
Complexity of Monadic inf-datalog. Application to

temporal logic.

Eugénie Foustoucos, Irene Guessarian

To cite this version:

Eugénie Foustoucos, Irene Guessarian. Complexity of Monadic inf-datalog. Application to
temporal logic.. 2003, pp.95-99, 2003. <hal-00021966>

HAL Id: hal-00021966

https://hal.archives-ouvertes.fr/hal-00021966

Submitted on 30 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47125539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00021966

cc
sd

-0
00

21
96

6,
 v

er
si

on
 1

 -
 3

0
M

ar
 2

00
6

Eugénie Foustoucos Irène Guessarian

Contact Author Irène Guessarian

Address: LIAFA, Université Paris 7, case 7014, 2 Place Jussieu, 75251 Paris Cedex 5, France.

email: ig@liafa.jussieu.fr

Classification of paper: Logic in Computer Science

1

2 Eugénie Foustoucos Irène Guessarian

Complexity of Monadic inf-datalog. Application to Temporal Logic.

Eugénie Foustoucos* Irène Guessarian**

Abstract: In [] we defined Inf-Datalog and characterized the fragments of Monadic inf-Datalog that have the
same expressive power as Modal Logic (resp. CTL, alternation-free Modal µ-calculus and Modal µ-calculus). We
study here the time and space complexity of evaluation of Monadic inf-Datalog programs on finite models. We
deduce a new unified proof that model checking has
1. linear data and program complexities (both in time and space) for CTL and alternation-free Modal µ-calculus,
and

2. linear-space (data and program) complexities, linear-time program complexity and polynomial-time data

complexity for Lµk (Modal µ-calculus with fixed alternation-depth at most k).

1 Introduction

The model checking problem for a logic A consists in verifying whether a formula φ of A is satisfied in a
given structure K. In computer-aided verification, A is a temporal logic i.e. a modal logic used for the
description of the temporal ordering of events and K is a (finite) Kripke structure i.e. a graph equipped
with a labelling function associating with each node s the finite set of propositional variables of A that
are true at node s.

Our approach to temporal logic model checking is based on the close relationship between model checking
and Datalog query evaluation: a Kripke structure K can be seen as a relational database and a formula
φ can be thought of as a Datalog query Q. In this context, the model checking problem for φ in K
corresponds to the evaluation of Q on input database K.

In [] we introduced the language inf-Datalog, which extends usual least fixpoint semantics of Datalog with
greatest fixpoint semantics, we gave translations from various temporal logics (CTL, ETL, alternation-
free Modal µ-calculus, and Modal µ-calculus, by increasing order of expressive power []) into Monadic
inf-Datalog and we also gave translations from fragments of Monadic inf-Datalog into these logics. In
this paper we give upper bounds for evaluating Monadic inf-Datalog queries: we describe an algorithm
evaluating Monadic inf-Datalog queries and analyze its complexity with respect to the size of the database
(data complexity) and its complexity with respect to the size of the program (program complexity). The
data complexity is polynomial-time and becomes linear when the program is stratified (with respect to
least and greatest fixed points nesting): from this we derive a unified proof of the (known) linear-time data
complexity of the model checking problem for CTL, ETL and the alternation-free µ-calculus. The program
complexity of our algorithm is linear-time and linear-space, and the data complexity is linear-space too.
Using then our translations in [] between the temporal logic paradigm and the database paradigm,
we can deduce upper bounds for the complexity of the model checking problem in the aforementioned
temporal logics. This is worthwhile especially for the space complexity which is less studied than the
time complexity.

* aflaw@otenet.gr, eugenie@math.uoa.gr, MPLA, Department of Mathematics, National and
Capodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece.

** Corresponding author: ig@liafa.jussieu.fr LIAFA, UMR 7089, Université Paris 7, case 7014, 2 Place
Jussieu, 75251 Paris Cedex 5, France.

Complexity of Monadic inf-datalog. Application to Temporal Logic. 3

2 Definitions

The basic definitions about Datalog can be found in [,], and the basic definitions about the µ-calculus
can be found in [,]. We proceed directly with the definition of inf-Datalog.

Definition 1 An inf-Datalog program is a Datalog program where some IDB predicates are tagged
with an overline indicating that they must be computed as greatest fixed points, and where in addition,
for each set of mutually recursive IDB predicates including both tagged and untagged IDB predicates,
the order of evaluation of the IDB predicates in the set is specified.

An inf-Datalog program is said to be monadic if all the predicates occurring in the heads of the rules
have arity at most one. An inf-Datalog program is said to be stratified if no tagged IDB predicate is
mutually recursive with an untagged IDB predicate.

Our approach allows us to define some recursive predicates without initialization rules (non-recursive rules
with this predicate in the head); such recursive predicates must be tagged. This approach is necessary
in order to be able to express properties such as fairness (something must happen infinitely often).

The above notion of stratification is the natural counterpart (with respect to greatest fixed points) of
the well-known stratification with respect to negation. We give an example of a stratified inf-Datalog
program.

Example 2 Consider as database an infinite full binary tree, with two EDB predicates Suc0 and Suc1
denoting respectively the first successor and the second successor, and a unary EDB predicate p (which
is meant to state some property of the nodes of the tree). The program P below, has as IDB predicates
θ (computed as a greatest fixed point) and ϕ (computed as a least fixed point)

P :

θ(x)←− p(x), Suc0(x, y), Suc1(x, z), θ(y), θ(z)

ϕ(x)←− θ(x)

ϕ(x)←− Suc0(x, y), Suc1(x, z), ϕ(y), ϕ(z)

The IDB predicate θ in this program implements the modality AGp on the infinite full binary tree, and
the IDB predicate ϕ implements the modality AFAGp: AGp means that p is always true on all paths,
and AFAGp means that, on every path we will eventually (after a finite number of steps) reach a state

wherefrom p is always true on all paths. Gp is expressed by the CTL path formula ⊥Ũp and AFAGp

is expressed by the CTL state formula A
(
⊤UA(⊥Ũp)

)
. The µ-calculus analog is the Lµ1 expression

µϕ.

(
νθ.(p ∧A ◦ θ)

∨
A ◦ ϕ

)
.

3 Complexity of Monadic inf-Datalog

Theorem 2 Let P be a stratified Monadic inf-Datalog program having I IDB symbols, and D a
relational database having n elements in its domain, then the set of all I queries defined by P (of the
form (P, ϕ), where ϕ is an IDB of P) can be evaluated in time n× I and space n× I.

Proof. By induction on the number p of strata. Assume P has a single stratum, and, e.g. all IDBs are
untagged, hence computed as least fixed points. Let ϕ1, . . . , ϕI be the IDBs, then the answer f1, . . . , fI

to the set of queries (P, ϕ1), . . . , (P, ϕI) defined by P is equal to supn∈IN T n
P (∅, . . . , ∅) and, because D has

n objects only, this least upper bound is obtained after at most n× I steps. Same proof if all IDBs are
tagged (computed as greatest fixed points).

The case where P has p strata is similar: since the IDBs are computed in the order of the strata, assuming
stratum j has Ij IDBs, the queries it defines will be computed in time n × Ij , hence for the whole of P
the complexity will be n×

∑
j Ij = n× I. The space complexity is clear too because we have at any time

at most I IDBs true of at most n data objects.

This bound is tight as shown in the next ?? . ⊓⊔

Theorem ?? subsumes a result of [], where it is shown that the data complexity of Monadic Datalog is
linear-time; we prove that both the data complexity and the program complexity of stratified Monadic inf-
Datalog are linear-time and linear-space: hence adding greatest fixed points in a stratified way increases
the expressive power of Monadic Datalog without increasing its evaluation complexity. As a consequence
of ?? we get a new unified proof of the following result.

4 Eugénie Foustoucos Irène Guessarian

Corollary 3 The model checking problem for CTL, ETL and alternation-free Modal µ-calculus can be
solved in time and space O(|M | × |f |), where |M | (resp. |f |) is the size of the model (resp. the formula);
hence both the data and program complexities are linear in time and space.

Proof. Indeed we give in [] a translation from CTL, ETL and alternation-free Modal µ-calculus into
Monadic stratified modal inf-Datalog such that the number of IDBs in the program is less than the size
of the formula. ⊓⊔

A unified proof of the time-linearity wrt. the size of the model is also given in [], and other proofs are
given in [,].

p

1 2 3

qp,r

Figure 1 A data structure of size 3

Example 4 Consider the structure given in ?? , where suc(1, 2), suc(2, 3), p(1), p(2), q(3), r(1) hold and
the Monadic Datalog program:

P :

ϕ(x)←− q(x)

ϕ(x)←− p(x), suc(x, y), ϕ(x)

ψ(x)←− ϕ(x), r(x)

ψ(y)←− ψ(x), suc(x, y)

Then, we need 6 steps to compute the queries defined by the program:
ϕ0 = ∅, ϕ1 = {3}, ϕ2 = {2, 3}, ϕ3 = {1, 2, 3} = ϕ4 = ϕ5 = ϕ6

ψ0 = ψ1 = ψ2 = ψ3 = ∅, ψ4 = {1}, ψ5 = {1, 2}, ψ6 = {1, 2, 3}.

We now turn to Monadic inf-Datalog programs with alternations.

Theorem 4 Let P be a program with k− 1 alternations of least fixed points and greatest fixed points
(k fixed). Assume P has I mutually recursive IDBs. Let D be a relational database having n elements.
Then the set of all queries of the form (P, ϕ), where ϕ is an IDB of P , can be computed in time
O

(
(n + 1)k × I

)
and space O(n × I).

Proof. Program P has k−1 alternations of least fixed points and greatest fixed points, which means that
there exist IDBs ϕ1, ϕ2, . . . , ϕk−1, ϕk, computed in the order: first ϕ1, then ϕ2, . . . , and last ϕk. For
simplicity, we first assume that I = k, k even, then P = Pk has the following form:

Pk

P ′

k

ϕk(x) ←− · · ·
...

ϕk(x) ←− · · ·

Pk−1

P ′

k−1

ϕk−1(x) ←− · · ·
...

ϕk−1(x) ←− · · ·

...

P2

P ′

2

ϕ2(x) ←− · · ·
...

ϕ2(x) ←− · · ·

P1

ϕ1(x) ←− · · ·
...

ϕ1(x) ←− · · ·

The idea of the algorithm is obtained by adapting an algorithm given in [] for evaluating boolean µ-
calculus formulas and proceeds as follows. Let f1, . . . , fk be the queries defined by ϕ1, . . . , ϕk. In order to
compute fk we must compute infi T i

P ′

k

(⊤), where ⊤ is true of every element in the data domain, and fk

will be reached after at most n steps (because the domain has n elements). However, since P ′

k depends
on ϕk−1, we must prealably compute fk−1[⊤/ϕk], which denotes fk−1 in which ⊤ has been substituted
for the parameter ϕk: this implies computing supi T i

P ′

k−1

[⊤/ϕk](∅), which is again reached after at most

n steps, etc. The algorithm is described in ?? .

Complexity of Monadic inf-datalog. Application to Temporal Logic. 5algorithm1var j1; : : : ; jk: indies;fk := >;for jk = 1 to n+ 1 dofk�1 := ;;for jk�1 = 1 to n+ 1 dofk�2 := >;... f2 := >;for j2 = 1 to n+ 1 dof1 := ;;for j1 = 1 to n dof1:= TP1 (f1; f2; : : : ; fk);endfor (j1)f2 := TP 02 (f1; f2; : : : ; fk);endfor (j2)...fk�1 := TP 0k�1(f1; f2; : : : ; fk�1; fk);endfor (jk�1)fk := TP 0k(f1; f2; : : : ; fk�1; fk);endfor (jk)
Figure 2 Algorithm1

Notice that in the k−1 first nested loops the indices have to go from 1 to n+1: indeed each individual fj is
computed in at most n steps, but then we have to substitute the value just computed for fj in f1, . . . , fj−1

whence the need for one more round of iterations. At the end f1, . . . , fk contain the answers to the queries
defined by ϕ1, . . . , ϕk. The complexity of the algorithm is (n+1)+(n+1)2+ · · ·+(n+1)k−1+n(n+1)k−1

which is O((n + 1)k).

The generalization to the case when P has I mutually recursive IDBs, I > k, is straightforward: let the
IDBs of P be for instance Φ = Φ1 ∪Φ2 ∪Φ3 ∪ · · · ∪Φk. All the IDBs in Φi (resp. Φj are untagged (resp.
tagged). The order and type of evaluation are as follows: first all IDBs of Φ1 are computed as least fixed
points, then all IDBs of Φ2 are computed as greatest fixed points, . . . , and finally all IDBs of Φk are
computed as greatest fixed points. Assume Φi has mi IDBs, for i = 1, . . . , k.

Then it suffices to substitute for instruction: fi := TP ′

i
(f1, f2, . . . , fi, . . . , fk) the set of mi instructions:

fi,1 := TP ′

i
,1(f1, f2, . . . , fi, . . . , fI)

...

fi,mi
:= TP ′

i
,mi

(f1, f2, . . . , fi, . . . , fI)

where TP ′

i
,l(f1, f2, . . . , fi−1, . . . , fI) denotes the set of immediate consequences which can be deduced

using the rules of P ′

i with head ϕi,l. Now the complexity of the algorithm becomes:

(n+1)×mk+(n+1)2×mk−1+· · ·+(n+1)k−1×m2+n(n+1)k−1×m1 which is an O
(
(n+1)k×max{mi/i =

1, . . . , k}
)
≤ O((n + 1)k × I). ⊓⊔

We can restate ?? as: algorithm1 computes the answers to queries defined by Monadic inf-Datalog pro-
grams with linear-space (data and program) complexities, linear-time program complexity, and polynomial-
time data complexity.

p p

2 3

p

1

Figure 3 Another structure of size 3

Example 5 Consider the structure given in ?? , where suc1(1, 1), suc0(1, 2), suc0(2, 3), p(1), p(2), p(3) hold

6 Eugénie Foustoucos Irène Guessarian

and the program P below (where I = k = 2):

P :

ϕ2(x)←− θ1(x), Suc0(x, y), Suc1(x, z), ϕ2(y), ϕ2(z)

θ
1(x)←− Suci(x, y), θ

1(y) for i = 0, 1

θ
1(x)←− p(x), Suci(x, y), ϕ2(y) for i = 0, 1

Then algorithm1 will compute: 1. for f2 = ⊤, f1 = ∅, f1 = {1, 2}, and f2 = {1, 2}; then, 2. for f2 = {1, 2},
f1 = ∅, f1 = {1}, and f2 = {1}; then, 3. for f2 = {1}, f1 = ∅, f1 = {1}, and f2 = ∅; a last round will give 4.
for f2 = ∅, f1 = ∅. (P is the translation of the temporal logic formula: ϕ = E(F∞p ∧A ◦ F∞p) expressing
that there exists a path on which p holds infinitely often and moreover, on all successors of the first state
of that path, again p holds infinitely often.)

Corollary 5 1. The set of queries defined by Monadic inf-Datalog programs can be computed in time
polynomial in the size of the data structure, exponential in the number of alternations of least fixed points
and greatest fixed points, and linear in the number of IDBs. The space complexity is linear in n× I (n
is the size of the structure and I the number of IDBs).

2. The model checking problem for the Modal µ-calculus can be solved in time polynomial in the size of
the model and exponential in the number of syntactic alternations of the formula. The space complexity
is linear in |M | × |f | (|M | is the size of the model and |f | the size of the formula).

Proof. 2 follows from the fact that in [] we gave a translation from modal µ-calculus formulas into Monadic
(in fact modal) inf-Datalog programs, such that the number k of alternations in the program is equal to
the number of syntactic alternations [] of the formula and the number I of IDBs is less than the size of
the formula. 1 is a restatement of ?? . ⊓⊔

4 Conclusion

We gave a (linear-) polynomial-time algorithm computing the answers to the queries defined by a (strati-
fied) Monadic inf-Datalog program. The time complexity of this algorithm is O(nk+1) where n is the size
of the database and k the number of alternations. We believe that this bound could be slightly improved:
indeed there are algorithms for model checking formulas of Lµk (which is equivalent to a fragment of
Monadic inf-Datalog), with upper bounds O

(
(n × |f |)k

)
[,] and O

(
(n × |f |)2+k/2

)
[] (compared to our

bound O
(
(n + 1)k+1 × |f |

)
); however the space complexity of the improved algorithm in [] becomes

exponential whilst the space complexity of the naive algorithms is polynomial [].

5 References

[1] A. Arnold, D. Niwiński, Rudiments of µ-calculus, Elsevier Science, Studies in Logic and the Foun-
dations of Mathematics, 146, North-Holland, Amsterdam, 2001.

[2] J. Bradfield, Fixpoint alternation: Arithmetic, transition systems, and the binary tree, in Theo-
retical Informatics and Applications, Vol 33, 1999, 341-356.

[3] A. Browne, E. Clarke, S. Jha, D. Long, W. Marrero, An improved algorithm for the evaluation of
fixpoint expressions, TCS 178 , 1997, 237-255.

[4] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of finite-state concurrent systems
using temporal logic specifications, ACM TOPLAS, 8, 1986, 244-263.

[5] R. Cleavekand, B. Steffan, A linear time model checking algorithm for the alternation-free modal
mu-calculus, Formal methods in system design, 2 (1993), 121-148.

[6] E. Emerson, Temporal and modal logic, Handbook of Theoretical Computer Science, 1990, 997-
1072.

[7] E. Emerson, Model Checking and the Mu-Calculus, in Descriptive Complexity and Finite Models,
N. Immerman and Ph. Kolaitis eds., American Mathematical Society, 1997.

[8] E. A. Emerson, C.L.Lei, Efficient model checking in fragments of the propositional µ-calculus, In
Proc. of 1rst Symposium on Logic in Computer Science, 1986, 267-278.

[9] G. Gottlob, E. Grädel, H. Veith, Datalog LITE: temporal versus deductive reasoning in verification,
ACM Trans. on Comput. Logic, 3, 2002, 39-74.

[10] G. Gottlob and C. Koch, Monadic Datalog and the Expressive Power of Web Information Extrac-
tion Languages, Proc. PODS’02, 17-28.

[11] I. Guessarian, E. Foustoucos, T. Andronikos, F. Afrati, On Temporal Logic versus Datalog, to
appear in TCS, available from http://www.liafa.jussieu.fr/˜ig/gfaa.ps

