388,981 research outputs found

    Interactions, Actors, and Time: Dynamic Network Actor Models for Relational Events

    Full text link
    Ample theoretical work on social networks is explicitly or implicitly concerned with the role of interpersonal interaction. However, empirical studies to date mostly focus on the analysis of stable relations. This article introduces Dynamic Network Actor Models (DyNAMs) for the study of directed, interpersonal interaction through time. The presented model addresses three important aspects of interpersonal interaction. First, interactions unfold in a larger social context and depend on complex structures in social systems. Second, interactions emanate from individuals and are based on personal preferences, restricted by the available interaction opportunities. Third, sequences of interactions develop dynamically, and the timing of interactions relative to one another contains useful information. We refer to these aspects as the network nature, the actor-oriented nature, and the dynamic nature of social interaction. A case study compares the DyNAM framework to the relational event model, a widely used statistical method for the study of social interaction data

    A human factors approach to analysing military command and control

    No full text
    This paper applies the Event Analysis for Systemic Teamwork (EAST) method to an example of military command and control. EAST offers a way to describe system level 'emergent properties' that arise from the complex interactions of system components (human and technical). These are described using an integrated methods approach and modelled using Task, Social and Knowledge networks. The current article is divided into three parts: a brief description of the military command and control context, a brief description of the EAST method, and a more in depth presentation of the analysis outcomes. Numerous findings emerge from the application of the method. These findings are compared with similar analyses undertaken in civilian domains, where Network Enabled Capability (NEC) is already in place. The emergent properties of the military scenario relate to the degree of system reconfigurability, systems level Situational Awareness (SA), team-working and the role of mediating technology. It is argued that the EAST method can be used to offer several interesting perspectives on designing and specifying NEC capability in military context

    Analysis of properties of complex networks with discrete dynamics

    Get PDF
    Комплексне мреже су се у току последње две деценије показале као изузетно користан концепт у проучавању карактеристика комплексних система...In the last two decades, complex networks have been proven as very useful concept for examination of properties of complex systems. The first step within this framework is to extract individual elements of the system and to represent interactions between these elements in the form of complex network. After this step, the study of complex system organization is reduced to the analysis of structure and dynamical processes on network with the use of suitable methodology. The increase in a variety of real systems with available data, which enable insight into the structure of network of interactions, requires constant development of new techniques and theoretical models that could explain behavior of specific systems. In this thesis, we studied complex networks with discrete dynamics using data on event-based social systems. There has been very little previous research on properties of networks representing these systems. One of the main reasons is availability of data. In the given systems individuals interact face-to-face, wherefore it is more difficult to get the data, than in the case of social systems where individuals use some communication device to communicate with each other. Special attention was paid to examination of activity of individuals in group events. According to the results of statistical analysis of empirical data it has been shown that individuals do not attend events randomly. We analysed mathematical models that can explain member’s participation patterns on events which turned out to be strongly heterogeneous. It has been shown that generalized binary P´olya model can reproduce given empirical results successfully. Using bipartite networks ensemble with maximum entropy, we identified significant connections in weighted network that represent relevant social interactions. In order to get the insight into evolution of the network structure, we analyzed change of local structural parameters after each event attendance. It has been shown that members of the system establish new connections with neighbors during member’s early involvement in the group activities, while later, as number of attended events increase, the interactions with neighbors and strenghtening of existing communities become preferred in comparison to forming new connections in network. In order to analyse the influence that particular event has on network structure, we proposed an approach based on event removal according to different criteria and examination of resulting structural changes in network. The results showed that interactions between individuals with strong connections are dominant on events with small number of members, with small number of members, while during the large events typically individuals with weak connections that could be easily broken interact

    Analyzing Users' Activity in On-line Social Networks over Time through a Multi-Agent Framework

    Full text link
    [EN] The number of people and organizations using online social networks as a new way of communication is continually increasing. Messages that users write in networks and their interactions with other users leave a digital trace that is recorded. In order to understand what is going on in these virtual environments, it is necessary systems that collect, process, and analyze the information generated. The majority of existing tools analyze information related to an online event once it has finished or in a specific point of time (i.e., without considering an in-depth analysis of the evolution of users activity during the event). They focus on an analysis based on statistics about the quantity of information generated in an event. In this article, we present a multi-agent system that automates the process of gathering data from users activity in social networks and performs an in-depth analysis of the evolution of social behavior at different levels of granularity in online events based on network theory metrics. We evaluated its functionality analyzing users activity in events on Twitter.This work is partially supported by the PROME-TEOII/2013/019, TIN2014-55206-R, TIN2015-65515-C4-1-R, H2020-ICT-2015-688095.Del Val Noguera, E.; Martínez, C.; Botti, V. (2016). Analyzing Users' Activity in On-line Social Networks over Time through a Multi-Agent Framework. Soft Computing. 20(11):4331-4345. https://doi.org/10.1007/s00500-016-2301-0S433143452011Ahn Y-Y, Han S, Kwak H, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th WWW, pp 835–844Bastiaensens S, Vandebosch H, Poels K, Cleemput KV, DeSmet A, Bourdeaudhuij ID (2014) Cyberbullying on social network sites. an experimental study into behavioural intentions to help the victim or reinforce the bully. Comput Hum Behav 31:259–271Benevenuto F, Rodrigues T, Cha M, Almeida V (2009) Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, pp 49–62Borge-Holthoefer J, Rivero A, García I, Cauhé E, Ferrer A, Ferrer D, Francos D, Iñiguez D, Pérez MP, Ruiz G et al (2011) Structural and dynamical patterns on online social networks: the Spanish may 15th movement as a case study. PLoS One 6(8):e23883Borondo J, Morales AJ, Losada JC, Benito RM (2013) Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish presidential election as a case studyCatanese SA, De Meo P, Ferrara E, Fiumara G, Provetti A (2011) Crawling facebook for social network analysis purposes. In: Proceedings of the international conference on web intelligence, mining and semantics. ACM, p 52Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th international conference on World Wide Web. ACM, pp 721–730del Val E, Martínez C, Botti V (2015a) A multi-agent framework for the analysis of users behavior over time in on-line social networks. In: 10th International conference on soft computing models in industrial and environmental applications. Springer, Berlin, pp 191–201del Val E, Rebollo M, Botti V (2015b) Does the type of event influence how user interactions evolve on twitter? PLOS One 10(5):e0124049Eurostat (2016a) Internet use statistics—individuals. http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_use_statistics_-_individuals . Accessed 29 April 2016Eurostat (2016b) Social media—statistics on the use by enterprises. http://ec.europa.eu/eurostat/statistics-explained/index.php/Social_media_-_statistics_on_the_use_by_enterprises#Further_Eurostat_information . Accessed 29 April 2016García Fornes AM, Rodrigo Solaz M, Terrasa Barrena AM, Inglada J, Javier V, Jorge Cano J, Mulet Mengual L, Palomares Chust A, Búrdalo Rapa LA, Giret Boggino AS et al (2015) Magentix 2 user’s manualGolbeck J, Robles C, Turner K (2011) Predicting personality with social media. In: CHI’11, pp 253–262Guimerà R, Llorente A, Moro E, Sales-Pardo M (2012) Predicting human preferences using the block structure of complex social networks. PloS One 7(9):e44620Huberman BA, Romero DM, Wu F (2008) Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:0812.1045Jamali M, Abolhassani H (2006) Different aspects of social network analysis. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 main conference proceedings)(WI’06). IEEE, pp 66–72Jiang Y, Jiang J (2014) Understanding social networks from a multiagent perspective. Parallel Distrib Syst IEEE Trans 25(10):2743–2759Kossinets G, Watts D (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Yu PS, Han J, Faloutsos C (eds) Link mining: models, algorithms, and applications. Springer, New York, pp 337–357Lazer D (2009) Life in the network: the coming age of computational social science. Science 323(5915):721–723Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Trans Web 1(1):5Licoppe C, Smoreda Z (2005) Are social networks technologically embedded? How networks are changing today with changes in communication technology. Soc Netw 27(4):317–335Lotan G, Graeff E, Ananny M, Gaffney D, Pearce I, Boyd D (2011) The revolutions were tweeted: information flows during the 2011 tunisian and egyptian revolutions. Int J Commun 5:1375–1405Peña-López I, Congosto M, Aragón P (2013) Spanish indignados and the evolution of 15M: towards networked para-institutions. Big data: challenges and opportunities, pp 25–26Perliger A, Pedahzur A (2011) Social network analysis in the study of terrorism and political violence. PS Polit Sci Polit 44:45–50Romero DM, Galuba W, Asur S, Huberman BA (2011a) Influence and passivity in social media. In: Proceedings of the 20th WWW, pp 113–114Romero DM, Meeder B, Kleinberg J (2011b) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th WWW, pp 695–704Stockman FN, Doreian P, (1997) Evolution of social networks: processes and principles. In: Doreian P, Stokman FN (eds) Evolution of social networks. Routledge, London, pp 233–250Traud AL, Mucha PJ, Porter MA (2012) Social structure of facebook networks. Phys A Stat Mech Its Appl 391(16):4165–4180Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the Facebook social graph. arXiv preprint arXiv:1111.4503Valero S, del Val E, Alemany J, Botti V (2015) Using magentix2 in smart-home environments. In: 10th International conference on soft computing models in industrial and environmental applications. Springer, Berlin, pp 27–37Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeWersm (2015) How much data is generated every minute on social media? http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/ . Accessed 29 April 201

    Beyond 'Global Production Networks': Australian Fashion Week's Trans-Sectoral Synergies

    Get PDF
    When studies of industrial organisation are informed by commodity chain, actor network, or global production network theories and focus on tracing commodity flows, social networks, or a combination of the two, they can easily overlook the less routine trans-sectoral associations that are crucial to the creation and realisation of value. This paper shifts attention to identifying the sites at which diverse specialisations meet to concentrate and amplify mutually reinforcing circuits of value. These valorisation processes are demonstrated in the case of Australian Fashion Week, an event in which multiple interests converge to synchronize different expressions of fashion ideas, actively construct fashion markets and enhance the value of a diverse range of fashionable commodities. Conceptualising these interconnected industries as components of a trans-sectoral fashion complex has implications for understanding regional development, world cities, production location, and the manner in which production systems “touch down” in different places

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events

    Influence of augmented humans in online interactions during voting events

    Full text link
    The advent of the digital era provided a fertile ground for the development of virtual societies, complex systems influencing real-world dynamics. Understanding online human behavior and its relevance beyond the digital boundaries is still an open challenge. Here we show that online social interactions during a massive voting event can be used to build an accurate map of real-world political parties and electoral ranks. We provide evidence that information flow and collective attention are often driven by a special class of highly influential users, that we name "augmented humans", who exploit thousands of automated agents, also known as bots, for enhancing their online influence. We show that augmented humans generate deep information cascades, to the same extent of news media and other broadcasters, while they uniformly infiltrate across the full range of identified groups. Digital augmentation represents the cyber-physical counterpart of the human desire to acquire power within social systems.Comment: 11 page

    Mapping London's Innovation Networks

    Get PDF
    A wide range of authors have highlighted the potential benefits for entrepreneurial companies that engage in effective networking along and across the supply-chain. As many organisations have downsized or outsourcedbasic research activities Universities have an increasingly important role within such networks. A number of UK initiatives have been established to encourage greater 'entanglement' between academia and commerce; the London Technology Network is one example which is intended to encourage interactions between London's leading research institutes and innovative businesses.Using the detailed data acquired by this network this paper is intended to presents an exploratory analysis of such activities with the aim of establishing the extent to which company size, sector and/or location play a significant role in participation in the network's activities. A wide range of authors have highlighted the potential benefits for entrepreneurial companies that engage in effective networking along and across the supply-chain. As many organisations have downsized or outsourced basic research activities Universities have an increasingly important role within such networks. A number of UK initiatives have been established to encourage greater 'entanglement' between academia and commerce; the London Technology Network is one example which is intended to encourage interactions between London's leading research institutes and innovative businesses.Using the detailed data acquired by this network this paper is intended to presents an exploratory analysis of such activities with the aim of establishing the extent to which company size, sector and/or location play a significant role in participation in the network's activities

    Early Warning Analysis for Social Diffusion Events

    Get PDF
    There is considerable interest in developing predictive capabilities for social diffusion processes, for instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or accurate forecasting of the ultimate reach of potentially viral ideas or behaviors. This paper proposes a new approach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may depend crucially upon the way the early dynamics of the process interacts with the underlying network's community structure and core-periphery structure. This theoretical finding provides the foundations for developing a machine learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation of the propagation of political memes over social media networks. Additionally, we illustrate the potential of the approach for security informatics applications through case studies involving early warning analysis of large-scale protests events and politically-motivated cyber attacks
    corecore