1,140 research outputs found

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    Adjacent Graph Based Vulnerability Assessment for Electrical Networks Considering Fault Adjacent Relationships Among Branches

    Get PDF
    Security issues related to vulnerability assessment in electrical networks are necessary for operators to identify the critical branches. At present, using complex network theory to assess the structural vulnerability of the electrical network is a popular method. However, the complex network theory cannot be comprehensively applicable to the operational vulnerability assessment of the electrical network because the network operation is closely dependent on the physical rules not only on the topological structure. To overcome the problem, an adjacent graph (AG) considering the topological, physical, and operational features of the electrical network is constructed to replace the original network. Through the AG, a branch importance index that considers both the importance of a branch and the fault adjacent relationships among branches is constructed to evaluate the electrical network vulnerability. The IEEE 118-bus system and the French grid are employed to validate the effectiveness of the proposed method.National Natural Science Foundation of China under Grant U1734202National Key Research and Development Plan of China under Grant 2017YFB1200802-12National Natural Science Foundation of China under Grant 51877181National Natural Science Foundation of China under Grant 61703345Chinese Academy of Sciences, under Grant 2018-2019-0

    Spatial and performance optimality in power distribution networks

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Complex network theory has been widely used in vulnerability analysis of power networks, especially for power transmission ones. With the development of the smart grid concept, power distribution networks are becoming increasingly relevant. In this paper, we model power distribution systems as spatial networks. Topological and spatial properties of 14 European power distribution networks are analyzed, together with the relationship between geographical constraints and performance optimization, taking into account economic and vulnerability issues. Supported by empirical reliability data, our results suggest that power distribution networks are influenced by spatial constraints which clearly affect their overall performance.Peer ReviewedPostprint (author's final draft

    Identification of Two Vulnerability Features: A New Framework for Electrical Networks Based on the Load Redistribution Mechanism of Complex Networks

    Get PDF
    This paper proposes a new framework to analyze two vulnerability features, impactability and susceptibility, in electrical networks under deliberate attacks based on complex network theory: these two features are overlooked but vital in vulnerability analyses. To analyze these features, metrics are proposed based on correlation graphs constructed via critical paths, which replace the original physical network. Moreover, we analyze the relationship between the proposed metrics according to degree from the perspective of load redistribution mechanisms by adjusting parameters associated with the metrics, which can change the load redistribution rules. Finally, IEEE 118- and 300-bus systems and a realistic large-scale French grid are used to validate the effectiveness of the proposed metrics

    Nuevas técnicas para modelizar y analizar la vulnerabilidad de infraestructuras críticas de energía interdependientes

    Get PDF
    La interdependencia entre las redes de gas y electricidad es motivo de preocupación debido a la creciente utilización del gas para la generación de electricidad en centrales de ciclo combinado y al uso de energía eléctrica de los compresores en la red de gas. Estas redes están sujetas a riesgos de interrupción del suministro derivados de posibles problemas técnicos o amenazas intencionadas. Por lo tanto, resulta conveniente modelizar y analizar la vulnerabilidad de estas infraestructuras críticas de energía interdependientes.En esta tesis doctoral se presenta, en primer lugar, una metodología para analizar conjuntamente los flujos de electricidad y gas. El conjunto de ecuaciones no lineales que representan la operación del sistema de potencia se resuelve utilizando el método de Newton-Raphson, mientras que las ecuaciones en la red de gas se resuelven utilizando el enfoque de transformada análoga-lineal. Se presentan dos casos de estudio para demostrar la simplicidad de la metodología propuesta. Los resultados obtenidos se verifican contra el método Newton-Raphson tradicional con el fin de comprobar la solución alcanzada, encontrando un buen desempeño de la metodología conjunta aplicada. La aplicación del enfoque propuesto permite el análisis de la vulnerabilidad de las infraestructuras energéticas interdependientes. También, se desarrolla una metodología para evaluar la vulnerabilidad estructural de las redes de energía eléctrica y gas acopladas, considerando interdependencias en el proceso de fallos en cascada. La vulnerabilidad se evalúa empleando el índice de desconexión de carga y las medidas de centralidad de vulnerabilidad geodésica e impacto en la conectividad. El estudio muestra una elevada correlación entre el índice de desconexión de carga y el índice de vulnerabilidad geodésica. De esta manera, la teoría de grafos puede usarse como sustituto de los enfoques de flujos de carga que demandan un conocimiento detallado de los parámetros eléctricos e hidráulicos de los sistemas bajo estudio y son computacionalmente más intensivos que los métodos estadísticos de grafos. Como resultado, se propone un nuevo método para estimar la vulnerabilidad de las redes de energía eléctrica y gas conjuntas utilizando el índice de vulnerabilidad geodésica. Asimismo, se estudia el comportamiento de las redes de electricidad y gas natural de España, tanto de manera separada como conjunta. Los resultados muestran que la red de gas natural es menos robusta que la red eléctrica y que la red acoplada es más vulnerable que la red eléctrica ante fallos aleatorios y deliberados. Además, eliminar los nodos más fuertemente conectados de los dos sistemas independientes resultaría una estrategia de ataque eficaz para el rápido colapso de las infraestructuras acopladas interdependientes. Por último, se evalúa la robustez estructural de los planes de expansión de las infraestructuras de electricidad y gas natural en España. Los casos de estudio corresponden a las principales inversiones propuestas por los operadores de los sistemas en 2015-2020. Los resultados demuestran que la construcción de algunas instalaciones para la expansión de ambas redes no mejora la robustez estructural de la red acoplada; sin embargo, cuando se tiene en cuenta todo el programa de inversión se produce una mejora relativa de hasta un 6% con respecto al caso base. La metodología propuesta en esta tesis corrobora que la aplicación de la teoría de grafos es adecuada para analizar la planificación de activos de una infraestructura energética crítica, requiriendo únicamente la topología y el programa de inversiones para evaluar el desempeño de la red acoplada en caso de fallos en cascada. En suma, esta tesis doctoral pone de relieve la importancia de que los sistemas energéticos se aborden como redes acopladas debido a sus fuertes interacciones. Una perturbación en un sistema puede no ser crítica si las infraestructuras están separadas, pero dado que ambas redes son interdependientes, el impacto resultante podría causar fallos en el otro sistema. En otras palabras, las interdependencias aumentan el impacto de las perturbaciones.<br /

    Cascading Outages Detection and Mitigation Tool to Prevent Major Blackouts

    Get PDF
    Due to a rise of deregulated electric market and deterioration of aged power system infrastructure, it become more difficult to deal with the grid operating contingencies. Several major blackouts in the last two decades has brought utilities to focus on development of Wide Area Monitoring, Protection and Control (WAMPAC) systems. Availability of common measurement time reference as the fundamental requirement of WAMPAC system is attained by introducing the Phasor Measurement Units, or PMUs that are taking synchronized measurements using the GPS clock signal. The PMUs can calculate time-synchronized phasor values of voltage and currents, frequency and rate of change of frequency. Such measurements, alternatively called synchrophasors, can be utilized in several applications including disturbance and islanding detection, and control schemes. In this dissertation, an integrated synchrophasor-based scheme is proposed to detect, mitigate and prevent cascading outages and severe blackouts. This integrated scheme consists of several modules. First, a fault detector based on electromechanical wave oscillations at buses equipped with PMUs is proposed. Second, a system-wide vulnerability index analysis module based on voltage and current synchrophasor measurements is proposed. Third, an islanding prediction module which utilizes an offline islanding database and an online pattern recognition neural network is proposed. Finally, as the last resort to interrupt series of cascade outages, a controlled islanding module is developed which uses spectral clustering algorithm along with power system state variable and generator coherency information
    corecore