2,903 research outputs found

    Sonification of probabilistic feedback through granular synthesis

    Get PDF
    We describe a method to improve user feedback, specifically the display of time-varying probabilistic information, through asynchronous granular synthesis. We have applied these techniques to challenging control problems as well as to the sonification of online probabilistic gesture recognition. We're using these displays in mobile, gestural interfaces where visual display is often impractical

    Sonification of Network Traffic Flow for Monitoring and Situational Awareness

    Get PDF
    Maintaining situational awareness of what is happening within a network is challenging, not least because the behaviour happens within computers and communications networks, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation is widely used to present information about the dynamics of network traffic dynamics. Although it provides operators with an overall view and specific information about particular traffic or attacks on the network, it often fails to represent the events in an understandable way. Visualisations require visual attention and so are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Situational awareness is critical and essential for decision-making in the domain of computer network monitoring where it is vital to be able to identify and recognize network environment behaviours.Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system to be used in the monitoring of computer networks to support the situational awareness of network administrators. SoNSTAR provides an auditory representation of all the TCP/IP protocol traffic within a network based on the different traffic flows between between network hosts. SoNSTAR raises situational awareness levels for computer network defence by allowing operators to achieve better understanding and performance while imposing less workload compared to visual techniques. SoNSTAR identifies the features of network traffic flows by inspecting the status flags of TCP/IP packet headers and mapping traffic events to recorded sounds to generate a soundscape representing the real-time status of the network traffic environment. Listening to the soundscape allows the administrator to recognise anomalous behaviour quickly and without having to continuously watch a computer screen.Comment: 17 pages, 7 figures plus supplemental material in Github repositor

    Granular synthesis for display of time-varying probability densities

    Get PDF
    We present a method for displaying time-varying probabilistic information to users using an asynchronous granular synthesis technique. We extend the basic synthesis technique to include distribution over waveform source, spatial position, pitch and time inside waveforms. To enhance the synthesis in interactive contexts, we "quicken" the display by integrating predictions of user behaviour into the sonification. This includes summing the derivatives of the distribution during exploration of static densities, and using Monte-Carlo sampling to predict future user states in nonlinear dynamic systems. These techniques can be used to improve user performance in continuous control systems and in the interactive exploration of high dimensional spaces. This technique provides feedback from users potential goals, and their progress toward achieving them; modulating the feedback with quickening can help shape the users actions toward achieving these goals. We have applied these techniques to a simple nonlinear control problem as well as to the sonification of on-line probabilistic gesture recognition. We are applying these displays to mobile, gestural interfaces, where visual display is often impractical. The granular synthesis approach is theoretically elegant and easily applied in contexts where dynamic probabilistic displays are required

    An introduction to interactive sonification

    Get PDF
    The research field of sonification, a subset of the topic of auditory display, has developed rapidly in recent decades. It brings together interests from the areas of data mining, exploratory data analysis, human–computer interfaces, and computer music. Sonification presents information by using sound (particularly nonspeech), so that the user of an auditory display obtains a deeper understanding of the data or processes under investigation by listening

    Musical Robots For Children With ASD Using A Client-Server Architecture

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)People with Autistic Spectrum Disorders (ASD) are known to have difficulty recognizing and expressing emotions, which affects their social integration. Leveraging the recent advances in interactive robot and music therapy approaches, and integrating both, we have designed musical robots that can facilitate social and emotional interactions of children with ASD. Robots communicate with children with ASD while detecting their emotional states and physical activities and then, make real-time sonification based on the interaction data. Given that we envision the use of multiple robots with children, we have adopted a client-server architecture. Each robot and sensing device plays a role as a terminal, while the sonification server processes all the data and generates harmonized sonification. After describing our goals for the use of sonification, we detail the system architecture and on-going research scenarios. We believe that the present paper offers a new perspective on the sonification application for assistive technologies

    The Sound Manifesto

    Full text link
    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need co-ordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the co-operative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for a characterization of visual information.Comment: To appear in the conference on Critical Technologies for the Future of Computing, part of SPIE's International Symposium on Optical Science and Technology, 30 July to 4 August 2000, San Diego, C
    corecore