434 research outputs found

    Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces

    Full text link
    A projective Reed-Muller (PRM) code, obtained by modifying a (classical) Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and dual code of a PRM code are known, and some decoding examples have been represented for low-dimensional projective space. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of errors correctable of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of minimum distance decoding.Comment: 17 pages, 4 figure

    List Decoding Tensor Products and Interleaved Codes

    Full text link
    We design the first efficient algorithms and prove new combinatorial bounds for list decoding tensor products of codes and interleaved codes. We show that for {\em every} code, the ratio of its list decoding radius to its minimum distance stays unchanged under the tensor product operation (rather than squaring, as one might expect). This gives the first efficient list decoders and new combinatorial bounds for some natural codes including multivariate polynomials where the degree in each variable is bounded. We show that for {\em every} code, its list decoding radius remains unchanged under mm-wise interleaving for an integer mm. This generalizes a recent result of Dinur et al \cite{DGKS}, who proved such a result for interleaved Hadamard codes (equivalently, linear transformations). Using the notion of generalized Hamming weights, we give better list size bounds for {\em both} tensoring and interleaving of binary linear codes. By analyzing the weight distribution of these codes, we reduce the task of bounding the list size to bounding the number of close-by low-rank codewords. For decoding linear transformations, using rank-reduction together with other ideas, we obtain list size bounds that are tight over small fields.Comment: 32 page

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    A STUDY OF ERASURE CORRECTING CODES

    Get PDF
    This work focus on erasure codes, particularly those that of high performance, and the related decoding algorithms, especially with low computational complexity. The work is composed of different pieces, but the main components are developed within the following two main themes. Ideas of message passing are applied to solve the erasures after the transmission. Efficient matrix-representation of the belief propagation (BP) decoding algorithm on the BEG is introduced as the recovery algorithm. Gallager's bit-flipping algorithm are further developed into the guess and multi-guess algorithms especially for the application to recover the unsolved erasures after the recovery algorithm. A novel maximum-likelihood decoding algorithm, the In-place algorithm, is proposed with a reduced computational complexity. A further study on the marginal number of correctable erasures by the In-place algoritinn determines a lower bound of the average number of correctable erasures. Following the spirit in search of the most likable codeword based on the received vector, we propose a new branch-evaluation- search-on-the-code-tree (BESOT) algorithm, which is powerful enough to approach the ML performance for all linear block codes. To maximise the recovery capability of the In-place algorithm in network transmissions, we propose the product packetisation structure to reconcile the computational complexity of the In-place algorithm. Combined with the proposed product packetisation structure, the computational complexity is less than the quadratic complexity bound. We then extend this to application of the Rayleigh fading channel to solve the errors and erasures. By concatenating an outer code, such as BCH codes, the product-packetised RS codes have the performance of the hard-decision In-place algorithm significantly better than that of the soft-decision iterative algorithms on optimally designed LDPC codes
    corecore