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A Study of Erasure Correct ing Codes 

J ing C a i 

Abstract 

This work focus on erasure codes, particularly those tliat of liigli per
formance, and the related decoding algorithms, especially with low 
computational compiexit3\ The work is composed of different pieces, 
but the main components are developed within the following two main 
themes. 

Idea.s of message passing are applied to solve tlie erasures after the 
transmission. Efficient matrix-representation of the belief propaga
tion (BP) decoding algoritinn on the B E G is introduced as the re
covery algorithm. Gallager's bit-flipping algorithm are further de
veloped into the guess and multi-guess algorithms especially for tlie 
application to recover the unsolved erasures after the recoveiy algo
rithm. A novel maxinuuii-likelihood decoding algorithm, the In-place 
algorithm, is proposed with a reduced coiuputational complexity. A 
furtlier study on the marginal number of correctable erasures by the 
In-place algoritinn determines a lower bound of the average number 
of correctable erasures. Following the spirit in search of the most lik
able codeword based on the received vector, we propose a new biaiich-
evaluation-search-on-the-code-tree ( B E S O T ) algorithm, which is pow
erful enough to approach the ML performance for all linear block 
codes. 

To maximise the recovery capability of the In-place algorithm in 
network transmissions, we propose the product packetisatioii struc
ture to reconcile the computational complexity of the In-place algo
rithm. Combined with tlie proposed product packetisation structure, 
the computational complexity is less than the quadratic complexity 
bound. We then extend this to application of the Rayleigh fading 
channel to solve the errors and erasures. By concatenating an outer 
code, such as BCH codes, the product-packetised RS codes have the 
performance of the hard-decision In-place algorithm significantly bet
ter than that of the soft-decision iterative algorithms on optimally 
designed L D P C codes. 
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1.1 A n Overview of Cod ing T h e o r y in Recent Years 

In the first few decades, algebraic codes dominated crrnr-conrrolling tech-
nolog\\ which aimed to approach the optimum detecting/decoding performance 
by nuiximising the mininuim Hamming distance {Defjiiit.iou L6) within a rea
sonable scope restricted by the code's information lengtli. In 1954, Muller [46] 
and Reed [58] both presented the Reed-Muller (RM) code and its efficient decod
ing algorithm. By that time, it was realised that with the hard-decision decoding 
algorithm (HDD), it is hard to reach the Sliannon limit and therefore a so-called 
soft-decision decoding algorithm (SDD) based on the received floating-point data 
has been proposed and developed for the modern coding scheme. Also in 1954, 
Silverman & Balser (70) first described an SDD algorithm - the VVa^ijer decod
ing algoriUiin. Since then, the reliability of received chaimel output has been 
gradually taken into account to consunnnate the idea of a soft-decision decoding 
algorithm. The sixties was the dominative period of cyclic codes [53j. which were 
inspired by the RM code. The major property of cyclic codes is the invariance 
of arbitrary cyclic shifts of their codewords. With this particularly cyclic prop
erty, Hocquenghem [30] and Bose & Ray-Chaudhuri [S] invented the well-known 
Bosc-Chaudhuii-Hocquencghem. code (BCH) over GF{2)(Defiuition 1.9) witli a 
specified design Hamming distance. Also in 1960, Reed and Solomon [59] pro
duced the eponymous Reed Solomon codes (RS), which is a class of non-binary 
B C H codes. Decoding algorithms using finite-field arithmetic were then devel
oped by Peterson [52]. Berlekamp [4] introduced a fast algorithm for B C H / R S 
decoding and later the following year, Massey [45] further reduced tlie decoding 
comijlexity of the algorithm. Tlie combined Beiiekamp-Massey algoritlnn became 
the standard for the following decade. Another approach to decode block codes 
by adapting the channel measurement information was introduced by Chase [13 . 

Another brancli of code development was initialised by Shannon's probabilistic 

approach to coding, which were called coiivolutioiml codes invented by Elias [19]. 

Using the designed structure of convolutional codes, a sequential search decoding 

algorithm was proposed by Wozencraft & Reiffen [79]. A breakthrougli invention 

to decode convolutional codes "asymptotically optimal" was made by Viterbi [77]. 

The Viterbi algotitliin emplo3'S the received soft decision data which shows a new 

approach to compute the a yosteinor probability (APP) based on the reliability 

information. Before the invention of the Viterbi algorithm, Callager [24] had 
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used the A P P methodology with an iterative message-passing structure for the 

decoding of his proposed low-density parity-check codes ( L D P C ) . Also, a similar 

idea of the APP decoding algorithm had also been utilised to unify the study of 

majority logic decoding, known as the UiiGshokl ciecocliiig aigoiithin [44|. 

During the last 20 years, the probabilistic coding theory has stepped up to a 

new stage. Turbo codes, invented by Berrou el <d. [6] in 1993, and L D P C codes, 

resuscitated by MacKay ^ Neal [42] in 1996, arc codes defined on graphs with 

iterative probabilistic decoding algorithms. Both of them are random enough 

to come very close to capacity of tl»e channel, but constructive enough to be 

iteratively decodable in polynomial time. 

VVitli Shannon's promise, for every cliannci, there are error-correcting codes 

of rate up to the channel capacity that achieve probability of error as small 

as the users want. In sixty years, ShannoiTs idea "A Matliematical Theory of 

Communications" has successfully been developed into practice, and Shannon's 

puzzle on such codes and their decoding algorit-lnns has motivated enormous 

amount of coding researcli. 

1.2 Basics of a Communication System 

To appreciate the contributions of error-correcting coding technology and under

stand the coding limitations, a knowledge of digital communication systems is 

required. A straightforward description of a coinniuuication system is passing 

information from a source (transmitter) to a sink (receiver) via a transmission 

medium (channel). 

Figure 1.1 illustrates a general construction of a single digital connnunication 

system. In this system, a digital signal from a source is encoded, modulated, 

demodulated and then decoded to a sink. 

1.2.1 Source Encoder and Encryption Encoder 

y / Source Encoder 
Unless the source signal is already in digital form, any kind of source to be trans

mitted has to be converted by an analog-to-digital process. The source encoder is 



Informstion is the resolution of uncertainty. 

Claude Shannon (1916-2001) 

Introduction 

1.1 An Overview of Coding Theory in Recent 
Years 

In the last 200 years, people's lives hâ -e been digitised since the first telephone bell 

rang in 1S44. The rennirkable work done by Nyquist [47] has been considered as 

the stem of modern digital communications, which was the first time to formulate 

the maxinmm theoretical baud rate for a band-limited channel. The famous 

Nyquist Rate declares the ISI (inter'Sytnhol interfeience) free baud rate (also 

called as syinboi rate) as 2W when the pulse is shaped perfectly by the sine 

function whereW is the bandwidth of the transmission channel. Coupling with 

Nyquist's work. Hartley [29] investigated the relationship between the maximum 

signal amplitude A^ax i*»id the amplitude resolution A5. If considering that the 

amplitude resolution As partitions the signal as a binary sequence composed 

by bits, in order to maintain a reliable distinguishing among t!ie partitions, the 

•sinc(x) = ^ 
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maximum transmission rate Jl is 

Dl = 2\Vlog2(l + ^^)b i t s / second ( L I ) 

Enlightened by Nyquist/s and Hartley's work on the maxinunn transnussion 

rate, Claude Shannon's remarkable work "A Mathematical Titeoiy of Connnu-

nication" [66) developed the twin disciplines of infonnatioii theory and coding 

tlieory. Genercilly speaking, information theory attempts to study achievable 

bounds for conununication and is largely probabilistic and analytic in nature, 

and coding theory works to realise the promise of models which are constructed 

through mainly algebraic means. In this pioneering work, Shamion pointed out 

that the cliannel noise need not cause any degradation in the transmission relia

bility which can be realised by employing error-correcting codes. Based upon his 

statistical analysis on information sources and conuiumication channels. Shan

non i)rovided a novel parameter, the channel capacity C which is associated with 

the effect of a transmitter power constraint, a banrlwidth constraint, and adfli-

tive noise. Under the as.snmption of an additive white Ciaus,sian noise (AWCN) 

disturbance, the band-liniitcd transmission chaimel has its channel capacity C as 

C = W l o g 2 ^ : ^ ) b i t . s / s c c o n d (L2) 

where P is the average transmitted jjower and Âo is the power spectral density 

of the additive noise. The channel capacity formula basically gives the constraint 

on the information rate IR. that is 

o < C ) An error-free transmission is theoretically established by appro

priate coding. 

o (̂ R > C ) It is impossible to realise an accurate transmission. 

In 1950, in order to solve a small number of errors on magnetic storage media, 

Hannning introduced enor-conectiijg codes and in his milestone paper [28] gave 

the description of Hannning Codes. Combining Hamming's work with Shannon's 

information theory, tlie era of error-correcting (controlling) coding theory was 

started. 



1.2 Basics of a Communicat ion System 

Transmitter 

Source ^ source 
I encoder 

encryption 
encoder 

Sink-
source 4^ 
decoder • 

cncrypiion 
decoder 

channel 
encoder 

Modulation 

Channel 

channel ^ 
decoder 

Demodulation 

Receiver 

Figure 1.1: A General Construction of a Digital Coimnunication System 

used to compress the digitised source signal in case the source exceeds the number 

of bits of actual information content. The coding technique applied to the source 

coding is so-called 'data compression codes", such as HuHman code, Lempel-Ziv 

code, which are not in the scope of this thesis. 

y / Enmjption Encoder 

After the source encoding, the encrypter protects the information content by 

transforming or scrambling information into a data sequence which is unreadable 

to anyone except those po.ssessing special knowledge, usually referred to as a key. 

Conceptually, the coding technique for the encryption is different to that for the 

error controlfing coding. Also, it is not a necessary part of a communication 

system which falls beyond the scope of this thesis. 

1.2.2 Channel Encoder 

The channel encoder, as the first step in the error controlling process, intro

duces the parity-check (also called the rec/u;jc/ajjcy) padding into the informa-
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tion stream. Following the definitions in many publications [43)[37], the channel 

encoder generates an 7i-length data sequence dependent on every A:-leugth infor

mation sequence, where n. > k. The rate of the channel encoder is called the 

code-rate, denoted as R. 

R = k/n (L3) 

The information sequence is referred to as information symbols or information hits 

if the data is in binary form. Similarly for the parity-check sequence generated 

1)\- the encoder, it is referred to as parity-check symbols or parity-check bits. 

1.2.3 Modulation 

Before sending the encoded data sequence into the channel, the data seqiience 

needs converting into a suitable signal and this process is called modnlation. The 

process of modulation is to map a stream of bits, containing Os and Is, into 

waveform. The z-Phase-Shift Keying (ePSK) modulation has been widely used, 

in which when z = 2 or 4, it is known as Binary Phase Shift Keying ( B P S K ) or 

Qnadratnre Phase Shift Keying ( Q P S K ) modulation. In this thesis, we assmne 

all the transmitted data .sequences are after the BPSK modulation process. 

1.2.4 Channel 

The channel is the medium where the information symbols are conveyed. Except 

for conventional channels of two or more geographical points of communication 

such as telephone lines, Internet cables, radio channels, optical lines and so on, 

the channels of two or more different time points of couimunications also employ 

the channel coding, such as hard drives, CD-ROMs, DVDs and so on. It should 

be mentioned that the chamiel is discrete, and henceforth only finite alphabets 

are considered in this thesis. The conventional channel models include the bj-

nary synunetric channel (BSC) and the additive white Gaussian noise chamiel 

(AWGN). However, the deficiency of the conventional channel models is that in 

realitv, the transmission conditions and environmental noise are also changeable. 



1.3 A Development of E r a s u r e Correc t ing Codes 

Therefore, conventional analysis offers a strong temptation to model the interfer
ence as some additional additive level of AWCN noise, which seldom yields mean
ingful results for real applications. Many real conununication channels contain 
both AWGN noise and non-AVVGN interference. If the AWGN noise is relatively 
small compared with the interference, and then we neglect tiie white Gaussian 
noise and only consider the interference which is detectable. By blanking all 
the detected interference, the channel model is called tlie biiifn y erasure chamtel 
( B E C ) . If the AWGN noise causes transmission erroi-s and also the fading on the 
signal power leads detectable empty slots, the channel model is called a fading 
cliaiinei. 

In this thesis, we focus on the application of erasure codes for the B E G . the 

AWGN channel and the Rayleigli fading channel. 

1.2.5 Demodulation 

The received signal from the channel is converted into a sequence of bits/symbols. 

Normally, a demodulator include the functions of filtering, demodulation, local 

time/frequency synchronisation and matched filtering. In this thesis, we suppose 

all the received signal being synchronised and demodulated before tlie decoding 

process. 

1.2.6 Channel Decoder 

The decoder at receiver is to exploit the parity checks produced by the chan

nel encoder to correct any errors or recover any erasures that may have been 

introduced. 

1.3 A Development of Erasure Correcting Codes 

Nowadays. Internet connnunications have become one of the most popular com

munications. People can send emails, images, sounds and videos to anyone au}̂ -

where in world through the Internet. Especially, the launch of YouTube. a video 

sharing website, has unintentionally affected people's daily life globally. The In

ternet has gradually taken place of the conventional entertaimnents, business and 
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connnunications. Henceforth, to ensure a network connnunication reliable, highly 

efficient and low-cost hits become of a great importance. 

The channel model for network transmission is the binary ciasnie cltainiel 

( B E C ) . introduced by Elias [20] in 1956. The transmitted data are catalogued as 

the non-erasure and the erasure only. 

Erasnre codes is a special case of error-correcting codas, which is known as a 

kind of forward error correction codes especially for the erasure channel. Define 

the code 6 to be an (n, A:), where a is the code length and k is the information 

length. 

On network transmissions, data is transmitted in the form of packets. Each 

packet includes a header section and a data section. The header contents are 

different according to different network protocols. Generally, it gives a description 

of the information (source) and the destination of the packet. The data section 

contains the information with its typical length from 30 bits to 1000 bits for most 

nudticasting and broadcasting systems. 

The erasure correcting performance of codes and associated decoding algo

rithms has received renewed interest in the study of coding over packet networks 

as a means of providing efficient computer communication protocols (61). 

By employing the code G{(i,k), k information packets are encoded into n 

packets, wiiicli are callctl as the transniissioii packets. The erasme code C is 

capable of recovering the information file of the size of k packets from a subset of 

a transmission packets. As defined for a linear block code, the fraction of k/ii is 

called the code rate. In the transmission of the erasure channel, there is another 

fraction k'/k where k' is the actual number of the transmission packets required 

to recover k information i>ackct. which is very important to identify the efficiency 

of the applied erasure coding scheme. 

Erasure codes are catalogued into two types: 

• Optimal erasure codes have the property to recover A; information packets 

after receiving k distinct encoded packets. 

• Sub-optimal erasure codes are capable of recovering k information packets 

when A;(l + c) encoded packets have been received, where c is a positive 

number related to the channel condition (0 < <. < 1). 
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1.3.1 Reed-Solomon Codes: Optimal Erasure Codes 

Reed-Solomon (RS) codes were developed in 1960 by Reed & Solomon [57], and 

the breaktliroitgh work was presented f\s a seminal article as entitled as "Polyno-

inial Codes over Certain Finite Fields'. Later in 1969, an efficient decoding al

gorithm, the Berlekainp-Massey decoding algorithm, was invented by Berlekamp 

4), Massey [44]. In 1977, RS codes were notably implemented in the Voyager 

program in the form of concatenated codes. The first commercial application 

in mass-produced consumer products appeared in 1982 with the compact disc, 

where two interleaved RS codes are used. Nowadays, RS codes, as one of the 

most powerful classic codes, have been widely implemented in digital storagede-

vices and digital communication standards, such as in CDs, DVDs, Blu-ray Discs, 

in data transmission technologies such as DSL and WiMAX, in broadcast systems 

such as DVB and ATSC, and in computer applications such as R A I D 6 systems. 

RS codes belong to non-binary B C H code family and therefore they have the 

cyclic property as B C H codes. A RS efl5(/y, A:,r/) over the Galois Field GF{2"') 

has the parameters as in (1.4) 

d = / i -A: -Hl ,whereA:< //, <2"* + 2 (1.4) 

Normally, a RS code has its code length of // = 2"' — 1. A doubly-extended RS 

code can be constructed with its code length of n — 2'" or n = 2"' + 1. There 

also exist (2"' -t- 2, 3, 2"*) and (2'" 4- 2, 2"' - 1, 4) triply-extended RS codes. [43] 

As an erasure code, it can recover up to d — 1 known erased symbols. Also, 

for a noisy channel, it can detect and correct combinations of errors and erasures. 

RS codes are non-binary codes and eacii element of a RS codeword is called 

as a symbol Therefore, a symbol-informatioit sequence is viewed as a set of 

coefficients of a polynomial v{x) over a finite field. Because the RS code are a 

special case of a cyclic non-binary B C H code, the encoding process is equivaleitt 

to a derivation process from the coefficients of the information polynomial v{x) 

with a cyclic generator or parity-check polynomial. 

To decode an RS code in noisy clianiieL there are mainly three types of de

coding approaches. 
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- Algebiuic Decoding (also known as Bounded Distance Decoding): The alge

braic decoders arc capable of decoding up to = ^ enor symbols, which 

generally follow the steps; 

1. Computation of the syndrome. 

2. Determination of an error locator polynomial ^ 

There are several different methods to identify the locator polynomial, 

including the well-known Berlekam|>-Massey (BM) algorithm (4, 45], 

the Euclidean algorithm and so on. 

3. Identifying the roots of the error locator polynomial. 

Normally, it is done by applying the Chien search [14] which is an 

exhaustive search over all the elements in the field. 

4. Determination of error values. Typically, it is accomplished by deploy

ing Forney's algorithm (22). 

- Mmdinma Likelihood (ML) Decoding: The ML decoders choose the code

word which is closest to the given received vector. However, the AIL de

coding is compiUationally difficult in general in the AWGN channel. For 

the application in tlie B E C , the ML decoding is equivalent to solving the 

linear equation between the parity-check matrix and the received vector. 

Our projjosed algorithm, the In-place algorithm, is a complexity-reduced 

ML decoding algorithm for the B E C . 

- List Decoding: The list decoders is to find all potential codewords which 

are within a given distance of the received vector. 

The idea of list decoding was initialised by Elias [21]. The recent Guruswami-

Sudan (GS) algorithm [26] provides lists of all codewords within a given dis

tance of the received vector and is able to correct up to ics = T'^- v ^ - l l 

errors. 

In the recent several years, soft-decision decoding algorithms for RS codes 

have been the topic of significant research interest. Koetter and Vardy (34] ex

tended the GS algorithm to an algebraic soft-decision decoding algorithm, called 

^Tlie error locator polynomial indicates the error locations with its roots. 

10 
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as the K V algorithm, which significantly outperforms the list decoding algorithm. 
However, as a development of the GS list algorithm, the K V algorithm suffers 
an immensely high computational complexity. Therefore, nuiltiple runs of errors-
and-erasures or error-only decoding with .some low complexity algorithm, e.g. the 
BM algorithm, has been re-stndial in [3. 36. 80]. The successive decoding algo
rithm with multiple thresholds is capable of performing as tiie K V algorithm with 
almost the same average complexity as A conventional hard-decision decoder. 

1.3.2 Fountain Codes: Sub-Optimal Erasure Codes 

Fountain Codes, known as a class of sul>optimal erasure codes, have been de

fined by their property of ratelcss generation. The term rate/ess literally claims 

the fact thai these codes do not exhibit a hxed code rate. For k information 

packets, potentially limitless transmission packets can be encoded from the infor

mation packets. As the definition of sul>optimaI erasure codes, fountain codes 

are designed to allow the recovery of the original k information packets from any 

k transmission packets, where k is slightly larger than k. 

The first practical realisation of a fountain code is the Luby Transform (LT) 

code [38]. LT codes have a similar graphical representation to L D P C codes. 

However, its graphical representation is implicit rather than explicit, in the sense 

that tlie current encoding process can be only tracked by its previous process 

and there is no predetermined global view of the graph. The header section of 

each transmission packet nmst contiiin the information on the connections be

tween the information and parity-checks and its degree function. Most of time, 

the information in the header section is represented by a generation seed. The 

sender and receiver must be pre-synchronised and both agree with the applied 

degree distribution function and the generation seed. Luby [38] proved that by 

employing the encoding process with average degree 0(lnA:), L T codes can be 

devised to recover A: information packets with k-\-ck encoded/transmission pack

ets. The transmission packets are generated "on-the-fly in term proportional to 

In A:, and the recovery process (the X O R decoding process) requires only k\nk 

computational time. However, LT codes suffer poor error-floors because of the 

latent stopping-sets in tliem. 

11 
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Raptor codes [6S] improves tlie performance of L T codes by applying a pic-

coding technique to ciicmnvent the orror-fioor problem. Raptor codes currently 

give the best approximation to a digital fountain. The generation of a Raptor 

code can be viewed as a two-la\ered encoding process. The outer code is a fixed-

rate erasure code, for example, L D P C codes or B C H codes, which aims to recover 

the unsolved erasures from the inner code. The inner code is an LT code, which 

liiaintains the desirable rateless property of a fountain code. 

In 2002, a company called Digital Fountain was founded. The teclmolog\* of 

fountain codes have been used for advanced I P T V , mobile broadcast, stream

ing video, file transfer nnd national defence applications, and are recognised by 

leading international standards bodies including DVB, 3GPP and I E T F . 

1.4 Basic Definitions 

Consider a source that produces symbols from an alphabet A having q symbols, 

where A forms a field. We refer to a tuple ( C Q ^ C I , . . . , c „ _ i ) € A'' with n elements 

as an /i-vector or an //-tuple. 

1.1 Definition (Block Code). An {n,k) block code C over aii alphabet of q 
symbols is a set of q^' n-vectors called codewords or code vectors. Associated 

with the code is an encoder which maps a message, a A:-tuple m G A'', to its 

associated codeword. 

For the purpose of the error correction/detection, one-to-one correspondence be

tween a message m and its codeword c is required. However, for a given code C, 

there exist more than one possible way of mapping messages to codewords. 

A block code can be represented cis an exhaustive list, but for large k, the 

storage memory and compntational complexity may be prohibitively complex. 

Tlie complexity can be rechiced by imposing some sort of mathematical structure 

on the code. The most common requirement is linearity. 

1.2 Definition (Linear code). Let denote an 7i-dimensional vector space over 

a finite field of q elements, F , . An [71, k, d]g linear code C is a /c-dimensional subset 

12 
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of F^. The quantity d is called the minimum Hamming distance of the code. 

Each vector in the A:-dimensioual subset of F ^ . which has length of n symbols, 

is called a codeword and may be denoted as c = (cq , c i , . . . , c , i_i) . 

The term /mear arises from the fact that a codeword may be obtained from 

linear combinations of other codewords and the component-wise sum of all code

words is an all-zero vector. It, is assumed that operations such as addition and 

multiplication are performed under the algebra of F^. 

1.3 Definition (Code rate). The code rate of an [n, A:, r/], linear code C is the 

ratio k/n, denoted as Jl. 

1.4 Definition (Hamming weight). For a vector v = (i;o,^i, • • • , v„_ i ) e F^, 
the Hannning weight of v-denoted by wt//(v), is the number of non zero ele
ments in the vector. That Ls 

w t « ( v ) = l R # 0 | 0 < 2 < 7 i - l } | . 

1.5 Definition (Systematic). Let C be an {n,k) block code (not necessariiy lin
ear). An encoder is systematic if the message symbols niQ,in\,.,.,rnt^-\ may be 
found explicitly and unchanged in the codeword. That is, there are coordinates 
zo , i i , . . . , ik-\ (which are most frequently sequential, zo, «o + 1, . . . ; ?'o + A: — 1) 
such that c,o = moj C i , = in\,..., C i ^ . ^ = mk-i For a linear code, the generator 
for a systematic encoder is called a systematic generator. 

1.6 Definition (Hamming Distance). The Hainming Distance between a se

quence X — { X Q . X I , . . . , X n - i } and a sequence Y = {z/o,2/i, • • • ^ y n - i } is the 

number of positions that the corresponding elements differ: 

d{X\Y) = J2^:i¥:yd (1-5) 
i=0 

13 
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1.1 Defiiiiiiou (minirnurn Hamming distance). The miniinuin Hmnming 
ciLstance of a code is the smallest Haiiiniiiig distance between any two codewords 
in the code. 

J.8 Definition (Field). A field,'denoted as F , Is a set of elements in which it is 
possible to add, subtract, multiply and divide (except that division by 0 or is 
not defined). 

1.9 Definition (Galois Fie/d^/: A GaJofs Fieid. also called as finite fie/d, corit^ 
a finite number of elements, this number being called the Oidci" of the field, 
written as GF{x), where x is the number of the elements. 

1.5 Thesis Contributions and Outline 

1.5.1 Contributions 

Network transmissions require the applied erasure coding tcchnic|uc; 

- with a strong erasure-recovery capacity 

- with a reasonable computational complexity 

These requirements are connected with the properties of erasure codes and the 

decoding algorithms. Tlie research in this thesis was started from the study of 

the erasure decoding algorithms, which included the performance limits and the 

computational complexity of erasure decoding algorithms. Our first target was to 

design an erasme decoding algorithm to achieve an Maximum Likeliliood (ML) 

performance with a reasonably computational complexity. 

The recently popular codes, L D P C codes and Turbo codes, were firstly ai>-

plied as the erasure codes. Tlie connnon decoding algorithni for L D P C codes and 

Turbo codes is the belief proprigfition (BP) algorithm, which lias demonstrated 

empirically near-optimal performance in the AWGN channel, hi the application 

for the B E C , the BP decoding algoritlmi is also called as the recovery algorithm, 

which is to pass message through the bipartite graph of the code. Instead of 
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applying the recovery aigoritlim througii the bipartite graph, we devised a ma

trix representation called the emsure matrix which only contains the information 

related to the erasnres. Then, the stopping sets are explicitly expressed in the 

corresponding era.snre matrix. 

The performance of the recovery algorithm frequently suffer in the error-floor 

problem, which may be caused by the stopping-sets [16] due to the code structure. 

Inspired by the bit-flipping BP algorithm in the Binary Symmetric Channel 

(BSC) [2̂ 1]. we designed the ^ues-s and multi-guess algoritlnns based on the recov

ery algorithm to break the stopping sets under the restriction of the maximum 

number of guesses. However, the computational complexity of the guess/m\ilti-

guess algoritlnns exponentially increases on the basis of the number of gues.ses 

which have been proceeded. Tlie conventional ML erasure decoding algorithm 

has been known as the Gaussian Elimination algorithm which is literally to solve 

the parity-check equations at receiver. The Gaussian Elinnnation algorithm de

ploys a lot of colunm permutations and tlie row additions. This motivated us to 

study the relationship between the erasures and the parity-check polynomials in 

the parity-check matrix. We designed and analysed a novel ML algorithm - the 

In-place algorithm for decoding erasure codes in the B E C . 

The invention of the complexity-reduced In-place algorithm diverged the re

search into two directions. 

1. the application of the In-place algorithm with the soft-decision received 

data for the popular AWGN chamxel 

2. to design an efflcient transmission/packetisation structure to further reduce 

the computational complexity to approach a linear complexity 

Re-order tlie received sequence with the values of the channel reliabilities 

from the less to the more or from the more to the less. The bits with the less 

reliabilities can be viewed as the erasures and those with the more reliabilities 

can be considered as the non-erasures. Henceforth, the In-place algorithm is 

equivalent to the ordered-statistic decoding (OSD) algorithm with the order of 

zero. The OSD algorithm is a well-known ML-approachable algorithm. However, 

the number of orders to achieve an ML performance is rarely known for a given 

15 
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code. This motivated iis to search an alternative algorithm which would be 

capable of achieving an ML performance without pre-setting the number of orders. 

iVIorc importantly, this algorithm is preferable to be a flexible structure to avoid 

unnecessarily computational operations. Based on the tree structure of a code, 

we devised a branch-evaluation-search-on-the-code-tree ( B E S C T ) algorithm. 

The second direction wa.s .set to designate an efficient transmission/paokoti-

sation structure to further reduce the computational complexity to approach a 

linear complexity. This motivated us to study erasure codes for the network 

transmissions with packets. The performance limits of fountain codes showed 

that only under certain conditions of the length of fountain codes, fountain codes 

can jjerform sub-optimally with the actual number of the required packets close 

to the number of the information packets. To achieve the ML performance, it 

was natural to think of RS codes because they are optimal erasure codes. We 

designed and analysed the product packetisatioii structure with the In-place algo

rithm for the RS code transmission. The new arrangement performs nmch better 

than previously known algorithms, especially for fountain codes, and consumes 

less encoding and decoding times (as well as the computational complexity) than 

the conventional algorithms for RS codes. We believe thixt such decoding struc

ture can also dramatically improve the performance of RS codes in the Rayleigh 

fading channel. Due to the existence of errors in the Rayleigh fading channel, we 

devised a concatenated B C H code with a product-])acketised RS code to decode 

the errors and recover the ertusures by a hard-decision (HD) algorithm. 

1.5.2 Thesis Outline 

In this section, we give a more detailed outline of the contents and contributions 

of tliis thesis. The thesis is jmrtitioned into two parts as tlie reasons mentioned 

in previous section. Each part or each chapter can be read separately. 

Chapter 2: Matrix-bused Erasure Decoding Algorithms [10, 74, 76 

We present the erasure decoding algoritlnns on the matrix representation of 

erasure codes. The proposed erasure matrix is derived from the parity check ma

trix of the applied code which only contains the parity check polynomials with 

16 
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erasures. The iterative recovery algorithm for L D P C codes exhibits the undesir

able error-floors due to the stopping sets caused by the code structures, hispired 

by t he bit-flipping algorithm in the BSC, we devise the guess/multi-guess algo

rithm based on the recovery algorithm. In this cliapter, we also introduce the 

method to make eff"ective and efficient guesses and compare the simulation results. 

It is shown that the performances of the crucial gue.ss algorithm are better than 

those of the random guess algorithm with diflcrcnt levels. The level of the im

provement is determined by the code structure. To achieve an ML performance 

with a reasonable decoding complexity, we devise an In-place algorithm which 

is derived based on the Gaussian Elimination algorithm. Instead of process the 

whole parity-check matrix, the In-place algorithm only processes e parity-check 

polynomials in which erasures appear. Moreover, the In-place algorithm does 

not require any column-swapping process as the Gau.ssian Elimination algorithm 

which also reduce the computational complexity. In Section 2.5, a discussion on 

the relationship between the number of recoverable erasures and the weight dis

tribution of the applied code is given. 

Ciiapter 3: Branch-Evaluation Searclt on the Code-Tree Algorithm [9] 

Motivated by the invention of tlie In-place algoritlnn, we study the ML-

approacliing decoding algorithms in tlie AWGN chamiel to solve the errors when 

the soft-decision data have been received. Following a snapshot of the ordered-

statistic decoding algorithm, we introduce the code tree representation of a linear 

code. Different to the conventional tree representation of a code, a bi-directional 

code tree is proposed in Section 3.3. By partitioning the code tree at a given 

cut-point vertex, the code tree grows potentially 2^ branches. Each branch repre

sents a valid codeword. Inspired by the Dorsch algorithm and the OSD algorithm, 

we propose the Branch-Evaluation-Search-on-the-Code-Tree ( B E S C T ) algorithm 

which utilises the hierarchical property of the tree structure combined with the 

correlation metrics to realise an ML decoding (MLD). 

Chapter 4: The Packet Data Transmission System of Fountain Codes [10 

The focus of Chapter 4 is on the construction of fountain codes. The first 

realisation of fountain codes, as known as L T codes, is first studied. Investiga-
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tion of the degree distribution function and the asymptotic perforntance using 

the required packet counter reveals that only when the information file is large 

enough, the sub-optimal performance can be achieved. Then, we further investi

gate tlie upgraded fountain code, the Raptor code. Even tliough the outer code 

is deployed to solve the error-floor problem of LT codes, when the information 

file is not large enough, the performance of Raptor codes is hard to achieve the 

sul>oi)timal performance. 

Chaptev 5: Capacity Approaching Codes for the Binary Erasure Channel 

Using a Product Packetisation Method [11, 74] 

RS codes, known as a class of ma,xinnun distance separable (MDS) codes, 

have amazingly attractive properties which make them as one class of optimal 

erasure codes. Tiie drawback of RS codes in practice, comes from their non-

binary structures which have been recognised as the reasons to their high encod

ing/decoding complexity. We introduce a product packetisation structure for all 

linear codes, in particular for non-binary codes, such as RS codes. The structure 

is named after the way of pre-storing the transmission data visually. Imagine 

there is a squtire or rectangular matrix, where tlie encoded data sequences are 

stored vertically and tlien the transmission packets pick up the data horizontally. 

In Section 5.2, the product arrangement matrix is designed to specif\^ the pro-

j>osed packeti.sation/de-packetisation structure. With the packet information in 

the header of each transmission packet, RS codes are capable of realising a rate-

less transmission which is always desirable for network transmissions. Figure 5.2 

in Section 5.2 illustrates how the protocol of rateless RS coding scheme works. 

By deploying our proposed In-place algorithm at receiver, rateless RS codes can 

achieve their ML performance. 

Chapter 6: Concatenated Reed-Solonion Coding with Hard-decision for the 

Rayleigh Fading Channel [12 

As the characteristics of the Rayleigh fading channel, the existence of additive 

errors and burst erasures requires the applied coding scheme with strong error and 

erasure correct-abilities. We present a hard-decision In-place algorithm scheme for 

concatenated RS codes offering both complexity and performance advantages over 

IS 
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iterative decoding algorithms for optimally designed L D P C codes. The proposed 

RS coding scheme is to concatenate a Hanuning or B C H code to detect and correct 

multiple hard decision errors in each received packet. Section 6.3 describes tiie 

system arrangement in details. The analysis of concatenated RS codes is given in 

Section 6.4, wliich also derives the performance bound of concatenated RS codes. 

The reader should be aware that some notations may be used repetitively 

in this thesis. Please refer tlieni to the definitions/designations in the chapters 

where they appear. 
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Part I 

Erasure Decoding Algorithms 
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The road to success is always under construction. 

Lily Tomlin 

Matrix-based Erasure Decoding 
Algorithms 

2.1 Background 

The binary erasure channel ( B E C ) is a well-known model for tiie Internet trans

mission. This channel was introduced by Elias [19] in 1955. Witli a packet lost 

due to network congestion witii probability of/;, tlie B E C has a capacity of 1 — p. 

Elias proved that there exist codes of rate R for any R < I - p tliat can be used 

to transmit over channels of capacity 1 — p. 

Altliough maxinmm likelihood decoding (MLD) of linetir block codes is known 

to be N'P-hard [5], iterative decoding, as a technique deploying message-passing 

algorithm recursively to improve the code performance, aims to approach an 

MLD. 

The history of iterative decoding algorithms can be tracked back to 1954 

when Elias [18] published his work on iterated codes. Ten years after tliat, in 
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the 1960s, Gallager (24) and Mas.sey ('14] made important contributions and then 
iterative decoding was referred to as probiibilistic decociing. The target of iter-
citive decoding is to maximise the n-postevior probability of a bit/symbol being 
sent given on noisy vei"sion of the coded sequence. Iterative Belief Propagation 
(BP) decoding algorithm was propo.sed by Pearl [51 . 

One of the main motivations behind tiiis chapter is to devise ML or ML-

approachable decoding algorithms for tlie B E C . 

We start the work with the review of the recovery algorithm to correct the 

erasures for the B E C , in which each codeword bit is lost with a fixed constant 

probability p in transit independent of all tlie other bits in Section 2.2. Instead of 

deploying the bipartite graph, we introduce matrix representations of the erased 

bits by superposition of the erased bits on the parity-check matrix for iterative 

decoding algorithms over the B E C . Following a quick re-format of the recovery al

gorithm in matrix representations (Section 2.3). we combine the idea of Gallager's 

bit-flipping algorithm and the recovery algorithm into the guess/multi-guess al

gorithm in particular for L D P C codes in Section 2.3.3. We then attempt to reach 

our target to design an ML decoding algorithm for the B E C . In Section 2.4, in

spired by the ML Gaussian Elimination ( G E ) algorithm, we propose a novel, non-

iterative ML-approachable decoding algorithm - the In-place algorithm which is 

w îth a reduced complexity in comparison to the G E algorithm. We provide the 

numerical results and the corresponding discussions in Section 2.5, where we also 

analyse the relationship between the marginal number of correctable erasures 

and the average number of correctable erasures. In Section 2.6, we conclude this 

chapter and highlight its main results. 

2.2 A Review of the Recovery algorithm 

Luby et ai [39] simplified the BP decoding algorithm in conjunction with the 

characteristics of the B E C . The so-called "recovery" algorithm can be visualised 

by a bipartite graph between variable vertices and the check vertices as shown in 

Figure 2.1. 

Putatively from the bipartite grapli shown in Figure 2.1. there are two sets 

of vertices required for an implementation of the Recovery algorithm, including 
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valO 

^ Q 

van 

chkO 

^ G 

al-missing val-missing val-missing gets recovered 

/ > ••••• 

(a) (b) 

Figure 2.1: the Recovery Algorithm over the Bipartite Graph: square spots rei> 
resenting the check vertex and circle spots denoting the variable vertex 

the variable set vai and the check set chk. Denote the missing symbol labelled 

by a "?" as val,nissing which is connected to the first check vertex, written CMS 

chko, on its right-liand side and further related to other two variable vertices via 

the connected check vertex. Both related variable vertices are just iidjacent to 

uclniis.sing: uotcd as valf) aud val] respectively. Then, tlie value of tliis missing 

symbol is implicitly calculated by the connected check vertex and its related 

adjacent variable vertices as valminsins = chk^ © vala © val\. Then by exclusive-

oring the value of val„,issiugz other connected vertex are updated. Till now. we 

call it as one recovery process. By recursively implementing the recovery process, 

the recovery decoder can decode tlie received erasme successfully or failed due to 

the existence of stopping sets [16 . 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

2.1 Definition (Stopping Set). A stoppmg set, denotetl as S, is the set of vari
able vertex such that all neighbours of S aie connected to S for at least twice. 

Example 2.1 illustrates a stopping set example with a bipartite graph. 

valO 

vail 

val2 

val3 

vaM 

va15 

vaI6 

val7 

val8 

val9 

chkO 

chkl 

chk2 

chk3 

chkl 

Figure 2.2: an Example of a Bipartite Expression of a Code 
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2.2 A Rev iew of the Recovery algorithm 

Example 2.1: Figure 2.2 gives a graphical expression of a L D P C code with its 
ensemble of 6(10, x ,̂ x*') ' . For the variable vertex indexed from val^ to imLj, 
the connection relationships are listed as: 

valo(chk(i. clik^. clik-s) vali(chki. chk2. chk^) 

val2{chk(). chk], chk^) vak{chko, ckk2, ckk^) 

val.i{chki), ckk], chki) val^{chk2, chk-^, clik^) 

valcichki, chk-^, chk^) val-j{clikxi, chki. chk2) 

vals(chko. chk\, chk^) vfdQ(chk2, ch.k,i, chk^). 

Group the variable vertices of vale, valj, m/g and vcdtj as a set 8(6.7,8,9). It 
is noticeable that all the clieck vertices are connected with S(6.7,8,9) at least 
twice. Alternatively, we can also determine tlie stopping sets by observing the 
parity-check matrix H of the code. As expressed below, the identity part at the 
RHS of the H indicates the check vertices and all the I s in the L H S of the H 
represent the connections between the check vertices and the variable vertices. 

i f 

f 1111100110 

0110101110 

IIOIOIOIOI 

1110011001 

^ oooiiimn 

10000 \ 

01000 

00100 

00010 

00001 y 

(2.1) 

Clearl}, each parity-ciieck equation contains more than one variables from 
the stopping set S(6, 7,8,9) as highlighted, which also further implies that if the 
symbols in S are all lost after a transmission, it can not be recovered from any 
parity-check equation in H. 

'an ensemble of a L D P C code [GO) written as Q{ii,X,p) is defined by the code length of n. 
a \-ariabIe vertex degree distribution A and a clieck vertex degree distribution p 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

2.3 Matrix-based Iterative Decoding Algorithm 
and its Variances via the B E C 

Instead of deploying the bipartite graph to represent ihe code, we use the parity-

check matrix H to express the code. 

H : = 

( ho \ 

y / l „ _ t - i y 

in which each row hi can be written as a parity-check equation as hi = /i,.o'''" + 

+ . . . + /*,,._ ix"- ' . 

Considering an {n,k) binary linear block code, we denote a codeword as 

X = {;/;o: x ' l - . . . : x „ - i } . After being transmitted over the B E C with the era

sure iMobability of c. The received vector, designated as y contains two parts; 

the transmitted sui>sequence y^cr the erased sul>sec|uence y^, 

(2.2) 

(2.3) 

where I -\- z — n. VVc also define a vector / = {/o: f\, - • • In-\} which maps the 

erased bits as "l"s and tlie received bits as "0"s. 

2.3.1 Matrix Representation of the Erased Bits 

A matrix representation of the erased bits, designated as M , is developed from 

the parity-check matrix H. By the reflection of the position of each erasure in 

H, the proposed erasure matrix with its size of 2 x 7/., denoted as M , is defined 

28 



2.3 Matrix-based Iterative Decoding Algorithm and its Variances via 
the B E C 

as hi (2.4) 

M := 

/ Mo \ 
Ml 

M , _ , 

(2.4) 

The component equations in M can be derived as follows; 

Mo = (/io.o • /o) + (//o.i • hW + (/*o.2 • A) : / - ' 4- . . . + (//o.»-i • Ju~\)'J-

M l = (/i,,o • /o) + (/'i.i • /i):!:' + (/m,2 • hyr~ + - . . + (/i,.„_i • /„_,):/; 

n-\ 

M-1 

M , _ i = (/l,_i,o • /o) + ( / U - , . l - / l )x» + ( / t , _ i , , • h)x' + . . . + ( / i , - i , , _ i • / „ _ , ) . T 

where 2 < n - A.* 

Moreover, two sets of variables are devised to identify the erasure positions in 

M from different observation angles. The index / indicates the elements in each 

row with the range of [0 , . . . . — 1] and anotlier index j indicates the elements 

in each colunni with the range of [0 . . . . , ^ - 1]. Then, the notation of Mj(/') 

represents the element contained in the j " ' component equation and located at 

the position. 

f ; ' ' : = { E 5 , £ ; l ' , . . . , E ! ' _ , } 

: = { E o ^ £ ; ^ . . . , E ; ; . , } (2.5) 

In (2.5), E^^ and E"" are designated as the sets of erased bits participating in 

each row and colunui of M . where the superscripts It and v represent "horizoutal' 

and ''verticaF' respectively. Also, for convenience. \Ei \ is called the profile of 

liorizontal component which is the number of erased bits in and |£^J| is called 

= n — k wlien the result of each parity-check equation mapping the vector / is countctl 
more than 1. 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

t,hc profile o{ j"' vertical coinponeiit whicli is the iiuinber of erased bits in Ej. 

Example 2.2: Based on the H from Example 2.1, if the variables in S are all 

erased after a transniissioiK the vector / will be (000000111100000) and the M 

will be mapped out from the parity-check matrix H (2.1) as : 

M = 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 / o 0 0 0 0 0 0 i I 0 0 0 0 0 0 \ 

1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

= 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

4 1° 0 0 0 0 0 1 0 ! 1 0 0 0 0 
V 

T h e corresponding E vectors are: 

E" E" 
£ ^ = (7.8) 
£{' = (6 .7 .S) 
E'^ = (7.9) 
E!^ = (6 .9) 
E!; = (6 .8 .9) 

ES = (L3..'\) 

E'i = (0 .1 .2 ) 
£ i ' = ( 0 , L ' l ) 
£:^ = (2 .3 .4 ) 

And therefore, both the profiles for the horizontal component and the vertical 

component are \E^'\ = {2, 3, 2,2, 3} and \E"\ = { 0 , 0 , 0 , 0, 0, 0, 3, 3, 3, 3, 0,0, 0,0, 0} 

respectively. 

2.3.2 Matrix-based Iterative Recovery Algorithm 

After giving the concept of an erasure matrix, the standard graph-based iterative 

decoding algorithm can also be represented as a matrix-based iterative recovery 

algorithm. 

By defining an erasure matrix M based on the received vector y and its parity-

check matrbc H, the matrix-based recovery algorithm starts with an evaluation 
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2.3 M a t r i x - b a s e d I t e r a t i v e D e c o d i n g A l g o r i t h m a n d its V a r i a n c e s v i a 
t h e B E C 

on the horizontal profile on each row of M. For the row M ; , if 3|£7''| = 1. 

j={o,i,...,M-u\£;.'' 

Then remove T/Jrh fioni the erasure set y*^ and meanwhile update the matrix A^. 

Repeat the evaluation process and tlie recovery process until all the erased bits 

being solved, or the decoding cannot continue further, that is 

V/:e {0. L . . . , e - 1 } 

. f 0, no more erasures _ 

\ J , J > 2 ^ - ' ^ 

In (2.7). the existence of d implies a decoding failure caused by the stopping 

sets. It has been proved in [16] that the recovery algorithm fails if and only if 

contains some stopping sets. Di ei al. [16] also has proved that the set of 

the remaining erasures, when the iterative decoding algorithm fails, is same as 

the unique maximal stopping sets of T / ^ T l ie algorithm is given as follows as 

Algorithm 2.1. 

A l g o r i t h m 2.1 Reco very Dec ( / i . i / , ? / ) 
I n p u t : 

n <= code length (block length) 
H <= its parity-check matrix 
y <^ received vector containing erasures 

1: r e p e a t 
2: for a l l lii e H : each parity-check polynomial do 
3: i f {Nutn(hi),==l) t h e n 

j={0.l.2...M-i}.j\pos(v^) 
5: Num{e) 
G: Self = Setfijf 
7: e n d if 
8: e n d for 
9: u n t i l Nuni{c) = 0 or '\'UIIL{C) < 2 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

Tliere are several variables and subroutines in Algorithin 2.1 are listed as 
following. 

o M erasure matrix generated by H 

o A' (/^/i( )(returns the values of |£?''| 

o Sat.^ contains the set of y' 

o po.'y( ) returns the position of the erasure regarding to H 

o / <= an integer used as an index 

T h e schematic diagram of the recovery algorithm is also illustrated in Fig

ure 2.3. T h e iterative solution sequencer works as the evaluation process on the 

erasure matrix M, and the recovery box solves all the parity check equations 

with single bit erasure. 

Considering the nature of the recovery algorithm, the decoding complexity is 

straigiitforward related to the ninnber of erasures in the received vector, which 

can be estimated by the code length a and the average erasure probability p of 

the B E C . 

If there are £ erasures in y, the decoder starts to solve the parity-check equa

tion with a single erasure, where e = cn and c is an erasure probability of the 

B E C . As an instance, there is a single erasure in the equation hi, as de

picted in (2.6). the single recovery process involves wt{hi) * multiplications 

and •wt{hi) - 1 exclusive-or operations. Cleai ly . both the multiplication and 

the exclusive-or operation are determined by the weights of the erased parity-

check equations. If the applied code is a regular L D P C code with its ensemble 

of G(n,_X,p) and j = j , the average number of multiplications is 

//(. • (/> -I- 1)( = t t } t ( f ) • {b -^ 1)) and and its average number of exclusive-or opera

tions is nc • = w t ( f ) • h). 

^wt.{ ) letnrns the weight, of a vector. 
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2.3 M a t r i x - b a s e d I t e r a t i v e D e c o d i n g A l g o r i t h m a n d i ts V a r i a n c e s v i a 
t h e B E C 

Received data 

Date Store Data Store Data Store Date Store Data Store 
: 1 

Data Store 

Solution of aD erasure equations M with their profiles of 
|£*| = I (only one crosure In these erasure equations) 

Iterative solution sequencer 
(Update each / [^ ) 

Figure 2.3: Matiix-bii.sed Iterative Recovery Decoder 

Generally spetiking. for a siiccessfnl decoding process, the decoder complexity 

is linearly towards the c • n, and henceforth the overall decoding complexity (or 

decoding time) can be derived as 0{c • ii) ^. 

Fig\ue 2.4 exhibits the recovery decoder performance via its Bi t Error Rate 

( B E R ) and also the Frajne Error Rate ( P E R ) versus the erasure probability p. 

T h e applied code is the Progressive Edge-Growth [32] ( P E G ) L D P C code (256, 

128) which achieves the performance of 10~" for the B E R and less tlian 10"^ for 

the P E R at p = 0.25. 

^hig Oh iiotatioit:0(n) describes an algoritliiu whose pei foriiiaiice will grow linearly and in 
direct proportion to the size of the input data set. 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

0.01 

0.001 b 

0.0001 

1e-05 

le-06 h 

1e-07 
0.25 0.3 0.35 0.4 0.45 0.5 

Erasure Probability Symtx)l p 

F i g u r e 2. 1: T h e B F R / F E R pcM-forniaiice of the P E G L D P C codv (256. 128) with the 
Matrix-bajsod Recovery Algori thm 
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2.3 M a t r i x - b a s e d I t e r a t i v e D e c o d i n g A l g o r i t h m a n d i ts V a r i a n c e s v i a 
t h e B E C 

2.3.3 Guess/Multi-Guess Algorithm 

As described in previous section, the matrix-based iterative recovery algorithm 

fails if and only if the erasures contain a stopping set S. 

To break the stopping sets which impedes the recovery algoritinii. inspired 

by the idea of Gallagor's bit-flipping algorithm, the guess algoritinn [16] was 

first mentioned in 2002. In our work [10], we have a further discussion on this 

algorithm and extend it into the multi-guess algorithm. 

Literally, the guess algoritiim means to make assumptions on the left z' era

sures wlien tlie recovery algorithm fails, where z' < z. Mapping the unsolved 

received vector to a new flag vector / ' = {f'^, /[.•••: fu-i}- vector con

tains 2 or more than 2 elements equal to "1". T h e aim of the guess algorithm is 

to break the stopping sets and complete the decoding by a restricted number of 

"guesses". 

The notation of g is employed to represent 'guess'' in this section. We also 

designate y[. as the left erasures and y[ C y^. When the recovery algoritinn fails 

due to the stopping sets which cause the horizontal profile of M is 2 or more 

than 2, the guess algorithm is triggered to continue the decoding as following. 

Choose one unsolved erasure and then assign it as "1 "or "0" for a binary 

transmission. For example, we iissign "1" to y[{vQ) as the first guess erasure 

valne and map f^^ as "0". Update the erasure matrix M with the new / ' and 

therefore the mark at location VQ in each erasure equation jVt is removed. Rej^eat 

the recovery process, which is to replace the single erasure in M , by the exclusive-

or-ed result as depicted in (2.6). Suppose the recovery algorithm can successfuily 

solve all the remaining erasures after a single guess yo. Store the decoded sequence 

^ c'oiiLo '̂ "f̂  then trace back the process iit the position. Re-assign "0"' to y'(fo) 

and repeat tiie recovery algoritlnn. Hereafter another decoded sequence Couti is 

also listed as a potential codeword. 

A schematic diagram of the decoder is illustrated in Pigure 2.5. T h e modifi

cation is developed at tiie iterative solution sequencer with an additional guess 

function. 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

Received data 

Butter containing 
erasures Data Store Data Store Data Store Data Store h-i 

Solution of aD erasure equations with their proTJes ot 
[£;| = I (only one erasure in these erasure equations) 

Guess erased bit/bits + Uerative solution sequencer 
(Update each A/, ) 

Figure 2.5: Correction of Erased Bits Usiiig Guess Algorithm 

Following the definition of a regular L D P C code, suppose the remaining era

sures y[ can be solved by and the decoding complexity can be derived as 

nmltiplications; + ''^*^(/')l • (^ + 1) 

exclusive-or operations: [ w t { f ) + 'wt{f')] • b 

Therefore, from the linear relationship stated above, let T'upcovery 

be the decod

ing time for the Recovery algorithm, and Tciuess l̂ e that for the guess algorithm. 

T l i e decoding times between the Recovery algorithm and the guess algorithm is 

also linear, which can be considered as 

TGncss = ( l + '/)-7^K ecovcry (2.S) 

where // > 0. 

If the decoder after one guess stops again, another guess has to be made to 
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the B E C 

carry on the decoding process. Denote the number of guesses as ng. Obviously, 

the value of // is mainly determined by ny. If the code is a binary code, the 

number of potential codewords after ng guesses is 2"^. As an instance, assuming 

ng = 3, after the guess and recovery process, there will be S potential codewords 

for the final decision. 

To compromise the code performance and the decoding complexity, we usually 

limit the number of guesses to a small number / i ^ , „ a x - I f after / i ^ , „ a x guesses, the 

decoding still cannot bo finished, a decoding failure is declared. For a low-rate 

L D P C code, the guess algorithm is able to improve the performance by equal to 

or less than 3 guesses, e.g. the performance of the P E G L D P C (25G, 128) binary 

code in Figure 2.6. When p = 0.35, the performance of the guess decoder with 

f^9ii\Ax = 3 has been improved by the magnitude order of 2 on the basis of that of 

the Recovery decoder in terms of the F E R . 

Guess (ng^ - l 
G U M S (ng--, • 2 

0,25 0.3 0,35 0,4 0 4 5 

P 

0 5 0 ,55 0.6 

Figure 2.6: Performance of the P E G L D P C (256,128) with tlie Recovery Algo
rithm and C-Cuess Algoritlnn 

Another factor to afi'ect the decoding performance and complexity is how to 

make guesses effectively and efficiently. 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

• sequential guess: the guess bits are chosen based on the location of the 
unsolved erasures sequentially. 

• cnicia} guess: the guess bits are chosen on the basis of the highest value of 

with the value of lEj ' l > 2. 

Compared to the crucial guess algorithm! the sequential guess algorithm is 

straightforward but to perform worse than the crucial guess algorithm. For an 

irregular L D P C code ^, the performance gap between the crucial guess and the 

sequential guess is even more obvious than that for a regular L D P C code, as shown 

in Figure 2.7. More simulation results and discussions are given in Section 2.5. 

to* 

10-

/ a 

^ P * 

d X • 

C.GutM{ng -̂t S-Gue« ng™, - 1 C-GuMS (nd—. - 2 
S-Gu««(r?:;^.2 C-Guew ng^ - 3 
S-Go«»stng_-.-3 

0 4 5 

Figure 2.7: Performance Comparison between the Cruc ia l Guess algorithm 
( C - C u e s s ) and the Sequential Cuess algorithm (S-Cuess) of the P E G L D P C 
(256,128) 

At the end of the decoding, we need to pick out one codeword from 2"^ poten

tial codewords generated froiii the guess process as the decoded result. We call 

*^Aii irregular L D P C cofle IULS its parity-clieck H willi different column weiglits and row 
weiglits. 
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the final determination stage as the evalimtioii stage. From the list of potential 

codewords, Co„t,; where / G { 1 , 2 , . . . , 2"^} , pick the one that satisfies Hc[^^^. = 0 . 

The evaluation stage obviously requires some operations which include 2"^ matrix 

multiplications and 2"^ — 1 comparisons. 

For sparse linear codes, a hybrid guess-increasing .scheme works efficiently. 

However, for non-sparse linear codes, it is connnon to encounter more than 2 

imsolved symbols in each erasure equation of M after running the recovery A l 

gorithm due to the high-density of their parity check matrix. In the.se cases, we 

cannot break the stopping set by guessing one erased bit /symbol in a row only. 

More than 1 erased symbols at one time need to be guessed. We can calculate 

the minimum number of gues.ses before tlie decoding. 

2.1 Lemma. Consider the chosen erased bits/symbols in each row as aji erased 

group. Let 'denote the set of row\s with 5 erasures, that is, ujs ~ { i \ |£?'*| = 6}. 

And xs is the set of rows which satisfies: 

xs = {ieujs\ 3k,pe E/Ssuch as /c # p, |£;,"| = \E;\ = 1 } . (2 .9) 

Then 

imu{ng) = \xs\ -\- 1 (2 .10) 

where 1 accounts for tlie need for at least one "crucial"' row. 

Proof. When the guessing process stops, there are more than 2 erased .symbols 

in each erased row. T h e rows that have more than two bits {k,p) which do 

not participate in any otlier row (i. e. \Ej^\ = = 1) cannot be .solved by 

other rows, and so at least one of these bits has to be gues.sed. So the minimum 

number of guesses equals to the number of all the independent guesses plus one 

more "crucial" guess to solve tlie other rows. • 

For the Multi-Guess Algorithm, a whole row is gue.s.sed. A crucial row c is defined 

as follows: 

1. ceojs 
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2. X^j£^;f. \Ej \ is maximised over c in uj^ 

T h e one-stage multi-gue.ss algorithm is given below: 

t h e O n e - s t a g e M u l t i - G n e s s A l g o r i t h m 

• step 1 R u n the decoder with Guess Algorithin until > 2 for / = 

L . . . , L , . 

• step 2 Evaluate the value of m\\\{ng). I f min(/tc/) > /ity.nnx, the decoding 

declares a failure and exits. 

• step 3 Group the rows with \E'- \ = J as ws, where / G {1 . 2 , . . . , L J . 

• step 4 F ind the "crucial" row and guess all erased bits in that row. (There 

will be at most 2*"^ guesses.) 

• step 5 Guess one bit p with \E'^} = 1 in each of the independent rows, i.e. 

the rows in Xg. 

• step 6 Ujjdate A / t , E*^ and E ^ . Continue the decoding from step 3 to step 5 

until all the erased bits are solved or the decoding cannot continue further. 

T h e disadvantages of Guess and Multi-Guess Algorithms include the decoding 

complexity and the correctness of the results. T h e decoding complexity grows 

exponentially with the number of guesses. I t is possible that the group gue.ss 

declares a wrong value as the result of the decoder. Although this kind of situation 

happens only when the erasure probability is very small, it is still undesirable. 
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2.4 M a t r i x - b a s e d I n - p l a c e D e c o d e r 

2.4 Matrix-based In-place Decoder 

hi this section, we devise a novel M L decoding algorithm to solve erasures in the 

B E C . T h e transmitted vector is defined as a; = {:ro:-';i; • - , ^ * n - i : V x ; G { 0 , 1 } } 

and the received vector is written as y which includes two parts: the unerased 

part y^^^ and the erased part , that is, iji € { 0 , 1 , t }" . We attempt to devise an 

algorithm to decode the erased bits by solving (2.11). 

Hy'^ - 0 . (2.11) 

Instead of using the erasure matrix M wliich only contains the erasure positions 

on each parity-check equation, in this section, we split the parity-check matrix 

H into and Hrcc Then , Equation (2.12) can be derived as (2.12) as follows. 

H^yJ = i / r . c y L (2.12) 

T h e right-hand side of Equation (2.12) can be calculated out as denoted as ĝ ^̂ . 

As long as an M L D is possible, the equation i ^ t ^ t = QTCC should have a unique 

solution, which is the case if and only if all the parity-check equations in H^-

are linearly independent [60). T h e conventional Gaussian Elimination ( G E ) al

gorithm [48) reciuires a colunm-permutation process and an equation-solving pro

cess. Assume there are e erasures to be solved, tluvt is, there are s equations to be 

solved in a linear system, and there are g variables in each equation on average. 

T h e G E algorithm requires a^^ • e-b e:̂  operations for a complete decoding. There 

are several fast methods proposed to solve a linear system of equations, such as 

the Strassen algorithm [71] which implements an iterative process on precalcu-

lated data and requires 0(2^ **'), and Coppersmith algorithm [15] which requires 

0(2^-^^^) but very impractical for the purpose of decoding. 

We now devise an improved M L approach - the //i-p/ace algoritinti, which is 

inspired by the G E algorithm but with a reduced computational complexity. 

T h i s algoritinn is divided into two parts: the Polytioinial-update Process and 

the Back'fiiling Process. 

represents a \7ilid index in vectors. 
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2. M A T R I X - B A S E D E R A S U R E D E C O D I N G A L G O R I T H M S 

• Polyiionual-iipdate Process The codeword is received and y, are substituted 
in positions of erased bits/symbols in H. Starting with one of the erased 
bits/symbols, T / ^ , . the first equation containing this bit /symbol is flagged 
that it will be used for the solution of y^,. T h i s equation is subtracted from 
all other equations containing y ,̂ and not yet flagged to produce a new set of 
equations. T h e procedure repeats until cither non flagged equations remain 
containing y^, (in which case a decoder failure is declared) or no erased 
bits/syrnbols remain that are not in flagged equations. T h e pseudo-code of 
the i)olynomial-update algorithm is given in Algovitiiin 2.2. 

A l g o r i t h m 2.2 Polynomial-update Algorithm 
I n p u t : 

y ^ received vector 
H original parity-check matrix of the code 

1: for a l l y[ G y do 
2: flagging the first parity-check polynomial which containing y[ as h\ 
3: for a l l hj € Hall fUiyycd poly no muds do 
.1: i f hj{i) = = 1 t h e n 
5: push hj into Set(ci) 
0: e n d if 
7: for a l l hj e Set(<.i) do 
S: lij{k) - k,,{k) S hj(k), for k = 0,1,... ,n ~ i 
9: e n d for 

10: e n d for 
11: e n d for 

Back-hllhtg Process Let y,,̂ ^̂ , be the erasures at the last, flagged equations. 

T h e back-filling algorithm is done starting from the last row and solving 

the erasures backwards. Designate the last processed erasure as y ,̂̂ , and 

Niun{c)i as an erasure counter for the i - th parity-check polynomial equa

tion. T h e function of Pos(y^^) returns the position regarding to the parity-

check polynomial of the .r-th erasure. If and only if lii(Pos{yf^^^)} = 1 and 

i\'um{e)i = 1, 
i i - i 

y^:,.. = E ' ' / e ( c / . ) y ( c i ) (2.13) 
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2.4 M a t r i x - b a s e d I n - p l a c e D e c o d e r 

Then , the second to last row is processed in a similar manner. After a com

pletion of the Back-filling process, the decoded sequence should be the original 

transmitted data x. 

T h e .schematic diagram of the In-place algorithm is illustrated in Figure 2.8, 

which clearly exhibits two process blocks: the upper block is to function as the 

Polynomial-upflate process and the lower block is to work as rho back-filling 

process. 

Received data 

Data Store Data Store Data Store Data Store Data Store Data Store 

• • 

Additions ol the Parity-check equations 

Compute Gaussian Eliminated Panty-check Matrix 

Figure 2.S: Matrix-based In-place Algorithm 
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H 

Example 2.3: T h i s example is to work on the B O H (15,7) code with a f/,„i„ of 

5. T h i s code is guaranteed to correct 4 ertisuras by \ising .syndrome decoding [37 . 

Its parity-check matrix is given as 

/ 110100010000000 \ 

OIIOIOOOIOOOOOO 

OOllOlOOOiOOOOO 

OOOIIOIOOOIOOOO 

OOOOIIOIOOOIOOO 

000001101000100 

000000110100010 

V 000000011010001 J 

If the received sequence y with erasures in position { 1 , 2 , 3 , 4 } , referring to the 

H. we can have two sets of equations: 

o tlie received set of equations '* 

//rcc(5)-f :7r.c(6) + v/,,,(8)4-.y,..c(12) = 0 

yrcc(6)-hy,.. .(7) + y , , , ( 9 ) + yr<x(13) - 0 

2 / r c c ( 7 ) - i - y r . c ( S ) + W ( l O ) + / / r . r ( l 4 ) = 0 

the erased set of equations 

^/rcc{0) + y . ( l ) - f : / A ( 3 ) - f 7/ , , ,(7) = 0 

yc{l)-\'y,{2) + yM)-^yrrA^) = 0 

yr{2) ^ yA3)yr.c{S)yr,r.{9) = 0 

y . ( 3 ) - f v / , ( 4 ) + Y / , , , (6) + // .«,(10) = 0 

yci^^}-^yrec(^)-^yrcc{7)^ynMl) = 0 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

For conveiiieiico, the expression of (y(/) represents llie received bit at position. 
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2.4 M a t r i x - b a s e d I n - p l a c e D e c o d e r 

Polyuonnal-upciate ProcessThe.se two .sets iire in response to Hr,:r. and H, . 

Starting with y , { l ) : Equation (2.1^1) is flagged and subtracted from (2.15), only 

becau.se yt{l) is not contained in the other equations. T h e n the erased set can be 

written as: 

yr.c(0) + 2/,(l)-t-//,(3) + 7 / , , , (7) = 0 * foryA(l) (2.19) 

y.«.(0) + /A(3) + y, , , (7) + y,(2) + ^e(̂ l) + /^^^^^ = 0 (2.20) 

:y.(2) + i/,(3) + 7/ , , ,(5) + 7 / . , ,(9) = 0 (2.21) 

Vd^)VcW-h VrerXG)-h yr^rXlO) = 0 (2.22) 

.'A('I)+2/rec(5) + 2/,ec(7) + / / , , , ( l l ) = Q (9.23) 

T h e * represents the flagging of (2.19) meaning that this equation will be 

fixed and used to solve for /yt(l)-

Tl ie next unknown is j(/c(2) contained in unfiagged (2.20). T h i s equation is 

flagged and subtracted from the non flagged equations containing yc{2) to produce 

the next .set of equations. 

i /r«c(0)+ y . ( l ) - f ? A ( 3 ) + ? W ( 7 ) = 0 * for y , ( l ) (2 .24) 

yrcc(0)+ y .{3)4- y...:(7) + i/,(2) + y,(4)-^y^^^^ = 0 * for -j/.(2)(2.25) 

yrrA0)+yrrc{7)-\-yM)+yrcc(S)+yrerX^)-\-yrcc^^^ = 0 (2.26) 

y,(3) + 2/.(4)4-'// .«c(6) + i/.cc(10) = 0 (2.27) 

ycW + yrcc{^) + yrerX') VrcrXn) = 0 (2.28) 

T h e next unknown is yt(4) contained in (2.26). T h i s equation is flagged and 

subtracted from the non-flagged equations containing yd^) to produce the next 

set of equations. 
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VrcrXO) Hh + yS^) + yr.c{7) = O ^ f o i j ^ (2.29) 

VreAO) + yc{3) + (/rc.(7) + y,(2) + yc('l) + VrcriS) = 0 * for y,{2) (2.30) 

y,-,..n(0) + v/.ec(7) + y. (4) + ^,,^(8) + yrU^) -f y . . . (9) = OJJOTJAII) (2.31) 

/A(3) + y.cc(7) 4- yreciS) + i/..c(5) + y.cc(9) + y..c(6) + y, .c( iO) = 0 (2.32) 

yrcciO) + y , , , (8) 4- //.,.(9) -h y . , . ( l l ) = 0 (2.33) 

Biick-f}Uiug Process There is now only one unknown remaining in an iniflaggecl 

equation, whicli is 7/^(3) in (2.32). T h i s is solved first to find /y(3) which is substi

tuted into all flagged equations that yc(3) appears, i.e. Equation (2.29) and (2.30). 

Equation (2.31) is solved next for 7/,(4) to determine y(4) whicli is then sub.stituted 

into the (2.30). Equation (2.30) is solved next for y, (2) and finally Equation (2.29) 

is solved for //^(l). 

It is worthy to compare the In-place algorithm with the well-establislied al

gebraic decoding algorithm. Given a binary {a.k.d = 2t. -t- 1) B C H code, the 

algebraic decoder is capable of decoding up to 2t = d — } erasures, while the 

In-place algorithm is capable of decoding up to n ~ k{> il) erasures. Also, the 

distance distribution of B C H codes is biuoinial distributed. Therefore, the In-

place algorithm can decode more erasures than the algebraic decoding algorithm 

for the most of time. 

For a quick comparison on the performance of the recovery decoder, tlie 

guess/umlti-guess decoder and the In-place decoder, we also use the P E G L D P C 

code (256,128) as the code candidate. Figure 2.9 exhibits the In-place decoder 

achieves the best performance especially at a low p region. When /; = 0.35, the 

performance of the In-place decoder is at least 100 times better than those of 

the Recovery algorithm and the S-Guess algorithm (7^<y,„ax = 3), around 50 times 

better than that of the C-Guess algorithm (// .y„iax = 3). 
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, 3 L 

kvpuce • ' « 

045 0.5 0.55 0 6 

Figure 2.9; A performance comparison on the results of the Recovery* decoder 
Guess decoder (including C-Guess and S-Guess) and the In-place dec-oder 
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2.5 Numerical Results and Discussion 

2.5.1 Performance of the Recovery Algorithm 

First , we evaluate tlie perforniauce of the Recovery Algorithin witli the L T codes 

with Solitoii distribution a.s described in [38] and irregular L D P C codes. As 

shown in Figure 2.10. the i^erformance of irro^'il^i" L D P C codes is significantly 

better than that of the L T codes for the same block length. As a conscciuence. 

we mainly use L D P C codes to benchmark the remaining algorithms. 

1 1 
LTcod« — B 

: PEG cole 

1 1 3 

a 

J" 

1 ' A 

- : -

_ 

^ J-

/ 
./ 1 • 

: ; . : 

• 

. a ' 

045 0 5 
CodwaietR) 

Figure 2.10: Performance of the L T codes and irregular L D P C codes with the 
erasure probability p = 0.2 

A particularly strong binary code having a sparse H is the cyclic L D P C code 

(255.175), wiiich has a length of 255 bits after encoding of 175 information bits. 

T l ie cyclic L D P C code (255.175) has a minimum Hannning distance of 17. Since 
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2.5 Numerical Results and Discussion 

One-step majority-logic ( O S M L ) codes have been rediscovered [35] because 

of their good jjerforniance as L D P C codes with iterative decoding algorithms. 

Tl ie parity-check equations of O S M L codes are orthogonal on eacli bit position 

of the codeword wliicli implies the absence of cycles of length 4 [73]. We apply 

different guess algorithms on the (255,175) O S M L code. From Figure 2.1^1, we can 

see tliat the crucial guess algorithm has the same performance as the sequential 

guess algorithm, whereas the crucial guess algorithm works effectively mainly for 

L D P C codes. 
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to* •* 

. / 

• 

/ / 

/ 
/ 

S < i u M — • - • 

(/̂ )"fymnx = 2 

f 1 - — 

/ / " ' 

/ / 
/ -•' 

/ • 
/ 

• • • 

• 

T^memwH - -

S C M H -

(c)/i(/,„ax = 3 

Figure 2.12: Different guess algorithms for the P E G L D P C (256,128) 
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the parity-check polynomial of the (255,175) code is orthogonal on every bit 

position, the inininunn Hamnung distance is i-h w, where w denotes the lunnber 

of ones per row in H (53 . 

2.5.2 Performance of the Guess/Multi-Guess Algorithms 

We then investigate the performance of the guess/nmlti-guess algorithms on 

L D P C codes and one-step majority-logic ( O S M L ) codes. 

Figure 2.11 shows the comparison of the performance between the recovery 

algorithm and the guess algorithm for the (255,175) code. Also in this graph, we 

give the performance of the In-place algorithm which can be considered as the 

M L performance for the (255,175) code. Due to tlie sparse structure of its parity-

clieck matrix, the guess algorithm witli less than 3 guesses can achieve more than 

1 order of magnitude improvement compared to that of the recovery algorithm. I t 

is also illustrated in Figure 2.11, the curve of the guess algorithm is very close to 

the curve of the In-place algorithm, whicli implies the guess algorithm is a "sul> 

optimal"' decoding algorithm when the applied code is constructed by a sparse 

parity-check matrix. 
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10-

••—I 1 
(255,175) with RocovefyAfoonthm • a 

(255.175) with Guess AlQOnlhm 
(255.175) wiihlnplaceAlflonlhm — H 

0 24 0 26 
erasurs probaWfbes 

0.28 03 

Figure 2.11: Performance of the Cycl ic L D P C (255.175) witli tlie Guess and 
In-place algoritlun 

Figures 2.12 and 2.13 depict the difl'ercnco between the sequential guess al

gorithm and the crucial guess algoritlnn on L D P C codes. As can be seen, the 

more the number of guesses, the better the performance of the guess algorithm 

can be obtained. When the ninnber of gue.sses is more than 1, the superiority 

of the crucial guess algorithm in comparison to the sequential guess algorithm is 

obviously presented in both figures. Especially in the graph of the P E G L D P C 

(256-128), when /Af / ,nax = 3, the crucial guess algorithm achieves the performance 

asymptotically close to the M L performance obtained by the In-place algorithm 

as the erasure probability decreases. 
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1 1 

/ / 
J / 

i. / 
--

i 
1 t 1 

- I 
W«Cff^TI —•-

( f / ) " f / . n f . x = 1 

( ^ ) ' ' f / . n a x = 2 

- " • 

/ 
/ / 

J 
* 

/ 
/ 

* 
I t 

i 
• I 

\Qumm 

(c)/t5r„,ax = 3 

Figure 2.13: Different guess algorithms for the L D P C (1024,512,24) 
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0 l i 93 0-W 

(«)"^/mB.x = 1 

I I S 0 2 023 O J OJS 0 4 04$ 0 3 D M 0 1 

(f')»(y.nax = 3 

Figure 2.14: Different guess algorithms for the OSML(255.175) 
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2.5 Numerical Results and Discussion 

2.5.3 Performance of the In-place Algorithm 

Figure 2.15 shows the performance of the (3<11,205) L D P C code, which has a 

niininnun Hamming distance of 16. Comparing these results of the recovery and 

the guess algorithms, the multi-guess algorithm can obtain the results by several 

orders of magnitude better. For example, when the erasure probability ccjuals 0.3. 

the multi-guess algorithm with n</„inx = 3 is one order of magnitude better than 

the recovery and guess algorithms; when / / ( / m a x = 5. the multi-guess algorithm is 2 

orders of magnit ude better than the recovery and guess algorithms. Sisiiifirantly. 

as an M L D , the In-place algorithm can achieve 4 orders of magnitude better than 

the recovery and guess algorithms. 

0.25 0.27 0.28 0.29 0,3 
erasure probab«lios 

0.31 0.32 0.33 0.34 

(34t.205)wilhRQCOveryAloori(hm - O 
(341^05) with Guess Algofilhm — 

(34l.2(^)withMiAi-guGSses Algorkhm(gmax-3) 
(341.205) wtlh MuJli-guessBS Alflorithmiomax-SS - - K -

(341505) wilh In-place AlgoriCim — I — 

Figure 2.15: Performance of the Cycl ic L D P C (34L205) with the Recovery, the 
Guess, the Multi-Guess and the In-place Algorithms 

T h e ultimate performance of the ln-p!ace algorithm as a function of error 

correcting code is shown in Figure 2.16 for the example (255,175) code which can 

correct a maximum of SO erased bits. Figure 2.16 shows the probability density 
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fimction of the number of erased bits short of the maximum correctable wliich is 
// - k. 

T h e results were obtained by computer simulations. T h e probability of being 

able to correct only 6S bits, a shortfall of 12 bits, is 1.1x10"^. Simulations indicate 

that on average 77.6 ertised bits may be corrected for this code. In comparison the 

B G H (255,178) code having similar rate is also shown in Figure 2.16. T h e B C H 

code has a similar rate but a higher minimum Hamming distance of 22 (compared 

to 17). It can be seen that it has better performance than the (255,175) code but 

it has a less sparse parity check matrix and consequently it is less suitable for 

the recovery algorithm and the guess algorithm. Moreover the average shortfall 

in erasures not corrcctctl is virtuallv identical for the two codes. 

0.0001 

lo oos h 

BCH 255.178 cydiccodo 
255J 75 cyclic codo 

10 15 20 
_P<un^t)er_ci,.qjs«! talis short of n-k 

30 

Figure 2.16: Comparison of Probability Distribution of Number of Erased Bits 
not Corrected from Maximum Correctable (n — k) for (255,175) code and B C H 
(255,178) code 

T h e simulation results of using In-place Algorithm for the (103,52) quadratic 

residue binary code ('13] are shown in Figure 2.17. T h e minimum Hamming 

distance for this code is 19 and the results are similar to that of the (255.17S) 
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B C H code above. It is found from the sinmlations tliat on average 49.1 erasure 

bits are corrected (out of a maximum of 51) and the average sliortfall from the 

maximum is 1.59 bits. 

I03_52 cydlccoOe 

3 0,001 

0.0001 

0 005 

l e006 
10 !5 20 

Number ot erased bits short o» n-k 
30 

Figure 2.17: Probability Distribution of Number of Erased Bits not Corrected 
from Maximum Correctable {n — k) for (103, 52) code quadratic residue code 

Similarly the results for the extended B C H (128,64) code is shown in Fig

ure 2.18. T h i s code has a mininuuu Hamming distance of 22 and has a similar 

probability density function to tlie other B C H codes above. O n average 62.39 

erasure bits are corrected (out of a maximum of 6'1) and the average shortfall is 

1.61 bits from the maximum. 
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1 2 B J M cydic code 

o 0.00 

• 0001 

10005 

leooe 10 15 20 
Numb€r of erased bits ihoft 0*. n-k 

30 I 

Figure 2 .IS: Probability Distribution of Nmiiber of Erased Bits not Corrected 
from Mfiximum Correctable (n — k) for (128,64) extended B C H code 
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2.6 Summary 

2.6 Summary 

In this chapter, we present different decoding algorithms of erasure codes, es

pecially for L D P C codes over the E E C : the recovery, guess/nmlti-guess and the 

In-place algorithm. To break the stopping sets caused by the code structure ef

fectively and efficiently, we propose the crucial guess algorithm. T h e multi-guess 

algorithm is an extension to the guess algorithm, which can push tlie l imit to break 

the stopping sets. We also show that the guess and multi-guess algorithms are 

parity-check niatrbc dependent. For the codes with sparse parity-check matrix, 

the guess/multi-guess algorithms can be considered as "sul>optimal decoding"' 

algorithms, in particular with the crucial guesses. 

Tl ie In-place algoritlnn is an optimal method which is capable of achieving 

an M L performance for the B E C . For linear block codes, the In-place algoritlnn 

ensures to correct n - k - p erasures, where p is a small positive integer. 

Chapter 5 and Chapter 6 will further optimise the application of tlie In-place 

algoritlun with a mucli reduced computational complexity. 
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Once you eliminate the impossible, whatever remains, no 

matter how improbable, must be the truth. 

Arthur Conan Doyle (1859-1930) 

Branch-Evaluation Search on the 
Code-Tree Algorithm 

3-1 Background 

In tills chapter, we consider the performance of (erasure) codes on the Additive 

White Gaussian Noise (AVVGN) chaimel. When erasure codes are employed for 

different communication systems, the outputs for decoders are no more three 

levels (0, L "?") , which are so-called "soft-decision"' outputs. By deploying the 

soft-decision outputs, the code performance is about 3 d B of coding gain [37] 

over the hard-decision algoritlnn. T h e better performance is paid by more com

putational complexity. T h e decoding algorithms with the use of the soft-decision 

received sequence are generally called soft-decision decoding, which normally are 

categorised as reliability-based decoding algorithms and code sti ncture-based de

coding algoritlniLS. T h e ordered statistic decoding ( O S D ) algorithm [23] has 

been known as an ML-approachable algorithm wlncii is implemented based on 
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the. fhanncl reliabilities of reeeiveri vectors. It is capable of offering an MFJ perfor

mance when the number of orders is up to the information length of the applied 

code. Under this situation, tiie OSD algoritliin is equivalent to its ancestor, the 

classic Doisdi decoding algorithm [17], in which, hard decisions are derived from 

the soft decisions using standard bit-by-bit detection, choosing the binary state 

closet to the received coordinateThe idea of the Dorsch algorithm has been ex

tended by Tonilinson et al. [75). which involves a technique for any linear [n. k) 

code, erasures that (n-A;) less reliable, soft decisions of each received vector may 

be treated as erasures in determining candidate codewords. 

As first introduced in computer science, the tree slructure. emulating a tra

ditional hierarchical structure by a set of branches and vertices, has been widely 

introduced to the hierarchical data maniijulation, the information search engine, 

the special composition of digital images, the industrial system safety evaluation 

and so on. 

By utilising the hierarchical property of the tree structure, in 2005 and 2006, 

Rosnes O.Ythelius (62), Rosnes k. Ytrehus [63). proposed a precise but exhaus

tive tree-structured search algorithm on turbo codes' stopping set.s, which has 

been known as "ExJiaustive Tree-Search Algorithm" . In 2007, Rosnes Ytrehus 

64) upgraded the algorithm and employed it to find all the stopping sets and 

codewords for L D P C codes. The upgrcided tree-search algorithm improves the 

search efficiency by giving a preset limitation on the search scope. In 2009, Am-

broze ei al. [2) further developed the tree search algorithm into a tree-based weight 

spectrum evaluation algorithm. 

In this chapter, we propose a new universal decoding algorithm which is a com

bination of the reliability-based decoding algorithm and the code structure-based 

decoding algorithm. This chapter starts with a review of tlie classic reliabilit\^-

based algorithm - the OSD decoding algoritlun to discuss the crucial metrics to 

approach an M L performance in Section 3.2. Section 3.3 gives a description on 

the code tree and defines different types of code trees based on their growing 

directions. In Section 3.4, we describe the algorithm in details. Then, we apply 

our decoding algorithm to different linear codes and compare the performance 

and computational complexity with the OSD algorithm in Section 3.5. 
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3.2 A Review of the Ordered Statistical Decod
ing Algorithm 

The OSD algoritlnii [23). proposed in 1995. has been coii.sidered as an ML-

approachable reliabihty-based decoding algorithm. 

Assume a BPSK-niodulated vector x = { X Q . X I , ... ,Xn^\} which lias been 

encoded by tlie code Q{;n,k), is transmitted througii the AWGN cliannel and 

tlien it iy received as tlie received vector, defined as y = {yo-. Vi: • • • ; i/n-i}- The 

vector y hixs its channel rehablHty. written as 02, as expressed in (3.1). 

= {\yolM----.\yn-A} (3.1) 

Order the vector y based on tlie rehabihty values in decrciising order into 

a new vector of y'. And, the reliability vector 3? is also permuted into a new 

reliability vector ^' with tlie same ordering rule as the one applied on y. 

= { | y ; U y ; h - - J ? / n - i l } (3-2) 

wliere TQ > r\ > > /•;,_,. 

Denote the permutation function as 7r( ), and then we have: 

y - ^(y) (3-3) 

:k' = 7T{JI) (3.4) 

Applying the 7T(-) function on the columns of the generator matrix G , we will 

have 

G ' = 7r(G) (3.5) 
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If the first A: cohiniiis are not inclependent * and so tliey are not, able to 

represent tlie inforniaiion part of the codeword, the second pernintation function 

7i2{-) is required to \mi G ' a.s a systematic generator matrix G and therefore the 

received sequence is furtlicr re-ordered as 

y = M y ) 

= ^2{7r(y)) (3.6) 

Decode the seq\ience y from (3.6) by a Iiard-decision decoder (HDD) and then 

output acodevvoicl. dciioted as z. 

z = (zo,Zi, z t , . i , z , , , . . i „ _ i ) (3.7) 

MRB UIB 

The first A: components of z are the so-caUed most reiifible basis (MRB) part and 

the otlier n — k comjionents arc defined as the least reliable basis ( L R B ) part for 

the apphed code G. Becau.se the MRB part contains the bits/symbols with the 

most reliabihty. it should have few errors. 

Denote as the set of tlie MRB bits. Encode witii the systematic generator 

matrix G , a corresponding codeword c is obtained. 

c = z , G (3.S) 

By de-pernuiting tlic codeword with the permutation functions 7r( ) and - 2 ( ), a 

potential codeword c from the original code C is obtained by: 

c = 7r- ' (7: - ' (c ) ) . (3.9) 

By then, the process of the OSD-0 decoding is completed. When the order of 

the OSD decoding is more than zero, the additional process is performed. Suppose 

that an OSD decoding is with its order of For the variable / in 0 < / < make 

all possible changes of / of and then encode the.se changed sequences into 

"After ai>plyiiig tlio Caussiaii Eliiiiination algoritlini on the inatri.x, if the rank of tlic identity 
part equals to Ar, we say the first A- columns are independent; otherwise, the first A cohunns are 
not linearly independent. 
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codeworcls { c i , C 2 , •••CjVu,n(osDt)-i} = ^- Tlie notation of C represents a potential 
codeword set. 

The number of tlie potential codewords in C can be derived by: 

' /A-

Nuni(OSD,) = Yl{.'] (310) 
j=0 

Then compute tlie cross-correlation metric correl(y,Cj) as follows; 

n-I 
correl{y,Cj) = "^VsCj,, (3.11) 

The potential codeword with the maximum correlation result is selected ris 

the decoded codeword. 

Obviously, the OSD algorithm is an ML-approachable algoritinn when / = k. 

It is shown in [23] that for most block codes of lengths up to 128 and rates k/n > ^ 

that i = [f/jniii/'U is capable of acliieving an ML decoding performance. 

3.3 Code Tree Representation of Linear Block 
Codes 

The code tree is a graphical code representation by tree structure, wliich is com

posed of branches and vertices. The set of branches is written f\s B = {BQ, B\,. ..} 

and the set of vertices is written as V = {t;o, '^i: • • •, Vu}- The arborescence traits 

can be represented mathematically by a given specific order, which is controlled 

by the code. Consider a binary code Q(n, k) with its generator matrix and parity-

check matrix, G and H respectively. Each codeword a G 6 constitutes a complete 

branch B, of its corresponding code tree Te, where the index / is in the range of 

0 < / < 2̂ ' — 1 ^ Therefore, a complete code tree should contain 2''" branches. 

As an instance, the complete branch of the all-zero codeword is BQ consists a 

spans, which are connected by n-\-1 vertices, which is shown in Figure 3.1. Each 

span is denoted as The value of bij also represents the label on this span. 

*Nonnally. i is tlie decimal representation of tlie codeword sequence. 
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For a codeword c,- = (-̂ o-î -i • • ^n-i) its corresponding branch i?,- = 

. (^,-.0^iM^-.2 - • • : ^ i . r , - l ) : liaVC 

.̂1 = 1̂ 

The set of vertices {VQ,VI, V-2., . . . ,Vn} can also be considered as the indication 

of the tree growing direction. At each vertex, the branch diverges into q spans 

when the applied code is over 6'F(f/). In this chapter, we only consider binary 

linear codes and lienceforth. at each vertex, there are at most 2 diverged spans. 

The vertices of /;o and v;„ represent the ends of the tree. Different to the trellis 

representation of a code, tlie code tree docs not have to start from the vertex of VQ. 

It can be initialised from any int^erinediate vertex vj, where j can be arbitrarily 

chosen from 0 to The initial growing vertex is designated as Viriitiah Tlic first 

example of code tree as shown in Figure 3.1 is witli its /;;„,/in/ = ''O- This kind of 

code tree is defined as oiie-dirGCtiomii code tree. 

3.1 Definition (One-directional Code Tree). For a code tree representation, 
if the initial growing vertex VinUiai = VQ or ViniUai = v„, the code tree ex
pands only towards v„ or VQ respectively. Tliis kind of code tree is called "one-
directional" code tree. 

The second example of code tree, given in Figure 3.2, shows a code tree 

growing from its Vinitiai At one of the intermediate vertex. This is one of tlie 

dilfcrcnt points between the tree representation and the trellis representation. 

Instetid of being controlled by the time only, the code tree is also under the 

control of the growing direction. 

3.2 Definition (Bi-dii^ctional Code Tree). For a code tree representation, if 
the initial growing vertex VinUiai = ^xj where 0 < x < n, the code tree ex
pands towards VQ or Vn simultaneously. Tliis kind of code tree is defined as 
"bi-directional" code tree. 
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Figure 3.1: An example of Code Tree I (One-directional Code Tree) 

As illustrated in Figure 3.2. the bi-directional code tree should have its both ends 

with tlie nmnber of points more than 1 but less than or equal to 2^. This is 

controlled by the position of Vinmat-
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2* 

^initial 

Figure 3.2: An Example of Code Tree I I (Bi-directional Code Tree) 

3.4 B E S C T Algorithm 

As proposed, tlie B E S C T algoritlun utilises the hierarchical property of the tree 

structure combined with the reliability-based decoding algorithm to realise an 

MLD. For the B E S C T algorithm, we select tlie bi-directional code tree with its 

initial vertex at the separation of the information part and the parity-check part. 

To be more specific, we also call the initial vertex as the "cut point vertex", 

written as v^t and Vct = Vi„niai- I b e specific code tree for the B E S C T algorithm 

is designated as JBESCT-

Suppose the upper end in accordance with the parity-check part and the lower 

end in accordance with the information part. The number of vertices at the 0̂ '' 

upper end layer is 2""̂ ' and the number of the vertices at the /i"* lower end layer 

is 2^ 
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The cut point vertex v;„_/, divides its 7BESCT '^"^ the subtrees of 'J'(bo: b„_A._,) 

and T'(b„_A.,b„_i). The bold notation of bj presents all the branch spans con

necting the vertices between the layer j and the layer j -h 1. Obviously, the code 

tree TBESCT can be written as 

BESCT = T ' ( b o . b „ _ , _ i ) o 7 ^ ( b , . . , , b „ . 0 (3-12) 

In (3.12), the notation o represents the concatenation of the subtrees 7^(bo:b„_/^._i) 

and 'J^(b„_^.,b„_i). 

Observing the branch corresponding to the codeword Ci it can also be 

written as 

S.- = B[(bi.o..b:,„_,^,)oB[{b,,„.,.,b,,,_,) (3.13) 

where we call B] as the sul>branch of the i"' branch. By setting Vct = i^n-k-. 

complete branch is partitioned into a parity-check sul>branch and an information 

sul>branch, written as ^i(^,-.Oi'^^n-t-i) and jB-((>i,„_jt: ̂ ,.»-i) respectively. Never

theless, not every complete branch corresponds to a valid codeword. Therefore, 

to avoid an ambiguity to complete a valid codeword branch, at the a coding 

rule, such as H or G , needs deploying. 

G = (3.14) 

Example 3.1: The Hannning code (7,4,3) has its systematic generator matrix 

G as follows: 

( 1101000 \ 

1010100 

0110010 

y 1110001 J 
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and then the corresponding full code book is listed as follows: 

e = 

(000 OOOO) 

(110 1000) 

(111 0100) 

(Oil 1100) 

(Oil 0010) 

(101 1010) 

(000 1110) 

(111 0001) • 

(001 1001) 

(010 0101) 

(100 1101) 

(100 0011) 

(010 1011) 

(001 0111) 

. ( I l l n i l ) 

Each row contains a single codeword with its LHS as the parity-check part and 
its RHS as the information part. Followed the content of the code book, the 
Hamming code (7.4.3) htis its code tree 7BESCT constructed as demonstrated in 
Figure 3.3. 

In Figure 3.3, the blue-traced and red-traced spans have tlieir labelled val
ues of "0" and "1" respectively. Suppose the index of vertex ascending from 
the top to the bottom as {^o, tin -. •, f?} Ĵ nd the index of span ascending as 

• • i^-.c}- Therefore, 

BESCr = ^(bo,b2)oa^(b3,bo) 

' ^ ( b o , b 2 ) is the parity-check subtree and ^ ( b 3 , b c ) is the information subtree. 
*J^(bo,b2) contains S sub-branches and ^ ' ( b a . b G ) has 16 sub-branches. 
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Q 

p o o 

Parity-check Section 

Cui po 'mx venox 

O 
Information Section 

Q 

,0 0 O © Q 
. - - V 

o o' o o' O 6 O O O £) O Ô O 'O G o 

. V 

Figure 3.3: 7BESCT of the Hanuning code(7, 4, 3). A coding rule has to be applied 
to validate a codeword. 

3.4.1 The Concept of Ensemble Branch 

In this section, we introduce the concept of ensemble branch for an efficient 

B E S C T process. For ATBESCT generated from C(n.k), the code tree contains A: 

ensemble branches {^o"; ^i"- • • •: ^t-i)- . ^̂ ^̂ ^ of which has the labels same as the 

elements of the generator polynomial g, from the systematic generator matrix G . 

Then, we have: 

Bf" 

= ( 9LO 9iA 

= %i 

len \ 

9i.u-\ ) 

(3.15) 
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where / G { 0 , 1 , . . . , A: - 1}. 

Using an instance in Example 3.1, for the Hannning code (7,4, 3). the Ty/rscr 

has the ensemble branches as 

fij" = (1101000) 

Bf" = (1010100) 

B^" = (0110010) 

= (1110001) (3.16) 

By arbitrarily selecting and combining the ensemble branches, a valid branch 

can be generated. Whereas, the total number of the valid branches can be derived 

by: 

Nurn{B) = V C ) (3.17) 
- ^ 0 

t=Q ^ ^ 

Therefore, for ^m^^sCT of the Hannning code (7.4.3), it luis valid branches with 
the total number of (̂ ) -h ('|) + (ij) -(- (l̂ ) -f (^) = 16. 

3.4.2 Cost and Dynamic Threshold 

The TBESCT is constructed based on the ordered received vector y as described in 

Section 3.2. Whereas, the parity-check subtree ^0^5cr(^O; ^n-fr-i) corresponds 

to the L R B part and the information subtree 7'BEScri^"-t^: ^n-i) corresponds to 

the M R B part. 

Instead of an exhaustive search over the complete 7BESCT: the B E S C T algo-

ritlnn evaluates the possible branches by comparing their costs with a dynamic 

threshold. 

3.3 Definition. The cost, written as cst{-), is designated as a cross-correlation 
metric between the branch/span labels and the ordered sequence y. 

- the cost of a single span: 

cst{bi,,) = (2fci,, - 1)7/,,- (3.18) 
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where 0 < q < n — 1. 

- the cost of a partial branch: 

cst{Bi{bi,,,, 6 ,̂̂ )) = {2bi,,, - l)7/,i + ( 2 6 , . - l)i/(,.+i, + . . . 

+(26i,(^_i) - l)y^., -h {2bi,,, - 1)5,,, (3.19) 

where 0'< qi < q2 ^ n — 1. 

- the cost of a. complete branch: 

n-l 

cstiBi) = J2^2bij-l)yj, (3.20) 

where z is from 0 to 2*̂  — 1. 

The target of the B E S C T algorithm is to search a branch with its cost closest 

to the overall magnitude of the received vector. Designate Mag(-) as a function 

returning the sum of the magnitude values of a vector as follows: 

« - i 

Mas(y) = ^ | ? y , | (3.21) 
j=0 

The Mag(y) is equivalent to a cross-correlation metric on the received vector 

y and its hard-decision output u. However, the hard-decision output u may not 

be a valid codeword of C if H • u'^ 7̂  0. Then the B E S C T algorithm starts to 

evaluate the branches from the spans comiected to 0^. 

In the B E S C T process, two dynamic thresholds control the evaluation process. 

- The first threshold is based on current highest branch cost at stage i. which 

is designated as thcst and called as the "cost threshokF. Suppose at stage 

/. the cost threshold is thcst ^̂ "cl the cost of current branch is cst(Bi). 

- The second threshold is introduced as the term 5{thcsi:Csi{Bi)), which is 

the discrepancy between Mag(y) and csi(Bi). J(Mag(y) ,c6i (Bi) ) is used 
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to control the growing dhecUon of next branch and called as the ''direction 

threshoUr. 

The concept of growing direction is devised to control the branch growing 

process, which contributes to a reduction of unnecessary computations and oper

ations. From the cutting vertex Vat.. mark the vertices in the information tree as 

'4": '^fc-i: • • • ̂ ô'- At the vertex of v^', that is, at the layer: 

y/ the process of an inserting-vertex at the hiyer of — 1 is defined cis growing-

forwards, written as V"*"; 

y/ the process of a deleting-verte.\ at the layer of j is defined as growing-

backwards, written as V~. 

By utilising ensemble branches^ the process of branch growing can be done 

in one step. For a given branch B, = ('̂ i.o î.i • • • ), if an inserting-vertex 

or deleting-vertex process is to be execuied at the 7"' layer in the information 

sub-tree, the spans of the new branch B . + i can be obtained as: 

Branch-wise, this operation can also be written as i = B,- CI) Bj" . 

3.4.3 The B E S C T Algorithm 

Step 1 The information sub-branch BQ(^;o.n-Av^n.n-i) is obtained by: 

{0, if Vj < 0 
(3.22) 

l , i f yj>0 

Then, the parity-clieck sub-branch BO(/>O.OT ̂ o.n-A-i) can be derived from tlie 

ordered generator matrix G . Concatenate the.se two sub-branches into the 
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first complete branch BQ as follows: 

Bo = Bo(fco,0:6o.„-A:-l) o B o ( V » - / : : ^ O . n - l ) 

Also. 

(tk^t =cst{Bo) 

\5(Mag(y),c6-i(f io))>0 

Step 2 Applying the growing-forwards process V'^ at the (n - A:)"' layer, wliich 

corresponds to the less rehable bit in the M R B part, the new branch B^ is 

obtained by: 

B, = Bo@B^" 

And the cost threshold is updated as: 

^ r . . „ . i f . / . . > c . w , ( B . . ) 

\ c 6 i ( B . ) , i f ' . / w < c A i ( B , ) 

where / = 1. If the cost threshold is updated with the new cost, push the 

current branch into the potential codeword set CF. 

Then the growing direction is determined by the value of f^(Mag(y). cst{Bi)): 

• if ^^'(Mag(y),CA^(Bi)) > 2|?/fc_2|.. processes Step 3: 

• if J(Mag(y), csi(Bi)) < 2|?/fc_2|: stops and processes Step 5. 

Step 3 V'^ process At the j"' layer, the new branch B^ is obtained by: 

B, = V » © B - , _ , - (3.24) 

And update the cost threshold as described in (3.23) with / = q. If the cost 

threshold is updated with the new cost, push Bq into the potential codeword 

set J . Then the direction threshold is also updated as (5(Mag(y), cs£{Bq)). 

• if J(Mag(y). cst{Bq)) > 2\yi,_j_i\, q = q + I and continues Step 3: 

• if 6{Miig{y),cst{Bq)) < 2\yh-j-i\, processes V~ in Step 4. 
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Step 4 V~ process If the direction threshold indicates a growing-backwards process 

at the j " ' layer, the branch B^^ is obtained as the same as in (3.24), which is 

equivalent to cancelling the process of Step 3 at the j ' " ' vertex, and therefore 

Bq, = ^ ( , - 1 ; update the cost threshold and the direction threshold as Step 

3. 

o if d(Mag(y),c67,(i?q_i)) > 2\yk-j-2V. q = q + ^ and continues Step 3: 

o 6{Mag(y),cst{B^-i)) < 2|//^._j_2|. processes V in Step ^i. 

Step 5 When the process stated above finishes at 0^, evaluate the potential branches 

in 3" and the one with the most cost is identified as a valid codeword. And 

a B E S C T process is completed. 

3.5 Numerical Results and Discussion 

3.5.1 Performance of the B E S C T algorithm 

We apply the well-know union bound to evaluate the performance of the B E S C T 

algorithm in this section. 

= E £^(-')Q (\t=^^] (3.25) 

where tut is the code weight, E{-) is the weight enumerator. Q{ ) is the Q-fimction^ 

and Jl is the coderate. 

Iii 2009, Ambroze et al [2] developed the Tree-search based Codeword Set 

Enumeration ( T C S E ) algorithm to search all the codeword sets up to size of 

threshold r for any parity-check codes. The computational complexity increases 

as the value of r increasing. By setting a reasonable size of r, a partial weight 

enumerator table can be achieved. Implementing the union bound P ôcjt in (3.25) 

with the partial weight enumerator table, a loose-lower union Ijound Pli^^x-

*Q(x) is the probaljility that, a standarcl normal rancloiii x-jiriable will obtain a \-aluc largei 
than X. 
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be derived as follows: 

• tut 

< P, ^ J block 

The partial weight enumerator table of the P E C - L D P C [32] code (256,128,17) 

has been given in Table 3.1 by setting r = 20. 

the P E G - L D P C code (256,128,17) 
Code VVeiglit 17 18 19 20 
Enumerator 4 13 39 74 

Table 3.1: Partial Weight Enumeratoi-s Estimated bv the T C S E Algorithm [2) 
(A) 

Figure 3.4 illustrates the comparison between the proposed B E S C T algoritlnn 

and the OSD-/ algoritlnn. The hard-decision decoding (HDD) algorithm is equiv

alent to the OSD-0 algorithm. Tlie P E G - L D P C code (256,128,17) with its min-

inuun Hamming distance of 17 is one of the liigh f/,„i„ L D P C code. As shown in 

Figure 3.4, the B E S C T decoder is capable of performing asymptotically towards 

to the partial-lower union bound Pliock- *s ^̂ "̂ ^ shown that when FER < 10"^, 

the performance of the B E S C T algorithm has significantly gained more than 2 

dB than that of the OSD-3 algorithm, more than 3 dB than that of tlie OSD-2 

algoritlnn and around 4 dB than that of the OSD-1 algorithm. 
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Figure 3.1: Performance of the P E C - L D P C code (256.128,17) 

Tjimi rt. al. [73] proposed tiie Euclidean Geometry ( E C ) L D P C code (63. 37, 9) 

based on cyclotomic idempotcuts. This code lias been generated with the f/„,i„ 

of 9 by a sparse H matrix. By employing the T C S E wcigiil enumerator search 

algorithm, rlie partial weiglit enumerator tabic of tlie E G - L D P C code (63,37,9) 

is given in Table 3.2. As illustrated in Figure 3.5, the OSD-3 is capable of 

the E G - L D P C code (63,37,9) 
Code Weight 7 8 9 10 
Enumerator 0 0 1960 10581 

Table 3.2: Partial Weight Enmnerators Estimated by the T C S E Algorithm [2 
(B) 

achieving an MLD performance as the B E S C T algorithm. It is also shown that 

the OSD-2 decoder performs sul>optimal when FER > 10"'*, which means if 

the transmission condition is defined as < 5f/B, the OSD-2 decoder can be 
considered as a practical decoder with lower computational complexity tlian the 

OSD-3 decoder. 
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Figure 3.5: Perforniancc of the E G - L D P C code (63.37,9) 

\Vc also evaluate the perfonuauce of the OSML code (255,175) which has 

beeu discussed iu Section 2.5. Figure 3.6 depicts that wheu FER < 10"', the 

pprfonnancp of the B E S C T algorithm has significantly gained more than 1 dB 

than that of tlie OSD-3 algorithm, more than 2 dB than that of the OSD-2 

algorithm and around 3 dB than that of the OSD-1 algoritlnn. 
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Figure 3.6: Perfoniuince of the OSNfL code (255. 175) 

Define p as a prime congruent to +1 or —l(niocl 8). and denote as the 

set of nonzero quadratic residues (mod p). Let ft be a primitive p"^ root of 

imity in an extension field of GF{2), and let the polynomial h{x) be defined 

by h{x) = nre/fo(-'- ~ which k{x) is a polynomial with cucfHcionts in 

C F ( 2 ) . The binary cyclic code of length p with check polynomial li{x) is called the 

expurgated quadratic residue (EQR.) code, and the code with check polynomial 

(x -f l)/i(:/;) is called the augmented quadratic residue (AQR) code. 

The extended quadratic residue (LQR) code {'\] is defined to be the set of bi

nary //-vectors of the form (co, C i , . . . , q^-i. c^c), where (co: C i . . . . . c^-i) is a code

word in the A Q R code, and cq -(- ci 4- . . . 4- Cp_i + ĉ^̂  = 0. It has been known 

for its jjowerful error-correcting capability but the difficult analysis of its weight 

spectrum. 

A binary self-duaJ code C with its length of n is a code over ¥0 satisfying 

e = e-̂ , where C"̂  is the dual code of C and defined as C*̂  = {a e F ; | E!'=o«'^i ^ 

O(mod 2).V6 e C } . A self-dual code G is doubly even if all codewords of C have 

their weights divisible by 4, and single even if there is at least one codeword with 

80 



3 . 5 Numerical Results and Discussion 

3.5.2 Discussion on the Computational Complexity of the 
B E S C T Algorithm 

In this section, we have a discussion on the computational coniplexit}- of the 

B E S C T algorithm compared with the OSD algorithm. It luis been known that 

the decoding complexity of the OSD algorithm is determined by the number of 

potential codewords for the final decision. Suppose the number of orders as t, the 

number of potential codewords for the final decision is Nuin(OSDt) — Yl'j=o (J)-

For the B E S C T algorithm, the computational complexity of the B E S C T algo

rithm is determined by the number of branches being evaluated during a B E S C T 

process. It is determined by the cost threshold on tlie K"*" process. Assuming that 

the cost threshold of tlie V'^ process is bounded l>y the vertex at the position of 

n — k- + I. the number of branches being evaluated is 

!\'um{BESCT,) = (^-^S) 

Figure 3.8 from (a) to (e) ilhistrates the comparison between the O S D algo

rithm and the B E S C T algorithm. It is shown that when the information length 

is fixed, when / < 4 and t < 4. the B E S C T algorithm has the computational 

complexity less than the OSD algorithm. 
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(a) k - 10 

(b) k - 15 

(c) k ^ 20 
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its weight = 2(mod 4). A self-dual code is called exCieinal if its (/,„i„ is the highest 

possible for the given parameters. 

The weight enumerator of an extremal doubly-even self-dual code of length n 

is given by Gleason's theorem, which has been derived in [56]. Here, we evaluate 

the B E S C T algorithm on the L Q R code (104, 52, 20) which is an extremal doubly-

even self-dual code. 

A{x) = E{i){i + 14x-' + - x'Y) (3.26) 

By (3.26), the weight spectrum of the LQR. code (104, 52, 20) ^ L Q R ( I 0 . 1 . 5 2 . 2 0 ) »s 

obtained as follows: 

- 4 L Q R ( I 0 4 , 5 2 , 2 0 ) ( ^ ' ) = + ^ • ^ " * ' ) + 

1138150 (.x'-V .7:^) + 

206232780 • {ur ' -t- x^^) + 

15909698064 •(:/^«-hx•"*^)-^ 

567725836990 • (x^- -t- -J^^) + 

9915185041320 • (x ' ° + x* '̂*)-f 

SS3557097SS905 • (x̂ *'' + :/;*̂ °) -f 

413543821457520 • (x'"' -\- x^ )̂ -t-

1406044530294756 - (:/;̂ )̂ (3.27) 

As shown in Figure 3.7. when PER < 10"''. the code performance of the 

B E S C T algorithm has been improved by 0.5 dB than that of the OSD-3 algorithm, 

1 dB than that of the OSD-2 algorithm and around 5 dB than that of the OSD-1 

algorithm. 
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Figure 3.7; the Frame-error-rate performance of the L Q R (lOi, 52, 20) 
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{(I) k - 25 

(e) k = 30 

Figure 3.8: The Complexity Comparison between the OSD algoritlnn and the 
B E S C T algorithm 
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A L G O R I T H M 

3.6 Summary 

In this chapter, a graph-based ML-approachiiig algorithm for the AWGN clian-

nel is proposed. By applying a bi-directional code tree, the proposed branch-

evaluation algorithm based on the cross-correlation metric is equivalent to the 

classic Dorsch algorithm (or the OSD algorithm with the order of A:) with a fiex-

ible threshold method. The dynamic threshold method spee{ls up the decoding 

process when the number of errors in the M R B is less than 4, the position of 

t.hc Iciist. likiible error is located within the first 4 less reliable bits in the MRB. 

compared to the OSD algorithm. 
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Part I I 

Packet Data Transmission and 
Coding Arrangement 
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When I have fully decided a result is worth getting I go 

ahead of it and make trial after trial until it comes. 

Thomas A. Edison 

The Packet Data Transmission System of 
Fountain Codes 

4.1 Background 

Fountain codes [38, '11] have been claimed as a class of sul>optinial erasure 

codes with the property that a potential limitless sequence of transmitted pack

ets {z/0:2/1:2/2; • • •} c î" gcucrated from a given set of A: information packets 

{ X Q . X I , . . . such that the information packets can ideally be recovered from 

any subset of the transmitted packets of size A:', which is slightly greater than the 

number of information packets, that is, A;' > A;. 

The first practical realisation of fountain codes is so-called "Luby-Tr^insfonir 

(LT) codes which was invented in 2002 by Luby [38]. The concept of the "rate/esŝ * 

transmission is introduced in [38]. which means the encoding algorithm is capable 

of in principle producing an arbitrarily large number of packets which can be 

transmitted until the receivers recover the original information packets. 
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4. T H E P A C K E T D A T A T R A N S M I S S I O N S Y S T E M O F 
F O U N T A I N C O D E S 

One of the advantages of LT codes is the low computational complexity on 

their encoding and decoding algorithms by employing the exc/usive-O/?. (XOR) 

operations on the packets. The X O R algorithm is equivalent to the recovery 

algorithm applied for other linear block codes over the B E C . However. L T codes 

suffer from an error-floor proljlem due to the existence of the stopping sets whicii 

is cati.sed by their code structures. 

To improve the performance, especially the error-floor caused by the nature 

of LT codes, in 2003, Shokrollahi [68] introduced a class of two-layer fountain 

codes, called as ''Raptor" codes. Raptor codes maintain the "rateles.s" property 

since tlieir inner codes are constructed based on L T codes, and improves the 

performaiice of L T codes by applying outer codes to enhance the ability of tlie 

erasure/error correction. As tlie cla.ss of the most effective fountain codes. Raptor 

codes have been deployed in the 3GPP MBiMS standard for broadcasting file 

delivery and streaming services, in the D V B - H I P D C standard for delivering 

IP services over DVB networks, and D Y B - I P T V for delivering conniicrcial T V 

services over an IP network. [78 

Tlio good efficiency anrl pinformance of fountain codes motivate us to sturly 

the code structure and the application of them. We study, in Section 4.2, the 

encoding process and the decoding process of L T codes with a proposed ma

trix representation. In Section 4.2.3, we inv(^tigate the degree distribution for 

the construction of LT codes, which determines the performance of LT codes. 

Section 4.3 study Raptor codes. We also propose a matrix representation for 

the construction of Raptor codes in Section 4.3. In Section 4.4, we provide the 

simulation results and discussion on tlie limitation of fountain codes. We tiien 

conclude this chapter and give .some insights about the results in Section 4.5 

4.2 L T Codes 

It is useful to know the definitions of the Degree and the Degree Distribution 

before the studv of fountain cotles. 
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4.2 L T Codes 

4.1 Definition (Degree). The degree of a vertex v is the number of edges that 
are incident with vertex 1;, i.e. the number of edges that are connected to vertex 
7;, denoted as d. 

4.2 Definition (Degree Distribution). Designate p{d) as a distribution func
tion of d. For all d, p{d) is the probability that an encoding symbol has degree 
d. 

L T codes are controlled by the parameters as listed as follows: 

• the number of information packets, denoted as A: 

• the degree distribution p(d) 

Thus, an LT code is specified as Q\:r{k, p{d.)) and its encoding process is a 

linear map F^' F J . 

4.2.1 LT Encoding Process 

Suppose the information packets as x = ( x i . . . . ./x^^.). and then each transmission 

packet Uj is generated by 

1. randomly choosing tlie degree r/,- from a given degree distribution fj{d.): 

2. randomly clioosing di distinct information packets and exclusive-oring those 

di information packets to obtain a transmission packet vj. 

Algoritlnn 4.1 gives the pseudo code of L T encoding process. 

Figure 4.1 shows an example of an L T encoding process by defining a bipartite 

graph which connects transnii.ssion packets to information packets. 

.A-lternatively, L T codes can also be represented in a matrix form M'^' which 

only contains the non-systematic part of its parity-clieck matrix H . 

/ Ml 0,1 / / / 0.2 in 0,k \ 
I I I 1.1 in 1.2 in 

nr. " * l t -1 .2 

(4.1) 
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4. T H E P A C K E T D A T A T R A N S M I S S I O N S Y S T E M O F 
F O U N T A I N C O D E S 

Algor i thm 4.1 LTEiic(/?( ), x, u) 
Input: 

p( ) Degree Distribution 
X <^ Information packets 
y ^ Transnnssion packets 
rand.iat(a, b) is to randomly choose an integer from a to b 
rand.float(a,b) is to randomly choose a floating data from a to b 
/)(•) is a value-increasing array 
UJ is a floating data satisfying 0 < u; < 1 

Output: 
1: repeat 

UJ = rand.flo(d(0, 1) 
if (oj < p{dj)) then 

dj is the chosen degree 
end if 
choose uniformly at random (/ inforniatiou packets . . . .x,^ 
Vj = .Tfj t:7 @ • - • Xj^ 

until [ j satisfies the number of transmission j^ackets) 

Information Packets 

Transmission Packets 

Figure 4.1: LT Encoding Processing 

Henceforth, the LT code graphically represented in Figure 4.1 can also be 

represented by the M matrix representation as given as follows: 
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4.2 L T Codes 

M = 

/lOOOOOOOX 
01000001 
01001100 
00100000 
10000001 
00100000 
00001010 
00001000 
01010000 

\^00000101) 

4.2.2 LT Decoding Process 

Designate y — {yor// i* • • •} as the received packets. Each received packet yi should 

include: 

o the information of degree (h applied for this packet 

o the index of information packets which are coimected to this packet. 

The decoding process starts wlien the receiver collects A:' packets. The number 

of packets A:' is required to be at least equal to A;, that is, 

A:' = (4.2) 

where 6 is a small positive number. 

In [38]. the proposed decoding algorithm is called as "XOR" algorithm. Des

ignate the recovered packets as s. and the X O R algorithm is described i\s follows: 

1.) Start with a received packet yj containing the degree dj = 1 which means 

that the received packet yj is only connected to an information packet Si. 

1.1) SGtSi = yj 

1.2) Add .s*. to all received packets that are connected to 5,-; 
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4. T H E P A C K E T D A T A T R A N S M I S S I O N S Y S T E M O F 
F O U N T A I N C O D E S 

1.3) Remove the index of .s, from the header of the received packets /y, and 

r/, = - L 

2.) Repeat 1.) until all information packets are recovered. 

The X O R decoder stops when either no output symbols of degree one, that is 

{dj = G { 1 , 2 , . . . : A:'}}, or all the information packets have been recovered. 

The L T decoding algorithm is given in Algorithm 4.2. 

Algori thm 4.2 LTDcc-XOR(y, p{d.), s) 
Input: 

y <= received packets 
p(d) <^ Degree Distribution 
Deg( ) Degree Reader from the packet header 
/ <i= Received packet index 
j <= Recovered information packet index 
B u f <= buffer 

Output: 
s <= successfully recovered information packets 

1: repeat 
2: if {Deg{yi)\ = l) then 
:i: push i/i in B u f 
•1: end if 
5: if {Defjivi) == 1) then 
C: .Sj ^ yi 
7: end if 
S: for all yi € Buf: y{ includes sj do 
9: Vi => Ui CD Sj 

10: end for 
11: until ( original information packets are recovered) 

4.2.3 Degree Distribution p{d) 

It has been known that the degree distribution of an L T code is of a great im

portance. 

• The majority of the transnnssion packets must have low degree, so that the 

decoding process can get started and then keep going. 
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4.2 L T Codes 

• Occasionally, the iiifonnation packets must be encoded with high degrees 

to avoid the null connection between the information packets and the trans

mission packets. 

The ideal degree distribution is approached by tlie Ideal Solitoii Distribution. 

-J-. if f / = 1 

. forf/ = 2,3 A: did-1) 

(4.3) 

Designate Q{:t:) as the degree distribution function as follows: 

h 

1=1 

Assume k = 15 and then the degree distribution function can be derived from (4.3) 

as follows: 

n{x) = 0.066667:/;' -f- O.Sx^ + 0.166667x^ 4- 0.0S3333x'^ + 0.05a: 

+0.033333x*^ + 0.023S10X' H- 0.017857^;^ H- O.OlSSSOx'-* + O.OIIIII.7:' 

+0.009091x-^^ + 0.007576x'2 + 0.006410:/;'^ + 0.005495x''' + 0.00'1762x' 

However, the Soliton distribution does not work as good as expected mainly 

because a few information packets have null-connections witli the transmission 

packets. 

As shown in Figure 4.2, the LT encoding process with the ideal Soliton dis

tribution, has a very trivial probability to constitute a trausmi.ssion packet from 

a single information packet. As the consequence of it, at receiver, the decoding 

process is hardly to be implemented because of no degree-one received packet. 

Following the analysis of Luby [38), the problem of the ideal Solitou distribu

tion is that tlie expected ripple' size (one) is too small. 

Henceforth, Lnby [38] proposed a robust Soliton distribution, which nor

malised the ideal Solition distribution with an expected distribution. In his anal-

'The set of covered input syinbols tliat Imve not yet been processed is called t l i e ripple, and 
thus at this point all covered input symbols are in the ripple. 
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[£ 0.25 

Degree 

Figure 1̂.2: the Degree Distribution Generated from the Ideal Soliton Distribution 
for a L T code with information lengtli of 15 

ysis. the robust Sohtion distribution ensures every information packet is Hkely to 

be connected to a transmission packet at least once, so that the decoding process 

gets initialised and keeps going. 

In our analysis, we applied the Shokrollahi [69] degree distributions which 

have been also applied in the l E F T standard. 

Table '1.1 shows the optimised degree distributions witii A: =65536, SOOOO. 

100000. 120000, under the condition o( 6 = 0.01. 
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4.2 L T Codes 

k 65536 80000 100000 120000 

0 .007969 0.007544 0 .006495 0 .004807 

0 .493570 0 .493610 0 .495044 0 .496472 

0 .166220 0 .16645S 0 .168010 0 .166912 

0 .072646 0 .071243 0 .067900 0 .073374 

0 .082558 0 .084913 0 .089209 0 .082206 

0 .056058 0 .041731 0 .057471 

0 .037229 0 .043365 0 .050162 0 .035951 

0 .001167 

0 .0055590 0 .045231 0 .038837 0 .054305 

0 .010157 0 .015537 

0 .025023 0 .018235 

0 .003135 0 .010479 0 .016298 0 .009100 

HOT 0 .017365 0 .010777 

Table 4.1: Shokrollalii Degree Distribution [69 

Figure 4.3 illustrates a couiparisou of the degree distributions between the 

ideal Soliton distribution and the Shokrollahi distribution. As can be seen, even 

when the number of information packets is as small as 1024, the Shokiollalii 

method can produce some transmission packets with their degrees of one, while 

the ideal Soliton distribution generates null. Meanwhile, the Shokrollahi method 

maintains desirable proportions of the generation of degree-2 and degree-3 trans

mission packets. 
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Sohton Distribution 

Q 0 3 

Degree 

Shokrollahi Distribution 

a 0 3 

Degree 

Figure 4.3: Degree Distrilnitions based on DifTercnl Methods. Pkina(info) = 1024 

4.3 Raptor Codes 

The porforiiiaiice of LT codes is restricted by tht* stopping sets due to its si)arse 

stnictiue. Wheu the network conchtion is poor, an error floor will result in a lot 

of packet loss and huge demandiug on re-sendiug packets. To solve this problem, 

ShokroUalii [69] inventetl Rnptor codes, which maintain the desirable properties 

of L T codes, such a.s the capability of generating transmission packets as many 

a.s required and the simi)le recovery process with the XOR decoder, and provide 

a better performance. 

Denote a Raptor code us C'^''' and it is formed by (oncatenating an outer code 

C (also called the pre-code in terms of the encoding process), with an L T code 



4.3 R a p t o r Codes 

4.3 Definition (Raptor code). A Raptor code with parameters ( A : . i s 

an LT-code with degree distribution function which has given in Table. 4.1 

on A: + s pre-coded packets' which aie coordinates of codewords in C . 

Suppose that the pre-code is with its code length of A :+5 and its information 

length of k. Hence, after the pre-coding process, k-\- s iiitennedi^ite packets are 

generated by encoding A: information packets with a linear block code C(A: + 

s.A'), which is designed to decode the unrecovered information packets from the 

recovered packets after the L T decoding process. 

4.4 Definition (Intermediate packet). Given A; uiformation packets 

(xoVxi,... ,a:fc_i), A: + 5 intcnnechate packets ( / o , / i : . . . , / t + 5 - 1 ) are uniquely 

defined as / • i " • 
• • - ' - . ,^ • 

o The information packets satisfy the A: constrains of LT-code C^"^ initialised 

before the transmission.i \ • ; . . ' 

o The k + s intermediate pacjkets satisfy' the pre-'coding C relationship ini-

• tialised before the transmission. 

4.3.1 Non-Systematic Raptor Codes 

A non-systematic Raptor encoding process were first introduced i\s a graphical 

expression in [69) as shown in Figure 4.^, which is a two-layered encoding struc

ture. 

A- M : k 

Precodmg 
/ [ l : k + s | 

LT-codmg 
It ( l : n l 

Figure AA: the Graphical Expression of a non-systematic Raptor Encoding Pro
cess 
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Tlie details in the non-systematic Raptor encoding process are listed as fol

lows: 

1. The information packets x = {xi.xo; - - - :-r.A) are pre-encoded in to the in

termediate packets f — { f \ . fo. • •. fh+:y) t̂ y linear block code Cp. The 

linear block code C;, is with the information length of k and the code length 

of k + s. As depicted in Figure 4.4, the preceding process employs the 

row-echelon parity-check matrix H'' of tlie code Cp. The H'' is defined as: 

V'̂ -̂l.l "s-l.k 

('1.5) 

Then, the preceding process is equivalent to: 

h = 
T.J, if J < k 

where ^ ^ . j @a,6, = r/i/^i @ a2i>2 ® • • • © f/j/^j-

(4.6) 

2. By employing the LT encoding Algorithm 4.1. the intermediate packets are 

further encoded into the transmission packets u. 

At receiver, the corresponding decoding process for a non-systematic Raptor 

code also involves two decoders for the inner L T code C'''' and the outer pre-code 

G'' respectively. 

4.3.2 Systematic Raptor Codes 

In a connnimication system, a systematic format code is alwa\'s preferred. In [40), 

the algorithm has been proposed to convert a non-systematic Raptor code into 

a systematic one by applying a restruction on the information packet before the 

pre-code. 
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4 . 3 R a p t o r Codes 

hi this section, instead of generating an invertible k x A: matrix [68] to pre-

process the information packets, a simplified method to constit\ite a systematic 

Raptor code is given. 

First of all, we introduce a concept of the formatting matrix A, which is 

not a strictly tracUtional G due to the rateless property of Raptor codes. The 

formatting matrix A is to concatenate the generator matrix G'' of the pre-code 

with the M'-'' of the L T code. 

Designate A^''* as the fonnattiiig matrix for the non-systematic Raptor code, 

which concatenates the matrix G^ and the M^^ directly as given in ( 4 . 7 ) : 

A;'''' = 

/ <f0A 

in 0.1 

1.1 

itiv t + i - l . l 

V 

G" 

in 

m Lit 

m 
It 

Hi 

0.k+1 

1 .̂ •4-1 

in 

ni: 

in 

(4 .7 ) 

The rank of the formatting matrix A^^' is determined by the reqnired number 

of transnii.ssion packets, which ensures a successful recovery over the A: information 

packets. 

Alternatively, the encoding process can also be described as follows: 

1. Calculate A; + s intermediate packets / as: 

/ = xG^ (4 .8 ) 
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2. Calculate the transmission packets u as: 

u = f {M'-'-\l) 01.9) 

If the k-\-s transmission packets are generated by a systematic code, the k-\-s 

colunms of A^^^ should be independent to each other. That is, if applying the 

In-placc algorithm on the first k-\-fi rows of the 4̂̂ '̂'', a full rank square submatrix 

{(k + ,v) X (A: -f- 5 ) ) should be obtained. 

After processing the In-place algorithm, if the square submatrix is with the 

rank less than k -t- s, the column-swapping process on the first k colnnms is 

required. Demote the swappiugs as a pennutation function as 7r( ). .And then, 

the formatting matrix for the modified Raptor code is written as A[\''*. 

Ftpt (4.10) 

The first k 4- .5 rows in aI\''' correspond to the positions of the systematic 

transmission packets. Tlie systematic transmission packets are generated from 

the ordered information packets x' = n-"'(x). 

The conceptual block diagram of a systematic Raptor encoder which deals the 

Raptor code as a concatenation code, is shown in Figure 4.5. 

Pre-code L T Enc 

RandomGen()/ 
r^ ^ ) 

Figure 4.5: Systematic Raptor encoder 
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At receiver, the corresponding decoder works to re-generate the matrix of 

with the information contained in the headers of received packets. Once the 

matrix of is verified to contain a section of (A: + s) x (A: -f s) matrix with a 

full rank. The missed information packets can be re-encoded with this .systematic 

matrix. 

4-4 Numerical Results and Discussion 

hi the works of MacKay [41], Shokrollahi [68], L T codes and Raptor codes have 

been proved a-s a class of sub-optimal erasure codes. Therefore, the actual number 

of transmission packets for a successful transmission, as denoted as A:', and the 

number of the original information packets, as defined as A- have the relationship 

of A:' ^ k. 

Even though it has been claimed that A:' ^ k, it is still very crucial to know 

the number of extra transmission packets required in order to recover the whole 

information file. 

Designate 6 = k' — k as the number of the extra transmission packets to 

contribute a successful transmission. The value of 6 is the so-called overhead in a 

complete transmission, wliich is a measure of the efficiency and the computational 

complexity in an erasure coding scheme. 

The first discussion is on the relationship between the overhead and the size of 

the information file during a triinsmi.ssion via the B E C . The degree distribution 

function applied in the simulation is given as follows: 

n(x) = 0.066667:/;̂  H- 0.5:/;̂  + 0.166667:r^ + 0.0S3333.T'' -f O.OSx^ 

+0.033333x'^ 4- 0.023S10x' + 0.0l7S57x^ -h 0.013889x'-' H- 0.011111:/;'*^ 

+0.00909ix'' -f 0.007576.7;'2 + 0.006410:/;''* + 0.005495:/;*'* -f 0.004762:/;'^ 

(4.11) 

Equation (4.11) has also been employed in the 3GPP [l] as the standard 

distribution when A: < 2'*̂ . 
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Figure 4.6 illustrates the histogram of the actual number of required Irans-

rnission packets to ensure a successful recovery on a file of 10,000 infornnUion 

packets, w hen the cliannel erasure probability p equals 0.5. In other words, the 

probability of each transmission packet being er t̂sed during the transmi.ssion is 

50%. The mean value of A:' is 10472, that is, for a full recovery of 10,000 infor

mation packets, the system requires the transmission overhead of 4.72%A- which 

is a reasonably small number. 

c 
Q) 

Q 

0.35 

0.30 \-

0.25 h 

0.20 

0.15 

0.10 

0.05 

0.00 

k=10000 

10000 10500 11000 11500 12000 12500 
the Number of Required Transmission Packets 

13001 

Figure 4.6: Histogram of the actual number of required transmission packets 
when the number of information packets is 10,000 and p = 0.5 
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4.4 Numerical Resul t s and Discussion 

By lialving the number of information packets in Figure 4.6. the L T code 

generated with the same degree distribution function requires an overhead of 

a slightly more percentage over the size of the information file. As shown in 

Figure 4.7. the mean value of the actual number of the transmission packets is 

5320 and the overhead percentage is 6.4%. 

0.30 
k=5000 I 

0.25 h 

0.00 
5000 6000 7000 8000 9000 

the Number of Required Transmission Packets 
10001 

Figiue 4.7: Histogram of the actual number of required transmission packets 
when the number of information packets is 5000 and p = 0.5 
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The same I^T code as alcove has been employed ro transmit an information file 

with 1024 packets. The histogram in Figure 4.8 implies a much higher overhead 

percentage, wliich is 12.7% and the mean value of the munber of the required 

transmission packets is 1154. 

0.25 

0.20 

0.15 

c 
Q 

0.10 

0.05 

0.00 
1 

k=1024 E 

000 1200 1400 1600 1800 
the Number of Required Transmission Packets 

2OO0 

Figure 4.8: Histogram of the actual number of required transmission packets 
when the number of information packets is 1024 and p = 0.5 

Figures 4.9. 4.10 and 4.11 exhibit the histograms under the condition of dif

ferent sizes of the information files of 512. 250 and 125, respectively. The less the 

information packets, the higher the overhead percentage is. Especially, when the 

inforiuation file with the packet number of 125, a successful transmission requires 

an average overhead percentage of 32% which is about 1/3A;. 
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c a> Q 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

k=512 I I 

500 600 700 800 900 
the Number of Required Transmission Packets 

1000 

Figure 4.9: Histogram of the actual number of required transmission packets 
when the number of information packets is 512 and p = 0.5 

The examples on the relationship between the overhead percentage and tlie 

information file size have been concluded in Table 4.2 as follows: 

k 10000 5000 1024 500 250 125 
mean 10472 5320 1154 601 314 165 
overhead % 4.72% 6.d% 12.7% 17.4% 25.6% 32% 

Table 4.2: The Overhead Percentages on the different sizes of the information 
files: when = 0.5 
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0.60 

c 0.30 

0.00 
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T 1 
k=250 ! i 
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the Number of Required Transmission Packets 
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Figure 4.10; Histogram of the actual number of required transmission packets 
when the number of iiiforniation packets is 2-50 and p — 0.5 

As stated above, short L T codes are not able to perform sul>optinially. There

fore, our second discussion is to answer the question: 

Whether a choice of H pre-code can make difference on the performance of short 

Raptor codes? 

To answer this question, we evaluate a short Raptor code of the length of 155 

with two different prc-codes: 

o a regular-LDPC code generated by the 3GPP s t a i K l a r d (1 . 

o the binary-image RS code BRS{l5b. 125) with a very dense parity-check 
matrix 

The simulation displayed in Figure 4.12 implies when the Raptor code is short, 

the pre-code does not significantly improve the performance dominated by its 
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0.30 
k=125 t 

0.00 
150 200 250 300 

the Number of Required Transmission Packets 
350 

Figure 4.11: Histogram of the actual number of required transmission packets 
when the number of information packets is 125 and p = 0.5 

inner code (the L T code) part. 
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raptor-regular idpc vs raptor-BRS<{i55,i25)>(Raptor decoding algoriihm) 
400 

350 

300 

I 
2 250 

200 

150 

/ 

Binary Reed Solomon Code 
Regular LDPC 

0.1 0.2 0.3 0.4 
Erasure Probabt]iiy(p) 

0.5 0.6 0.7 

Figure 4.12: A Comparison on the Raptor Code Performances with Different 
Pre-encoding Scheme: Binary Reed-Solomon Codes vs Regular L D P C Codes 
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4.5 S u m m a r y 

4,5 Summary 

In tliis chapter, we study and investigate fountain codes including LT codes and 

Raptor codes. Tlie matrix representations of LT codes and Raptor codes are 

introduced in tliis chapter. We iiave simulations on LT codes and Raptor codes. 

The findings are: 

• When tlie value of A: is more than 5000, the simulation results agree with 

the claim of k' ^ k asymptotically. 

• When the number of tlie information packets is less than 5000. the overhead 

porcontago is more than 109f. Iisporially when tlio information file is of a 

small size less than 200, the overhead percentage is up to 30% of the file 

size. 

• Different pre-codes make nearly no difference on the performance of short 

Raptor codes. 

In the presence of the difference overhead percentages caused by the differenl 

sizes of the information files, the reason behind i t becomes of interest. The future 

work is suggested on a study of the random matrix theory. 

I l l 



4. T H E P A C K E T D A T A T R A N S M I S S I O N S Y S T E M O F 
F O U N T A I N C O D E S 
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Big doors swing on little hinges. 

W. C. Stone 

Capacity Approaching Codes for the 
Binary Erasure Channel Using a Product 

Packetisation Method 

5.1 Background 

Network transmission is based on packet transmission. Multicast and broadcast 

are typical examples. The usual way to get around packet loss is to employ a 

protocol in which receiving parties acknowledge received packets. To l imi t the 

amount of feedback to the senders and the number of redundant packets sent 

to receivers, the system requires an erasure correcting code which is capable of 

provides a means to recover the lost/erased packets at receiver wi thout tlie need 

for re-transmission. 

One model for the network transmission is the biliary erasure channel (BEG), 

which was introduced by Elias (19) in 1955. W i t h a packet lost/erased due to 
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iietAvork congestion with probability p, the BEC has a cliannel capacity of 1 — p. 

For a binary erasnrc ciianncl, a rate R code encodes a message of size K into 

a transmission of K/R. = A' bits, so tliat the original message can be recovered 

from the nnerased positions of tl»e .'V bit message. 

In a milestone paper, Lnby et. at. [38] proposed the first realisation of a class 

of erasnre codes - LT codes, which are termed rateless and are generated on the 

fly as needed. In [6S], Sliokrollahi introdncetl tlie idea of Raptor codes which 

adds an outer code to LT codes. Raptor codes have been established in order 

to solve the error floors exhibited by the LT codes. The study on LT codes and 

Raptor codes have been given in Chapter 4. It has been verified in Chapter 4 that 

fountain codes arc sulvoptimal erasure codes only when the information file is 

large enough with more than 10000 packets. Otherwi.se, the overhead percentage 

can be as high as 30% in order to recover an information file wi th its size of 125 

packets, when the erasure ])robability p = 0.5. 

On the other hand, low-density parity-check (LDPC) codes have been studied 

in [16. 39, 54] for application to the BEC. The iterative decoding algorithm, 

which is the same as Gallager's soft-decoding algorithm in [24]. was implemented 

in [39]. Capacity-achieving degree distributions in design of LDPC codes for the 

BEC have been introduced in [39, 49, 67). Finite-length analysis of LDPC codes 

over the BEC was accomplished in [16]. In that paper, the authors have proposed 

to use finite-length analysis to fiufl good finite-length codes for the BEC. However, 

all these codes suffer from error-floor problems. 

It is nature to consider Reed Solomon (RS) codes for the applications for 

network transmissions because they are optimal erasure codes. However, their 

non-binary and dense structures lead the enornionsly high-computational com

plexity in both the encoding process and the decoding process. 

Bleichenbacher et al. [7] jMopo.sed an interleaved RS for the q-SC, where q = 

Q"\ Given a data sequence {.x'o; •'•'i; • • •; ^-fr-i} i»i GF{q), each can be written 

as a vector (xj . i , .X|.2: • • -: ̂ 'i.rn) of elements over GF{Q). By applying an RS 

code (n.,k) over GF{Q), each vector {'J'Oj-. 'Jhj,... can be encoded into a 

codeword {yoj,yij,yn-\.j)- Then, we transmit the vector (yo; • • • . Un-i) over tlie 

channel, of which each yi contains (yi.\^yi.2. • • • .yi.m)- I f î" error occurs during 

the transmission at position /. i t is highly possible that all the iii components of 
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that position are corrupt. Therefore, when applying an algebraic decoder, the 
error locator polynomial should be the same. The radical idea of interleaved 
RS cochng is the same as our proposed product packelisation structure in this 
cliapter. The product packetisation is universal for all linear block codes. Also, we 
construct the RS code as an encoding-on-the-fly structure which is more effective 
and efhcienl for a data trasnmission. 

The contribution of this chapter is to develop an coding scheme using iiicre-

mental redundancy wi th an M L decoding algorithm. The algorithm lias two key 

elements: 

• the Product Packetisation structure 

• the IiL-place decoding algorithm 

The proposed algorithm has an overall computational complexity of 0(/\* ' '^) . 

Additionally, we propose tlie most powerful codes for the erasure channel, the 

Maximuiii Distance Separable (MDS) codes [43] together with a rateless trans

mission protocol. 

The cliapter is organised as follows. In Section 5.2, we describe the prod

uct packeti.sation metliod and the rateless transmission protocol, hi Section 5.3 

and 5.4, we give the implementation by using Reed Solomon (RS) block codes 

and analyse the computational complexities on both encoding and decoding. In 

Section 5.5. numerical results are given for these codes in comparison to LT codes, 

BCH codes and MDS codes. The conclusions are given in section 5.6. 

5.2 Product-packetisation Transmission Proto
col 

5.2.1 Product Packetisation and De-packetisation 

As we know, for network transmissions, a long message is usually broken up 

into a sequence of blocks which are then transmitted separately. In this chapter, 

we introduce a novel packetisation method - Product Packetisation. Instead of 

placing the symbols into the sequential packets, we first split the data into blocks 
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corresponding for the codewords of all erasure code, encode i t and then packetise 

i t by using symbols at the same positions of cacli codeword. Denoting the length 

of input as I j and the payload size of each packet as Z .̂ the minimum number of 

packets needed can be calculated by /,///p. 

Hereafter, a RS block code C with this sclieme is used wi th the number of 

information bits k — I f , and a nominal code rate /?. The actual transmitted code 

rate is adaptive as described below. To ensure the efficiency of a transmission, 

the nominal code rate R is clioscn to corresi^ond to twice the average congestion 

probability 

A network packet is composed of a payload and a fixed-length header. For a 

linear block code C(fi,k). there are k information packets and //, — k parity-check 

packets, but the benefit of using the RS codes is that only k packets need to be 

received and these can be any k packets. For convenience, the first A- symbols are 

termed information symbols. The reason for the variable number of parity-check 

packets is that the transmission uses bicremeidal Redinulaiicy (!R). 

The / - th packet contains Id information symbols whose positions are at j k-\-i, 

wiiere 7 = 0 ,1 , . . . . ( / j - 1) and 0 < / < A:. The structure of the v-th packet is 

shown in Figure 5.1. 

k 

; ; ; ; ; l i l t i | i « t i i | j i i f i 1 

... l p - l ) k + i 

T h e ilh packet 

Header Payload 

Figure 5.1: Packet construction for the / ' - t l i packet 
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The function of the header part is to handle the data block during the trans
mission. The header includes information which identifies the packet. To simplify 
the decoding, we use sequence numbers in the header to label each packet, i . e., 
if the "i" and "/' + s" sequence number are received, i t can be concluded that the 
packets j, where j = ?' + 1,..., / - i - A* - 1 have been erased during the transmission. 

A t the receiver, all the received information packets need to be restructured 

into a buffer X with length Ij. I f the i.-th packet is received, the symbols contained 

in the packet should be placed in the buffer at the positions of xj^k+i: where 

j = 0 , . . . . A: — 1; if it has been erased during the transmission. ?"s will be placed 

in the positions of X j x t + i : ^vhere 7 = 0, . . . , A; - 1 to mark the symbols as erased. 

In this paper, we have assumed I,, c:^ n. This can be .solved by Gaussian reduction 

and has a complexity of the order O(n^) = 0{iy^) = 0 (A ' ' -^ ) . 

5.2.2 Protocol Description 

The packets are transmitted continuously and at each destination host, they 

are depacketisated and decoded into a buffer wi th a length of Z .̂ If after k H-

6 packets have been .sent, all the information packets are received, a positive 

acknowledgement (ACK) is .sent and the transmission of the current codeword 

ends. The protocol structure is s!iown in Figure 5.2. 

Packets 10 be sent T, 

Ist I 1 

2nd 

Packcis received 

Dcpackeiiscr j 

tk+e)ih 

rased bit Buffer 

I I I I ~1 

In-place Decoder j 

Received or decoded Successfully 

Figure 5.2: The Protocol Structure 
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Consider an {n.k) RS code C, which has /i symbols and k information sym

bols. After A: synibols have been transiiiittecL transmission of the n — k symbols, 

continues one symbol at a time until all the acknowledgements from destination 

hosts have been received. I f after transmitting //. symbols, not all the acknowledge

ments have been received, transmission is repeiiied, one symbol at a time, starting 

wit h the first symbol. The total number of symbols transniittcd Sioiai = z tip, 

where p is the number of repeated blocks and z is the number of symbols which 

is transmitted in the final block. 

5.3 Rateless Reed Solomon Codes 

Reed Solomon (RS) code, as known as the most popular iiiaxiiiniiti disttuice 

scpftrable (MDS) code, has been considered as one of the optimal ei^isure codes. 

The RS code is designated as Gf^s ^^'ith its length n = cf" - 1, coordinates k and 

r/,„i„ = / I — A: + 1 over the Galois Field GF(q'") and written as C/?s(//, A:, f/„,i„). 

5.1 Definition (MDS Codes). [43] For a linear code e(n , A:, r/,nin) over any field, 
niaxinmm distance separable (MDS) codes have tlie maximum possible minimum 
distance satisfying the equation of 

</.nin = n-k-\-\. (5.1) 

5.1 Lemma. A code 6 is a MDS code if and only if every set of n — k columns of 
its parity check matrix H are linearly inde|5eudent. 

Proof. Following the definition of the minimum Hamming distance f/,„i„ of a 
linear block code C, the value of (/,„i„ equals to the smallest positive number of 
columns of its H which are linearly dependent. Whereas, if and only if no n — A: 
or fewer columns of i f are linearly dependent, the code C then has its minimum 
distance of f/,„i„ = n - A: + 1 and therefore i t Ls a MDS code. • 

In this section, wc describe a way to encode the input symbols, using the 

"encoding-on-the-fiy". This is one of the main strength of LT codes. The disad

vantage of LT codes is that they are not very powerful codes. 
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5.3 Rateless Reed S o l o m o n Codes 

Linear block codes can be generated from their parity-check matrbc. denoted 

by H, which is usually a row-echelon reduced H matrix. Any matrix of rank A: 

can be described by the parity-check equations h j , where / = 0 , 1 . . . . , n — A: — 1. 

Each parity-check equation hi can generate a parity-check independently. 

The variable rate can be realised by generating parity-checks only if rec|uired. 

For an {n, k) RS code C over GF{q), and n = q — I and q is a prime number 

or a power of a prime number and o is a primitive element of GF(q). A n RS code 

has a minimum distance f/,,,-,,, = ti - k -\- I and can correct any erasure pattern 

involving up to n — k erasures. The parity check matrix of an RS code can be 

represented by: 

H = 
1 

V l o 

a' 

a 

o " - ' 
2 ( " - l ) 

0 ( " - l ) ( < / . „ i n - l ) j 

(5.2) 

This H matrix is not clliciciit for our propose bcca\isc every parity check 

symbol requires a calculation of using n symbols. From Theorem 11 — 9 in [̂ 13]. 

there exist cyclic MDS codes over GF{q). h i order to efficiently perform encoding 

on-the-fly, we will use the cyclic form of the H matrix. For this, the pai'ity check 

polynomial IL{X) of the RS code is used. 

DcHnc the set of powers of roots as T = ( 1 . 2 , . . . . f /„i i„ — 1} 

ri—1 

h{x)= Yl ( x - a ' ) = 
1=0 

A x ' (5.3) 

The H matrix can be writ ten as: 

H = 

/Po 01 ••• Pk 0 
0 /Jo P, ••• /3, 

Po Pi 

(5.4) 

Each of the pi is an element from GF{q). For binary transmission, q — 2"' 

can be used to construct the RS code. As an example, for = 2** = 16, a has 

119 



5. C A P A C I T Y A P P R O A C H I N G C O D E S F O R T H E B I N A R Y 
E R A S U R E C H A N N E L U S I N G A P R O D U C T P A C K E T I S A T I O N 
M E T H O D 

a binary vector rei)resentatiou of [0, LO.O) and multiplication by o corresponds 
/ n 1 o o \ 

to nmltiplication by the binary matrix I y?oo )• ^""^^ ft can be obtained 
\ n I ! 0 / 

by o' . Therefore, by replacing the C'F(16) x'alues in (5.4), a binary form of the 

H matrix can be obtained. Encoding on-the-fiy can be efficiently performed in 

this case by using parity check equations involving a maximum of A:+ 1 bits. On 

average there wi l l be ^ bits; f (A:+ 1) per GF{q) symbol. 

Assume the average weight of the parity-check equations is u;. For a single 

parity-check generation, the encoding complexity is 0{oj). I f the erasure prob

ability of the channel is d, the mnnber of erasures, denoted as c . is e = jzi 

after receiving k vmerased symbols. The average number of parity symbols cal

culated equals c . Therefore, the average overall encoding complexity can be 

written as: e • O (y(A"-i- ! ) ) • For binary H matrix, the encoding complexity is 

5-4 M L Decoding Algorithm on Rateless R S Codes 

Let x ' denote the received vector. According to [16], optimal decoding is equiv

alent to solving the linear system, shown in (5.5). In our case, on average-A;-f c 

packets are transmitted before k unerased packets by each destination host. 

Accordingly the following set of equations need to be solved from the H 

matrix shown by (5.4). 

hijx\=Q, j = 0, . - . , f , - 1 . (5.5) 
1=0 

For example, foi' an RS codC: we liave (5.6). 

0 ,.3„ Pi 

00 

= 0. (5.6) 
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for c erasures 0 < c < n — k — 1. 

This linear system can be used for solve for at most - A; erasures in the case 

of RS codes. I f the equation (5.6) has a unic|ue solution, an optimal algorithm is 

possible. The Gaussian Elimination (GE) algorithm is considered as an optimal 

algorithm over the BEC, but has a complexity of 0 ( A ' ^ ) . 

We jDropose a reduced complexity M L algorithm - In-place Algori thm [10, 

74) (described in Chapter 2.4) by eliminating the cohnnn-pernuitations required 

combined w'ith a two dimensional code so as to achieve a reduction in decoder 

complexity. The conventional linear system equation of Hx"^ = 0 can be written 

for a l l / € { 0 , . . . , i V - A ' - l } a s : 

/ V - l 

The erased positions £ can be solved as a function of the non-erased positions 

This is solved by the GE method and has a complexity ranging f rom 0(A''^) 

to 0{j\'^), depending on the algorithm used. The proposed two dimensional 

structure uses a code of length A' = / i ^ and the coded bits are transmitted as 

n packets of length n bits. Each packet s contains all bi t positions .s + pa in 

the transmitted codeword, with 0 < p < n. This establishes a regular, two-

dimensional structure on £: if bi t position s is erased by a packet loss, then so 

are all the bit positions s + pn. In this case, if ŵ e define £' = {s ^ E\0 < s < n}, 

Equation (5.S) becomes 

rt-l n-1 

By swapping the order of summation and wri t ing the index i = l-\-t/ni. where 
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nuL = A' - K, I £ { 0 , . . . . ///. - 1} and u e {0,..., n - I}, we obtaii 

E E 
(5.10) 

We use a code such that fii+i„u,s+pn = ^{^^ v)ffi.s wi th S{i/. p) = I \f i/ = p and 

zero otherwise. Equation (5.10) can be wri t ten in this ciuse as: 

X; h,. £ S{u., ,;)..,;U„„ = Yl E (511) 

= ^ ( 5 . 1 2 ) 

V / G { 0 . . . . - /», - 1} and i/, s 6 { 0 . . . . . // — 1}. This can be .solved by the In-place 

algorithm and has a complexity of the order O(n^) = 0(.'V'-'*) = 0 ( / \ ' ' '*). 

An ACK is sent when all ACKs have been received, a total of n.p + z symbols 

wil l have been transmitted, whose// is an integer. On average n.f)-\-z = k-\-<. h i 

this sense this is a rateless erasure correcting system. 

5-5 Numerical Results and Discussion 

We have evaluated the performance of LT codes and cyclic codes for = 225 and 

= 3969. For Â  = 225, the LT code with its recovery decoder produces very 

poor performance. To improve the performance of the LT code we have rei)laced 

the recovery decoder with the M L decoder. The LT code (225, 105) was divided 

into 15 packets with a packet-size of 15 bits and the cyclic code (225, 105) was 

arranged as a 15 x 15. two dimensional code wi th the same packet-size. The cyclic 

code (225. 105) lirus a generator polynomial 
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which is a replication of the BCH (15, 7, 5) code with g{x) = 1 -t- x -I - J-'- ' + 

.r**. The cyclic code is capable of correct decoding up to and including, 1 erased 

packets. As 1 4- divides 1 H- a:"̂ ,̂ the decoder for this cyclic code can be 

implemented with the reduced complexity decoder. .As shown in Figure 5.3. tlie 

performance of the cyclic code (225, 105) is significantly better than that of the 

LT (225, 105) code. When p = 0.1, the result of the cyclic code (225, 105) is over 

2 orders of magnitude better than that of the LT (225, 105). 

10" p 

to-' 

10' 

10 

10 

(225.105) cvcftc code (with the In-place decoder C 
(225.1 OS) LT code (wilh the Recovery decoder • 

0.05 0.1 0.15 0.2 0.25 0.3 
Packei Erasure Probability 

0.35 0.4 0.45 

Figure 5.3: FER vs the erasure probability of erased packets for the cyclic code 
(225, 105) and the LT (225, 105) code over the Erasure Channel, both using . \ IL 
decoding 

To verify the decoding complexity of 0(A'^•^), we implemented a longer code, 

the cyclic code (3969, 2016) and the LT (3969, 2016) code. The cyclic code (3969, 

2016) is based upon the generator polynomial of the BCH (63,32,12) code with an 

expansion factor of 63. The generator polynomial of the BCH (63, 32,12) code is 

g{x) = l+j;+x"+x«+x»24-j;»' '+r^^+x'«+x^*^+x»^-fx20+x2i+^^^^^ 

123 



5. C A P A C I T Y A P P R O A C H I N G C O D E S F O R T H E B I N A R Y 
E R A S U R E C H A N N E L U S I N G A P R O D U C T P A C K E T I S A T I O N 
M E T H O D 

Consquently, the cyclic code (3969, 2016) UAS a generator polynomial of: 

g(x) = 1 + x'̂ *̂ + 4- :/;^«" -\- + x^^ + x^^^ + + x"*^'' + x " ^ ' 

The RS (63,32,32) is generated by the primitive polynomial y^(x) = 1 + x + x*̂  

in GF(2« ) . 

The simulated performance is shown in Figure 5.4. On a standard iGHz PC, 

tlie LT (3969, 2016) code took 775ms to encode each codeword and 141ms to 

decode each codeword for p = OA (using the Recovery Decoder). In contrast, 

tlie cyclic code (3969. 2016) took only 5ms to encode each codeword and 8ms 

to decode each codeword using the In-place decoder for p = 0.4 (the decoding 

time for this decoder is independent of the value of p). Noting that RS codes 

are MDS codes whose minimum di.stance D = N — K + L Figure 5.4 shows the 

simulation performance of the RS-asscmbled cyclic code is virtually identical to 

the theoretical bound for RS (MDS) codes. 

Interestingly, the performance is more t lu i i i one order of magnit ude better than 

that of the BCH-asseniblcd cyclic code, demonstrating the loss attributable to the 

BOH code being non MDS. Figures 5.5 and 5.6 show the histograms of the number 

of transmitted packets rec|uired when p — 0.2-5. (Assuming an acknowledgement 

is sent to prevent further packets being traiismitted once correct decoding is 

achieved) The average number of transmitted packets, n„ , needed when using 

the Reed Solomon cyclic code is 26SS and that for BCH cyclic code is 2814. This 

demonstrates that the Reed Solomon code acliieves the erasure channel capacity 

of k = u„ ( l - p) since A: = 2016 and (1 - p) = 0.75. 

Figure 5.7 shows a performance of a long code, the cyclic(76500.39300). The 

sinmlation performance of the RS- i^embled cyclic code is around half order 

of magnitude better than that of tiie BCH-assembled cyclic code. From the 

histogranus of Figures 5.8 and 5.9, when p = 0A2, for using the BCH cyclic code 

and the RS cyclic code, the average numbei:s of transmitted ptickets are 68385 

and 67758 respectively. 
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{3969.2016} LT code(wiih ih© Recovery decoder 
{3969.2016) cyclic code with the in-place decoder —Q -

(63.32,32) Reed Solomon code wiih the In-ptace decoder — i — 
(63.32.32) Roed Sotomon code theoretical result 
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Figure 5.4: FER vs the erasnre probability of erased packets for the cvclic code 
(3969,2016) based on the BCH(63,32a2) and the Reed Solomon(63,32,32), the 
LT(3969,2016) code and theoretical result over the Erasure Channel 
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Figure 5.5: Histogram of the cyclic code (3969,2016) based on the BCH(63,32,12) 
when p = 0.25. mean = 44.7 
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Figure 5.6: Histogram of the cyclic code(3969,2016) based on the RS(63,32.32) 
when p — 0.25. mean = 12.7 
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Figure 5.7: FER vs the erasure probability of erased packets for the cyclic code 
(76500,39300) based on the BCH (255,131,37) and the RS (255,131.125) over 
the Erasure Channel 

126 



' N i i i u e r i c a l Resul ts and Discussion 

60 

5 0 h 

40 h 

% 

iT 30 

20 

10 

BCH(255 131.37) 

200 220 240 260 
Number of packets received to decode message 

Fijvuro 5.8; Histogram of tlie cyclic c<)(le{76500.39300) based on tiie 
BCH(255. 131.37) when p = 0.42. mean = 227.95 

80 

70 

60 

50 

40 

n 30 

20 K 

10 h 

Reed Solomoni 255 131 125) 

180 220 240 260 
Number ot packets received to decode message 

280 e 
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5.6 Summary 

In tliis chapter, we present a new cotliiig and decoding algoritlini for packet net

works modelled as a BEC. The algorithm combines an M L decoder with a two 

dimensional code and enables the nse of opti iniini MDS codes (RS codes). In the 

past, iterative decoding algorithms, although non-optimum, have been used as 

a good tradeoff between performance and computational complexity. W i t h tlie 

new approach, decoding is M L and the computational complexity is reduced to 

0 ( / \ *-^). This is less complexity than the case for iterative decoders. In addi

tion, compared with LT codes, the new decoding algorithm wi th algebraic codes 

achieves a significant improvement in perforiiiance, and approaches theoretical 

l imits when using RS codes. A method of realising a rate-adaptive transmission 

method has been described together with analysis and results which demonstrate 

that RS codes achieve the capacity limits of the erasure channel. 
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Simple things should be simple, complex things should be 

possible. 

Alan Kay 

Concatenated Reed-Solomon Coding 
with Hard-decision for the Rayleigh 

Fading Channel 

6.1 Background 

The Rayleigli fading clianiiel is widely used as a model of wireless commimicatioiis. 

Cliaiuiel coding techniques are a powerful tool to improve tlie reliability and 

efficiency of wireless comnumications. From [25], [33] and [27], the performance 

on Rayleigh fading channels and Turbo codes designed for the particular channel 

have been explored and given. In [31], irregular LDPC codes have also been 

applied to an uncorrelated flat Rayleigh fading channel, and shown to outperform 

Tiubo codes over a wide range of mobile speeds. 

Due to the existence of error bursts in the Rayleigh fading channel, the erasure 

correcting codes have been considered as the code candidates for the application 
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of this sporifiod (•haniu^l. In this chapter, wo have proi>osod the (:Ia.ssir ora.siiro 

correctiiig code - the Reed Solomon (RS) code in reason of tlie random bnrsts. 

The RS code constitutes an efiicient class of linear codes using multi-bit symbols 

and has the strong capability of correcting/detecting symbol errors and correcting 

symbol erasures. 

I t is well-known that an RS code C(/i, ^ ^ ^ / ) . where 7/ is the code length. A-

is the information length, and d is the Hamming distance of i t . is capable of 

correcting up to t = [ ^ ^ ^ J random symbol errors, and correct up to n. - k 

symbol erasures. The classical algorithms of Berlekainp ('1) cind Massey [43] can 

correct t errors and c erasures when 21 + e < n — k, which can achieve the error 

bound Pr — (""-t"'"') \^'it.li r\nming time 0{n?). In [72], i t was presented that a 

polynomial time list decoding algorithm for RS codes can correct more than 

errors, provided k < /^/3. Using the Roth Ruckenstein [65] tilgorithm, the same 

bound Pr can be achieved with ruiming time 0(n'- \og' n). Since more era.sures 

tlian errors can be corrected, i t is advantageous to determine the reliability of the 

received RS-coded symbols and to erase the low-reliability symbols prior to the 

decochng process. 

This chapter is organised as follows. Section 6.2 i^riefly reviews the Rayleigh 

fading channel. In Section 6.3. we describe the system arrangement. In Sec

tion 6.4, we give an analysis of a concatenated RS code over the Rayleigh fading 

ciiannel. In Section 6.5, numerical Frame Error Rate (FER) results are given for 

these codes in comparison to soft-decision decoding of LDPC codes as a function 

of the overall concatenated code rate. The summary of this chapter is given in 

Section 6.6. 

6.2 System and Channel Model 

6.2.1 Rayleigh Distribution 

The Rayleigh fading channel is associated wi th the Rayleigh distribution which 

is a continuous probability distribution. This distribution is named after Lord 

Rayleigli, which is built up based on two normally distributed variables, both of 

whicli are wi th an equal variance [50 . 
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6.2 S y s t e m a n d C h a n n e l M o d e l 

Assume u\ and uo as two Caussian variables and both of them are distributed 

according to K(0, a^)*, and hereafter the Rayleigh random variable is wri t ten as: 

u = SJA + ul (6.1) 

The probability density function (PDF) can be derived from tlie PDF of the 

Gaussian variables wiiich has been given in many textbooks [55]. 

.2 

PDF^a) = I ^ " ' ^ " > ° (6.2) 
\ 0 otherwise 

Its corresponding cumulative density function (CDF) can be derived by integrat

ing the PDF. 

otherwise 

The mean value is E ( « ) = Oyf^ and the variance is var{a) = (2 - f 

Figure 6.1 and Figure 6.2 illustrate the PDF graph and tlie CDF graph of the 

Raylcigh random variables for different values of a, respectively. 

In this chapter, we only consider the Rayleigh random variable generated from 

two individual zero-mean Gaussian random variables rather than the generalised 

Rayleigh random variable. 

'^{m.a'^) denotes t l ie P D F of G o u s s i a i i raiicloin \ 'nr iables w i t h m as the mean \-alue find a 
is the \-ariai ice. 
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0=0.5 

Fiaure 6.1: The PDF of the Ravlei^h random variables for different values of o 

0=0.5 

Figure 6.2: The CDF of the Ravleigh random variables for different values of a 
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6.3 t he Sys t em A r r a n g e m e n t 

6.2.2 Rayleigh Fading Channel 

In this cliapter, we assume the Rayleigh fading cliamiel is a frequency-non selec

tive, slowly fading cliannel. which means the fading condition of the cliannel is 

processed as a constant during at least one signalling interval [55 . 

Denote the transmitted sequence x = {xo,:i:i,X2, - •. .Xi} passing through a 

discrete time Rayleigh fading cliannel with an additive white Gau.ssian noise, 

where i using as a bit index as usual, x, is defined as a BPSK-modulated bit 

with its ampUtude as ±y/Am.p(xi). A t receiver^ the received discrete-time based 

band-pass signal, which is designated as y = {//o, y i ; it/2: - - • . Vi}: can be derived 

from X by the relationship: 

iji = QiXi + /(.,• (6.4) 

where o, is called the Rayleigh distributed fading coefficient wi th Am:p{o]) — 1 

and Hi is a complex white noise .sample with its variance per dimension. 

The probability density function (pdf) of the output y can be described as: 

, ( , | u ; . o ) = ^ e x p ( - ( ^ - ^ ^ , " ) " ) . (6.5) 

where u = (I — 2x) is the binary input after the BPSK modulation. = ( ^ • 

(Eif/i\'o)), and R is the code rate. 

6.3 the System Arrangement 

The radical idea for the propo.sed system is to recover the severe faded transmitted 

symbols by C 2 [ / t 2 ; ^'2: ^ 2̂) correct the errors by C i [ / t i . fci, r/i). 

Figure 6.3 gives the arrangement of the system. 

We deploy the product packetisation method to arrange symbols into packets. 

Instead of placing the coded symbols into sequential packets, the data is firstly 

split into blocks corresponding for the codewords of all erasure code. Secondly, 

we encode the data block by block and tlien packetised them by using symbols 

at the positions of each codeword. More details lias been clearly introduced in 

Chapter 5. 

133 



6. C O N C A T E N A T E D R E E D - S O L O M O N C O D I N G W I T H 
H A R D - D E C I S I O N F O R T H E R A Y L E I G H F A D I N G C H A N N E L 

n ' " > i i I i w i i i t l 

(tOtil 

Outcf Encoder 

• 

Inner Encoder 

/ / 

%0, xl,i2._..̂ i 

BPS K MOD 

UOfi 

Inner Decoder Outer Decoder 

sii.y\.',2 yi 

BPSKDEMOD 

Figure 6.3; an Overview of the Proposed Transmission System 

Instead of placing the symbols into the sequential packets, we first split the 

data into blocks corresponding to codewords of the RS erasure correcting code, 

encode them and then packetise symbols f rom the same positions of each code

word. Denoting the length of input as Id and the payload size of each packet as 

/p, the minimum number of packets needed can be calculated by U/lp- Hereafter, 

a RS block code C wi t l i this scheme is used wi th the number of information bits 

k = Ijj and a code rate R. For a linear block code C(/;., A:), there Ave k information 

packets and n - k parity-check packets, but the benefit of using the RS codes is 

that only k correct packets need to be received and these can be any A: packets. 

For convenience, the first k symbols are termed information symbols. The i-th 

packet contains /,/ information symbols whose positions are at j • k /. where 

J = 0 , 1 , . . . - [Ifi — 1) and 0 < / < k. At the receiver, all the received information 

packets need to be restructured into a buffer X wi th length / j . I f tlie 7- th packet 
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6.4 Ana lys i s o f Conca tena t ed R S Codes 

is receivefl, the symbols rontainod in the packet shoiild bo placed in tho buffer at 

the positions of xj^i^.+i, where j = 0 , . . . . A; — 1: if i t has been erased during the 

transmi.ssion, ?'s will be placed in the positions of Xj^f.+i, where '̂ = 0 . . . . , A: — 1 

to mark tlie symbols as erased. 

The packets are transmitted continuously- and at the receiver, they are de-

piicketisated and decoded into a buffer with a length of / j . 

6.4 Analysis of Concatenated R S Codes 

The uiost popular decoding algorithm of RS codes is called "error-and-erasure"' 

decoding algorithm, which is preferable to "error-correction-only" decoding al

gorithm. Wi th this algorithm, an RS code is capable of correcting /, errors and 

recovering c erasures, under tlie condition o( 2t-\-c < n — k. Then, \vc can obtain 

the probability of decoder failure as follows: 

Pf = T,\ £ pmp{c)\+ Yl ^(^) (6.6) 

where P(e) is the probabihty of c erasures and P{t\c) is the conditional probability 

of t errors given e erasures in the remaining //. - e positions, which are defined as 

follow^s; 

P{c) = i^l) • 74(1 - / V ) " - ' . (6.7) 

/ - A 
P{t\c) = ( " ^ ' j • - P.)"-'-' (6-8) 

where Pcr is the probability of an erasure, and pc is the probability o f an error 

but not an erasure. 

To ensure that the system can give good performance in tlie Rayleigh fading 

channel, the BCH code is used to correct and to detect nmltiple hard decision 

errors in each received packet. I f the number of errors is small, they are corrected 

by the Hamming or BCH code. I f the number of errors exceeds a threshold, the 

entire packet is erased and corrected by the RS code. I t is w^ell known that a 

RS code can recover ii — k erasures if a Miiximum Likelihood decoding algorithm 
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is implemented. In Chapter 2, we has introduced a complexity-reduced optimal 

decoding algorithm - ilie In-place Algorithm. I t is always able to solve the maxi

mum nuuiber of erasures correctable by the code. However, for a Rayleigh fading 

channeL we also need to consider the Gaussian noise and fading factor whicli 

decrease the energy- of each symbol. The system is shown in Figure 6.3. 

6.5 Numerical Results and Discussion 

In tliis sect ion, we compare RS codes, with difTercnt code rales, concatenated with 

different BCH codes with optimal LDPC codes designed using the Progressive 

Edge Growth (PEG) technique [32] and bit interleaved for transmission over the 

Rayleigh fading channel. 

First, we evaluated the performance of RS codes wi th different code rates. As 

shown in Figure 6.'1. the RS code (63,55,9) acliieved the best performance, ûs 

its performance is half order of magnitude better than that of RS(63, 59, 5) code 

and more than one and a half orders of magnitude better than that of the RS(63, 

61, 3) code at a FER of IQ-'^ 

The siniulation results obtained for the RS code (63, 59, 5) concatenated with 

different BCH codes arc given in Figure 6.5. The BCH codes used were the 

Hamming (63, 57, 3) code, and the (63,51,5), (63,'15, 7) and (63,18,10) codes 

respectively. These codes can detect up to a niaxinunn of 2, '1, 6 and 9 errors, 

respectively or correct up to a maximum of 1, 2, 3 and 4 errors, respectively 

or a combination of less corrected/detected errors in each received packet. The 

performance is improved by using more powerful codes until the rate loss causes 

significant degradation to the Eb/i^'o- The rate loss for the Hannning (63, 57, 

3) code is -0.43 dB; for the (63, 51, 5) code, the tradeoff is -0.92 dB; for the 

(63, 45, 7) code, the tradeoff is -1.46 dB and for the BCH (63, IS, 10) code, 

the tradeoff is -5.44 dB. Observe tliat the concatenated codes have different 

coding gains over the original RS code, especially the one concatenated with the 

BCH(63, 45, 7), which lias a coding gain of approximately 2.2 dB at a FER of 

10"^. Iiiterestingly, the loss is so excessive that when the (63, 18, 10) code is used 

, the performance is worse than the uncoded performance. Therefore, the rate 

loss of the inner codes cannot be ignored. 
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6.5 N u m e r i c a l Resul ts and Discuss ion 

RS 63.55,9 (each packet contains 9 or more erased bils) 

11.5 
EbNo(dB) 

Figure 6.4: RS codes with variable code rates in the Rayleigh fading channel 

We also compare<l the performance between the RS code, concatenated with 

a BCH code using hard decisions, and the PEG designed LDPC code wi th soft 

decision, Belief Propagation, iterative decoding for the Rayleigh fading cliannel. 

In this comparison, we applied the RS codes and the LDPC codes wi th the 

same code rate and the same packet size. As showu in Figure 6.6, the RS with 

BCH hard-decision decoder achieved a significant performance improvement over 

the PEG LDPC soft-decision decoder. A t a FER of 10"= ,̂ the RS w i t h BCH 

hard-decision codes can obtain an average coding gain of 2.0 dB over the LDPC 

soft-decision code in the Rayleigh fading chaunel. This is attributable to the RS 

codes being MDS, optimum codes wi th maxinunn likelihood erasure correcting 

decoding. This factor more than compensates for the loss associated w i t h hard 

decisions for the Rayleigh fading channel particularly as the LDPC codes are not 

tlie most powerful codes due to the necessity for iterative decoding. 
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10̂  

10- h 

10' 

10' 

10-^ 

10 -5 

T ^ - r 

with BCH(63.57.3) 

JCH,G3 13.1C — ^ 
J I I 

9.5 10 10.5 11 11.5 12 
EbNo(dB) 

12.5 13 13.5 14 

Figure 6.5: RS (63, 59, 5) rnnratcMiated by different l iannuing or BCH codes in 
the Rayleigh fading cliannel 
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FER vs EbNo for RS[63,59.5), RS[63,55.9] and RS[63,61.3] in the Rayleigh Fading Channel 
10^ 

10' 

10-^ t 

10" 

10" 

e-3.53.5) — B -

RS(63,61,3) • ••»• 

LDPC PEG-3969.3700 

9.5 10 10.5 
EbNo(dB) 

11 11.5 12 

Figure 6.6: RS with BCH hard-decision codes vs. LDPC soft-decision codes in 
the Rayleigh fading channel 

139 
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6.6 Summary 

In this Chapter, we described the u.se of RS codes concatenated wi t l i BCH codes, 

wi th hard-decision decoding for the wireless Rayleigh fading channel. I t was 

shown that the best performance is a function of overall code rate. Furthermore 

i t was shown that the concatenated code combined with simple, hard decision 

decoding achieves better results than using an optimally designed (PEC) LDPC 

code combined wi th soft decision decoding. Further work will provide analysis of 

the two coding arrangements to sliow why this is the case. Additionally i t will be 

determined how far the hard decision concatenated arrangement is from capacity 

for the Rayleigli fading channel. 
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/ hear and I forget. / see and I remember. I do and I 

understand. 

Confucius (551 B E C - 479 B E C ) 

Conclusions and Future Work 

7.1 Conclusions 

This thesis is dedicated to the study, design, analysis ajid evaluation on erasure 

codes and their decoding algorithms. Primarily, we are interested in the transfor

mation of iterative message-passing algorithms for f rom the AVVGN channel into 

the BEC. 

The first part of the thesis is focused on the decoding algorithms for erasure 

codes. 

Inspired by the BP algorithm and Gallager's bi t -f l ipping algorithm, we have 

introduced and analysed the matrix-based recovery algorithm and the guess/niulti-

guess algoritlnn. The performance of LDPC codes wi th the recovery algorithm 

suffers from the error-floor problem. The guess algorithm is capable of reach

ing an optimal performance when the number of guesses is enough to break the 

stopping-sets caused by the code structure. However, the computational com

plexity exponentially increases as the number of guesses is augmented. In search 
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7. C O N C L U S I O N S A N D F U T U R E W O R K 

of a M L D for the BEG, we have proposed the Tn-place algorithm which certainly 

l^romises to return an optimal performance and amazingly has the computational 

complexity less than the conventional quadratic time. (Cliapter 2) 

In the first jiart, motivated by the invention of the M L D for the BEG. we 

have also investigated the ML-approaching algoritinns for the AWGN chamiel. 

The BESCT algorithm has been introduced and antilysed. It combines the merits 

of the reliability decoding algorithms and the code-structured algorithms. The 

sinuilations and analysis have shown that when the information length is fixed, 

the number of errors in the MR.B part is less than 4 and the position of the 

least likable error is bounded by 4, the BESCT algorithm can obtain the M L 

performance with a less computational complexity tlian the OSD algorithm on 

average. (Cliapter 3) 

The second part of the thesis is devoted to the application and evaluation of 

transmi.ssion structures to erasure codes. 

We have studied the sul>optimal erasure codes including LT codes and Raptor 

codes in packetised network transmissions. Our investigation and simulation have 

shown that when the information file is large enough (for example, wi th more than 

10000 packets), LT codes are capable of recovering the information file wi th the 

actual munber of transmission packets similar to that of information packets. I f 

the information file is as short as the number of information packets less than 

5000, LT codes require the transniission packets with the number more than twice 

than that of information packets. (Chapter 4) 

We have devised the product-packetisation structure for packet-data network 

transmissions. Assisted by their MDS properties, RS codes are capable of real

ising the desirable ratcless transmissions. Combined with the proposed product-

packetisation structure, the In-jjlace algorithm at receiver performs the M L per

formance. Complexity, frame error rate and error statistics are evaluated which 

shows tl»at the rateless RS product-packetisation coding scheme scents a promis

ing candidate for the application of packet data networks, such as broadcasting 

and nnilticasting. (Cliapter 5) 

We have investigated erasure codes for the Rayleigh fading chaimel with era

sures and errors. We have proposed the concatenated RS coding structured by 

the product packetisation to recover the erasures and correct the errors. We have 
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7.1 Conclusions 

coinparecl tlie perforinaiice of the proposed coding sclieine with hard-decision In-
piace decoding to tliat of optimally designed (PEG) LDPC code combined with 
soft-decision iterative decoding. It has shown, at a FER of 10"'*, the RS with 
BCH hard-decision codes can obtain an average coding gain of 2.0 dB over the 
LDPC soft-decision code in the Ra\ leigh fading chainiel. (Chapter 6) 

The major contribntions of this work include: 

1. We have introduced the matrix-based iterative algorithms, wliich are the re
covery algorithm and the guess algorithm. With the matrix representation, 
we have suggested the efficient way to choose the guesses. Computer simu
lations show that with a limited number of crucial guesses, the performance 
of the guess algorithm asymptotically approaches to the ML performance 
for LDPC codes. For example, for the PEC LDPC (256,128), with the max
imum number of crucial guesses of 3. at the erasure probability of 0.35, the 
performance of the guess algorithm has been improved by the magnitude 
order of 1.5 compared to that of the recovery algorithm, which is close to 
the MLD performance by tlic gap of the magnitude order of 0.5. 

2. We have proposed an MLD algorithm, the In-place algorithm, for the BEC. 
The proposed algorithm focuses on solving the parity-check equations con
taining erasures, which has its computational complexity less than the con
ventional quadratic time. It can be applied for both binary codes and 
non-binary codes. 

3. We have proposed a graph-based ML-approaching algorithm for the AWGN 
chamiel. We have shown that by applying a bi-directional code tree, the 
proposed branch-evaluation algorithm based on the cross-correlation met
ric is equivalent to the cUissic Dorsch algorithm with a flexible threshold 
method. The dynamic threshold method speeds up the decoding process 
when the mnnber of errors hi the MRB is less than ^1. the position of the 
least likable error is located within the first 4 less reliable bits in the MRB. 
compared to the OSD algorithm. 
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4. \Vc have revealal that the popular fountain codes can only approach the 
sub-optimal performance under the condition of the number of information 
packets more than 10000. 

5. We have proposed the product packetisation of constructing ratclcss RS 
codes for use in packctised network transmissions. We sliow some that 
elHcicnt ratcless RS codes combined with the In-placc algorithm at receiver. 
eai» achieve the optimal performance with the computational complexity 
less than 0(A'^-^), where is the total length of transmitted bits. 

6. We have applied the product packetisation structure on concatenated RS 
coding with the hard-decision In-place algorithm for the Rayleigli fading 
channel. Computer sinmlations have shown that the concatenated RS code 
comljined with simi)le. hard-decision In-placc decoding is capable of achiev
ing better performance than using an optimally designed (PEG) LDPC code 
combined with soft-decision iterative decodiu";. 
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7.2 Future Work 

7.2 Future Work 

1. Algebraic RS Decoding Algoritlmis 
During the study of erasure correcting codes, a huge amount of interest lias 
been raised on RS codes. Tlie non-binary structure of RS codes, which lias 
been considered as the reason of tlie high encoding/decoding complexity, 
becomes one of the drawbacks of these powerful codes. The breakthrough of 
the Guruswaiiii-Sudan algoritlnn has stirred up the research focused on the 
algebraic decoding algorithms for RS codes. It will be valuable to further 
study these decoding algorithms and devise practical structures for different 
applications. 

2. Iinpleinentation of Rateless RS Product-packetisation Structure 
To realise the core findings of our research work on the In-place algoritluii 
and the product-packetisation structure into the practical world is abso
lutely meaningful. A field-programmable gate array (FPGA) hoard is a 
popular integrated-circuit, especially deployed in the DSP/Communications 
systems. The implementation of rateless RS product-packetisation struc
ture requires a further understanding of an efficient FPGA programming 
and the limited memory allocation. 

3. Furtiier Study on the Random Matrix Theory 
After revealing the limitations of fountain codes, the theory of random 
niatrbi rings the bell. To devise a fountain code beyond its limitation on 
the short information file, it is necessary to further understand the random 
matrix theory. 
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Analysis of the distribution of the number of 
erasures correctable by a binary linear code and 
the link to low-weight codewords 

M. Tomlinson, C . Tjhai , J . Cai and M. Ambroze 

Abstract: The number and weight of low-weight codewords of a binary linear code determine the 
erasure channel performance. Analysis is given of the probability density function of the number of 
erasures correctable by the code in terms of the weight enumerator polynomial. For finite-length 
codes, zero erasure decoder error rate is impossible, even with maximum-distancc-scparabic 
(MDS) codes and ma.ximum-likelihood decoding. However, for codes that have binomial weight 
spectra, for example BCH, Goppa and double-circulant codes, the erasure correction performance 
is close to (hat of MDS codes. One surprising result is that, for many ( H , k) codes, the average 
number of correctable erasures is almost equal to n — which is significantly larger than 
dmin - 1 • For the class of itcratively decodable codes ( L D P C and turbo codes), the erasure perfor
mance is poor in comparison to algebraic codes designed for maximum t / m i n - h is also shown that 
the turbo codes that have optimised dm\n have significantly belter performance than L D P C codes. 
A probabilistic method, which has considerably smaller search space than that of the generator 
matrix-based methods, is presented to determine the i / m m of a linear code using random erasure 
patterns. Using this approach, it is shown that there arc (168, 84, 24) and (216, 108, 24) quadratic 
double-circulani codes. 

1 Introdutnion 

The erasure correcting perfomiance of codes and associated 
decoders has received renewed interest in the study of 
coding over packet networks as a means of providing effi
cient computer communication protocols [1]. In [2. 31. it 
is shown thai («, k) erasure correcting codes can be used 
as an efficient and cfTcclive solution lo recover lost 
packets in communication networks without the need of 
retransmission. This is achieved by arranging data in a 
squared-matrix representation (produet-packetisation). 
where each column contains a codeword and each row rep
resents a packet lo be transmitted across the network. This 
product-packetisation structure allows efficient communi
cations as not all packets need to be transmitted; the 
missing packets are treated as erasures and a decoder 
can reconstoicl them provided thai k independent 
packets are successfully received. This efticicnt communi
cation scheme has been further improved in [4] to include 
error conecling codes in addition to erasure correcting 
codes. The erasure correcting codes arc also used in dis
tributed computing systems. For example, Rabin [S] pro
posed a scheme to use an («, k) erasure correcting code 
to improve data availability in distributed storage 
system. The data are divided into k blocks and encoded 
to produce n blocks, which are distributed across n 
hosts. In this way, data can still be recovered despite 
the unavailability of some hosts. In addition to those 
mentioned above, the erasure performance of codes, in 
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particular L D P C codes are used as a measure of predict
ing the code performance for the additive white gaussian 
noise channel [6. 7]. 

It is well known that an (/j, A*, d^^m) error correcting code 
C, where n and k denote the code length and information 
length, respectively, can correct up to d^m— 1 erasures 
[8. 9] where d^m is the minimum Hamming distance of 
the code. However, it is not so well known that the 
average number of erasures correctable by most codes is 
significantly higher than this and almost equal to n — k. 
One of the eariier analyses of the erasure correction 
performance of particular linear block codes is provided 
in a key-note paper by Dumer and Farrell [10], who 
derived the erasure correcting performance of long binary 
BCH codes and their duals and showed that these codes 
achieved capacity for the erasure channel. 

In this paper, an expression is obtained for the probability 
density function (PDF) of the number of correctable 
erasures as a function of the weight enumerator function 
of the linear code. Analysis results o f several common 
codes arc given in comparison to maximum likelihood 
( M L ) decoding performance for the binary erasure 
channel. Many codes including B C H codes, Goppa codes, 
double cireulant, self-dual codes have weight distributions 
that closely match the binomial distribution [9. 11-13]. 
It is shown for these codes that a lower bound of the 
average number of correctable erasures \s n — k — 2. The 
decoder error rate performance for these codes is also ana
lysed. Results are given for rate 0.9 codes and it is shown 
that for code lengths of 5000 bits or longer there is insignif
icant difTercnec in performance between these codes and the 
theoretical optimum maximum distance separable (MDS) 
codes. The results for specific codes are given including 
B C H codes, extended quadratic residue codes, L D P C 
codes designed using the progressive edge growth (PEG) 
technique [14] and turbo codes [15]. 
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2 Derivation of the PDF of correctable erasures 

2.1 Background and definitions 

A set of.V erasures is a list of erased bit positions defined a s / 
where 0 < / < A- and / G |0 • • •« - 1). A codeword 
.V = (.v„. . V | , . . . , .v„_,) satisfies the parity check equations 
of the parity cheek matrix / / , that is l/x^ = 0. 

A codeword with i- erasures is defined as x — (.v„ ,̂ .v„ ,̂ 
. . . ,.v„ _̂  _ |.v,„, V; V;.,)' ^̂ 'hcre .v„̂  are the unerased 
co-ordinates of the codeword and the set of s erased 
co-ordinates is defined as/"». 

There are a total of n - k parity check equations, pro
vided the erased bit positions correspond to independent 
columns of the / / matrix; each of ihc erased bits may be 
solved using a parity check equation derived by the 
classic technique of Gaussian reduction [6. 8. 9|. For the 
MDS codes [9], any set of .v erasures are correctable by 
the code provided that 

s < n-k (1) 

Unfortunately, the only MDS binary codes arc trivial [9]. 

2.2 Correspondence between uncorrectable 
erasure patterns and low-weight codewords 

Provided the code is capable of correcting the set of s era
sures, then a parity check equation may be used to solve 
each erasure, viz 

•V, = ''l.tvV + ' ' l . l - ^ w . + ' ' 1 . 2 - ^ ' - + • • • + / ' | . „ - , - l - V „ _ _ , 

where h/j is the coefficient of row / and column J of H. 
As the parity check equations arc Gaussian reduced, no 

erased bit is a function of any other erased bits. There 
will also be /( - k — s remaining parity check equations, 
which do not contain the erased bit co-ordinates .t/-. namely 

K+I.ty'u, + ^ + 2 . 1 - ^ . . + / ^ 4 . 2 . 2 - V „ , + • • • -1- / / , + 2 . „ _ , _ , . V „ _ _ , _ , = 0 

Further to this, the hypothetical case is considered where 
there is an additional erased bit .t,;. This bit co-ordinate is 
clearly equal to one of the previously unerased bit 
co-ordinates, denoted as .v„ . 

Also, in this case it is considered that these A- + 1 erased 
co-ordinates do not correspond to A - f - 1 independent 
columns of the / / matri.x, but only to s + \ dependent 
columns. This means that .x„ is not contained in any of 
the n - k - s remaining parity check equations, and 
cannot be solved as the additional erased bit. 

For the first s erased bits whose co-ordinates do corre
spond to s independent columns of the / / matrix, the set 
of codewords is considered in which all of the unerased 
co-ordinates are equal to zero except for .v„ . In this case, 
the parity check equations above arc simplified lo 

•V. 
-V: (2 

By definition, as there are, at least /; — s-1 zero 
co-ordinates contained in each codeword, the maximum 
weight of any of the codewords above is .v+1. 
Funhcmiorc, any erased co-ordinate that is zero may be 
considered as an unsolved co-ordinate, since no non-zero 
co-ordinate is a function of this co-ordinate. This leads to 
the following theorem. 

Theorem I: The non-zero co-ordinates of a codeword of 
weight M- that is not the juxtaposition of two or more 
lower weight codewords, provide the co-ordinate positions 
of u' - 1 erasures that can be solved and provide the 
co-ordinate positions of erasures that cannot be solved. 

Proof: The co-ordinaies of a codeword of weight u' must 
satisfy the equations of the parity check matrix. With the 
condition that the codeword is not constructed from the jux
taposition of two or more lower weight codewords, the 
codeword must have w - 1 co-ordinates thai correspond 
to lineariy independent columns of the / / matrix and u-
co-ordinates that correspond to linearly dependent 
columns of the H matrix. • 

Corollary' I: Given s co-ordinates corresponding to an 
erasure pauem containing s erasures, i" < (n - k), of 
which u- co-ordinates arc equal to the non-zero co-ordinates 
of a single codeword of weight u', the maximum number of 
erasures thai can be corrected is s - I and the minimum 
number that can be corrected is u' - I . 

Corollary 2: Given u' - 1 co-ordinates that correspond 
to lincariy independent columns of the / / matrix and if 
co-ordinates that correspond to lineariy dependent 
columns of the / / matrix a codeword can be derived that 
has a weight less than or equal to w. 

The weight enumeration function of a [9] is usually 
described as a homogeneous polynomial of degree n in x 
and V . 

Xf = .V, 
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1 = 0 

The support of a codeword is defined [9] as the co-ordinates 
of the codeword that arc non-zero. The probability of the 
successful erasure correction of s or more erasures is 
equal to the probability that no subset of the s erasure 
co-ordinates corresponds to the support of any codeword. 
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The number of possible erasure patterns of ^ erasures of a 

code of length n is For a single codeword of weight iv, 

(he number of erasure patterns with s co-ordinates thai 

include the support of this codeword is 

the probability of a subset o f the s co-ordinates coinciding 
with the support of a single codeword of weight w; 
Prob(j:,.. G / ) is given by 

P r o b ( . v . , e / J ( : : : ) 
(0 

and 

P r o b ( . v , . . e / , ) = 

simplifying 

P r o b ( : c . , e / J = 

{n - wy.s\{n - sy. 

n\{s - wy.{n - sy. 

{n - wy.s\ 

n\is - wy 

By assuming that no erasure pattern includes more than one 
codeword, a lower bound of the probability of successful 
erasure correction of s or more erasures may be derived 
from the probability that the erasure paliem does contain 
a codeword o f weight w < s 

The probability of the code being able to correct exactly .v 
erasures, but no more, Pr ( i ) for 5 < n - A is 

Pr(.v) = Prob(5 + I ) - Prob(A) (3) 

and 

for .V = 11- k. Prob(n - * + I ) = I and 

T h e average number o f erasures corrected by the code 

erase-
is given by 

n-k 

'^'.rusc = X ^ i ( P r o b ( . + 1) - Prob(.)) 

Substituting Prob(.v) gives 

in 
A', (6) 

T h e terms responsible for the shortfall in performance com
pared to an M D S code, M D S s h o n f a u 'S evident from (6) 

n~k s 

M D S = E E 
in - j ) \ s \ 

JV-
(7) 

A s well as determining the performance shortfall, compared 
to M D S codes, in terms of the number o f correctable erasures 
it is also possible to determine the loss from capacity for the 
erasure channel. T h e capacity o f the erasure channel with 
erasure probability p was originally deiermincd by El ias 
[16] to be I — p. T h e capacity may be approached with 
zero codeword error for very long codes, even using 
n o n - M D S codes such as B C H codes [10 ] . However, short 
codes, even M D S codes wi l l produce a non-zero frame 
error rate ( P E R ) . For (/j. A, /i - j t + I ) M D S codes, a code
word decoder error is deemed to occur whenever there are 
more than n - k erasures. (It is assumed here that the 
decoder does not resort to guessing erasures thai cannot be 
solved.) T h i s probability, P M D S ( p ) 'S g iven by 

P . o . i p ) = ^ - Y : j ; ^ p ' 0 - p r - ' ' (8) 
5=0 

T h e probability o f codeword decoder error for the code 
may be derived from the weight enumerator of the code 
by using (4) . 

n \ i s - j y . { n - s y . s r ^ ' 

- E .^p ' ( ' -p ) ' i n s ) 

s=n-k+\ 

(9) 

which simplifies to 

E E ^ . ^ r ^ " 

x p \ \ -p)'"-''-\-Pr^osiP) 

(10) 

T h e first term in the above equation represents the loss from 
M D S code performance. 

Carrying out the sum in reverse order, the equation s impl i 
fies to 

n-k 

Noting thai there is a probability I , that (/; - A' + 1) erasures 
cannot be corrected, A'cnisc ^nd Prob( i ) = 0 for s < dtn\„, 
Aerasc becomes 

n-k 

3 Codes whose weight enumerator coefficients 
are approximately binomial 

It is wel l known that the distance distribution for many 
linear, binary codes including B C H codes , Goppa codes, 
self-dual codes [9. 1 1 - 1 3 ] approximates to a binomial 
distribution. Accordingly 

(11) 

For these codes, for which the approximation is true, the 
shortfall in performance compared to an M D S code. 
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M D S s h o n f a t i is obiaincd by substituiion into (7) 

n-k s 

which s implif ies to 

M D S 

which leads to the simple result 

»shonnilI 

(n -j)\s[ 

JV-

M D S ^onfall 
. " - A- - 2 ^ 

= 2 

(12) 

(13) 

(14) 

It is apparent that for these codes the M D S shortfall is just 
two bits from correcting all /; - k erasures. It is shown later 
using the actual weight enumerator functions for codes, 
where these are known, that this result is slightly pessimistic 
since in the above analysis there is a non-zero number of 
codewords with distance less than iL However, the 
error attributable to this is quite small. Simulation results 
for these codes show that the actual M D S shortfall is 
closer to 1.6 bits due to the assumption that there is never 
an erasure pattern, which has the support of more than 
one codeword. 

For these codes whose weight enumerator coefficients are 
appro.ximatcly binomial , the probability of the code being 
able to correct exactly .v erasures, but no more, may also 
be s implif ied from (4 ) and (5) . 

in -j-)\{s+ I ) ! 

+ 1 ~jy. 

in-J)\s\ 

^{n-JV.J\2"-^n\(s-J)\ 

w h i c h s implif ies to 

P r ( . ) 

for s < n — k and for .v = n - k 

{n - » ! ( " - k)\ P d n - k ) - ) K ^ - j r v - " 

and 

Pr(H - k) 
1 

(15) 

(16) 

(17) 

(18) 

For codes whose weight enumerator coefiicicnts arc 
approximately binomial , the pdf of correctable erasures is 
given in Table 1. 

T h e probability o f codeword decoder error for these 
codes is given by substitution into (9) , 

code 

(n-s)\s • / / ( I ~pf"-'' + P,,osiP) 

(19) 

A s first shown by Dumer and Farrell [10] when n tends to 
oo, these codes achieve the erasure channel capacity. A s 
examples , the probability o f codeword decoder error for 
hypothetical rate 0.9 codes, having binomial weight 

T a b l e 1: P D F of n u m b e r off correctable erasures for codes 
w h o s e weight enumerator coefficients are binomial 

Correctable erasures Probability 

n- k 

n - k - ^ 

n - k - 2 

n- k-3 

n - 4 

n-k-S 

n - k - 6 

n~k-7 

_]_ 
2"-* 

0 . 5 -

0.25-

0.125 

0.0625 -

0.03125-

1 
2"-* 

1 

1_ 

1 
2 ^ 

1 
" 2 ^ 

0.0150625 

0.007503125 

1 

2"-

distributions, and lengths 1 0 0 - 1 0 0 0 0 bits are shown 
plotted in Fig . 1 as a function o f the channel erasure prob
ability expressed in terms of relative erasure channel 
capacity 0.9/(1 - p ) . It can be seen that at a decoder 
error rate o f 10"** the (1000, 900) code is operating at 
95% o f channel capacity, and the (10000, 9000) code is 
operating at 98% of channel capacity. A comparison with 
M D S codes is shown in F ig . 2. For code-lengths from 500 
to 50000 bits, it can be seen that for code-lengths of 5000 
bits and above, these rate 0.9 codes arc optimum since 
their performance is indistinguishable from the performance 
of M D S codes with the same length and rate. 

4 Results for particular codes 

The first example is the extended B C H code (128. 99. 10) 
whose coefiicicnts up to weight 30 o f the weight enumerator 
polynomial [17] are tabulated in Table 2. 

T h e pdf o f the number o f erased bits that are correctable 
up to the maximum o f 29 erasures, derived from ( I ) , is 
shown in F i g . 2u. A l so shown in F ig . 2a is the performance 
obtained numerically. It is straightforward, by computer 
simulation, to evaluate the erasure correcting performance 
of the code by generating a pattern o f erasures randomly 

Bnorrtal (1000300) • 
.OOOOt 

0 98 CM 0.9i 
PatBtm Bntwre dXBVuri CatKuCy 

5 4 : 

Fig. 1 FER performance of codes with binomial weight enumer
ator coefficients 
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Table 2: L o w - w e i g h t spectra l t erms for the ex tended 
B C H (128. 99) code 

Fig. 2 Comparison of coJcs with binomial weiuhl enumcratttr 
citcthcu-nis to MDS codes 

W e i g h t 

0 1 

10 7 9 6 5 4 4 

1? 9 0 1 8 0 1 6 0 

1 4 6 4 6 3 8 8 9 5 3 6 

16 3 4 7 7 6 4 5 3 9 9 2 8 

IP 1 4 1 2 7 5 5 9 5 7 3 1 2 0 

?0 4 4 5 7 5 4 7 0 5 4 6 9 2 4 8 

22 1 1 1 4 9 6 8 5 2 6 5 4 6 7 7 7 6 

2 - 2 2 4 8 1 1 6 9 0 6 2 7 7 1 2 3 8 4 

26 3 7 0 4 8 9 5 3 7 7 8 0 2 1 9 1 1 0 4 

28 5 0 4 8 6 5 5 6 1 7 3 1 2 1 6 7 3 6 0 0 

30 5 7 4 5 0 2 1 7 6 7 3 0 5 7 1 2 5 5 5 5 2 

and sc>l\ing these m turn by using the panr>' eheck 
equations. This priKedure eorresponds to M L decoding 

7]. Moreover, the codeword responsible for any 
instances of n o n - M D S p»erformance (due to this erasure 
pattern) ean be detennined by back substitution into the 
solved parity cheek equations. Except for short codes or 
very high rate codes, u is not possible to complete this pro
cedure exhaustively, because there arc too many combi
nations o f erasure patiems. For example, there are 
4.67 X 10"** combinations of 29 erasures in this code o f 
length 128 bits. In contrast, there are relati\el> leu 
weight codewords responsible for the n o n - M D S perform
ance of the code. For example, each codeword of weight 
10 is responsible for ^ ) = 4.13 x 10*' erasures pai-

tems not being solvable. 
.As the <y„„n o f this code is 10. the code is guaranteed to 

correct any erasure pattem containing up to 9 erasures. It 

can be seen from I ly ^, that the probability of not being 
able to correct any pattem o f 10 erasures is less than 
10 **. T h e probability o f correcting 29 erasures, the 
maximum number, is 0.29. T h e average number of erasures 
corrected is 27.44. almost three times the t /m ,n . and the 
average shortfall from M D S performance is 1.56 erased 
bits. The prediction of performance by the lower bound is 
pessimistic due lo diuible codeword counting in erasure pat-
tems featunng more than 25 bits. T h e efl'ect of this is 
evident in l ig The lower bound average number o f era
sures corrected is 27.07 and the shortfall from M D S per
formance is 1.93 erasures, an error of 0 .37 erasures. T h e 
erasure performance evaluation by s imulation is comp
lementary to the analysis using the weight distribution of 
the code, in which the simulation being a sampling pro
cedure IS inaccurate for short, uncorrectable erasure pat
terns, because few codewords are responsible for the 

a-̂ a lysis 

PDF of number ot correctea era sea bits 

Fig. 3 PDh' t)1 ciosiii c i on 11 iiiin\ 

a (128. 99. 10) extended BCH code 
h <256. 207. 14) extended lit H CCKIC 
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pcrfomiancc m this rcgu>n I or shi)n, uncDrrcclablc erasure 
pa i icms . the lower bound analysis is light in this rcgii>n as it 
is not pt>ssible for these erasure patterns to eontain more 
than one codeword because of codewords dift'enng by at 
least J,„„,. 

T h e distribution of the cinleword weights responsible for 
n o n - M D S performance of this ctnle is shown in I iiz 4,;. 
T h i s is in contrast to the distribution of low-weight code
words shown in I iL' ^ Although there are a larger 
number of higher weight codewords there is less chance 
of an erasure pattern containing a higher weight codeword 
T h e max imum occurrence is for weight 14 codewords as 
shown in I i l : ACI. 

T h e M R perfomiancc of the lU H ( i : s . 10) code is 
shown in I ii! 6 as a function of relative capacity defined 
by k/( 1 - p)n. A l so shown in I le is the F E R performance 
o f a hypothetical (128. 99, 30) M D S code. liquations (X) and 
(9) were used to derive I le ' \ As shown in I isj ' \ there is a 
significant shonfal l in capacity even for the optimum M D S 
code. T h i s shortfall is attributable to the relatively shon 
length o f the code. At 10 F E R the B C H (128. 99. 10) 
code achieves approximately 80% o f the erasure channel 
capacity. T h e maximum capacity achievable by any (128. 

99) binarv code as represented by a (128, 99, 30) M D S 
code IS - 8 2 . 5 % . 

An example of a longer code is the (256, 207, 14) extended 
H( H code. The coetficients up to weight 50 o f the weight 
enumerator polynomial | i s ] are tabulated in l.ih - T h e 
evaluated erasure correcting performance of this code is 
sht>wn in I iL' and the code is able to correct up to 49 era
sures. It can be seen from I ig 3/) that there is a close match 
between the lower bound analysis and the simulation results 
for the number of erasures between 34 and A(^ B e \ o n d 46 
erasures the lower bound becomes increasingly pessimistic 
due to double counting o f codewords. Below 34 erasures 
the simulation results are erratic due to insufficient 
samples. It can be seen from Fig 3/' that the probability of 
correcting only 14 erasures is < 10 (actually 
5.4 X 10 '"*) even though the J^,„ o f the code is 14. I f a sig
nificant level of erasure correcting failures is defined as 10 
then froin I i;j }h this code is capable of correcting up to 30 
erasures even though the guaranteed number o f correctable 
erasures is only 13. T h e average nuinber o f erasures correct
able for the code is 47.4 and the average shortfall is 1.6 erased 
bits. The distribution of codeword weights respi^nsiblc tor 
the n o n - M D S performance o f this code is shown in 1 i: i>\ 

0 10 20 30 0 10 20 30 40 50 60 70 80 90 0 10 2 0 3 0 4 0 S O 

Fig . 4 Distnhmiim t>t i cth warj Mr/y/ir-* rt \/u>n\ihlc fttr luin- MDS fH florniain c 

a (12«. 99. 10) extended Bt H code 
h (256, 207. 14) extended B( H code 
c (512. 457. 14) extended B( H code 
d (240, 120. 16) turbo ctxie 
, (:(Mi. 100. 10) PI (i LDPC ctHle 
/ (2(K). MH). 32) extended quadratic residue code 

544 lET C\mimun l ol I. V.i .< June yHf 

AuthfXizvJ lK»ns«d us« hmrtod to UNIVERSITY OF PLYMOUTH Downtoaded on ̂ 4ov«mbw 12 2009 al 11 19 from IEEE Xptore ReslrKtions apply 



i o « 

I 10' 

10= 

10*̂  
0 5 10 15 20 25 30 35 40 

Weight 

Fig. 5 Distribution of low-w eight codewords for the (128. 99. 
10) extended BCH code 

The F E R perfomiancc of the B C H (256, 207, 14) code is 
shown in F ig . 6 as a function of relative capacity defined 
by k / i \ - p)n. Also plotted in F ig . 6 is the F E R perform
ance of a hypoihctical (256, 207, 50) M D S code. 
Equations (8) and (9) were used to derive this. A s obser\'ed 
from Pit;. 6 there is less shortfall incapac i ty compared to the 
B C H (128, 99, 10) code. At lO"'' F E R , the B C H (256. 207, 
14) code achieves approximately ~ 8 5 . 5 % of the erasure 
channel capacity. T h e maximum capacity achievable by 
any (256, 207) binary code as represented by (256, 207, 
50) hypoihctical M D S code is ~ 8 7 % . 

The next code to be investigated is the (512, 457, 14) 
extended B C H code, which was chosen because it is com
parable to the (256. 207, 14) code in being able to corriccl 
a similar maximum number of erasures (55 cf. 49) and 
has the same f/min of 14. Unfortunately, the weight enumer
ator polynomial is yet to be determined, and only erasure 
simulation results may be obtained. F ig . la shows the per
formance o f this code. T h e average number of erasures 

BCH(I2S^.1C 

BCM(250JO7,i* 

00 oe or 
Relative erasure channel capacity 

Rg. 6 FER performance for the (128. 99. 10) and (256. 207. 14) 
extended BCH codes and (168. 84. 24) extended quadratic residue 
code for the erasure channel 
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Table 3: Spectral terms up to weight 50 for the extended 
BCH (256, 207) code 

Weight 

0 
14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

159479040 

36023345712 

6713050656000 

996444422768640 

119599526889384960 

11813208348266177280 

973987499253055749120 

67857073021007558686720 

4036793565003066065373696 

206926366333597318696425720 

9212465086525810564304939520 

358715843060045310259622139904 

12292268362368552720093779880960 

372755158433879986474102933212928 

10052700091541303286178365979008000 

242189310556445744774611488568535040 

5233629101357641331155176578460897024 

101819140628807204943892435954902207120 

1789357109760781792970450788764603959040 

corrected is 53.4 and the average shortfall is 1.6 erased 
bits. T h e average shortfall is identical to the (256, 207, 14) 
extended B C H code. A l so the probability o f achieving 
M D S code perfonnancc, that is being able to correct all 
n — k erasures is also the same and equal to 0.29. T h e dis
tribution o f codeword weights responsible for n o n - M D S 
performance o f the (512, 457. 14) code is very s imilar to 
the (256, 207, 14) code as shown in F i g . 4 t . 

A n example o f an extended cyc l i c quadratic residue code 
is the (168, 84, 24) code whose coefficients o f the weight 
enumerator polynomial are given in [19] and are tabulated 
up to weight 72 in Table 4. T h i s code is a self-dual, 
doubly even code, but not extremal because its f/^in is not 
32 but 24 [201. T h e F E R performance o f the (168, 84, 24) 
code is shown in F i g . 6 as a function o f relative capacity 
defined by k / i \ — p)n. A l so plotted in F i g . 6 is the F E R 
performance o f a hypothetical (168, S 4 , 85) M D S code. 
Equations (8) and (9) were used to derive this. T h e perform
ance o f the (168, 84, 24) code is close to that o f the hypothe
tical M D S code but both codes are around 30% from 
capacity at 10"** F E R . 

T h e erasure correcting performance o f non-algebraic 
designed codes is quite different from algebraic designed 
codes as can be seen from the pcr fomiancc results o f a 
(240, 120, 16) turbo code shown in F i g . Ih. T h e turbo 
code features memory four constituent recursive encoders 
and a code matched, modified S inierleaver, to maximise 
the Jmin o f the code. T h e average number o f erasures cor
rectable by the code is 116.5 and the average shortfall is 
3.5 erased bits. T h e distribution o f codeword weights 
responsible for n o n - M D S performance o f the (240, 120, 16) 
code is very difTercnt from the algebraic codes and features 
a fiat distribution as shown in F ig . Ad. 

Simi lar iy , the erasure correcting performance of a (200, 
100, 10) L D P C code designed using the P E G algorithm 
[14] is again quite different from the algebraic codes as 
shown in F i g . 7c. A s is typical of randomly generated 
L D P C codes, the dm\n o f the code i s quite small at 10, 
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Fig. 7 PDF of erasure corrections 
a (512. 457. 14) extended B C H code 
h (240. 120. 16) turbo code 
c- (200. 100. 10) PF.G L D P C code 
d (200. 100. 32) extended quadralic residue code 

even though the code has been optimised. For this code, 
the average number o f correctable erasures is 93.19 and the 
average shortfall is 6.81 erased bits. T h i s is markedly worse 
than the turbo code perfomiancc. It is the preponderance o f 
low weight codewords that is responsible for the inferior per
formance o f this code compared to the other codes as shown 
by the codeword weight distribution in Fig . Av. 

T h e relative weakness o f the L D P C code and turbo code 
becomes clear when compared to a good algebraic code 
with s imi lar parameters. There is a (200, 100, 32) extended 
quadratic residue code. T h e pdf of the number o f erasures 
corrected by this code is shown in f ig. Id. T h e difference 
between having a o f 32 compared to 16 for the turbo 
code and 10 for the L D P C code is dramatic. T h e average 

546 

number o f correctable erasures is 98.4 and the average 
shonfal l is 1.6 erased bits. T h e weight enumerator poly
nomial o f this self-dual code, is currently unknown 
as evaluation o f the 2'"* codewords is currently beyond 
the reach o f today's computers. However, the distribution 
o f codeword weights responsible for n o n - M D S performance 
o f the (200, 100, 32) code which is shown in F ig . Af 
indicates the doubly even codewords o f this code and the 
d^,„ o f 32. 

5 Determination of the d m i n of a linear code 

It is wel l known that the determination o f weights o f any 
linear code is a non-deterministic polynomial time hard 
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Table 4: Spectral t erms up to we ight 72 for the extended 
quadratic residue (168, 84) code 

Weight 

0 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

776216 

18130188 

5550332508 

1251282702264 

166071600559137 

13047136918828740 

629048543890724216 

19087130695796615088 

372099690249351071112 

4739291519495550245228 

39973673337590380474086 

225696677727188690570184 

860241108921860741947676 

problem [21 ] and except for short codes, the best methods 
for determining the minimum Hamming distance, f/min 
codeword of a linear code, to date, are probabilistically 
based [22]. Most methods are based on the generator 
matrix, the G matrix o f the code and lend to be biased 
towards searching, using constrained information weight 
codewords. Such methods become less efTectivc for long 
codes or codes with code rates around 1/2 because the 
weights of the evaluated codewords tend to be binomially 
distributed with average weight n/l [9] . 

Corol lary 2 from Section 2, provides the basis of a 
probabilistic method to find low-weight codewords in a sig
nificantly smaller search space than the G matrix methods. 
G i v e n an uncorrectable erasure pattern of n - /r erasures, 
from Corollary 2, the codeword weight is less than or 
equal to n — k. The search method suggested by this, 
becomes one of randomly generating erasure panems o f 
n — k+1 erasures, which o f course are uncorrectable by 
any (n, k) code, and determines the codeword and its 
weight from (2). This time, the weights o f the evaluated 
codewords wi l l tend to be binomially distributed with 
average weight n - A-I- 1/2. With this trend, for A'tnais ihe 
number of codewords determined with weight d, Mj is 
given by 

( / J - A - + I ) ! 
!^1d - '^'.rial. _ A- - ^ + 1 ) !2' -*+' (20) 

A s an example of this approach, the self-dual, bordered, 
double circulant code (168, 84) based on the prime 
number 83 is considered. T h i s code was described in [23] 
as having an unconfirmed d^^„ o f 28. From (20) when 
using 18000 trials, 10 codewords of weight 28 wi l l be 
found on average. However, as the code is doubly even 
and only has codewords weights which arc a multiple o f 
4, using 18000 trials, 40 codewords arc expected. In a set 
o f trials using this method for the (168,84) code, 61 code
words o f weight 28 were found with 18000 trials. 
Furthermore, 87 codewords of weight 24 were also found 
indicating that the df^m o f this code is 24. 

T h e search method can be improved by biasing towards 
the evaluation of erasure patterns that have small numbers 
of erasures that cannot be solved. Recal l ing the analysis 
in Section 2, as the parity check equations are Gauss ian 
reduced, no erased bit is a function o f any other erased 
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bits. There wi l l be n - k - s remaining parity check 
equations, which do not contain the erased bit co-ordinates 
.y .̂ T h e remaining equations may be searched to see i f there 
is an unerased bit co-ordinate that is not present in any o f the 
equations. I f there is one such co-ordinate, then this 
co-ordinate in conjunction with the erased co-ordinates 
solved so far forms an uncorrectable erasure pattern invol
ving only s erasures instead o f n — k-h \ erasures. With 
this procedure, biased towards small numbers o f unsolvable 
erasures, it was found that for the above code, 21 distinct 
codewords o f weight 24 and 17 distinct codewords of 
weight 28 were determined in 1000 trials and the search 
took 8 s on a typical 1.6 G H z personal computer ( P C ) . 

In another example the (216, 108) self -dual , bordered 
double circulant code is given in [23] wi th an unconfirmed 
d^i^ o f 36. With 1000 trials which took 26 s on the P C , 11 
distinct codewords were found with weight 24 and a longer 
evaluation confinmcd that the d^i„ o f this code is indeed 24. 

6 Conclusions 

Analys i s o f the erasure correcting performance of linear, 
binary codes has provided the surprising result that many 
codes can correct, on average, almost n - k erasures and 
have a performance close to the opt imum performance as 
represented by (hypothetical) binary M D S codes. 

It was shown for codes having a weight distribution 
approximating to a binomial distribution, and this includes 
many common codes, such as B C H codes, Goppa codes 
and self-dual codes, that these codes c a n correct at least 
n - k - 2 erasures on average and closely match the F E R 
performance of M D S codes as code-lengths increase. T h e 
asymptotic performance achieves capacity for the erasure 
channel. It was also shown that codes designed for iterative 
decoders, the turbo and L D P C codes, are relatively weak 
codes for the erasure channel and compare poorly with 
algebraically designed codes. Turbo codes, designed for 
optimised (/mm were found to outperform L D P C codes. 

Determination o f the erasure correcting performance of a 
code provides a means o f determining the d^^in o f a code and 
an efficient search method was described. Us ing the method, 
the dmin results for two self-dual codes, whose d^i^ values 
were previously unknown were determined, and these codes 
were found to be (168, 84. 24) and (216, 108, 24) codes. 
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L D P C Coding for the Rayleigh Fading Channel 
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Abstract — R c c d - S o l o m o n ( R S ) codes C{tuk,n -
k + 1) are c o m m o n l y used e r r o r - c o n t r o l codes , be
cause they a r c M a x i m u m D i s t a n c e S e p a r a b l e ( M D S ) 
codes . O v e r a B i n a r y E r a s u r e C h a n n e l , R S codes per
form w i t h o p t i m a l resul t s a n d a p p r o a c h the m a x i m u m 
c h a n n e l capac i ty . In t l i is paper , we a p p l y R S codes 
to packet wire le s s t r a n s m i s s i o n over the u n c o r r c l a t e d 
flat R a y l c i g l i fading c h a n n e l , [t is s h o w n t h a t b y us ing 
a n R S code c o n c a t e n a t e d w i t h B C H codes a n d us ing 
h a r d dec i s ions , be t ter resul t s a r c o b t a i n e d t h a n us ing 
bit in ter l eaved L D P C codes , w i t h sof t -dec i s ion d e c o d 
ing. T h e B C H code is used to c o r r e c t s m a l l n u m b e r s 
of e r r o r s d u e to noise a n d also to de tec t the pres
ence of deep fades, in w h i c h case the e n t i r e packet is 
erased . E r a s e d packets a r e c o r r e c t e d by the R S code . 
W e a l so d i scuss the effect of overa l l code ra te on the 
net p e r f o r m a n c e . 

1. l N T ! i O D U C T I 0 . \ 
T h e Raylc igh fading C h a n n e l is widely used JIS a model 

of wireless communicat ions . C h a n n e l coding teclmiqucs 
arc a powerful tool to improve the reliability a n d effi
ciency of wireless coinmnnications. F r o m (7]. [8] a n d [9], 
the pcr fomiancc on Rayleigh fading channels and turbo 
codes design for Rayleigli fading cliannels have been given 
and explored. In |10|. irregular low density parity-check 
( L D P C ) codes have also been applied to an uncorrelatecl 
Mat Raylc ig i i fading C h a n n e l , and shown to ovi lpcrfonn 
turbo codes over a witic range of mobile speeds. R c c d 
Solomon ( R S ) codes have also been used for the Rayle igl i 
fading channel , as the fading channel causes error bursts . 

R S codes [ l | arc classical , commonly used error-control 
codes with a wide range of applications in modern com
munications. T h e y constitute an efficient class of l inear 
codes using multi-bit symbols and have the capabi l i ty of 
correct ing/detect ing symbol errors and correct ing s y m 
bol erasures. It is well known that an R S code C{n, k. d). 
where n is the code length, k is the information Icngtli 
and d is the I la inining distance of C, can c o n e c t up to 
t = [ ( T I - k ) / 2 \ random svmbol errors, and correct up 
to n - k symbol erasures. 1'lic c lass ical algorithms of 
Ber lckamp and Masscy [13| can correct i errors and 
£ erasures when 2£ + c < - k. which can achieve the 
error bound p = ("".^"^M with running time 0 ( / i ^ ) . I n 
[5|, it was presented that a polynomial t ime list decod
ing algori thm for Rccd-Solomon codes can correct more 

than {ii — k)/2 errors , provided k < n / 3 . U s i n g the R o t h 
and Ruckcnste in [G] a lgor i thm, the same bound can be 
achieved wi th running t ime 0{n^ log'^ n). S i n c e more era
sures than errors c a n be corrected, it is advantageous to 
determine tlie rel iabi l i ty of the received R S - c o d c d s y m 
bols and to eiJise the low-reliabil ity symbols prior to the 
decoding process. In this paper, we apply the concatena
tion of R S and B C M codes to packet wireless transmiss ion 
ov^cr the ni icorrc latcd fiat Rayleigl i fading channel . B C I I 
codes of differrnt code-rates a n d m i n i m u m I l a m m i n g dis
tance are used to correct smal l numbers of bit errors in 
the packet transmiss ion. A l so the B C H code is used to 
detect relatively deep fades by error detect ing relatively 
large numbers of errors in the packet. In th is case the en
tire packet is erased. E r a s e d packets are corrected by the 
R S outer code. T o obta in best results for the Rayle igh 
fading channel , we use the In-placc decoder [2] for erasure 
correction by the R S code. T h e paper is organisccl as fol
lows. Section II briefly reviews the sys tem and channel 
model . In Sect ion I I I , we describe the product packcti-
sation method. In Sect ion I V . wc give a n analysis of a 
concatenated R S code over the Rayleigh fading channel . 
In Section V . we describe the implementat ion by using 
concatenated R S codes and analyse the computat ional 
complexity on botli encoding and decoding. In Section 
V I , numerical F r a m e E r r o r R a t c ( F E R ) results are given 
for these codes in comparison to soft-decision decoding 
of L D P C codes as a function of the overall concatenated 
code rate. T h e conclusions are giv^en in Sect ion V I I . 

11. S Y S T E M A N D C H A N N E L M O D E L 

T h e transinitteti sequence x/. . passes through a <liscrctc 
t ime freqncncy non-sc lcct ivc Rayle igh fading channel 
witl i addit ive white noise, where k is an integer symbol 
index, x j t is a b inarj ' -phased-shi f t -kcying ( B P S K ) s y m 
bol with ampl i tude ±\/T^. The received discrete-t ime 
baseband signal c a n be writ ten as IJK- = O t z t + 
where QA- is the R a y l c i g h dis tr ibuted fading coefficient 
wi th E{of.) = 1 a n d /ijt is a complex whi te noise sample 
wi th variance per dimension. 

T h e probabi l i ty densi ty function (pdf ) o f the output y 
can be described as: 
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where u; = (1 - 2 x ) is the binarj ' input after the B P S K 

modulat ion, 6"^ = ( ^ - (£"( , /An)) - a n d R is the code rate. 

I I I . P i t o D u c T P A C K E T I S A T I O X \ A N D P R O T O C O L 
DESCtt lPTION 

In i l l i s paper, wc use the product packct isat iou method 
to arrange symbols into packets. Instead of placing tlic 
symbols into the sequential packets, wc first split the data 
into blocks corresponding to codewords of the R S cra^inrc 
correct ing code, encode ihcn i and then packeti.sc symbols 
from the same positions of each codeword. Denot ing the 
length of input as and the payload size of each packet 
;is Ip. the in in innnn number of packets needed can be 
ca lcu la ted by Id/lp- Hereafter, a R S block cotic C with 
this sc l icuic is used with the number of information bits 
k = I f , a n d a code rate R. For a linear block code C ( / i . k), 
there a r c k information packets and ;i - k parity-check 
packets, but the benefit of using the R S codes is that 
only k correct packets need to be received and these can 
be a n y A' packets. For convenience, the first k symbols are 
termed information sjniibols. T h e i-th packet contains 
informat ion symbols whose positions are at j k + i. where 

j = 0. 1 - (hi-^) and 0 < / < k. A t the receiver, all the 
received information packets need to be restructurc<l into 
a buffer X with length /rf. If tlic i-tU packet is rccoivctl. 
the symbols containetl in the packet should be placed in 
the buffer at the positions ofxjyh+i-. where j = 0... . . k -
1: if it has been er;wed di ir ing the transmiss ion, ? s will be 

placed in the positions of xj^h+i-. where j = 0. A* - I 
to m a r k the symbols as erased. 

T h e packets a r c transni i t tcd continuously and at the 
receiver, they are dcpackctisated a n d decoded into a 
buffer wi th a length of 

I V . A N A L Y S t s O F C O N C A T E N A T E D R S C O D E S 

T h e most popular decoding algorithm of R S codes is 
ca l led "crror-and-erasure" decoding a lgori thm, which is 
preferable to " e r r o r - c o r r e c t i o n - o n l y d e c o d i n g algorithm. 
W i t h this a lgor i thm, an R S cotlc is capable of correct ing 

t errors and recovering c erasures, mider the condition of 
2 i - f c < /J - k. T h e n , wc can obtain the probability of 
decoder failure as follows: 

ri -A-+l 

P ( c ] 

(2) 
where /^(r) is the probabil i ty of f erasures and P { t ] f ) is 
the conditional probabil i ty of £ errors given c erasures in 
the remaining /( - t positions, which are defined as follows: 

a n d 

Pic) 

I ' m 

(1 

(1 -I'cY 

(3) 

M ) 

is the where p^r is the probabil i ty of an erasure, and p, 
probabil i ty of a n error but not an erasure. 

T o ensure that the system can give good performance 
in the Raylc igh fading channel , the B C I I code is used 
to correct and to detect multiple hard decision errors in 
each received packet. If the number of errors is smal l , 
i h e y are corrected by the l l a n u n i u g or B C T I code. If the 
number of errors exceeds a threshold, the entire packet 
is crasetl and corrcctetl by the R S code. It is well known 
tha t a R S code can recover n - k erasures if a M a x i n u n n 
Like l ihood decoding a lgori thm is implemented. I n [2]. wc 
in irodnced a complexi ty-reduced optimal decoding algo
r i t h m - the In-p lacc A lgor i thm. It is a lways able to solve 
the maxinunn number of erasures correctable by the code. 
However, for a Ray le igh fading channel , we also UCQ(\ to 
consider the G a u s s i a n noise and fading factor which de
crease the cnergj' of each symbol . T h e system is shown 
in F igure 1. 



V . E K F I C I K N T H S C O D K S E N C O D E R / D E C O D E R 
I . M P L E M E N T A T I O N 

A . E n c o d e r 

In tills section, wc describe a way to encode tl ic in
put symbols in an "cncoding-on-the-fly" manner. Linear 
Ijlock codes can be goneiated from tlieir parity-cl icck ma
trix, denoted by / / . which is nstially. but not always, in 
the foDii of a row-cclielon rcducetl / / matr ix . E a c h row^ 
of tlic / / matr ix can be associated with a parity-check 
cfination. For couveiiicnce, wc denote this parity check 
etiuation by hi where the subscript i indicates the itU 
row of the / / matrix . 

E a c l i parity-check equation Iij can generate a parity-
check Pi indepcndcni ly for a row-echelon rcdncc<i / / ma
trix. For an {n.k) liS code C over Gr{q), and n = q - i 
and q is a prime minibcr or a power of a prime number. 
T h e parity clteck matrix of an R S code can be represented 
l>y: 

// = 

1 

1 

1 o 

O " * 
, 2 ( n - l ) 

r " - i ) { ' / m h . - l ) 

(o) 
wl icrc n is a generator of CF{q). 

T h i s / / matr ix is not efficient for our purpose because 
c\'cr3' parity check .s\ iiiboI requires a calculat ion using n 
symbols. F r o m T h e o r e m 11-9 in [13|. there exist cyc l i c 
M D S codes over GF{q). In order to officiently perform 
encoding on-tlie-My. we wil l use the cyc l ic form of the H 
matr ix . For this, the parity check polynomial h{x) of the 
R S code is used. 

Define the set of powers of consecutive roots o \̂s T = 
{1 , 2 . . . . ,t/,„i„ - 1 } . T l i c parity-check polynomial h{x) is 
given by 

(0) 

from which we can obtain the / / matr ix 

- 3L-A ) • -
0 Qo Pi 

0 

0k 

Po Pi 

0 
(7) 

B . Decoder 

L e t x ' denote t l ic rece i \ cd vector. A c c o r d i n g to | l o j , oi>-
t imal decoding is equi\-alent to solving the l inear systeuj , 
shown in (8) . lu our case, on average k + € packets a r c 
transmitted before k unerased packets by cacl i dest ina
tion host. 

Accordingly, the following set of equations need to be 
solved from tlie / / matr ix of the form given in (7) . 

k+t-i 

(8) 
1=0 

A s an example , for a n R S code, we have (9). 

0 5 „ 

0 .3« 

= 0. (9) 

for c erasures 0 < c < n - k. T h i s linear s y s t e m can be 
used for solve for at most n — k erasures in the case of R S 
codes. I f the equation (9) h:is a unique solution, an opti
mal algorithm is possible. G a u s s i a n Reduct ion algorithm 
is considered as a n opt imal a lgori thm over the I 3 E C . but 
has a complexity of 0(A'''*). We propose a leduccd com
plexity G a u s s i a n Reduct ion algorithm - the In-place A l 
gorithm [2| by e l iminat ing the cohnnn-pcnnutat ions re
quired by s tandard G a u s s i a n Reduct ion. 

Denot ing the set of erasure positions as C = 
{Co; C i ; • • - C ( } r t l ic docodiug proceeds in paral le l w i th re
ceiving the packets, (i.e. it is not necessarj' to wait for al l 
the packets to he received). T h e / / matr ix of the decoder 
is modified after each packet is received a s described be
low. 

We denote tlie adapted / / matr ix at the i-th erasure 
detected as H,- . W h e n the ?y-th erasure Cy is detected, 
we Mag the h i s t equation which contains as a Hagged 
equation a n d leave other equations as unflagged equa
tions. Therefore , at each step in the a lgor i thm, the / / ' 
matr ix is d iv ided into two parts: N'j. which contains al l 
the unflagged eciuations a n d / / . - which conta ins all tlie 
llagged equations h(^. Then, 

(10) 

A n d the flagged equation c a n be denoted a s h^^: if (Cy € 
hy)n(hy € /7^) = 1. hy — T h e n for each hi. where 
( h i e / / i ) n ( c „ G ( h , n h < j ) = L 

A- - \ . ( I I ) 

Af ter k packets arc received, tiie erasctl symbols are 
solved. W i t h c erasures , for all ?/ = 0 , . . . . c - 1. if 

;=() 
(12) 

T h e n remove h^^ from the / / J and add it to the / / J . . 
Repeat the procedure above until al l the erasures arc de
termined. 

V L N U M E R I C A L R E S U L T S 

hi this section, we compare R S codes, w i t h different code 
rates, concatenated w i t h different B C I I codes with opt i 
mal L D P C codes designed using the Progress ive E d g e 



FigiMC 2: R S codes with XTiriablc cotlc rates in the 
R a y l c i g h fading channel 

F i g u r e :i: R S (G.'i. 59. 5) concatenated by flifforPiit I la in-
ni i i ig or B C H codes in the Rayle igh fading channel 

G r o w t h ( P E C ) technique [M] and bit interleaved for 
transmiss ion over the Rayle igh fading channel . 

F i r s t , wc c u i l i i a t c d the performance of R S codes with 
different code rates. A s shown in F igure 2. the R S ( G 3 . 55. 
9) code achievetl the best pcrforniancc. as its perfomiai icc 
is hal f order of magnitude bettor than that of R S ( G 3 . 59. 
5) code a n d more tl ian one and a half orders of magnitude 
better t h a n t h a i of the R S ( G 3 . G l . 3 ) code at a PER of 
1 0 - ^ 

T h e s i in idat ion results obtained for the R S ( G 3 . 59. 5) 
code concatenated wi th different B C H codes are given in 
F i g u r e 3. T h e B C H codes used were the l l annn ing (03. 
57. 3) code, a n d the (63. 51. 5 ) . {G3. -15. 7) and (G3. I S . 

10) codes rcsj jcct ivcly . T h e s e codes can detect up to a 
i n a x i n m m of 2. A. G and 9 errors, respectively or correct 
up to a m a x i m u m of I . 2. 3 and 1̂ errors , respectively or 
a combinat ion of less corrected/detected ctTors in each 
recciveci packet. T h e performance is improved by using 
more powerful codes nnti l the rate loss causes significant 
degradat ion to the /Tb/Ao- T h e rate loss for the H a m m i n g 
(G3. 57. 3) code is -0.^13 d B ; for the (C3. 51. 5) code, 
the tradeoff is - 0 . 9 2 d B ; for the (G3, 1̂5, 7) code, the 
tradeoff is - I . ^ I G d B and for the B C H (G3. 18. 10) code, 
the tradeoff is -6.AA d B . Observe that the concatenated 
codes have different coding gains over the original R S 
code, especia l ly the one concatenated with the B C H ( G 3 . 
15. 7) . w h i c h has a coding gain of approximate ly 2.2 d B 

at a FER of 10"^. Interestingly, the loss is so excessive 
that w h e n the (G3. 18. 10) code is used , the performance 
is worse than the uncoded performance. Therefore , the 
rate loss of the inner codes cannot be ignored. 

W'c also compared the performance between the R S 
code, concatenated wi th a B C I I code using hard de
cisions, a n d the P E G designed L D P C code wi th soft 
decis ion. Bel ief Propagat ion, iterative decoding for the 
Ray le igh fading channel . In this comparison, we applied 
the R S codes and the L D P C codes with the same code 
rate a n d the same packet size. A s shown in F igure 'I . 
the R S wi th B C H hard-decision decoder achieved a sig
nif icant performance improvement over the P E G L D P C 

Fif turc 1: R S wi th B C H hard-decision codes vs . L D P C 
sof i -dccis ion codes in the R.ayleigh fading channel 

soft-decision decoder. A t a FER of 10~**. the R S with 
B C H hard-tlccision codes c a n obta in an average coding 
ga in of 2.0 d B over the L D P C soft-decision code in the 
Ray lc igh faditig channel . T h i s is attr ibutable to the R S 
codes being .MDS. o p t i m u m codes u*ith inaxi i iunn likeli
hood erasure correct ing decoding. T h i s factor more than 
compensates for the loss associated with hard decisions 
for the Raylc igh fading chaimel part icular ly iis the L D P C 
codes are not the most powerful codes due to the necessity 
for iterative decoding. 

V T I . CONCLUSIO.N 

In this paper, we described the use of R S codes concate
nated with B C H codes, with hard-decision decoding for 
the wireless Rayle igh fading channel . It was shown that 
the best performance is a ftmction of overall code rate. 
Fur thermore it was shown that the concatenated code 
combined with s imple, hard decision decoding achieves 
better results than using an opt imal ly designed ( P E G ) 
L D P C code combined with soft decision decoding. F u r 
t h e r work will provide ana lys i s of the two coding arrange
ments to show w h y this is the case. Addit ional ly it will 
bo determined how far the hard decision concatenated ar
rangement is from capac i ty for the Raylc igh fading chan
nel . 
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In this paper, u c propose a novel M L decoding algorithm - the In place Altjorithm m conjunction with a Pntdm l 
Packetisaiion method lt>r the congested Intcmct Nctv^ork nuxlclcd as a Binarv Erasure Channel ( B E C ) . Any code 
can be used uith this algorithm and v^c g i \c results tor cvclic codes constructed from B C H ctxles. Existing ctxics atid 
dcctKlini! aljzorithms are compared in tcmis ol performance and decoding coniplc\it> It is shoun that a ML-nil icini 
performance improvement can be achicNcd In general, M L deccxling on the Erasure channel has a complexity ol 
( ) ( S ^ ) or O ( . V - ) depending on the algorithm It is shown that this complexity can be reduced lo 0 ( V ' i t\>r the 
network channel by using the product packetisation methixi. With an analssis in pcrfomiancc, ratclcssncss can be 
achieved b\ acks 

1 Introduction 

Nct^^ork transmission is based on packet transmission 
Multicast and broadcast are typical examples of packet-
based communications. One simple way to get around 
packet loss is to employ a protocol in which rccciMni! 
parties ackmmledge received packets. This solutiim 
requires multiple rounds of communications \khich is 
inappropriate lor many situations, especially in multi
casting and broadcasting. In those cases, v^c must limit 
the anmuni »>! leedback to the senders and the number 
of redundant packets sent to receivers. Erasure codes 
rely on error correcting principle which can recover 
the lost packets at the receiver without the need for 
retransmission. 

A I I K K I C I ft)r the Internet transmission is the Binarv 
F^rasure C hannel ( B H C ) . This channel was introduced 
by Klias [ 2 | in 1 9 5 5 . A packet is lost due to the network 
congestion w ith probability p. and then the B I X ' has the 
capacity 1 // Ivlias proved that there c \ i s l codes ot 
rate R for any R < \ - p that can be used to transmit 
over channels of capacity 1 - />. For an erasure channel 
a rale /? code encodes a message of size A' into a 
transmission of K / R = .V . so that the original message 
can be recovered from erased pt>sitions of the .V bit 
message. 

In a milestone paper. Luhy et. id. proposed the 
lust ical i /al ion ol a class of erasure ctxlcs - L T cixles, 
which arc termed rateless and are generated on the tlv 
as needed. In |4 | , Shokrollahi intrtKluced the idea of 
Raptor ctxles which adds an outer ctxle to L T codes. 
Raptor codes have been established in order to solve 

Ihe error lUH)rs exhibited by the L T codes. 
In this paper we consider stand alone B C H CCKICS 

instead of L T codes, as they do not show an error 
floor. Low-density parity-check ( L D P C ) ctxlcs have 
been studied 111 tt) | 9 I lor application to the B E C . Ga l -
lager's soft-decoding aliii>rithm | l ( ) | , was implcn^ented 
1 1 ) for L D P C cHxies over the B E C . Capacity-achieving 
degree distribution ct>des lor the binary erasure channel 
have been intrtxluced in M l . | 7 | and | K | . Pinitc-lenjith 
analysis was used lo (ind better L D P C ctxles lor the 
B E C [ 9 1 . For M L decixling on the B E C , three families 
o f algorithms have been proposed: structured Gaussian 
elimination ( 1 2 1 . whose computational complexity is 
( ) \ ' \ . the conjuizalc »:radicnl and l.anc/os aliiorithms 
[ 1 2 1 and | l . ^ l , both of which require about ( ) { \ -
t>perations, and the Wiedemann ( 1 4 1 algorithm with 
( ) { . \ ' ^ ) . The L a n c / o s algorithm inct)rporatini! stmc-
lured Gaussian elimination was propt)sed in | 1 5 | . 

The paper is organized as follows. Starling with a 
superposition of the erased bits on the parity-check 
matrix in section 2 . 1 , we review the performance of the 
iterative deccxiing algorithms, for the B E C , in section 
2 . 2 , principally the Recovery Algtmthm and the Guess 
Algorithm and an imprt)ved algorithm [61- the Multi-
Ciucss Algorithm In section 2 }. we also desctilv a 
Maximum LikclihiMKl decoding algorithm, the In-place 
Algorithm, which is based uptm the Gaussian Elimina
tion Algorithm [ 1 2 1 . In section } . we propt)se a new 
packetisation li>rmat - A Pnxluct Packetisation. W I I K I I 
prinidcs the basis lor a more efticicnt and quicker de
coder Using the In-place algorithm, the ct>mputational 
complexity is 0 ( . V ' ' ) . The conclusions are j;iven in 



scciion 5. 

2 Preliminaries 

2.1 Matrix Representation of erased bits 

We use ihe parity check mairix / / lo represent the 
code. Considering an (A^ K ) binary linear block code. 

we dcnoic a codeword as x = {T.I..I:2, 
After being iransmiucd over ihe erasure channel with 
era.sure probability c. the received vector can be divided 
into a transmiilcd sub-sequence and an erased sub
sequence, denoted as y = {yi.ys- 1/Lr] and y , = 

{ y . i : y c 2 : • yc/.. } respectively, where -r Lt = A'. 
Corresponding to the parity check matrix of the code, 

wc can generate an erasure mairix {L^ x iV) which 
contains ihc posilion.s of ihc erased bits in / / . Then 
we denote the set of erased bits i that participate in 
each parity check row by /Tf = { j : = 1} 
wiih h standing for "horizontal" and the number of 
cra.sed bil.s in E'/ is denoted by \E''\. Similarly wc 
define the .set of checks in which bit j panicipatcs, 
E'J = {/• : .'U((,j) = 1} with V standing for 'verticar'. 
and the number of erased bits in I£j is denoted by 

L c i E*^ = {/^^ h ' e { 1 . 2 , . . . . / , , } } and = 
{ E j I j € { 1 , 2 , . ' V } } . The matrix representation is 
shown in Fig. I . where an "x" represents an erasure. 

X - - -

X X 

X 
X X 

jc - - X -
: X 
; X 

F.g. A mairi.x rcpreseniation (A/,) of the erased bits 

2.2 Review 
rithms 

of Iterative Decoding Algo-

In [1], the Recovery Algorithm is described, which is 
also called message-passing algorilhm. and is equiva
lent lo Gallagcr's .soft-decoding algorilhm. an iterative 
decoding algorithm. T h e decoding complexity can be 
shown to be 0 ( A ' ^ ) . The algorithm is briefly outlined 
below: 

Recover}* Algor i thm 

Step I Generate the i\lf_ and obtain the E * * . 
Step 2 For / € { 1 , 2 . . . . . i r | E ^ | = 1. we replace 

the value in the bit position i with the X O R o f 
the unerased bits in that check equation. Then 
we remove the erasure from the erasure mairix. 

Step 3 Coniinue from step 2 until all the erased bits 
are solved or the decoding cannot continue 
further. 

If there e.xi.sis erasures in stopping sets, the Recovcr>' 
Algorilhm stalls. In this case, an algorithm 11 11 with the 
term Guess Algorithm is applied by performing several 
"guesses" of ihe unsolved erased bits, which is similar 
to the Maxwel l decoder [19 | which works as a message 
passing decoder. 

Guess Algor i thm 

Step I Run the decoder with Recovcr>' Algorithm un
til it fails due lo slopping sct(s). 

Step 2 In order to break the slopping scl . when \ E*^ \ — 
2. we guess one of the erased symbols and 
update the erasure mairix and E * * . 

Step 3 Continue from step I until all the erased sym
bols arc solved or the decoding cannot continue 
further. I f the decoder cannot continue, declare 
a decoder failure and exit. 

5/^/? 4 Create a list of 2^ solutions, where g is ihe 
number of guesses made. From the lisi Couit . 
k € { 1 . 2 2^'}. pick ihe one ihat satisfies 

0. 

Obviously, compared lo the Recover)- Algorithm, the 
complexity of this algorithm increases with g. Usually, 
we limit the number of guesses to a small number g^. If 
after g^ guesses, the decoding still cannot be finished, 
a decoding failure is declared. 

in | 6 | . we proposed an improved iterative decoding 
algorilhm. which is called "Multi-Guess Algorithm". 
For sparse codes, the Multi- Guess Algorithm can 
approach optimal performance with significant im
provements. Consider ihe computailonal complexity, 
wc calculate Ihe minimum number of gues.ses. denoted 
by nun(r/) before the decoding. The calculation lemma 
was given in {61. For the Mull i -Gucss Algori lhm. a 
whole row is guessed. A crucial row c is defined as 
follows: 

1) c G Ci/j, where UJ^ is Ihc set of all equations with 
l^;;*! = 6 where / G { 1 , 2 , . . . , / . , } , and 6 = 
number of unknown positions. 

2) J Z j g E " l ^ j l maximized over c in iijf, 

The Multi-Guess Algorithm is given below: 

Mul t i -Guess A lgor i thm 

Step I Run the decoder with Guess Algorithm until 
it:;'! > 2 for 7 = 1 , . . . , / . , . 

Step 2 Evaluate the value of min(^) . If n i iu( i / ) > g.,. 

the decoding declares a failure and exits. 
Step 3 Group ihe rows as tj^-
Step 4 Find the row which is on ihc basis of the 

highest value of \E)\ with the value of \E'j\ = 
S and guess all erased bits in that row. (There 
wil l be at mosl 2''"' guesses.) 

Step 5 Guess one bit p with \E^\ = 1 in each of ihe 
independcnl rows. 

Step 6 Update JM^, E ' ^ and E ^ . Continue ihe decoding 



from step 3 to .step 5 until all the erased bits are 
solved or the decoding cannot coniiiuic funhcr. 

Obviously, the decoding complexity can grow expo
nentially with the number of guesses. In practice, im
proved performance is achieved with O(.'V^) complex
ity. With higher complexity, there is a better tradeoff 
with respect to perfonnance by using the M L decoding 
algorithm. 

2.3 Optimul M L Decoding Algorithm 
Let x ' denote the received vector, where x ' = y l j y ^ . 
We now devise a reduced complexity algorithm to 
decode the era.scd bits by solving the equation I using 
the Gaussian Reduction method I I 2 | . 

//x'"^ = 0. ( I ) 

According to 19|. optimal decoding is equivalent to 
solving the linear system, shown in equation ( I ) - If 
the equation ( I ) has a unique solution, an optimal 
algorithm is possible. Gaussian Reduction algorithm 
is considered as an optimal algorithm over the B E C . 
but has a complexity of 0(A'^"*). We propose a reduced 
complexity Gau.ssian Reduction algorithm - In-place 
Algorithm 151 by eliminating the column-permutations 
required, l l i i s algorithm is stated as follows: 
ln-p!ucc A lgor i thm 

Step I The codeword is received and T/, are substi
tuted in positions of erased bits in / / . Starling 
with one of the erased symbols, y , ^ . the first 
equation containing this symbol is flagged that 
it wil l be used for the solution of ij^^. This 
equation is subtracted from all other equations 
containing y , , and not yet flagged to produce 
a new set of equations. The procedure repeats 
until either non Magged equations remain con
taining (/,̂  (in which ca.sc a decoder failure is 
declared) or no erased symbols remain that are 
not in llagged equations. 

Step 2 Let ij^^^ be the erased symbols at the last 
flagged equations. In the latter case, starting 
with y^^^ this equation is solved to find y ^ ^ i 
and this equation is unflaggcd. This coefficient 
is substituted back into the remaining flagged 
equations containing y t i M - The procedure now 
repeats with the second from last flagged equa
tion now being solved for y t i ^ _ , . This equation 
is unflaggcd and followed by back substitution 
of ^ / last- i for ! / t i ^ _ i ' 1 remaining flagged 
equations. 

Compared with the Gau.ssian Elimination Algorithm, 
the In-place Algorithm complexity remains 0(A^'*), 
but the multiplicative constant is significantly reduced. 
The nicmor>' required for storing swapped positions is 
eliminated by only performing (lag and addition, which 
means wc do not have to convert the M, matrix to 
a leading diagonal matrix. The least complexity M L 
algorithm 118| which requires 0(A'^-^'**) in complexity 

is not guaranteed to produce a solution and incurs 
considerable overheads in implementation. 

3 Product Packetisation 
In this section, wc describe a product packelisaiion 
structure. In a traditional way. files .sent over the Inter
net are partitioned into packets, as in the applications 
of L T codes and Raptor codes. Each packet is cither 
received without error or not in which case it is erased. 
Standard file-iransfer protocols simply paniiion a file 
into n packets, then repeatedly transmit each packet 
until all of the packets have been received. 

The term Product Packetisation is used to describe 
the arranging of the encoded bits in a format similar 
to a product code. The encoded bits are written into 
71 columns and read out in rows for transmission, as 
illu.str3ted in Fig . 2. Wiih this packclisaiion structure, 
short, powerful algebraic codes can be used for Internet 
iransmLssion. 

i n 

Hg- 2. A I 'rtKluci Packcii.sation Sinicture 

We designed the structure as a .square matrix of si/e 
n X 11 = where A' is the s i /e of the encoded 
sequence. Although the structure is flexible, there is 
a complexity/performance compromise which depends 
on code block s i / c . Wc have found that, in this case, 
choosing a square matrix structure gives a good com
plexity/performance compromise. In Fig. 3. the shad
owed area represents a packet erasure. In the decoding 
process, each column is decoded separately. A s the 
erasures are in the same positions, for all codewords 
, the In-place Algorithm has to be applied only to the 
first column. For each of the other n - I columns, 
the same erasure correcting equations are used, but 
with Ihc coordinates provided by that column. This 
reduces the complexity of the M L decoder to 0(n '*) = 
0{i\'-^^^) since n = \ / N . Tl i is coding scheme can be 
made ratelcss by acknowledging successful decoding 
once enough packets have been received. Due to the 
powerful error correction codes used, not all the packets 
arc necessary for successful decoding. Compared with 
fountain codes using the message-passing algorithm 
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Fig. 3. An example of received packets 

To verify !he decoding complexity calculation, wc 
implemented a longer code, the cyclic code (3969. 
2016) and the LT (3969. 2016) code. The cyclic code-
(3969, 2016) is based upon the generator polynomial of 
the BCH (63. 32. 12) code. The .simulated performance 
is shown in Fig. 5. On a standard IGII/. PC. the 
LT (3969. 2016) code took 775ms to encode each 
codeword and 141ms to decode each codeword for 
p = 0.-1 (using the Recovery Decoder). In contrast, the 
cyclic code (3969. 2016) took only 5ms to encode each 
codeword and 8ms to decode each codeword using the 
In-placc decoder for /) = OA (the decoding time for 
this decoder is independent of the value of p). 

with complexity 0{X^), the new algorithm is not only 
able to correct more erasures but is also faster and more 
efncieni. 

4 Simulation Results 
We have evaluated the performance of LT codes and 
cyclic codes for .V = 225 and .V = 39G9. For A' 
225. the LT code with the recovery decoder produces 
very poor performance, in this case, we have used the 
ML decoder. The LT code (225. 105) was divided into 
15 packets with the packet-size of 15 bits and the 
cyclic code (225. 105) was arranged in the product 
packeiisalion format with the same packcl-sizc '. The 
cyclic code is capable of correct decoding up to and 
including 4 packets erased. As 1 + x'^ divides 1 
the decoder for this cyclic code can be implemented 
with the reduced complexity decoder. As shown in Fig 
4. the performance of the cyclic code (225. 105) is 
significanily better than thai of the LT (225. 105) code. 
When p = 0.\. the result of the cyclic code (225, 105) 
is over 2 orders of magnitude better than that of the LT 
(225. 105). 

V'tg. 4. F E R v> ihe criiure probability of erased packets for ihe 
c jc l ic code (225. 105) and ihe L T (225. 105) code over itie l£rdsurc 
Channel, both using MI- decoding 

'The c>clic code (225. 105) has a gcnentor pol>nomial q{x) = 
I + j r ' ^ + x = * ° + J - * ' " + x ' ^ ° , w-hicti is a replication of ihe B C H (15. 
7. 5) code uiih <7(j) = 1 + J + j-2 + j-> + T^. 

F îg. 5. \-\iR \b ihc erasure probabiliiy of erased packets for the 
cyclic code (3969. 2016) and the L T (.^969. 2016) code over ihc 
Erasure Clunnel 

5 Conclusions 
In this paper, we presented a novel coding and decoding 
algorithm for packet networks modelled as a Binary 
Erasure Channel (BEC) . The algorithm combines a 
ML decoder with a product packetisation .structure. In 
the past iterative decoding algorithms, although non-
optimum, have been used as a good tradeoff between 
performance and computational complexily. With the 
new decoding algorithm, decoding is M L and the 
computational complexity is reduced to 0 ( . V ' "'). This 
is le.ss complexity than the ca.se for iterative decoders. 
Al.so. compared with LT codes, the new decoding 
algorithm with algebraic codes achieves a signilicani 
improvement in performance. 
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A B S T R A C T 
This paper imesiigaies decoding of binary linear block 
codes over (he binary erasure channel (BEC). Of the cur
rent iterative decoding algorithms on this channel, we re
view the Recovery Algorithm and the Guess Algorithm. 
We ihcn present a Multi-Guess Algorithm extended from 
the Guess Algorithm and a new algorithm - the In-place 
Algorithm. The Multi-Guess Algorithm can push the limit 
to break the stopping sets. However, the performance of 
the Guess and the Mulli-Guc.ss Algorithm depend on the 
parity<heck matrix of the code. Simulations show thai we 
can decrease the frame error rale by several orders of mag
nitude using the Guess and the Multi-Guess Algorithms 
when the parity-check matrix of the code is sparse. The 
In-placc Algorithm can obtain better performance even if 
the parity check matrix is dense. Wc consider the applica
tion of these algorithms in the implementation of multicast 
and broadcast techniques on the Iniemct. Using these algo
rithms, a user docs not have to wait until the entire trans
mission has been received. 
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1 Introduction 

The Binary Erasure Channel (BEC) was introduced by 
Elias (II in 1955. It counts lost information bits as be
ing "cra.sed" with probabilities equal to 0.5. Currcmly, the 
B E C is widely u.scd to model the Iniemel transmission .sy.s-
tems, in particular multicasting and broadcasting. 

As a milestone. Luby et. al. [2| proposed the first re
alization of a class of erasure codes - LT codes, which arc 
rateless and are generated on the fly as needed. However, 
LT-codes cannot be encoded with constant cost if the num
ber of collected output symbols is close to the number of 
input symbols. In [3|. Shokrollahi introduced the idea of 
Raptor codes which adds an outer code to LT codes. Rap
tor codes have been established in order to solve the error 
flooni exhibited by the LT codes. 

On the other hand, low-density parity-check (LDPC) 
codes have been studied [5| (o [8) for application to 
the B E C . The iterative decoding algorithm, which is the 

same as Gallager's soft-decoding algorithm [9). was imple
mented 15). Capacity-achieving degree distributions for the 
binary erasure channel have been introduced in [51. (61 and 
[71. Finite-length analysis of LDPC codes over the B E C 
was accomplished in [81. In that paper, ihe authors have 
proposed to use finite-length analysis to find good finite-
length codes for the B E C . 

In this paper, we show the derivation of a new decod
ing algorithm to improve the performance of binary linear 
block codes on the B E C . The algorithm can be applied to 
any linear block code and is not limited to LDPC codes. 
Starling with superposition of the erased bits on the parity-
check matrix, we review the performance of the iterative 
decoding algorithms, described in the literature, for the 
B E C . principally the Recovery Algorithm and the Guess 
Algorithm [10]. In Section 3. we propose an improve
ment to the Guess Algorithm based on multiple guesses: 
the Multi-Guess Algorithm and give a method to calculate 
the minimum number of guesses required in the decoding 
procedure. In this section, we also describe a new. non it
erative decoding algorithm ba.sed on a Gaussian-Reduction 
method [ 111 by processing the parity-check matrix. In Sec
tion 4. we compare the performance of these algorithms 
for different codes using computer simulation. In Section 
5. we di.scuss the application of these decoding algorithms 
for the Internet. Section 6 concludes the paper. 

2 Preliminaries 

2.1 Matrix Representations of the Erased 
Bits 

Let / / denote the parity-check mairi.x. Considering an 
/. X ,'V binary linear block code, we assume that the en
coded sequence is x = { x i , X 2 , . . . ; X , v } . After being 
transmitted over the erasure channel wiih erasure probabil
ity c. the encoded sequence can be divided into the trans
mitted sub-sequence and the erased sub-sequence, denoted 
a s y = {V\.y2--yh) andy, = {yci-V^2.-• .yai) re
spectively, where / | -1-/2 = A'. 

Corresponding to the parity check matrix of the code, 
we can generate an erasure matrix A/, {L^ x A') which con
tains the positions of the erased bits in / / . Then wc denote 



the SCI of erased biis / thai panicipatc in each pariiy check 
row by = {j : M,{ij) — I } with li standing for "hori-
/onial" and ihe number of erased biis in is denoted by 
l̂ "-'!- Similarly we dohnc the sci of checks in which bit 
j participates. E] i : i^Itiij) = If ^̂ '"'h standing 
for "vertical", and the number of erased bits in /Tj" is de
noted by | / : ; | . U l E'^ = { ^ ; ' 1 ' € {1.2 / . , } }and 
E ' ' = {/£*)• \ j e {1.2 .'V}}. The matrix rcprescnia-
lion is shown in Fig. I, where an "x" represents an erasure. 

Step 3 Conlinuc from step t until all ihc erased sym
bols are solved or the decoding cannot continue fur
ther. If the decoder cannot continue, declare a decoder 
failure and exit. 

Step 4 Great a list of 2^ solutions, where g is the 
number of "uesses made. 1-roni the list c k e 

{1.2 2^^}. pick the one thai satisfies //Co'*,^ = 0. 

Obviously, compared to the Recover>' Algorithm, the 
complexity of (his algorithm increases with g. Usually, we 
limit the number of guesses to a small number g^. If after 
(/i guesses, the decoding still cannot be finished, a decoding 
failure is declared. For sparse codes with low-density / / . 
c. g. LDPC codes, the Guess Algorithm can improve the 
performance with g < 3 guesses as shown in Section 4. 

'ITie decoding algorithm is more efficient when the 
bits to be guessed arc carefully chosen. These are termed 
"eruciar'bits. 'Ilie crucial bits are chosen on the basis of the 
highest value of l/Tj'l with the value of | /r j ' | = 2. 

Figure I. A matrix representation of the erased bits 

2.2 Current Iterative Decoding Algorithms 
for the B E C 

In [5). the message-passing algorithm was used for reliable 
communication over the BEG at transmission rates arbitrar
ily close to channel capacity. The decoding algorithm suc
ceeds if and only if the set of erasures do not cause slopping 
sets f8|. For completeness, this algorithm is briefly outlined 
below: 
Recovery Algorithm 

• siep / Generate the and obtain the E'V 

• step 2 For / 6 { 1. 2 A^}. if |^:''| = 1, we replace 
the value in the bit position / with the XOR of the 
unerased bits in that check equation. Then we remove 
the erasure from Ihc erasure matrix. 

• step 3 Gontinuc from step 2 until all the erased bits are 
solved or the decoding cannot continue further. 

The decoder will fail if stopping sets exist. 
We can break the stopping sets by performing .several 

"guesses" of the unsolved erased bits. This algorithm is 
called the Guess Algorithm 1101. 
Cucss Algorithm 

• Siep / Run the decoder with Recover)- Algorithm until 
it fails due to stopping sei(s). 

• Sicp 2 In order lo break the slopping set. when = 
2. we guess one of the erased symbols and update the 
erasure matrix M, and E**. 

3 Improved Decoding Algorithms for Non-
spurse Linear Block Codes for the B E C 

For non-sparse linear codes, it is common to encounter 
more than 2 unsolved symbols in each row of after 
running the Guess Algorithm, due lo the high-density of 
their parity check matrix. In these cases, we cannot break 
the stopping set by guessing one erased symbol in a row 
only. More than I erased symbols at one time need to be 
guessed. We can calculate the minimum number of guesses 
before the decoding. 

Lemma 3.1 Consider the chosen erased symbols in each 
n)w as an erased ^ W H / ' - '-^6 denote the set of rows with 
6 erasures, that is. = {i | | ^'J' | = 6\. And is the set 
of mws which satisfies: 

Ts = {i^ u;613A:. p € El', such as k ^ p. |/:;:| = |^:;;| = 1}. 

Tlwn 
ii\\i\g = \x^\ + 1 

( I ) 

(2) 

where I accounts for the need for at least one "crucial" 
row. 

Proof 3.1 When the guessing process stops, diere are more 
than 2 erased symbols in each erased row. Vie rows that 
have more than two bits {k. p) which do not participate in 
any other mw (i. e. \E^.\ = = \) cannot be solved 
by other rrjws. and so at least one of these bits has to he 
guessed. So the minimum number of guesses equals to the 
number of all the independent guesses plus one more "cru
cial" guess to solve the other row.s: 

For the Multi-Guess Algorithm, a whole row is guessed. A 
cmcial row c is defined as follows: 

I. 



2. 21 je^'' I^J I ma.ximizcd ovcrc in 

Tlic Mulli-Guc-is Algorit)ini is given below: 
Mufti-Gucss Atgorithm 

• .\iep 1 Run ihc decoder with Gue.ss Algorithm unlil 
\FJ^\ > 2 f o r / = \,....L,. 

• siep 2 Evaluate the value of nii!i((/). If miii((7) > ry,. 
Ihc decoding declares a failure and cxii.s. 

• .step 3 Group Ihc rows with = 6 as u-j, where 
/ € { 1 . 2 . . . . , / - , } . 

• siep 4 Find ihc "crucial" row and guess all erased bits 
in that row. (There will be at most 2*^'' guesses.) 

• step 5 Guess one bit p wiih l̂ "̂ '] = 1 in each of ihe 
independeni rows. i.e. Ihc rows in x,,. 

• .v/eŷ fi Update ^V/f.E'* and E " . Continue the decoding 
from step 3 to step 5 until all the cra.sed bits arc solved 
or the decoding cannot continue further. 

The disadvantages of Guess and Multi-Guess Algo
rithms include Ihc decoding complexily and the correctness 
of the results. The decoding complexity grows exponen
tially with Ihe number of guesses. It is possible that the 
group guess declares a wrong value as the result of ihc de
coder. Although this kind of situation happens only when 
the value of c is vcr>' small, it is still undesirable. 

Let x' denote ihc received vector, where x ' = y | J y^, 
VVc now devise a reduced complexity algorithm to decode 
the cra.sed bits by solving the equation 3 using the Gaussian 
Reduction method [111. 

.v/ty? 2 Let y^^^ be the erased symbols at the last Magged 
equations. In the latter case, starting with ij,^^ this 
equation is solved to lind r/î M and this equation is un-
llaggcd. This coeflicicnt is substituicd back into the 
remaining flagged equations containing j/i^ii. The pro
cedure now repeats with the second from last flagged 
cqaulion now being solved for i/d^.,- This equation is 
unllagged and followed by back substitution of yia,t_i 
for/Zt̂ ^ , in the remaining flagged equations. 

.Mjlnt 111 pint> hil 3dalitain% 

Cimptae G jL tvU j i rabxra pjM> i h t t t ttfulk* 

Figure 2. Erasure Correction Using In-place Algorithm 

A block schematic of the decoder is shown in Fig.2. 
The received bits are stored in the shift register with 
Ihe erased bits being replaced by the unknown y^. The 
Gaussian reduced equations arc computed and used to 
define the connection of bit adders from the respective 
shift register stage to compute the outputs di to d,^. The 
non erased symbols contained in the shift register arc 
switched directly through to the respective output so that 
the decoded codeword with no erased biLs is present at the 
outputs di through to f/„. 

/ / x /T 0. (3) 

According to [8]. the optimal decoding is equivalcnl to 
.solving the linear .system, shown in the equation 3. If the 
equation 3 has a unique solution, the optimal algorithm is 
possible. Guassian Reduction algorithm is considered as 
the optimal algorithm over the B E C . We propose a reduced 
complexity Guassian Reduction algorithm - In-placc Algo
rithm (4| by climilating the column-permutations required. 
This algorilhm is stated as follows: 
In-plucc Algorithm 

• siep I The codeword is received and i/t are substituted 
in positions of erased bits in / / . Starling with one of 
ihe erased symbols, y^ .̂ the first equation containing 
this symbol is flagged that it will be used for the solu
tion of j/t,. This equation is subtracted from all other 
equations containing y^, and nol yet flagged to pro
duce a new set of equations. The procedure repeals 
until either non flagged equations remain containing 
i/f . (in which case a decoder failure is declared) or no 
erased symbols remain that arc not in flagged equa
tions. 

4 Results 

We evaluated the performance of the Recovery Algorithm 
with the LT codes with Soliton distribution as described in 
[21 and irregular LDPC codes. As shown in Fig. 3, the 
performance of irregular L D P C codes is signiflcantly bet
ter than that of ihe LT codes for the same block length. As 
a consequance. wc use L D P C codes to benchmark Ihe re
maining algorithms. 

A particularly strong binary code and which has a 
sparse / / is the cyclic LDPC code (255,175). which has 
a length of 255 bits after encoding of 175 information bits. 
Since the parity-check polynomial of the (255.175) ' code 
is orthogonal on every bit position, the minimum Hamming 
distance is 1 -i- w, where w denotes the number of ones per 
row in H [\2]. 

The applicability of the decoding methods above de
pends on the error correcting code being used and specif
ically on Ihe parity check matrix being used. The perfor
mance of this code for the Recovery, the Guess and the In-

'The (255.175) Cycl ic L D P C code has a minimum Hamming distance 
of 17. 



Figure 3. Performance of the LT codes and irregular LDPC 
codes with erasure probability = 0.2 

Figure 5. Performance of the Cyclic LDPC (34 1,205) with 
the Recovery, the Guess, the Multi-Guess and the In-place 
Algorithms 

place Algorithms is shown in Fig. 4 In terms of the prob
ability of decoder error (FER) as a function of the erasure 
probability for every transmitted bit. 

Figure 4. Performance of the Cyclic LDPC (255.175) with 
the Guess . the Multi-Guess and the In-place Algorithms 

Due to its sparse parity check matrix. Gue.ss algorithm 
with less than 3 guesses can achieve more than I order of 
magnitude improvement compared to that of Recover>' Al
gorithm. In addition, from Fig. 4. we also can ,see that the 
curve of Guess Algorithm is very close to the cur\e of In-
place Algorithm, which means Guess Algorithm is a "near 
optimal decoding" algorithm when it has a sparse parity 
check matrix. 

Fig. 5 shows the performance of the (341.205) LDPC 
code - with the Recover)'. Ihe Guess, the Multi-Guess and 
the In-place Algorithms. Comparing these results of the 
Recovery and Guess Algorithms, the Multi-Guess Algo
rithm can obtain the results by several orders of magnitude 
better. For example, when the erasure probability equals 
to 0.3. the Multi-Guess Algorithm with 

{imx\ — one 
order of magnitude better than the Recover)' and Guess Al
gorithms, when f /nui = 5. the Multi-Guess Algorithm is 
2 ordcr2 of magnitude better than the Recover}' and the 
Guess Algorithms. As an optimal decoding algorithm, the 
In-place Algorithm can achieve 4 orders of magnitude bet

ter than the Recovery and the Guess Algorithm. 
The ultimate performance of the In-placc Algorithm 

as a function of error correciing code is shown in Fig. 6 
for the example (255.175) code which can correct a maxi
mum of 80 erased bits. Fig. 6 shows the probabiliiy density 
function of the number of erased bits short of the maximum 
correctable which is - L. The results were obtained by 
computer simulations. The probability of being able to cor
rect only 68 bits, a shortfall of 12 bits, is 1.1 X 10"^. Sim
ulations indicate thai on average 77.6 erased bits may be 
corrected for this code. In comparison Ihe BCH (255.178) 
code having similar rate is also shown in Fig. 6. The BCH 
code has a similar rate but a higher minimum Hamming 
distance of 22 (compared to 17). It can be seen that it has 
better performance than the (255,175) code hut it has a less 
sparse parity check matrix and consequently it is less suit
able for Recovery Algorithm and Guess Algorithm. More
over the average shortfall in erasures not corrected is virtu
ally identical for the two codes. 

-The (341.105) L D P C code tias a minimum Hamming distance of 16. 

Figure 6. Comparison of Probability Distribution of Num
ber of Erased Bits not Corrected from Maximum Cor-
rcctible (N-L) for (255.175) code and BCH (255,178) code 

The simulation results of using In-place Algorithm for 
the (103.52) quadratic residue binary code [13| are shown 
in Fig. 7. The minimum Hamming distance for this code 
is 19 and the results arc similar to that of the (255,178) 



BCIl code above. It is found from the simulations that on 
average 49.1 erasure bits are corrected (out of a maximum 
of 51) and the average shortfall from the maximum is 1.59 
bits. 

the same code would be used to encode each column of 
symbols. The matrix of symbols may be defined as: 

\ 
\ 

Figure 7. Probability Distribution of Number of Erased 
Bits not Corrected from Maximum Correctible (N-L) for 
(103.52) code quadratic rcdisue code 

Similariy the results for the extended BCH (128.64) 
code is shown in Fig. 8. This code has a minimum Ham
ming distance of 22 and has a similar probability density 
function to the other BCH codes above. On average 62.39 
erasure bits are corrected (out of a maximum of 64) and the 
average shortfall is 1.61 bits from the maximum. 

\ 

Figure 8. Probability Distribution of Number of Erased 
Bits not Corrected from Maximum Correciible (N-L) for 
(128.64) extended BCH code 

5 Application 

In multicast and broadcast information is transmitted in 
data packets with typical lengths from 30 bits to 1000 bits. 
These packets could define a symbol from a Galois field 
1121. viz GF{2'") but with m equal to 30 or more up to 
and beyond 1000 bits this is Impracticable and it is more 
convenient to use a matrix approach with the packets form
ing the rows of the matrix and columns of bits encoded 
using an error correcting code. Usually, but not essentially 

packet 1 
packet 2 
packet 3 

= packet n 

There are a total of ( 5 -i- 1) • A* information sym
bols which encoded using the parity check equations of a 
selected code into a total number of transmitted symbols 
equal to (̂ -̂̂  1) • n. The symbols are transmitted in a series 
of packets with each packet corresponding to a row as indi
cated above. For example the row: 62u'>2i '>22'>23 b2s 
is transmitted as a single packet. 

Self contained codewords are encoded from each col
umn of symbols. For example 6no6io''2o 1« form 
the information symbols of one codeword and the remain
ing .symbols, bK+{)bh+\(ibk+2» f>».-io are the parity 
symbols of that codeword. As a result of network con
gestion, drop outs, loss of radio links or other multifari
ous reasons not all of the transmitted packets are received. 
The effect is that some rows above are erased. The de
coding procedure is that codewords are assemble from the 
received packets with mi.ssing symbols corresponding to 
missing packets marked as Zij. For example, if the second 
packet only is missing above: 

• The first received codeword corresponds to the fir^sl 
column above and is 6nn5i(t'>2n bn-io 

• The second codeword corresponding to the first col
umn above and is 601^11621 ^>«-ii and so on. 

All the algorithms stated in Section 2 may be used to 
,solvc for the erased symbols in the first received code
word, and for the erased symbol 1 in the second received 
codeword and so on up to the 5'ih codeword (column) solv
ing for 

As an example, the binary, extended (128.04) BCH 
code could be used to encode the information data. The 
packet length is chosen to be 100 bits, and the total trans
mission could consist of 128 transmitted packets (12.800 
bits total) containing 6.400 bits of information. On average 
as soon as any 66 packets from the original 128 packets 
have been received, the remaining 62 packets are treated as 
if they are erased. 100 codewords arc assembled, decoded 
with the erasures solved and the 6.400 bits of information 
retrieved. One advantage is that a user does not have to 
wait until the entire transmission has been received. 

6 Conclusions 

In this paper, we presented different decoding algorithms 
of LDPC codes over the B E C : Recovery, Guess. Multi-



Guess and In-place Algorithms. The Multi-Guess Algo
rithm is an extension to Guess Algorithm, which can push 
ihe limit to break the stopping sets. Wc show that Guess 
and Mulii-Guess Algorithms arc parity<heck matrix de
pendent. For the codes with sparse pariiy-chcck matrix. 
Guess and Multi-Guess Algorithms can be considered as 
"Near-optimal Decoding Methods". On the other hand. In-
placc Algorithm is not. It's an optimal method for the BEC 
and able to correct A' - L - p erasures, where /i is a small 
positive integer. 

We also considered these algorithms in the implemen
tation of multicast and broadcast. Using these algorithms, a 
user docs not have to wait until the entire transmission has 
been received. 
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Key words lo describe this work: Decoding comple.xiiy, Seciionlizaiion, Permuiaiion. 

Key results: The relationship between perinuialion-optimal trellis and seciionalization-optimal trellis is found. 
A new method lo count ihe decoding complexity is provided. The seciionalizaiion method is performed with 
different decoding algorithms. 

How does Ihe work advance the state-of-the-art?: The complexity of irellis-based decoding can be reduced 
by up lo 50% wiih seciionalizaiion. 

Motivation (Problems addressed): To reduce the compuiaiional complexily and the size of memory storage 
required. 

Introduction 

A trellis T is an edge-labeled directed graph with 
the property that every stale in T has a well-defined 
depth which can represent corresponding codes in cod
ing ihcor>'. Currently, trellis-based algorithms are widely 
u.sed. for example. Viicrbi algorithm [7| and MAP algo
rithm (4). There are many different factors that impose 
on the complexity of irelliscs. each decoding method has 
different level of complexity. In this paper, wc brielly sur
vey the complexity of the Viterbi decoding algorithm with 
Hamming codes and their dual. 

A Review of Sectionalized Trellises 

Consider an («. k) linear block code C with a /i-stagc 
bit-level trellis T in which each branch represents a single 
code bit. The trellis can be sectionalizcd by any positive 
integer i/ ranging from 1 to «. so (he section boundary set 
is {hii. h^, /ix/}. where 0 = /JQ < ''i = n. 
An fi-depih trellis has 2 " " ' sectionaiizations. for exam
ple. Hamming(7,4) has 2^ different scclionalizalions. The 
main idea in scctionalizing an original trellis is to amalga
mate sections that involves two steps: (2). 

1. deleting the states and branches between the initial 
section to the final section; 

2. connecting states from the initial section to the final 
.scclion with the combined labels. 

According tol 11. we can compute the number of 
branches \Bj\ and the number of states |5 j | for any .section 
from the generator matrix of C. 

Viterbi decoding based on the ScctionaM/cd 
Trellis 

The Viierbi algorithm is a maximum likelihood decoding 
method which chooses a codeword having the maximum 
likelihood metric, or the minimum distance metric. 

This decoding procedure consists of two major steps: 
computing the branch metrics and finding the sur\'ivor 

paths in the resulting trellis. The decoding implementa
tion includes two metric: branch metric and state metric. 

Vardy complexily algorithm 111 considers the complex
ily of computing the branch metric and the complexity of 
Viierbi decoding separately. 

Branch metric complexily means computing the num
ber of operations required in all the branches in one sec
tion. Decoding complexily |0(7 ' ) | is ihe number of op
erations required to decode the trellis T. We denote ihe 
subcode of C as C{T), and the dual subcode as C(r) -* - . 
There are lots of pre-computaiions in every step, which 
can not be easily ignored in the real implcmeniaiion. In 
the branch metrics, whether C{T) is self-complementary 
need justifying. For an A^-length block code, there are 
A'C; = T,iLi^ different C ( T ) need to be judged. As
sume in each seciion, there are r;i codewords. So cvciy 
C{Tj) need ai most 

./(7-) = ( m - l ) 
m-2 

m -h y i (1) 

comparisons. If we pre-siore the .self-complcmentar>' ta
ble with the rows meaning the beginning boundary and the 
columns meaning ihc ending boundary. A' x .V matrix is 
required. For example. Hamming (7. 4) need A'C,- = 27, 
.J{Ti) — 77 and the size of memory storage. MciT) is 
7 x 7 . 

Also in the branch metrics, we need to consider 
whether 1 € C{T)^ and the length of the seciion /, = 0 
mod 2 or not. The dual code of C{T) can be obtained 
from / / matrix of C(7') . First, to find all ihe possibilites 
of = 0 mod 2. the number of ihe judgements is de
noted by V. 

{i i i t ) iV/2 

Y= Yl o ^ ' - n - ( 2 x j ) (2) 

And at each section, there are at most m judgements 
required lo determine whether 1 € C{7')-'- or not. The 



pre-table requires >\ x A" matrix. Wc stilt use Hamming(7. 
4) as Ihe example, which need tn = S, Y = 12. and 
memor>* storage 7 x 7 . 

In the decoding part, all the subcodes of C* are required 
to be considered. There are at most Yli=i ' ^ compar
isons for each section. The results also can be pre-storcd 
in an A' x A' matrix. The number of comparisons for the 
Hamming(7. 4) code is 216. 

From the analysis above, wc can conclude that the 
longer the code length, the more calculations and mem
ory storage required, so the complexity of pre-determining 
calculations can not be simply ignored. So wc provide the 
Straii>hifor\varc{ al^orifhm, which trades complexity for 
implementation simplicity. Recalling the Viierbi decoder, 
suppose $h,.t>j in which h; means the current depth and pj 
means the position in this depth. D„ represents the state 
and 0 „ is the corresponding output. For example, the first 
stage of branch metric computation for Hamming (7. 4) 
trellis, we can get the equation as follows: 

5 ; . , = 5 , . , - f ( O , - 0 , ) 2 -i- ( 0 2 - 0 2 ) 2 ( D 3 - 0 , ) 2 

51.2 = Su2 + {D\ - O , ) ^ + [D!, - O^f + ( D i - O a ) ^ 

, . (3) 
S2.1 = min{S, , . S , 2 } . (4) 

As described in |3. 51. we consider the number of addi
tions and the number of comparisons as the complexity of 
Viterbi decoding. Because of the linear propeny, the num
ber of operations can be obtained section by section. For 
each section, the number of addition is equal to the num
ber of branches in this section and the number of compar
isons is 1̂ 1 - |S,„,j.,l. The Vardy's algorithm is shown as 
follows: 

0Ar,M']=2x\B\-\S,l (5) 

Obviously, as the number of stages per section increases, 
the number of labels per branch will increase. Wc also 
need storage to save the labels. So we get the update met
ric as follows 

(6) 

where a is the number of labels per branch. Although the 
complexity is higher than Vardy's method, inost criteria of 
Vardy's depend on lots of comparisons which are ignored 
in this algorithm, comparisons cannot be simply ignored 
in real implementation especially for long block codes. 

Optimal seclionalization and Optimal 
Permutation 

Given a code, there arc very many different trellises 
that rcpre.scnl it, of widely varying complexity. When the 
pcrmuiation-optimal trellis is chosen, the decoding com
plexity can be minimized among all the representations. A 
permutation that yields the smallest state space dimension 
at every time of the code trellis and the smallest overall 
branch complexity is called an optimum permutation [61. 
For Hamming codes, the permutation-optimal trellises can 
normally be obtained directly by natural lexicographic / / 
matrix. In this case, we use Golay (24.12.8) and count 
the opcraiions with the straightforward algorithm as the 
example shown in table 1. 

Bii-lcvcl trellis operaiions Opiiinuin seclionalizailon Bii-lcvcl trellis operaiions 
operations boundary 

location 
4472 255S {0,8.12.14. 

15.16.24} 
89560 5630 {0,11.24} 
120904 4478 {0.9.24} 

Table 1: Comparison between permuiaiion-oplimal and 
scctionjlizalion-optimal on Goluy (24.12.8) 

Conclusion 

In this paper, the Viterbi algorithm has been modified with 
sectionali/ed trellises. Results of Hamming ctxles and 
their dual codes show that the scctionalization niclhod can 
reduce the computing complexity and the memory stor
age. With the sectionali/.tion algorithm, the computation 
complexity can be reduced by nearly 50%. Considering 
ihe large number of pre-calculations and large momcry 
storage requirements by the previous metric, wc inves
tigated and provided the update metric: Straighrforword 
algoriihm. which can search out the optimal seciionaliza-
lion of C more eftieciently and quickly than Vardy s al
gorithm. And the relation between sectionali/alion and 
permutation is found in the paper. It turns out that 
Ihe scctionalization-optimal code with the pemiutation-
opiimal mode can drastically change the number of the 
computational operaiions in decoding procedure, often by 
an exponential factor 
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2421599 
A S r S T E M FOR T H E C O R R E C T I O N O F MISSING OR D E L E T E D S Y M B O I « 

missing or deleted. ^ s« lucncc despite some o f the symbols being 

B A C K G R O U N D 

In many communication systems, storage systems and broadcasting systems information is encoded as a sequence of symbols 
from a finite alphabet and binary symbols arc the most common. Tliis mvention is applicable lo any f in i ic alphabet and may be 
used for binary symbols but is not limited to these In se\-cral applications the s>'mbol stream is subject to missing symbols or 
deleted symbols. Without loss of generalit)' the total number o f symbols is denoted by n and the number o f information symbols 
contained in the symbol stream is denoted by k The number o f erased symbols is denoted by m. In communication systems these 
m s>'mbols are referred to as erased s>'mbols ( i I In broadcisting s)'stcins or in multicasting systems, symbols are transmitted 
serially. Each symbol could be a data packet o f a suitable IcngtJi in bits In broadcasting systems or multicasting, at any point in 
ume, only r symbols may have been received cither because o f network congestion or interference or because only r symbols 
have been tiansmitted up until now The s>siein described below enables the k information s>'mbols to be retrieved w i t h a given 
probability o f symbol error, provided r is greater tlian or equal to k In infonnation storage systems, such as hard drives, the 
invention described below may be used to recover the stored infoniiaiion before all of the n symbols o f data have been read (so as 
to achieve faster access) or to compensate for unread /missing symbols It is shown that the system can cope wi th a much higher 
number o f missing symbols tlian tlie current state of the an, for the same tmnsmided sequence For example i f 64 information bits 
are encoded into 128 bits by using a code, such as llic e.viended (128,64) BCH code given in ihe Appendix, then the traditional 
hard decision decoder (2J wi l l be able to correcl only up to 21 missing bus. one bit less tluin tJie d^a o f Ihe code which is 22. Wi th 
the invention described below, up to 62 missing bits on average can be corrected and 45 missing bits can be corrected wi th a 
probability of0.99999. 

DESCRIPTION OF T H E I N V E N T I O N 

The information to be stored or transimncd consists o f k mfonnntion symbols or packets, which are encoded into n code symbols 
by using a series of panty check equations. TIus is a well known procedure described generally, for example, m references [1J and 
{21 The n code symbols are iransmiiicd or stored A schematic diagram for ilic encoder is shown in Fig l .The invention provides a 
means of rccovenng tJie k infonnation symbols or packets from k-t-r s>'mbols. where r is a small integer between 0 and some limit, 
TioQ.The reasons for wanting to recover the k ii Jbrmalion symbols or packets from k+r s>'mbols are man i fo ld Some o f the 
remaining s>'mbols may have been corrupted in storage, and arc missing, or in a communication system, congestion, time 
constraints, distortioa noise or other transmission impairments may have prevented the reception o f the remaining symbols or 
packets. 

The code that is used for encoding is not the s:ibjeci o f this invention. Tlie open Uierature is a rich source of suiuble codes using 
binary or non binary symbols and luiving various values o f k and n. See for example ( i | and (2| 
The invention uses Uie received symbols and the parity check equations in three methods. Method A, Metliod B, and Metliod C, 
each Willi increasing levels ofcomplexi t ) 'of the decoder so ilrnt in the implementation o f the invention, performance may be 
traded o f f against cost 

Method A 

In method A the decoder inserts the recen'ed symbols into tlic parity check equations substituting symbols representing unknown 
variables for ilic missing symbols Tlic equiiiions are scanned for the number o f unknowns in each equation. Those equations with 
only one unknown symbol, are solved for ihc unknown s>'mbol and the solved symbols are substituted back into the parity check 
equations. The procedure then repeats and continues repeating until all missing symbols liavc been solved and found. A schematic 
diagram for the decoder is shown m Fig 2 Wnhout loss of generality the invention is described further by way o f example using 
binary symbols and with a slion code length of 15. 

Considenhe parity check inatnx for a (15.7) error correcting code with a dmino f 5 Tliecode is guaranteed t o correct 4 erasures 
using syndrome decoding (2] By using iJie decoding McUiod A. tlie average number of erasures corrected is approximately 
5 S.The code_length is IS and there are 7 information bits encoded into a total of IS bits The sequence to be transmitted or stored 
is represented as 

C(x) = Co+ C i X ' ' + C2. \ ' ^+ C j x - V C4X^+ C 5 . \ ' - c . A " * + c , \ ' + C a x " + C 9 \ ' ' + c , n x c , , x - " + c , r x ' - + c , , . \ c „ x - ' ^ 

The information IS contained in the 15 binao cocfTicients Co. c,. C2. C3, c, Ci4 fol lowing tlie encoding according to the 
parity check equations 

There are 8 parity check equations which dcllne 8 o f ihc coefficients c. • 

Co + c,+ C3+ C7 = 0 ( I ) 
c, + C 2 + c,+ C8 = 0 (2) 



+ C5+ C 9 = 0 (3) 

C3 + C4+ Ctf+ c,o = 0 (4) 

C4 + C5+ C7+ c,, = 0 (5) 
C5 + C6+ C8+ C,2 = 0 (6) 
C6 + C7+ C9+ Ci3 = 0 (7) 
C7 + C8+ c,o+ c,4 = 0 (8) 

The 7 informalion bit5 may be disinbuicd amongst (he 15 coefficicms i n several ways, the u s u a l convcniion is ihai the coefficients 
Co through to C f i a r e set equal to ihc infoniiaiion b i t s a i d c i through to Cj^are p m i y c h e c k bits dcnved f r o m c©through 1 0 Ce-

As a n alternative representation, the parity check equations may be represented as a paniy check matrix: 

110100010000000 
011010001000000 
001101000100000 
0001101000lOOOO 
000011010001000 
000001lOlOOOLOO 
000000110100010 
OOOOOOOUOlOOOl 

where i n each row o f the matnx the position 01'the I's indicate (he coefificicnis used m the panty check equation corresponding lo thai row 

Consider a sequence of missing bits or erasures in positions 3. 12. I . 9, 2 .0 
The received or the available sequence is tliercfore represented as 

C , x V CiX*+C6.X*+ c ,x '+ C8X"+ c,ox"'+ c i , x " + c , j x ' V C | , . \ ' * 

The 6 coefificients C Q . C i . C2. C j , o?, a n d C J : arc u n k n o w n a n d n e e d 1 0 b e deicrmined unambiguously This is impossible with the 
conventional syndrome decoder as only 4 coclTicienis c a n b e dctcmnncd as the code lias a d ^ m O f 5. 

For each erasure, the erasure is represented as an unknown in each o f the pant>' check equations tliai it appears as z,. where i is ilie position of the erasure 

The se t of parity check equations become 
Z0 + 2 1 + Z3+ C7 = 0 ( A l ) 
2 , + Z 2 + C4+ C8 = 0 (A2) 

Z2 + Z 3 + cs+ Z9 = 0 (A3) 
2 , + C ^ + Cff+ c,o = 0 (A4) 

C 4 + C J + C 7 + c , , = 0 (A5) 
C5 + C6+ C8+ 2|3 = 0 (A6) 
C6 + C7+ Z9+ c,3 = 0 (A7) 
C 7 + C 8 + c,o+ C H = 0 ( A 8 ) 

A l l the equations are scanned to determine the number o f unknowns 7^ in each equation Tliose equations with only o n e unknown 
are solved. Tliese are equations (A4) . (A6) a n d (A7) a n d /.j. and 2 i ; a r e solved to produce C3. ĉ  and C i j . That is 
C 3 = C 4 + C6+ C,o 

C9 = c t f + C7+ C i j a n d 

C|3 = Cs+ C6+ Cg 

These are then substituted into equations ( A l ) ilu-oiigh to (AS) to produce the following equations 
Z o + Z ) + C3+ C7 = 0 ( B l ) 

2 1 + / .2+ C4+ Cs = 0 (B2) 
Z2 + C3+ C j + C9 = 0 (B3) 
C3 + C4+ Ctf+ c,o = 0 (B4) 

C4 + C5+ C7+ C i , = 0 (B5) 
C5 + C6+ C8+ Ci2 = 0 (B6) 
C6 + C7+ C9+ c,3 = 0 (B7) 
C 7 + C 8 + c,o+ c,4 = 0 (B8) 



substiluted .0 produce a new « . of ecu Lf ^ ° ' " ' "^" '^^ '° • TT^e soluUon (s) is substituted to produce a new sei ofcquntions 
Z0 + Z1+ C3+ C7 = 0 ( C I ) 

2 i + C 2 + C4+ ct = 0 (C2) 

C 2 + C J + C 5 + C 9 = 0 ( C 3 ) 

C 3 + C 4 + Ctf+ Cio = 0 ( C 4 ) 

CA+Ci+ C 7 + C i i = 0 ( C 5 ) 

C 5 + C 6 + C8+ C,2 = 0 ( C 6 ) 

C6 + C J + C 9 + c , j = 0 ( C 7 ) 

C 7 + C 8 + C 1 0 + C H = 0 ( C 8 ) 

The procedure ihen repeats, scanning ilie cquiiiions to deicnnjnc the number of unknowns z, in each equation. Those equations 
with only one unknown are solved which is now equation ( C 2 ) for iJic unknown Zj m order 10 find c i . The solution (s) is 
subslinited in the equations to produce a new set o f equations o f which there is only one unknown Zo and the new equation (DO) 
solved to f i nd Co- In this way all of the erasures have been corrected As shown in Fig 2 the received codeword is clocked into the 
n stage, tri-state, shift register, with each stage 1 stonng one of 3 states, ciilicr 0 or 1 or z, to represent an erasure in tliat position. 
Each shift register stage feeds the set of parity check equations and those with only one z entry are solved and the solutions fed 
back to the respective shift register stage as shown in Fig 2. Tlie procedure then repeats unul the shift register contains no z states 
or until decoding fails due to an excessive number o f erasures being present in ilic panly check equations. 

Method B 

In the event that each parity check equation contains two or more erasures then the procedure of Method A w i l l fa i l . Method B is 
the same as Method A except tliat i n the ovcni o f all pant>' check equations containing two or more erasures, one or more erssed 
bits are selected and their states are systematically guessed Tlic basis o f the selection, is il iai tliesc erased bits arc in the maximuni 
number o f equations containing only two erasures Tlic states o f these selected bits are set to al l possible symbol states, one at a 
lime, substituted back into the parity check equations, and Method A invoked A schematic diagram o f the decoder is shown in Fig 
3 . I f the procedure progresses with all tiic parity check equations solved then decoding is declared complete. I n the event that all of 
the parity check equations cannot be solved, then the received symbols arc input agnin f rom iJie receive buffer, and new guesses 
are made for the selected bits I f all possible guesses have been made for the selected bits, then a new selection o f bits to be 
guessed is made and the procedure repeated. 

Method C 

For the ultimate performance alt o f the infornmtion contained in the parity check equations needs to be used wi th a consequent 
increase in decoder complexity Tlie codeword is received and unknowns A substituted in positions o f erased symbols in the parity 
check equations Starting with one o f the erased s>'niboIs. A . the first equation containing tliis symbol is flagged that it w i l l be 
used for the solution of z. and then tins equation is subtracted from all other equations contaimng z, and not yet flagged, to 
produce a new set o f equations Tlic procedure repeats with the nc.\t o f the non flagged equauons containing the next erased 
symbol A t i flagged and subtracted f rom all o f the rciuainmg non flagged equations containing . The procedure is a form o f 
Gaussian reduction of the parit>' check equaUons 

The procedure repeats until either 110 noii flagged equations remain containing the erased s>'inbol z,.c,i ( in which case a decoder 
failure is declared) or no erased s>'mbol5 remain tliat are not in flagged equations In this case starting with the last flagged 
equation with emsed symbol Zi^u this equation is solved to find Ci^ and tiiis equation is unflagged This coefficient is substituted 
back into the remaining flagged equations containing zisn Tlie procedure now repeats wit l i tlie second from last flagged equation 
now being solved forz i^ . r ; this equation isuiiflaggcd and followed by back substitution ofCb«.i for z j ^ . , in the remaining 
flagged equations. A block schematic o f ihc decoder is shown in Fig 4 The received symbols are stored in the shift register with 
the erased symbols being replaced by the unknowns Tlie Gaussian reduced equauons are computed and used to define the 
connection o f symbol adders f rom each respective shift register stage to compute the outputs d, througli to d „ T h e non erased 
symbols contained in the sluft register are switched directly througli to their respective outputs so tliat overall, the decoded 
codeword containing no erased symbols is present at the outputs d) ihrougli to d,, 
As an exampleoftiie method consider the ( I S,7) code with erasures in positions Ci. C2. c j . C4 
After substitution witli the unknowns in the p.irity check equations, the fol lowing set o f equations are obtained: 

Co + Z i + Z 3 + c? = 0 ( D l ) 
Z, + 22+ Z4+ Cs = 0 (D2) 
22 + 23+ C3+ C9 = 0 ( D 3 ) 

23 + i ) + C6+ C|o = 0 (D4) 
2^ + C j + C7+ C | | = 0 (D5) 
C j + C 6 + C8+ C12 = 0 (D6) 
C6 + C7+ C9+ C,3 = 0 (D7) 
C7 + C 8 + C10+ C „ = 0 (D8) 



(This simple example could have ihc erasures correcicd by MeOiod A . bui Method C w i l l be applied as an example of Oie procedure) 

Starting with z , , equation ( 0 1 ) is flagged and subtracted from equation (D2) only because z, is not conuiined in the other 
equations. The new set o f equations obtained is as follows 
Co + Z i + Z 3 + C i 
Co + 2 3 + C7 + 7-2+ 7 4 + Ca 
Z2 + Z3+ C5+ C9 
Z3 + Z4+ C(r+ C o 
Z4 + CS+ C7+ O n 
C5 + C6+ C8+ C,2 
C6 + C7+ C9+ C,3 
C 7 + C 8 + C,o+ C,4 

The * represents lite flagging of equation (EI) ineaning ilmt Uiis equation wi l l be fixed and used to solve for 

The next unknown is z j contained ut unflagged equation (E2) This equation is flagged and subtracted f rom the 
equations containing z i to produce tlie next set of equations. 

• for z. 

= 0 ( E l ) * rorz , 
= 0 (E2) 
= 0 (E3) 
= 0 (E4) 
= 0 (E5) 
= 0 (E6) 
= 0 (E7) 
= 0 (E8) 

Co + z,+ Z 3 + C 7 - - ^ - ^ ^ . . « _ s . -nonflagged 

Co + Z3+ C j + Z2+ Z , + Cg 
Co + C7 + Z4+ Cg + C j + C9 
23 + Z4+ C6+ Co 
2 4 + C 5 + C , + C l 
C5 +C6+ C8+ C 2 
C6+C7+ C9+ C 3 
C7 +C8+ C 0 + Cfl 

= 0 ( F l ) 
= 0 (F2) 
= 0 (F3) 
= 0 (F4) 
= 0 (F5) 
= 0 (F6) 
= 0 (F7) 
= 0 

The next unknown is Z4 contained 

Co + Z , + Z3+ C7 
Co + Z j + C l + Z 2 + U+ Cg 
Co + C7 + 24+ Cg + C5+ C9 

Co + C7 + Cg + C5+ C + Z3 + C G + Clo 
C o + C 8 + C 9 + C n 
C 5 + C 6 + C8+ C 2 
C 6 + C 7 + C9+ C 3 
C l + C B + C O + Cu 

It ions 

= 0 ( G l ) 
= 0 (G2) 
- 0 (G3) 
= 0 (G4) 
- 0 (G5) 
= 0 (G6) 

0 (G7) 
= 0 (G8) 

• for z, 
* for z. 
* for zo 

•s U.cn ^bstMutcd into (G2). Equanon (G2) is's'^ved ncM lor ̂ .Id f!, JlT(G 0 . f s o i v X t 

Muriicast and Broadcast 

In multicast and broadcast applications, infonnaiion is iransiniticd in data packets with typical packet lengtJis f rom 30 bits to 1000 
bits. These packets could define a symbol from a Galois field (11, v i / GF(2'") but with m equal to 30 or more up to and beyond 
1000 bits this is impmciicablc and it is more convcnieni to use a mainx approach with ilic p;ickets formmg the rows o f the matrix. 

The columns of bits (or symbols) are encoded using an error correcting code Usually, but not essentially, the same error 
correcting code would be used to encode each column of symbols Tlie matrix o f symbols may be defined as ' 
boo bor bo2 bo3 bo4 bo5 bo6 bo7 b^„ - packet 1 
bjobii bi2 bi3bHb|jbi6bi7 b i , = packet 2 
b2ob2ib22 bijbz^bzsbMb:? ^-b:, = packet 3 

brMobn.,,b^i2b^i3b„.,4b„.,5b„.,6b„ packci n 



Thcie are a total of (s+1) k information s>'mbols which arc encoded using the parity check equations o f a selected code into a total 
number o f transmitted s>'mbols equal to (s+l) n Tlic s>-inbols arc transmitted in a sencs of packets with each packet 
corresponding to a row of Ihc niainx as mdicnied above For example the row* 
b2ob2|b22 b23b24b2jb26b2; b:, 

is transmitted as a single packet. 

Self contained codewords arc encoded from e;ich column of k symbols For example bnobjobzo b3ob4o bk.ioform the k 
information symbols o f one codeword and the remaining symbols bwobv.iubk*2o b,».ioare the n-k parity symbols o f thai 
codeword and these are Uicse are the result of encoding the k mformauon s>'mbols 

As a result of network congesuon. drop outs. loss o f radio links or other imdtifarious reasons, not al l o f the transmitted packets are 
received. The effect is lltat some rows above may be considered as crjsed rows. The decoding procedure is that codewords arc 
assembled from the received packets with missing s)'iiibols corresponding to the imssing packets marlced as z^corresponding to 
their position in the mauix. For example i f the second piicket only is missing above 
The first receiv'cd codeword corresponds to iJie first column above and is 
boo 2 i o bzo b3o b4o bio bfio b7o b,-i o 
The second codeword corresponding to tlie second colunui above is 
boi Zi 1 b i i bs) b4i bsi bei b j i b„ h 
and soon 

A l l of the three methods outlined above may be used to solve for the erased s>'mbol Zio m the first received codeword, and for the 
erased symbol zn in tlie second received codeword and so on up to the s'th codeword (column) solving for symbol Zi».| 
As an example the binary, extended (128.64) BCH code given in the Appendix could be used to encode the information data. The 
packet length is chosen to be 100 bits, and the total tniusmission could consist o f 128 transmitted packets (12,800 bits total) 
containing 6,400 bits o f information On aveiagc as soon as any 66 packets from the or ig i iu l 128 packets have been received, the 
remaining 62 packets are treated as i f they arc enised Tltc 100 codewords arc assembled, and decoded with the results that the 
erased symbols are solved and the 6.400 bits of infonnation retrieved One additional advantage is timt a user does not ha\'e to wait 
until the entire transmission has been rece:\'cd in order to recover tlie 6.400 bits o f information even i f tliere have been no erasures. 
For this code, on average, only 66 packets luivc to be received to recover all 6.400 bits o f information, (see results below for this 
code's performance) 

Results fo r Some Typical Codes 

The apphcability o f the decoding methods above depends upon the error correcting code being used and specifically on the parity 
check matrix being used Tlie parity check matnx should be sparse (each row o f the matrix liavmg a small number o f non zero 
entries) for Methods A and B. Tlie sp:irsenes:, of the pant)- check matrix does not affect the performance of Method C 
A particularly strong binary code and one which lias a sparse paniy check miitnx is the (255.175) binary code given in the 
Appendix. This code lias a length of 253 bits lifter encoding o f 175 infonnation bits 

The perfonnancc o f this code for the three incihods above is shown in Fig 5 in icnns of the probability o f decoder error (FER) as a 
function of the erasure probability for every iiansnutled bit An ensure probabilit>'oro.2 means that on average I bit in 5 is erased 
or lost. Metliod C has the best pcrfonnancc but at iJie expense of decoder complexity Tlie ultimate performance o f this method as 
a function o f error correcting code is shown m Fig 6 for the example (255.175) code wli ich can correct a maximum of 80 erased 
bits. Fig 6 shows the probability density function o f the number o f erased bits slion o f tlie maximum correctible which is n-k. The 
results were obtained by computer siinulauous. The probability o f being able to correct only 68 bits, a shortfall o f 12 bits, is 
1.1x10"^ Simulations indicate tJiai on average 77 6 erased bits may be corrected for ilus code. In comparison ihe BCH (255,178) 
code having siimlar rate is also shown in Fig 6 The BCH code lias similar a similar rate but a higher minimum Hamming distance 
of 22 (compared to 17). It can be seen tliai xi lias belter performance than ihc (255.175) code but it has a less sparse parity check 
matrix and consequently it is less suitable tor the decoding Methods A and B Moreover the average sliortfall i n erasures not being 
able to bccorrected is virtually identical for the two codes 

Tlie simulation results of using Meiliod C for the (103.52) quiidraiic residue binary code |3J are shown in Fig 7. The minimum 
Hammmg distance for this code is 19 and the results arc similar to thai of the (255.178) BCH code above. It is found from the 
simulations tliat on avenige49 1 enisurc bits arc corrected (om of a ma.ximuin of 51) and tlic avemge shortfall f r o m the maximum 
is 1.59 bits. 

Similarly the results for the extended BCH (128.64) code are shown in Fig K. This code has a minimum Hamming distance o f 22 
and lias a similar probabilit)- density function to the other B O I code above. On average 62 39 erasure bits are corrected (out o f a 
maximum of 64) and tlic avemge shortfall is . 61 bits from the maximum 
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Appendix 

The parity check (H) matnx below is for the (255.175) binan' code having a mimmuin Hainimng distance o f 17. It is a sparse 
matrix because a code o f tlus length and performance would usually liave approxunaicly 80 entries per row instead o f 16. 
Consequently it is paAicularly suitable for use in Method A and Method B. The -1 s>'inbol at the end o f each row is only there to 
enable the matrix to be easily machine readable, it is iioi pan of i l ic code. T I K numbers represent the bit positions o f the bits 
involved in each parity check equation. 

0 18 76 32 56 61 97 106 110 113 125 1 50 152 172 1 73 18.1 -1 
1 19 27 33 57 62 98 107 111 l U 126 151 153 173 174 184-1 
2 20 28 34 58 63 99 108 112 115 127 152 154 174 175 185-1 
3 21 29 35 59 64 100 109 113 116 ]28 153 155 i75 176 186-1 
4 22 30 36 6 0 65 101 110 114 117 129 154 156 176 177 187-t 
5 23 31 37 61 6 6 102 111 115 118 )30 155 157 177 178 188-1 
6 24 32 38 62 67 103 112 116 H 9 131 156 138 178 179 I 8 9 - I 
7 25 3 3 39 63 68 104 113 117 120 132 1 57 159 179 180 190-1 
8 26 34 40 6 4 69 105 114 118 121 133 158 160 ISO 181 191 - I 
9 27 35 41 65 7 0 106 115 M 9 122 134 159 161 181 182 I 9 2 - I 
10 28 36 42 66 7 1 107 116 120 123 135 160 162 182 183 193 -1 
11 29 37 43 67 72 108 117 121 124 136 16} 163 183 184 104-1 
12 30 38 44 68 73 109 118 122 125 137 162 '.::4 184 185 195 -1 
13 31 39 43 69 74 I t O 119 123 126 138 163 165 185 186 196-1 
14 32 40 46 70 75 111 120 124 127 139 164 16o 186 187 1 9 7 1 
13 33 4 1 47 71 76 112 121 125 128 140 165 167 187 188 198-1 
16 34 42 48 72 77 113 122 126 129 141 166 16« 188 189 199 -1 
17 35 43 49 73 78 114 123 127 130 142 167 169 189 190 200-1 
18 36 44 50 74 79 113 124 128 131 143 168 170 190 191 201-1 
19 37 45 31 75 80 116 125 129 132 144 169 171 191 192 202-1 
20 38 46 52 76 81 117 126 130 133 |43 170 172 192 193 203-1 
21 39 47 53 77 82 118 127 131 134 146 171 173 193 194 204-1 
22 40 48 34 78 83 119 128 132 135 147 | ? 2 174 194 195 205-1 
23 41 49 55 79 84 120 129 133 136 148 | 7 3 175 195 196 206-1 
24 42 50 56 80 85 l 2 l 130 134 137 149 174 17G 196 197 207-1 
25 43 51 37 81 86 122 131 133 138 ISO 175 177 197 198 208-1 
26 44 52 58 82 87 123 132 136 139 151 176 17K 198 199 209-1 
27 45 53 39 83 88 124 133 137 140 152 177 179 199 200 210 1 
28 46 54 60 84 89 123 134 138 141 153 178 180 200 201 211-1 
29 47 55 61 85 90 126 135 139 142 154 179 181 201 202 212-1 
30 48 56 62 86 91 127 136 140 143 135 180 182 202 203 211-1 
31 49 57 63 87 92 128 137 141 144 136 181 18? 203 204 214-1 
32 50 58 64 88 93 129 138 142 145 157 182 184 204 205 215-1 
33 51 59 65 89 94 130 139 143 146 |5S 183 185 205 206 216-1 
34 52 60 66 90 95 131 140 144 |47 159 184 186 206 207 217-1 
35 53 61 67 91 96 132 141 145 148 160 tBi 187 207 208 218-1 
36 54 62 68 92 97 133 142 146 149 161 18:< IftH 208 209 219-1 
37 35 63 69 93 98 134 143 147 150 162 187 l y ; 209 210 220-1 
38 56 64 70 94 99 135 144 148 151 163 18K I9<1 210 211 22! - I 
39 57 65 71 95 100 I J6 145 149 152 164 189 191 211 212 222-1 
40 58 66 72 96 101 137 146 150 153 165 190 192 212 213 223-1 
41 59 67 73 97 102 138 147 151 154 166 191 193 213 214 224-1 
42 60 68 74 98 103 139 148 152 155 167 192 194 214 215 225-1 
43 61 69 75 99 104 140 149 153 156 168 193 195 215 216 226-1 
44 62 70 76 100 105 141 150 154 157 169 194 196 216 217 227-1 
45 63 71 77 101 106 142 151 155 158 170 195 197 2)7 218 228-1 
46 64 72 78 102 107 143 152 156 159 171 196 : ')8 218 219 229-1 
47 65 73 79 103 108 144 153 157 160 172 197 199 219 220 230-1 
48 66 7 4 80 104 1 09 145 1 54 1 58 l 6 l 173 1 98 200 220 221 231 - I 
49 67 75 81 105 110 146 155 159 162 174 199 201 221 222 232-1 
50 68 76 82 106 111 147 156 160 163 175 200 202 222 223 233-1 
51 69 77 83 107 112 148 157 161 164 176 201 203 223 224 234-1 
52 70 78 84 108 113 149 158 162 165 177 202 2u4 224 225 235-1 
53 71 79 85 109 114 150 159 163 166 178 203 205 225 226 236-1 
54 72 80 86 110 115 151 160 164 167 |79 204 2t 6 226 227 237 -1 
55 73 81 87 111 116 152 161 165 168 180 205 207 227 228 238 -1 
56 74 82 88 112 117 153 162 166 169 181 206 208 228 229 239-1 
57 75 83 89 113 118 154 l 6 3 167 170 182 207 209 229 230 240-1 
3 8 76 84 90 114 119 155 164 168 171 183 208 210 230 23 1 2 4 | - I 
59 77 85 91 115 120 156 165 169 172 18i 209 211 231 232 242-1 
60 78 86 92 116 121 157 166 170 173 185 : i 0 212 232 233 243 I 
6 1 79 87 93 117 122 158 167 1 7 | 174 186 2 i : 213 233 234 244 -1 
62 80 88 94 118 123 159 168 172 175 187 212 214 234 235 245-1 
63 St 89 95 119 124 160 169 173 176 188 313 215 235 236 246 -1 
64 82 90 96 120 125 161 170 174 177 189 214 216 236 2.37 247 -1 
65 83 91 97 121 126 162 | 7 | 175 178 190 215 217 237 238 24K -1 
66 84 92 98 122 127 163 172 176 n 9 191 216 218 238 239 249-1 
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56 58 60 61 62 64 65 69 70 72 73 74 76 80 81 8^ R5 86 90 91 92 93 94 95 96 99 100 108 109 113 J M 116 118 120-1 
57 59 61 62 63 65 66 70 71 73 74 75 77 B l 82 84 8ft 87 91 92 9^ 9 4 95 9G 97 100 101 109 110 114 115 117 119 121-I 
58 60 62 63 64 66 67 7 | 72 74 75 76 78 82 83 85 87 88 92 03 94 9 5 96 07 98 101 102 110 l i t 113 116 118 120 I 2 2 - I 
59 61 63 64 65 67 68 72 73 75 76 77 79 83 84 86 88 89 93 94 95 9 6 97 98 99 102 103 H I I I I 116 117 119 121 123-1 
60 62 64 65 66 68 69 73 74 76 77 78 80 84 85 :.7 89 90 94 95 96 9 7 98 99 100 103 104 112 113 117 118 120 122 124-1 
61 63 65 66 67 69 70 74 75 77 78 79 81 85 86 88 90 91 95 96 97 9 8 99 100 l O l 104 105 1)3 I M 118 U 9 111 123 125-1 
62 64 66 67 68 70 71 75 76 78 79 80 82 86 87 \ 9 91 92 96 97 98 9 9 100 101 102 105 106 114 115 119 120 122 124 126-1 
0 63 65 67 68 69 71 72 76 77 79 80 81 83 87 88 90 92 93 97 98 9 9 100 101 102 103 106 107 115 116 120 121 123 125 -1 

As before the notation is that each row coniams Ihc positions o f bus in tliat equ;ition. Tliere arc 64 rows because there are 64 
equations. The k information bits (also 64) may be in any position but traditionally these arc in positions 0 to 63. 



C L A I M S 

Claim 1. A system in which k information s}'mbo]s arc encoded into n symbols using parity check equations f rom an error 
correcting code and some of the n symbois :ire marked as erased symbols Tlie k information s>'mboIs are retrie\'ed f rom the 
remaimng symbols based on a decoder (Method A nbovc) which c\amincs ilic number o f erasures in each parity check equation 
and solves for the erased symbols in tliose panty check equations that only contain one erased s>'mbol A l l o f these erased symbols 
are detennined and substituted back into the panty check equations and the procedure is repeated over and over again until a l l 
erased s>'mboIs have been dctennined and all k information s\'inbols retrieved 

Claim 2. A system according to Claim land in which the n s>'mbols containing marked erasure symbols arc stored in a buffer 
memory. Under the condition tJiat all o f ilie parity check equations contain two or more erased symbols then one or more o f these 
symbols are guessed as to their respective states using all combinauons of their respective states, one stale at a l ime, and the 
guesses substituted into llie parity check equations as described in Method B. Each parity check equation which has only one 
erased symbol is solved for tliai s>'mbol and all llie solved s)'mboIs substituted into the equations and the procedure repeated as in 
Claim I . In tlie event tliat not all equations arc solved the onginal n s> inbols are retrieved from tlie buffer memory and the whole 
procedure repeated with ne^v guesses for one or more o f the erased sv'mbols until al l parity check equations are solved or a decoder 
failure is declared. 

Claim 3. A system m whicli k information symbols are encoded into n s>'inboIs using pant)- check equations from an error 
correcting code and in wivich some of the n s>mbols'arc mjirked as erased symbols The k infonnaiion symbols are retrieved based 
on a decoder (Method C above) which selects one erased symbol at a time Tlie panly check equations are examined and the first 
equation containing this s>nmbol is flagged iluit it wi l l be used to find this s>'inbol Each unflagged equation contaming this symbol 
is replaced with the result of that unflagged equation minus the eqiLntion just flagged The procedure is repeated examining all 
unflagged equations for ilie presence of the next selected erased symbol Tlie first unfiagged equation found is flagged and 
subtracted from all other unflagged equations conuimmg iliai symbol The procedure is repeated over and over again until each 
erased symbols has a corresponding flagged equation and either there arc no erased symbols left lliat have not been selected or 
there are no unflagged equations containing the cunrenily selected erased symbol. In this latter event a decoder failure is declared. 
The last flagged equation is used to solve for its respectively selected erased symbol and the solved symbol is substinited into all 
equations in which it is present. Tlie nest to l.isi flngged equation is solved for its selected erased symbol and then the solved 
symbol is substituted into all equations in which it is present Tlic procedure is repeated over and over again working through the 
flagged equations, in last to be flagged order until all erased symbols have been solved 

Claim 4. A system in which the product of k and s (k s) infonnation symbols are encoded into n s symbols using parity check 
equations from an error correcting code and transmitted or stored as packets of length s symbols. Tlie encoding is carried out so 
that each packet contains a single coordinate symbol from each of s encoded codewords Witl i k or more packets received or 
recovered die remaining packets are marked wi being erased The symbols witlun these packets are marked as erased symbols and 
the corresponding s codewords each decoded using one of the three Methods A. B or C I f succcssftil decoding is not possible 
either an additional non erased packet is obtained and tlie decoding procedure attempted again or a decoding failure is declared. 

Claim 5. A system of multicasting or broadcasting in which the iiifonnation to be transmitted or stored is paitilioned into blocks 
o f k packets of fixed length or of variable length equal to s s>'mbols and encoded according to Claim 4 into n packets of length s 
symbols. As soon as k or more packets have been received or recovered the k s information s>'mbols corresponding to that 
partition are decoded using one of the McO'ods A. B or C In this way a system is provided in which information may be multicast 
or broadcast in mimmum time and also be resilient to lost packets 



Amendments to the claims have been Tiled as follows 
C L A I M S 

Claim I . A system in which k information symbols are encoded into n symbols using parity check equations from an error 
correcting code and in which some o f the n symbols are marked as erased symbols wi th k mformalmn symbols rcuieved based o 
a decoder which selects o n e erased s>'mbol at a time and flags ihe first paniy check equation containing this symbol and replaces 
each unflagged equation containing this symbol with t ha t unflagged equation minus t h e equation just flagged continuing ihc 
procedure until each erased symbol ha.s a corresponding flagged equation and then t h e last flagged equation is used lo solve for l U 
respectively selected erased symbol and t h e solved symbol is substituted into al l equations in which iv is present followed by t h e 
next to last flagged equation which is solved f o r its selected erased symbol wi th this solved symbol substituted into all equations 
i n which i t is present followed by working through the remaining flagged equations, in last to be flagged order, until all erased 
symbols have been solved. 

Claim 2. A system according to Claim 1. m which the product o f k and s+l .(k s+k) information symbols are encoded into n.s+n 
symbols using parity check equations from an error correcting code and uansmitted or stored as packets o f length s+1 symbols 
W i t h the encoding earned out so t ha t each packet contains a single coordmatc symbol from each o f s+ l encoded codewords and 
once k or more packets have been received or recovered the remaining packets arc marked as being erased with t h e symbols 
contained in these packets marked as erased symbols and the corresponding s+1 codewords each decoded such t h a t the ks + k 
information symbols are rctneved. 

Claim 3 A system according t o Claim 2 , for application in multicasting, o r broadcastmg . in which t h e informauon to be 
transmitted or stored is partitioned into blocks o f k packets o f fixed length equal to s+1 symbols and encoded into n packets o f 
length s+1 symbols and in which as soon as k or more packets have been received or recovered the k.s + k information symbols * 
are decoded such that t he k s + k information symbols are reineved 
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