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Abstract

Monadic query languages over trees currently receive
considerable interest in the database community, as the
problem of selecting nodes from a tree is the most basic
and widespread database query problem in the context of
XML. Partly a survey of recent work done by the authors
and their group on logical query languages for this prob-
lem and their expressiveness, this paper provides a number
of new results related to the complexity of such languages
over so-called axis relations (such as “child” or “descen-
dant”) which are motivated by their presence in the XPath
standard or by their utility for data extraction (wrapping).

1 Introduction

Speaking in terms of logic, the distinguishing features
of a monadic queryare its single free variable, by which
it selects a subset of the domain of the input database, and
that it is defined in a monadic logic (where all predicate
variables are of arity one).

In this paper, we primarily study two query languages,
monadic conjunctive queriesand monadic datalogover
trees, and do this in the context of unranked, node-labeled
trees with an implicit ordering of sibling nodes, which
are a convenient abstraction of Web documents and XML.
Monadic conjunctive queries are conjunctive queries with
unary head predicates. Monadic datalog programs are sets
of such conjunctive queries interpreted as datalog rules.
Over tree-structured data, both query languages are natural
formalisms for selecting a subset of the nodes of a tree.

The significance of monadic query languages applied to
tree-structured data (such as XML) is quite obvious: The
primary purpose of XPath – a much-hyped and now heav-
ily used W3C standard – and similar languages is to se-
lect nodes of a document (or, equivalently, subtrees rooted
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by these nodes). XPath is used as a free-standing query
language, but is also incorporated into several other impor-
tant XML-related W3C standards, including XPointer [36],
XSLT [35], XML Schema [37], and the XML Query lan-
guage [33], in which it constitutes much of the core XML
data access functionality.

Apart from the selection of nodes, an interesting ap-
plication of monadic query languages is the extraction
of information from Web document trees (tree wrapping)
[27, 19, 4, 3]. Wrappers can be defined as sets ofinfor-
mation extraction functions(monadic queries) which fil-
ter or relabel tree nodes [16]. Monadic query languages
used to define such wrappers require considerable expres-
sive power. In an earlier paper [16], we studied the expres-
siveness of monadic datalog over trees, and discovered that
this language exactly captures monadic second-order logic
(MSO) over trees.

Our focus on (monadic) conjunctive queries and data-
log as query languages in concert is not accidental. On one
hand, monadic conjunctive queries are the building blocks
(rules) of monadic datalog programs and can be studied
and used independently. On the other hand, monadic dat-
alog will serve us as a very natural formalism for encod-
ing and efficiently evaluating monadic conjunctive queries,
problems this paper will elaborate on.

We also define and study a language that constitutes
the logical core of XPath (and which we thus nameCore
XPath). As we shall show, Core XPath nicely fits into our
logical framework, as it compares to acyclic monadic con-
junctive queries much in the same way as first-order queries
compare to conjunctive queries in the classical relational
database setting.

In this paper, we give an account of previous work on
monadic queries over trees and extend the state of the art in
several respects. We do not aim to surpass the expressive-
ness of monadic datalog (and thus MSO), but carry out fur-
ther complexity studies for the languages proposed. While
we have previously shown that monadic datalog over trees
can be evaluated in time linear in the query and in the data,
respectively, this result (as all linear-time results) heavily
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depends on the way the tree data is represented. To obtain
our result, trees were represented in terms of the natural
“firstchild”, “nextsibling”, and labeling built-in relations.
For instance, the data tree
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which models an XML document containing information
about research papers is represented as
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using firstchild (“fc”) and nextsibling (“ns”) relations.
An interesting question (studied in this paper) is whether

we may generalize the built-in binary relations used in
queries to XPath-likeaxis relations, which include transi-
tive relations such as “descendant” of quadratic size, and
still retain the very favorable (linear-time) computational
characteristics. While such extensions do not further the
expressive power of monadic datalog (it remains equivalent
to MSO), they improve the practical usefulness of our query
languages.

For instance, consider the query for the titles of papers
co-authored by “chandra” and “merlin” in an appropriate
XML document. In XPath, this query can be formulated as

paper[author[chandra and merlin]]/title

which, equivalently, we can write as

Q(T )← paper(P ), child(P,A), author(A),
child(A,C), chandra(C),
child(A,M), merlin(M),
child(P, T ), title(T ).

as a monadic conjunctive query (using “child” and label
predicates). “child” is an axis relation, and it would be
painful (but possible, provided that we may use monadic
datalog rather than asinglemonadic conjunctive rule to for-
mulate our request) to go without it and use the predicates
“firstchild” and “nextsibling” instead.

Unfortunately, our earlier linear-time result of [16] does
not directly extend to the mentioned built-ins. Currently, it
is not even known whether the query/combined complexity
of the obtained query evaluation problem is polynomial.

Related Work

Based on a wealth of elegant equivalences between regular
tree languages, logics (MSO), and automata (cf. [28, 29,
6]), there has recently been considerable research activity
related to various theoretical aspects of XPath and XSLT-
like query languages [25, 7, 5, 22, 24, 16].

However, except for [17], which shows that XPath has
polynomial-time combined complexity, and the linear-time
combined complexity result for monadic datalog over trees
of [16], no research results on good or even reasonable al-
gorithms for processing XPath and similar languages have
been published which may serve as yardsticks for new al-
gorithms. Our emphasis here is on thecombined complexity
of query evaluation (i.e., both query and data are considered
variable); the linear data complexity of query languages
captured by MSO follows from Courcelle’s Theorem and
has been known for a long time.

Note that unlike the setting of conjunctive queries in re-
lational databases, query containment and query evaluation
for XPath-like languages are problems that differ strongly
in their nature and hardness. It has to be emphasized that
in this paper, we address exclusively the query evaluation
problem, and refer to [11, 21, 32] for work on query con-
tainment for (fragments of) XPath.

Contributions

• We give an overview of earlier results on monadic dat-
alog, particularly concerning its expressive power.

• We show that acyclic monadic datalog rules over com-
plex regular path expression relations can be efficiently
rewritten into rules that use only the primitive relations
of these expressions. Regular path expressions allow
to conveniently express all of the XPath axis relations.
Thus, all monadic datalog programs that consist solely
of acyclic rules can be evaluated in linear time.

• We present the Core XPath language and, building on
earlier work presented in [17], show that is has linear-
time combined complexity. We describe analogies of
Core XPath with monadic datalog over trees and CTL.

• We show that monadic datalog rules over “child”,
“firstchild”, and “nextsibling” built-ins can be effi-
ciently rewritten into acyclic rules (using transitive clo-
sure relations) with a simpleChase-like procedure.
Consequently, we can give a most favorable answer
to the previously open question concerning the com-
bined complexity of Elog− [16], a practically useful
Web wrapping language, which is linear.

• In contrast to the previous contributions, we then point
out limits to tractability. We show three closely related
query evaluation problems NP-complete, namely



– boolean conjunctive queries over regular path
relations defined in terms of “firstchild” and
“nextsibling” on trees,

– acyclic boolean conjunctive queries with vari-
ables that may range over tree nodesand their
labels (on trees), and

– boolean conjunctive queries over the edge rela-
tion of DAGs.

• Finally, we show that monadic datalog (without the
acyclicity restriction) over transitive axes such as de-
scendant or ancestor-or-self has polynomial-time com-
bined query evaluation complexity.

Structure of the Paper

In Section 2, we provide basic notions. Section 3 discusses
earlier results on monadic datalog over trees. In Section 4,
we present our results on acyclic queries. Section 5 ad-
dresses Core XPath. Section 6 presents a method for elim-
inating the “child” relation, leading to the linear-time com-
bined complexity result for Elog−. Section 7 discusses our
three NP-completeness results. Finally, in Section 8, we
conclude with a study of “descendant” queries.

2 Preliminaries and Basic Notions

2.1 Trees

Throughout this paper, onlyfinite unrankedtrees will be
considered. Trees are defined in the normal way and have
at least one node. We assume that the children of each node
are in some fixed order. Each node has a label taken from
a finite nonempty set of symbolsΣ, the alphabet. Each un-
ranked tree can be considered as a relational structure1

tu = 〈dom, root, leaf, (labela)a∈Σ,
firstchild, lastchild, nextsibling〉

where dom is the set of nodes in the tree and the relations
are defined according to their intuitive meanings. For in-
stance, firstchild is binary and denotes the relation between
nodes and their first children (according to our ordering)
and nextsibling(n1, n2) is true iffn1 andn2 are thei-th and
(i + 1)-th children of a common parent node, respectively.
labela(n) is true iff n is labeleda in the tree.

Monadic second-order logic (MSO) over trees is a
second-order logical language consisting of (1) variables
(with lower-case namesx, y, . . .) ranging over nodes, (2) set

1Of course, equally well-suited structures are obtained by adding pred-
icates definable over the structure in some formalism or removing others
that are redundant (w.r.t. definability).

variables (written using upper-case namesP,Q, . . .) rang-
ing over sets of nodes, (3) parentheses, (4) boolean connec-
tives∨ and¬, (5) quantifiers∀ and∃ over both node and set
variables, (6) the relation symbols of the model-theoretic
tree structure in consideration, = (equality of node vari-
ables), and, as syntactic sugaring, possibly (7) the boolean
operations∧,→, and↔ and the relation symbols= and⊆
between sets.

Π1-MSO refers to MSO sentences of the form

∀P1, . . . , Pn : ψ(P1, . . . , Pn)

where thePi are set variables andψ is a first-order formula.
It is easy to define a natural total ordering≺ of dom in MSO
(obtained by depth-first left-to-right traversal of the tree,
where, say, parents precede children), which is also called
thedocument orderin the context of wrapping HTML doc-
uments (see e.g. [34]). A unary MSOqueryis a unary pred-
icate definable in MSO (i.e., by a formula with one free
first-order variable). A tree languageL is definable in MSO
iff there is a closed MSO formulaϕ over tree structurest
such thatL = {t | t �MSO ϕ}.

The regular tree languages are precisely those recog-
nizable by a number of finite automata, such as nondeter-
ministic descending (ortop-down) tree automata (NDTA),
both nondeterministic (NATA) and deterministic (DATA)
ascending (orbottom-up) tree automata [6], and determin-
istic (2DTA) as well as nondeterministic (2NTA) two-way
tree automata [6, 25]. We provide a definition of determin-
istic bottom-up tree automata.

Definition 2.1 A deterministic bottom-upunranked tree
automaton is a tupleA = 〈Q,Σ, δ, F 〉 whereQ is a finite
set of states,Σ is an (unranked) alphabet,δ is a (partial)
transition functionQ × Σ → 2Q

∗
s.t. δ(q, a) is a regular

language over states inQ, andF ⊆ Q is a set of final states.
The semantics ofA on a treet, δ∗(t), is defined in-

ductively as follows: Ift consists of only a leaf node la-
beleda, and δ(q, a) = ε for someq, then δ∗(t) = q.
If t is labeleda and has the childrent1, . . . , tm with
δ∗(t1) = q1, . . . , δ

∗(tm) = qm, and there is someq such
that q1 · · · qm ∈ L(δ(q, a)), thenδ∗(t) = q. As before, a
run is called successful for some treet (that is, the tree is
accepted) iff δ∗(t) ∈ F . The set ofΣ-trees accepted byA
is denoted byL(A). �

Definition 2.2 A tree language is regular iff is is accepted
by some deterministic bottom-up tree automaton. �

The following is a classical result for ranked trees, which
has been shown in [25] to hold for unranked trees as well
(see also [6]).

Proposition 2.3 A tree language is regular iff it is definable
in MSO.



Remark 2.4 In the context of representing HTML or XML
documents in our data model of unranked trees, it is worth-
while to consider aninfinite alphabetΣ, which allows to
merge both HTML tags and attribute assignments into la-
bels. This requires a generalized notion of relational struc-
tures 〈dom, R1, R2, R3, . . .〉 consisting of a domain dom
and a countable (but possiblyinfinite) set of relations, of
which only a finite number is nonempty. Even though all
results cited or shown in this paper (such as Proposition 2.3)
were proven for finite alphabets, it is trivial to see that they
also hold for infinite alphabets in case the symbols of the
alphabet (i.e., the node labels) are not part of the domain,
and labels of domain elements are expressed via predicates
(such as the labela) only. Given these requirements, it is
impossible to quantify over symbols ofΣ and any query in
whatever language can only refer to a finite number of sym-
bols of Σ. (See the related discussion in the preliminaries
of [24].) Note that MSO with an alternative, more adven-
turesome encoding via a tree structure with a binary relation
“label” and a two-sorted domain of nodes and labels allows
to encode problems hard for any level of the polynomial hi-
erarchy. In this paper, we avoid this problem by assuming a
finite setΣ. Attribute assignments can be encoded, for in-
stance, as lists of character symbols modeled as subtrees in
our document tree. �

2.2 Conjunctive Queries and Query Graphs

We re-state a few basic definitions from database the-
ory. We are exclusively interested inmonadic conjunctive
queriesover base predicates whose arity does not exceed
two and refer to them simply as CQ’s throughout this sec-
tion. A CQ is of the form

Q(q) ← P1(x1), . . . , Pn(xn),
R1(y1, z1), . . . , Rm(ym, zm).

whereq, x1, . . . , xn, y1, . . . , ym, z1, . . . , zm are not neces-
sarily distinct variables,P1, . . . , Pn are (not necessarily dis-
tinct) unary predicates, and, finally, theR1, . . . , Rm are
(not necessarily distinct) binary predicates. Everything at
the right of the arrow← is called thebodyof Q, denoted
Body(Q). q is called thedistinguishedor headvariable and
occurs in the body, andQ(q) is called the head. The body
consists of aconjunctionof atoms, written as a comma-
separated list.2

Informally, a satisfaction for queryQ is a mappingθ :
Vars(Q) → dom such that when the variables ofQ are re-
placed in its body usingθ, the conjunction Body(Q) be-
comes true. Ifq is the head variable ofQ, the query returns
noden iff there exists a satisfactionθ for Q with θ(q) = n.

2We assume that it is maintained in set fashion and we do not need to
deal with duplicates.

The query graphof a CQQ is the (undirected) graph
obtained by taking the variables ofQ, Vars(Q), as nodes
and the binary atoms ofQ as edges. Optionally, we may
annotate the nodesx of this graph with the unary atoms
Pi(x).

We assume the reader familiar with the common notions
of graphs, cycles, forests, and trees in theirdirectedas well
asundirectedforms. If not stated explicitly otherwise, we
use the undirected notions of each of these termswhen talk-
ing about query graphs. However, binary relations such as
“child” or “nextsibling” used to represent trees have an in-
tuitive “direction”. To improve the information content of
our figures, we will visualize this direction through arrows;
all query graphs are to be read as undirected nevertheless.

Example 2.5 The query graph of the query from our intro-
ductory example (all edges are of type “child”) is acyclic.
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The arrows shown are used to visualize the meaning of the
query; arrows point from parents to children.

Note that a directed acyclic graph w.r.t. such arrows
would be cyclic in the undirected interpretation and would
thus count as a cyclic query graph. �

A CQ is calledacyclic iff its query graph is acyclic.
(Thus, our notion is a special case of but compatible to the
wealth of previous work on hypergraph acyclicity, see e.g.
[1].) Of course, an (undirected) graph is acyclic iff it is a
forest. A forest is a tree if it is connected. Given a CQQ,
variablex is anear of Q iff x occurs only in a single binary
atom.

3 Monadic Datalog over Trees

In this paper, we will use a syntactically restricted frag-
ment of standard datalog [30, 8]. We adhere to the usual
minimal model (= least fixpoint) semantics, which can be
defined using, say, the immediate consequence operatorTP .
We will also use the extension of datalog by stratified nega-
tion in the standard way.

Syntactically, a monadic datalog program is a set of
monadic conjunctive queries (called rules). Predicates that
appear in the head of some rule of a program are calledin-
tensional, all others are calledextensional. An extensionis
a set of ground atoms that are assumed to be true.Built-ins
are extensional predicates with a fixed extension given as
input. Bysignaturewe denote a finite set of built-in predi-
cates. By default, we will always use the signature



τu = 〈root, leaf, (labela)a∈Σ,
firstchild, lastchild, nextsibling〉

for representing trees.tu denotes the extension ofτu.
In order to be able to compare MSO with monadic data-

log, we make a few assumptions. By (unary)query, for mo-
nadic datalog as for MSO, we denote a function that assigns
a predicate to some nodes of a treet (or, in other words, se-
lects a subset of dom(t)).

The following result is part of the database folklore:

Proposition 3.1 Over arbitrary finite structures, each
monadic datalog query isΠ1-MSO-definable.

In fact, MSO and monadic datalog areequivalentin their
power to define unary queries. This was shown in [16] by
simulating the query automata of [25], which are known to
capture the expressiveness of MSO to define unary queries,
in monadic datalog.

Proposition 3.2 [16] For each unary MSO-definable query
there is a monadic datalog query (overτu) s.t. for all trees,
these two queries return the same result.

We say that a monadic datalog program with some ded-
icated intensional predicate (say, “accept”) accepts a treet
iff accept(r) ∈ TωP (t) (i.e., the root node is in the inferred
extension of “accept”). A monadic datalog programP rec-
ognizes the tree languageL = {t | P acceptst}.

The following result is similar to the folklore result that
monadic fixpoint logic over trees expresses MSO (w.r.t. tree
language acceptance), and can be shown by a straightfor-
ward simulation of bottom-up tree automata in monadic dat-
alog.

Proposition 3.3 [16] A tree language is regular iff it is de-
finable in monadic datalog.

Regarding the complexity of our language, it has been
shown (as a generalization of Courcelle’s theorem) that the
data complexity of MSOqueriesover finite structures of
bounded tree-width is in linear time [14]. Unranked labeled
trees are of tree-width≤ 2 + |Σ|. Surprisingly, it can be
shown that monadic datalog queries over trees can be eval-
uated in time linear in the size of the query and the data,
respectively.

Proposition 3.4 [16] Monadic datalog overτu (with strat-
ified negation) hasO(|P| ∗ |dom(t)|) combined complexity
(where |P| is the size of the input program and|dom(t)|
is the size of the tree), linear-time data complexity, and its
program complexity is complete for linear time.

Proof Sketch Observe that all of the binary predicates in
τu (that is, firstchild, lastchild, and nextsibling) have both a

functional dependency from their first column to the second
and one from the second column to the first.

Given a monadic datalog programP, let us apply the fol-
lowing transformation. For each rule, we split off connected
parts that do not contain the head variable, create a rule with
a propositional head predicate for them, and add the propo-
sitional predicates to the original rule as replacements of the
removed parts. For instance,p(X) ← p1(X), p2(Y ). is
rewritten into p(X) ← p1(X), b. and b ← p2(Y ). It
is easy to see that this transformation is linear in the size of
the program.

Now, for each rule in the transformed programP ′, each
variable functionally determines all others, as the variables
are connected via binary predicates that are one-to-one only.
(That is, in a graph of functional dependencies, each vari-
able is reachable from each other variable.) Consequently,
there is only a linear number of relevant ground instances
(in the size of the data), which can be computed in lin-
ear time. It is known from [12, 23] (see also [10]) that
the fixpoint of a ground program can be computed in time
linear in the size of the program. This fact generalizes to
ground programs with stratified negation, as we just need
to process the strata one after another using, say, the algo-
rithm of [23]. Thus, the composition of these steps requires
O(|P|∗|dom(t)|) time. This is an upper bound for the com-
bined complexity of the problem, and we have both linear
time data and program complexities.

Finally, the problem is P-hard with respect to program
complexity, because it is a generalization of the proposi-
tional Horn-SAT problem, which is P-complete (cf. [26]).

�

4 Acyclic Conjunctive Queries

A regular path expression(cf. [2]) over a set of binary
relationsΣ is a regular expression (using concatenation “.”,
the Kleene star “*”, and disjunction “|”) over alphabetΣ. A
regular path expressionwith inversionfurthermore supports
expressions of the formR−1 and is inductively interpreted
as a binary relation as follows.

R1.R2 := {〈x, z〉 | ∃y : 〈x, y〉 ∈ R1, 〈y, z〉 ∈ R2}
R1|R2 := R1 ∪R2

R∗ . . . the reflexive and transitive closure ofR

R−1 := {〈y, x〉 | 〈x, y〉 ∈ R}

Finally,R+ is a shortcut forR.R∗.

Example 4.1 For instance, the so-calleddocument order
relation< used in several XML-related standards (such as
XPath [34]) is defined as the order in which the opening tags
of document tree nodes are first reached when reading the
document (as a flat file) from left to right. We can encode
the document order as a regular path expression overτu as



((nextsibling−1)∗.firstchild−1)∗.nextsibling+.
(firstchild.nextsibling∗)∗

�

Lemma 4.2 Let Σb be a set of binary relations,R be the
relation defined by a regular path expression with inver-
sion overΣb, and letp be a unary predicate. Then, there
is a linear-time algorithm for computing a monadic datalog
program overΣb which defines the unary predicate

p.R := {x | ∃x0 : p(x0) is true and〈x0, x〉 ∈ R}.

Proof (Sketch). Each regular (path) expression with in-
version can be translated into a nondeterministic finite au-
tomaton withε-transitions (denoted NFAε) over the alpha-
bet Σb in linear time. The construction for the concatena-
tion, star, and disjunction operators can be found in any in-
troductory book on automata theory (e.g. [18]). We only
present the construction for inversion here.

Let A = 〈Q, s, F, δ〉 (s ∈ Q, F ⊆ Q, δ ⊆ Q × (Σb ∪
{ε}) × Q) be an NFAε representing a regular path expres-
sion e. To build an NFAε for e−1, we proceed as follows.
If |F | > 1, we first translateA into an equivalent automa-
ton A′ with only a single final state (a new statef ′), by
linking eachf ∈ F with f ′ via anε-transition. Then, we
obtain an inverse automaton ofA′ by replacing each transi-
tion 〈q1, r, q2〉 of the transition relation ofA′ by 〈q2, ε, q1〉
if r = ε and〈q2, r

−1, q1〉 otherwise ((r−1)−1 is replaced by
r). Moreover, we exchange the first and the final state.

Finally, we create a monadic datalog program defining
p.R on the basis of the NFAε AR = 〈Q, s, F, δ〉 as follows.

1. s(x)← p(x).

2. for each tuple〈q1, ε, q2〉 ∈ δ,

q2(x)← q1(x).

3. for each tuple〈q1, r, q2〉 ∈ δ, r ∈ Σb,

q2(x)← q1(x0), r(x0, x).

4. for each tuple〈q1, r
−1, q2〉 ∈ δ, r ∈ Σb,

q2(x)← q1(x0), r(x, x0).

5. for eachf ∈ F ,

p.R(x)← f(x).

It is easy to verify that this encoding is indeed correct, i.e.,
that noden can be reached from a noden0 s.t.p(n) is true
via a path matchingR if and only if the datalog program
produced by the above encoding computesp.R(n). �

Example 4.3 Let the relation “child” be defined by the reg-
ular path expression firstchild.nextsibling∗ overτu. Given a
unary predicatep, the NFAε for p.child is

6��
��ge e- nextsibling

firstchild
q1 q2

Our monadic datalog encoding ofp.child is

q1(X) ← p(X).
q2(X) ← q1(X0), firstchild(X0, X).
q2(X) ← q2(X0), nextsibling(X0, X).

p.child(X) ← q2(X).

�

Example 4.4 We may also use Lemma 4.2 for regular path
expressionswith labels, such as

(child.labela)+.child.labelb,

where label relations are defined as

labela := {〈x, x〉 | x ∈ labela}

Those are of linear size, but can even be eliminated com-
pletely by rewriting rules of the form

q2(x)← q1(x0), labela(x0, x).

or
q2(x)← q1(x0), labela(x, x0).

obtained in our NFAε encoding as

q2(x)← q1(x), labela(x).

�

The next proposition formalizes a technique for evaluat-
ing acyclic conjunctive queries that has long been known in
the database theory community [20, 31, 1], applied to the
special case that relations are at most binary.

Proposition 4.5 LetP be a monadic datalog program over
unary and binary predicates and letr be a rule ofP with
head variableq. Assume that variablex 6= q is an ear inr
and

P1(x), . . . , Pm(x), R(x, x′)

is the set of all atoms overx. Then, the altered program
P ′ obtained by replacing the atoms overx in r by atom
X.R(x′) and adding

X(x) ← P1(x), . . . , Pm(x).

(whereX is a new predicate) is equivalent toP.



Example 4.6 Consider again our paper titles-by-authors
example of the introduction. Using Proposition 4.5, the rule

Q(Q) ← paper(P ),
child(P,A), author(A),
child(A,C), chandra(C),
child(A,M), merlin(M),
child(P,Q), title(Q).

translates into

C(C) ← chandra(C).
M(M) ← merlin(M).
A(A) ← author(A), C.child−1(A), M.child−1(A).
P (P ) ← paper(P ), A.child−1(P ).
Q(Q) ← title(Q), P.child(Q).

�

Theorem 4.7 Let τ+ be the signature consisting ofτu and
any number of binary predicates defined by regular path
expressions overτu. Moreover, letP be a monadic datalog
program overτ+ in which each rule is acyclic. Then,P can
be rewritten into an equivalent monadic datalog program
P ′ overτu in linear time.

Proof (Sketch). Each non-empty tree has leaves, i.e.,
ears. The query graph of each acyclic rule ofP is a forest,
whose arcs (with a emphasis on those defined by regular
path expression atoms) can be iteratively eliminated using
Proposition 4.5. �

As a direct consequence, monadic datalog over the sig-
natureτ+ has linear time combined complexity (that is,
given programP and data treet, we haveO(|P| ∗ |dom|) as
an upper bound). Since the reduction used in [16] to show
that monadic datalog overτu captures MSO only requires
acyclic rules, we conclude

Proposition 4.8 Monadic datalog overτ+, where all rules
are acyclic, captures MSO over trees.

We thus have a monadic query language for trees at our
hands which is expressive yet has very low evaluation com-
plexity. In the remainder of this paper, we will apply it
to several practical database problems (namely, XPath pro-
cessing and Web information extraction).

5 Core XPath

As pointed out in the introduction, XPath is an impor-
tant language for querying XML. In this section, we pro-
pose a fragment of XPath which is the logical core of that

language, but lacks many of the “bells and whistles” that
account for little expressive power.

First we define a number of regular path expressions
(overτu) which have found prominent use as the so-called
axis relationsof XPath. By inspection of the standards doc-
ument [34], the reader can verify that the following defini-
tions as regular path expressions overτu coincide with the
those of [34]; Our list is complete except for axes (such
as “attribute”) which can be simulated by using the “child”
axis in conjunction with a single check of a label.

Definition 5.1 (XPath axes)

self := ε

child := firstchild.nextsibling∗

parent := child−1

descendant := child+

ancestor := descendant−1

descendant-or-self := child∗

ancestor-or-self := descendant-or-self−1

following-sibling := nextsibling∗

preceding-sibling := following-sibling−1

following := ancestor-or-self.nextsibling+.

descendant-or-self

preceding := following−1

�

Definition 5.2 Let the language ofCore XPathbe defined
by its abstract EBNF syntax:

cxp: locationpath| ‘/’ locationpath
locationpath: locationstep (’/’ locationstep)*
locationstep: χ ‘::’ t | χ ‘::’ t ‘[’ pred ‘]’
pred: pred ‘and’ pred| pred ‘or’ pred

| ‘not’ ‘(’ pred ‘)’ | cxp | ‘(’ pred ‘)’

“cxp” is the start production,χ stands for an axis (see Def-
inition 5.1), andt for a “node test” (either a labell ∈ Σ
or “*”, meaning “any label”). T (a), for a labela ∈ Σ, is
labela. T (∗) is dom. The semantics of Core XPath queries
is defined by a function

S : L(tfp)→ 2dom×dom

S[[χ::t[e]]] := {〈x, y〉 | xχy ∧ y ∈ (T (t) ∩ E [[e]])}
S[[/π]] := dom× {x | 〈root, x〉 ∈ S[[π]]}

S[[π1/π2]] := {〈x, z〉 | 〈x, y〉 ∈ S[[π1]] ∧
〈x, z〉 ∈ S[[π2]]}

E : L(pred)→ 2dom

E [[e1 ande2]] := E [[e1]] ∩ E [[e2]]
E [[e1 or e2]] := E [[e1]] ∪ E [[e2]]



E [[not(e)]] := dom− E [[e]]
E [[π]] := {x0 | ∃x : 〈x0, x〉 ∈ S[[π]]}

The result of queryπ is {y | ∃x : 〈x, y〉 ∈ S[[π]]}. �

In our examples throughout this paper, we often use
the standard “simplified” syntax of XPath [34]. For in-
stance, paper[author]/title is an abbreviated version of pa-
per[child::author]/child::title (that is, if we do not make the
axis explicit at some point, it is “child”).

Clearly, Core XPath is a fragment of XPath, both syn-
tactically and semantically. Moreover, Core XPath without
“or” and “not” is equivalent to acyclic conjunctive queries
over axis relations and Core XPath as a whole can be en-
coded in nonrecursive monadic datalog with stratified nega-
tion. We make this obvious by providing an encoding of
Core XPath in that language.

Definition 5.3 (Monadic datalog encoding)

SR[[χ::l[e]]](x) ← node.χ(x), l(x), E [[e]](x).
SR[[/χ::l[e]]](x) ← root.χ(x), l(x), E [[e]](x).
SR[[π/χ::l[e]]](x) ← SR[[π]].χ(x), l(x), E [[e]](x).
SL[[χ::l[e]]](x) ←

(
l ∩ E [[e]]

)
.χ−1(x).

SL[[π]] ∧ l ∧ E [[e]](x) ← SL[[π]](x), l(x), E [[e]](x).

SL[[χ::l[e]/π]](x) ← SL[[π]] ∧ l ∧ E [[e]].χ−1(x).
E [[π]](x) ← SL[[π]](x).

E [[e1 ∧ e2]](x) ← E [[e1]](x), E [[e2]](x).
E [[¬e]](x) ← node(x), ¬E [[e]](x).

E [[e1 ∨ e2]](x) ← E [[e1]](x).
E [[e1 ∨ e2]](x) ← E [[e1]](x).

A Core XPath queryπ returns noden on a given tree iff
SR[[π]](n) is true in the fixpoint of the programP obtained
by recursively defining predicateSR[[π]] in terms of simpler
predicates. �

Thus, as first observed in [17]3,

Proposition 5.4 Core XPath has linear time (that is,
O(|Q| ∗ |dom|)) combined complexity.

3There however, this result is obtained using different techniques out-
side of a logic-based framework. In [17], the authors also report on exper-
iments with the most widely used XPath engines, showing that these sys-
tems have query behavior that is considerably worse than ours. Moreover,
the evaluation complexity of a number of more encompassing fragments
of XPath (as well as full XPath) is studied, and further efficient algorithms
for these problems are presented. All methods are covered by a pending
patent.

Proof. The above encoding maps each Core XPath query
into nonrecursive monadic datalog with negation over sig-
natureτ+, which can be translated into monadic datalog
with stratified negation in linear time (Theorem 4.7). �

We conclude this section by putting Core XPath into the
context of yet another logical language. As pointed out in
[21] by Suciu and Miklau, a fragment of XPath is express-
ible in Computation Tree Logic (CTL, cf. [13]). We extend
the (very restrictive) fragment of XPath treated in [21] (and
calledXP {[],∗,//} there) to full Core XPath.

Syntactically, Core XPath queries consist of a so-called
location path(a sequence oflocation steps, which are state-
ments of the formχ :: t[e]) and a number of conditions
enclosed in brackets. We assume that all location paths are
of length one; this entails no loss of generality, as each Core
XPath query can be rewritten to satisfy this requirement us-
ing additional conditions and the inverses of axes.

Example 5.5 The main location path of query

paper[author[chandra and merlin]]/title

is of length two (it is “paper/title”), as our goal is to select
title nodes that are children of paper nodes. The query

title[parent::paper[author[chandra and merlin]]]

is equivalent but each location path only consist of one step.
We obtain this query by in a sense re-rooting the query
tree to make the “hot spot” of the query (which selects the
nodes) the root. �

Let us first consider the fragment of Core XPath that we
can encode in plain CTL without any extensions. (Only
the axes “self”, “child”, “descendant-or-self”, and “descen-
dant” may be used.)

Definition 5.6 (Mapping to CTL)

[[self::ψ]] ⇒ [[ψ]]
[[child::ψ]] ⇒ EX[[ψ]]

[[descendant::ψ]] ⇒ EF [[ψ]]
[[descendant-or-self::ψ]] ⇒ ([[ψ]] ∨ EF [[ψ]])

[[t[φ]]] ⇒ [[t]] ∧ [[φ]]
[[a]] (wherea ∈ Σ) ⇒ a (propositional predicate)

[[∗]] ⇒ true

[[φ1 andφ2]] ⇒ ([[φ1]] ∧ [[φ2]])
[[φ1 or φ2]] ⇒ ([[φ1]] ∨ [[φ2]])

[[notφ]] ⇒ ¬[[φ]]

�



Reverse axes (such as “parent”, “ancestor”, etc.) can be
dealt with by using CTL with “past” operators [13]. We
denote the past version ofX by X−1 and the past version
of F by F−1.

Example 5.7 The query

title[parent::paper[author[chandra and merlin]]]

translates into CTL (with past) as

title ∧
EX−1(paper∧ EX(author∧ EXchandra∧ EXmerlin))

�

The remaining axes, such as “following” and “following-
sibling”, require multimodal CTL; using e.g. the modali-
tiesX↓ to denote “child” (instead ofX) andX→ to denote
“following-sibling”. Multimodal CTL with past operators
can still be checked in linear time (i.e., in the query and
the data, respectively), because it can be translated into a
suitable fragment of Datalog LITE [15], which obeys this
complexity bound. The translation required is a simple gen-
eralization of the one from CTL to Datalog LITE in [15].

6 Adding the “child” Axis to τu

The signatureτu is a concise representation of labeled
unranked trees, and monadic datalog overτu captures all
of MSO (over such trees). Nevertheless, in a practical lan-
guage it may be desirable or necessary to be able to state
rules such as

Q(X)← child(X,Y ), child(Y,Z), nextsibling∗(Y, Z).

which make use of the child relation but are not neces-
sarily acyclic. With the machinery introduced so far, we
can neither rewrite such rules into rules overτu nor do we
have a query complexity bound better than the general NP-
completeness result for conjunctive queries (which holds
even if predicates are of at most arity two [9]).

6.1 Complexity

In the next algorithm, we will use the signature

τ ′ = 〈dom, firstchild, nextsibling, (labell)l∈Σ, fs, ls〉

where “fs” (nextsibling∗ relative to a first sibling) is

fs := {〈x, y〉 | ∃x0 : firstchild(x0, x),nextsibling∗(x, y)}

and has a functional dependency from the second to the first
column (written as fs:$1→ $2, meaning that for each value

x, there is at most one valuey such that〈x, y〉 ∈ fs). “ls”
(last sibling) is defined as

ls := {x | ∃x0 : lastchild(x0, x)}.

TheChaseis a classical method for applying logical de-
pendencies to conjunctive queries (cf. [1]) and takes linear
time for functional dependencies.

Definition 6.1 (Chase rule for functional dependencies of
binary relations) LetQ be a CQ.

1. For the functional dependency R: $1→ $2 and atoms
R(x, y1), R(x, y2) in Q, replace every occurrence of
y2 in Q by y1.

2. For the functional dependency R: $2→ $1 and atoms
R(x1, y), R(x2, y) in Q, replace every occurrence of
x2 in Q by x1. �

Algorithm 6.2 (Rule Transformation)
Input : a monadic datalog ruler overτu ∪ {child}.
Output : a rule overτ ′.

1. Replace each occurrence of an atom child(x, y) by
firstchild(x, y0), fs(y0, y), wherey0 is a new variable.

2. Replace each occurrence of an atom lastchild(x, y) by
firstchild(x, y0), fs(y0, y), ls(y), wherey0 is a new
variable.

3. while one of the following rules is applicable, apply it:

• the Chase rules for the fd’s

firstchild : $1→ $2 firstchild : $2→ $1
nextsibling: $1→ $2 nextsibling: $2→ $1

fs : $2→ $1

• replace atoms

fs(x, z),nextsibling(y, z)

by
fs(x, y),nextsibling(y, z).

�

Theorem 6.3 Let r be a rule over the signatureτu ∪
{child}. The rule obtained by applying Algorithm 6.2 to
r is equivalent tor. Moreover, Algorithm 6.2 runs in time
O(|r|).

None of the steps 1 to 3 changes the meaning of the
query, and Chase procedures of this kind can be imple-
mented to run in linear time.



Theorem 6.4 Let r be a rule overτu ∪ {child} andr′ the
rule obtained by applying Algorithm 6.2 tor. If the (undi-
rected) graph of ruler′ has a cycle thenr′ is unsatisfiable.

Proof Sketch Three binary predicates need to be con-
sidered, “firstchild”, “nextsibling”, and “fs”. To show our
theorem, we need to distinguish a number of cases.

• Directed cycles: “fs” atoms define areflexiveand tran-
sitive closure. Directed cycles consisting exclusively
of “fs” atoms are satisfiable, but are never created by
our algorithm.

All other kinds of directed cycles, for any permuta-
tion of “firstchild”, “nextsibling” and “fs” atoms, en-
tail unsatisfiability of the rule, as both “firstchild” and
“nextsibling” are antisymmetric. This is also true for
point loops firstchild(x, x) and nextsibling(x, x).

x1

firstchild↓↑ firstchild
x2

• Undirected cycles containing “firstchild” atoms:

1. If there is an atom firstchild(x, y) wherex andy
are siblings, the rule is unsatisfiable.

x1

firstchild↓↓ nextsibling
x2

2. If there are two atoms firstchild(x1, y1) and
firstchild(x2, y2), wherey1 and y2 are distinct
siblings, the rule is unsatisfiable.

nextsibling
x1 → x2

firstchild↓ ↓ firstchild
x3 → x4

nextsibling

Algorithm 6.2 cannot produce (undirected) cycles con-
taining “firstchild” which belong to neither of these
two classes.

• All that is now left to consider is undirected cycles con-
sisting exclusively of “nextsibling” and “fs” atoms. By
virtue of the Chase, if we just consider the “nextsib-
ling” and “fs” atoms of our rule, the graph either con-
tains a directed cycle or is a forest. Thus, our theorem
is shown. �

Thus, given a program, we apply Algorithm 6.2 to each
rule. Then we eliminate those rules with cycles, as they are
unsatisfiable. To obtain a program overτu∪{nextsibling∗},
we rename each atom fs(x, y) to nextsibling∗(x, y) and re-
place each ls(x) by lastchild(x0, x), wherex0 is a new vari-
able not appearing elsewhere.

Thus, what we have shown in this section was

Theorem 6.5 Every monadic datalog program overτu ∪
{child} can be rewritten into an equivalent program over
τu∪{nextsibling∗} in which each rule is acyclic. This trans-
formation can be effected in linear time in the size of the
program.

Example 6.6 Consider the following query

Q ← child(X,Y ), nextsibling(Y, Z),
child(X,Z), lastchild(X,W ).

which rewrites into the acyclic query

Q ← firstchild(X,Y0),
nextsibling∗(Y0, Y ), nextsibling(Y, Z),
nextsibling∗(Y0,W ), lastchild(W0,W ).

In our graphical notation, the translation is
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As a consequence of the previous theorem, we have

Corollary 6.7 There is an evaluation algorithm for
monadic datalog overτu ∪ {child} which takes time
O(|dom(t)| ∗ |P|).

6.2 Application to Tree Wrapping

An important application in which rules overτu with the
“child” axis are required is wrapping [4, 3]. In [16], we
defined a wrapping language called Elog−, which was ba-
sically simply monadic datalog overτu ∪ {child}4. (Note
that the “before” predicate of Elog− is defined as equivalent
to “nextsibling” modulo a check of one label.) Elog− is a
simplified but functional fragment of Elog, the kernel wrap-
ping language used in the LiXto system5. By the previous
result, monadic datalog overτu ∪ {child} (and thus Elog−)
is still in linear time in terms of query and data, respectively.
Consequently,

Corollary 6.8 The Elog− wrapper language has linear
time query complexity.

4Actually, Elog− rules obey some syntactic restrictions to facilitate vi-
sual specification, but Elog− still captures MSO. Indeed, the visual wrap-
per specification process of the LiXto system [4, 3], by which Elog− was
motivated, only creates wrapper programs that are acyclic or can be made
so using very simple means.

5Seehttp://www.lixto.com .



7 Limits of Tractability

Unfortunately, while acyclic conjunctive queries over
regular path expressions defined over the relations ofτu had
linear-time evaluation complexity, the complexity for such
queries without the acyclicity restriction is NP-complete.

Theorem 7.1 The query complexity of boolean conjunctive
queries over binary predicates defined by regular path ex-
pressions (with inverse) over “firstchild” or “nextsibling”
on trees is NP-complete.

Proof. Membership in NP is clear, and hardness follows
from a reduction from 3-Colorability (3COL). Indeed, the
NP-completeness result is already true on the tree which is a
simple path of length three (no branching), i.e. the structure

P3 := 〈dom= {n1, n2, n3}, fc = {〈n1, n2〉, 〈n2, n3〉}〉

(where “fc” is short for “firstchild”). The 3-colorability of a
graphG = 〈V,E〉 can be encoded as a boolean conjunctive
queryQ with a body atomv 6= w for each edge〈v, w〉 ∈ E
of the graph. By the natural definition of 3COL,G is 3-
colorable iffQ is true on a set of three nodes, e.g. dom of
P3. Now, 6= onP3 can be defined as

fc | fc.fc | fc−1 | fc−1.fc−1

as a regular path relation over “fc”. �

While our complexity result for conjunctive queries us-
ing the child relation over trees is linear (and thus robustly
polynomial), this is not so for the edge relation of DAGs.

Theorem 7.2 The evaluation of boolean conjunctive
queries over the edge relation of DAGs is NP-complete.

Proof. By reduction from 3COL for a graphG = 〈V,E〉:
We assume an arbitrary total ordering of the nodesV of G.
The query contains a body atom for each edge{vi, vj} ∈ E.
If vi ≤ vj , we addE(xi, xj) toQ, otherwiseE(xj , xi).

Let n = |E|. The data DAG consists of3 ∗ n nodesri,
gi, andbi for 1 ≤ i ≤ n and edges

{〈γi, δj〉 | γ, δ ∈ {r, g, b}, γ 6= δ, 1 ≤ i < j ≤ n}.

Q is satisfiable over this DAG iffG is 3-colorable. �

Note that the NP-completeness of conjunctive queries
over the edge relation of graphs in general has long been
known [9].

As the final part of this section, and as a follow-up to
and illustration of Remark 2.4, we show that the evaluation
of (even just boolean) acyclic conjunctive queries extended
with label variablesis NP-hard. By label variables, we refer
to variables ranging exclusively over the labels of document

nodes. We use a binary predicate label′ instead of the|Σ|
unary predicates labell of τu, where〈n, l〉 ∈ label′ iff node
n is labeledl in the tree. A conjunctive query with label
variables matches a tree iff the same query without the label′

atoms has a satisfactionθ : Vars(Q) → dom such that for
each pair of atoms label′(X,V ), label′(Y, V ) (i.e., with the
same label variable),θ(X) andθ(Y ) have the same label.

Theorem 7.3 The query complexity of acyclic conjunctive
queries with label variables over trees is NP-complete.

Proof. Membership in NP is clear. Hardness follows
from the following LOGSPACE reduction from 3COL.
Given the undirected graphG = 〈V,E〉 to be colored, with

E = {{v1, w1}, . . . , {vn, wn}}.

Without loss of generality, we assume that all nodes of
V appear inE. (For each nodev not in any arc, we add a
newnodev′ toV and arc{v, v′} toE.) We create the query

Q ← child(R,X1), child(X1, Y1),
label(X1, v1), label(Y1, w1),
. . . ,

child(R,Xn), child(Xn, Yn),
label(Xn, vn), label(Yn, wn).

It is easy to verify thatG is 3-colorable if and only if our
query is satisfied on data tree
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where “root”,r, g, andb are the node labels. �

8 Descendant Queries

After reporting a number of favorable complexity results
on acyclic queries and queries with the “child” axis, we
showed the opposite side of the medal and provided three
NP-completeness results on general (possibly cyclic) con-
junctive queries. This motivates the search for interesting
fragments of cyclic conjunctive queries which are tractable.
In this section, we report on a significant fragment with
polynomial-time query evaluation complexity, namely, one
that supports transitive closure axes such as “descendant”.
We are currently investigating for additional such classes
and are working towards charting the tractability frontier.

The goal of this section is to find efficient algorithms for
evaluating queries over the signature

τχ = 〈(Pi)1≤i≤K , child∗, child+〉

where thePi areK unary predicates.



Algorithm 8.1 (Elimination Algorithm)
Input : A boolean conjunctive queryQ overτχ and a tree.
Output : The truth value ofQ.

for eachn ∈ domdo Θ(n) := Vars(Q);

while there is a changedo
{

if Pi(x) andx ∈ Θ(n) butn 6∈ Pi then
Θ(n) := Θ(n)− {x};

if R(x, y), x ∈ Θ(n), and
there is non′ s.t.〈n, n′〉 ∈ R andy ∈ Θ(n′) then

Θ(n) := Θ(n)− {x};
if R(x, y), y ∈ Θ(n), and

there is non0 s.t.〈n0, n〉 ∈ R andx ∈ Θ(n0) then
Θ(n) := Θ(n)− {y};

}
if
⋃
n Θ(n) = Vars(Q)then return true ;

else return false;

whereR is either child∗ or child+. �

Theorem 8.2 Given a boolean conjunctive queryQ over
unary predicates, child∗ and child+ and a treet, Algo-
rithm 8.1 returns true iffQ is true ont.

Proof (Sketch). We only need to show the soundness of
Algorithm 8.1. Its completeness follows from the fact that
its rules for eliminating assignments enforce requirements
locally that must hold in unison in a solution satisfaction.
Therefore, Algorithm 8.1 never eliminates a single assign-
ment needed in an embedding ofQ into t.

We restrict ourselves to the case that the query graph of
Q is connected. The general case can be shown with the
same argument used in the proof of Proposition 3.4.

We extract a satisfactionθ : Vars(Q)→ dom forQ from
Θ as follows. Initially,V is empty andθ is undefined ev-
erywhere. We traverse the tree depth-first; whenever we
encounter a variable assignmentx ∈ Θ(n) andx 6∈ V , we
addx to V and setθ(x) := n.

Induction Claim: We show by induction that in every
step, the boolean queryQV consisting of those atoms ofQ
that only contain variables inV is satisfied by the embed-
ding θ computed so far. Thus, after the final step,θ is a
satisfaction forQ.

Induction: Clearly, each variable assignmentx ∈ Θ(n)
not eliminated by Algorithm 8.1 satisfies all unary atoms
overx, thus we only need to consider binary atoms.

When the first variable is added toV , QV contains no bi-
nary atoms and our claim holds trivially.

Assume variablex is added in the current step. All atoms
that must now hold in addition to those of the previous
steps (for which we assumeθ satisfies them) are of the form
R(w, x), whereR is either child∗ or child+.

By the elimination rules of Algorithm 8.1,

1. As x ∈ Θ(n), there must be a noden0 on the path
from the root ton s.t.w ∈ Θ(n0) and〈n0, n〉 ∈ R.
This noden0 has already been visited (as we proceed
using depth-first traversal), and thusθ(w) has already
been defined.

2. Moreover, there is anx in the subtree of every node
assignedw.

Sincen is the first node in document order that is as-
signedx (otherwisen would not be the first such node we
encounter by depth-first traversal), there is no occurrence of
w at the left of the path from the root ton. Thus,n is in
the subtree ofθ(w). As no node aboveθ(w) is assignedw,
〈θ(w), θ(x)〉 ∈ R. �

Example 8.3 Consider the query shown below on the left
(all binary atoms are, say, of the form child∗). Moreover,
assume that for each variablexi, the query contains a unary
atom labelxi(xi). Below, in the center, We show a data tree
and the labels the nodes are assigned. It is easy to verify
that the Elimination Algorithm returnsxi ∈ Θ(n) exactly if
n is labeledxi.
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At the right, we show a mappingθ obtained by traversing
the tree depth-first and always adding the first encounter of
each variable toθ. Clearly,θ is a satisfaction for our query.

Note also that Algorithm 8.1 cannot be used to answer
monadic queries: For instance, ifx1 were the head variable,
the branching node of the tree isincorrectly labeledx1 by
Algorithm 8.1, so to say. �

Theorem 8.4 Boolean conjunctive queries overτχ have
O(|Q| ∗ |dom|) time combined complexity.

Proof Sketch. By Theorem 8.2, a connected boolean
conjunctive query is true over a tree iff

⋃
n∈domΘ(n) 6= ∅.

We encode the fixpoint computation of Algorithm 8.1 as a
(semipositive) monadic datalog program, which consists of
the following rules.

We use regular path expressions (see Lemma 4.2) to keep
this proof concise, and use the abbreviations

firstsib := (dom.firstchild| root)
lastsib := (dom.lastchild| root).



For instance, nodes for which all children have propertyp
can be defined as

leaf | lastsib.p.(nextsibling−1.p)∗.firstchild−1

That is, such nodesn are either leaves or there is a node
(which happens to coincide withn) whose last child has
propertyp, each of the earlier siblings up to the first have
propertyp, andn is the parent of that first sibling.

• Atom “Pi(x)” is in Q:

x 6∈ Θ(v)← ¬Pi(v).

• Atom “child∗(x, y)” is in Q:

x 6∈ Θ(v) ← y 6∈ subtree(v).
y 6∈ subtree(v) ← y 6∈ Θ(v),

lastsib.y 6∈ subtree.
(nextsibling−1.y 6∈ subtree)∗.
firstchild−1(v).

y 6∈ subtree(v) ← leaf(v), y 6∈ Θ(v).
y 6∈ Θ(v) ← root.

(x 6∈ Θ.child)∗.x 6∈ Θ(v).

• Atom “child+(x, y)” is in Q:

x 6∈ Θ(v) ← lastsib.y 6∈ subtree.
(nextsibling−1.y 6∈ subtree)∗.
firstchild−1(v).

x 6∈ Θ(v) ← leaf(v).
y 6∈ Θ(v) ← root.(x 6∈ Θ.child)∗(v).

This program computes the complement ofΘ, as ob-
tained by Algorithm 8.1. The construction exploits the
order information which is available in the tree to check
whether a predicate (asserting that a certain variable is not
assigned to a given noden) is truefor all nodes from a cer-
tain region of the tree (e.g., the descendants ofn). The pro-
gram can be generated in timeO(|Q|) and monadic datalog
programs (overτu) can be evaluated in time linear in their
size (times the size of the data). Our theorem follows.�

Corollary 8.5 Monadic datalog overτχ has polynomial-
time combined complexity.

Proof. We evaluate a monadic datalog programP as fol-
lows. A monadic conjunctive queryQ with body Body(Q)
and head variableq is evaluated by running Algorithm 8.1
for boolean conjunctive queries on query

Q′ ← Q(q), Body(Q).

|dom| times, each time fixing the desired valuen of the head
variableq by setting the value of auxiliary relationQ to{n}.

A fixpoint for P is obtained by iteratively applying this
evaluation method for monadic rules to the atoms derived
so far. Initially, all ground atoms over IDB predicates are
false, and an atom is set to true if a monadic rule entails
it. (However, no true atom is ever set to false later on.)
Thus, the overall algorithm is monotonic and the fixpoint is
reached after at mostO(|Q| ∗ |dom|) steps. �
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