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ABSTRACT Security issues related to vulnerability assessment in electrical networks are necessary for
operators to identify the critical branches. At present, using complex network theory to assess the structural
vulnerability of the electrical network is a popular method. However, the complex network theory cannot be
comprehensively applicable to the operational vulnerability assessment of the electrical network because
the network operation is closely dependent on the physical rules not only on the topological structure.
To overcome the problem, an adjacent graph (AG) considering the topological, physical, and operational
features of the electrical network is constructed to replace the original network. Through the AG, a branch
importance index that considers both the importance of a branch and the fault adjacent relationships among
branches is constructed to evaluate the electrical network vulnerability. The IEEE 118-bus system and the
French grid are employed to validate the effectiveness of the proposed method.

INDEX TERMS Vulnerability, complex network theory, adjacent graph, branch importance index.

NOMENCLATURE
ACRONYMS
ENV Electrical network vulnerability
AG Adjacent graph
LRM Load redistribution model
BIM Branch importance metric
BLAI Branch loading assessment index
OPF Optimal power flow
NNR Nearest neighbor redistribution rule
USR Uniform sharing redistribution rule
CNT Complex network theory
BLAI Branch loading assessment index

The associate editor coordinating the review of this manuscript and
approving it for publication was Weisi Guo.

SYMBOLS
TRANSMISSION ELECTRICAL NETWORK
L Set of branches (i.e. branches, transformers) in

a transmission network, L =
{
· · · ,L j, · · ·

}
,

card|L| = NL .
B Set of nodes (i.e. buses) in a transmission network,

card|B| = NB.
NW Number of generations in a transmission network.

Li Set of branches in fault chain i,Li
=

{
· · · ,L ij , · · ·

}
,

Li
⊆ L, card

∣∣Li
∣∣ = ni.

X i Set of adjacent fault relationships among
branches in fault chain i, X i

=

{
· · · ,X ij , · · ·

}
,

X ij = L ij → L ij+1, card
∣∣X i

∣∣ = ni − 1.
αij Loading assessment index of branch j during contin-

gency x in fault chain i generation process, Lj ∈ L.
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F0
j Power flow over branch j under normal operation,

Lj ∈ L.
3i Total load shedding of fault chain i.
Ci Fault chain i,Ci

=
(
Li,X i, ni

)
.

F ijx Power flow over branch j during contingency x in
fault chain i generation process, Lj ∈ L.

FMj Flow limit of branch j, Lj ∈ L.
Pidx Active power of load bus during contingency x in

fault chain i generation process, d ∈ B.
δix Load shedding percentage during contingency x in

fault chain i generation process.
1 Threshold for total load shedding.
T i
x Contingency set in fault chain i generation

process during contingency x, T i
x =

{
Lj
}
,

card
∣∣T i

x

∣∣ = 1 ∨ 0, Lj ∈ L.

ADJACENT GRAPH
V Set of vertexes in a graph, card|V| = NL .
E Set of edges in a graph, card|E| = Nq.
G An adjacent graph, G = {V, E}.
0(·) Mapping function to convert a fault chain Ci into a

graph ggg i, i.e. ggg i = 0(Ci), ggg i ⊆ G.
V i Set of vertexes in ggg i,V i

=

{
· · · ,V i

j , · · ·
}
,

card
∣∣V i

∣∣ = ni, V i
= Li.

E i Set of edges in ggg i, E i =

{
· · · ,E ij , · · ·

}
,

card
∣∣E i∣∣ = ni − 1.

ψ(·) Sequential mapping function.
r Power exponent of cumulative distributions.
R2 Fitting effect of power law. Generally, R2 ≥ 80%

has a satisfactory fitting effect.

LOAD REDISTRIBUTION MODEL BASED COMPLEX NETWORK
ka Degree of vertex a in the AG.
k ina In-degree of vertex a in the AG.
ρ, τ Scale factor for initial load in the AG.
ϕa Initial load of vertex a in the AG.
σ Vertex tolerance parameter, which measures the

ability to tackle the extra load in the AG.
Ca Load capacity of vertex a in the AG.
ϕba Load of vertex a after vertex b fails in the AG.
1ϕba Load increment of vertex a after vertex b fails in

the AG.
lab Shortest path between non-fault vertex a and fault

vertex b in the AG.
θ, β Proportion control factor for the weights of lab and

k ina respectively.
φba (·) Proportional coefficient function, which measures

the proportion of load which fault vertex b carries
redistributes to non-fault vertex a.

Qb Set of vertexes which can get assigned to the load
which fault vertex b carries.

η Range threshold of load distribution.

γ ba Following fault probability of vertex a after vertex
b fails in the AG.

χb Branch importance metric of vertex b.

I. INTRODUCTION
Electrical network vulnerability (ENV) assessment, which
is also called critical branch identification, is necessary for
operators to improve the security and reliability of electrical
networks.

At present, ENV assessment is studied mainly from attack
and defense perspectives. On the attack side [1], the aim
is to cause large-scale power outage as much as possible,
which results in any property loss directly or social disorder
indirectly by attacking the critical branches (or nodes) at
minimal cost. On the defense side [2], focusing on protecting
the critical branches is conducive to reducing the risk of
network faults, especially, cascading failures [3], [4].

Although their research motivations are different, their
essence is to effectively detect the weak branches (or
nodes) of transmission networks. In the traditional meth-
ods, the operational indices based on steady and transient
operation of power systems have been studied [5], [6]. The
dynamic index based transient stability is proposed to iden-
tify the critical branches in reference [5]. The assessment
index considering the transient impact is employed to ana-
lyze the system vulnerability [6]. In addition, machine learn-
ing [7], [8] and randommatrix [9] as tools of analysis are also
applied to reveal the features of system vulnerability.

As the size of electrical networks increases, the electrical
networks are becoming one of complex artificial networks
and have some universal topological features with other com-
plex networks [11], such as communication network. There-
fore, the complex network theory applied to assess ENV has
been recognized as an important way. Many scholars have
employed pure topological metrics based on CNT, such as,
average path length [12], betweenness [13], centroid [1] and
degree [14].

However, the pure topological metrics neglect some phys-
ical characteristics of the transmission networks; therefore
the extended topological metrics which integrate electrical
quantity into the topological metrics have attracted wide
interests. For instance, in reference [15], the centrality index
is redefined by considering the maximum flow from the gen-
erator nodes to the load nodes to evaluate the networks. Ref-
erence [16] studies the structural vulnerability by introducing
the system bus admittance matrix into the topological model.
Taking the actual path of power flow into consideration,
reference [17] redefines the betweenness. Reference [18] uses
the maximal demand of load and the capacity of generators
to define the electric betweenness.

Although the extended topological metrics can reflect
some special physical characteristics of electrical networks,
there are still some problems. From the perspective of electri-
cal network, the majority of metrics only reflect the physical
characteristics under normal operating conditions but the fea-
tures, such as fault adjacent relationships among branches,
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TABLE 1. Description of test benchmarks.

under fault operating conditions, are still not considered.
Moreover, the metrics still focus on the topological vulner-
ability of the network although the metrics are improved by
integrating some electrical quantity. From the perspective of
CNT, the vulnerable metrics belong to basic static statistical
methods and CNT-based other models are rarely employed to
study ENV. The main reason is that the models [19], [20] are
studied based on the topological relationships among vertices
or edges but electrical networks must comply with physi-
cal and operational rules; therefore the topological relation-
ships cannot comprehensively reveal the correlation among
branches or nodes in an electrical network.

To overcome the limitations, reference [21] proposes an
identification method of critical nodes via single Laplacian
matrix inversion, which goes beyond pure graph theoretical
approaches. In this paper, from the different perspective,
we construct an adjacent graph (AG) based on the ideas of
statistical graphs [22] by comprehensively considering topo-
logical features, physical features and operational features of
an electrical network. We employ AG instead of the original
electrical network to indirectly assess ENV. Through AG,
we construct a branch importance index (BIM) based on
load redistribution model (LRM) of CNT, because the topo-
logical structure of AG can reveal not only the importance
of a branch, but also the adjacent fault relationships among
branches intuitively and clearly. To validate the proposed
method, simulation analysis has been accomplished in IEEE
118-bus system and French grid.

The remainder of this paper is organized as follows.
Related works and existing problems of LRM are discussed
in Section 2. Section 3 gives the AG generation method based
on fault chain theory. In Section 4, LRM is analyzed and
the construction method of BIM based on AG is introduced.
In Section 5, the proposed method is validated by employing
the IEEE 118-bus system and French grid described in Tab. 1.
Finally, the conclusions are presented in Section 6.

II. RELATED WORKS AND EXISTING PROBLEMS
At present, there are many complex networks (e.g. electrical
networks, computer networks, and traffic networks) in the
real world. In these networks, the nodes or branches carry
certain load. The load could be concrete or abstract substance,
information, or energy in different networks. Generally, in a
complex network, the nodes’ or branches’ load capacity is
finite. When a node or branch fails (or is removed) in the
network, the load of the entire network will be redistributed.
Consequently, the load redistribution can cause other nodes
or branches overloaded, which can trigger a cascading fail-
ure. In references [23]–[26], many scholars have taken the
nodes as research objects to construct LRM and then the

FIGURE 1. Power flow redistribution in IEEE 9-bus system when removing
the branch 8-9.

FIGURE 2. Comparison between existing and proposed assessment idea.

network vulnerability is assessed based on LRM. In LRM,
the researchmainly includes two aspects: loadmodel and load
redistribution strategy. In the load model, initial load and load
capacity of nodes must be considered. In a complex network,
degree (or betweenness) of a node can reflect its importance,
therefore the degree (or betweenness) is universally employed
to construct the load model of nodes. When a node fails in the
load redistribution strategy,, the increment of load of a non-
faulty node, which is allocated by the faulty node, depends
on the shortest path between the faulty and the non-faulty
node [25], [27].

However, compared with general networks, after a branch
or node fails in an electrical network, the load redistribution
of the entire network depend on physical and operational
rules not only topological structure; therefore CNT is not
very suitable to construct LRM of electrical networks.We use
the IEEE 9-bus system as an example as shown in Fig.1.
When branch 8-9 is removed, the power flow of the adjacent
branches 8-7 and 2-8 do not increase compared to the other
branches. In contrast, the power flow of some non-adjacent
branches such as branch 8-7 decreases. In summary, we can
conclude that only considering the topological structure is
improper during the construction of LRM for electrical net-
works; therefore CNT-based LRM cannot be employed to
assess ENV.

To solve the above-mentioned problem, inspired by sta-
tistical graphs [22], [28]–[30], we propose an adjacent
graph (AG) to construct LRM of the electrical network and
then we can assess ENV based on LRM. The framework
of ENV can be shown in Fig. 2. First, we can abstract
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FIGURE 3. An example of adjacent fault relationships.

FIGURE 4. Logic diagram of fault chain.

the importance of a branch and adjacent fault relationships
among branches based on the topological features of AG.
Furthermore, we employ both the importance of the branch
and adjacent fault relationships to construct LRM. At final,
we construct a branch importance index (BIM) based on
LRM (LRM) of CNT to assess ENV. In addition, we intend
to reveal whether the network vulnerability is related to the
fault adjacent relationships among branches; therefore we
introduce the adjustable parameters into BIM.

III. ADJACENT GRAPH
AG is a directed graph derived from fault chains, which can
reveal the adjacent fault relationships among branches. In this
section, we focus on the construction method of AG and its
topological properties.

A. FAULT CHAINS
1) BASIC DEFINITION OF FAULT CHAINS
After L1 is removed in the current contingency as shown
in Fig. 3, we can choose one of three candidate branches L2,
L3 and L4 as the fault branch to trip in the next contingency.
Compared with L2 and L4, if L3 can lead to the maximum
damage of network function/ structure after removal, we can
define the removed sequence as a fault adjacent relationship
between L1 and L3. To investigate the adjacent relationships
among branches, for an electrical network with NL branches,
we need to calculate N k

L in the n-k contingency. It is difficult
to complete the work for a large-scale electrical network.
To overcome the problem, we can trace the adjacent relation-
ships among branches by constructing an index to reduce the
computational burden and then we take every branch as an
initial point to construct the fault chains as shown in Fig.4.

For a fault chain, we propose a branch loading assess-
ment index (BLAI) to trace the adjacent relationships among

branches [31], [32]. BLAI can reflect the loading burden of
a branch and the possibility of failure of the branch under
current contingency. BLAI is represented as

αij =
F ijx − F

0
j

FMj
exp

(
F ijx − F

M
j

FMj

)
(1)

F ijx represents power flow over branch j during contingency
x in fault chain i;F0

j represents power flow over branch
j under normal operation; FMj represents Flow limit of
branch j. Equation (1) quantifies the effects of the transmitted
power over branches.

(
F ijx − F

0
j

)/
FMj reflects the devia-

tion of power flow for different situations. The exponential
term exp

((
F ijx − F

M
j

)/
FMj

)
describes the possibility of

branch j overload. If BLAI of a branch is the maximum of all
branches in the electrical network under current contingency,
we choose the branch as the candidate faulty branch and
then remove it from the electrical network under the next
contingency.

We adopt the load shedding percentage [22] to measure the
scale of power blackout andmark the end of a fault chain. The
load shedding rate is defined as

δix = 1−

∑
d∈B Pidx∑

d∈B Pid(x−1)
(2)

3i
=

∑
x∈Ci

δix (3)

where Pidx is the active power of load bus during contingency
x in fault chain i; δix is the load shedding percentage during
contingency x in fault chain i. To determine the end of the
fault chain, we define a threshold1 [30], [33].When3i

≥ 1,
we terminate the fault chains generation process.

2) GENERATION ALGORITHM OF FAULT CHAINS
To simplify the calculation, we employ the DC power
method [31] to calculate the transmitted power over
branches and the DC optimal power flow (DC OPF) algo-
rithm [32], [34] to calculate the3i. The flow diagram of gen-
eration algorithm of fault chainCi

=
(
Li,X i, ni

)
is shown in

algorithm1, where Li represents the set of branches in fault
chain i;X i represents the set of adjacent fault relationships
among branches in fault chain i; ni represents the number of
branches in fault chain i.

B. AG GENERATION METHOD
For a fault chain Ci [1], we employ mapping function 0 :
Ci
→ ggg i to convert a fault chain Ci

=
(
Li,X i, ni

)
into a

directed graph ggg i =
{
V i,E i

}
[35], i.e. ggg i = 0(Ci), where

V i is the set of vertices and E i is the set of edges. The
ggg i =

{
V i,E i

}
is defined as follows:

Set of vertexes: According to 0 : Ci
→ ggg i, map Li to V i,

i.e., V i
= 0(Li). The set of vertices is defined as

V i
=

{
V i
j |V

i
j = 0

(
L ij
)
j = 1, 2, . . . , ni

}
(4)
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Algorithm 1 Fault Chain Generation
Input: Transmission network information.
Output: Fault chain Ci

Step 1: Initialization: Contingency set T i
0 =

{
Lj
}
,Ci
=

{∅,∅, 0} (Li
= ∅,X i

= ∅),1
Step 2: Candidate branch operation: Cut off the branch
in T i

x from the network, add it to Li. If x > 0, add
T x
x−1→ T i

x to X i. Ci
= (Li,X i, ni ++).

Step3: Power flow calculation: Employ the DC power
method to calculate the power flow over each branch in
the network.
Step4: BLAI calculation: Employ the Equation (1) to cal-
culate αij of branch j in L during contingency x.
Step5: Candidate branch selection: T i

x+1 = {Lj|Lj ∈

L, j := arg max
j∈{1,··· ,NL }

(
αij

)
}.

Step6: Load shedding calculation: Employ the DC OPF
algorithm to calculate the minimum δix during contingency
x.3i
= 3i

+ δix .
Step7: Termination condition judgment: If 1 ≤ 3i,
algorithm ends; otherwise, go to Step 2.

Set of edges: According to 0 : Ci
→ ggg i, map X i to E i,

i.e., E i = 0(X i). The set of edges is defined as

E i =
{
E ij |E

i
j = 0

(
X ij
)
j = 1, 2, . . . , ni − 1

}
(5)

Mapping relationships among vertexes and edges:
Employ the function ψ : E i → V i

× V i to map a sequential
relationship from E i to V i

× V i, which satisfies

ψ
(
E ij
)
= V i

j−1V
i
j (6)

For a given electrical network with NL branches, we can
take each branch as a starting point to develop NL fault
chains, i.e., C1,C2, . . . ,CNL . Furthermore, we map the NL
fault chains to NL graphs, i.e., ggg1, ggg2, . . . gggNL , according to
Equations (4)-(6). Finally, we merge NL graphs to construct
the AG of the electrical network. The AG is represented as

G =
{
(V, E) |V = V1

∪ V2
∪ · · · ∪ VNL ,

E = E1
∪ E2

∪ · · · ∪ ENL
}
.

C. GRAPH PROPERTIES OF AGs
To analyze the graph properties of AGs, we construct AGs
of IEEE 118-bus system (Fig.5) and French grid. It is noted
that AG of the French grid is not given due to the space
limitation. Here, we establish the threshold 1 = 20%. 20%
power loss is a big enough blackout event for an electrical
network REF_Ref494789773 \r \h [6].
As can be seen in Fig.5, compared with electrical networks

that are the spatial association networks, AGs are the temporal
correlation networks that can reveal the fault adjacent rela-
tionships among branches. We further analyze the cumulative
distribution of vertex degree in-degree and out-degree inAGs.

FIGURE 5. AG of the IEEE 118-bus system.

The cumulative distributions of the vertex degree, in-degree
and out-degree P (K > k) =

∑
K>k P (K > k) are from

power laws family P (K > k) ∝ k−(r−1); therefore we can
conclude that AGs are scale-free graphs. In addition, it is
noted that the values of all exponents r exceed 2, which
satisfies the features of power law distributions [37]. Similar
conclusions can be also drawn in other systems, for example
the IEEE 39- and 300- bus system.

(1) for the IEEE 118-bus system
P (K > k) ∼ 1.3831k−1.112( R2 = 0.9261 > 0.8);
P (K > k) ∼ 0.8652k−1.140 (R2 = 0.9636 > 0.8);
P (K > k) ∼ 1.196k−1.431 (R2 = 0.8345 > 0.8),
(2) for the French grid
P (K > k) ∼ 0.9471k−1.242( R2 = 0.9550 > 0.8);
P (K > k) ∼ 0.6249k−1.054 (R2 = 0.9123 > 0.8);
P (K > k) ∼ 1.2193k−1.749 (R2 = 0.9631 > 0.8);
The scale-free properties indicate most of vertices have

small degree (in-degree or out-degree), but there are a
few vertices with high degree (in-degree or out-degree);
therefore two text benchmarks have high robustness under
random attacks, but there is high vulnerability under inten-
tional attacks. In other words, for a vertex (i.e. branch)
with high degree, its importance for improving the robust-
ness of a network is larger than that with small degree.
The vertexes can be further subdivided. Some with high
in-degree can be affected easier than those with small in-
degree once other vertices fail. For some vertexes with high
out-degree, once they fail, they are easier to result in fault
propagation.

IV. CONSTRUCTING LRM AND BIM OF ELECTRICAL
NETWORK USING AG
Thanks to the scale-free properties of AG, we can employ the
topological structure of AG to construct LRM of electrical
network indirectly. Before constructing LRM, we introduce
some concepts based on CNT. We define the load called the
vulnerability flow that exists in AG. Each vertex of CG carries
a certain proportion of the vulnerability flow. The proportion
of vulnerability flow over vertex can reflect importance of the
corresponding branch in the original electrical network. The
edges of CG reflect the transmission path for the vulnerability
flow among vertices, which can reveal the fault adjacent rela-
tionships among branches in the original electrical network.
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A. LRM BASED ON AG
In LRM, we need to construct the load model and load
redistribution strategy. In AG, the vertex with higher degree
can reflect the larger importance of the corresponding branch
in the original electrical network; therefore we can employ
the degree ka to define the initial load (i.e. vulnerability flow)
of vertices. The initial load ϕa of vertex a is represented as

ϕa = ρkτa (7)

where ρ, τ are scale factor for initial load. Furthermore, let
the load capacity [38] of vertex a be proportional to ϕa as
follows:

Ca = (1+ σ) ϕa (8)

where σ is the vertex tolerance parameter; σϕa represents
capacity margin. When a vertex b fails, its vulnerability flow
will be transferred to the other non-faulty vertexes [39] as
follows:

ϕba = ϕa +1ϕ
b
a (9)

where 1ϕba is represented as

1ϕba = ϕb · φ
b
a

(
lab, θ, k ina , β

)
(10)

In Equation 10, φba
(
lab, θ, k ina , β

)
is the proportional coeffi-

cient which is defined as follows:

φba

(
lab, θ, k ina , β

)
=

(lab)−θ
(
k ina
)β∑

a′∈Qb (la′b)
−θ
(
k ina′
)β (11)

where Qb adjusts the range of load distribution of the faulty
vertex b and proportion control factors θ ∈ [0,+∞) ,
β ∈ [0,+∞) ; lab is the shortest path between vertices a
and b, and k ina is the in-degree of vertex a. In Equation 11,
φba
(
lab, θ, k ina , β

)
depends on lab and k ina . lab adjusts the dis-

tance of load redistribution, which reflects the adjacent fault
relationship between a and b. In addition, when a non-faulty
vertex has higher in-degree, the non-faulty vertex can be
easily affected by faulty vertex, which indicates that the non-
faulty vertex can receive more load from the faulty vertex;
therefore we introduce k ina into φba

(
lab, θ, k ina , β

)
. In addition,

for the non-faulty vertex a, if a ∈ Qb, Equation (12) is
satisfied.

(lab)−θ∑
a′∈V (la′b)

−θ
≥ η, 0 < η ≤

1
NL − 1

(12)

As is shown in Equations (11) and (12), load redistribution
strategy is decided by lab and k ina (a ∈Qb).

B. BIM BASED ON LRM
Construction of BIM:When vertex b fails, we can introduce
the load increment to analyze the fault probability of non-
faulty vertices under the next contingency as follow:

γ =
ϕba

Ca
=
ϕa +1ϕ

b
a

ϕa + σϕa
(13)

When γ > 1, i.e., load increment 1ϕba is greater than
capacity margin σϕa, vertex a is overloaded, which could
cause vertex a fails under the next contingency. When γ ≤ 1,
the opposite conclusion occurs. To simplify the calculation,
we use Equation (14) instead of Equation (13).

γ ′ =
1ϕba

σϕa
(14)

Plug Equations (4), (7) and (8) into Equation (14). γ ′ can
be further represented as

γ ′ =
kτb (lab)

−θ
(
k ina
)β

σkτa
∑

a′∈Qb
(la′b)−θ

(
k ina′
)β (15)

γ ′ can qualify the degree of overload of vertex a after vertex
b fails [25], which can reflect the impact of faulty vertex b on
vertex a. Furthermore, we employ the average value of γ ′ of
all non-faulty vertices to define BIM of vertex b as follows:

χb =
kτb
∑

a∈Qb
(lab)−θ

(
k ina
)β
(ka)−τ

|Qb| σ
∑

a′∈Qb
(la′b)−θ

(
k ina′
)β (16)

where |Qb| is the number of vertexes in the Qb. If χb ≥ 1,
faulty vertex b causes other vertices to be overloaded with
high probability; If χb < 1

/
|Qb|, the opposite occurs;

If 1
/
|Qb| ≤ χb < 1, it falls somewhere in between.

Here, we call χb = 1 the dangerous threshold. We call
χb = 1

/
|Qb| the secure threshold. In addition, it is noted

that χb is also dependent on tolerance parameter σ . We define
two thresholds of σ : dangerous critical value σd and secure
critical value σs.When σ ≤ σd ,χb of all vertices is larger than
the dangerous threshold, i.e., any faulty vertex can cause other
vertices to be overloaded. When σ ≥ σs, χb of all vertices
is smaller than the secure threshold, i.e., any faulty vertex
cannot cause other vertices to be overloaded.

Parametric analysis of BIM:We analyze the characteris-
tics of BIMwhen θ take boundary values, i.e., θ = 0, θ = ∞.

1. When θ = ∞, according to Equation (12), |Qb| = kb,
i.e.,Qb =

{
La|∃eq ∈ E, eq = LaLb ∨ eq = LbLa

}
. Therefore

the load redistribution is the nearest neighbor redistribution
rule(NNR), i.e., the faulty vertex only transfers its load to
its adjacent non-faulty vertices. In the corresponding original
electrical network, θ = ∞ demonstrates that we only con-
sider the fault adjacent relationships among branches under
N -1 secure criterion.
2. When θ = 0, according to Equation (12),
|Qb| = NL − 1, i.e., Qb = {La|La ∈ V, a 6= b}. Therefore
the load redistribution is the uniform sharing redistribution
rule (USR), i.e., the faulty vertex transfers its load to all
non-faulty vertices. In the corresponding original electrical
network, θ = 0 demonstrates that we consider the fault
adjacent relationships among branches under N -k secure
criterion where k = max

{
ni|i = 1, 2, . . . .,NL

}
.

In summary, in GA, θ decides the range of load redistribu-
tion of faulty vertex. In the corresponding electrical network,
θ decides the fault adjacent relationships among branches
under different secure criterions.
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TABLE 2. Top 10 critical branches on test benchmarks.

FIGURE 6. Law of changes of σd and σs with τ and β increasing on IEEE
118-bus system. Where (a) and (b) are the NNR. (c) and (d) are the USR.
(a) and (c) are σs. (b) and (d) are σd .

V. SIMULATION AND ANALYSIS
Using the IEEE 118-bus system and French grid as an exam-
ple, we calculate BIMs of branches to rank the top critical
branches shown in Tab. 2. Tab. 2 shows the BIMs of branches
under NNR(θ = ∞) and USR (i.e. θ = 0), respectively,
where β = τ = 1, σ = 0.4. In the IEEE 118-bus system,
when load redistribution is NNR, branches 7, 38, 9, 125, 94,
127, 126, 37, 137 and 92 are the 10 most critical branches.
By contrast, when load redistribution is USR, branches 7, 9,
31, 137, 104, 61, 30, 96, 105 and 90 are the 10 most critical
branches. It demonstrates that BIMs and rankings of branches
will also change as load redistribution rule changes.

A. ANALYSIS OF ENV BASED ON THE TOLERANCE
PARAMETER σ
We analyze two types of thresholds (dangerous critical value
σd and secure critical value σs) of tolerance parameter σ of a

FIGURE 7. Law of changes of σd and σs with τ and β increasing on French
grid. Where (a) and (b) are the NNR. (c) and (d) are the USR. (a) and
(c) are σs. (b) and (d) are σd .

network. Figs.6-7 show that the regularity of changes of two
types of thresholds as τ and β increase under different redis-
tribution rules in two text benchmarks. For σs, whether load
redistribution is the NNR or USR in two text benchmarks,
σs increases as β increases. By contrast, σs decreases as τ
increases.

For σd , on the IEEE 118-bus system, under NNR, 1) when
β is set at a fixed value, τ has little effect on the σd . 2)When τ
is set at a fixed value, σd decreases with β increasing. Under
USR, 1) when β is set at a fixed value and β ∈ (0, 1], σd
decreases as τ increases. When β is set at a fixed value and
β ∈ (1, 2], τ has little impact on σd . 2) When τ is set at
a fixed value and τ ∈ [0, 0.8], σd first increases and then
decreases with increasing β. When τ is set at a fixed value
and τ ∈ (0.8, 2], σd decreases with increasing β.

For the French grid, under NNR, τ has no impact on σd
when β is set at a fixed value; σd decreased with increasing β
when τ is set at a fixed value. Under USR, σd decreases with
increasing τ or β.

In addition, comparing the IEEE 118-bus system with the
French grid, it is not difficult to find that French grid is less
likely to trigger a cascading failure because σd of the French
grid is smaller than that of the IEEE 118-bus system but σs
of the French grid is larger than that of the IEEE 118-bus
system when β and τ of two systems are set at the same
value, respectively. This demonstrates that the French grid
have lower vulnerability than the IEEE 118-bus system.

B. RELATIONSHIP BETWEEN BIM AND DEGREE
The relationship between BIM and degree with different
values of τ : Fig. 8 shows the relationship between BIM and
degree under different redistribution rules in two test bench-
marks when τ = 1.4 and 0.1 respectively. Under NNR, there
is a negative correlation between BIM and degree generally
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FIGURE 8. Relationship between BIM and Degree when τ takes the
different values in (1) σ = 0.5, β = 0.5 for the IEEE 118-bus system,
(2) σ = 0.5, β = 0.2 for the French grid. Where (a) and (b) represent the
IEEE 118-bus system. (c) and (d) represent the French grid. (a) and (b) are
NNR. (b) and (c) are USR.

FIGURE 9. Relationship between BIM and Degree with the different
values of β on IEEE 118-bus system. Where (a) and (b) are the NNR.
(c) and (d) are the USR. (a) and (c) are in the given parameters
τ = 0.1, σ = 0.5; (b) and (d) are in the given parameters τ = 1.4, σ = 0.5.

when τ = 0.1. Conversely, when τ = 1.4, there is a positive
correlation between BIM and degree generally. Therefore we
can conclude that τ decides the positive or negative correla-
tion between BIM and degree. Under the USR, regardless of
the values of τ , there is a positive correlation between BIM
and degree.

The relationship between BIM and degree with differ-
ent values of β: Figs.9-10 show the relationships between
BIM and degree under different redistribution rules. β affects

FIGURE 10. Relationship between BIM and Degree with the different
values of β on French grid. Where (a) and (b) are the NNR. (c) and (d) are
the USR. (a) and (c) are in the given parameters τ = 0.1, σ = 0.2. (b) and
(d) are in the given parameters τ = 1.4, σ = 0.2.

FIGURE 11. Percentage of remaining load when removing critical
branches for system under different values of θ, τ . Here, in (a) and (b),
10 and 20 top critical branches are removed respectively in given
parameter β = 0.5, σ = 0.5 on IEEE 118-bus system. In (c) and (d), 60 and
120 top critical branches are removed respectively in given parameter
β = 0.5, σ = 0.2 on French grid.

the steep extent of curves but has no effect on positive or
negative correlation between BIM and degree.

By changing τ and β, we conclude that τ has a larger
impact on the relationship between BIM and degree than β.
Especially under NNR, values of τ decide the correlation
between BIM and degree.

In summary, through the above analysis, BIMs of branches
are affected mainly by θ and τ which decide the vulnerability
rankings of the branches.
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FIGURE 12. Percentage of remaining load when removing critical
branches increases (a) in given parameter β = 0.5, α = 0.5 on IEEE
118-bus system, (b) in given parameter β = 0.5, α = 0.2 on French grid.

C. ANALYSIS OF CRITICAL BRANCHES
Critical branch attacking: We investigate the percentage
of remaining load of systems when attacking the critical
branches ranked by BIMs. We respectively remove (1) the
top 10 and 20 critical branches on IEEE 118-bus system,
(2) the top 60 and 120 critical branches on French grid, ranked
by BIMs under the different values of θ and τ as shown
in Fig.11. In the figure, with changing θ and τ , the percentage
of load remaining load changes obviously. In addition, as the
number of attacking branches increases, we find that the
percentage of load remaining load decreases generally as θ
and τ simultaneously increase on the IEEE 118-bus system
while the results are opposite on the French grid.

Furthermore, we investigate the percentage of remaining
load with increasing critical branches as shown in Fig.12. The
ranking method of critical branches have five ways: 1) ran-
dom, 2) degree of AG, 3) LIMs under the different values
of θ and τ , 4) topological metrics (including betweenness,
electrical betweenness, network efficiency [47] and network
ability [30]) based on topological structure of electrical net-
work and 5) state metric based operational state of electrical

network [48]. In Fig.12, the percentage of remaining load
drops faster when removing the critical branches ranked by
BIMs than those ranked by random and degree. In addition,
taking the IEEE 118-bus system as an example (Fig. 12(a)),
when the critical branches ranked by BIMs under different
values of θ and τ excluding θ = ∞ and τ = 0.1, the results
are better or equal to those ranked by degree of AG; therefore
we can infer that only considering the importance of a branch
itself cannot comprehensively reveal the vulnerability of the
branch. In the future, we can employ some optimization algo-
rithm (e.g., genetic algorithm, particle swarm optimization) to
adjust these parameters so that the accuracy of identification
of critical branches can be improved.

In addition, we compared the proposed method with the
existing methods (i.e., topological metrics and state metrics)
shown in Fig. 12. In the figure, we can find that our proposed
method is better than the topological metrics and state metric
after the removal of suggested branches. It is noted that even
if we do not consider the fault adjacent relationships among
branches, i.e., we only employ the degree of AG to identify
the critical branches, the attacked results is still better than the
topological metrics and state metric. In summary, it demon-
strates that employing BIMs to identify critical branches of
electrical networks and to analyze electrical network vulner-
ability is valid.

In summary, we can conclude that 1) it is a reasonable
idea to employ AG instead of the original electrical network
to assess the ENV, which can effectively overcome the lim-
itations of CNT applied to the ENV; 2) the vulnerability
of branches is related to not only the own importance of
branches but also the fault adjacent relationships among
branches.

VI. CONCLUSIONS
In this paper, we employ AGs instead of original electrical
networks from the perspective of CNT to evaluate the ENV.
The topological, physical and operational features of an elec-
trical network is considered during the construction of AG.
Then, AG is adopted to construct LRM which considering
both the importance of branches and fault adjacent relation-
ships among branches. Furthermore, we employ LRM to
construct BIMs. The simulation analysis demonstrates that
employing BIMs to evaluate the ENV is valid and reasonable.
Meanwhile, considering the fault adjacent relationships in
BIMs can obviously improve the accuracy of identification
of vulnerable branches. In addition, our works provide a new
view of electrical network vulnerability in this field.
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