1,388 research outputs found

    Coexisting fast-scale and slow-scale instability in current-mode controlled DC/DC converters : analysis, simulation and experimental results

    Get PDF
    Author name used in this publication: Chi K. Tse2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Dynamics and stability issues of a single-inductor dual-switching DC-DC converter

    Get PDF
    A single-inductor two-input two-output power electronic dc–dc converter can be used to regulate two generally nonsymmetric positive and negative outputs by means of a pulsewidth modulation with a double voltage feedback. This paper studies the dynamic behavior of this system. First, the operation modes and the steady-state properties of the converter are addressed, and, then, a stability analysis that includes both the power stage and control parameters is carried out. Different bifurcations are determined from the averaged model and from the discrete-time model. The Routh–Hurwitz criterion is used to obtain the stability regions of the averaged (slow-scale) dynamics in the design parameter space, and a discrete-time approach is used to obtain more accurate results and to detect possible (fast-scale) subharmonic oscillations. Experimental measurements were taken from a system prototype to confirm the analytical results and numerical simulations. Some possible nonsmooth bifurcations due to the change in the switching patterns are also illustrated.Postprint (published version

    Stability analysis of two-stage PFC power supplies

    Get PDF
    Author name used in this publication: Chi K. TseRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Using Nyquist or Nyquist-Like Plot to Predict Three Typical Instabilities in DC-DC Converters

    Full text link
    By transforming an exact stability condition, a new Nyquist-like plot is proposed to predict occurrences of three typical instabilities in DC-DC converters. The three instabilities are saddle-node bifurcation (coexistence of multiple solutions), period-doubling bifurcation (subharmonic oscillation), and Neimark bifurcation (quasi-periodic oscillation). In a single plot, it accurately predicts whether an instability occurs and what type the instability is. The plot is equivalent to the Nyquist plot, and it is a useful design tool to avoid these instabilities. Nine examples are used to illustrate the accuracy of this new plot to predict instabilities in the buck or boost converter with fixed or variable switching frequency.Comment: Submitted to an IEEE journal in 201

    Stability analysis and control of DC-DC converters using nonlinear methodologies

    Get PDF
    PhD ThesisSwitched mode DC-DC converters exhibit a variety of complex behaviours in power electronics systems, such as sudden changes in operating region, bifurcation and chaotic operation. These unexpected random-like behaviours lead the converter to function outside of the normal periodic operation, increasing the potential to generate electromagnetic interference degrading conversion efficiency and in the worst-case scenario a loss of control leading to catastrophic failure. The rapidly growing market for switched mode power DC-DC converters demands more functionality at lower cost. In order to achieve this, DC-DC converters must operate reliably at all load conditions including boundary conditions. Over the last decade researchers have focused on these boundary conditions as well as nonlinear phenomena in power switching converters, leading to different theoretical and analytical approaches. However, the most interesting results are based on abstract mathematical forms, which cannot be directly applied to the design of practical systems for industrial applications. In this thesis, an analytic methodology for DC-DC converters is used to fully determine the inherent nonlinear dynamics. System stability can be indicated by the derived Monodromy matrix which includes comprehensive information concerning converter parameters and the control loop. This methodology can be applied in further stability analysis, such as of the influence of parasitic parameters or the effect of constant power load, and can furthermore be extended to interleaved operating converters to study the interaction effect of switching operations. From this analysis, advanced control algorithms are also developed to guarantee the satisfactory performance of the converter, avoiding nonlinear behaviours such as fast- and slowscale bifurcations. The numerical and analytical results validate the theoretical analysis, and experimental results with an interleaved boost converter verify the effectiveness of the proposed approach.Engineering and Physical Sciences Research Council (EPSRC), China Scholarship Council (CSC), and school of Electrical and Electronic Engineerin

    Sampled-Data and Harmonic Balance Analyses of Average Current-Mode Controlled Buck Converter

    Full text link
    Dynamics and stability of average current-mode control of buck converters are analyzed by sampled-data and harmonic balance analyses. An exact sampled-data model is derived. A new continuous-time model "lifted" from the sampled-data model is also derived, and has frequency response matched with experimental data reported previously. Orbital stability is studied and it is found unrelated to the ripple size of the current-loop compensator output. An unstable window of the current-loop compensator pole is found by simulations, and it can be accurately predicted by sampled-data and harmonic balance analyses. A new S plot accurately predicting the subharmonic oscillation is proposed. The S plot assists pole assignment and shows the required ramp slope to avoid instability.Comment: Submitted to International Journal of Circuit Theory and Applications on August 9, 2011; Manuscript ID: CTA-11-016

    Analysis of an On-Line Stability Monitoring Approach for DC Microgrid Power Converters

    Get PDF
    An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies
    corecore