RAIRO-Theor. Inf. Appl. 43 (2009) 1-21 Available online at:
DOI: 10.1051/ita:2007043 wWww.rairo-ita.org

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES*

EUuGENIE FousToucos! AND IRENE GUESSARIAN 2

Abstract. Inf-Datalog extends the usual least fixpoint semantics of
Datalog with greatest fixpoint semantics: we defined inf-Datalog and
characterized the expressive power of various fragments of inf-Datalog
in [16]. In the present paper, we study the complexity of query evalua-
tion on finite models for (various fragments of) inf-Datalog. We deduce
a unified and elementary proof that global model-checking (i.e. com-
puting all nodes satisfying a formula in a given structure) has 1. qua-
dratic data complexity in time and linear program complexity in space
for CTL and alternation-free modal p-calculus, and 2. linear-space
(data and program) complexities, linear-time program complexity and
polynomial-time data complexity for Lux (modal p-calculus with fixed
alternation-depth at most k).

Mathematics Subject Classification. 68Q19, 03C13.

1. INTRODUCTION

The model-checking problem for a logic A consists in verifying whether a for-
mula ¢ of A is satisfied in a given structure K. In computer-aided verification,
A is a temporal logic i.e. a modal logic used for the description of the temporal
ordering of events and K is a (finite) Kripke structure i.e. a graph equipped with
a labeling function associating with each node s the finite set of propositional
variables of A that are true at node s.

Keywords and phrases. Databases, model-checking, specification languages, performance eval-
uation.

* Work partly supported by the project “Mathematical Logic, Recursion Theory and Appli-
cations”, co-funded by the European Social Fund and National Resources - (EPEAEK II)
PYTHAGORAS II.

I MPLA, National and Capodistrian University of Athens, Department of Mathematics,
Panepistimiopolis, 15784 Athens, Greece; aflaw@otenet.gr

2 LIAFA, UMR 7089, Université Paris 7, case 7014, 2 Place Jussieu, 75251 Paris Cedex 5,
France; ig@liafa. jussieu.fr

Article published by EDP Sciences © EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007043
http://www.rairo-ita.org
http://www.edpsciences.org

2 E. FOUSTOUCOS AND I. GUESSARIAN

Our approach to temporal logic model-checking is based on the close relation-
ship between model-checking and Datalog query evaluation: a Kripke structure
can be seen as a relational database and a formula ¢ can be thought of as a Data-
log query Q. In this context, the model-checking problem for ¢ in X corresponds
to the evaluation of Q@ on input database K. The advantages of Datalog are that
it is a simple declarative query language with clear semantics and low complexity
(i.e., fixed Datalog programs can be evaluated in polynomial time over the input
databases). When translated into Datalog, we thus can expect modal logic (e.g.
p-calculus) sentences to be easy to understand and check.

In [16] we introduced the language inf-Datalog, which extends usual least fix-
point semantics of Datalog with greatest fixpoint semantics: greatest fixpoints
are necessary for expressing properties such as fairness (something must happen
infinitely often). We translated into Monadic inf-Datalog various temporal logics
(CTL, ETL, alternation-free modal p-calculus, and modal p-calculus [9], by in-
creasing order of expressive power); conversely we characterized the fragments of
Monadic inf-Datalog which can be translated into these logics [16].

One of the advantages of inf-Datalog consists in eliminating problems inher-
ent to negations: programs are assumed to be in positive normal form (negations
affect only the explicitly given predicates); by duality, negation over computed
predicates is expressed via greatest fixed points. Although inf-Datalog is syntac-
tically very close to Datalog, computing the semantics of an inf-Datalog program
(and consequently query evaluation) becomes more difficult conceptually and com-
putationally; it is thus worth studying.

In the present paper we define an operational semantics for inf-Datalog and we
give upper bounds for evaluating inf-Datalog queries: we describe an algorithm
evaluating inf-Datalog queries and analyze its complexity with respect to the size
of the database (data complexity) and its complexity with respect to the size of
the program (program complexity). The data complexity is polynomial-time and
linear-space. Using our succinct translations in [16] between the temporal logic
paradigm and the database paradigm, we deduce upper bounds for the complexity
of the model-checking problem for the modal p-calculus.

2. DEFINITIONS

The basic definitions about Datalog can be found in [1,14,16], and the basic
definitions about the p-calculus and modal logic can be found in [3,9,10,19]. We
proceed directly with the definition of inf-Datalog.

Definition 2.1. An inf-Datalog program is a Datalog program where some IDB
predicates (i.e. predicates occurring in the heads of the rules) are tagged with an
overline indicating that they must be computed as greatest fixed points; untagged
IDB predicates are computed as least fixed points as usual; in addition, for each
set of mutually recursive IDB predicates including both tagged and untagged IDB
predicates, the order of evaluation of the IDB predicates in the set is specified by
the indexing of the IDB predicates.

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 3

FIGURE 1. A structure of size 6.

The dependency graph of a program is a directed graph with nodes the set of
IDB predicates of the program; there is an edge from predicate 1 to predicate ¢
(denoted by ¢ «—) if there is a rule with head an instance of ¢ and at least one
occurrence of 1 in its body, and ¢ is said to directly depend on ; ¢ is said to
depend on v if there is a path from ¥ to ¢ in the dependency graph (denoted
by ¢ <=). See Figures 4, 5 and Examples 3.5, 3.6 for examples of dependency
graphs. T'wo predicates that belong to the same strongly connected component of
the dependency graph are said to be mutually recursive.

An inf-Datalog program is said to be monadic if all the IDB predicates have
arity at most one. An inf-Datalog program is said to be stratified if no tagged
IDB predicate is mutually recursive with an untagged IDB predicate. This notion
of stratification is the natural counterpart (with respect to greatest fixed points) of
the well-known stratification with respect to negation; the denotational semantics
of stratified inf-Datalog is the expected one; it is illustrated in Example 2.2.

Example 2.2. Consider as database the structure given in Figure 1, with two
EDB predicates Sucy and Sucy denoting respectively the first successor and the
second successor, and a unary EDB predicate p (which is meant to state some
property of the nodes of the tree). Sucy is the relation

{(e,0), (0,00), (00,00), (01,01), (1,10), (10, 1) };
Swucy is the relation
{(e,1),(0,01),(00,00), (01,01), (1,10), (10,1)};

p is assumed to hold for 00, 01 and 10, i.e. p is the relation {00,01, 10}.
The program P below, has as IDB predicates 6 (computed as a greatest fixed
point) and ¢ (computed as a least fixed point)

O(z) p(z), Suco(z,y), Suci(z, 2), 0(y),0(z) (1)
P: o(x) «— () (2)
90(55) — Suco(x,y),Sucl(x,z),go(y),go(z). (3)

4 E. FOUSTOUCOS AND I. GUESSARIAN

The first stratum consists of rule 1 defining 6 (without initialization rule, this
is possible because @ is computed as a greatest fixed point); the second stratum
defines ¢ as a least fixed point with rules 2 (initializing ¢ with the value computed
for 6 in the first stratum) and 3. The IDB predicate 6 (resp. ¢) in this program
implements the modality AGp (resp. AFAGp) on the infinite full binary tree:
AGp means that p is always true on all paths, and AFAGp means that, on every
path we will eventually (after a finite number of steps) reach a state wherefrom p
is always true on all paths. Gp is expressed by the C'T'L path formula J_ﬁp and
A FAGp is expressed by the C'T'L state formula A(TUA(Lﬁp)), where L and T
respectively represent false and true. The p-calculus analog is the Ly expression

. (V@.(p/\Ao 0\ Ao go). The semantics of P should (and does) yield {00,01}
as points where 6 holds and {0,00,01} as points where ¢ holds.

The structures considered in temporal logics are usually infinite trees, while
databases are always finite: how can we model the former with the latter? It
should be noted that: (i) the infinite trees usually represent sequences of states
occurring during the (infinite) execution of a (finite) program, hence they have a
finite representation, and (ii) even with finite databases we can ensure that every
node has a successor by adding a self-loop to every state without successor (as
in states 00 and 01 of Ex. 2.2): we thus obtain the infinite sequences of states of
temporal logic.

Remark 2.3. In Example 2.2 we assume that every node has outdegree at most 2;
if the nodes have finite (but not known a priori) branching degree, then we slightly
change our model, assuming two extensional binary predicates: FirstSuc(x,y) (“y
is the leftmost child of 27), and NextSuc(x,y), (“y is the right sibling of 2”). For
instance, the formula ¢ = A o p (stating that p is true in all successors of a node)
is expressed by the program:

Go(x) «— FirstSuc(z,y),T(y)
b (@) — pla), NextSuc(a,y), T(y)
' T(x) «— p(z),~HasSuc(zx)
HasSuc(z) «— NextSuc(z,y).

Formula ¢ = Eop (stating that p is true in some successor of a node) is expressed
by program:
Gy(z) «— FirstSuc(z,y),T(y)
P: T(x) «— p(x)
T(x) «— NextSuc(z,y),T(y).

We now explain the more complex denotational semantics of non stratified inf-
Datalog programs. Note first that we need not give any evaluation order within a
set of IDB predicates that are all computed with the same fixed point (either least
or greatest). We define the semantics of non-stratified programs by induction
on the number k of alternations between mutually recursive least and greatest
fixed points. If k£ = 0, either all IDBs are computed using least fixed points or

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 5

all IDBs are computed using greatest fixed points, in the usual way. Assume the
semantics of programs with at most k alternations of least and greatest fixed points
is defined and let P be a program with k + 1 such alternations. For instance, let
=P UP2UP3U .- UPkHT U BF+2 denote the set of IDBs of P, which are
assumed to be mutually recursive; the order and type of evaluation are as follows:
first all IDBs of ®' are computed as least fixed points, then all IDBs of ®2 are
computed as greatest fixed points, ..., and finally all IDBs of ®**2 are computed
as least fixed points. Since the IDBs in ®' U ®2 U ®3 U --- U ®F+1 depend on
the IDBs in ®**2, the semantics of P is defined as follows: the IDBs in ®**2 are
first considered as parameters, as in Gauss elimination method for solving systems
of equations; let P41 be the program consisting only of those rules of P whose
head is in ®' U ®2 U & U --- U ®*+1 (and the IDBs in ®*+2 are considered as
EDBs). P41 has at most k alternations of least fixed points and greatest fixed
points, hence can be solved formally by the induction hypothesis (with IDBs of
®F+2 appearing in the solution). Then consider the set P, consisting of those

rules of P whose head is in ®**2 and substitute in the corresponding rule bodies
the solutions of Py, for the IDBs in ®' U®2UP3U- - -UD*+1: we obtain P” where
the only IDBs are those of ®*+2. Solve P” and substitute the values obtained for
the IDBs in ®**2 in the solutions of Py ;. Iterate then these three steps (solving
Py, 1 and P”, substituting for the IDBs in ®**2 the values obtained when solving
P"), until the least fixpoint of P is reached (i.e. the IDBs in ®**2 no longer
change). Substitute finally this fixpoint for the IDBs of ®**2 occurring in Pj1,
thus obtaining the stabilized final values for the IDBs in ®!, ®2, ..., ®++1. This
global process, just described, amounts to computing a (k + 2)-ary fixpoint (i.e.
until none of the IDBs in & changes anymore).

We will give an algorithm computing this semantics in Figure 6.

A related concept of semantics is defined for Horn clause programs with nested
least and greatest fixpoints in [6]: their semantics is expressed directly in terms of
the Tp operator. The authors of [6] consider as database the set of infinite ground
terms allowing functions (i.e. the Herbrand universe), and the paper focuses on
game-theoretic semantics.

3. COMPLEXITY OF INF-DATALOG

In the sequel we will count as one basic time unit the time needed to infer a
single immediate consequence atom from a clause: i.e. assuming we have a clause

0i(x1, .. ny) — V(@11 Bng)y V(TR 1, - - -5 Thony,) and assuming that
Y1(T11,- 3 T1ng)s oy YVk(Th 1, - -+ Thomy,) hold (Y1, .. ., g, can be IDBs or EDBs),
we infer that ¢;(z1,...,%,,) holds in one basic time unit. Our time complexities

will be counted relatively to that time unit.

Theorem 3.1. Let P be a stratified program having I IDB symbols ¢1,...,¢r,
and « = max{arity(p;),i = 1,...,1}; let D be a relational database having n
elements in its domain, then the set of all I queries defined by P and of the form
(P, @), where ¢ is an IDB of P, can be evaluated on D in time at most C x n® x I

6 E. FOUSTOUCOS AND I. GUESSARIAN

and space at most n® x I, assuming the time needed to evaluate Tp(gi,...,g1),
g; an arbitrary relation having the same arity as @; fori=1,...,1, is at most C
(see Lem. 3.2).

Proof. By induction on the number p of strata. We can assume without loss of
generality that all IDBs in a stratum are of the same type, i.e. all untagged or all
tagged. Assume P has a single stratum, and, e.g. all IDBs are untagged, hence
computed as least fixed points. Tp(g1,...,gr) denotes the set of immediate conse-
quences (obtained by a single application of a rule of P) when the meaning of ¢; is
given by g;, i =1,...,1. Let ¢1,..., ¢ be the IDBs, then the answer f1,..., f; to
the set of queries (P, 1), ..., (P, ¢r) defined by P is equal to sup;cy Th(0, ..., 0)
and, because D has n objects only, this least upper bound is obtained after at
most n® iterations, hence a time complexity at most C' x n® x I. Similar proof if
all IDBs are tagged (computed as greatest fixed points).

The case where P has p strata is similar: since the IDBs are computed in the
order of the strata, assuming stratum j has I; IDBs, the queries it defines will be
computed in time at most C' x n® x I;, hence for the whole of P the complexity
will be C' x n® x Zj I; = C'xn® x I. The space complexity is clear too because
we have at any time at most I IDBs true of at most n® data objects. O

As pointed out by Arnold, Theorem 3.1 could also be obtained by first showing
that inf-Datalog is a u-calculus in the sense of [3], and then applying Lemma 11.1.6
of [3] (extended to arbitrary structures).

Lemma 3.2. Let D be a database with n elements in its domain and let P be an

inf-Datalog program consisting of clauses of the form, i=1,...,1:
1 1,1 11 1
(pi(l’l,...,lﬂni) wl(mlﬂ"'7xn1ay1a"'7yp1ﬂcla"'7ck1)a"'7
E koo k ko k k
wk($17-- '7xnk7y15' s 7ypkacla' "7Ckk)'
T, ... ,x{lj are variables among x1, ..., Ty, andyl,. .. ,yg;j are variables; ¢, . .., c,’cj
are constants. Let g1,...,g1r be arbitrary relations having the same arities as

©1,-..,1. The time needed to evaluate the ith component of Tp(g1,...,91) on
D™ is not greater than C; = N; x n™ where

N; = the number of rules with head p;

1 1 k k 1 1 k k
mi:max{|{y1,...,ypl,...,yl,...,ypk}|—|—|{x1,...,xnl,...,xl,...,xnk}|/
1 1,1 1 1 k ko k ko k k
Y1(T15 s Ty Y oo Yy Clo ooy Chy)y v s V(T3 oy T YT ooy Uy s 1o oo Ciiy)
occurs in some rule with head p;}

hence the time needed to evaluate any component (i =1,...,1) of Tp(g1,...,91)
is at most C' = max;=1,_1(C}).

Proof. Indeed evaluating the ith component of Tp (g, ... ,gI)_ at a given point

(ai,...,an,) € D™ needs one basic time unit for each tuple of y]’s, such that

1 1 1 1 1 1 k k k k k k
fl(alﬂ "'7an17y1a "'7yp17617 "'7Ck1)a N '7fk(a’17 "'7ank7y17"'7ypkvcla "'7Ckk)

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 7

p,r P q
® ® ®

1 2 3

FIGURE 2. A structure with 3 elements.

holds for some rule with head ¢;: if ; is ¢ then f; will be g;, otherwise f;

is the relation representing t;, and if ! = z; € {z1,...,2,,} then a! = a; €
{ai,...,an,}; therefore C; basic time units at most are needed to compute the ith
component of Tp(g1,...,g7) on D™. O

A trivial bound for C would be N x n™, where N is the number of rules
and M is the maximum number of variables in rule bodies, but better bounds
can be found in special cases of interest (e.g. programs corresponding to modal
logic formulas). Even with this trivial bound, Theorem 3.1 implies that the data
complexity of stratified inf-Datalog is PTime, hence adding greatest fixed points
in a stratified way does not increase the evaluation complexity of Datalog (even
though it increases its expressive power [16]).

Example 3.3. Counsider the structure given in Figure 2, where suc(1,2), suc(2, 3),
p(1),p(2),4q(3),r(1) hold and the Monadic Datalog program:

ple) — q(z)
p.] #@) — p(x),suc(z,y), ()
L) ve) — e(x),r(x)

U(y) — (@), suc(z,y).

Then, we need 6 steps to compute the queries defined by the program: ¢y =),
Y1 = {3}'7902 = {273}a903 = {172a3}’ =1 = Q5 = Pe- Yo = Y1 = P2 =
Y3 = 0,94 = {1},95 = {1,2}, 46 = {1,2,3}.

In the present example, 6 = n x I is strictly less than the bound C' x n x I =
18 x n x I given in Theorem 3.1.

When all IDBs are evaluated as least fixed points (resp. greatest fixed points)
the evaluation order of IDBs is irrelevant for the semantics: this is the reason why
in plain Datalog, the evaluation order of IDBs is irrelevant; similarly in stratified
inf-Datalog, the evaluation order of IDBs is irrelevant, because the semantics is
computed stratum-wise, and in each stratum all IDBs have the same type, hence
their evaluation order is irrelevant.

We now turn to non-stratified Monadic inf-Datalog programs. Now, the situa-
tion changes and the evaluation order of mutually recursive IDBs becomes relevant.
In the sequel, the order of evaluation of mutually recursive IDBs will be specified
by their indexes, i.e. ¢; will be computed before ¢; if and only if i < j. As
in p-calculus, changing the evaluation order of IDBs can change the semantics of
the program, see Example 3.5.

8 E. FOUSTOUCOS AND I. GUESSARIAN

P 1% P
ORI
1 2 3

FIGURE 3. Another structure with 3 elements.

Definition 3.4. The syntactic alternation depth of program P is the largest k
such that there exists in the dependency graph of P a cycle with alternations of
k pairwise distinct tagged/untagged IDBs depending on each other, e.g. p; =
P = - = pr_1 — Pr — ¢1 (all other combinations, i.e. ¢; and/or gy
tagged or untagged are allowed). Tt is 1 if there is no such cycle.

The syntactic alternation depth of programs we just defined corresponds to
the syntactic alternation depth of p-calculus formulas as defined in [4],[22], i.e
whenever program P is the translation of formula ¢, their syntactic alternation
depths are equal.

Example 3.5. Consider a 3-element structure having domain {1,2,3}, where
p(1),p(2),p(3), Suci(1,1), Sucy(1,2), Sucy(2,3), and Suci(2,3) hold (see Fig. 3).
Let P, and P> be inf-Datalog programs, defined by:

Xi(z) — p(a), Z3(x)
X1(z) «— p(2),Suci(z,y), X1(y) for i =0,1
Py Y2(z) «— X1(z),p(z), Suci(z,y),Y2(y) fori=0,1
Z3(x) «— Y (x)
Z3(x) «— Suco(x,y), Suci(x,2), Z3(y), Z3(2)
Z1(x) «— Y3(x)
Z1(x) «— Suco(z,y), Suci(z,2), Z1(y), Z1(z)
Py: X2(z) «— px),Z1(x)
X2(x) «— p(x), Suc;i(z,y), X2(y) fori=0,1

Y3(x) «— X2(x),p(x), Suci(z,y),Y3(y) for i =0, 1.

P, has 2 IDBs computed as least fixed points, X1 and Z3 and one IDB Y2 com-
puted as a greatest fixed point, the evaluation order is first X1 then Y2 and last
Z3; in the dependency graph we have the cycle X; — Yy, — Z3 — X, which
can be reduced to X; — Yy = X and the syntactic alternation depth is k = 2;
P, has 2 IDBs computed as least fixed points, X2 and Z1 and one IDB Y3 com-
puted as a greatest fixed point, the evaluation order is first Z1 then X2 and last
Y'3; in the dependency graph we have the cycle Z; — Xy — Y3 — Z;, which
can be reduced to Z; = Y3 — Z; and the syntactic alternation depth is k = 2.
If we forget the numbers indicating the evaluation order, both P; and P, have the
same dependency graph, pictured in Figure 4. On the structure of Figure 3, P;
computes f1 = fo = f3 =0, while P, computes f; = fo = f3 = {1}.

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 9

FIGURE 4. Dependency graph of P; and Ps.

Example 3.6. The p-calculus sentences ¢ = pX Y. (X VY VuZvW(X VvV ZV
(pAW)))and ¢ = pYvX (X VY VuZovW(X Vv ZV (p ANW))) are respectively
translated into inf-Datalog programs P, and Py:

Wi(@) — pa).Wia) — V3a) — Z2()
p 1 Wi) — Xd(z) Y3(z) «— Y3(x)
7 Wi(z) «— Z2(z 3(x) «— X4(z)
Z2(x) — 1(x) X4(z) «— Y3(x)
Wie) — p),Wi@) X)) — 22)
P Wli(x) «— X3(x) X3(x) «— Y4(z)
v Wi(z) — Z2(x) X3(z) «— X3(z)
Z2(zx) — Wl(x) Ya(r) «— X3(z).

The translation is as in Corollary 4.2 and satisfies moreover: (i) greatest (least)
fixed points correspond to (un)tagged IDBs, (ii) IDBs are endowed with an index
giving their evaluation order with the IDB corresponding to innermost (outermost)
fixed points having lowest (highest) index, and (iii) subformulas of the form
pX.vYa) give rules of the form X;i(z) «— Y;(z), and similarly for all other
possible combinations of ;1 and v. Both P, and P, have syntactic alternation
depth 4, and their dependency graphs are pictured in Figure 5; notice that arrows
in the dependency graph go in the same direction as the corresponding arrows in
the program.

Theorem 3.7. Let P be a program with I recursive IDBs and syntactic alternation
depth k fized. Let o be the maximum arity of the IDBs w;, i =1,...,1.

Let D be a relational database having n elements. Then the set of all queries
of the form (P,¢), where ¢ is an IDB of P, can be computed on D in time
O(C xn™ x I) and space O(n® x I), where C'is given in Lemma 3.2.

Proof. The proof proceeds in three cases. To simplify we give the proof in the
monadic case, i.e. when o = 1.

Case 1. We will first study the case when I = k, therefore k even, ¢; com-
puted as a least fixed point (the algorithm for 7 computed as a greatest fixed

10 E. FOUSTOUCOS AND I. GUESSARIAN

v v D

Wl -— X4 Wi X3
Z2 Y3 Q Z2 Y4
P
P(p v
FIGURE 5. Dependency graphs of P, and Py.
point is similar): hence, there exist mutually recursive IDBs 1,93, ..., 0k_1,
©r, computed in the order: first ¢, then P53, ..., and last Py, with a cycle

Pk = 91 — P3 — -+ — Yr_1 — P in the dependency graph of P. (Both
programs P, and P, of Ex. 3.6 belong to case 1.) Let P/ for i > 1 odd (resp. 4
even) be the set of rules of P with head ¢; (resp. @;), and let P; be the set of
rules with head ¢;. Then P = P, = P, U (UX_, P!) has the following form:

P/
) —
Or_1(z) — -
Py
(pk:—l(l‘) —— oo
Py
Py P2(z) —
P
p2(r) —
Py
p1(r) —
Py
p1(x) —

The idea of the algorithm is similar to an algorithm given in [3] for evaluating
boolean p-calculus formulas and proceeds as follows. Let f1, ..., fix be the answers
on D to the queries defined by ¢i,...,9x. In order to compute f; we must
compute inf; Tié('l'), where T is true of every element in the data domain, and

fr will be reached after at most n steps (because the domain has n elements).
However, since @ depends on ¢i_1, we must prealably compute fr_1[T/Pxl,
which denotes fr—1 in which T has been substituted for the parameter pg: this

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 11

ALGORITHM1
VAR j1,...,Jk: 1indices;
e :=T;
FOR jr, =1 To n+ 1 po
fr—1 = 0;
FOR jr—1 =1 To n+1 po
fre2 = T;

fa =T
FOR jo=1 10 n+1 Do
fi o= 0;

FOR j; =1 TO n DO

fi:=Tp, (f1,fos- s fo=1, fr)s

ENDFOR (1)

IF jo <n THEN fo := Tp; (f1,fo,- -, fi—1, fa)s
ENDFOR (7j2)

IF jk—1 <n THEN fp_1 := Tp (f1, fo,. s fo-1, fk);
ENDFOR (jk—_1)

IF jr <n THEN fi = Tp/ (f1, fo,- s frm1, fi)s
ENDFOR (7j)

FIGURE 6. Algorithm 1.

implies computing sup; TI"',LA[T/@](@), which is again reached after at most n
steps, etc. The algorithm is described in Figure 6.

This algorithm consists of k£ nested loops FOR j = 1 TO n+ 1 DO. Notice that the
innermost loop (j1) is performed n times, whilst the k£ — 1 outermost nested loops
are performed n+-1 times each: for j = ja, ..., ji, each individual f; is computed in
at most C x n steps (because the time for computing each Tp, (fis foseos fm1s f)
is bounded by C). Then we have to add an (n + 1)th round of iterations recur-
sively reinitializing fi,..., f2 by substituting the value just computed for f; in
fi=1s--, f1, for 5 = k,...,2. At the end fi,..., fr will contain the answers to
the queries defined by ¢1,...,P5. Example 3.10 shows that the final (n + 1)th
round of iterations can be necessary; hence the algorithm runs in time at most
C x (n+1)* x I and its complexity is O(C x n* x I).

By Lemma 3.8, the algorithm is correct. The space complexity is at most n x I
since we store the values of I IDBs, each of which can hold on at most n points.
Case 2. Assume now the set ® of IDBs of P consists of I IDBs, I > k, which
are all mutually recursive. Let ®; U &y U ®3 U --- U &5 (UPyq) be a partition

12 E. FOUSTOUCOS AND I. GUESSARIAN

of ® such that: 1) all the IDBs in ®; (resp. ®;) are untagged (resp. tagged), and
2) the order and type of evaluation are as follows: first all IDBs of ®; are computed
as least fixed points, then all IDBs of ®; are computed as greatest fixed points,
..., and finally all IDBs of ®; are computed as greatest fixed points (or if @1 is
nonempty, all IDBs of @1 are computed as least fixed points). Both programs
P, and P, of Example 3.5 belong to case 2, for P; the partition is ®; U &5 U &3
and for P, the partition is ®; U ®5. In the sequel we assume a partition of ® of
the form & U Py U Pg U --- U Dy

Assume that, fori =1,...,k, ®; has m; IDBs ¢; 1, .. ., @i m, defined by program
P! (tags omitted): ® = {¢1,..., 01} = U=k {@i1,...,0im,} . Then (noting that
{1, fry = UZF{fi1,. .., fim,}) it suffices in Algorithm 1 to (i) replace each
initialization (e.g. f; := T) with m, initializations (f; ; == T, j:=1,...,m;), and
(ii) substitute for each instruction: f; := Tr/(f1, fo,..., fi,.., fx) the set of m;
instructions: '

fin = Tpa(fr, foyooos fiseo oy f1)

fi,mi : TP{,mq,(fl)fé?"'7fi)""fI)

where quf’l(fl, fay.ooy fic1, -+, f1) denotes the set of immediate consequences
which can be deduced using the rules of P/ with head ¢; ;. At theend fi,..., fr will
contain the answers to the queries defined by ©1.1,...,@1m1s - Ph,1s- -+ Phmy -

Let tx be the complexity of Algorithml modified by (i)—(ii) for alternation depth
k programs. Then t; < C'x (myxn+my) = C x(n+1)xI,and it is easy to check
by induction that ¢, < C'x (n+1)* x I: assuming tx_; < C'x (n+1)*"1x (I—my),
we have t, < (tx—1 +C xmy) X (n+1); by the induction hypothesis, t;, < Cx (n+
1)* x (I =my)+C xmy, x (n+1), and because k > 2, my x (n+1) < my, x (n+1)*,
hence t, < C x (n+1)F x I.

The other cases: & = &; U P, U D3 U---U Dy U ®rq and/or Py is a set Dy

of IDBs computed as greatest fixed points, are similar. The complexity of the
algorithm is again O(C x nkF x I).
Case 3. Last, in the most general case, the rules of P can be partitioned into
2n + 1 disjoint sets ¥o, 11, %1, ..., I1,,%,. Each II;,7 =1,...,n, has I; IDBs, all
mutually recursive, and syntactic alternation depth k; < I;. Each ¥;,¢ =0,...,n
is a (possibly empty) stratified program with J; IDBs. The IDBs of II; can depend
on the IDBs of II; and ¥;,j < ¢ only; the IDBs of ¥; can depend on the IDBs
of II; and X;,j < ¢ in a stratified way; no IDB of II; or ¥; can depend on the
IDBs of some X; or II;,j > i. We evaluate first the queries defined by the IDBs
of ¥p in time O(C x n x Jy) (as in Th. 3.1), then the queries defined by the I
mutually recursive IDBs of II; in time O(C x n*1 x I1) as in case 2, then the queries
defined by the J; “stratified” IDBs of ¥ in time O(C x n x J;) as in Theorem 3.1,
etc. Finally, the total time complexity is O(C x n™*>* x (3" | I) +n x (C x
S o i) = O(C x n* x I), where k is the syntactic alternation depth of P (here
k = max{k;|1 <i<n}).

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 13

In all three cases, the space complexity of the algorithm is linear in both n and
the number of IDBs which are being computed, hence the global space complexity
is O(n x I). O

Lemma 3.8. Let P be a program with syntactic alternation depth at most k, with
IDBs ¢1,93, ..., 9%, and with parameters gi,...,gp. Let D be a database with n
elements. For any given values of the parameters g1, ..., gp, Algorithm1 computes
the answers fi,..., fr to the queries ¢1,9P32,..., P on D.

Proof. By induction on k. We assume k even and the first IDB is a least fixed
point, but the other cases (k odd, and/or Py is a greatest fixed point, and/or ¢
is a least fixed point) are similar.

Basis. For k = 1, the lemma is clear because there is no alternation.

Inductive step. Assume it holds for every k' < k and prove it for k + 1. Let
Piy1(g1,- -, gp) be the program

Prt1(x)
P,
Pk+1(gl;-~'7gp) Pr1(r)

Pr(g1,- -3 9ps Prr1)-

Let f1(g1s---»9ps ©k+1)s---» fu(g1,- - -, gp, Pr41) be the answers to the queries de-
fined by IDBs 1, ..., 8% of Py(g1,- - -, gp, Pk+1) (with parameters g1, ..., g, and the
current value of the relation @1, denoted also pp41). For i = 1,... &k, we will
denote each fi(g1, ..., 9p, ¥x+1) by fi(wrt1). Let P, be the rules of Pyi1(g1,. ..,
gp) with head ¢g11. By the definition of nested fixed points, the answer fx1 to the
query defined by o1 is the least upper bound of the sequence defined by f} =0,
fogr = Tpé+1(f]8+1)7 vy fl = Tp];+1(f£;11). This sequence is computed in the
outermost FOR loop of Algorithml (for k£ + 1): indeed, fl%+1 = Tpéﬂ(fgﬂ) =
Tp, (0) = Tp, [0/ br+1, fx(0)/Pk, - - -, f1(D)/p1] where fi(D),..., f1(D) are the

k+1 k41
answers to the queries defined by IDBs @y, ..., ¢1 of program Py(g1,...,gp,0)
with syntactic alternation depth < k. Similarly, for j = 1,...,n — 1, each of

fk(fgﬂ), - ,fl(fgﬂ) are the answers to the queries defined by IDBs @y, ..., ¢1

. 1 : ;
of program Pk(yh---,gpafiﬂ) and f]ii} = TP,éH(fngrl) = TP,;Jrl[fngrl/(Pk—i-lv

fk(fgﬂ)/@, R 1 (fgﬂ)/apl]. As explained above, fi' ; is the answer fx11 to the

query @i41 defined by the program Pyy1(g1, ..., gp); hence, the answers fi, ..., fi

to the queries @y, ..., 1 defined by the program Pyii1(g1,...,g,) are respec-

tively frlfiy1/®rs1ls-- s filfi 1/ ¢r+1] which are computed in the final round of

iterations. 0
The next Corollary follows from Theorem 3.7.

Corollary 3.9. The set of queries defined by inf-Datalog programs can be com-
puted in time polynomial in the number of elements of the database, exponential in
the number of variables and the syntactic alternation depth of the program, and lin-
ear in the number of IDBs. The space complexity is linear in I and polynomial

14 E. FOUSTOUCOS AND I. GUESSARIAN

inn (where n is the number of elements of the structure, and I is the number of
IDBs).

Example 3.10. Consider the same structure as in Figure 3, and the program P
below (where I =2 = k):

y), Suei (x, 2), 92 (y), 9%(2)
0,1

P2 (z) —— 0'(x), Suco(z,
01 (y) for i =0,

P:{ 04 (x) «— Suci(x,y)

(r) — pla), @),

Then Algorithm1 will compute: (1) for fo = T, f1 = {1,2,3}, and fo = {1,2};
then, (2) for fo = {]-a 2}7 fi = {]-a 2}7 and fo = {1}, then, (3) for fo = {1}a
f1 = {1}, and f2 = 0; a last round will give (4). for fo =0, f; = 0. P is the
translation of the temporal logic formula: ¢ = E(F*pA Ao F>p) expressing that
there exists a path on which p holds infinitely often and moreover, on all successors
of the first state of that path, again p holds infinitely often. This formula cannot
hold on a finite structure without infinite paths as the structure in Figure 3.

]

In [3,11] finer notions of alternation depth are defined: they correspond to
counting only the alternations which affect the semantics because the innermost
fixed point depends on the outermost fixed point; algorithmically, this leads to an
improvement by computing beforehand and only once the fixed points associated
with closed subformulas. Our Algorithml can be improved to match the finer
notion of [11], which we first recall.

Definition 3.11. Given a set P of propositional variables and a set = of variables,
the set M of modal p-calculus formulas is inductively defined by:

A {plpEePYU{-plpe PYU{X|X €Z}
UWo Vi, oA, Aop,Eoplp,p € MYU{uX.o,vX.o|X € E,0 € M}.

The semantic alternation depth ad(p) of formula ¢ is defined by: (i) ad(¢) =0
if p € PUE, and ad(—p) =01if p € P, (ii) ad(A o ¢) = ad(E o) = ad(yp), (iii)
ad(p) = ad(p A) = max(ad(p), ad(®)) and (iv) ad(uX.p) = max(ad(g), 1 +
max{ad(¢)|p = vY.¢ is a subformula of ¢ and X occurs free of any p or v bind-
ing in ¢}), and similarly ad(vX.¢) = max(ad(y),1 + max{ad(y)|p = pY.¢ is a
subformula of ¢ and X occurs free of any p or v binding in ¢ }).

We now define a notion of semantic alternation depth corresponding to the
definition of [11]. We study here the case when the number of IDBs is equal to
the syntactic alternation depth of the program. The other cases can be treated
similarly but at the cost of heavier notations.

Definition 3.12. Let P be a program with syntactic alternation depth k, hav-
ing mutually recursive IDBs ¢1,93,...,9%, with a cycle ¢ — 3 — -+ —
Yk-1 — Pk = ¢1 in the dependency graph of P. (All other combinations, i.e.
1 and/or ¢y, tagged or untagged are allowed.) The semantic alternation depth

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 15

of ¢;, denoted by ad(yp;), is defined as follows: ad(p1) = 1 and ad(p;) = ad(@i—1)
+ e where

1, if in the dependency graph of P, there is an edge ¢, — ©;
e= (or i — ¢;),j <i
0, otherwise.

The semantic alternation depth of @; is defined similarly.
The semantic alternation depth of P, denoted by ad(P) is equal to the semantic
alternation depth of @ (resp. @y if Py is tagged).

Example 3.13. Let ¢ and ¥ be as in Example 3.6. Formulas ¢ and v, programs
P, and P, all have the same syntactic alternation depth 4, but their semantic
alternation depths differ. In P,, ad(P,) = ad(X4) = 3 and ad(Y3) = ad(Z2) = 2,
while in Py, ad(Py) = ad(Y4) = 4 and ad(X3) = 3, ad(Z2) = 2. The (semantic)
alternation depth of formula ¢ in the sense of [11] is also 3, whilst it is only 2 in
the sense of [3]. The (semantic) alternation depth of formula # is 4 in the sense
of both [3,11].

Theorem 3.14. Let P be a program with syntactic alternation depth k, IDBs
01,92, ..., Pk, and parameters gi, ..., g,. To simplify P is assumed to be monadic.
Let D be a database with n elements. For any given values of the parameters
g1,---,9p, we can compute the answers fi,..., fi to the queries p1,..., ¢ on D
in space O(n x k) and time O(C x n® x k), where d = ad(P) is the semantic
alternation depth of P and C' is given in Lemma 3.2.

Proof. 1t is similar to case 1 of Theorem 3.7, but uses a slight improvement of
Algorithm1: some iterations computing the f;s need not be nested (we avoid
recomputing f;s when their value does not change). By induction on j, we prove
(the tags will eventually be omitted in the proof):

Fact. For j > 1, considering the current values of ¢;11,...,9% as parameters
(and denoting them again by ¢;i1,...,P%), we compute the answers fi(g1, ...,
Ips Pty s PE)y -5 (G153 Gps Pj+1, - - -, Pk) to the queries o1, . .., ¢; (defined
by Pi(g1s - Gps Pit1s- -, Pk)) in time O(C x n2¥#i) x j).

Basis. If j =1, ad(¢1) = 1 and we have to compute fi(g1,...,9p, ©2,--.,¢k)
as a least upper bound, which can be done in at most C' x n steps.

Induction. Assume the result holds for j > 1 and prove it for j + 1.
We distinguish two cases:

Case (i). In the dependency graph of P there is an edge ¢j+1 — ¢, for some
i < j + 1; hence ad(¢j+1) = ad(p;) + 1; moreover, as there is always a path
©; = ; in the dependency graph (because all IDBs are mutually recursive),
; thus depends on ;11 and f;(g1,- .., gps ff+1, V42, .., Pk) is a priori different
from f;(g1,..., 9ps fﬁfll, ©j+2,- .., ¢k); hence the FOR jj41 loop of Algorithm1 must
be nested over the loops computing fi,..., f;; as by the induction hypothesis the
latter are computed in time O(C X nad(®s) x 7), together with the final englobing

16 E. FOUSTOUCOS AND I. GUESSARIAN

loop FOR jj+1, f1,---, fj, fi+1 will be computed in time O(C'xn%3) x jx (n+1)) =
O(C x n@)+1 x j) = O(C x n®@i+1) x (j 4 1)).
Case (ii). There is no edge from ;1 to some ;, ¢ < j + 1; then ad(p;t1) =

ad(p;) and none of the IDBs ¢;, ¢ < j depends directly on ¢;41: thus, for every

. . . L 1
i < g, each fi(g1,- s Gps [{11, Pjtas - k) I8 @ prioriequal to fi(g1, .-, gp,](']:17

©j+2,. .-, ¢k), and the FOR jji1 loop of Algorithml does not need to be nested

over the loops computing fi,..., f;: it suffices to perform it after completion

of these loops, in time O(C x n); as by the induction hypothesis the latter are

computed in time O(C x n®¥i) x j), the time for computing fi,. .., £, fi+1 will

be O(C x @) x j4+nx C) = O(C xn® %) x (j41)) = O(C xn®¥#i+1) x (j4+1)).
Letting j = k gives the time complexity stated in the theorem; the space com-

plexity is clear.]
From Lemma 3.2 and Theorem 3.14, we deduce

Corollary 3.15. The set of queries defined by inf-Datalog programs can be com-
puted in time polynomial in the number of elements of the database, exponential
in the number of variables and the semantic alternation depth of the program, and
linear in the number of IDBs.

4. MONADIC INF-DATALOG AND MODAL LOGIC

In the present section, all programs will be Monadic inf-Datalog programs.

Recall the model-checking problem: given a formula ¢, a structure M and an
element (node) s of M, to check whether ¢ holds at node s of structure M. We will
solve the slightly more general problem, which we call global model-checking:
given formula ¢ and structure M, to compute the set of all nodes s of M such
that ¢ holds at node s.

As a consequence of Theorem 3.1 we get an upper bound for the complexity
of model checking for CTL and various modal logics. We first state a lemma
improving Lemma 3.2 for Modal inf-Datalog.

Lemma 4.1. Let D be a database with n elements in its domain and let P be
a Modal inf-Datalog program with IDBs ¢1,...,¢r. Let g1,...,91r be arbitrary
relations having the same arities as p1,...,pr. The time needed to evaluate any
component (1 =1,...,1) of Tp(g1,...,91) is C = O(n).

Proof. Recall [16] that a Modal inf-Datalog program P is an inf-Datalog program
such that

e all predicates of P are monadic with the exception of Sucy, Sucy; and
e all rules of P have one of the following forms:
(1) (p(l‘) A un(:c), Suci(ma y)awl(y)a for i = 0,1 and z 7é Y
o(x) «— un(x), Suco(x,y), Suci(z, 2),¥'(y), V' (2),
and x,y, z pairwise distinct
50(1') N ’U,TL(IL'), S’U,Co(l‘, y)a _'2*9“6(33)7 1/"(3/)7 and x #y
2Suc(x) «— Suco(z,y), Suci(x, z)

(i)

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 17

(iif) @(z) — un(z)
where 1’ needs not be different from ¢ and where un(z) is a sequence of monadic
literals ¥ (z) where ¢(x) is either an IDB atom with ¢) # ¢ or an atomic proposition
p(z) or its negation —p(z).

For Modal inf-Datalog programs, we note that: (i) for any = in M there is
at most one y such that Suc;(x,y) holds, (ii) each rule body can be true for at
most one tuple (which we assume to be built-in and which we do not have to
compute), and (ii) there are at most 3 rules for each non-terminal. Hence the time
needed to evaluate one ¢(a) is one unit of time, and we can improve the bound

C of Lemma 3.2: the time needed to evaluate one component of Tp(g1,...,gr)
becomes O(n). O

Corollary 4.2. The global model-checking problem for C'T'L, ET L and alternation-
free modal p-calculus can be solved in time O(n? x |¢|) and space O(n x |p|), where
n is the number of elements in the domain of model M and |p| is the size of the
formula.

Proof. We can translate every CT'L sentence ¢ into a stratified Modal inf-Datalog
program P such that (1) the structure (M, s) is a model of ¢ (i.e. ¢ holds at node
s of structure M) if and only if s is an answer to query G (z) defined by P on
M, and (2) the number I of IDBs of P is less than the size of ¢. We treat below
a (non exhaustive but typical) set of formulas illustrating the basic steps of our
translation.

© = p1 A po is translated into G, (x) «— pi(z), pa2(x),
@ = p1 V p2 becomes Gy (z) «— pi(z) , Gy (z) «— pa2(x),
¢ = Eop becomes G, (x) «— Suc;(z,y),p(y) for i =0,1,
@ = A o p becomes the 3-rule program:
th(m) — Suco(:c,y),—QSuc(x),p(y),
ka(m) — Suco(:c,y),Sucl(x,Z),p(y),p(Z),
ZSuc() «— Suco(z,y), Suci(z, z),
1Up2) becomes the 3-rule program:
— p2()a
— pl() Sucl(may)thp(y) fori:oala
1Up2) becomes:
— pl()ap2 (I), -
— pa(x), Suci(x,y),Gy(y) for i =0, 1.

‘ﬁ ‘@

{
(%

ETL and alternation-free p-calculus sentences can be similarly translated [16] into
stratified Modal inf-Datalog, hence the result by Lemma 4.1.
The restriction that every node has outdegree at most 2 is inessential, see
Remark 2.3. g
The best known bound for model-checking is linear in the size |[M| = n+ T
of the model (where T is the number of tuples in the database M); see [14], and
also [2,7,8].

18 E. FOUSTOUCOS AND I. GUESSARIAN

Similarly, from Theorem 3.14 we can deduce

Corollary 4.3. The global model-checking problem for the modal p-calculus can be
solved in time polynomial in the number of elements in the domain of the model and
exponential in the semantic alternation depth of the formula. The space complexity
is linear in n X |@| (where n is the number of elements in the domain of the model
and |p| the size of the formula).

Proof. We detail the proof when ¢ = 0 Xg.pk, is a modal p-calculus sentence
of syntactic alternation depth k containing exactly k fixed points, i.e. for i =
2,...,k+1 (where pr11 = p1): wi = gi(X1,...,0i-1Xi1.0i1, ..., Xi), where g;
is a modal p-calculus formula and {6;,0,-1} = {p, v}, i.e. 6;—1 # 0;.

As in Corollary 4.2, we translate ¢ into a Monadic inf-Datalog program F,
(see [16]) such that (i) C is in O(n), (ii) the semantic alternation depth ad(P,)
of P, is equal to ad(y) as defined in [11] (see e.g. Ex. 3.6 and 3.13), and (iii)
the number of IDBs of P, is less than the size of ¢. Because of the form of ¢
and because ¢ has syntactic alternation depth k, there is a cycle X}, = X; —
Xy — -+ — Xj_1 — X} in the dependency graph of P,, hence the syntactic
alternation depth of P, is k. It is easy to check by induction on £ that the semantic
alternation depth ad(P,) of P, is equal to the semantic alternation depth ad(y)
of ¢: we only have to observe that (i) X; occurs free (of any p or v binding) in ¢;,
for j < 1, iff X; occurs free in a ¢,, s < j, and (ii) s is the least index such that
X; occurs free in ¢, s < j, iff there is in the dependency graph of F, an edge
X; — X, (or X; — X,). Then, because C is in O(n), Theorem 3.14 implies
that model-checking for ¢ is in time O((n)'*4(®) x |¢|) and space O(n x |¢]|),
hence the corollary.

For the general case, (i) we first generalize the notion of semantic alternation
depth to any form of Monadic inf-Datalog program P, and extend Theorem 3.14
to programs belonging to cases 2 and 3 of Theorem 3.7 (the time and space com-
plexities respectively become O(n® ")+ x T) and O(n x I)), and (ii) we then
check (as above) that the translation from an arbitrary p-calculus sentence ¢ to
P, still preserves the semantic alternation depth. Whence the corollary. g

5. DISCUSSION AND CONCLUSION

We gave a polynomial-time algorithm computing the set of all answers to the
queries defined by an inf-Datalog program. For Modal inf-Datalog programs, the
worstcase time complexity of this algorithm is O(n**1 x I') where n is the number of
elements in the domain of the database, I the number of IDBs and k the semantic
alternation depth. Because Modal inf-Datalog subsumes the modal p-calculus, we
deduced new proofs of the complexity of model-checking p-calculus formulas. Our
upper bounds are given by polynomials whose degree is higher by one than the
degree of the improved upper bound for model checking given in [10]: this is due
to the fact that we not only check whether a given node s of structure M satisfies
formula ¢ (as in model checking), but we compute the set of all nodes in M

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 19

that satisfy ¢. Note also that our bounds are given with respect to the number n
of elements of M, and not as usual, with respect to the size |[M|=n+T (T is the
number of tuples) of M.

Related ideas can be found in the following papers:

1) Inf-Datalog is equivalent to a fragment of the mu-calculus of [21], which has
only least fixed points, but allows for even numbers of negations and non-Horn
formulas; this calculus has been implemented [15,23] using BDDs.

2) [20] translates model-checking a modal p-calculus sentence into solving a
boolean equation system, which is then solved by Gauss elimination method (sim-
ilar to our denotational semantics given in Sect. 2); the complexity of solving the
boolean equations is not studied, but an optimisation consisting of solving only
those equations necessary to evaluate the variable one wants to compute is pro-
posed. Mader also extended her work to infinite equation systems (corresponding
to infinite models).

3) [22] also reduces model-checking a modal p-calculus sentence f to solving
fixed point equations; he proposes to first unfold syntactically the fixed point
equations in order to remove some iterations, and this enables him to solve them
in time O((|M| x | f])1*1*/21).

4) [3] defines an algorithm close to our Algorithml of Figure 6 for computing
vectorial boolean fixed point formulas.

Our programs are in positive normal form, meaning negations can affect only
the explicitly given predicates and not the computed IDBs; the subset of p-calculus
formulas thus captured is a strict subset of the whole u-calculus; however, all u-
calculus sentences can be put in positive normal form, [3], p. 146; because model-
checking concerns sentences only, we can assume positive normal forms without
loss of generality for our purpose, and we gain the fact that problems caused by
negations (even number of negations, complex semantics, etc.) vanish.

The only counterpart is that the negations are incorporated in the greatest
fixpoints, hence we have to be careful and give explicitly (as we did) the order of
evaluation of alternating fixed points. The approach allowing explicit negations is
taken in the seminal papers [10,11,19]; in more recent work [3,20,22] only positive
normal forms are allowed.

For model-checking formulas of CTL and the alternation-free p-calculus (which
are equivalent to fragments of stratified Modal inf-Datalog), [14] also gives a linear-
time algorithm, through a translation into Datalog LITE (an extension of Datalog
using universal quantifications in rule bodies). However, Datalog LITE is es-
sentially alternation-free and does not capture CTL*, nor LTL, nor the modal
p-calculus.

Ly is the set of modal p-calculus formulas of syntactic alternation depth k; it
is equivalent to a fragment of Modal inf-Datalog. For model-checking a formula f
of Lyuy: (i) [11] states a time complexity in O((|M| x | f[)*1), (ii) [10] describes a
semi-naive algorithm avoiding some redundant computations and running in time
O((|M|]x]|f])¥). We obtain for global model-checking a running time O (n* ™ x|f|),
where k is the semantic alternation depth of f, by combining Theorem 3.14 and
our translation [16] from the modal p-calculus into Modal inf-Datalog. We believe

20 E. FOUSTOUCOS AND I. GUESSARIAN

that this bound could be slightly improved: indeed [5] gives an algorithm for
model-checking formulas of Ly, running in time O((|M| x | f[)***/?); however the
space complexity of the improved algorithm in [5] is exponential whilst the space
complexity of the (semi-)naive algorithms is polynomial [10].

Our algorithms are stated directly in terms of inf-Datalog programs and data-
base instances, which makes them transparent and potentially useful for inf-
Datalog compilers. This however comes at the expense of optimality. By re-
ducing the problem to parity games, [17] gives an algorithm running in time
O((|M| x| f])***/2) and in polynomial space. This is currently the best time com-
plexity for model-checking formulas of Ljuy: indeed, for large ks (k = Q(n!/?+%))
a better algorithm for parity games has been given in [18]; however the algorithm
in [17] outperforms the one in [18] in our case, because k will be small (most
natural formulas have a syntactic alternation depth of at most 2).

We conjecture that inf-Datalog could be extended to capture the whole u-
calculus of [21], while retaining a polynomial time data complexity.

Acknowledgements. We thank the referee for helpful comments. The second author is
very grateful to Damian Niwinski for enlightening discussions and to André Arnold for
his reading and comments.

REFERENCES

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of databases. Addison-Wesley (1995).

[2] A. Arnold and P. Crubillé, A linear algorithm to solve fixed-point equations on transition
systems. Inform. Process. Lett. 29 (1988) 57—66.

[3] A. Arnold and D. Niwiriski, Rudiments of p-calculus. Stud. Logic Found. Math. 146, Elsevier
Science, North-Holland, Amsterdam (2001).

[4] J. Bradfield, Fixpoint alternation: Arithmetic, transition systems, and the binary tree.
RAIRO-Theor. Inf. Appl. 33 (1999) 341-356.

[5] A. Browne, E. Clarke, S. Jha, D. Long and W. Marrero, An improved algorithm for the
evaluation of fixpoint expressions. Theor. Comput. Sci. 178 (1997) 237-255.

[6] W. Charatonik, D. McAllester, D. Niwinski, A. Podelski and I. Walukiewicz, The horn
Mu-calculus. LICS (1998) 58-69.

[7] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic Verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS 8 (1986) 244-263.

[8] R. Cleaveland and B. Steffan, A linear time model-checking algorithm for the alternation-free
modal mu-calculus. Formal Method. Syst. Des. 2 (1993) 121-148.

[9] E. Emerson, Temporal and modal logic. Handbook of Theoretical Computer Science (1990)
997-1072.

[10] E. Emerson, Model-Checking and the Mu-Calculus, in Descriptive Complezity and Finite
Models, edited by N. Immerman and Ph. Kolaitis, American Mathematical Society (1997).

[11] E.A. Emerson and C.L. Lei, Efficient model-checking in fragments of the propositional p-
calculus, in Proc. of Irst Symposium on Logic in Computer Science (1986) 267-278.

[12] E. Foustoucos and I. Guessarian, Complexity of Monadic inf-datalog. Application to tempo-
ral logic. Extended abstract in Proceedings 4th Panhellenic Logic Symposium (2003) 95-99.

[13] G. Gottlob and C. Koch, Monadic Datalog and the expressive power of web information
extraction languages. Proc. PODS’02 (2002) 17-28.

[14] G. Gottlob, E. Gradel and H. Veith, Datalog LITE: temporal versus deductive reasoning in
verification. ACM T. Comput. Log. 3 (2002) 39-74.

[15]
[16]
[17]
18]

[19]
[20]

21]
[22]
23]

INF-DATALOG, MODAL LOGIC AND COMPLEXITIES 21

A. Griffault and A. Vincent, The Mec 5 model-checker, CAV’04. Lect. Notes Comput. Sci.
3114 (2004) 488-491.

I. Guessarian, E. Foustoucos, T. Andronikos and F. Afrati, On temporal logic versus Datalog.
Theor. Comput. Sci. 303 (2003) 103-133.

M. Jurdzinski, Small progress measures for solving parity games. Proc. STACS’2000 (2000)
290-301.

M. Jurdzinski, M. Paterson and U. Zwick, A Deterministic subexponential algorithm for
solving parity games. Proc. SODA (2006) 117-123.

D. Kozen, Results on the propositional p-calculus. Theor. Comput. Sci. 27 (1983) 333-354.
A. Mader, The modal p-calculus, model-checking, equations systems and Gauss elimination.
TACAS 95 (1995) 44-57.

D. Park, Finiteness is p-ineffable. Theor. Comput. Sci. 3 (1976) 173-181.

H. Seidl, Fast and simple nested fixpoints. Inform. Process. Lett. 59 (1996) 303-308.

A. Vincent, Conception et réalisation d’un vérificateur de modéles AltaRica. Ph.D. Thesis,
LaBRI, University of Bordeaux 1 (2003)
http://altarica.labri.fr/Doc/Biblio/Author/VINCENT-A.html

Communicated by C. Choffrut.
Received September 18, 2007. Accepted October 10, 2007.

	Introduction
	Definitions
	Complexity of inf-Datalog
	Monadic inf-Datalog and Modal logic
	Discussion and conclusion
	References

