33,564 research outputs found

    Checking experiments for stream X-machines

    Get PDF
    This article is a post-print version of the published article which may be accessed at the link below. Copyright © 2010 Elsevier B.V. All rights reserved.Stream X-machines are a state based formalism that has associated with it a particular development process in which a system is built from trusted components. Testing thus essentially checks that these components have been combined in a correct manner and that the orders in which they can occur are consistent with the specification. Importantly, there are test generation methods that return a checking experiment: a test that is guaranteed to determine correctness as long as the implementation under test (IUT) is functionally equivalent to an unknown element of a given fault domain Ψ. Previous work has show how three methods for generating checking experiments from a finite state machine (FSM) can be adapted to testing from a stream X-machine. However, there are many other methods for generating checking experiments from an FSM and these have a variety of benefits that correspond to different testing scenarios. This paper shows how any method for generating a checking experiment from an FSM can be adapted to generate a checking experiment for testing an implementation against a stream X-machine. This is the case whether we are testing to check that the IUT is functionally equivalent to a specification or we are testing to check that every trace (input/output sequence) of the IUT is also a trace of a nondeterministic specification. Interestingly, this holds even if the fault domain Ψ used is not that traditionally associated with testing from a stream X-machine. The results also apply for both deterministic and nondeterministic implementations

    Testing conformance of a deterministic implementation against a non-deterministic stream X-machine

    Get PDF
    Stream X-machines are a formalisation of extended finite state machines that have been used to specify systems. One of the great benefits of using stream X-machines, for the purpose of specification, is the associated test generation technique which produces a test that is guaranteed to determine correctness under certain design for test conditions. This test generation algorithm has recently been extended to the case where the specification is non-deterministic. However, the algorithms for testing from a non-deterministic stream X-machine currently have limitations: either they test for equivalence, rather than conformance or they restrict the source of non-determinism allowed in the specification. This paper introduces a new test generation algorithm that overcomes both of these limitations, for situations where the implementation is known to be deterministic

    Extending stream X-machines to specify and test systems with timeouts

    Get PDF
    Stream X-machines are a kind of extended finite state machine used to specify real systems where communication between the components is modeled by using a shared memory.In this paper we introduce an extension of the Stream X-machines formalism in order to specify delays/timeouts.The time spent by a system waiting for the environment to react has the capability of affecting the set of available outputs of the system. So, a relation focusing on functional aspects must explicitly take into account the possible timeouts.We also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Blazes: Coordination Analysis for Distributed Programs

    Full text link
    Distributed consistency is perhaps the most discussed topic in distributed systems today. Coordination protocols can ensure consistency, but in practice they cause undesirable performance unless used judiciously. Scalable distributed architectures avoid coordination whenever possible, but under-coordinated systems can exhibit behavioral anomalies under fault, which are often extremely difficult to debug. This raises significant challenges for distributed system architects and developers. In this paper we present Blazes, a cross-platform program analysis framework that (a) identifies program locations that require coordination to ensure consistent executions, and (b) automatically synthesizes application-specific coordination code that can significantly outperform general-purpose techniques. We present two case studies, one using annotated programs in the Twitter Storm system, and another using the Bloom declarative language.Comment: Updated to include additional materials from the original technical report: derivation rules, output stream label

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Goal-Directed Behavior under Variational Predictive Coding: Dynamic Organization of Visual Attention and Working Memory

    Full text link
    Mental simulation is a critical cognitive function for goal-directed behavior because it is essential for assessing actions and their consequences. When a self-generated or externally specified goal is given, a sequence of actions that is most likely to attain that goal is selected among other candidates via mental simulation. Therefore, better mental simulation leads to better goal-directed action planning. However, developing a mental simulation model is challenging because it requires knowledge of self and the environment. The current paper studies how adequate goal-directed action plans of robots can be mentally generated by dynamically organizing top-down visual attention and visual working memory. For this purpose, we propose a neural network model based on variational Bayes predictive coding, where goal-directed action planning is formulated by Bayesian inference of latent intentional space. Our experimental results showed that cognitively meaningful competencies, such as autonomous top-down attention to the robot end effector (its hand) as well as dynamic organization of occlusion-free visual working memory, emerged. Furthermore, our analysis of comparative experiments indicated that introduction of visual working memory and the inference mechanism using variational Bayes predictive coding significantly improve the performance in planning adequate goal-directed actions

    Testing Identifiable Kernel P Systems Using an X-machine Approach

    Get PDF
    This paper presents a testing approach for kernel P systems (kP systems), based on the X-machine testing framework and the concept of cover automaton. The testing methodology ensures that the implementation conforms the speci cations, under certain conditions, such as the identi ably concept in the context of kernel P systems
    corecore