unified proof that model checking has 1. linear data and program complexities (both in time and space) for CTLCTL and alternation-free Modal μ\mu-calculus, and 2. linear-space (data and program) complexities, linear-time program complexity and polynomial-time data complexity for LμkL\mu_k (Modal μ\mu-calculus with fixed alternation-depth at most kk).

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    On relating CTL to Datalog

    Full text link
    CTL is the dominant temporal specification language in practice mainly due to the fact that it admits model checking in linear time. Logic programming and the database query language Datalog are often used as an implementation platform for logic languages. In this paper we present the exact relation between CTL and Datalog and moreover we build on this relation and known efficient algorithms for CTL to obtain efficient algorithms for fragments of stratified Datalog. The contributions of this paper are: a) We embed CTL into STD which is a proper fragment of stratified Datalog. Moreover we show that STD expresses exactly CTL -- we prove that by embedding STD into CTL. Both embeddings are linear. b) CTL can also be embedded to fragments of Datalog without negation. We define a fragment of Datalog with the successor build-in predicate that we call TDS and we embed CTL into TDS in linear time. We build on the above relations to answer open problems of stratified Datalog. We prove that query evaluation is linear and that containment and satisfiability problems are both decidable. The results presented in this paper are the first for fragments of stratified Datalog that are more general than those containing only unary EDBs.Comment: 34 pages, 1 figure (file .eps

    The Complexity of Datalog on Linear Orders

    Full text link
    We study the program complexity of datalog on both finite and infinite linear orders. Our main result states that on all linear orders with at least two elements, the nonemptiness problem for datalog is EXPTIME-complete. While containment of the nonemptiness problem in EXPTIME is known for finite linear orders and actually for arbitrary finite structures, it is not obvious for infinite linear orders. It sharply contrasts the situation on other infinite structures; for example, the datalog nonemptiness problem on an infinite successor structure is undecidable. We extend our upper bound results to infinite linear orders with constants. As an application, we show that the datalog nonemptiness problem on Allen's interval algebra is EXPTIME-complete.Comment: 21 page

    Monadic Queries over Tree-Structured Data

    Get PDF
    Monadic query languages over trees currently receive considerable interest in the database community, as the problem of selecting nodes from a tree is the most basic and widespread database query problem in the context of XML. Partly a survey of recent work done by the authors and their group on logical query languages for this problem and their expressiveness, this paper provides a number of new results related to the complexity of such languages over so-called axis relations (such as "child" or "descendant") which are motivated by their presence in the XPath standard or by their utility for data extraction (wrapping)

    Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF
    Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete
    • …
    corecore