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Abstract

This work focus on erasure codes, particularly those that of high per-
formance, and the related decoding algorithimns, especially with low
computational complexity. The work 1s composed of different pieces.
but the main components are developed within the following two main
thernes.

Ideas of message passing are applied to solve the erasures after the
transmission. Efficient matrix-representation of the beliefl propaga-
tion (BP) decoding algorithm on the BEC is introduced as the re-
covery algorithm. Gallager’s bit-fipping algorithm are further de-
veloped into the guess and multi-guess algorithis especially for the
application to recover the unsolved erasures after the recovery algo-
rithm. A novel maximume-likelihood decoding algorithm, the In-place
algorithin, is proposed with a reduced computational complexity. A
further study on the marginal number of correctable erasures by the
In-place algorithin determines a lower bound of the average number
of correctable erasures. Following the spirit in search of the most lik-
able codeword based on the received vector, we propose a new branch-
evaluation-search-on-the-code-tree (BESCT) algorithun, which is pow-
erful enough to approach the ML performance for all linear block
codes.

To maximise the recovery capability of the In-place algorithm in
network transmissions, we propose the product packetisation struc-
ture to reconcile the computational complexity of the In-place algo-
rithm. Combined with the proposed product packetisation structure,
the computational complexity is less than the quadratic complexity
bound. We then extend this to application of the Rayleigh fading
channel to solve the errors and erasures. By concatenating an outer
code, such as BCH codes, the product-packetised RS codes have the
performance of the hard-decision In-place algorithin significantly bet-
ter than that of the soft-decision iterative algorithms on optimally
designed LDPC codes.
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1.1 An Overview of Coding Theory in Recent Years

In the first few decades, algebraie codes dominated crror-controlling tech-
nology, which aitned to approach the optimum detecting/decoding performance
by maximising the minimum Hamming distance (Definition 1.6) within a rea-
sonable scope restricted by the code’s information length. In 1954, Muller [46)
aud Reed [58] both presented the Reed-Muller {IRM) code and its efficient decod-
ing algorithm. By that time, it was realised that with the hard-decision decoding
algorithm (HDD), it is hard to reach the Shannon limit and therefore a so-called
soft-decision decoding algorithm (SDD) based on the received floating-point data
has been proposed and developed for the modern coding scheme. Also in 1954,
Silverman & Balser [70] first described an SDD algorithin - the Wagner decod-
ing algoritlun. Since then, the reliability of received channel output has been
gradually taken into account to consummate the idea of a soft-decision decoding
algorithm. The sixties was the dominative period of cyclic codes [53], which were
inspired by the RM code. The major property of cyclic codes is the invariance
of arbitrary cyclic shifts of their codewords. With this particularly cyclic prop-
erty, Hocquenghemn [30} and Bose & Ray-Chaudhuri {8] invented the well-known
Bose- Choudhuri- Hocquencghen code (BCH) over G F(2)(Definition 1.9) with a
specified design Hamming distance. Also in 1960, Reed and Solomon [59] pro-
duced the eponymous Reed Solomon codes (RS), which is a class of non-binary
BCH codes. Decoding algorithims using finite-ficld arithmetic were then deval-
oped by Peterson [52]. Berlekamp [4] introduced a fast algorithm for BCH/RS
decoding and later the following year, Massey [45] further reduced the decoding
complexity of the algorithm. The combined Berlekamp-Massey algorithm became
the standard for the following decade. Another approach to decode block codes
by adapting the channel measurement information was introduced by Chase {13].

Another branch of code development was initialised by Shannon’s probabilistic
approach to coding, which were called convolutional codes invented by Elias [19).
Using the designed structure of convolutional codes, a sequential search decoding
algorithm was proposed by Wozencralt & Reiffen [79]). A breakthrough invention
to decode convolutional codes “asymptotically optimmal” was made by Viterbi [77).
The Viterbi algorithin employs the received soft decision data which shows a new
approach to compute the ¢ posterior probability (APP) based on the reliability
information. Before the invention of the Viterbi algorithm, Gallager {24] had
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used the APP methodology with an iterative message-passing structure for the
decoding of his proposed low-density parity-check codes (LDPC). Also, a similar
idea of the APP decoding algorithin had also been utilised to unify the study of
majority logic decoding, known as the threshold decoding algorithmn [44].

During the last 20 years, the probabilistic coding theory has stepped up to a
new stage. Turbo codes, invented by Berrou et al. [6] in 1993, and LDPC codes,
resuscitated by MacKay & Neal [42] in 1996. are codes defined on graphs with
iterative probabilistic decoding algorithins. Both of them are random enough
to come very close to capacity of the chanuel, but constructive enough to be
iteratively decodable in polynomial time.

With Shannon’s promise, for every chanucl. there are error-correcting codes
of rate up to the chamnel capacity that achieve probability of error as small
as the users want. In sixty years, Shannon’s idea “A Mathematical Theory of
Communications” has successfully been developed into practice, and Shannon’s
puzzle on such codes and their decoding algoritlins has motivated enormous

amount of coding research.

1.2 Basics of a Communication System

To appreciate the contributions of error-correcting coding technology and under-
stand the coding limitations, a knowledge of digital communication systems is
required. A straightforward description of a coinuuication system is passing
information from a source (transimnitter) to a sink (receiver) via a transmission
medium (channel).

Figure 1.1 illustrates a general construction of a single digital communication
system. In this system, a digital signal from a source is encoded, modulated,

demodulated and then decoded to a sink.

1.2.1 Source Encoder and Encryption Encoder

V' Sowrce Encoder

Unless the source signal is already in digital forim, any kind of source to be trans-

mitted has to be converted by an analog-to-digital process. The source encoder is

q




Information is the resolution of uncertainty.

Claude Shannon (1916-2001)

Introduction

1.1 An Overview of Coding Theory in Recent

Years

In the last 200 vears, people’s lives have been digitised since the first telephone bell
rang in 1844. The remarkable work done by Nyquist [47] has been considered as
the stem of modern digital communications, which was the first time to formulate
the maximun theoretical baud rate for a band-linited channel. The famous
Nyquist Rate declares the ISI (inter-svinbol interference} free baud rate (also
called as symbol rate) as 2W when the pulse is shaped perfectly by the sinc
function °, whereW is the bandwidth of the transinission channel. Coupling with
Nyquist’s work, Hartley [29] investigated the relationship between the maximum
signal amplitude A ,x and the amplitude resolution Aj;. If considering that the
amplitude resolution As partitions the signal as a binary sequence composed

by bits, in order to mmaintain a reliable distinguishing ainong the partitions, the

“sinc(x) = 5@
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maximuin transmission rate R is

R = ‘2¥\710g2(1+%ﬁ5)bits/second (1.1)
[}

Enlightened by Nyquist's and Hartley’s work on the maximum transmission
rate, Claude Shannon’s remarkable work A Mathematical Theory of Commnu-
nication™ [66] developed the twin disciplines of information theory and coding
theory. Generally speaking, inforination theory attempts to study achievable
bounds for communication and is largely probabilistic and analytic in nature,
and coding theory works to realise the promise of models which are constructed
through mainly algebraic means. In this pioneering work, Shannon pointed out
that the channel noise need not cause any degradation in the transmission relia-
bility which can be realised by emnploying error-correcting codes. Based upon his
statistical analysis on information sources and communication channels, Shan-
non provided a novel paramcter, the channel capacity C which is associated with
the cffect of a transmitter power constraint, a bandwidth constraint, and addi-
tive noise. Under the assumption of an additive white Gaussian noise (AWGN)

disturbance, the band-limited transmission channel has its channel capacity C as

C = Wlog, ( ) bits/second (1.2)
where P is the average transmitted power and Ny is the power spectral density
of the additive noise. The channel capacity formula basically gives the constraing

on the information rate R, that is

o (R < C) An error-free transmission is theoretically established by appro-

priate coding.
o (R > C) It is impossible to realise an accurate transmission.

In 1950, in order to solve a small nuinber of errors on magnetic storage media,
Hamming introduced error-correcting codes and in his milestone paper (28] gave
the description of Hannning Codes. Combining Hamming'’s work with Shannon’s
information theory, the era of error-correcting (controlling) coding theory was

started.




1.2 Basics of a Communication System

Transmitter

i
!
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1 [ ' ' : ' -
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Figure 1.1: A General Construction of a Digital Commmunication System

used to compress the digitised source signal in case the source exceeds the numnber
of bits of actual information content. The coding technique applied to the source
coding is so-called “data compression codes™, such as Huffinan code, Lempel-Ziv

code, which are not in the scope of this thesis.

v Encryption Encoder

After the source encoding, the encrypter protects the information content by
transforming or scrambling information into a data sequence which is unreadable
to anyone except those possessing special knowledge, usually referred to as a key.
Conceptually, the coding technique for the encrvption is different to that for the
error controiling coding. Also, it is not a necessary part of a connnunication

system which falls beyond the scope of this thesis.

1.2.2 Channel Encoder

The channel encoder, as the first step in the error controlling process, intro-

duces the parity-check (also called the redundancy) padding into the informa-
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tion stream. Following the definitions in many publications (43|[37], the channel
encoder generates an n-length data sequence dependent on every k-length infor-
mation sequence, where v > k. The rate of the chanuel encoder is called the

code-rate, denoted as R.

The information sequence is referred to as information symbols or information bits
if the data is in binary forin. Similarly for the parity-check sequence generated

by the encoder, it is referred to as parity-check symbols or parity-check bits.

1.2.3 Modulation

Before sending the encoded data sequence into the channel, the data sequence
needs converting into a suitable signal and this process is called modulation. The
process of modulation is to map a streain of bits, containing 0s and 1s, into
waveforin. The z-Phase-Shift Keying (zPSK) modulation has been widely used,
in which when z = 2 or 4, it is known as Binary Phase Shift Keying (BPSK) or
Quadrature Phase Shift Keving (QPSK) modulation. In this thesis, we assume

all the transmitted data sequences are after the BPSK modulation process.

1.2.4 Channel

The channel is the medium where the inforination symbols are conveyed. Except
for conventional chanuels of two or more geographical points of communication
such as telephone lines, Internet cables, radio channels, optical lines and so on,
the channels of two or more different. time points of comnmunications also employ
the channel coding, such as hard drives, CD-ROMs, DVDs and so on. It should
be mentioned that the channel is discrete, and henceforth only finite alphabets
are considered in this thesis. The conventional channel models include the bi-
nary synunetric channel (BSC) and the additive white Gaussian noise channel
(AWGN). However, the deficiency of the conventional channel models is that in

reality, the transmission conditions and environmental noise are also changeable.
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Thercfore, conventional analysis offers a strong temptation to model the interfer-
ence as sorne additional additive level of AWGN noise, which seldom yields mean-
ingful results for real applications. Many real communication channels contain
both AWGN noise and non-AWGN interference. If the AWGN noise is relatively
small compared with the interference, and then we neglect the white Gaussian
noise and only consider the interference which is detectable. By blanking all
the detected interference, the channel model is called the binary erasure channel
(BEC). If the AWGN noise causes transinission errors and also the fading on the
signal power leads detectable empty slots, the channel model is called a fading
channel.

In this thesis, we focus on the application of erasure codes for the BEC, the
AWGN channel and the Rayleigh fading channel.

1.2.5 Demodulation

The received signal from the channel is converted into a sequence of bits/symbols.
Normally, a demodulator include the functions of filtering, demodulation, local
time/frequency synchronisation and matched filtering. In this thesis, we suppose
all the received signal being synchronised and demodulated before the decoding
process.

1.2.6 Channel Decoder

The decoder at receiver is to exploit the parity checks produced by the chan-
nel encoder to correct any errors or recover any erasures that may have been

introduced.

1.3 A Development of Erasure Correcting Codes

Nowadays, Internet communications have becoine one of the most popular comn-
munications. People can send emails, immages, sounds and videos to anyone any-
where in world through the Internet. Especially, the launch of YouTube, a video
sharing website. has unintentionally affected people’s daily life globally. The In-

ternet has gradually taken place of the conventional entertainmnents, business and
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communications. Henceforth, to ensure a network communication reliable, highly
eflicient and low-cost has become of a great ninportance.

The channel model for network transmission is the binary erasure channel
(BEC), introduced by Elias [20] in 1956. The transmitted data are catalogued as
the noun-erasure and the erasure only.

Erasure codes is a special case of error-correcting codes, which is known as a
kind of forward error correction codes especially for the erasure channel. Define
the code € to be an (1, k), where «u is the code length and k is the information
length.

On network transmissions, data is transimitted in the form of packets. Each
packet includes a header section and a data section. The header contents are
different according to different network protocols. Generally, it gives a description
of the infornation (source} and the destination of the packet. The data section
contains the information with its typical length from 30 bits to 1000 bits for most
multicasting and broadcasting systems.

The erasure correcting performance of codes and associated decoding algo-
rithims has received rencwed interest in the study of coding over packet networks
as a means of providing efficient computer communication protocols {61].

By employing the code C(n, k), & information packets are encoded into n
packets, which are called as the transmission packets. The erasure code € is
capable of recovering the informnation file of the size of A packets from a subset of
n transmission packets. As defined for a linear block code, the fraction of k/n is
called the code rate. In the transmission of the erasure channel, there is another
fraction k'/k where &’ is the actual number of the transinission packets required
to recover k information packet, which is very imnportant to identify the efficiency
of the applied erasure coding scheme.

Erasure codes are catalogued into two types:

e Optimal erasure codes have the property to recover k information packets

after receiving A distinct encoded packets.

e Sub-optimal erasure codes are capable of recovering k information packets
when A(1 + ¢) encoded packets have been received, where ¢ is a positive

number related to the channel condition (0 < « < 1}.
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1.3.1 Reed-Solomon Codes: Optimal Erasure Codes

Reed-Solomon (RS) codes were developed in 1960 by Reed & Solomon [57], and
the breakthrough work was presented as a seminal article as entitled as “Polyno-
mial Codes over Certain Finite Fields®. Later in 1969, an efficient decoding al-
gorithm, the Berlekamp-Massey decoding algorithmn, was invented by Berlekamp
[4], Massey [44]. In 1977, RS codes were notably implemented in the Voyager
program in the form of concatenated codes. The first commercial application
in mass-produced consuiner products appeared in 1982 with the compact disc,
where two interleaved RS codes are used. Nowadays, RS codes, as one of the
most powerful classic codes, have been widely implemented in digital storagede-
vices and digital communication standards, such as in CDs, DVDs, Blu-ray Discs,
in data transinission technologies such as DSL and WiMAX, in broadcast systemns
such as DVB and ATSC, and in computer applications such as RAID 6 systems.

RS codes belong to non-binary BCH code family and therefore they have the
cyclic property as BCH codes. A RS €grg(n, k.d) over the Galois Field GF(2™)

has the paramneters as in (1.4)
d = n—k+ 1l wherek<n<2™+2 (1.4)

Normally, a RS code has its code length of n = 2™ — 1. A doubly-extended RS
code can be constructed with its code length of n = 2™ or n = 2™ 4+ 1. There
also exist (2™ +2,3,2™) and (2" + 2,2™ — 1,4) triply-extended RS codes. [43]

As an erasure code, it can recover up to « — 1 known erased symbols. Also,
for a noisy channel, it can detect and correct combinations of errors and erasures.
RS codes are non-binary codes and each clement of a RS codeword is called
as a symbol. Therefore, a symbol-informmation sequence is viewed as a set of
coefficients of a polynomial v(x) over a finite field. Because the RS code are a
special case of a cyclic non-binary BCH code, the encoding process is equivalent
to a derivation process from the cocfficients of the information polynomial u(z)
with a cyclic generator or parity-check polynomial.

To decode an RS code in noisy channel, there are mainly three types of de-

coding approaches.
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- Algebroic Decoding (also known as Bounded Distance Decoding): The alge-
n—k

braic decoders are capable of decoding up to tp = 5= error symbols, which

generally follow the steps:

1. Computation of the syndrome.

2. Determination of an error locator polynomial. 1
There are several diflerent methods to identify the locator polynomial,
including the well-known Berlekamnp-Massey (BM) algorithin [4, 45],

the Euclidean algoritinn and so ou.

3. Identifying the roots of the error locator polynomial.
Normally, it is done by applying the Chien search [14] which is an

exhaustive search over all the elements in the field.

4. Determination of error values. Typically, it is accomplished by deploy-

ing Forney’s algorithm [22].

- Mazimumn Likelihood (ML) Decoding: The ML decoders choose the code-
word which is closest to the given received vector. However, the ML de-
coding is computationally difficult in general in the AWGN channel. For
the application in the BEC, the ML decoding is equivalent to solving the
linear equation between the parity-check matrix aud the received vector.
Our proposed algorithin, the In-place algorithm, is a complexity-reduced

ML decoding algorithin for the BEC.

- List Decoding: The list decoders is to find all potential codewords which
are within a given distance of the received vector.
The idea of list decoding was initialised by Elias [21]. The recent Guruswarni-
Sudan (GS) algorithin [26] provides lists of all codewords within a given dis-
tance of the received vector and is able to correct up to tgs = [rn— Vnk —1]

errors.

In the recent several years, soft-decision decoding algorithms for RS codes
have been the topic of significant research interest. Koetter and Vardy [34] ex-

tended the GS algorithn to an algebraic soft-decision decoding algorithim, called

tThe error locator polynomial indicates the error locations with its roots.

10
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as the KV algorithm, which significantly outperforms the list decocding algorithmn.
However, as a development of the GS list algorithm, the KV algorithm suffers
an munensely high computational complexity. Therefore, multiple runs of errors-
and-erasures or error-only decoding with some low complexity algorithin, e.g. the
BM algorithm, has been re-studied in {3, 36, 80]. The successive decoding algo-
rithm with multiple thresholds is capable of perforining as the KV algorithm with

almost the same average complexity as a conventional hard-decision decoder.

1.3.2 Fountain Codes: Sub-Optimal Erasure Codes

Fountain Codes, known as a class of sub-optimal erasure codes, have been de-
fined by their property of rateless gencration. The terin rateless literally claims
the fact that these codes do not exhibit a fixed code rate. For &k information
packets, potentially limitless transinission packets can be encoded from the infor-
mation packets. As the definition of sub-optimal erasure codes, fountain codes
are designed to allow the recovery of the original & information packets from any
k transmission packets, where & is slightly larger than A.

The first practical realisation of a fountain code is the Luby Transform (LT)
code [38]. LT codes have a similar graphical representation to LDPC codes.
However, its graphical representation is immplicit rather than explicit, in the sense
that the current encoding process can be only tracked by its previous process
and there is no predetermined global view of the graph. The header section of
each transmission packet must contain the information on the connections be-
tween the inforation and parity-checks and its degree function. Most of time,
the information in the header section is represented by a generation seed. The
sender and receiver must be pre-syuchronised and both agree with the applied
degree distribution function and the generation seed. Luby [38] proved that by
employing the encoding process with average degree O(Ink), LT codes can be
devised to recover A information packets with k + ek encoded/transrnission pack-
ets. The transmission packets are generated “on-the-fly in term proportional to
Ink, and the recovery process (the XOR decoding process) requires only kInk
computational time. However, LT codes suffer poor error-floors because of the

latent stopping-sets in them.

11
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Raptor codes [68] improves the performance of LT codes by applying a pre-
coding technique to cirenmvent the crror-floor problem. Raptor codes currently
give the best approximation to a digital fountain. The generation of a Raptor
code can be viewed as a two-layered encoding process. The outer code is a fixed-
rate erasure code, for example, LDPC codes or BCH codes, which aims to recover
the unsolved erasures fromn the inner code. The inner code is an LT code, which
maintains the desirable rateless property of a fountain code.

In 2002, a company called Digital Fountain was founded. The technology of
fountain codes have been used for advanced IPTV, mobile broadcast, stream-
ing video, file transfer and national defence applications, and are recognised by

leading international standards bodies including DVB, 3GPP and IETF.

1.4 Basic Definitions

Consider a source that produces symbols from an alphabet A having ¢ symbols,
where A forms a field. We refer to a tuple (cp. ¢p;- .., €uo1) € A" with n clements

as an 7n-vector or an n-tuple.

1.1 Definition (Block Code). An (n,k) block code C over an alphabet of ¢
symbols is a set of ¢* n-vectors called codewords or code vectors. Associated
with the code is an encoder which maps a message, a k-tuple m € A*, to its

associated codeword.

For the purpose of the error correction/detection, one-to-one correspondence be-
tween a message m and its codeword c¢ is required. However, for a given code C,
there exist more than one possible way of mapping messages to codewords.

A block code can be represented as an exhaustive list, but for large k, the
storage memory and computational complexity may be prohibitively complex.
The complexity can be reduced by imposing some sort of mathematical structure

on the code. The most common requirement is linearity.

1.2 Definition (Linear code). Let Fy denote an n-dimensional vector space over
a finite field of q elements, F,. An [n, k, d], linear code C is a k-dimensional subset

12



1.3

1.4

1.5

1.6

1.4 Basic Definitions

of F7. The quantity d is called the minitnum Hamming distance of the code.
Each vector in the k-dimensional subset of Fy, which has length of . symbols,
is called a codeword and may be denoted as.c = (cg,¢1, .- ., Cno1)-

The term linear arises from the fact that a codeword may be obtained from
linear comnbinations of other codewords and the component-wise sum of all code-
words is an all-zero vector. It is assuied that operations such as addition and

multiplication are perforimed under the algebra of F,.

Definition (Code rate). The code rate of an [n, k,d), linear code C is the
ratio k/n, denoted as R.

Defination (Hamming weight). For a vector v = (v, vy,...,%a-1) € F?,
the Hamming weight of v-denoted by wty(v), is the number of non zero ele-
ments in the vector. That is :

th(v)zi{v;#OIOSiévn—l}L

Definition (Systematic). Let C be an (n, k) block code (not necessarily lin-
ear). An encoder is systematic if the message symbols mq,m,, ..., 74—, may be
found explicitly and unchanged in the codeword. That is, there are coordinates

0,%15 - - - yik—1 (which are most frequently sequential, 7p,79 + 1,...,%9 + k—1)
such that ¢;, = mg,¢;, = my,....¢,_, = -1 For a linear code, the generator

for a systematic encoder is called a systemnatic generator.

Definition (Hamming Distance). The Hamming Distance between a se-
quence X = {To,Z1,...,Ta-1} and a sequence ¥ = {yo,1,...,Yn-1} is the
‘number of positions that the corresponding elements differ:

dX,)Y) = Z_:(a:.-'»aé.‘yg_) ‘ - (1:5)

i=0

13




1. INTRODUCTION

1.7 Definition (minimum Hamming distance}). The inimum Hamming

1.8

1.9

distance of a code is the smallest Hamming distance between any two codewords

in the code.

Definition (Field). A field; de;;oted' as IF, is a set of elements in which it is
possible to add, subtract; mul_l':ifjiy"and divide (except that division by 0 or is
not defined). B

Definition (Galois Field);_{; A Galois Field, also called as finite field, contains
a finite number of elements, ?thisa‘.-number being called the order of the field,
written as GF(z), where z is the number of the clements.

1.5 Thesis Contributions and Outline

1.5.1 Contributions

Network transmissions require the applied erasure coding technique:
- with a strong erasure-recovery capacity
- with a reasonable computational complexity

These requirements are connected with the properties of erasure codes and the
decoding algorithins. The research in this thesis was started from the study of
the erasure decoding algorithms, which included the performance limits and the
computational complexity of erasure decoding algorithms. Our first target was to
design an erasure decoding algovithin to achieve an Maximum Likelihood (ML)
performance with a reasonably computational complexity.

The recently popular codes, LDPC codes and Turbo codes, were firstly ap-
plied as the erasure codes. The comnon decoding algorithm for LDPC codes and
Turbo codes is the belief propagation (BP) algorithin, which has demonstrated
empirically near-optimal performance in the AWGN channel. In the application
for the BEC, the BP decoding algorithm is also called as the recovery algorithin,

which is to pass message through the bipartite graph of the code. Instead of

14
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applying the recovery algorithimn through the bipartite graph, we devised a ma-
trix representation called the erasure matrix which only contains the information
related to the erasures. Then, the stopping sets are explicitly expressed in the
corresponding erasure matrix.

The performance of the recovery algorithm frequently suffer in the error-Aoor
problem, which may be caused by the stopping-sets [16] due to the code structure.

Inspired by the bit-flipping BP algorithm in the Binary Symmetric Channel
(BSC) [24]. we designed the guess and multi-guess algorithms based on the recov-
ery algorithm to break the stopping sets under the restriction of the maximum
number of guesses. However, the computational complexity of the guess/multi-
guess algorithms exponentially increases on the basis of the number of guesscs
which have been proceeded. The conventional ML erasure decoding algorithun
has been known as the Gaussian Elimination algorithm which is literally to solve
the parity-check equations at receiver. The Gaussian Elimination algorithin de-
ploys a lot of column permutations and the row additions. This motivated us to
study the relationship between the erasures and the parity-check polynomials in
the parity-check matrix. We designed and analysed a novel ML algorithm ~ the
In-place algorithm for decoding erasure codes in the BEC.

The invention of the complexity-reduced In-place algorithn diverged the re-
search into two directions.

1. the application of the In-place algorithm with the soft-decision received

data for the popular AAWGN channel

2. to design an efficient transmission/packetisation structure to further reduce

the computational complexity to approach a linear complexity

Re-order the received sequence with the values of the channel reliabilities
from the less to the more or from the more to the less. The bits with the less
reliabilities can be viewed as the erasures and those with the more reliabilities
can be considered as the non-erasures. Henceforth, the In-place algorithm is
equivalent. to the ordered-statistic decoding (OSD) algorithm with the order of
zero. The OSD algorithin is a well-known ML-approachable algorithin. However,

the number of orders to achieve an ML performance is rarely known for a given
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code. This motivated us to search an alternative algorithin which would be
capable of achieving an ML perforinance without pre-setting the nuber of orders.
More importantly, this algorithm is preferable to be a flexible structure to avoid
unnecessarily computational operations. Based on the tree structure of a code,
we devised a branchi-evaluation-search-on-the-code-tree (BESCT) algorithm.
The sccond direction was set to designate an efficient. transmission/packeti-
sation structure to further reduce the computational complexity to approach a
linear complexity. This motivated us to study erasure codes for the network
transiissions with packets. The performmance linits of fountain codes showed
that only under certain conditions of the length of fountain codes, fountain codes
can perform sub-optimally with the actual number of the required packets close
to the number of the information packets. To achieve the ML performance, it
was natural to think of RS codes because they are optimmal crasure codes. We
designed and analysed the product packetisation structure with the In-place algo-
rithmn for the RS code wransmission. The new arrangement performs much better
than previously known algorithms, especially for fountain codes, and consumes
less encoding and decoding times (as well as the computational complexity) than
the conventional algorithms for RS codes. We believe that such decoding struc-
ture can also dramatically improve the performance of RS codes in the Rayleigh
fading channel. Due to the existence of errors in the Rayleigh fading channel, we
devised a concatenated BCH code with a product-packetised RS code to decode

the errors and recover the erasures by a hard-decision (HD) algorithm.

1.5.2 Thesis Outline

[n this section, we give a more detailed outline of the contents and contributions
of this thesis. The thesis is partitioned into two parts as the reasons mentioned

in previous section. Each part or each chapter can be read separately.

Chapter 2: Matrix-based Erasure Decoding Algorithms (10, 74, 76)
We present the erasure decoding algorithins on the matrix representation of
erasure cocdes. The proposed erasure matrix is derived from the parity check ma-

trix of the applied code which only contains the parity check polynomials with
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erasures. The iterative recovery algorithm for LDPC codes exhibits the undesir-
able error-foors due to the stopping sets caused by the code structures. Inspired
by the bit-flipping algorithm in the BSC, we devise the guess/muiti-guess algo-
rithim based on the recovery algorithm. In this chapter, we also introduce the
method to make effective and efficient guesses and compare the simulation results.
It is shown that the performances of the crucial guess algorithin are better than
those of the random guess algorithm with different levels. The level of the im-
provement is determined by the code structure. To achieve an ML perforinance
with a reasonable decoding complexity, we devise an In-place algorithun which
is derived based on the Gaussian Elimination algorithin. Instead of process the
whole parity-check matrix, the In-place algorithim only processes e parity-check
polynomials in which erasures appear. Moreover, the In-place algorithm does
not require any column-swapping process as the Gaussian Elimination algorithim
which also reduce the computational complexity. In Section 2.5, a discussion on
the relationship between the number of recoverable erasures and the weight dis-

tribution of the applied code is given.

Chapter 3: Branch-Evaluation Search on the Code-Tree Algorithin [9]

Motivated by the invention of the In-place algorithm, we study the ML-
approaching decoding algorithms in the AWGN channel to solve the errors when
the soft-decision data have been reccived. Following a snapshot of the ordered-
statistic decoding algorithin, we introduce the code tree representation of a linear
code. Different to the conventional tree representation of a code, a bi-directional
code tree is proposed in Section 3.3. By partitioning the code tree at a given
cut-point. vertex, the code tree grows potentially 2 branches. Each branch repre-
sents a valid codeword. Inspired by the Dorsch algorithim and the OSD algorithin,
we propose the Branch-Evaluation-Search-on-the-Code-Tree (BESCT) algorithin
which utilises the hierarchical property of the tree structure combined with the

correlation metrics to realise an ML decoding (MLD).

Chapter 4: The Packet Data Transmission System of Fountain Codes [10]
The focus of Chapter 4 is on the construction of fountain codes. The first

realisation of fountain codes, as known as LT codes, is first studied. Investiga-
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tion of the degree distribution function and the asymptotic performance using
the required packet counter reveals that only when the information file is large
enough, the sub-optimal performance can be achieved. Then, we further investi-
gate the upgraded fountain code, the Raptor code. Even though the outer code
is deploved to solve the error-floor problem of LT codes, when the information
file is not large enough, the performance of Raptor codes is hard to achieve the

sub-optimal performance.

Chapter 5: Capacity Approaching Codes for the Binary Erasure Channel
Using a Product Packetisation Method [11, 74]

RS codes, known as a class of maximum distance separable (MDS) codes,
have amazingly attractive properties which make themn as one class of optimal
erasurc codes. The drawback of RS codes in practice, comes from their non-
binary structures which have been recognised as the reasons to their high encod-
ing/decoding complexity. We introduce a product packetisation structure for all
lincar codes, in particular for non-binary codes, such as RS codes. The structure
is nammed after the way of pre-storing the transmission data visually. linagine
there is a square or rectangular matrix, where the encoded data sequences are
stored vertically and then the transmission packets pick up the data horizontally.
In Section 5.2, the product arrangement matrix is designed to specify the pro-
posed packetisation/de-packetisation structure. With the packet information in
the header of each transmission packet, RS codes are capable of realising a rate-
less transmission which is always desirable for network transinissions. Figure 5.2
in Section 5.2 illustrates how the protocol of rateless RS coding scheme works.
By deploying our proposed In-place algorithm at receiver, rateless RS codes can

achieve their ML performance.

Chapter 6: Concatenated Reed-Solomon Coding with Hard-decision for the
Rayleigh Fading Channel [12]

As the characteristics of the Rayleigh fading channel, the existence of additive
errors and burst erasures requires the applied coding schemne with strong error and
erasure correct-abilities. We present a hard-decision In-place algorithin schemne for

concatenated RS codes offering both complexity and performance advantages over
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iterative decoding algorithins for optimally designed LDPC codes. The proposed
RS coding scheme is to concatenate a Hamming or BCH code to detect and correct
multiple hard decision errors in each received packet. Section 6.3 describes the
system arrangement in details. The analysis of concatenated RS codes is given in
Section 6.4, which also derives the performance bound of concatenated RS codes.

The reader should be aware that some notations mmay be used repetitively
in this thesis. Please refer them to the definitions/designations in the chapters

where they appear.
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Erasure Decoding Algorithms
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The road to success is always under construction.

Lily Tomlin

Matrix-based Erasure Decoding
Algorithms

2.1 Background

The binary erasure channel (BEC) is a well-known nodel for the Internet trans-
mission. This channel was introduced by Elias [19] in 1955. With a packet lost
due to network congestion with probability of p, the BEC has a capacity of 1 —p.
Elias proved that there exist codes of rate R for any R < 1 — p that can be used
to transmit over channels of capacity 1 — p.

Although maximum likelihood decoding (MLD) of linear block codes is known
to be NP-hard [5], iterative decoding, as a technique deploying inessage-passing
algorithin recursively to improve the code performance, aims to approach an
MLD.

The history of iterative decoding algorithins can be tracked back to 1954

when Elias 18] published his work on iterated codes. Ten years after that, in
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the 1960s, Gallager [24] and Massey [d4] made important contributions and then
iterative decoding was referred to as probabilistic decoding. The target of iter-
ative decoding is to maximise the a-posterior probability of a bit/symbol being
sent given on noisy version of the coded sequence. Iterative Belief Propagation
(BP) decoding algorithm was proposed by Pearl [51].

One of the main motivations behind this chapter is to devise ML or ML-
approachable decoding algorithms for the BEC.

We start the work with the review of the recovery algorithim to correct the
erasures for the BEC, in which cach codeword bit is lost with a fixed constant
probability p in transit independent of all the other bits in Section 2.2. Instead of
deploying the bipartite graph, we introduce matrix representations of the erased
bits by superposition of the erased bits on the parity-check matrix for iterative
decoding algorithms over the BEC. Following a quick re-format of the recovery al-
gorithin in matrix representations (Scction 2.3), we combine the idea of Gallager’s
bit-flipping algorithm and the recovery algorithm into the guess/multi-guess al-
gorithm in particular for LDPC codes in Section 2.3.3. We then attempt to reach
our target to design an ML decoding algorithun for the BEC. In Section 2.4, in-
spired by the ML Gaussian Elimination (GE} algorithm, we propose a novel, non-
iterative ML-approachable decoding algorithin — the In-place algorithm which is
with a reduced complexity in comparison to the GE algorithin. We provide the
numerical results and the corresponding discussions in Section 2.5, where we also
analyse the relationship between the marginal number of correctable erasures
and the average number of correctable erasures. In Section 2.6, we conclude this

chapter and highlight its main results.

2.2 A Review of the Recovery algorithm

Luby ef al. {39] simplified the BP decoding algorithin in conjunction with the
characteristics of the BEC. The so-called “recovery” algorithin can be visualised
by a bipartite graph between variable vertices and the check vertices as shown in
Figure 2.1.

Putatively from the bipartite graph shown in Figure 2.1, there are two sets

of vertices required for an implementation of the Recovery algorithm, including
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Figure 2.1: the Recovery Algorithin over the Bipartite Graph: square spots rep-
resenting the check vertex and circle spots dencting the variable vertex

the variable set val and the check set chk. Denote the missing symbol labelled
by a "7 as walyissing Which is connected to the first check vertex, written as
chhg, on its right-hand side and further related to other two variable vertices via
the connected check vertex. Both related variable vertices are just adjacent to
val,hissing, Noted as valp and val, respectively. Then, the value of this missing
symbol is implicitly calculated by the connected check vertex and its related
adjacent variable vertices as val,iyying = chko @ valp @ valy. Then by exclusive-
oring the value of val,,issing, all other connected vertex are updated. Till now, we
call it as one recovery process. By recursively implemnenting the recovery process,
the recovery decoder can decode the received erasure successfully or failed due to
the existence of stopping sets [16].
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2.1 Definition (Stopping Set). A stopping set, denoted as 8, is the set of vari-
able vertex such that all neighbours of 8 are connected to § for at least twice.

Example 2.1 illustrates a stopping set example with a bipartite graph.

valQ
vali

chkO
val2
vall chki
val4

chk2
vals
valé chk3
val?

chk4
val8
valg

Figure 2.2: an Example of a Bipartite Expression of a Code
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Fxzample 2.1: Figure 2.2 gives a graphical expression of a LDPC code with its
ensemnble of €(10,z%, 2% * . For the variable vertex indexed from wvaly to waly,
the connection relationships are listed as:

valp(chkg, chig, chks)
vala(chky. chky, chks)

valy(chky, clhha, chksy

valy(chkg, chka, chky

)
)
valy(chky. chky, chky)  vals(chkg, chhs, chky)
valg(chky . chiy, chky)  val:(chko, chky, chk,)
valg(chko, chiky, chky)  valg(chks, cliky, chhy).

Group the variable vertices of valg, valy, valg and wvaly as a set §(6.7.8.9). It
is noticeable that all the check vertices are connected with 8(6,7,8,9) at least
twice. Alternatively, we can also determine the stopping sets by observing the
parity-check matrix H of the code. As expressed below, the identity part at the
RHS of the H indicates the check vertices and all the 1s in the LHS of the H
represent the connections between the check vertices and the variable vertices.

( 1111100110 | 10000
0110101110 | 01000
H = | 1101010101 { 00100 (2.1)
1110011001 | 00010
\0001111011 00001

Clearly, each parity-check equation contains more than one variables fromn
the stopping set 8(6, 7,8.9) as highlighted, which also further iinplies that if the
symbols in 8 are all lost after a transmission, it can not be recovered from any
parity-check equation in H.

*an ensemble of a LDPC code [60] written as €(n. A, p) is defined by the code length of 1.
a variable vertex degree distribution A and a check vertex degree distribution p

27
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2.3 Matrix-based Iterative Decoding Algorithm
and its Variances via the BEC

Instead of deploying the bipartite graph to represent the code, we use the parity-

check matrix H to express the code.

ho
h,

hn—k—l
in whichi each row h; can be written as a parity-check equation as h; = h; oz +

h,,'_l.’l,'l + ...+ h’i.u—[l!,'"—l,

Cousidering an (n,k) binary linear block code, we denote a codeword as
x = {@o, &1, ... &aoy}. After being transmitted over the BEC with the era-
sure probability of ¢. The received vector, designated as y contains two parts:

the transmitted sub-sequence y,,. and the erased sub-sequence y,,

yrﬂc = {'!/6, y; e -.ylr—l} (22)

y(_ = {Ua‘!li-yi—l} (23)

where | + z = n. We also define a vector f = {fo. f1.... fu=1} which maps the

erased bits as “1%s and the received bits as “0%s.

2.3.1 Matrix Representation of the Erased Bits

A matrix representation of the erased bits, designated as M, is developed from
the parity-check matrix H. By the reflection of the position of each erasure in

H , the proposed erasure matrix with its size of z x n, denoted as M, is defined
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the BEC
as in (2.4)
My
M
M = - l . (2.4)
:N[:—l

The component equations in M can be derived as follows:

Mo = (hoo- fo) + (hon - fi)x! + (hoz - f2)2? + ..+ (hoei - fumr)a™ ™!
_]\,‘[l = (h-'l,ﬂ . fO) —+ (h'l.l . fl)S'Il + (hl‘g . fg):L‘z + ...+ (hl.n—l . f"_l).'.'lu—l

M., = (hz-—l.O o)+ (hacyy - fl)”-'l +(haoyz2 - fz)ff-'2 +.. o (hoin- - f,,_,):u""

where z < n— k&t

Morcover, two sets of variables are devised to identify the erasure positions in
M from different observation angles. The index 7 indicates the elements in each
row with the range of [0, ..., n — 1] and another index j indicates the elements

in each column with the range of [0,..., z — 1]. Then, the notation of M;(%)

represents the element. contained in the 7 component equation and located at

wth

the *" position.

E" .= [E}EN, . .. E!_

E':={E E',... EY (2.5)

In (2.5), E" and E* are designated as the sets of erased bits participating in
each row and column of M , where the superscripts h and v represent “horizontal’
and “vertical’ respectively. Also, for convenience, |E"| is called the profile of it

horizontal component which is the number of erased bits in E* and |EY| is called

'z = n -~ k when the result of each parity-check equation mapping the vector f is counted
more than 1.
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2. MATRIX-BASED ERASURE DECODING ALGORITHMS

the profile of 5" vertical component which is the number of erased bits in EY.

Example 2.2: Based on the H from Example 2.1, if the variables in § are all
erased after a transmission, the vector f will be (000000111100000) and the M
will be mapped out from the parity-check matrix H (2.1) as :

index 01234567 89 10 11 12 13
0(000000011000000\
1 000O0O0I1110000©O0T D0
M = 2 O 00000101 0600O00O0
3 00 0O0O0TCO0Q/1 01 00 0O00O0
A \0000001 1 100000
The corresponding F vectors are:
Eh E!.‘
Ef =(7.8) | Eg=(L3,9)
Eh = (6,7,8) r=1(0,1,2)
Er=(7,9) | E! =(0,1,4)
Ef; = (6.9) E§ =(2.3.4)
E! = (6,8.9)

And therefore, both the profiles for the horizontal component and the vertical

respectively.

2.3.2 Matrix-based Iterative Recovery Algorithm

After giving the concept of an erasure imatrix, the standard graph-based iterative
decoding algorithm can also be represented as a matrix-based iterative recovery
algorithn.

By defining an erasure matrix M based on the received vector y and its parity-

check matrix H . the matrix-based recovery algorithin starts with an evaluation
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on the horizontal profile on cach row of M. For the i** row M;, if 3|E"| = 1,

Y = Y&y (2.6)

J={0,1..n—1\Eh

Then remove yi, from the erasure set y* and meanwhile update the matrix M.
~“i
Repeat the evaluation process and the recovery process until all the erased bits

being solved, or the decoding cannot continue further, that is

Eh 0. no more erasures
4, 0 >2

In (2.7). the existence of 4 implies a decoding failure caused by the stopping
sets. It has been proved in [16] that the recovery algoritlun fails if and only if
y° contains some stopping sets. Di el al. {16] also has proved that the set of
the remaining erasures, when the iterative decoding algorithm fails, is same as
the unique maximal stoppiug sets of y°. The algorithin is given as follows as
Algorithm 2.1.

Algorithm 2.1 RecoveryDec(n,H ,y)
Input:
n <= code length (block length)
H <« its parity-check matrix
Yy < received vector containing erasures
l: repeat

2:  for all h; € H : each parity-check polynomial do
3 if (!\"u'.'n(h,,-)(==l) then
a4: Y = z s} hr‘.j “Yj
F={01.2.  n—1}.j\pos(y.)
5: Num(e) — —
6: Set, = Set,y,
7 end if
& end for
9: until Num(c) =0 or Num(e) < 2
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2. MATRIX-BASED ERASURE DECODING ALGORITHMS

There are several variables and subroutines in Algorithin 2.1 are listed as

following.

M erasure matrix generated by H

Nwn(-)returns the values of |E”|

Sel, contains the set of y*

-]

o pos(-) returns the position of the erasure regarding to H
o i <= an integer used as an index

The schematic diagram of the recovery algorithm is also illustrated in Fig-
ure 2.3. The iterative solution sequencer works as the evaluation process on the
erasure matrix M, and the recovery box solves all the parity check equations
with single bit erasure.

Counsidering the nature of the recovery algorithm, the decoding complexity is
straightforward related to the number of crasures in the received vector, which
can be estimated by the code length n and the average erasure probability p of
the BEC.

If there are £ erasures in y, the decoder starts to solve the parity-check equa-
tion with a single erasure, where £ = en and ¢ is an erasure probability of the

BEC. As an instance, there is a single erasure in the "

equation h;, as de-
picted in (2.6), the single recovery process involves wt(h;) *? multiplications
and wi(h;) — 1 exclusive-or operations. Clearly, both the multiplication and
the exclusive-or operation are deterniined by the weights of the erased parity-
check equations. If the applied code is a regular LDPC code with its ensemble

K]
i

of C(n, A, p) and = , | the average number of multiplications is
p €
ne - (b+ 1) = wt(f) - (b+ 1)} and and its average number of exclusive-or opera-

tions is rre - b( = wt(f) - b).

twt(-) returns the weight of a vector.
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the BEC

Data Store

Dato Store

Received data

Data Store

=

Solution of all erasure cquaticns  Af with their profiles of

{only one erasure in these crasure equations)

—31

—1

llerative solulion sequencer
(Update each g )
L

Figure 2.3: Matrix-based Iterative Recovery Decoder

Generally speaking, for a successful decoding process, the decoder complexity

is linearly towards the ¢ - n, and henceforth the overall decoding complexity (or

decoding time) can be derived as O(c - n) 5.

Figure 2.4 exhibits the recovery decoder performance via its Bit Error Rate

(BER) and also the Frame Error Rate (FER) versus the erasure probability p.
The applied code is the Progressive Edge-Growth [32] (PEG) LDPC code (256,
128) which achieves the performance of 10~7 for the BER and less than 1073 for

the FER at p = 0.25.

Sbig Oh notatiom:O(n) describes an algorithm whose performance will grow linearly and in
direct proportion to the size of the input data set.
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Erasure Prabability Symbol p

Figure 2.1: The BER/FER. performance of the PEG LDPC code (2536. 128) with the
Matrix-based Recovery Algorithm
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2.3.3 Guess/Multi-Guess Algorithm

As described in previous section, the matrix-based iterative recovery algorithm
fails if and only if the erasures contain a stopping set 8.

To break the stopping sets which impedes the recovery algorithm, inspired
by the idea of Gallager's bit-flipping algorithm, the guess algorithin {16] was
first mentioned in 2002. In our work [10], we have a further discussion on this
algorithm and extend it into the multi-guess algorithim.

Literally, the guess algorithin means to make assumptions on the left 2’ era-
sures when the recovery algorithm fails, where 2’ < z. Mapping the unsolved
received vector to a new flag vector £ = {fo, fi+.... fi_.}, the Bag vector con-
tains 2 or more than 2 elements equal to “1%. The aimn of the guess algorithin is
to break the stopping sets and complete the decoding by a restricted nuinber of
“guesses’”.

The notation of g is employed to represent “guess” in this section. We also
designate y, as the left erasures and y, C y,. When the recovery algorithm fails
due to the stopping sects which cause the horizontal profile of M is 2 or more
than 2, the guess algoritlun is triggered to continue the decoding as following.
Choose one unsolved erasure y!(v;) and then assign it as “1 “or “0* for a binary
transmission. For example, we assign “17 to y/(ve) as the first guess erasure
value and map f; as “0”. Update the erasure matrix M with the new f’ and
therefore the mark at location v in each erasure equation M is removed. Repeat
the recovery process, which is to replace the single erasure in M; by the exclusive-
or-ed result as depicted in (2.6). Suppose the recovery algorithm can successfully
solve all the remaining erasures after a single guess ¢g. Store the decoded sequence
a3 Coury and then trace back the process at the vy position. Re-assign “0” to y (v)
and repeat the recovery algorithin. Hereafter another decoded sequence coy, is
also listed as a potential codeword.

A schematic diagram of the decoder is illustrated in Figure 2.5. The modifi-
cation is developed at the iterative solution sequencer with an additional guess

function.
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1 4 P
Bufter containing | Data Store |__.| Data Store l Data Store
— * erasures |
Received data

Sofution of all erasure equations Af, with their profifes of
IE:| = 1 (only one erasure in these erasure equations)

Guess erased bitbils + terative solulion sequencer
{Update cach A, )

Figure 2.5: Correction of Erased Bits Using Guess Algorithin

Following the dcfinition of a regular LDPC code, suppose the remaining cra-

sures ¥, can be solved by go and the decoding complexity can be derived as

multiplications: [wit(f) + wt(F)] - (b+1)

exclusive-or operations: [wt(f) +wt(f')] - b

Therefore, from the linear relationship stated above, let Trecovery be the decod-
ing time for the Recovery algorithin, and Tg,ess be that for the guess algorithimn.
The decoding times between the Recovery algorithin and the guess algorithimn is

also linear, which can be considered as
TGucss = (1 + '1) ) Tllecovery (28)

where n > 0.

If the decoder after one guess stops again, another guess has to be made to
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carry on the decoding process. Denote the munber of guesses as ng. Obviously,
the value of 5 is mainly determined by ng. If the code is a binary code, the
number of potential codewords after ng guesses is 29, As an instance. assuning
ng = 3, after the guess and recovery process, there will be 8 potential codewords
for the final decision.

To compromise the code performance and the decoding complexity, we usually
limit the number of guesses to a sinall number ng,,.,. If after ng,,.x guesses, the
decading still cannot be finished, a decoding failure is declared. For a low-rate
LDPC code, the guess algoritlun is able to inprove the performance by equal to
or less than 3 guesses. e.g. the performance of the PEG LDPC (256, 128) binary
code in Figure 2.6. When p = 0.35, the performance of the guess decoder with
Nginax = 3 has been improved by the magnitude order of 2 on the basis of that of

the Recovery decoder in terins of the FER.

10 T T T [Epp— T L8
TR
s
'7/
w0 | ,/ o J
. -
#
w0? | : E
...
ﬁ 103 | ; 4
/‘ [
w0 £ E
/: = =
wiE & 4
—— -
Guess (NG, = 1
| g {ng"l.g cemee
lo-& L L 1 1 1 m"?'.
025 0.3 035 04 045 05 055 0.6

p

Figure 2.6: Performance of the PEG LDPC (256,128) with the Recovery Algo-
rithm and C-Guess Algorithm

Aunother factor to aliect the decoding performance and complexity is how to

make guesses effectively and efficiently.
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e sequential guess: the guess bits are chosen based on the location of the

unsolved erasures sequentially.

o crucial guess: the guess bits are chosen on the basis of the highest value of
|EY| with the value of |E¥| > 2.

Compared to the crucial guess algorithm, the sequential guess algorithi is
straightforward but to performn worse than the crucial guess algorithin. For an
irregular LDPC code Y, the performance gap between the crucial guess and the
sequential guess is even more obvious than that for a regular LDPC code. as shown

in Figure 2.7. More simulation results and discussions are given in Section 2.5.

10° T

%=
w'l J
[
w0? | -
3
el S 4
w 10 ;
J’A
4 d x
10k . .
d X
03 4
ID{ 1 [l 1 L
02s 0.3 0.35 04 045

p

Figure 2.7:  Performance Comparison between the Crucial Guess algorithm
(C-Guess) and the Sequential Guess algorithin (S-Guess) of the PEG LDPC
(256,128)

At the end of the decoding, we need to pick out one codeword from 2" poteu-

tial codewords generated from the guess process as the decoded result. We call

“Aun irregular LDPC code has its parity-check H with different column weights and row
weights.
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the final determination stage as the evaluation stage. From the list of potential
codewords, Cou,. Where @ € {1,2,...,2"9}, pick the one that satisfies Hc;‘;llj =0.
The evaluation stage obviously requires some operations which include 29 matrix
multiplications and 2"7 — 1 comparisons.

For sparse linear codes, a hybrid guess-increasing scheme works efficiently.
However, for non-sparse linear codes, it is common to encounter more than 2
unsolved symbols in each erasure equation of M after running the recovery Al-
gorithmn due to the high-density of their parity check matrix. In these cases, we
cannot break the stopping set by guessing one erased bit/symbol in a row only.
More than 1 erased symbols at one time need to be guessed. We can calculate

the minimum number of guesses before the decoding.

2.1 Lemma. Consider the chosen erased bits/symbols in each row as an erased
group. Let ws denote the set of rows with & erasures, that is, ws = {i | || = §}.
And z; is the set of rows which satisfies:

s = {i € ws | Ik, p € El,such as k # p, |EY| = |EY| = 1}. (2.9)
Then

‘min{ng) = |z5|+1 (2.10)
where 1 accounts for the need for at least one “crucial® row.

Proof. When the guessing process stops, there are more than 2 erased symbols
in each erased row. The rows that have more than two bits (k,p) which do
not participate in any other row (i. e. |EY| = |E}| = 1) cannot be solved by
other rows, and so at least one of these bits has to be guessed. So the minimumn
numnber of guesses equals to the number of all the independent guesses plus one

more “crucial” guess to solve the other rows. o

For the Multi-Guess Algorithm, a whole row is guessed. A crucial row c¢ is defined
as follows:

1. ¢ € ws

39



2. MATRIX-BASED ERASURE DECODING ALGORITHMS

ol - Lo e
2. 3 jeer |EY| is maximised over ¢ in wy

The one-stage multi-guess algorithin is given below:
the One-stage Multi-Guess Algorithm

e sitep ! Run the decoder with Guess Algorithm until |Ef) > 2 for i =

e step 2 Evaluate the value of min(ng). If min(ng) > ngu., the decoding

declares a failure and exits.

e step 3 Group the rows with |E!| =8 as ws, where i € {1,2,..., L.}

e step 4 Find the “crucial® row and guess all erased bits in that row. {There
will be at most 2¢~! guesses.)

o step 5 Guess one bit p with |E}| = 1 in each of the independent rows, i.e.

the rows in .

o step 6 Update M, EM" and E¥. Continue the decoding from step 3 to step 5

until all the erased bits are solved or the decoding cannot continue further.

The disadvantages of Guess and Multi-Guess Algorithins include the decoding
complexity and the correctness of the results. The decoding complexity grows
exponentially with the number of guesses. It is possible that the group guess
declares a wrong value as the result of the decoder. Although this kind of situation

happens ouly when the erasure probability is very small, it is still undesirable.
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2.4 Matrix-based In-place Decoder

It this section, we devise a novel ML decoding algorithin to solve erasures in the
BEC. The transmitted vector is defined as & = {wo,%,..., 2.,V € {0,1}}
and the received vector is written as y which includes two parts: the unerased
part y,,, and the erased part y,, that is, y; € {0, 1, <}, We attempt to devise an

algorithm to decode the erased bits by solving (2.11).
Hy" = o (2.11)

Instead of using the erasure matrix M which ounly contains the erasure positions
on each parity-check equation, in this section, we split the parity-check matrix

H into H, and H,... Then, Equation (2.12) can be derived as {2.12) as follows.
Hcy;r = Hr«:cy;’-;_-c (212)

The right-hand side of Equation {2.12) can be calculated out as denoted as q7_,.
As long as an MLD is possible, the equation H y" = q7__ should have a unique
solution, which is the case if and only if all the parity-check equations in H,
are linearly independent [60]. The conventional Gaussian Elimination (GE) al-
gorithin [48] requires a column-permutation process and an equation-solving pro-
cess. Assume there are € erasures to be solved, that is, there are £ equations to be
solved in a linear system, and there are g variables in each equation on average.
The GE algorithm requires ¢? - £ + €% operations for a complete decoding. There
are several fast methods proposed to solve a linear system of equations, such as
the Strassen algorithin [71] which implements an iterative process on precalcu-
lated data and requires O(2%%'), and Coppersiith algoritlun [15] which requires
O(2237%) but very impractical for the purpose of decoding.

We now devise an inproved ML approach — the Inu-place algoritlin, which is
inspired by the GE algorithm but with a reduced computational complexity.

This algorithimn is divided into two parts: the Polynomial-update Process and

the Back-filling Process.

1; represents a valid index in vectors.
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e Polynomial-update Process The codeword is received and y, are substituted

in positions of erased bits/symbols in H. Starting with one of the crased
bits/symnbols, y,,. the first cquation containing this bit/symbol is flagged
that it will be used for the solution of y.,. This equation is subtracted fromn
all other equations containing y,, and not yet flagged to produce a new set of
equations. The procedure repeats until either non fagged equations remain
containing ., (in which case a decoder failure is declared) or no erased
bits/symbols remain that are not in flagged equations. The pseudo-code of

the polynomial-update algorithin is given in Algorithm 2.2.

Algorithm 2.2 Polynomial-update Algorithin

Input:

y < received vector
H <« original parity-check matrix of the code

1: for all y/ € y do

2. Hagging the first parity-check polynomial which containing ! as hi
3. for all by € Hall flagyed polynomials do

4 if h;(i) == 1 then

5: push h; into Set(c;)

6: end if

T for all h; € Set(.;) do

8: hi{k) = h (k) S hi(k). for k=0,1,....n—1
9: end for

10:  end for

11: end for

e Back-filling Process Let y,, . be the crasures ar the last flagged equations.

The back-filling algorithm is done starting from the last row and solving
the erasures backwards. Designate the last processed erasure as y,,,, and
Num(e); as an erasure counter for the i-th parity-check polynomial equa-
tion. The function of Pos{y,, ) returns the position regarding to the parity-
check polynomial of the z-th erasure. If and only if hy(Pos{y.,...)) = 1 and
Num(e) = 1,

n-—1

Ve = D M@ (cthy(ct) (2.13)

r:l=0.Pos(y¢hm )
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Then, the second to last row is processed in a similar manner. After a com-

pletion of the Back-filling process, the decoded sequence should be the original

transmitted data .

The schematic diagram of the In-place algorithm is illustrated in Figure 2.8,

which clearly exhibits two process blocks: the upper block is to function as the

Polynomial-update process and the lower block is to work as the back-filling

process.

y
—_— Data Store Data Store

Data Store

Received data

Additions of the Parity-check equations

Compute Gaussian Eliminated Parnty-check Matrix

Figure 2.8: Matrix-based In-place Algorithm
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Ezample 2.3: This example is to work on the BCH (15,7) code with a d,;, of
5. This code is guaranteed to correct 4 erasures by using syndrome decoding [37].
Its parity-check matrix is giveu as

/ 110100010000000 \
011010001000000
001101000100000
000110100010000
00001 1010001000
000001101000100
000000110100010
\ 000000011010001

Hbch(l(':.?) =

If the received sequence y with crasures in position {1.2,3,4}, referring to the
H . we can have two sets of equations:

o the received set of equations **

Jrec( ) -+ yrt,c(()) -+ yrcc(s) -+ .‘/r'r:c(l2) = 0
yrcc( ) -+ '/n(‘( ) + yrcc(g) + yrf:c(13) = 0
yruc( () + Yrec S) + yrcc(lo) + yrc:c(lll) =0

o the erased set of equations

Yreel0) + Y (1) + 4 (3) + yree(7) = O (2.14)
Y(1) + y(2) + ye(d) + yree(8) = 0 (2.15)
Ye(2) + 4 (3) + Yree(5) + Yree(9) 0 (2.16)
Ye(3) + ye(4) + Yree(6) + yrec(10) = 0 (2.17)
Ye(4) + Yrec(B) + Yrec(7) + yrec(1l) = 0 (2.18)

ith

**For convenience, the expression of y(i) represents the received bit at ' position.
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Polynomial-update Process These two sets are in response to H ... and H,.
Starting with (1), Equation (2.14) is flagged and subtracted from (2.15), only
because y,(1) is not contained in the other equations. Then the erased set can be
written as:

Yree(0) + yc(1) + ¥ (3) + Yree(7) = 0+ for g (1) (2.19)

Yrec(0) + ¥e(3) + Yrea(T) + 3c(2) + ye(d) + ¥ree(8) = 0 (2.20)
Ye(2) + Ye(3) + Yree(D) + Yree(9) = 0 (2.21)

Ye(3) + ye(d) + Yrec(6) + yrec(10) = 0 (2.22)

Ye{4d) + Yrea(d) + Yreal7) + Yrec(11) = 0 (2.23)

The * represents the flagging of (2.19) meaning that this equation will be
fixed and used to solve for y(1).

The next unknown is y.(2) contained in unflagged (2.20). This equation is
flagged and subtracted from the non flagged equations containing y.(2) te produce
the next set of equations.

Yree(0) + 4c(1) + Y(3) + ¥ree(7) = 0 * for y (1)(2.24)

Yree0) + e (3) + Yree(T) + ¥(2) + yc(4) + yrec(8) = 0 x for y,(2)(2.25)
Yree(0) + YreelT) + ye(4) + Yree(8) + Yrea(5) + ¥rec(9) = 0 (2.26)
¥ (3} + (1) + Yree(6) + Yrec(10) = 0 (2.27)

Ye(4) + Yree5) + Yree(T) + Yrec(11) 0 (2.28)

The next unknown is y,(4) contained in {2.26). This equation is flagged and
subtracted from the non-flagged equations containing y.(4) to produce the next
set of equations.
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Yree(0) + yc(1) + ¥ (3) + yree(7) = 0 % for y. (1) (2.29)

Yree(0) + yc(3) + Yrec(T) + ye(2) + ye(4) + Yrea(8) = 0. for 3. (2)  (2.30)
Yree(0) + YreelT) + U (4) + Yree(8) + Yrec(D) + Yree(9) = 0 = for y.(4)  (2.31)
Ye(3) + Yree(T) + Urec(8) + Yrec(5) + Yrec(9) + Yrec(6) + yree(10) =0 (2.32)
Yrecl0) + Yreo(8) + Yreal0) + 9rue(11) =0 (2.33)

Back-filling Process There is now only one unknown remaining in an unflagged
{=)

equation, which is y.(3) in (2.32). This is solved first 1o find y(3) which is substi-
tuted into all flagged equations that y(3) appears, i.e. Equation (2.29) and (2.30).
Equation (2.31) is solved next for y,.(4) to determine y(4) which is then substituted
into the (2.30). Equation (2.30) is solved next for ¥, (2) and finally Equation {2.29)
is solved for y.(1).

[t is worthy to compare the In-place algorithm with the well-established al-
gebraic decoding algorithm. Given a binary (n,k.d = 2t + 1) BCH code, the
algebraic decoder is capable of decoding up to 2t = ¢ — 1 erasures, while the
In-place algorithin is capable of decoding up to n — k(> d) erasures. Also, the
distance distribution of BCH codes is binomial distributed. Therefore, the In-
place algorithimm can decode more erasures than the algebraic decoding algorithm
for the most of time.

For a quick comparison on the perforinance of the recovery decoder, the
guess/multi-guess decoder and the In-place decoder, we also use the PEG LDPC
code (256, 128) as the code candidate. Figure 2.9 exhibits the In-place decoder
achieves the best performance especially at a low p region. When p = 0.35, the
performance of the In-place decoder is at least 100 times better than those of
the Recovery algorithm and the S-Guess algorithm (12g,u.x = 3), around 50 tines

better than that of the C-Guess algorithin (nig,,.« = 3).




2.4 Matrix-based In-place Decoder
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Figure 2.9: A performance comparison on the results of the Recovery decoder,
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2.5 Numerical Results and Discussion

2.5.1 Performance of the Recovery Algorithm

First. we evaluate the performance of the Recovery Algorithm with the LT codes
with Soliton distribution as described in [38] and irregular LDPC codes. As
shown in Figure 2.10. the performance of irregular LDPC codes is signilicantly
better than that of the LT codes for the same block length. As a consequence.

we mainly use LDPC codes to benchimark the remaining algorithms.
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Figure 2.10: Performance of the LT codes and irregular LDPC codes with the
erasure probability p = 0.2

A particularly strong binary code having a sparse H is the cyclic LDPC code

(255. 175), which has a length of 255 bits after encoding of 175 information bits.

The cvclic LDPC code (255, 175) has a minimum Hamming distance of 17. Since
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One-step majority-logic (OSML) codes have been rediscovered [35] because
of their good performance as LDPC codes with iterative decoding algorithmns.
The parity-check equations of OSML codes are orthogonal on each bit position
of the codeword which implies the absence of cycles of length 4 [73]. We apply
different guess algorithms on the (255, 175) OSML code. From Figure 2.14, we can
see that the crucial guess algorithin has the saine performance as the sequential

guess algorithm, whereas the crucial guess algorithm works effectively mainly for
LDPC codes.

51




2. MATRIX-BASED ERASURE DECODING ALGORITHMS

w? l- / -
’,g.-" I
A
) A
[TR) 3 o 1
« 4
¥ %
w' i L
z

wifp 1
C-Ouats
SCamm —®
! . . ; A . o
ors 03 [2™) 04 aas os 6ss o6
]
(“)”gmax =1
o -
' 1
97 1
w’f E
4
[0 9
Fd
/
wy 4 ]
n*
r - Recovery -}
C Gomin
SCamss
o . . . . A G
LF-3 L5 ] 035 o4 baS [L] 058 os
[
(b)”gnm.\: =2
w* L
w'
w? .!
10 f h
L3
= 5
10 £ o L
I
wo'r / 1
w'l . 1
C-Outns
S-Cowwy - o
. . . _ . , g v
[+ a3 033 o [ 219 [} o os

(c)”gumx =3

Figure 2.12: Different guess algorithms for the PEG LDPC (256.128)
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the parity-check polynomial of the (255,175) code is orthogonal on every bit
position, the minimum Hamming distance is 1 + w, where w denctes the number

of ones per row in H [53].

2.5.2 Performance of the Guess/Multi-Guess Algorithms

We then investigate the performance of the guess/multi-guess algorithms on
LDPC codes and one-step majority-logic (OSML) codes.

Figure 2.11 shows the comparison of the performance between the recovery
algorithin and the guess algoritlhun for the (255, 175) code. Also in this graph, we
give the performance of the In-place algorithin which can be considered as the
ML performance for the (255, 175) code. Due to the sparse structure of its parity-
check matrix, the guess algorithin with less than 3 guesses can achieve more than
1 order of magnitude improvement compared to that of the recovery algorithm. It
is also illustrated in Figure 2.11, the curve of the guess algorithin is very close to
the curve of the In-place algorithm, which implies the guess algorithin is a “sub-
optimal” decoding algorithin when the applied code is constructed by a sparse
parity-check matrix.
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Figure 2.11: Performance of the Cyclic LDPC (255.175) with the Guess and
In-place algorithm

Figures 2.12 and 2.13 depict the difference between the sequential guess al-
gorithin and the crucial guess algorithm on LDPC codes. As can be seen, the
more the number of guesses, the better the performance of the guess algorithm
can be obtained. When the number of guesses is more than 1, the superiority
of the crucial guess algorithin in comparison to the sequential guess algorithm is
obviously presented in both [igures. Especially in the graph of the PEG LDPC
(256, 128), when ng,.x = 3, the crucial guess algorithin achieves the performance
asymptotically close to the ML performance obtained by the In-place algorithin

as the erasure probability decreases.
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2.5.3 Performance of the In-place Algorithm

Figure 2.15 shows the performance of the (311,205) LDPC code. which has a
minimumn Hanuning distance of 16. Comparing these results of the recovery and
the guess algorithms, the multi-guess algorithm can obtain the results by several
orders of inagnitude better. For example, when the erasure probability equals 0.3,
the multi-guess algorithin with ng,.x = 3 is one order of magnitude better than
the recovery and guess algorithins; when ng,.x = 5, the multi-guess algorithm is 2
orders of magnitude betrer than the recovery and guess algorichms. Significantly.,
as an MLD, the In-place algorithm can achieve 4 orders of magnitude better than

the recovery and guess algorithins.
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Figure 2.15: Performance of the Cyclic LDPC (341,205) with the Recovery, the
Guess, the Multi-Guess and the In-place Algorithims

The ultimate performance of the In-place algorithin as a function of error
correcting code is shown in Figure 2.16 for the example (255, 175) cocde which can

correct a maximuin of 80 erased bits. Figure 2.16 shows the probability density
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function of the number of erased bits short of the maximuin correctable which is
n—h.

The results were obtained by computer simnulations. The probability of being
able to correct ouly 68 bits, a shortfall of 12 bits, is 1.1x 1072, Simulations indicate
that on average 77.6 erased bits inay be corrected for this code. In comparison the
BCH (255,178) code having similar rate is also shown in Figure 2.16. The BCH
code has a similar rate but a higher minimum Hamning distance of 22 (compared
to 17). It can be seen that it has better performance than the (255,175) code but
it has a less sparse parity check matrix and counsequently it is less suitable for
the recovery algorithm and the guess algorithin. Nloreover the average shortfall

in erasures not corrected is virtually identical for the two codes.
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Figure 2.16: Comparison of Probability Distribution of Number of Erased Bits
not Corrected from Maximum Correctable (n — &) for (255,175) code and BCH
(255,178) code

The simulation results of using In-place Algorithm for the (103, 52) quadratic

residue binary code [43] are shown in Figure 2.17. The minimum Hamming

distance for this code is 19 and the results are similar to that of the (255, 178)
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BCH code above. It is found from the simulations that on average 49.1 erasure
bits are corrected (out of a maximum of 51) and the average shortfall from the

maximum is 1.59 bits.

110352 cyclic cocte  +

0.1 3

0.01

0.001 -

Probatllity

0.0001 . ‘ . 4
1 E
r 1
10-005 |- : - : > ‘
1e-006 4 2 L : i '
0 5 10 15 20 25 30

___ Numbergierasedbitsshortotnk |

Figure 2.17: Probability Distribution of Number of Erased Bits not Corrected
from Maximum Correctable (n — k) for (103, 52) code quadratic residue code

Similarly the results for the extended BCH (128,64) code is shown in Fig-
ure 2.18. This code has a minimun Hamming distance of 22 and has a similar
probability density function to the other BCH codes above. On average 62.39
erasure bits are corrected (out of a maximum of 64} and the average shortfall is

1.61 bits from the maximuni.
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2.6 Summary

2.6 Summary

In this chapter, we present different decoding algorithins of erasure codes, es-
pecially for LDPC codes over the BEC: the recovery, guess/imulti-guess and the
In-place algorithin. To break the stopping sets caused by the code structure ef-
fectively and cfficiently, we propose the crucial guess algorithin. The multi-guess
algorithim is an extension to the guess algorithin, which can push the limnit to break
the stopping sets. We also show that the guess and multi-guess algorithins are
parity-check matrix dependent. For the codes with sparse parity-check matrix,
the guess/multi-guess algorithms can be considered as “sub-optimal decoding”
algorithms, in particular with the crucial guesses.

The In-place algorithm is an opthiimal method which is capable of achieving
an ML performance for the BEC. For linear block codes, the In-place algorithin
ensures to correct n — k — p erasures, where p is a small positive integer.

Chapter 5 and Chapter 6 will further optimise the application of the In-place

algorithm with a much reduced computational complexity.
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Once you eliminate the impossible, whatever remains, no
matter how improbable, must be the truth.

Arthur Conan Doyle (1859-1930)

Branch-Evaluation Search on the
Code-Tree Algorithm

3.1 Background

In this chapter, we consider the perforinance of (erasure) codes on the Additive
White Gaussian Noise (AWGN) channel. When erasure codes are employed for
different communication systems, the outputs for decoders are no more three
soft-decision outputs, the code performance is about 3 dB of coding gain {37
over the hard-decision algorithin. The better performance is paid by tore com-
putational complexity. The decoding algorithins with the use of the soft-decision
received sequence are generally called soft-decision decoding, which normally are
categorised as reliability-based decoding algorithms and code structure-based de-
coding algorithms. The ordered statistic decoding (OSD) algorithm [23] has

been known as an ML-approachable algorithun which is implemented based on
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the channel reliabilities of received vectors. It is capable of offering an ML perfor-
mance when the nuinber of orders is up te the information length of the applied
code. Under this situation, the OSD algorithin is equivalent to its ancestor, the
classic Dorsch decoding algorithm [17], in which, hard decisions are derived from
the soft decisions using standard bit-by-bit detection, choosing the binary state
closet. to the received coordinate. The idea of the Dorsch algorithm has been ex-
tended by Tomlinson et al. [75), which involves a technique for any linear (n, k)
code, erasures that {(n— k) less reliable, soft decisions of each received vector may
be treated as erasures in determining candidate codewords.

As first introduced in computer science, the tree structure, emulating a tra-
ditional hierarchical structure by a set of branches and vertices, has been widely
introduced to the hierarchical data manipulation, the information search engine,
the special composition of digital images, the industrial system safety evaluation
and so on.

By utilising the hierarchical property of the tree structure, in 2005 and 2006,
Rosnes & O.Ythehus [62], Rosnes & Ytrehus [63], proposed a precise but exhaus-
tive tree-structured search algorithm on turbo codes’ stopping sets, which has
been known as “Exhaustive Tree-Search Algorithin™. In 2007, Rosnes & Ytrehus
[64) upgraded the algorithm and employed it to find all the stopping sets and
codewords for LDPC codes. The upgraded tree-search algorithin improves the
search cfficiency by giving a preset limitation on the search scope. In 2009, Am-
broze et al. {2] further developed the tree search algorithin into a tree-based weight
spectrum evaluation algorithin.

In this chapter, we propose a new universal decoding algorithum which is a comn-
bination of the reliability-based decoding algorithm and the code structure-based
decoding algorithm. This chapter starts with a review of the classic reliability-
based algorithm - the OSD decoding algoritlun to discuss the crucial metrics to
approach an ML performance in Section 3.2. Section 3.3 gives a description on
the code trec and defines different types of code trees based on their growing
directions. In Section 3.4, we describe the algorithin in details. Then, we apply
our decoding algorithm to different linear codes and compare the performance

and computational complexity with the OSD algorithm in Section 3.5.
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3.2 A Review of the Ordered Statistical Decod-
ing Algorithm

The OSD algorithm [23], proposed in 1995, has been considered as an ML-
approachable reliability-based decoding algorithm.

Assume a BPSK-modulated vector x = {xp,2,...,Z,~1} which has been
encoded by the code €(n. k), is transmitted through the AWGN channel and
then it is received as the received vector, defined as y = {yo, 41, .. ¥n-1}. The

vector ¥ has its channel reliability, written as R, as expressed in (3.1).

R = {ro.r1y--yTu=1}
""'-Iyu—ll} (31)

|
—_—
&
=
=5

Order the vector y based on the reliability values in decreasing order into
a new vector of y. And, the reliability vector R is also permuted into a new

reliability vector R with the same ordering rule as the one applied on .

I
——
=,

SR (A} (3.2)

where 1y > v} > --- > 1,

Denote the permutation function as #(-), and then we have:

1

y = a(y) (3.3)
R = n(R) (3.4)

Applying the 7(-) function on the columns of the generator matrix G, we will

have

G = 7(G) (3.5)
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»

If the first & columns are not independent * and so they are not able to
represent the information part of the codeword, the second permutation function
(-} is required to put G’ as a systematic generator matrix G and therefore the

received sequence is further re-ordered as

ma(y’)
= m(a(y)) (3.6)

i

y
Decode the sequence ¥ from (3.6) by a hard-decision decoder (HDD) and then

output a codeword, denoted as z.

z = (50:21-."'ék—]:ék:"':zn—ll) (3-7)

7 S

MRB LRB

The first & components of Z are the so-called most reliable basis (MRB) part and
the other n — A& commponents are defined as the least reliable basis (LRB) part for
the applied code €. Because the MRB part contains the bits/symbols with the
most reliability, it should have few errors.

Denote z; as the set of the MRB bits. Encode 2, with the systematic generator

matrix G, a corresponding codeword ¢ is obtained.

\

¢ = %G (3.8)

By de-permuting the codeword with the permutation functions (-} and m(-), a

potential codeword ¢ from the original code € is obtained by:
¢ = 7 (=7"(€)). (3.9)

By then, the process of the OSD-0 decoding is completed. When the order of
the OSD decoding is more than zero, the additional process is perforined. Suppose
that an OSD decoding is with its order of £. For the variable L in 0 <1 < ¢, make

all possible changes of I of Z; and then encode these changed sequences into

“ After applying the Gaussian Elimination algorithim on the matrix, if the rank of the identity
part equals to &, we say Lhe first &k columns are independent; otherwise, Lhe first & columns are
not linearly independent.




3.3 Code Tree Representation of Linear Block Codes

codewords {¢,, €y, ...€ vum(osn,)-1} = €. The notation of € represents a potential
codeword set.

The numnber of the potential codewords in @ can be derived by:

Num(OSD,) = i (‘f) (3.10)

j=0 ™
Then compute the cross-correlation metric correl(y,¢;) as follows:

n-1
correl(y.c;) = Z YsCjus (3.11)
s=0
The potential codeword with the maximumn correlation result is selected as
the decoded codeword.
Obviously, the OSD algoritlun is an ML-approachable algorithin when [ = k.
It is shown in [23] that for mmost block codes of lengths up to 128 and rates k/n > 3

that ¢ = {d,sn/4} is capable of achieving an ML decoding performance.

3.3 Code Tree Representation of Linear Block
Codes

The code tree is a graphical code representation by tree structure, which is com-
posed of branches and vertices. The set of branches is written as B = { By, B,, ...}
and the set of vertices is written as V = {vg, v, ...,v,}. The arborescence traits
can be represented mathematically by a given specific order, which is controlled
by the code. Consider a binary code €(n, k) with its generator matrix and parity-
check matrix, G and H respectively. Each codeword ¢; € € constitutes a complete
branch B; of its corresponding code tree Te, where the index i is in the range of
0 < i < 2% — 11, Therefore, a complete code tree should contain 2*¥ branches.
As an instance, the complete branch of the all-zero codeword is By consists n
spans, which are connected by n 41 vertices, which is shown in Figure 3.1. Each

span is denoted as b; ;. The value of b, ; also represents the label on this span.

tNormally. ¢ is the decinal representation of the codeword sequence.
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For a codeword ¢; = (202122...2,-1) and its correspouding branch B; =

A{biobinbiz. .. bin-1). we have

bio = 2
by = 2z
bi.n—l = Zp-1
The set of vertices {vp, vy, %a,...,v,} can also be considered as the indication

of the tree growing direction. At each vertex, the branch diverges into ¢ spans
when the applied code is over GF(g). I this chapter, we ounly consider binary
linear codes and henceforth, at each vertex, there are at most 2 diverged spans.
The vertices of 15 and v, represent the ends of the tree. Diflerent to the trellis
representation of a code, the code tree does not. have to start from the vertex of vy.
It can be initialised from any intermediate vertex v;, where j can be arbitrarily
chosen from 0 to 7. The initial growing vertex is designated as v;,itiqr- The first
example of code tree as shown in Figure 3.1 is with its v;,iiar = vo. This kind of

code tree is defined as one-directional code tree.

3.1 Definition (One-directional Code Tree). For a code tree representation,
if the initial growing vertex viniiiat = Vo OF Vinitia = Un, the code tree ex-
pands only towards v, or vy respectively. This kind of code tree is called “one-
directional” code tree.

The second example of code tree, given in Figure 3.2, shows a code tree
growing from its via at one of the interinediate vertex. This is one of the
different points between the tree representation and the trellis representation.
Instead of being controlled by the time only, the code tree is also under the

control of the growing direction.

3.2 Definition (Bi-dirvectional Code Tree). For a code tree representation, if
the initial growing vertex v = Uz, where 0 < 2 < n, the code tree ex-
pands towards vy or v, simultancously. This kind of code tree is defined as
“bi-directional” code tree.
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2k

Figure 3.1: An example of Code Tree I (One-directional Code Tree)

As illustrated in Figure 3.2, the bi-directional code tree should have its both ends
with the number of points more than 1 but less than or equal to 2¥. This is

controlled by the position of vinitiar-
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Figure 3.2: An Example of Code Tree IT (Bi-directional Code Tree)

3.4 BESCT Algorithm

As proposed, the BESCT algorithin utilises the hierarchical property of the tree
structure combined with the reliability-based decoding algorithm to realise an
MLD. For the BESCT algorithin, we select the bi-directional code tree with its
initial vertex at the separation of the information part and the parity-check part.
To be more specific, we also call the initial vertex as the “cut point vertex”,
written as vg and vg = Uiina. The specific code tree for the BESCT algorithm
is designated as Tpescr.

Suppose the upper end in accordance with the parity-check part and the lower
end in accordance with the information part. The number of vertices at the 0
upper end layer is 2" and the number of the vertices at the n!? lower end layer

is 2%,
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The cut point vertex v, divides its Tggsor as the subtrees of ‘J"(bo: b, _k_1)
and T(b,,_k,b,,_l). The bold notation of b; presents all the branch spans con-
necting the vertices between the layer 7 and the layer j + 1. Obviously, the code

tree Tppscr can be written as
TBESCT = T(bﬂ:bn—k—l) O‘JJ(bn—k: bn—l) (312)

In (3.12), the notation o represents the concatenation of the subtrees T (by. b_r_1)
and T (bu_x. bao1).

Observing the i*" branch B; corresponding to the codeword ¢; it can also be

written as

B; = Bj(bio.bin_t-1) 0 Bi(bin—t,bin-1) (3.13)

’ -
where we call B; as the sub-branch of the &'

branch. By setting v, = v, 4. a
complete branch is partitioned into a parity-check sub-branch and an information
sub-branch, written as B;(big, bin_r_1) and B;(b,-‘,,_k, bi n-1) respectively. Never-
theless, not every complete branch correspouds to a valid codeword. Therefore,

to avoid an ambiguity to complete a valid codeword branch, at the vg, a coding

rule, such as H or G, needs deploying.

Ezample 3.1: The Hamming code (7,4, 3) has its systematic generator matrix
G as follows:

1101000
1010100

G = . (3.14)
0110010

1110001

69



3. BRANCH-EVALUATION SEARCH ON THE CODE-TREE
ALGORITHM

and then the corresponding full code book is listed as follows:

( (000 0000) )
(110 1000)
(111 0100)
(011 1100)
(011 0010)
(101 1010)
(000 1110)

\ J

Each row contains a single codeword with its LHS as the parity-check part and
its RHS as the informatton part. Followed the content of the code book, the
Hauuning code (7.4, 3) has its code tree Tgeser constructed as demonstrated in
Figure 3.3.

I Figure 3.3, the blue-traced and red-traced spans have their labelled val-
ues of “0° and “1" respectively. Suppose the index of vertex ascending from
the top to the bottom as {vy,v;,...,v7} and the index of span ascending as
{bio:bis:- ... big}. Therefore,

Taeser = T (bo,bg) 0T (by, bg)

(bg. b2) is the parity-check subtree and T(b3,bﬁ) is the information subtree.

L

(bg, by) contains 8 sub-branches and T (b, bg) has 16 sub-branches.
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Figure 3.3: Tgescr of the Hamming code(7,4,3). A coding rule has to be applied
to validate a codeword.

3.4.1 The Concept of Ensemble Branch

In this section, we introduce the concept of ensemble branch for an efficient

BESCT process. For a Tgeser generated from C(n, k), the code tree contains &
I g s K )

ensemble branches { B§®, B¢, ..., Bi", }. each of which has the labels same as the

clements of the generator polynomial g; fromn the systematic generator matrix G.

Then, we have:

Bt o= (b5 b7 oL b))
= (9':'.0 gia .- y,-_.._l)
= & (3.15)
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wherei € {0,1,.... k- 1}.
Using an instance in Example 3.1, for the Hammning code (7,4, 3}, the Tescr

has the enseimnble branches as

Be" = (1101000)
B = (1010100)
B = (0110010)
B = (1110001)

(3.16)

By arbitrarily selecting and combining the ensemble branches, a valid branch
can be generated. Whereas, the total nuiber of the valid branches can be derived

by

o

".

k

1\!. — ) -

um(B) Z (t) (3.17)
t=0

Therefore, for Tgpscr of the Hammming code (7.4, 3), it has valid branches with

the total munber of (7} + (1) + (3) + (3) + (§) = 16.

3.4.2 Cost and Dynamic Threshold

The Tyescr is constructed based on the ordered received vector ¥ as described in
Section 3.2. Whereas, the parity-check subtree Tgeser(bo, bu_k-1) corresponds
to the LRB part and the inforination subtree TBESCT(b,._k, b,._1) corresponds to
the MRB part.

Instead of an exhaustive search over the complete Tgrscr, the BESCT algo-
rithm evaluates the possible branches by comparing their costs with a dynamic

threshold.

3.3 Definition. The cost, written as cst(-), is designated as a cross-correlation
inetric between the branch/span labels and the ordered sequence y.

" - the cost of a single span:

cstbig) = (2big— )7, (3.18)
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where0 <g¢g<n-1

- the cost of a partial branch:

(‘-'S‘t(B-i(rbi,qnbi,qz)) = (2[)&,9’1 - 1)37:;1 + (2bi.(q|+l) - .l)ﬂ(q!-i-l) +...
| H(2it-1) = Vo1 + (2igo. = Vi (3.19)

where’_‘O*S q 5 G2 <n-—1
- the cost of a complete branch:

n-1

CSt(B,') = Z(led - 1)?;']', | (320)

j=0

where 7°is from 0 to 2% — 1.

The target of the BESCT algorithmn is to search a branch with its cost closest
to the overall magnitude of the received vector. Designate Mag(-) as a function

returning the suin of the magnitude values of a vector as follows:

n-1

Mag(y) = 3 Iyl (3.21)

The Mag(y) is equivalent to a cross-correlation metric on the received vector
y and its hard-decision output u. However, the hard-decision output u may not
be a valid codeword of € if H - u” # 0. Then the BESCT algorithn starts to
evaluate the branches from the spans connected to w.

In the BESCT process, two dynamic thresholds control the evaluation process.

- The first threshold is based on current highest branch cost at stage ¢, which
is designated as th.,, and called as the “cost threshold’. Suppose at stage

i, the cost threshold is th., and the cost of current branch is cst(5;).

- The second threshold is introduced as the terin §(theq, cst(B;)), which is

the discrepancy between Mag(y) and cst(B;). d(Mag(y). cst(B;)) is used
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to control the growing direction of next branch and called as the “direction
threshold”.

The concept of growing direction is devised to control the branch growing
pracess, which contributes to a reduction of unnecessary computations and oper-
ations. From the cutting vertex v, mark the vertices in the inforination tree as

v, Ui, vt At the vertex of ¢, that is, at the 3 layer:

v the process of an inserting-vertex at the layer of j — 1 is defined as growing-

forwards. written as V1,

v the process of a deleting-vertex at the layer of 7 is defined as growing-

backwards, written as V~.

By utilising ensemble branches, the process of branch growing can be done
in one step. For a given branch B; = (bigbi, ... b;,1), if an inserting-vertex
or deleting-vertex process is to be executed at the 7 layer in the information

sub-tree, the spans of the new branch By, can be obtained as:

bisio = bhia@ b))

b;+|_| = b & T;

bivr2 = bia® ],
bivinot = biuoy &5,

Branch-wise, this operation can also be written as Biy, = B; (b B§".

3.4.3 The BESCT Algorithm

Step 1 The information sub-branch By(bo...—k-ba..-1) is obtained by

. Olf ’_l;'j <{ (3 2‘))
D j=(n=-kn=-k+1..... n—1) = T4
7= * 1,if §; > 0

Then, the parity-check sub-branch B;,(bo_n, bp.n-r-1) can be derived from the

ordered generator matrix G. Concatenate these two sub-branches into the
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Step 2

Step 3

first complete branch By as follows:
By = B(')(bo.mbo.n-k—ﬂOB(')(bn.n-k:bo.u-l)

Also,
thc_gg = CSI':(BO)
d(Mag(y),cst(Bo)) = 0

Applying the growing-forwards process V* at the (n — k)™ layer, which
corresponds to the less reliable bit in the MRB part, the new branch B, is

obtained by:
B[ = Bo@ BE’;"

And the cost threshold is updated as:

the, if they > cst(B;
thow = { et > cst(Ba) (3.23)

(;SL(B,‘), if t’lc‘q{‘ S CSt(B,‘)

where 7 = 1. [f the cost threshold is updated with the new cost, push the
current branch into the potential codeword set F.

Then the growing direction is determined by the value of §(Mag(y). cst(5y)):

o if A(Mag(y).cst(By)) 2 2|j-2|. processes Step 3;

o if 9(Mag(y), cst(B1)) < 2|ir-2|. stops and processes Step 5.

V* process At the j** layer, the new branch B, is obtained by:
B, = B ® B, _; (3.24)

And update the cost threshold as described in (3.23) with ¢ = ¢. If the cost
threshold is updated with the new cost, push 3, into the potential codeword
set. . Then the direction threshold is also updated as é(Mag(y), cst(3,)).

o if 5(Mag(y), cst(By)) = 2|gk—j-1], ¢ = ¢ + 1 and continues Step 3;
<

Bq
o if §(Mag(y), cst(B,)) < 2|jk—j-1], processes V™ in Step 4.

=l
wn
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Step 4 V'~ process If the direction threshold indicates a growing-backwards process
at the j'" layer, the branch B, is obtained as the same as in (3.24), which is
equivalent to cancelling the process of Step 3 at the 5 vertex, and therefore
By, = By, update the cost threshold and the direction threshold as Step

3.

o if d(NMag(y). cst(Bg-1)) 2 2|gk-j-2|: ¢ = ¢ + 1 and continues Step 3;

o if d(Mag(y), cst(By-1)} < 2|§x-;-2|. processes V= in Step 4.

Step 5 When the process stated above finishes at v, evaluate the potential branches
in F and the one with the most cost is identified as a valid codeword. And

a BESCT process is comnpleted.

3.5 Numerical Results and Discussion

3.5.1 Performance of the BESCT algorithm

We apply the well-know union bound to evaluate the performance of the BESCT

algorithm in this section.

“ /QIRE - wt
Potocke = Z E(‘CU!)Q( —;,Tw) (3.25)
ut =dmin

where wt is the code weight, E(-) is the weight enumerator, Q(-) is the Q-function?
and R is the coderate.

In 2009, Ambroze et al. [2] developed the Tree-search based Codeword Set
Enumeration (TCSE) algorithin to search all the codeword sets up to size of
threshold 7 for any parity-check codes. The computational complexity increases
as the value of 7 increasing. By setting a reasonable size of 7, a partial weight
enumerator table can be achieved. Inplementing the union bound Pyjger in (3.25)

with the partial weight enumerator table, a loose-lower union bound Pf , can

YQ(x) is the probability that a standard normal random variable will obtain a value larger
than .
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be derived as follows:

J 2REy - wi
Phock = > E(wt)Q( +)

urt=dmin

< Phioer

The partial weight enumerator table of the PEG-LDPC [32] code (256, 128, 17)
has been given in Table 3.1 by setting 7 = 20.

the PEG-LDPC code (256, 128, 17)
Code Weight | 17 18 19 20
Enwmnerator | 4 13 39 74

Table 3.1: Partial Weight Enumerators Estimated by the TCSE Algorithm (2]
(A)

Figure 3.4 illustrates the comparison between the proposed BESCT algorithin
and the OSD-i algorithin. The hard-decision decoding (HDD) algorithin is equiv-
alent to the OSD-0 algorithin. The PEG-LDPC code (256, 128, 17) with its min-
imum Haming distance of 17 is one of the high d,,;, LDPC code. As shown in
Figure 3.4, the BESCT decoder is capable of performing asymptotically towards
to the partial-lower union bound Pjf, . Tt is also shown that when FER < 1074,
the performance of the BESCT algorithm has significantly gained more than 2
dB than that of the OSD-3 algoritlun, more than 3 dB than that of the OSD-2
algorithin and around 4 dB than that of the OSD-1 algorithm.
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Tjhat et al. [73] proposed the Euclidean Geometry (EG) LDPC code (63. 37, 9)
based on cyvelotomic idempotents. This code has been generated with the dy,;,
of 9 by a sparse H matrix. By employving the TCSE weight emnnerator search
algorithin. the partial weight enumerator table of the EG-LDPC code (63.37.9)
is given in Table 3.2. As illustrated in Figure 3.5, the OSD-3 is capable of

the EG-LDPC code (63, 37,9)
Code Weight | 7 8 9 10
Enumerator |0 0 1960 10581

Table 3.2: Partial Weight Enumerators Estimated by the TCSE Algorithm [2)
(B)

achieving an MLD performance as the BESCT algorithim. It is also shown that
the OSD-2 decoder performms sub-optimal when FER > 107>, which means if
the transinission condition is defined as %ﬁ- < 5dB, the OSD-2 decoder can be
considered as a practical decoder with lower conputational complexity than the

QOSD-3 decoder.
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Figure 3.5: Performance of the EG-LDPC code (63, 37.9)

We also evaluate the performance of the QSML code (255,175) which has
been discussed in Section 2.5. Figure 3.6 depicts that when FER < 107, the
performance of the BESCT algorithm has significantly gained more than | dB
than that of the OSD-3 algorithimn, more than 2 dB than that of the OSD-2
algorithm and around 3 dB than that of the OSD-1 algoritlun.
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Figure 3.6: Performance of the OSML code (255.175)

Define p as a prime congruent to +1 or —1{(mod 8). and denote Ry as the
set of nonzero quadratic residues (mod p). Let o be a primitive p'* root of
unity in an extension field of GF(2), and let the polynomial h(z) be defined
by h(z) = Jl.epfz —a), in which h(z) is a polynomial with cocfficients in
G F(2). The binary cyclic code of length p with check polynomial h(x) is called the
expurgated quadratic residue (EQR) code, and the code with check polynomial
( + 1)h(x) is called the augmented quadratic residue (AQR) code.

The extended quadratic residue (LQR) code [4 is defined to be the set of bi-
nary n-vectors of the form {co, ¢y, . ... cpo1. ¢ ), where (co. .. ... cy—1) is a code-
word in the AQR code, and ¢p + ¢, + ... + ¢y + ¢ = 0. It has been known
for its powerful error-correcting capability but the difficult analvsis of its weight
Spectrum.

A binary self-dual code C with its length of n is a code over F, satisfying
€ = €L, where €+ is the dual code of € and defined as C* = {a € F§| >\ a:b; =
0(mnod 2).¥b € C}. A self-dual code € is doubly even if all codewords of € have

their weights divisible by 4, and single even if there is at least one codeword with
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3.5.2 Discussion on the Computational Complexity of the
BESCT Algorithm

In this section, we have a discussion on the computational complexity of the
BESCT algorithim compared with the OSD algorithm. [t has been known that
the decoding complexity of the OSD algorithin is determined by the number of
potential codewords for the final decision. Supposc the number of orders as ¢, the
number of potential codewords for the final decision is Num(0OSD,) = Z;'=0 (f)

For the BESCT algorithim, the computational complexity of the BESCT algo-
rithin is determined by the number of branches being evaluated during a BESCT
process. It is determined by the cost threshold on the V* process. Assuming that
the cost threshold of the V¥ process is bounded by the vertex at the position of

n — k + 1, the number of brauches being evaluated is

l
!
Num(BESCT) = ) ( ) (3.28)
o \J
J
Figure 3.8 from (a} to (e) illustrates the comparison between the OSD algo-
rithimm and the BESCT algorithm. It is shown that when the information length
is fixed, when { € 4 and t < 4, the BESCT algorithi has the comnputational

complexity less than the OSD algorithm.
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its weight = 2(mod 4). A self-dual code is called extremal if its d,;, is the highest
possible for the given parameters.

The weight enumerator of an extremal doubly-even self-dual code of length n
is given by Gleason’s theorem, which has been derived in [56]. Here, we evaluate
the BESCT algorithin on the LQR code (104, 52, 20} which is an extremal doubly-

even self-dual code.

(n/24)
Alz) = Z EG)(1 + 1 + 25) 57321 — ")) (3.26)
i=0

By (3.26), the weight spectrumn of the LQR code (104, 52, 20) Ay gr(io1.52.20) 1S

obtained as follows:

ALQR(IO‘LS'Z.‘ZO)(:L') = (‘-"-0_*_‘,1‘.104) +

1138150 - (2*® + x%%) +

206232780 - (z* + 2°%) +

15909698064 - (%% + ™) +

567725836990 - (3% + 2%%) +

9915185041320 - («® -+ %) +
88355709788905 - {x™* + %) +
413543821457520 - (2™ + 2°) +
1406044530294756 - (+°?) (3.27)

As shown in Figure 3.7, when FER < 107, the code performance of the
BESCT algorithim has been improved by 0.5 dB than that of the OSD-3 algorithm,
1 dB than that of the OSD-2 algorithm and around 5 dB than that of the OSD-1
algorithmn.
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Figure 3.7: the Frame-error-rate performance of the LQR (101, 52, 20)
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3.6 Summary

In this chapter, a graph-based ML-approaching algorithin for the AWGN chan-
nel is proposed. By applying a bi-directional code tree, the proposed branch-
evaluation algorithin based on the cross-correlation metric is equivalent to the
classic Dorsch algorithin {or the OSD algorithim with the order of &) with a flex-
ible threshold method. The dynamic threshold method speeds up the decodiug
process when the number of errors in the MRB is less than 4, the position of
the least hikable error is located within the first 4 less reliable bits in the MRIB,

compared to the OSD algoritlin.
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Part II

Packet Data Transmission and

Coding Arrangement



When | have fully decided a result is worth getting | go
ahead of it and make trial after trial until it comes,

Thomas A. Edison

The Packet Data Transmission System of

Fountain Codes

4.1 Background

Fountain codes [38, 41] have been claimed as a class of sub-optimmal erasure
codes with the property that a potential limitless sequence of transimnitted pack-
ets {yo,¥1.¥2....} can be generated from a given set of & information packets
{®0, 21, . ... %k} such that the information packets can ideally be recovered from
any subset of the transmitted packets of size A’, which is slightly greater than the
number of information packets, that is, &' > k.

The first practical realisation of fountain codes is so-called “Luby-Transforn’
(LT) codes which was invented in 2002 by Luby [38]. The concept of the *rateless™
transmission is introduced in [38], which means the encoding algorithm is capable
of in principle producing an arbitrarily large nummber of packets which can be

transmitted until the receivers recover the original informmation packets.
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One of the advantages of LT codes is the low computational complexity on
their encoding and decoding algorithms by employing the exclusive-OR (XOR)
operations on the packets. The XOR algorithm is equivalent to the recovery
algorithm applied for other linear block codes over the BEC. However, LT codes
suffer from an error-floor problem due to the existence of the stopping sets which
is caused by their code structures.

To improve the performance, especially the error-floor caused by the nature
of LT codes, in 2003, Shokrollahi [68] introduced a class of two-layer fountain
codes, called as “Raptor” codes. Raptor codes maintain the “rateless” property
since their inner codes are constructed based on LT codes, and improves the
perforinance of LT codes by applying outer codes to enhance the ability of the
erasure/error correction. As the class of the most effective fountain codes, Raptor
codes have been deploved in the 3GPP MBAIS standard for broadcasting file
delivery and streaming services, in the DVB-H IPDC standard for delivering
IP services over DVDB networks, and DVB-IPTV for delivering commercial TV
services over an IP network. [78]

The good efficiency and performance of fountain codes motivate us to study
the code structure and the application of them. We study, in Section 4.2, the
encoding process and the decoding process of LT codes with a proposed ma-
trix representation. In Section 4.2.3, we investigate the degree distribution for
the construction of LT codes. which deterinines the performance of LT codes.
Section 4.3 study Raptor codes. \We also propose a matrix representation for
the construction of Raptor codes in Section 4.3. In Section 4.4, we provide the
simulation results and discussion on the limitation of fountain codes. We then

conclude this chapter and give some insights about the results in Section 4.5

4.2 LT Codes

It is useful to know the definitions of the Degree and the Degree Distribution

before the study of fountain codes.
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4.1 Definition (Degree). The degree of a vertex v is the number of edges that
are incident with vertex v, i.e. the number of edges that are connected to vertex

v, denoted as d.

4.2 Definition (Degree Distribution). Designate p(d) as a distribution func-
tion of d. For.all d, p(d) is the probability that an encoding symbol has degree
d. '

LT codes are controlled by the parameters as listed as follows:

e the number of information packets, denoted as k

¢ the degree distribution p(d)

Thus, an LT code is specified as Cr(k, p(d)) and its encoding process is a

hear k
linear map Fs — F7.

4.2.1 LT Encoding Process

Suppose the information packets as x = (&3, ..., 2x), and then each transmission

packet u; is generated by
1. randomly choosing the degree d; from a given degree distribution p(d);

2. randomly choosing d; distinct information packets and exclusive-oring those

d; informmation packets to obtain a transmission packet u;.

Algorithim 4.1 gives the pseudo code of LT encoding process.

Figure 4.1 shows an example of an LT encoding process by defining a bipartite
graph which connects transmission packets to information packets.

Alternatively, LT codes can also be represented in a matrix form M which

only contains the non-systemnatic part of its parity-check matrix H.

it it aalt
"10,1 Mg o s ’”‘D,k
it it it
my mye oo miy
MIT = : : (4.1)
1} applt 1
Moy M2 70 Mo
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Algorithm 4.1 LTEnc(p(:). x, u)
Input:
p(-) < Degree Distribution
x < Information packets
y < Transmission packets
rand.int(a, b) is to randomly choose an integer from a to b
rand. float(a,b) is to randomly choose a floating data from a to b
p(-) is a value-increasing array
w is a floating data satisfying 0 <w <1

Output:
1: repeat
2. w = rand. float(0, 1)
3 if (w < p(d;}) then
a: d; is the chosen degree
5 end if
6:  choose uniformly at randomn d information packets z;,, ..., x;,
U =o, Sw, By,
8: until (7 satisfies the number of transimission packers)

Information Packets

e
5%

Figure 4.1: LT Encoding Processing

Transmission Packets

Henceforth, the LT code graphically represented in Figure 4.1 can also be

represented by the M matrix representation as given as follows:

92



4.2 LT Codes

/10000000
01000001
01001100
00100000
10000001
00100000
00001010
00001000
01010000
\00000101)

4.2.2 LT Decoding Process

Designate y = {yo.91. ...} as the received packets. Each received packet y; should
include:

o the information of degree d; applied for this packet.
o the index of information packets which are connected to this packet.

The decoding process starts when the receiver collects k' packets. The number

of packets &’ is required to be at least equal to k, that is,
K = k+46 (4.2)

where 4 is a small positive number.
In [38], the proposed decoding algorithm is called as *XOR?" algorithm. Des-

ignate the recovered packets as s, and the XOR algorithm is described as follows:

1.) Start with a received packet y; containing the degree d; = 1 which means

that the received packet y; is only connected to an inforiation packet s;.

1.1) Set s; = y;

1.2) Add s; to all received packets y; that are connected to s;;
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1.3) Remove the index of s; from the header of the received packets v, and
({f = (11 -1

2.) Repeat 1.) until all inforination packets are recovered.

The XOR decoder stops when either no output symbols of degree one, that is
{d; = 1|¥5 € {1,2,..., A’}}. or all the information packets have been recovered.

The LT decoding algorithin is given in Algorithm 4.2.

Algorithm 4.2 LTDec-XOR(y, p{d). s)
Input:
y < received packets
p(d} < Degree Distribution
Degy(-) <= Degree Reader from the packet header
i <= Received packet index
j < Recovered information packet index
Buf < buffer

Output:
s < successfully recovered information packets
1: repeat
2 if (Deg(y:)! =1) then
4 push y; in Buf
1:  end if
5. if (Deg(y;) ==1) then
G Sj = Ui
7 end if

8:  for all y; € Buf: y; includes s; do

9: Y = Yi O 55

10: end for

ti: until ( original information packets are recovered)

4.2.3 Degree Distribution p(d)

It has been known that the degree distribution of an LT code is of a great in-

portance.

e The majority of the transinission packets must have low degree, so that the

decoding process can get started and then keep going.
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e Occasionally, the information packets must be encoded with high degrees
to avoid the null connection between the information packets and the trans-

mission packets.

The ideal degree distribution is approached by the Ideal Soliton Distribution.

() Lifd=1 s
[4 = n
P ﬁ: for (l=2=3’___:k‘

Designate Q(x) as the degree distribution function as follows:

k
Qx) = > pldi)a (4.4)
i=]
Assume &k = 15 and then the degree distribution function can be derived from (4.3)

as follows:

Qz) = 0.066667x' 4 0.5x2 + 0.166667z> 4 0.083333x* + 0.05x°
+0.033333z° + 0.023810+7 + 0.017857z% + 0.013889x" + 0.011111'°
+0.0090912" + 0.0075762:'? + 0.006410:'® + 0.0054952' + 0.0047621°

However, the Soliton distribution does not work as good as expected mainly
because a few information packets have null-connections with the transmission
packets.

As shown in Figure 4.2, the LT encoding process with the ideal Soliton dis-
tribution, has a very trivial probability to constitute a transmnission packet from
a single information packet. As the consequence of it, at receiver, the decoding
process is hardly to be implemented because of no degree-one received packet.

Following the analysis of Luby [38], the problem of the ideal Soliton distribu-
tion is that the expected ripple® size (one) is too small.

Henceforth, Luby [38] proposed a robust Soliton distribution, which nor-

malised the ideal Solition distribution with an expected distribution. In his anal-

*The set of covered input syinbols that have not yet been processed is called the ripple, and
thus at this point all covered input symbols are in the ripple.
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Figure 4.2: the Degree Distribution Generated from the Ideal Soliton Distribution
for a LT code with information length of 15

ysis, the robust Solition distribution ensures every information packet is likely to
be counected to a transimission packet at least once, so that the decoding process
gets initialised and keeps going.

In our analysis, we applied the Shokrollahi [69] degree distributions which
have been also applied in the IEFT standard.

Table 4.1 shows the optimised degree distributions with & =65536, 80000,
100000, 120000, under the condition of 6 = 0.01.
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[% ]| 65536 | 80000 | 100000 | 120000 |
Q, || 0.007969 | 0.007544 | 0.006495 | 0.004807
(), | 0.493570 | 0.493610 | 0.495044 | 0.496472
Qs || 0.166220 | 0.166458 | 0.168010 | 0.166912
(7, || 0.072646 | 0.071243 | 0.067900 | 0.073374
0, || 0.082558 | 0.084913 | 0.089209 | 0.082206
005 || 0.056058 0.041731 | 0.057471
0, || 0.037229 | 0.043365 | 0.050162 | 0.035951
0y 0.001167
0 || 0.0055590 | 0.045231 | 0.038837 | 0.054305
O 0.010157 | 0.015537

Qs || 0.025023 0.018235
Qg || 0.003135 | 0.010479 | 0.016298 | 0.009100
Qgr 0.017365 | 0.010777

Table 4.1: Shokrollahi Degree Distribution [69]

Figure 4.3 illustrates a comparison of the degree distributions between the

ideal Soliton distribution and the Shokrollahi distribution. As can be seen, even

when the number of information packets is as small as 1024, the Shokrollahi

method can produce soine transmission packets with their degrees of one, while

the ideal Soliton distribution generates null. Meanwhile, the Shokrollahi mmethod

maintains desirable proportions of the generation of degree-2 and degree-3 trans-

mission packets.
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4.3 Raptor Codes

4.3 Definition (Raptor code) A Raptor code with parameters (k.CP.Q(d)) i
an LT-code with degree chstrlbutlon function Q(d), which has given in Table. 4.1
on &k + s pre-coded packcts wluch are coordinates of codéwords in CP.

Suppose that the pre-code C? is with its code length of k+s and its information
length of k. Hence, after the pre-coding process, k + s intermediate packets are
generated by encoding & information packets with a linear block code C”(k +
s, k), which is designed to decode the unrecovered infortation packets from the

recovered packets alter the LT decoding process.

4-4 Definition (Ivztefmediate"pd'éket) Given &k - information packets
(£orT1yn- -y Tims), B+ 8 mtcrmedmte packets (fo,fl ..... , fras—1) are umqucly
defined as [ o

e

o ‘The information pachts sa,msfy the k constlzuns of LT—code CLT initialised

before the transnnssnon 1 Vi ‘3 ; s

LI

o The k+s mteuucchatc packcts satisfy the ple—(,odmg CP relationship ini-
tialised before the t‘.ransuussmn

4.3.1 Non-Systematic Raptor Codes

A non-systematic Raptor encoding process were first introduced as a graphical

expression in (69) as shown in Figure 4.4, which is a two-layered encoding struc-

ture.
H
1 xilK] i
Precodin -~ \l{
g SISRSS My
‘ Flh:k+s}
LT-coding
& D @& E P D & & & it [1:n]

Figure 4.4: the Graphical Expression of a non-systematic Raptor Encoding Pro-
cess
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The details in the non-systematic Raptor encoding process are listed as fol-

lows:

1. The information packets x = (xy, 22, ...,w3) are pre-encoded in to the in-
termediate packets £ = (f), fo...., fi4s) by a linear block code €,. The
linear block code C,, is with the information length of & and the code length
of £+ s. As depicted in Figure 4.4, the precoding process employs the

row-echelon parity-check matrix H” of the code C,. The H” is defined as:

hyy - hb, 1 0 0
Iy R R 1 0
HP — ’f.l | Yk 'l.f--H | | | (4.5)
A A AN |
Then, the precoding process is equivalent to:
vy, if g <k
=32 b - , (4.6)
im@fil fh<j<hk+s

where Z‘f:l Baibi = b R sl & - - B ajb;.

2. By employing the LT encoding Algorithnin 4.1, the intermediate packets are

further encoded into the transinission packets u.

At receiver, the corresponding decoding process for a non-systemnatic Raptor
code also involves two decoders for the inner LT code -7 and the outer pre-code

CP respectively.

4.3.2 Systematic Raptor Codes

In a communication systein, a systematic format code is always preferred. 1n [40],
the algoritlin has been proposed to convert a non-systematic Raptor code into
a systematic oue by applying a restruction on the information packet before the

pre-code.
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4.3 Raptor Codes

In this section, instead of generating an invertible & x & matrix [G8] to pre-
process the information packets, a simplified method to constitute a svstematic
Raptor code is given.

First of all, we introduce a concept of the formatting matrix A, which is
not a strictly traditional G due to the rateless property of Raptor codes. The
formatting matrix A is to concatenate the generator matrix G* of the pre-code

C* with the M"" of the LT code.

Designate AF‘”' as the formatting matrix for the non-systematic Raptor code,

which concatenates the matrix G* and the M*" directly as given in (4.7):

9’1.1 - 9'7.& 0 1 .- 0
M . - e
Yk-1.1 Jr-1. 0 0 1\
Rut ot i o it
A" = Moy Mo« Mg k1 Mo kgs—1
.7 T ol .7
my my ey g MY em
I ot ol N
Mygpsry 70 Mpgsaike Mps 1841 My sl hes—1
G”
AJLT

The rank of the formatting matrix AF""' is determined by the required nuinber
of transmission packets, which ensures a successful recovery over the A information
packets.

Alternatively, the encoding process can also be described as follows:

1. Calculate k£ + s intermediate packets f as:

f = z-G (4.8)
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2. Calculate the transmission packets u as:
u = f (M) (4.9)

If the &k 4+ s transmission packets are generated by a systematic code, the k-+s
columns of A:?"l should be independent to each other. That is, if applying the
In-place algorithin on the first &+ s rows of the A:?"", a full rank square submatrix
((k + s) x (k + 5)) should be obtained.

After processing the In-place algorithm, if the square submatrix is with the
rank less than k -+ s, the column-swapping process on the first & columns is
required. Demote the swappings as a permutation function as #(-). And then,

the formatting matrix for the modified Raptor code is written as Aﬁ”f:

Al = #A™) (4.10)

The first k + s rows in Aﬁ”' correspond to the positions of the systematic
transmission packets. The systematic transmission packets are generated from
the ordered information packets ' = 7~ (x).

The conceptual block diagram of a systematic Raptor encoder which deals the

Raptor code as a concatenation code, is shown in Figure 4.5.

, Pre—code LT Enc

L J

X

(i, 1)

b e m e - ==

Figure 4.5: Systematic Raptor encoder
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At receiver, the corresponding decoder works to re-generate the matrix of
Al with the information contained in the headers of received packets. Once the
matrix of Aﬂ"' is verified to contain a section of (k + s) x (k + s) matrix with a
full rank. The missed information packets can be re-encoded witl: this systenatic

matrix.

4.4 Numerical Results and Discussion

In the works of MacKay [41], Shokrollahi [68], LT codes and Raptor codes have
been proved as a class of sub-optimal erasure codes. Therefore, the actual number
of transmission packets for a successful transmission, as denoted as &', and the
number of the original information packets, as defined as &k have the relationship
of K =~ k.

Even though it has been claiimed that &' = k, it is still very crucial to know
the number of extra transinission packets required in order to recover the whole
information file.

Designate 6 = A" — k as the number of the extra transmission packets to
contribute a successful transiission. The value of ¢ is the so-called overliead in a
complete transmission, which is a measure of the efticiency and the computational
complexity in an erasure coding scheme.

The first discussion is on the relationship between the overhead and the size of
the information file during a transmission via the BEC. The degree distribution

function applied in the simulation is given as follows:

Qx) = 0.066667z' + 0.52% + 0.166667x* + 0.083333z* + 0.05x°
+0.0333332° + 0.023810z7 + 0.0178572% + 0.0138892 + 0.011111::°
+0.009091:"" + 0.007576x'? -+ 0.0064102"* 4 0.005495x'* 4- 0.004762x"
(4.11)

Equation (4.11) has also been employed in the 3GPP [1] as the standard
distribution when & < 20,
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Figure 4.6 illustrates the histogram of the actual number of required trans-
mission packets to ensure a successful recovery on a file of 10,000 information
packets, when the channel erasure probability p equals 0.5. In other words, the
probability of each transmission packet being erased during the transmiission is
50%. The mean value of & is 10472, that is, for a full recovery of 10,000 infor-
mation packets, the systemn requires the transmission overhead of 4.72%k which

is a reasonably small number.

0.35 T T T T
k=10000 .——3
0.30 & -

025 | -

0.20 - ’—- -

Density
I

0.15 |- -

0.10 | =

0.00
10000 10500 11000 11500 12000 12500 13001

the Number of Required Transmission Packets

Figure 4.6: Histogram of the actual number of required transmission packets
when the number of information packets is 10,000 and p = 0.5
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By halving the number of information packets in Figure 4.6, the LT code
generated with the same degree distribution function requires an overhead of
a slightly more percentage over the size ol the information file. As shown in
Figure 4.7, the mean value of the actual number of the transinission packets is

5320 and the overhead percentage is 6.4%.

0.30 T T T T
k=5000 ———

0.25 -

0.20 | .

Density
(=]
o
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1

0.10 - H -

0.05 -

0.00 L2 L ' '
5000 6000 7000 8000 9000 10001

the Number of Required Transmission Packets

Figure 4.7: Histogram of the actual number of required transmission packets
when the number of information packets is 5000 and p = 0.5
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The saune LT code as above has been employed to transmit an information file
with 1024 packets. The histogram in Figure 4.8 implies a much higher overhead
percentage, which is 12.7% and the mean value of the number of the required

transmission packets is 1154.

0.25 T T T 1
3 k=1024 ——=
0.20 |- 4
0.15 | i
> |
‘o "
c £
[}
D —
0.10 | 4
!
0.05 | H i
il
R
L]+
[l Vi 1| i { ‘-h—-r_)_ﬁl—.— . 1 1

0.00
1000 1200 1400 1600 1800 2000

the Number of Required Transmission Packets

Figure 4.8: Histogram of the actual number of required transmission packets
when the nuimber of information packets is 1024 and p = 0.5

Figures 4.9, 4.10 and 4.11 exhibit the histograms under the condition of dif-
ferent sizes of the information files of 512, 250 and 125, respectively. The less the
information packets, the higher the overhead percentage is. Especially, when the
information file with the packet number of 125, a successful transinission requires

an average overhead percentage of 32% which is about 1/3k.
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the Number of Required Transmission Packets

Figure 4.9: Histogram of the actual number of required transmission packets
when the nuinber of information packets is 512 and p = 0.5

The examples on the relationship between the overhead percentage and the

information file size have been concluded in Table 4.2 as follows:

k 10000 | 5000 | 1024 500 250 125
mean 10472 | 5320 { 1154 601 314 165
overhead % | 4.72% | 6.4% | 12.7% | 17.4% | 25.6% | 32%

Table 4.2: The Overhead Percentages on the different sizes of the information

files. when p =0.5
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Figure 4.10: Histogram of the actual number of required transmission packets
when the number of information packets is 250 and p = 0.5
As stated above, short LT codes are not able to perforin sub-optimally. There-

fore, our second discussion is to answer the question:
Whether a choice of a pre-code can make difference on the performance of short

Raptor codes?
To answer this question, we evaluate a short Raptor code of the length of 155

with two different pre-codes:

o a regular-LDPC code generated by the 3GPP standard {1].
e the binary-image RS code BRS(155,125) with a very dense parity-check
matrix

The simulation displayed in Figure 4.12 implies when the Raptor code is short,

the pre-code does not significantly improve the performance dominated by its
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Figure 4.11: Histogram of the actual number of required transmission
when the number of infornation packets is 125 and p = 0.5

inner code (the LT code) part.
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raptor-regular Idpe vs raptor-BRS<(155,125)-(Raptor decoding algorithm)
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Figure 4.12: A Comparison on the Raptor Code Performances with Different
Pre-encoding Scheme: Binary Reed-Solomon Codes vs Regular LDPC Codes
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4.5 Summary

4.5 Summary

I this chapter, we study and investigate fountain codes including LT codes and
Raptor codes. The matrix representations of LT codes and Raptor codes are
introduced in this chapter. We have simulations on LT codes and Raptor codes.

The findings are:

e \When the value of k is more than 5000, the simulation results agree with

the claim of &' = k asymptotically.

e \When the nmnber of the information packets is less than 5000, the overhead
pereentage is more than 10%. Especially when the information file is of a
small size less than 200, the overhead percentage is up to 30% of the file

size.

e Different pre-codes make nearly no difference on the performance of short

Raptor codes.

In the presence of the difference overhead percentages caused by the diflerent
sizes of the information files, the reason behind it becomes of interest. The future

work is suggested on a study of the randomn matrix theory.
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Big doors swing on little hinges.
W. C. Stone

Capacity Approaching Codes for the
Binary Erasure Channel Using a Product
Packetisation Method

5.1 Background

Network transmission is based on packet transmission. Multicast and broadcast
are typical examples. The usual way to get around packet loss is to employ a
protocol in which receiving parties acknowledge received packets. To limit the
amount of feedback to the senders and the number of redundant packets sent
to receivers, the system requires an erasure correcting code which is capable of
provides a means to recover the lost/erased packets at receiver without the need
for re-transinission.

One model for the network transmission is the binary erasure channel (BEC),

which was introduced by Elias [19] in 1955. With a packet lost/erased due to
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network congestionr with probability p, the BEC has a channel capacity of 1 - p.
For a binary erasure channel, a rate R code eucodes a message of size K into
a transmission of K/R = N bits, so that the original message can be recovered
from the unerased positions of the N bit nessage.

In a milestone paper, Luby et. al. [38] proposed the first realisation of a class
of erasure codes — LT codes, which are termed rateless and are generated on the
fly as needed. In [G8], Shokrollahi introduced the idea of Raptor codes which
adds an outer code to LT codes. Raptor codes have been established in order
to solve the error floors exhibited by the LT codes. The study on LT codes and
Raptor codes have been given in Chapter 4. It has been verified in Chapter 4 that
fountain codes arc sub-optimal ecrasure codes only when the information file is
large enough with more than 10000 packets. Otherwise, the overliead percentage
can be as high as 30% in order to recover an information file witl its size of 125
packets, when the erasure probability p = 0.5.

On the other hand, low-density parity-check (LDPC) codes have been studied
in (16, 39, 54] for application to the BEC. The iterative decoding algorithin,
which is the same as Gallager’s soft-decoding algorithm in {24], was implemented
in [39]. Capacity-achicving degree distributions in design of LDPC codes for the
BEC have been introduced in [39, 49, 67). Finite-length analysis of LDPC codes
over the BEC was accomplished in [16]. In that paper, the authors have proposed
to use finite-length analysis to find good finite-length codes for the BEC. However,
all these codes suffer from error-floor problems.

It is nature to consider Reed Solomon (RS) codes for the applications for
network transmissions because they are optimal erasure codes. However, their
non-binary and dense structures lead the enormously high-computational com-
plexity in both the encoding process and the decoding process.

Bleichenbacher et al. [7] proposed an interleaved RS for the ¢-SC, where ¢ =
Q™. Given a data sequence {u&p, &1, ..., Tr-1} in GF(q), each z; can be written
as a vector (&;y,%;9,. .. .4 m) Of elements over GF(Q). By applying an RS
code (n., k) over GF(Q). each vector (o, %1 ... .. zx-1 ) can be encoded into a
codeword (yo.j, ¥1.j:¥n—1.;). Then, we transmit the vector (¥, ..., ¥.—1) over the

channel, of which each y; contains (yi1.vi2.....Yim). Il an error occurs during

the transmission at position ¢, it is highly possible that all the 1 components of
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that position are corrupt. Therefore, when applying an algebraic decoder, the
error locator polynomial should be the same. The radical idea of interleaved
RS coding is the same as our proposed product packetisation structure in this
chapter. The product packetisation is universal for all linear block codes. Also, we
construct the RS code as an encoding-on-the-fly structure which is more effective
and efficient for a data trasnmission.

The contribution of this chapter is to develop an coding scheine using incre-
mental redundancy with an ML decoding algorithim. The algorithm has two key

clements:
o the Product Packetisation structure
o the In-place decoding algorithin

The proposed algorithin has an overall computational complexity of O(R!?).
Additionally, we propose the most powerful codes for the erasure channel, the
Maximum Distance Separable (MDS) codes [43] together with a rateless trans-
mission protocol.

The chapter is organised as follows. In Section 5.2, we describe the prod-
uct, packetisation method and the rateless transmission protocol. In Section 5.3
and 5.4, we give the implementation by using Reed Solomon (RS) block codes
and analyse the computational complexities on both encoding and decoding. In
Section 5.5, nuinerical results are given for these codes in comparison to LT codes,

BCH codes and MDS codes. The conclusions are given in section 5.6.

5.2 Product-packetisation Transmission Proto-

col

5.2.1 Product Packetisation and De-packetisation

As we know, for network transmissions, a long message is usually broken up
into a sequence of blocks which are then transmitted separately. In this chapter,
we introduce a novel packetisation method ~ Product Packetisation. Instead of

placing the symbols into the sequential packets, we first split the data into blocks
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corresponding for the codewords of all erasure code, encode it and then packetise
it by using symbols at the same positions of cach codeword. Denoting the length
of input as l; and the payload size of each packet as [,, the minimum number of
packets needed can be calcwlated by 14/,

Hereafter, a RS block code € with this scheme is used with the number of
information bits k =1, and a nominal code rate 2. The actual transinitted code
rate is adaptive as deseribed below. To ensure the cefficicney of a transmission,
the nominal code rate R is chosen to correspond to twice the average congestion
probability

A network packet is composed of a payload and a fixed-length header. For a
linear block code C(n. k), there are & information packets and n — k parity-check
packets, but the benefit of using the RS codes is that only & packets need to be
received and these can be any k packets. For convenience, the first & symbols are
termed information symbols. The reason for the variable nurtuber of parity-check
packets is that the transmission uses ncremental Redundancy (IR).

The #-th packet contains I information symbols whose positious are at j-k+i,
where y =0.1..... (la — 1) and 0 < i < k. The structure of the i-th packet is

shown in Figure 5.1.

ly
k
R IR A R v [ [ o C
T, Tl\i /2k+i /(Ip—l)k+i
I I I ................................. I
I :
The ith packel |:| |
f f
Header Payload

Figure 5.1: Packet construction for the i-th packet
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The function of the header part is to handle the data block during the trans-
mission. The header includes information which identifies the packet. To simplify
the decoding, we use sequence numbers in the header to label each packet, i. e.,
if the “* and “i + s* sequence number are received, it can be concluded that the
packets j, where j =i+ 1,...,i4 5~ 1 have been erased during the transmission.

At the receiver, all the received information packets need to be restructured
into a bufler X with length {4. If the i-th packet is received, the symbols contained
in the packet should be placed in the buffer at the positions of zjxp4i, where
j=0,....k=1;if it has been crased during the transmission, ?’s will be placed

in the positions of x4y, where j =0,... .k =1 to mark the symbols as erased.

In this paper, we have assumed I, >~ n. This can be solved by Gaussian reduction

and has a complexity of the order O(n*) = O({}®) = O(K*®).

5.2.2 Protocol Description

The packets are transmitted continuously and at each destination host, they
are depacketisated and decoded into a buffer with a length of {y. If after & +
@ packets have been sent, all the information packets are received, a positive
acknowledgement (ACK) is sent and the transmission of the current codeword

ends. The protocol structure is shown in Figure 5.2.

Packels received

Packets 1o be sent T, R\

Ist |:| Depacketiser
2nd I:’ Buffer /Er:]scd bit
i |

WO — -
T
weuh ] \ ‘

Received or decoded Successfully

ACK

Figure 5.2: The Protocol Structure
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Cousider an (n, k) RS code C, which has n symbols and A information sym-
bols. After & symbols have been transmitted, transmission of the n — & symbols,
continues one symbol at a time until all the acknowledgements fromn destination
hosts have been received. If after transimitting a symbols, not all the acknowledge-
ments have been received, transimission is repeated, one symbol at a time, starting
with the first symbol. The total number of symbols transmitted S = 2 + np,
where p is the number of repeated blocks and z is the number of symbols which

is transmitted in the final block.

5.3 Rateless Reed Solomon Codes

Reed Solomon (RS) code, as known as the most popular maximum distance
separable (MDS) code, has been considered as one of the optimal erasure codes.
The RS code is designated as Crs with its length n = ¢™ — 1, coordinates k and
dinin = 1t — k + 1 over the Galois Field GF(¢™) and written as Cgg(n, &, dpin)-

5.1 Definition (MDS Codes). [43] For a linear code C(n, k, d, ) over any field,
maximum distance separable (MDS) codes have the maximum possible minimum
distance satisfying the equation of

dpin = n—k+1. (5.1)

5.1 Lemma. A code € is a MDS code if and only if every set of n — k columns of
its parity check matrix H are linearly independent.

Proof. Following the definition of the minimum Haming distance d;, of a
linear block code €, the value of d,,i, equals to the smallest positive number of
columns of its H which are linearly dependent. Whereas, if and only if no n — &
or fewer columns of H are linearly dependent, the code € then has its minimum
distance of d,;;,, = n — k + 1 and therefore it is a MDS code. o

In this section, we describe a way to encode the input symbols, using the
“encoding-on-the-fly*. This is one of the main strength of LT codes. The disad-

vantage of LT codes is that they are not very powerful codes.
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Linear block codes can be generated from their parity-check matrix, denoted
by H. which is usually a row-echelon reduced H matrix. Any matrix of rank &
can be desceribed by the parity-check equations h;, wherei =0,1,...,n -k ~ 1.

Each parity-check equation h; can generate a paritv-check p; independently.
The variable rate can be realised by generating parity-checks only if required.

For an (n, k) RS code C over GF(g), and n =4q — 1 and ¢ is a primne number
or a power of a primne number and a is a primitive eleinent of GF(¢). An RS code
has a minimuin distance d,,;,, = n — K+ 1 and can correct. any erasure pattern
involving up to n — k erasures. The parity check matrix of an RS code can be

represented by:

1 a &2 . C\,"_l
1 w2 ot .- a2n=1)

H = ) ) ) ) ) (5.2)
1 O‘lmin_l a-2(dmin“” R Q("_l)(dmin-l)

This H matrix is not cflicient for our propose because every paricy check
syibol requires a calculation of using » symbols. From Theorem 11 — 9 in [43],
there exist cyclic MDS codes over G F(q). In order to efficiently perforin encoding
on-the-fly, we will use the cyclic form of the H matrix. For this, the parity check

polynomial h(z) of the RS code is used.

Define the set of powers of roots as I' = {1,2,..., dyin — 1}
n—1 k
h(z) = H (x —a') = Zﬁ;:r:'. (5.3)
i=0,ig I i=0

The H matrix can be written as:

G 6B - B O
0 Bo A -+ B O

(5.4)
0 - - B B - B

Each of the G; is an element from GF(q). For binary transmission, ¢ = 2™
can be used to construct the RS code. As an example, for ¢ = 2* = 16, a has
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a binary vector representation of {0, 1.0, 0] and multiplication by o corresponds

0100

“?68). And also /3 can be obtained
110

to multiplication by the binary matrix { {
0
by af. Therefore, by replacing the GGF(16) values in (5.4), a binary form of the

H matrix can be obtained. Encoding on-the-fly can be efficiently performed in

this case by using parity check equations involving a imaximwn of k4 1 bits. On

E2L bits; 2 (k + 1) per GF(g) symbol.

average there will be 2

Assume the average weight of the parity-check equations is w. For a single

parity-check generation, the encoding complexity is O(w). If the erasure prob-

k-8
1=é

after receiving & unerased symbols. The average number of parity symbols cal-

ability of the channel is 4, the number of erasures, denoted as ¢, is £ =

culated equals . Therefore, the average overall encoding complexity can be
written as: € - O {2 (k+ 1)). For binary H matrix, the encoding complexity is

O (5 (554)) m).

5.4 ML Decoding Algorithm on Rateless RS Codes

Let x’ denote the received vector. According to [16], optimal decoding is equiv-

alent to solving the linear systemn, shown in {5.5). In our case, on average -k + ¢

packets are transmitted before A unerased packets by each destination host.
Accordingly the following set of equations need to be solved from the H

watrix shown by (5.4).

k+e—1

D hi=0, =0 -1 (5.5)
i=0

For example, for an RS code, we have (5.6).

fo A - A
0 ,3() ﬁ} J."l

o = 0 (5.6)
0 Bo Tiepe-
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for cerasures 0 <e<n—-Ah-1.

This linear system can be used for solve for at most n — k erasures in thie case
of RS codes. If the equation (5.6) has a unique solution, an optimal algorithin is
possible. The Gaussian Elimination (GE) algorithim is considered as an optimal
algorithm over the BEC, but has a complexity of O(N3).

We propose a reduced complexity ML algorithin — In-place Algorithm (10,
7d] (described in Chapter 2.4) by eliminating the colunn-permutations required
combined with a two dimensional code so as to achieve a reduction in decoder
complexity. The conventional linear system equation of HxT = 0 can be written

forall i€ {0,...,N — K — 1} as:

N-1

s _— __,‘f _',J_ el
Sohigal = > ki 4> hijal =0 (5.7)
j=0 Jje& je€

The erased positions € can be solved as a function of the non-erased positions
E:

S hyhy = > hi (5.8)

je& j€E

This is solved by the GE method and has a complexity ranging from O(N?)
to O(N?), depending on the algorithin used. The proposed two dimeusional
structure uses a code of length N = n? and the coded bits are transmitted as
n packets of length n bits. Each packet s contains all bit positions s + pn in
the transmitted codeword, with 0 < p < n. This establishes a regular, two-
dimnensional structure on &: if bit position s is erased by a packet loss, then so
are all the bit positions s 4+ pn. In this case, if we define £ = {s € £|0 < s < n},

Equation (5.8) becoines

n—1 n=1
ILI'.8+P'lms+P:r = hi-s‘i‘l‘"a'ﬁ‘*'lf" (59)
=0 se&’ p=0 5%’

By swapping the order of summation and writing the index ¢ = {4+ vm, where
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mn=N-—K,1€{0,....m-1}and v € {0,...,n - 1}, we obtain:
n-1 n-1
i i) I} -
L L hl+um.s+pu:l-'_.,-+p,. = E Z h-l-}-um.s+pn:':;+p" (‘:)- ]-D)
jet! p=0 jeg p=0

We use a code such that hyipm sipm = 0(2, P)y, with d(v.p) = 1if v = p and

zero otherwise. Equation (5.10) can be written in this case as:

n—1 n—1

Z Iy Z v, p)riy,, = Z hy g Z S(v. )y (5.11)

Je&! p=0 JE? p=0

Z I.!’[.S"I:.:‘-f-lll'r = E h‘f.-‘i"l::a+uu (512)

sel’ et

Vie {0,....m— 1} and .5 € {0,...,n—1}. This can be solved by the In-place
algorithm and has a complexity of the order O(n?) = O(N'?) = O(K!9).

An ACK is sent when all ACKs have been received, a total of np + z symbols
will have been transmitted, whose p is an integer. On average np+z=k+ . In

this sense this is a rateless erasure correcting systen..

5.5 Numerical Results and Discussion

We have evaluated the perforinance of LT codes and cyclic codes for ¥ = 225 and
N = 3969. For N = 225, the LT code with its recovery decoder produces very
poor performance. To improve the performance of the LT code we have replaced
the recovery decoder with the ML decoder. The LT code (225, 105) was divided
into 15 packets with a packet-size of 15 bits and the cyclic code (225, 105) was
arranged as a 15 x 15, two dimensional code with the samme packet-size. The cyclic

code (225, 105) hias a generator polynomial

g@) = 14z 4250 4 260 4 120, (5.13)



5.5 Numerical Results and Discussion

which is a replication of the BCH (15, 7, 5) code with g(z) =14+ 2=+ o + ' +
a8, The cyclic code is capable of correct decoding up to and including -1 erased
packets. As 1+ x'® divides 1 4+ 2?2, the decoder for this cyclic code can be
implemented with the reduced complexity decoder. As shown in Figure 5.3. the
performance of the cvclic code (225, 103) is significantly better than that of the
LT (225. 105) code. When p = 0.1, the result of the cyclic code (225, 105) is over

2 orders of magnitude better than that of the LT (225, 105).

10° m 3
107! E
& p
wo L BT e 4
u.
= i
&
.2 —
g '0 3
] =
@ ]
€
L e e e e y
i 4
107 5
oo e e e : (225.:105) clc c;)de {with tha In-placedeéoder; |
. | | (22?.105) T co;;ie {with the Fliecovery de?uder ]
10

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Packe! Erasure Probabiity

Figure 5.3: FER vs the erasure probability of erased packets for the ¢vclic code
(225, 105) and the LT {225, 105) code over the Erasure Channel, both using ML
decoding

To verifv the decoding complexity of O(N!3), we implemented a longer code,
the cyclic code (3969, 2016) and the LT (3969, 2016) code. The cyclic code (3969,
2016) is based upon the generator polynomial of the BCH (63, 32, 12) code with an
expansion factor of 63. The generator polynomial of the BCH (63, 32, 12) code is
g(r) = 1+e+o7+L0+ 224 M rP o0 o8 24 00 4 2 020 4 30
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Consquently, the cyclic code (3969, 2016) has a generator polynomial of:

_(](5’:) — 1+:L_GJ+ :',_-Hl +3’_5Gn +:L.15(j +:L_SS2+3:945+:"_10()5 +._r:llii-l +:L_ll'J.'

1323

o e
+:J;"GO +rx + 1638

4 1760 1890 4 1953
The RS (63, 32,32) is generated by the primitive polynomial p(x) = 1 + z 4 28
in GF(2°%).

The simulated performance is shown in Figure 5.4. On a standard 1GHz PC,
the LT (3969, 2016) code took 775ms to encode each codeword and 14lms to
decode each codeword for p = 0.4 (using the Recovery Decoder). In contrast,
the cyclic code (3969, 2016) took only 5ms to encode each codeword and 8mms
to decode cach codeword using the In-place decoder for p = 0.4 (the decoding
titne for this decoder is independent of the value of p). Noting that RS codes
are MDS codes whose minimum distance D = ¥ — K + 1, Figure 5.4 shows the
simulation performance of the RS-asscinbled cyclic code is virtually identical to
the theoretical bound for RS (MDS) codes.

Interestingly, the performance is more than one order of magnitude better than
that of the BCH-assembled cyclic code, deinonstrating the loss attributable to the
BCH code being nou MDS. Figures 5.5 and 5.6 show the histograms of the number
of transmitted packets required when p = 0.25. (Assumning an acknowledgement
is sent to prevent further packets being transmitted once correct decoding is
achieved) The average number of transmitted packets, n, . needed when using
the Reed Solomon cyclic code is 2688 and that for BCH cyclic code is 2814. This
demonstrates that the Reed Solomon code achieves the erasure channel capacity
of k = n,{1 — p) since k = 2016 and (1 — p) = 0.75.

Figure 5.7 shows a performance of a long code, the cyclic(76500,39300). The
simulation performance of the RS-assembled cyclic code is around half order
of magnitude better than that of the BCH-assembled cyclic code. From the
histograms of Figures 5.8 and 5.9, when p = 0.42, for using the BCH cyclic code
and the RS cyclic code, the average nuinbers of transmitted packets are 68385
and 67758 respectively.
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Frame Error Rate (FER)

8
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Figure 5.4: FER vs the erasure probability of erased packets for the cyvclic code
(3969,2016) based on the BCH(63.32,12) and the Reed Solomon(63,32.32), the
LT(3969.2016) code and theoretical result over the Erasure Channel
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Figure 5.5: Histograin of the cyclic code (3969,2016) based on the BCH(63.32,12)
when p = 0.25, mean = 44.7
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Figure 5.6: Histogram of the cyclic code{3969. 2016) based on the RS(63, 32.32)
when p = 0.25. mean = .12.7
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Figure 5.7: FER vs the erasure probability of erased packets for the cyclic code
(76500.39300) based on the BCH (255,131,37) and the RS (255, 131.125) over
the Erasurc Channel
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5.6 Summary

In this chapter, we present a new coding and decoding algoritlun for packet net-
works modelled as a BEC. The algorithim combines an ML decoder with a two
dimensional code and enables the use of optimum MDS codes (RS codes). In the
past, iterative decoding algoritluns, although non-optimuin, have been used as
a good tradeoff between performance and computational complexity. With the
new approach, decoding is ML and the computational complexity is reduced to
O(K'®}. This is less complexity than the case for iterative decoders. In addi-
tion, compared with LT codes, the new decoding algorithin with algebraic codes
achieves a significant improvement in performance, and approaches theoretical
limits when using RS codes. A method of realising a rate-adaptive transmission
method has been described together with analysis and results which demonstrate

that RS codes achieve the capacity limits of the erasure channel.
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Simple things should be simple, complex things should be
possible.

Alan Kay

Concatenated Reed-Solomon Coding
with Hard-decision for the Rayleigh
Fading Channel

6.1 Background

The Rayleigh fading channel is widely used as a immodel of wireless communications.
Channel coding techniques are a powerful tool to improve the reliability and
cfficiency of wireless communications. From [25], [33} and {27], the performance
on Rayleigh fading channels and Turbo codes designed for the particular channel
have been explored and given. In [31], irregular LDPC codes have also been
applied to an uncorrelated flat Rayleigh fading channel, and shown to outperform
Turbo codes over a wide range of mobile speeds.

Due to the existence of error bursts in the Rayleigh fading channel, the erasure

correcting codes have been considered as the code candidates for the application
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of this specified channel. In this chapter, we have proposcd the classic erasure
correcting code - the Reed Soloton (RS) code in reason of the randoin bursts.
The RS code constitutes an efficient class of linear codes using imulti-bit symbols
and has the strong capability of correcting/detecting syinbol errors and correcting
sybol erasures.

It is well-known that an RS code C(n, k,d), where n is the code length, &
is the information length, and d is the Hamming distance of it, is capable of
correcting up to t = [(—"—;ﬂj rancdom symbol errors, and correct up to n — k
symbol erasures. The classical algorithms of Berlekamp [d] and Massey [43] can
correct L errors and ¢ erasures when 2t + ¢ < n — A, which can achieve the error

bound Pr = (2=} with running time O(n2). In [72], it was presented that a
&

polynomniial time list decoding algorithin for RS codes can correct more than 3
errors, provided & < /3. Using the Roth & Ruckenstein [65) algorithin, the same
bound Pr can be achieved with running time O(n? log® n). Since more erasures
than errors can be corrected, it is advantageous to deternmine the reliability of the
received RS-coded symbols and to erase the low-reliability symbols prior to the
decoding process.

This chapter is organised as follows. Section 6.2 briefly reviews the Rayleigh
fading channel. In Section 6.3, we describe the system arrangement. In Sec-
tion 6.4, we give an analysis of a concatenated RS code over the Rayleigh fading
channel. In Section 6.5, numerical Frame Error Rate (IFER) results are given for
these codes in comparison to soft-decision decoding of LDPC codes as a function
of the overall concatenated code rate. The suminary of this chapter is given in
Section 6.6.

6.2 System and Channel Model

6.2.1 Rayleigh Distribution

The Rayleigh fading channel is associated with the Rayleigh distribution which
15 a continuous probability distribution. This distribution is named after Lord
Rayleigh, which is built up based on two normally distributed variables, both of

which are with an equal variance [50).
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Assuine u, and us as two Gaussian variables and both of them are distributed

according to N(0.¢?)°, and hereafter the Rayleigh random variable is written as:

w=\ful+ul (6.1)

The probability density function (PDF) can be derived from the PDF of the

Gaussian variables which has been given in many textbooks [55].

27 >0

(6.2)
otherwise

e
PDF(u¢) = a?
0
Its corresponding cumulative density function (CDF) can be derived by integrat-
ing the PDF.

ll2
l1—e"2%2 u>0

CDF(u) = (6.3)
0 otherwise

The mean value is E(u) = 0,/ and the variance is var(u) = (2 — §)o*.

Figure 6.1 and Figure 6.2 illustrate the PDF graph and the CDI grapl: of the
Ravyleigh random variables for different values of o, respectively.

In this chapter, we only consider the Rayleigh random variable generated from
two individual zero-mean Gaussian random variables rather than the generalised

Rayleigh random variable.

*N(m.a?) denotes the PDF of Gaussian randomn variables with m as the mean value and o
is the variance.
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Figure G.1:
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Figure 6.2: The CDF of the Rayvleigh random variables for different values of o



6.3 the System Arrangement

6.2.2 Rayleigh Fading Channel

In this chapter, we assume the Rayleigh fading channel is a frequency-non selec-
tive, slowly fading channel, which means the fading condition of the channel is
processed as a constant during at least one signalling interval [55].

Denote the transmitted sequence = {wg,x), a9, ..., x;} passing through a
discrete timme Rayleigh fading channel with an additive white Gaussian noise,
where 7 using as a bit index as usual. x; is defined as a BPSK-modulated bit
with its amplitude as £/Amp(x;). At receiver, the received discrete-time based
band-pass signal, which is designated as y = {yo. 01, ¥2.-- -, ¥}, can be derived

from z by the relationship:
Yi = axi +n; (6.4)

where a; is called the Rayleigh distributed fading coefficient with Amp(a?) = 1
and n; is a complex white noise sample with its variance Ng/2 per dimnension.

The probability density function (pdf) of the output y can be described as:

ooy oL f (y-w-a)
p(Ylw. o) = ﬁe-\l)(——%g—)- (6.5)

where w = (1 — 2z) is the binary input after the BPSK modulation, 6% = (55 -
(Ep/No)), and R is the code rate.

6.3 the System Arrangement

The radical idea for the proposed system is to recover the severe faded transmitted
symbols by Cslng, ks, ds] and correct the errors by Cifny. ki, dy).

Figure 6.3 gives the arrangement of the system.

\We deploy the product packetisation method to arrange symbols into packets.
Instead of placing the coded symbols into sequential packets, the data is firstly
split into blocks corresponding for the codewords of all erasure code. Secondly,
we encode the data block by block and then packetised them by using symbols
at the positions of each codeword. More details has been clearly introduced in
Chapter 5.
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Figure 6.3: an Overview of the Proposed Transmission Systemn

Instead of placing the symbols into the sequential packets, we first split the
data into blocks corresponding to codewords of the RS erasure correcting code,
encode them and then packetise symbols fromn the same positions of each code-
word. Denoting the length of input as l; and the payload size of each packet as
l,. the minimum number of packets needed can be calculated by ;/1,. Hereafter,
a RS block code C with this scheme is used with the number of information bits
k =1, and a code rate R. For a linear block code C(n, k), there are & information
packets and n — k parity-check packets. but the benefit of using the RS codes is
that only & correct packets need to be received and these can be any k packets.
For convenience, the first A& symbols are termed information symbols. The i-th

packet contains l; information symbols whose positions are at j - & + ¢, where

packets need to be restructured into a buffer X with length {;. If the z-th packet
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is reecived, the symbols contained in the packet should be placed in the buffer at
the positions of 2jxx4i. where j = 0,..., &k — 1; if it has been erased during the
transmission, ?’s will be placed in the positions of x;xx4i, where j =0.... . k=1
to mark the symbols as erased. '

The packets are transmitted continuously and at the receiver, they are de-

packetisated and decoded into a buffer with a length of /y.

6.4 Analysis of Concatenated RS Codes

The most popular decoding algorithin of RS codes is called “error-and-erasure”
decoding algorithin, which is preferable to “error-correction-only” decoding al-
gorithin. With this algorithm, an RS code is capable of correcting i errors and
recovering ¢ erasures, under the condition of 2¢ + ¢ < n — k. Then, we can obtain
the probability of decoder failure as follows:

n—k n—e n
Pr=> > P(tle)P(e) ¢+ Y Ple) (6.6)
=0 1= (n—k—c/2)+1] ce=n—k+1

where P(e) is the probability of ¢ erasures and P(t|¢) is the conditional probability
of t errors given e erasures in the remaining n — ¢ positions, which are defined as
follows:
n _ -
Pl = () it = . 6.7
and

Pt = (7€) st = oy (6.9)

where per ts the probability of an erasure, and p, is the probability of an error
but 1ot an erasure.

To ensure that the system can give good performance in the Rayleigh fading
channel, the BCH code is used to correct and to detect multiple hard decision
errors in each received packet. If the number of errors is sinall, they are corrected
by the Hainming or BCH code. If the number of errors exceeds a threshold, the
entire packet is erased and corrected by the RS code. It is well known that a

RS code can recover 1 — k erasures if a Maximum Likelihood decoding algorithimn
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is implemented. In Chapter 2, we has introduced a complexity-reduced optimal
decoding algorithin - the In-place Algorithm. It is always able to solve the maxi-
mum numnber of erasures correctable by the code. However, for a Rayleigh fading
channel, we also need to consider the Gaussian noise and fading factor which

decrease the energy of each symbol. The system is shown in Figure 6.3.

6.5 Numerical Results and Discussion

In this section. we compare RS codes, with different code rates, concatenated with
different BCH codes with optimal LDPC codes designed using the Progressive
Edge Growth (PEG) technique [32] and bit interleaved for transiission over the
Rayleigh fading channel,

First. we evaluated the performance of RS codes with different code rates. As
shown in Figure 6.4, the RS code (63, 55,9) achieved the best performance, as
its performance is half order of mmagnitude better than that of R§(63, 59, 5) code
and more than one and a half orders of magnitude better than that of the RS(63,
61, 3) code at a FER of 107*.

The siinulation results obtained for the RS code (63, 59, 5) concatenated with
different BCH codes are given in Figure 6.5. The BCH codes used were the
Hamuning (63, 57. 3) code, and the (63,51,5), (63,45,7) and (63, 18, 10) codes
respectively. These codes can detect up to a maximum of 2, 4, 6 and 9 errors,
respectively or correct up to a maximum of 1, 2, 3 and 4 errors, respectively
or a combination of less corrected/detected errors in each received packet. The
performance is improved by using more powerful codes until the rate loss causes
significant degradation to the Ey/Ng. The rate loss for the Hammming (63, 57,
3) code is —0.43 dB; for the (63, 51, 5) code, the tradeoff is —0.92 dB; for the
(63, 45, 7) code, the tradeoff is —1.46 dB and for the BCH (63, 18, 10) code,
the tradeoff is —5.44 dB. Observe that the concatenated codes have different
coding gains over the original RS code, especially the one concatenated with the
BCH(63, 45, 7). which has a coding gain of approximately 2.2 dB at a FER of
10~3. Interestingly, the loss is so excessive that when the (63, 18, 10) code is used
, the perforinance is worse than the uncoded performance. Therefore, the rate

loss of the inner codes cannot be ignored.
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Figure 6.4: RS codes with variable code rates in the Rayleigh fading channel

\We also compared the perforimance between the RS code, concatenated with
a BCH code using hard decisions, and the PEG designed LDPC code with soft
decision, Belief Propagation. iterative decoding for the Rayleigh fading channel.
In this comparison, we applied the RS codes and the LDPC codes with the
samne code rate and the same packet size. As shown in Figure 6.6, the RS with
BCH hard-decision decoder achieved a significant performance improvement over
the PEG LDPC soft-decision decoder. At a FER of 1073, the RS with BCH
hard-decision codes can obtain an average coding gain of 2.0 dB over the LDPC
soft-clecision code in the Rayleigh fading channel. This is attributable to the RS
codes being MDS, optimum codes with mmaxiinum likelihood erasure correcting
decoding. This factor more than compensates for the loss associated with hard
decisions for the Rayleigh fading channel particularly as the LDPC codes are not

the most powerful codes due to the necessity for iterative decoding.
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Figure 6.5: RS (63, 59, 5) concatenated by different Hamming or BCH codes in
the Ravteigh fading channel
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FER vs EbNo for RS[63,59,5), RS[63,55.9] and RS[63,61,3] in the Rayleigh Fading Channel
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Figure 6.6: RS with BCH hard-decision codes vs. LDPC soft-decision codes in
the Rayleigh fading channel
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6.6 Summary

In this Chapter, we described the use of RS codes concatenated with BCH codes,
with hard-decision decoding for the wireless Rayleigh fading channel. It was
shown that the best performance is a function of overall code rate. Furthermore
it was shown that the concatenated code combined with simple, hard decision
decoding achieves better results than using an optimally designed (PEG) LDPC
code combined with soft decision decoding. Further work will provide analysis of
the two coding arrangements to show why this is the case. Additionally it will be
determined how far the hard decision concatenated arrangement is from capacity

for the Rayleigh fading channel.
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Conclusions and Future Work

7.1 Conclusions

This thesis is dedicated to the study, design, analysis and evaluation on erasure
codes and their decoding algorithis. Primarily, we are interested in the transfor-
mation of iterative message-passing algorithms for from the AWGN channel into
the BEC.

The first part of the thesis is focused on the decoding algorithms for crasure
codes.

Inspired by the BP algorithin and Gallager’s bit-flipping algorithm, we have
introduced and analysed the matrix-based recovery algorithm and the guess/multi-
guess algorithin. The performance of LDPC codes with the recovery algorithm
suffers from the error-floor problem. The guess algorithm is capable of reach-
ing an optimal performance when the number of guesses is enough to break the
stopping-sets caused by the code structure. However, the computational com-

plexity exponentially increases as the nummber of guesses is augmented. In search
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of a MLD for the BEC, we have proposed the In-place algorithm which certainly
proiises to return an optitnal performance and amazingly has the computational
complexity less than the conventional quadratic thme. (Chapter 2)

In the first part, motivated by the invention of the MLD for the BEC. we
have also investigated the ML-approaching algorithms for the AWGN channel.
The BESCT algorithmn has been introduced and analysed. It comnbines the merits
of the reliability decoding algorithms and the code-structured algorithms. The
simulations and analysis have shown that when the information length is fixed,
the number of errors in the MRB part is less than 4 and the position of the
least likable error is bounded by 4, the BESCT algorithm can obtain the ML
performance with a less computational complexity than the OSD algorithm on
average. (Chapter 3)

The second part of the thesis is devoted to the application and evaluation of
trausulission structures to erasure codles.

\We have studied the sub-optimal erasure codes including LT codes and Raptor
codes in packetised network transmissions. Our investigation and simulation have
shown that when the information file is large enough (for example, with more than
10000 packets), LT codes are capable of recovering the information file with the
actual number of transmission packets similar to that of information packets. If
the information file is as short as the number of information packets less than
5000, LT codes require the transimission packets with the number more than twice
than that of information packets. (Chapter 4)

\We have devised the product-packetisation structure for packet-data network
transmissions. Assisted by their MDS properties, RS codes are capable of real-
ising the desirable rateless transmissions. Combined with the proposed product-
packetisation structure, the In-place algorithin at receiver performs the ML per-
formance. Complexity, frame error rate and error statistics are evaluated which
shows that the rateless RS product-packetisation coding scheme seeimns a promis-
ing candidate for the application of packet data networks, such as broadcasting
and multicasting. (Chapter 5)

We have investigated erasure codes for the Rayleigh fading channel with era-
sures and errors. We have proposed the concatenated RS coding structured by

the product packetisation to recover the erasures and correct the errors. We have
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compared the performance of the proposed coding scheme with hard-decision In-
place decoding to that of optimally designed (PEC) LDPC code combined with
soft-decision iterative decoding. It has shown, at a FER of 107%, the RS with
BCH hard-decision codes can obtain an average coding gain of 2.0 dB over the
LDPC soft-decision code in the Rayleigh fading channel. (Chapter 6)

The major contributions of this work include:

1. We have introduced the matrix-based iterative algorithins, which are the re-
covery algorithm and the guess algorithun. With the matrix representation,
we have suggested the efficient way to choose the guesses. Computer simu-
lations show that with a limited munber of crucial guesses, the performance
of the guess algorithm asymptotically approaches to the ML performance
for LDPC codes. For example, for the PEG LDPC (256,128), with the max-
imum number of crucial guesses of 3, at the erasure probability of 0.35, the
performance of the guess algorithm has been improved by the magnitude
order of 1.5 compared to that of the recovery algorithm, which is close to

the MLD performance by the gap of the magnitude order of 0.5.

2. We have proposed an MLD algorithn, the In-place algorithin, for the BEC.
The proposed algorithm focuses on solving the parity-check equations con-
taining erasures, which has its computational complexity less than the con-
ventional quadratic time. It can be applied for bothh binary codes and

non-binary codes.

3. We have proposed a graph-based ML-approaching algoritlun for the AWGN
channel. We have shown that by applyving a bi-directional code tree, the
proposed branch-evaluation algorithhn based on the cross-correlation met-
ric is equivalent to the classic Dorsch algorithm with a flexible threshold
method. The dynamic threshold method speeds up the decoding process
when the nunber of errors in the MRB is less than 4, the position of the
least likable error is located within the first 4 less reliable bits in the MRB,

compared to the OSD algorithin.
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4.

\We have revealed that the popular fountain codes can only approach the
sub-optimal performance under the condition of the numnber of informmation

packets more than 10000.

. We have proposed the product packetisation of constructing rateless RS

codes for use in packetised network transmissions. We show some that
cflicient rateless RS codes combined with the In-place algorithim at receiver,
can achieve the optimal performance with the computational complexity

less than Q(N'3), where N is the total length of transmitted bits.

We have applied the product packetisation structure on concatenated RS
coding with the hard-decision In-place algorithmn for the Rayleigh fading
channel. Computer simulations have shown that the concatenated RS code
combined with simple, hard-decision In-place decoding is capable of achiev-
ing better performance than using an optimally designed (PEG) LDPC code

combined with soft-decision iterative decoding,.
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7.2 Future Work

7.2

1.

Future Work

Algebraic RS Decoding Algorithms

During the study of erasure correcting codes, a huge ammount of interest has
been raised on RS codes. The non-binary structure of RS codes, which has
been considered as the reason of the high encoding/decoding cormnplexity,
becomes one of the drawbacks of these powerful codes. The breakthrough of
the Guruswami-Sudan algorithin has stirred up the research focused on the
algebraic decoding algorithins for RS codes. It will be valuable to further
study these decoding algorithms and devise practical structures for different

applications.

. Implementation of Rateless RS Product-packetisation Structure

To realise the core findings of our research work on the In-place algorithm
and the product-packetisation structure into the practical world is abso-
lutely meaningful. A field-programmable gate array (FPGA) board is a
popular integrated-circuit, especially deployved in the DSP/Communications
systems. The implementation of rateless RS product-packetisation struc-
ture requires a further understanding of an efficient FPGA programming

and the limited memory allocation.

Further Study on the Random Matrix Theory

After revealing the limitations of fountain codes, the theory of random
matrix rings the bell. To devise a fountain code beyond its limitation on
the short. information file, it is necessary to further understand the random

matrix theory.
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Analysis of the distribution of the number of
erasures correctable by a binary linear code and
the link to low-weight codewords

M. Tomlinson, C. Tjhai, J. Cai and M. Ambroze

Abstract: The number and weight of low-weight codewords of a binary lincar code determine the
erasure channel performance. Analysis is given of the probability density function of the number of
erasures correctable by the code in terms of the weight cnumerator polynomial. For finite-length
codes, zero crasure decoder crror rate is impossible, even with maximum-distance-separable
(MDS} codes and maximum-likelihood decoding. However, for codes that have binomial weight
spectra, for example BCH, Goppa and double-circulant codes, the erasure correction performance
is closc to thal of MDS codes. One surprising result is that, for many (#, k) codes, the average
number of correctable crasures is almost cqual 10 n — &, which is significantly larger than
din — 1. For the class of iteratively decodable codes (LDPC and turbo codes), the erasure perfor-
mance is poor in comparison to algebraic codes designed for maximum dii,. It is also shown that
the turbo codes that have optimised dp;, have significantly better performance than LDPC codes.
A probabilistic method, which has considerably smaller search space than that of the generator
matrix-based methods, is presenied to determine the dpy, of a lincar code using mndom crasure
patterns. Using this approach, it is shown that there are (168, 34, 24) and (216, 108, 24) quadratic

double-circulant codes.

1 Introduction

The erasure comrecting performance of codes and associated
decoders has received renewed interest in the study of
coding over packet nctworks as a means of providing cffi-
cient computer communication protocols [1]. In [2. 3], it
is shown that {n, k) erasurc comecting codes can be used
as an cfficient and cffective solution to recover lost
packets in communication networks without the nced of
retransmission. This is achieved by armanging data in a
squared-matrix  represemtation  (product-packetisation),
where cach column contains a codeword and cach row rep-
resenis a packet to be transmitted across the nctwork. This
product-packetisation structure allows efficient communi-
cations as not all packets need to be transmitted; the
missing packets are treated as crasurcs and a decoder
can reconstruct them provided that £ independent
packets are successfully received. This efficient communi-
cation scheme has been further improved in [4] to include
crror correcting codes in addition to erasurc correcting
codes. The erasure correcting codes arc also used in dis-
tributed computing systems. For cxample, Rabin [5] pro-
posed a scheme to usc an (n, k) erasure correcting code
1o improve data availability in distributed storage
system. The data are divided into & blocks and encoded
to produce # blocks, which are distributed across »
hosts. In this way, data can still be recovered despite
the unavailability of some hosts. In addition 1o those
mentioned above, the erasure performance of codes, in
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particular LDPC codes are used as a measure of predict-
ing the code performance for the additive white gaussian
noisc channel [6. 7).

It is well known that an (n, k, dy,;,) error correcting code
C, where n and k denoie the code length and information
length, respectively, can correct up to dp;,— | crasures
[8. 9] where dy,in is the minimum Hamming distance of
the code. However, it is not so well known that the
average number of crasures correctable by most codes is
significantly higher than this and almost equal 10 n — 4.
One of the earlier analyses of the erasure correction
performance of panicular linear block codes is provided
in a key-note paper by Dumer and Farrell [10], who
derived the erasure correcting performance of long binary
BCH codes and their duals and showed that these codes
achicved capacity for the erasure channel.

In this paper, an expression is obtained for the probabitity
density function (PDF) of the number of correctable
crasures as a function of the weight enumerator function
of the linear code. Analysis resulis of several common
codes are given in comparison to maximum likelihood
(ML) decoding performance for the binary erasure
channel. Many codes including BCH codes, Goppa codes,
doublc circulant, self-dual codes have weight distributions
that closcly match the binomial distribution [9. 11-13].
It is shown for these codes that a lower bound of the
average number of correctable crasures is n — &k — 2. The
decoder error rate performance for these codes is also ana-
lysed. Results are given for ratc 0.9 codes and it is shown
that for code lengths of 5000 bits or longer there is insignif-
icant difference in performance between these codes and the
theoretical optimum maximum distance separable (MDS)
codes. The results for specific codes are given including
BCH codes, exiended quadratic residuc codes, LDPC
codes designed using the progressive edge growth (PEG)
technique [14] and turbo codes [15].
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2 Derivation of the PDF of correctable erasures
2.1 Background and definitions

A sct of s crasures is a list of erased bit positions defined as f;
where 0<i<ys and fi€1{0---n—1}). A codeword
X = {(xy. Xy, ..., X,—) satisfics the parity check equations
of the parity check matrix H, that is Hx' = 0.

A codeword with s erasures is defined as v = (x,,, x,,,
e N, W Xpooxg ) where x, arc thc uncrascd
co-ordinates of the codeword and the sct of 5 crased
co-ordinates is defined as f,.

There are a total of n — & parity check cquations, pro-
vided the crased bit positions correspond to independent
columns of the # matrix; cach of the erased bits may be
solved using a parity check equation derived by the
classic technique of Gaussian reduction [6. 8. 9}. For the
MDS codes [9], any set of 5 erasures are corrcectable by
the code provided that

s<n—k (n
Unfortunately, the only MDS binary codes are trivial [2].

2.2 Correspondence between uncorrectable
erasure patterns and low-weight codewords

Provided the code is capable of correcting the set of s cra-
sures, then a parity check equation may be used to solve
cach crasure, viz

X, = hU_O‘Tu" -+ hl).lxul + I’u‘z-“u‘. + -+ hg X,

X=Xy, F i, N, Ry,

Xy, = haoX,, F iy, Fhax, bRy,

Xy = h_0%, A X, 0N,

e Yy

where /;; is the cocflicient of row i and column j of H.
As the parity check equations are Gaussian reducced, no
crased bit is a function of any other erased bits. There
will also be n — k — 5 remaining parity check equations,
which do not contain the crased bit co-ordinates x,, namely

I'_\.U'rllu + hx.l"'u, + I’J.Z'ru! +---+ h.\.n-.\-l"'un_._l =0
I's+|.0"'u,, + ','P_i+|.l"‘ul + hs+|.2"’u_» +- hs+l.n-,\‘—l“‘u,___| =0
II'.s’+2.()"‘u,l + h.\+2.l'ru, + hs+1.2xu3 +o-e ek h.\'+2.n—:—l""u._l_, =0

hn—k—l,l)’ru,, + hn—k—l. I""nI + hn—k-l.’_'".u:

+oe hn—k—].n—s—lxu =0

Further 1o this, the hypothetical case is considered where
there is an additional crased bit x;.. This bit co-ordinate is
clearly cqua! o one of the previously uncrased bit
co-ordinates, denoted as Xu,-

'l.fl = “‘u’
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Also, in this case it is considered that these s + 1 crased
co-ordinatcs do not correspond 10 s+ 1 independent
columns of the /{ matrix, but only 10 s+ 1 dependent
columns. This means that X, is not contained in any of
the n — k— s remaining parity check cquations, and
cannot be solved as the additional erased bit.

For the first s erased bits whosc co-ordinates do corre-
spond 10 s independent columns of the H matrix, the set
of codewords is considered in which all of the unerased
co-ordinates are equal 10 zero except for x,, . In this case,
the panity check cquations above are simplificd 10

Xp = by, #u,

X, = h,_p.ru’
= 2
X, = l’z.p-"u, (2)
"7/‘--! = h-f-l-Px'-‘p
By dcfinition, as there are, at least n—3s—1 zero

co-ordinates contained in each codeword, the maximum
weight of any of the codewords above is s+ L.
Furthermore, any crased co-ordinate that is zcro may be
considered as an unsolved co-ordinate, since no non-zero
co-ordinate is a function of this co-ordinate. This leads 10
the following theorem.

Theorem !: The non-zero co-ordinates of a codeword of
weight w that is not the juxtaposition of two or more
lower weight codewords, provide the co-ordinate positions
of w—1 crasures that can be solved and provide the
co-ordinate positions of w erasures that cannot be solved.

Proof: The co-ordinates of a codeword of weight w must
satisfy the equations of the parity check matnix. With the
condition that the codeword is not constructed from the jux-
taposition of two or more lower weight codewords, the
codeword must have w — | co-ordinates that correspond
to lincarly independent columns of the M matrix and w
co-ordinates that correspond o linearly dependent
columns of the H matrix.

Corollury I: Given s co-ordinates corresponding 10 an
crasure paticrn containing s crasurcs, s < (w — k), of
which w co-ordinates arc cqual to the non-zero co-ordinates
of a single codeword of weight w, the maximum number of
crasures that can be corrected is s — | and the minimum
number that can be corrected is w — 1.

Corollary 2: Given w— 1 co-ordinates that correspond
w lincarly independent columns of the A matrix and w
co-ordinates that comrespond to  lincarly dependent
colummns of the H matrix a codeword can be derived that
has a weight less than or cqual to w.

The weight enumcration function of a [9] is usually
described as a homogencous polynomial of degree n in x
and y.

n—1
Wele.y)= 3 AL
i=0

The support of a codeword is defined (9] as the co-ordinates
of the codeword that arc non-zero. The probability of the
successful crasure correction of s or more crasures is
equal to the probability that no subset of the s erasure
co-ordinates corresponds to the suppor of any codeword.
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The number of possiblc erasure patterns of s crasures of a
codc of length nn is ( ) For a single codeword of weight w,
the number of crasure patterns with s co-ordinates that
w ) Thus,

the probability of a subset of the s co-ordinates coinciding
with the support of a single codeword of wcight w,
Prob{x,. € f;) is given by

include the support of this codeword is (:_

(n - w)
s—w
Prob(x,. € f,}) = ———-~

(%)

and
(n— W’)!S!(" - 3)’
Problx, € £.) = o —witn —s)!
simplifying
— Yyt
Prob(x, € f,) = f,’:(s—_uf‘;r

By assuming that no erasure pattern includes more than one
codeword, a lower bound of the probability of successful
erasurc correction of s or morc crasures may be derived
{rom the probability that the erasure pattern does contain
a codeword of weight w < s

i A (n —j)!.s!

Prob(s) =
rob(s) a2 s =)

The probability of the code being able to correct exactly
crasures, but no more, Pr(s) fors < n—kis

Pr(s) = Prob(s + 1) — Prob(s) (3)
and
s+1 . 5 .
N (n—=N(s+ 1) _ (n —)s!
Pr(s) _I_Z_;m A (s + 1 —)! f=§m:.-,. Ay (s — j)! )

fors=n—k Prob{n — k+1)=1 and

n-k . .
_ Z A‘(” —_/)!(n—..")! 5)

Pr(n — k) = -
ol I onl(n =k =)

The average number of crasurcs corrected by the code
Nerases 1S given by
n—k
N e = 9 S(Prob(s + 1) — Prob(s))

s=1

Carrying out the sum in reverse order, the equation simpli-
fies to

n—k
= (n — k)Prob(n — k + 1} — Z Prob(s)

s=1

Noting that there is a probability 1, that (# — & + 1) erasures
cannot be corrected, N, and Prab(s) = 0 for s < din.
Nerase becomes

n—k

Nemse = (1= k)= > Prob(s)
s=d

min
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Substituting Prob(s) gives

n=k 3

- s
Nege=n=k)= 3 > A’-f:;(-\_—i)j)! (6)

S=0om i=drnm

The terms responsible for the shortfall in performance com-
pared to an MDS code, MDSnonpn 15 evident from (6)

n—k 5

—j)s!
MDSpongn = D D Aff:_:(_,-—i);)g M

T L

As well as determining the performance shortfall, compared
10 MDS codcs, in terms of the number of correctable crasures
it is also possible to determine the loss from capacity for the
crasurc channel. The capacity of the erasure channel with
erasure probability p was originally determined by Elias
[16] to be | — p. The capacity may be approached with
zero codeword ermor for very long codes, even using
non-MDS codes such as BCH codes [10]. However, short
codes, cven MDS codes will produce a non-zero frame
error rate (FER). For (n, k, n — k+ 1) MDS codes, a code-
word decoder error is deemed to occur whenever there are
more than n — & erasures. (It is assumed here that the
decoder does not resort to guessing crasures that cannot be
solved.) This probability, Pyps(p) is given by

Pyps(p) =1 — Z = s)'s'p a-p (8)

The probability of codeword decoder error for the code
may be derived from the weight enumerator of the code
by using (4).

n=k
_ (n—=pist n (n—s)
P“‘"(p)_,ﬂz,—;"n'(s—n'(n P (=)
n |

which simplifies to

a—k

d (n = (n—s)
2 2T

J=d

Pr:od.c(p) =

x g (1 =p)" ™ + Pyps(p)
(10)

The first term in the above cquation represents the loss from
MDS code performance.

3 Codes whose weight enumerator coefficients
are approximately binomial

It is well known that the distance distribution for many
lincar, binary codes including BCH codes, Goppa codes,
self-dual codes [9. 11-13} approximates to a binomial
distribution. Accordingly

nt

N T (4o

For these codes, for which the approximation is true, the
shortfall in performance compared to an MDS code,
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MDS.onrn 1S obtained by substitution into (7)

o _ o=k i n' (n —j)s! (12)
™M shonfall — _‘él‘ o {n __J,-)!j!zn—k H!(.\' _J)'
which simplifies to
n—k ¥ _
MDS onan = Z Ik (13)
=1 7
which leads to the simple result
n—k -2
MDS oy =2 ———— =2 {14)

n—k

It is apparent that for these codes the MDS shontfall is just
two bits from correcting all n = & erasures. [t is shown later
using the actual weight enumerator functions for codes,
where these are known, that this result is slightly pessimistic
since in the above analysis there is a non-zero number of
codewords with distance less than dn,. However, the
crror attributable to this is quitec small. Simulation results
for these codes show that the actual MDS shonfall is
closer to 1.6 bits duc to the assumption that there is never
an crasurc pattern, which has the support of more than
onc codeword.

For these codes whosc weight enunerator coeflicients arc
approximately binomial, the probability of the code being
able to correct exactly s crasures, but no more, may also
be simplified from (4) and (5).

i ! (2 =M+ 1)
Pris) = J;(n — 2wl + 1 — !
J n! (n — j)s!
; (n — N2 pl(s — j)! (15)
which simplifics to
2°~1
fors<m—=—kandfors=n—%
=t ! (n = j)(n = k)
Prin—k)=1- j;(n e i —k =g ()
and
|
Pl’(n—k):im (18)

For codes whose weight enumerator coefficients are
approximately binomial, the pdf of corrcctable erasures is
given in Table 1.

The probability of codeword decoder error for these
codes is given by substitution into (9),

n—t 2_\' —_ l
Pooac(p) = Z(z—_;)
y=0

n! . s
ol (1= )" + Pyyos(p)

(19)

As first shown by Dumer and Farrell [10] when n tends to
o0, these codes achieve the crasure channel capacity. As
cxamples, the probability of codeword decoder error for
hypothctical ratc 0.9 codes. having binomial weight
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Table 1: PDF of number of correctable erasures for codes
whose weight enumerator coefficients are binomial

Correctable erasures Probability

n-k -

n—-k-1 05 - %
n-k~-2 0.25—20—1_‘
n-k-3 0-125'2:_-1.
n—-k—4 0.0625—2"—1_.
n-k-5 0.03125—2—:_7
n-k-6 0.(.‘»1‘50625—2:_l
n-k—-17 0.007503125-#
n-k-—s % - 5;1_—,

distributions, and lengths 100-10000 bits arc shown
plotted in Fig. 1 as a function of the channel erasure prob-
ability expressed in terms of rclative crasurc channel
capacity 0.9/(1 — p). It can bc scen that at a decoder
crror rate of 1078 the (1000, 900) code is operating at
95% of channcl capacity, and the (10000, 9000) code is
operating, at 98% of channel capacity. A comparison with
MDS codes is shown in Fig. 2. For code-lengths from 500
1o 50000 bits, it can be seen that for code-lengths of 5000
bits and above, these raic 0.9 codes arc optimum since
their performance is indistinguishable from the performance
of MDS codes with the same length and rate.

4  Results for particular codes

The first example is the extended BCH code (128. 99, 10)
whose coefficients up to weight 30 of the weight cnumerator
polynomial {17] are tabulated in Tablc 2.

The pdf of the number of crased bits that are correctable
up to the maximum of 29 erasurcs. derived from (1), is
shown in Fig. 3u. Also shown in Fig. 3« is the performance
obtained numerically. It is straightforward, by computer
simulation, to cvaluate the erasure correcting performance
of the code by generating a pattern of erasures randomly

FER
8
-

1%
1

Fig. 1 FER performance of codes with binomial weight enumer-
aior coefficients
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Fig. 5 Distribution of low-weight codewords for the (128. 99.
10) extended BCH code

The FER performance of the BCH (256, 207, 14} code is
shown in Fig. 6 as a function of relative capacity defined
by k/(1 — p)n. Also plotted in Fig. 6 is the FER perform-
ance of a hypothetical (256, 207, 50) MDS code.
Equations (8) and (9) were used to derive this. As observed
from Fig. 6 there is less shortfall in capacity compared 1o the
BCH (128, 99, 10} code. At 10™° FER, the BCH (256, 207,
14) code achicves approximately ~85.5% of the crasure
channel capacity. The maximum capacity achicvable by
any (256, 207) binary code as represented by (256, 207,
50) hypothetical MDS code is ~87%.

The next code 1o be investigated is the (512, 457, 14)
extended BCH code, which was chosen because it is com-
parable to the (256, 207, 14) code in being able to cormect
a similar maximum number of crasures (55 cf. 49) and
has the same dp,;, of 14. Unfortunately, the weight enumer-
ator polynomial is yct to be determined, and only erasurc
simulation results may be obtained. Fig. 7a shows the per-
formance of this codc. The average number of erasures

== MDS coda (12653) O
BCH(128.07,00) =
codo 256.207) O

BOH 5070714 = ]

DS cooe lﬂﬂl! -

POR {1 21), -

T P

FER

Tl
m
AR

|
- T
Bt ) ———
\ T
Y
L, p—
N== ==
—=i_\ —
\
X H
[X] o8

Relative erasure channel capacity

Fig. 6 FER performance for the (128, 99, 10) and (256. 207, 14}
extended BCH codes and (168, 84, 24) extended quadratic residue
code for the erasure channel
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Table 3: Spectral terms up to weight 50 for the extended
BCH (256, 207) code

Weight Ay

0 1

14 159479040

16 36023345712

18 6713050656000

20 996444422768640

22 119599526889384360

24 11813208348266177280

26 973987499253055749120

28 67857073021007558686720

30 4036793565003066065373696

32 206926366333597318696425720

34 9212465086525810564304939520

36 3587 158430600453102596221393504

38 12292268352368552720093773880960

40 372755158433875986474102933212928

42 10052700091541303286178365979008000
a4 242189310556445744774611488568535040
46 5233629101357641331155176578460897024
48 101819140628807204943892435954902207 120
50 1789357109760781792970450788764603959040

corrected 1s 53.4 and the average shonfall is 1.6 crased
bits. The average shontfall is identical to the (256, 207, 14)
cxtended BCH code. Also the probability of achieving
MDS code performance, that is being able to correct all
n — k erasures is also the same and equal to 0.29. The dis-
tribution of codeword weights responsible for non-MDS
performance of the (512, 457, 14) code is very similar to
the (256, 207, 14) code as shown in Fig. 4c.

An cxample of an extended cyclic quadratic residuc code
is the (168, 84, 24) code whose cocflicients of the weight
enumerator polynomial are given in {19] and are tabulated
up to weight 72 in Table 4. This code is a self-dual,
doubly even code, but not extremal because its dy;, is not
32 bur 24 [20]. The FER performance of the (168, 84, 24)
code is shown in Fig. 6 as a function of relative capacity
defined by &/(1 — pn. Also plotted in Fig. 6 is the FER
performance of a hypothetical (168, 84, 85) MDS code.
Equations (8) and (9) were used to derive this. The perform-
ancc of the (168, 84, 24) code is close to that of the hypothe-
tical MDS code but beth codes are around 30% from
capacity at 107° FER.

The e¢rasure correcting performance of non-algebraic
designed codes is quite different from algebraic designed
codes as can be scen from the performance results of a
(240, 120, 16) turbo code shown in Fig. 7h. The turbo
code features memory four constituent recursive encoders
and a code matched, modified S interleaver, to maximise
the dq, of the code. The average number of crasures cor-
rectable by the code is 116.5 and the average shorntfall is
3.5 crased bits. The distribution of codeword weights
responsible for non-MDS performance of the (240, 120, 16)
code is very different from the algebraic codes and features
a flat distribution as shown in Fig. 4d.

Similarly, the erasure correcting performance of a (200,
100, 10) LDPC codec designed using the PEG algorithm
[14] is again quite diffcrent from the algebraic codes as
shown in Fig. 7c. As is typical of randomly generated
LDPC codes. the d;, of the code is quite small ar 10,

545

Authorized licensed use limilpd to: UNIVERSITY OF PLYMOUTH. Downtoaded on November 12, 2009 ot 11:19 from |EEE Xphore. Reslictons apply.



10 T T ¥ T ™ —1 103 T T T T T T
10 d wk
w0 | 1 o}
=
3
[}
8
o
10° | J w0t}
103 4 w0t
10 12 1 n Il ‘OIJ 1 L 1
20 40 80 80 '00 120 20 40 60
a b
103 T T T T T 103 T T T T T T
107 w?f >
10 1 s
z
a
o
2
a
10% 106 [ J
108 108k 4
101.’) ’013 1 1 L Lt
0 20 40 60 80 100 120 20 40 60 80 100 120
PDF of number of corrected erased is
c d
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a (512,457, 14) extended BCH code

b (240, 120, 16) wrbo code

¢ (200, 100. 10) PEG LDPC code

d (200, 100, 32) extended quadratic residue code

even though the code has been optimised. For this code,
the average number of correctable crasures is 93.19 and the
average shortfall is 6.81 crased bits. This is markedly worse
than the wrbo code performance. It is the preponderance of
low weight codewords that is responsible for the inferior per-
formance of this code compared to the other codes as shown
by the codeword weight distribution in Fig. de.

The relative weakness of the LDPC code and turbo code
becomes clear when compared 1o a good algebraic code
with similar parameters. There is a (200, 100, 32) extended
quadratic residue code. The pdf of the number of erasurcs
corrected by this code is shown in Fig. 7. The difference
between having a d, of 32 compared to 16 for the turbo
code and 10 for the LDPC code is dramatic. The average
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number of correctable crasures is 98.4 and the average
shortfall is 1.6 crased bits. The weight enumerator poly-
nomial of this sclf-dual code, is curremly unknown
as cvaluation of the 2'% codewords is currently beyond
the reach of today’s computers. However, the distribution
of codeword weights responsible for non-MDS performance
of the (200, 100, 32) code which is shown in Fig. d4f
indicates the doubly even codewords of this code and the
oy O 32.

5 Determination of the d,,;, of a linear code

It is well known that the dectermination of weights of any
lincar code is a non-deterministic polynomial time hard

1ET Commun., Vol | Nu 3, June X7
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Table 4: Spectral terms up to weight 72 for the extended
quadratic residue (168, 84) code

Weight Ag

0 1

24 776216

28 18130188

32 5550332508

36 1251282702264

40 16607 1600559137

44 13047136918828740

48 629048543890724216

52 19087 130695796615088

56 372099690249351071112

60 4739291519495550245228
64 39973673337590380474086
68 225696677727188690570184
72 860241108921860741947676

problem [21] and cxcept for short codes, the best methods
for determining the minimum Hamming distance, dp;q
codeword of a linear code, to date, are probabilistically
based [22]. Most methods are based on the gencrator
matrix, the G matrix of the code and tend to be biased
towards scarching, using constrained information weight
codcwords. Such methods become less effective for long
codes or codes with code rates around 1/2 because the
weights of the evaluated codewords tend to be binomially
distributed with average weight n/2 [9].

Corollary 2 from Scction 2, provides the basis of a
probabilistic mcthod to find low-weight codewords in a sig-
nificantly smaller scarch space than the G matrix methods.
Given an uncorrectable erasure patten of n — £ crasures,
from Corollary 2, the codeword weight is less than or
equal to n— k& The search method suggested by this,
becomes one of randomly gencrating crasure patterns of
n — k+1 erasures, which of course arc uncorrectable by
any (n, k) code, and determines the codeword and its
weight from (2). This time, the weights of the evaluated
codewords will tend to be binomially distributed with
average weight n — k+ 1/2. With this trend, for /¥y, the
number of codewords determined with weight o, M, is
given by

(n—k+ 1)
M= N d'(n =k —d + 1)12n=k+

(20)

As an examplc of this approach, the self-dual, bordered,
double circulant code (168, 84) based on the prime
number 83 is considered. This code was described in [23]
as having an unconfirmed dp;, of 28. From (20) when
using 18000 trials, 10 codcwords of weight 28 will be
found on average. However, as the code is doubly even
and only has codewords weights which are a multiple of
4, using 18000 trials, 40 codewords are cxpected. In a sct
of trials using this method for the (168,84) code, 61 code-
words of weight 28 werc found with 18000 rrials.
Furthermore, 87 codewords of weight 24 were also found
indicating that the dy;, of this code is 24.

The scarch method can be improved by biasing towards
the evaluation of crasure patterns that have small numbers
of erasures that cannet be solved. Recalling the analysis
in Section 2, as the parity check equations are Gaussian
reduced, no erased bit is a function of any other crased

{ET Commun.. Vol. 1. No. 3. Junc 2007

bits. There will be n — k-5 remaining parity check
equations, which do not contain the erased bit co-ordinates
Xz The remaining cquations may be searched to sce if there
is an unerascd bit co-ordinate that is not present in any of the
cquations. If there is onc such co-ordinate, then this
co-ordinate in conjunction with the erased co-ordinates
solved so far forms an uncorrectable erasure pattern invol-
ving only s crasures insicad of n — k-4 | erasures. With
this procedure, biased towards small numbers of unsolvable
erasures, it was found that for the above code, 21 distinct
codewords of weight 24 and 17 distinct codewords of
weight 28 were determined in 1000 rials and the search
took 8 s on a rypical 1.6 GHz personal computer (PC).

In another cxample the (216, 108) self-dual, bordered
double circuiant code is given in [23] with an unconfirmed
dein of 36. With 1000 trials which took 26 5 on the PC, 11
distinct codewords were found with weight 24 and a longer
evaluation confirmed that the 4, of this code is indeed 24.

6 Conclusions

Analysis of the crasure correcting performance of linear,
binary codes has provided the surprising result that many
codes can correct, on average, almost n — & crasures and
have a performance close to the optimum performance as
represented by (hypothetical) binary MDS codes.

It was shown for codes having a wcight distribution
approximating to a binomial distribution, and this includes
many common codes, such as BCH codes, Goppa codes
and self-dual codes. that these codes can correct at least
n — k — 2 erasures on average and closely match the FER
performance of MDS codes as code-lengths increase. The
asymptotic performance achieves capacity for the erasure
channel. It was also shown that codes designed for iterative
dccoders, the turbo and LDPC codes, are rclatively weak
codes for the crasure channel and compare poorly with
algebraically designed codes. Turbo codes, designed for
optimised d,;, were found to outperforrmn LDPC codes.

Determination of the erasure correcting performance of a
code provides a means of determining the d,,;, of a code and
an efficient search method was described. Using the method,
the dyin results for two self-dual codes, whose dp,;, values
were previously unknown were determined, and these codes
were found to be (168, 84, 24) and (216. 108, 24) codcs.
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Abstract — Rced-Solomon (RS) codes C(n, k,n —
k + 1) are commonly used error-control codes, be-
causc they are Maximum Distance Separable (MDS)
codes. Over a Binary Erasure Channel, RS codes per-
form with optimal results and approach the maximun
channel capacity. In this paper, we apply RS cedes
to packet wircless transmission over the uncorrclated
flat Rayleigh fading channel. It is shown that by using
an RS code concatenated with BCH codes and using
hard decisions, better results are obtained than using
bit interleaved LDPC codes, with soft-decision decod-
ing. The BCH codec is used to correct small numbers
of crrors duec to noise and also to detect the pres-
ence of deep fades, in which case the entire packet is
erased. Erased packets are corrected by the RS code.
We also discuss the effect of overall code rate on the
net performance.

l. INTRODUCTION

The Rayleigh fading Channcl is widely used as a model
of wireless commumications. Channel coding techniques
arc a powerful tool to improve the reliability and elli-
cicney of wircless conununications. From (7], [§] and {9],
the performance on Rayleigh fading channels and turbo
codes design for Ravlcigh fading channels have been given
and explored. In [10]. irregular low density parity-check
(LDPC) codes have also been applied to an uncorrclated
flat Rayleigh fading Channel. and shown to outperform
turbo codes over a wide range of mobile speeds. Reed
Solomon {RS) codes have also been used for the Rayleigh
fading channcl, as the fading channel causes crror bursts.

RS codes(1] are classical, commonly used crror-control
codes with a wide range of applications in modern com-
munications. They constitute an eflicient class of lincar
codes using multi-bit symbols and have the capability of
correcting/detecting symbol errors and correcting sym-
bol erasures. It is well known that an RS code C{n. k. d),
where n is the code length, & is the information length
and d is the Hamming distance of C, can correct up to
t = |{(n - k)/2] random symbol crrors, and correct up
to n — k symbol crasures. The classical algorithms of
Berlekamp [4] and Massey [13] can correct ¢ crrors and
€ crasurcs when 2t + ¢ < n — k. which can achieve the
crror bound p = ("—"2‘—*—') with running time O(n?). In
{5]. it was presented that a polynomial time list decod-
ing algorithm for Reed-Solomon codes can correct more

than {n — k)/2 errors, provided &k < n/3. Using the Roth
and Ruckenstein [6] algorithm, the same bound can be
achieved with running time O{n? log® n). Sincc more era-
surcs than crrors can be corrected, it is advantageous to
determine the reliability of the received RS-coded sym-
bols and to erase the low-reliabilicy symbols prior to the
decoding process. In this paper. we apply the concatena-
tion of RS and BCH codes to packet wircless transimission
over the uncorrclated flal Rayleigh fading channel. BCH
codes of different code-rates and minimum Hamming dis-
tance arc used to correct small numbers of bit errors in
the packet transmission. Also the BCH code is used to
detect relatively deep fades by crror detecting relatively
large numbers of crrors in the packet. In this case the en-
vire packet is crased. Erasced packets are corrected by the
RS outer code. To obtain best results for the Rayleigh
fading channel, we nse the In-ptace decoder [2] for erasure
correction by the RS code. The paper is erganised as fol-
lows. Secction Il briefly reviews the system and channel
model. In Scction 111, we describe the product packeti-
sation method. In Section IV, we give an analysis of a
concatcnated RS code over the Rayleigh fading channel.
In Section V., we describe the implementation by using
concatenated RS codes and analyse the computational
complexity on both encoding and decoding. In Scction
VI, nunerical Frame Error Rate(FER}) results are given
for these codes in comparison to soft-decision decoding
of LDPC codes as a function of the overall concatenated
code rate. The conclusions are given in Section VII.

IL. SySTEM AND CHANNEL MODEL

The transmitted scquence xy passes through a discrete
time frequency non-sclective Rayleigh fading channcl
with additive white noise, where & is an integer symbol
index, z; is a binary-phased-shift-keving (BPSK) sym-
bol with amplitude ++E;. The reccived discrete-time
bascband signal can be written as y. = apxp + nr.
where ag is the Rayleigh distributed fading coefficient
with E(a2) = 1 and ng is a complex white noise sample
with variance Np/2 per dimension.

The probability density function (pdf) of the output y
can be described as:

_(y_—“_“)?) (1)
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Figure 1: Transmission System Diagram

where w = (1 — 2x) is the binary input after the BPSK
modulation, §2 = (ﬁ -(Fu/Np)). and R is the code rate.

111. PropuCcT PACKETISATION AND PROTOCOL
DESCRIPTION

In this paper. we use the product packetisation method
to arrange symbols into packets. Instead of placing the
symbols into the sequential packeis, we first split the data
into blocks corresponding to codewords of the RS crasure
correcting code. encode them and then packetise syimbols
from the same positions of cach codeword. Denoting the
length of input as {4 and the payload size of cach packet
as 1, the minimmm number of packets needed can be
calculated by {4/{,. Hercafter. a RS block code € with
this scheme is used with the number of inforination bits
k =1, and a code rate R. For a lincar block code C(n. k).
there are k information packets and n — k parity-check
packcts, but the benelit of using the RS codes is that
only & correct packets need to be received and these can
be any k packets. For convenience, the first & symbols arc
termed information symbols. The i-th packet contains {4
information symbols whose positions are at §-k+7, where
i=0.1.....(l4—1)and 0 < i < k. At the rceeiver. all the
reccived information packets need to be restructured into
a buffer X with length 4. If the i-th packet is received,
the symbols contained in the packet should be placed in

the buffer at the positions of 2y g4, wherej =0.... k=
1: if it has been erased during the transmission, 7's will be
placed in the positions of z ;x4 where j =0..... k-1

to mark the symbols as crased.

The packets arc transmitted continuously and at the
receiver, they are depacketisated and decoded into a
buffer with a length of {4.

1V. ANALYSIS OF CONCATENATED RS GCOBES

The most popular decoding algorithin of RS codes is
called “error-and-crasure™ decoding algorithm, which is
preferable to “crror-correction-only™ decoding algorithin.
With this algorithm. an RS code is capable of correcting

t errors and rccovering e crasures, under the condition of
2t + ¢ € n = k. Then, we can obtain the prabability of
decoder failure as follows:

n—k n—c n
Pr=Y" Y- PtlP(c) y + S P(o)
«={) t=[(n-k—c/2)+1] e=n—A+1

(2)

where P(r} is the probability of ¢ crasures and P(t]¢) is
the conditional probability of ¢ errors given ¢ erasures in
the remaining n —¢ positions, which arc defined as follows:

P(c) = ('(') PE (1 = P )T (3)

and

P(tje) = (" t— G) pe(l =p)" T (1)
where p,, is the probability of an erasure, and p,. is the
probability of an crror but not an crasure.

To ensurc that the system can give good performance
in the Rayleigh fading channel, the BCH code is used
to correct and to detect multiple hard decision errors in
cach reccived packet. If the number of crrors is small,
they are corrected by the Hamming or BCH code. [f the
nummber of crrors exceeds a threshold, the entire packet
is cerased and corrected by the RS code. It is well known
that a RS code can recover n — & crasures if a Maximum
Likelihood decoding algorithm is implemented. In {2]. we
introduced a complexity-reduced optimal decoding algo-
rithm - the [n-place Algorithm. It is always able to solve
the maxinmmum number of erasures correctable by the code.
However, for a Rayleigh fading channel. we also need to
consider the Gaussian noise and fading factor which de-
crease the energy of cach symbol. The system is shown
in Figure 1.



V. Eer1cient RS Copes ExXCODER/DECODER
[MPLEMENTATION

A. Encoder

In this section. we describe a way to encode the in-
put symbols in an “encoding-on-the-fly”™ manner. Lincar
block codes can be generated from their parity-check ma-
trix. denoted by M. which is usually, but not always. in
the form of a row-cchelon reduced H matrix. Each row
of the¢ H matrix can be associated with a parity-check
cquation. For convenience, we denote this parity check
cquation by h; where the subscript i indicates the ith
row of the H matrix.

Each parity-check cquation hy can generate a parity-
check p; independently for a row-cchelon reduced 7 ma-
trix. For an {n.k) RS code Cover GF(g). and n=¢g-1
and ¢ is a prime number or a power of a prime number.
The parity check miatrix of an RS code can be represented

Cl"—l
u?(n—l)

1 qdwmie—! a 2(dwin=1) alr=Mduiu=1)

(5)
where o is a generator of GF(g).

This H matrix is not efficient for our purposc because
cvery parity check symbol requires a calculation using n
symbols. From Theorem 11-9 in [13], there exist cyclic
MDS codes over GF(g). In order to efficiently perform
encoding on-the-Hy. we will use the cyclic form of the H
matrix. For this. the parity check polynomial h(z) of the
RS code is used.

Define the sct of powers of cousecutive roots a as I” =
{1.2.....duin — 1}. The parity-check polynomial ()} is

given by

n=—1I

i
(r-a')= Zﬁ,—li.

r=) = ][] (6)
i=ligl” i=0
from which we can obiain the M matrix
Go By -+ B 0O -
0 6o 5 B, O -
= : : : : : : : (M)
o -- Bo B - B

B. Decoder

Let x* denote the received veetor. According to [13], op-
timal decoding is cquivalent to solving the lincar system,
shown in (8). In our casc, on average k + ¢ packets are
transmitted before k uncrased packets by cach destina-
tion host.

Accordingly, the following sct of cquations need to be
solved from the H matrix of the form given in (7).

h4e=1
Z hijet =0. j=0..... c—1. (8)
i=t
As an example. for an RS code, we have (9).

Gy B -+ --- )

0 B8y B - &y

L. . =0. (9)

0 --- B Thpra

for ¢ crasures 0 € ¢ € n — k. This lincar system can be
usced for solve for at most n — k& crasurcs in the casc of RS
codes. If the equation {9) has a unique solution, an opti-
mal algorithm is possible. Gaussian Reduction algorithm
is considered as an optimal algorithm over the BEC, but
has a complexity of O(N3). \We propose a reduced com-
plexity Gaussian Reduction algorithm - the In-place Al-
gorithm [2] by climinating the column-permutations re-
quired by standard Gaussian Reduction.

Denoting the set of crasurc positions as ( =
{6 €. - --. ¢ }. the decoding proceeds in parallel with re-
ceiving the packets. (i.c. it is not necessary to wait for all
the packets to be received). The H matrix of the decoder
is modified after each packet is reccived as described be-
low.

\We denote the adapted M matrix at the i-th crasure
detected as H{. When the y-th cerasure ¢, is detected,
we flag the first cquation which contains ¢, as a Hagged
cquation h¢, and leave other equations as unflagged cqua-
tions. Thercfore, at cach step in the algorithm, the H’
matrix is divided into two parts: H which contains all
the unflagged equations h,, and MY which contains all the
flagged equations he. Then.

H' ={H,. H} (10}
And the flagged equation can be denoted as he, @ if (¢, €
hy)n(hy, € M) = 1. hy — he,. Then for each h;. where
(hye HI))N (¢, € (mNhe,)) =1,
(1)

h;_j:hC,,.j_hi.jz _)=01 ..... n—-Fk-1.

After k packets arc received, the crased symbols arc

solved. With ¢ crasures. for all ¥y = 0,...,¢ =1, if
Cn h(y = CU
ne=e=1|
Ic" = Z h<n__,-:r_,-. (12)
Jj=0

Then remove he, from the H{ and add it to the H].
Repeat the procedure above until all the erasures arc de-
termined.

V1. NuMERICAL RESULTS

In this section, we compare RS codes, with dilferent code
rates, concatenated with different BCH codes with opti-
mal LDPC codes designed using the Progressive Edge



"

Figure 2: RS codes with variable code rates in the
Rayleigh fading channel

Growth (PEG) technique [14] and bit interlcaved for
transmission over the Rayleigh fading channcl.

First. we evaluated the performance of RS codes with
different code rates. As shown in Figure 2. the RS(63. 55.
9} code achicved the best performance, as its performance
is half order of magnitude better than that of RS(63. 59.
5} code and more than one and a half orders of magnitude
better than that of the RS(63. 61. 3) code at a FER of
1073,

The simulation results obtained for the RS{G3. 59. 5)
code concatenated with different BCH codes are given in
Figure 3. The BCH codes used were the Hamming (63.
57. 3) code. and the (63. 51. 5). {(63. 45. 7) and (63. 18.
10) codes respectively. These codes can detect up to a
maximum of 2. 4. 6 and 9 errors. respectively or correct
up to a maximum of 1. 2. 3 and 4 errors. respectively or
a combination of less corrected/detected crrors in cach
received packet. The performance is improved by using
morc powerful codes until the rate loss causes significant
degradation to the E,/Ng. The rate loss for the Hamming
(63. 37. 3) code is —0.43 dB: for the (63. 51. 5) code,
the tradeoff is —0.92 dB; for the (63, 43, 7) code. the
tradeofl’ is =1.46 dB and for the BCH (63. 18. 10) code.
the tradeof is —5.44 dB. Obscrve that the concatenated
codes have different coding gains over the original RS
code. especially the one concatenated with the BCH(G3.
5. 7), which has a coding gain of approxiinately 2.2 dB
at a FER of 1073, Interestingly. the loss is so excessive
that when the (63. 18. 10) cade is used . the performance
is worsc than the uncoded performance. Therefore. the
rate loss of the inner codes cannot be ignored.

We also compared the performance between the RS
code. concatenated with a BCH code using hard de-
cisions, and the PEG designed LDPC code with soft
decision. Belief Propagation. iterative decoding for the
Rayleigh fading channel. In this comparison. we applied
the RS cedes and the LDPC codes with the same code
ratc and the same packet size. As shown in Figure 4.
the RS with BCH hard-decision decoder achieved a sig-
nilicant performance improvement over the PEG LDPC

LNy Ty e g L5 T R FarE W
\d \j T

Figure 3: RS (63. 59. 5) concatenated by different Ham-
ming or BCH codes in the Rayleigh fading channel
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Figure 1: RS with BCH hard-decision codes vs. LDPC
soft-decision codes in the Rayleigh fading channel

soft-decision decoder. At a FER of 1072, the RS with
BCH hard-decision codes can obtain an average coding
gain of 2.0 dB over the LDPC soft-decision code in the
Rayleigh fading channel. This is attributable to the RS
codes being MDS, optimum codes with maximum likeli-
hood erasure correcting decoding. This factor more than
compensates for the loss associated with hard decisions
for the Rayleigh fading channel particularly as the LDPC
codes are not the most powerful codes duc to the necessity
for iterative decoding.

VII. CoxcLuUSION

In this paper. we described the use of RS codes concate-
nated with BCH codes. with hard-decision decoding for
the wircless Rayleigh fading channel. It was shown that
the best performance is a function of overall code rate.
Furthermore it was shown that the concatenated code
combined with simple, hard decision decoding achicves
better results than using an optimally designed {(PEG)
LDPC code combined with soft decision decoding. Fur-
ther work will provide analysis of the two coding arrange-
ments to show why this is the case. Additionally it will
be determined how far the hard decision concatenated ar-
rangement is from capacity for the Rayleigh fading chan-
ncl.
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section 5.

2 Preliminaries

2.1 Matrix Representation of erased bits

We use the parity check matrix ff 10 represent the
code. Considering an (N, K} binary lincar block code.
we denote a codeword as x = {zy..ra.....%n ).
After being transmitted over the erasure channel with
crasure probability ¢, the reccived vector can be divided
into a transmitled sub-sequence and an crased sub-
sequence. denoted as y = {yy.y2. ...y, b and y, =
{#1:Yeo. - --- Ve } respectively, where Lz + L, = N.

Corresponding to the parity check matrix of the code,
we can generate an erasure matrix A, (L, x N) which
comains the positions of the erased bits in /. Then
we denote the sct of erased bits i that panticipate in
cach parity check row by Ef = {j : M = 1}
with h standing for “horizontal” and the number of
crased bits in E" is denoted by |EP|. Similarly we
define the set of checks in which bit j panicipates.
EJ'-’ = {i : My = 1} with v sianding for “vertical”,
and the number of erased bits in £} is denoted by
|EE|. Let EM = {E} | i€ {1.2..... L. }} and EY =

{Eyliefr2,....i ‘}}. The matrix represemation is

EY
~ ! -
J B ¥
PX
X X PX
X L
. i
X ' X
X X DX
N
Fig. I. A matrix representation (Af,) of the crased bits

2.2 Review of Iterative Decoding Algo-
rithms

In [1]. the Recovery Algorithm is described. which s
also called message-passing algorithm. and is equiva-
lent to Gallager's soft-decoding algorithm. an iterative
decoding algorithm. The decoding complexity can be
shown to be O(i¥?). The algorithm is brieflly outlined
below:

Recovery Algorithm

Step 1 Generate the A/, and obtain the EM.

Step 2 Fori € {1,2.....L.}. il |E!] = 1. we replace
the value in the bit position ¢ with the XOR of
the unerased bits in that check equation. Then
we remove the erasure from the erasure matrix.

Step 3 Continue from step 2 until all the erased bits
are solved or the decoding cannot conlinue
further.

Il there exists erasures in stopping scts. the Recovery
Algorithm stalls. In this case. an algorithm [ 1 1] with the
term Guess Algorithm is applied by performing several
“guesses” of the unsolved erased bits, which is similar
to the Maxwell decoder [19] which works as a message
passing decoder.

Guess Algorithm

Srep 1 Run the decoder with Recovery Algorithm un-
1l it fails due to stopping set(s).

Step 2 In order to break the stopping sct, when | EN| =
2. we guess onc of the erased symbols and
update the erasure matrix M, and EP.

Step 3 Continue from step | until all the crased sym-
bols are solved or the decoding cannot continue
further. If the decoder cannot continue, declare
a decoder lailure and exit.

Step 4 Create a list of 29 soluwions. where g is the
number of guesses made. From the list cou, .
k€ {1.2.....29}, pick the one that satisfies
Hel,

Obviously. compared to the Recovery Algorithm. the

complexity of this algorithm increases with g. Usually.

we limit the number of guesses to a small number g,. If
alter g, guesses. the decoding still cannot be finished.

a decoding failure is declared.

in [6]. we proposcd an improved iterative decoding
algerithm, which is called “Multi-Guess Algorithm™.

For sparsc codes. the Multi- Guess Algorithm can

approach optimal performance with significant im-

provements. Consider thc computational complexity.

we calculate the minimum number of guesses. denoled
by min{gy) before the decoding. The calculation lemma

was given in {6]. For the Multi-Guess Algorithm. a

whole row is guessed. A crucial row ¢ is defincd as

follows:

1) ¢ € wg. where wy is the set of all equations with
|E* = 6 where i € {1.2,....L.}. and § =
number of unknown positions.

2) ¥ ;epn |E;| is maximized over ¢ in w,

The Mulii-Guess Algorithm is given below:
Multi-Guess Algorithm

Step 1 Run the dccoder with Guess Algorithm until
{Eff>2fori=1,....L,.

Step 2 Evaluate the value of min(g). If min(g) > g..
the decoding declares a failure and exits.

Step 3 Group the rows as w;.

Siep 4 Find the row which is on the basis of the
highest value of |EY| with the value of |E}| =
4 and guess all erased bits in that row. (There
will be at most 2°~! guesses.)

Step 5 Guess anc bit p with |EJ| = 1 in each of the
independent rows.

Step 6 Updaie A, E" and E¥. Continue the decoding



from step 3 to step 5 until all the erased bits are
solved or the decoding cannot continue Turther.
Obviously. the decoding complexity can grow cxpo-
nentially with the number of guesses. In practice. im-
proved performance is achieved with O(N2) complex-
ity. With higher complexity. there is a better tradeofl
with respect to performance by using the ML decoding
algorithm.

2.3 Optimal ML Decoding Algorithm

Let x’ denote the received vector, where x' =y | Jy,.
We now devise a2 reduced complexity algorithm to
decode the crased bits by solving the equation | using
the Gaussian Reduction method [12].

HxT =o0. )

According 10 [9]. optimal decoding is equivalent to

solving the lincar system, shown in equation (). If

the equation (1) has a unique solution, an optimal

algorithm is possible. Gaussian Reduction algorithm

is considered as an optimal algorithm over the BEC,

but has a complexity of Q{N?). We proposc a reduced

complexity Gaussian Reduction algorithm - In-place

Algorithm [5] by climinating the column-permutations

required. This algorithm is stated as follows:

In-place Algorithm

Step 1 The codeword is received and y, are substi-
tuled in positions of erased bits in /1. Starting
with one of the crased symbols, y,,. the first
cquation containing this symbol is flagged that
it will be used for the solution of y,,. This
cquation is subtracted from all other equations
containing y,, and not yet Aagged to produce
a ncw set of equations. The procedure repeats
until cither non flagged equations remain con-
wining y., (in which case a decoder failure is
declared) or no erased symbols remain that are
not in flagged equations.

Step 2 Let y,, be the crased symbols at the last
flagged cquations. In the latter case. starling
with y,,_. this equation is solved to find y,,
and this cquation is unflagged. This coefficient
is substituted back imo the remaining flagged
cquations conlaining i,,. The procedure now
repeats with the second from last flagged equa-
tion now being solved for y,,_._,. This equation
is unflagged and followed by back substitution
of 41 for ¥, in the remaining flagged
equations.

Compared with the Gaussian Elimination Algorithm,
the In-place Algorithm complexity remains O(NV9),
but the multiplicative constant is significantly reduced.
The memory required for storing swapped positions is
eliminaicd by only performing flag and addition. which
means we do not have 10 convert the A/, matrix (o
a leading diagonal matrix. The least complexity ML
algorithm [18] which requires O(N?976) in complexity

is not guaranteed to produce a solution and incurs
considerable overheads in implementation,

3 Product Packetisation

[n 1his scction. we describe a product packetisation
structure. In a traditional way. files sent over the Inter-
nel arc partitioned into packets. as in the applications
of LT codes and Raptor codes. Each packet is either
reccived without error or not in which case it is erascd.
Standard file-ransfer protocols simply partition a file
inlo n packets. then repcatedly transmit each packet
until all of the packets have been received.

The term Product Packetisation is used to describe
the arranging of the encoded bits in a format similar
to a product code. The enceded bils are written into
7 columns and read out in rows for ransmission, as
illustrated in Fig. 2. With this packetisalion struclure,
short. powerful algebraic codes can be used for Intemet
transmission.

Tramend puber beenastally

}

]

+ 1]

[ fesan 3

; T }
: |

—L ]

;'%"' —

Eé:;-.« |

Aniph cndcwond oniatd by

Fig. 2. A Product Packelisation Structure

We designed the structurc as a square matrix of size
nxn = N where N is the size of the encoded
scquence. Although the structure is flexible, there is
a complexity/performance compromise which depends
on code block size. We have found that, in this case,
choosing a square matrix struclure gives a good com-
plexity/performance compromise. In Fig. 3, the shad-
owed area represents a packet erasure. In the decoding
process, cach column is decoded separately. As the
erasures arc in the same positions, for all codewords
- the In-place Algorithm has to be applied only to the
first column. For cach of the other n — 1 columns,
thc same erasurc correcting cquations are used, but
with the coordinates provided by that column. This
reduces the complexity of the ML decoder to O(n?) =
O(N¥?) since n = VN. This coding scheme can be
made rateless by acknowledging successful decoding
once cnough packets have been received. Due to the
powerful crror correclion codes used, not all the packels
are necessary for successful decoding. Compared with
fountain codes using the message-passing algorithm
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Fig. 3. An example of received packets

with complexity O(.V2), the new algorithm is not only
able to correct more crasures but is also faster and more
cflicient.

4 Simulation Results

We have cvaluated the performance of LT codes and
cyclic codes for N = 225 and .V = 396Y. For .V =
225. the LT code with the recovery decoder produces
very poor performance. [n this case. we have used the
ML decoder. The LT code (225. 105) was divided into
t5 packets with the packet-size of 15 bits and the
cyclic code (225. 105) was arranged in the product
packetisation format with the same packei-size '. The
cyclic code is capable of correct decoding up to and
including 4 packets erased. As 1 +x'° divides 14522,
the decoder for this cyclic code can be implemented
with the reduced complexity decoder. As shown in Fig
4. the performance of the cyclic code (225, 103) is
significantly betier than that of the LT (225. 105) code.
When p = 0.1. the result of the cyclic code (225. 105)
is over 2 orders of magnitude better than that of the LT
(225. 105).
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Fig. 4. FER v the erasure probability of erased packets for ihe
eyclic code (225, 105) and the LT (225. 105) code over the Erasure
Channel. both using ML decoding

IThe cyclic code (225. 105) has a generator polynomial g(r) =
| + 215 +23% 4 r99 4+ 2120 which is a replication of the BCH (15,
7. 5)code with g{r) = 1+ + 2% 4 2! + 17,

To verify the decoding complexity calculation. we
implemented a longer code. the cyclic code (3969,
2016) and the LT (3969. 2016) code. The cyclic code?
(3969. 2016) is based upon the generator polynomial of
the BCH (63. 32. 12) code. The simulated performance
is shown in Fig. 5. On a standard IGH» PC. the
LT (3969. 2016) code 100k 775ms to encode each
codeword and 141ms to decode each codeword for
p = 0.1 (using the Recovery Decoder). In contrast, the
cyclic code (3969. 2016} took only 5ms to encode cach
codeword and 8ms to decode cach codeword using the
[n-place deccder for p = 0.4 (the deceding time for
this decoder is independent of the value of p).
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Fig. 5. FER s> the erasure probability of erased packets for the

cyclic code (3969, 2016) and the LT (3969. 2016) code over the
Erasure Channel

5 Conclusions

In this paper, we presented a novel coding and decoding
algorithm for packet networks modelled as a Binary
Erasure Channel (BEC). The algerithm combines a
ML decoder with a product packetisation struciure. In
the past iterative decoding algorithms. although non-
optimum, have been used as a good tradeolf between
performance and computational complexity. With the
ncw decoding algorithm, decoding is ML and the
computational complexity is reduced to O{.NV!*). This
is less complexity than the casc for ilerative decoders.
Also, compared with LT codes, the new decoding
algorithm with algebraic codes achieves a sigmficant
improvement in performance.
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AN EFFICIENT SOLUTION TO PACKET LOSS : ERASURE CORRECTING
CODES
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ABSTRACT

This paper investigates decoding of binary linear block
codes over the binary crasure channe! (BEC). Of the cur-
rent iterative decoding algorithms on this channel, we re-
view Lhe Recovery Algorithm and the Guess Algorithm.
We then present a Multi-Guess Algorithm extended from
the Guess Algorithm and a new algorithm - the In-place
Algorithm. The Multi-Guess Algorithm can push the limit
1o break the stopping sets. However, the performance of
the Guess and the Muli-Guess Algorithm depend on the
parity-check matrix of the code. Simulations show that we
can decrease the frame error rate by several orders of mag-
nitude using the Guess and the Multi-Guess Algorithms
when the parity-check matrix of the code is sparsc. The
In-placc Algorithm can obtain better performance even if
the parity check matrix is dense. We consider the applica-
tion of these algorithms in the implementation of multicast
and broadcast techniques on the Imemet. Using these algo-
rithms, a user docs not have (o wait until the entire trans-
mission has been received.

KEY WORDS
Erasure comrecting codes, network congestion. multicast
and broadcast

1 [Introduction

The Binary Erasure Channel (BEC) was introduced by
Elias [1] in 1955. It counts lost information bils as be-
ing “erased” with probabilities cqual to 0.5. Currently, the
BEC is widely used 10 model the Intemel transmission sys-
tems, in panticular multicasting and broadcasting.

As a milestone, Luby er. al. [2] proposed the first re-
alization of a class of erasure codes ~ LT codes, which are
ratelcss and are generated en the fly as needed. However,
LT-codes cannot be encoded with constant cost if the num-
ber of collected cutput symbols is close to the number of
input symbols. In [3]. Shokrollahi iniroduced the idea of
Raptor codes which adds an outer code to LT codes. Rap-
tor codes have been established in order 1o solve the error
floors exhibited by the LT codes.

On the other hand, low-density parity-check (LDPC)
codes have been studied [5] to [8] for application to
the BEC. The iterative decoding algorithm, which is the

C. Tjhai. M. Tomlinson. M. Ambrozc and M. Ahmed

Fixed and Mobile Communications Research
University of Plymouth
Plymouth, Devon. United Kingdom

email: {ctjhai.miomlinson.mambroze.mahmed } @ piymouth.ac.uk

same as Gallager's soft-deceding algorithm [9). was imple-
mented [5]. Capacity-achieving degree distributions for the
binary erasurc channel have been introduced in [5]. [6] and
{7]. Finite-length analysis of LDPC codes over the BEC
was accomplished in [8]. In that paper. the authors have
proposed 10 use finite-length analysis 1o find good finite-
lengih cedes for the BEC.

[n this paper, we show the derivation of a new decod-
ing algorithm 10 improve the performance of binary linear
block codes on the BEC. The algorithm can be applied 10
any lincar block code and is not limited to LDPC codes.
Sianting with superposition of the erased bits on the parity-
check matrix, we review the performance of the iterative
decoding algorithms, described in the literature, for the
BEC. principally the Recovery Algorithm and the Guess
Algorithm [10]. In Section 3. wc propose an improve-
ment to the Guess Algorithm bascd on multiple guesses:
the Multi-Guess Algorithm and give a method 1o calculme
the minimum number of guesses required in the decoding
procedure. In this section. we also describe a new. non it-
crative decoding algorithm based on a Gaussian-Reduction
method [11] by processing the parity-check matrix. In Sec-
tion 4, we compare the performance of these algorithms
for diffcrent codes using computer simulation. In Section
5. we discuss the application of these decoding algorithms
for the Imemet. Section 6 concludes the paper.

2 Preliminaries

2.1 Matrix Representations of the Erased
Bits

Let /1 denote the parity-check matrix.  Considering an
L = N binary lincar block code, we assume that the cn-
coded sequence is x = {x;.%2,...,JHx}. After being
transmitted over the erasure channel with erasure probabil-
ity ¢, the encoded sequence can be divided into the trans-
mitted sub-sequence and the erased sub-sequence. denoted

spectively. where I; + 1, = V.

Corresponding to the parity check matrix of the code,
we can generate an erasure matrix Af, (L x &) which con-
tains the positions of the crased bits in A/, Then we denote



the set of crased bits 7 that participate in cach parity check
row by £} = {j : M, ijy = 1} with it standing for “hori-
zontal” and the number of erased bits in £ is denoted by
|EP]. Similarly we define the set of cheeks in which bit
J participates. IZ) = {i : M, = 1} with & standing
for “venical”. and the number of erased bits in L7 is de-
noted by |EY|. Let B" = {E]'|ie {1.2.....L.}} and
EY = {E][j € {1.2..... N}}. The matrix rcpresenta-

tion is shown in Fig, 1, where an “x” represents an erasure,

N :
[ EE N S
A by

Figure 1. A matrix representation of the erased bits

2.2 Current lterative Decoding Algorithms
for the BEC

In [5]). the message-passing algorithm was used for reliable
communication over the BEC ai transmission rates arbitrar-
ily close 1o channel capacity. The decoding algorithm suc-
ceeds if and only if the set of erasures do not cause stopping
sets (8]. For completeness. this algorithm is briefly outlined
below:

Recovery Algorithm

» siep | Generate the A/, and obtain the Eb,

e step2Forie {1.2..... L}.il|E®| = 1, we replace
the value in the bit position i with the XOR of the
unerased bits in that check equation. Then we remove
the erasure from the erasure matrix.

e step 3 Continue from siep 2 uniil all the erased bits arc
solved or the decoding cannot continue further.

The decoder will {ail if stopping sets exist.

We can break the stopping scts by performing several
“guesses” of the unsolved erased bits. This algorithm is
called the Guess Algorithm {10].

Guess Algorithm

e Step I Run the decoder with Recovery Algorithm untif
it fails due 10 stopping sct(s).

e Siep 2 In order 10 break the stopping sel, when |E¥| =
2, we gucess one of the erased symbols and update the
erasure matrix A/, and EP.

¢ Siep 3 Continue from siep 1 until all the erased sym-
bols are solved or the decoding cannot continue lur-
ther. IT the decoder cannol continue, declare a decoder
failure and cxil.

® Siep 4 Creat a list of 2¢ solutions. where g is the
number of guesses made. From the list ¢y, . k& €
{r.2..... 29}, pick the one that satisfies Hel, = 0.

“Oulp

Obviously. compared to the Recovery Algorithm. the
complexity of this algorithm increases with ¢. Usually, we
limit the number of guesses (o a small number ¢g,. I alter
g guesses. the decoding still cannot be finished. a decoding
failure is declared. For sparse codes with low-density £,
¢. g. LDPC codes, the Guess Algorithm can improve the
performance with g < 3 guesses as shown in Section 4.

The decoding algorithm is more efficient when the
bits 1o be guessed are carefully chosen. These are termed
“crucial”'bits. The crucial bits are chosen on the basis of the
highest value of | E}| with she value of {E7| = 2.

3 Improved Decoding Algorithms for Non-
sparse Linear Block Codes for the BEC

For non-sparsc lincar codes. it is common to cncounter
more than 2 unsolved symbols in cach row of A/, afier
running the Guess Algorithm. duc to the high-density of
their parity check matrix. In these cases. we cannot break
thc stopping set by guessing one crased symbol in a row
only. More than | crased symbols at one time need 1o be
gucssed. We can calculate the minimum number of guesses
before the decoding.

Lemma 3.1 Consider the chosen erased svmbols in each
row as an erased group. Let w; denote the set of rows with
d erasures, that is, ws = {i [ |E"| = é}. And x4 is the set
of rows which satisfies:

15 ={i €ws |3k, p€ El . suchask £ p.|Ef| = £ = 1}).
(1)

Then
ming = |xg] + 1 (2)

where I accounts for the need for ar least one “crucial™
o,

Proof 3.1 When the guessing process siops, there are more
than 2 erased symbols in each erased row. The rows thar
have more than two bits (k. p) which do not participare in
any other row (i e. |E{| = |EZ| = 1) cannot be soived
by other rows, and so ar least one of these bits has 10 be
guessed. So the minimum number of guesses equals to the
number of all the independent guesses plus one more “cru-
cial " guess to solve the other ronws.

For the Multi-Guess Algorithm. a whole row is guessed. A
crucial row c is defined as follows:

l. c € w;
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2. ch— b |E_,-| is maximized overcinwg

The Mulii-Guess Algorithm is given below:
Multi-Guess Atgorithm

e siep 1 Run the decoder with Guess Algorithm until
|Ef > 2fori=1..... L.

step 2 Evaluate the value of min(g). 1If min(g) > g..
the decoding declares a failure and exits.

e step 3 Group the rows with |E?| = 4 as ws, where
Pe{1.2...., L)

s srep 4 Find the “crucial” row and guess all erased bits
in that row. (There will be at most 2%~ guesses.)

e step 5 Guess one bit p with |E}| = 1 in each of the
independent rows. i.c. the rows in x,,.

e siep 6 Update M. EP and E¥. Continuc the decoding
from step 3 1o step 5 until all the erased bits arc solved
or the decoding cannot continue (urther.

The disadvantages of Guess and Multi-Guess Algo-
rithms include the decoding complexity and the correctness
of the resulis. The decoding complexity grows exponen-
tially with the number of guesses. It is possiblc that the
group guess declares a wrong value as the result of the de-
coder. Although this kind of situation happens only when
the value of ¢ is very small, it is still undesirable.

Let x' denote the received veclor, where x’ = y | Jy..
We now devise a reduced complexity algorithm 1o decode
the erased bits by solving the equation 3 using the Gaussian
Reduction method [11].

HxT =0. 3

According to [8], the optimal decoding is cquivalent to
solving the linear system, shown in the equation 3. If the
equation 3 has a unigue solution, the optimal algorithm is
possible. Guassian Reduction algorithm is considered as
the optimal algorithm over the BEC. We propose a reduced
complexity Guassian Reduction algorithm — In-place Algo-
rithm [4] by elimilating the column-permutations required.
This algorithm is stated as follows:

In-place Algorithm

o step | The codeword is received and y, are substituted
in positions of crased bits in /1. Starting with one of
the erased symbols, y.,. the first equation conlaining
this symbol is lagged that it will be used for the solu-
tion of y,. This cquation is subtracted from all other
equations containing .. and not yct flagged to pro-
duce a new set of equations. The procedure repeats
until either non flagged equations remain containing
Y., (in which case a decoder failure is declared) or no
erased symbols remain that arc not in flagged cqua-
tions.

e step 2 Let iy, be the crased symbols at the last flagged
cquations. In the latter case. starting with y,, this
cquation is solved 10 find gy, and this cquation is un-
flagged. This coeflicicnt is substituted back imo the
remaining flagged equations containing Y., The pro-
cedure now repeats with the second from last lagged
cqaution now being solved for i, _, - This equation is
unilagged and lollowed by back substitution of ¥ -1
for 4., , in the remaining Mlagged equations.
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Figure 2. Erasure Corrcction Using In-place Algorithm

A block schematic of the decoder is shown in Fig.2.
The received bits arc stored in the shift register with
the crased bits being replaced by the unknown y.. The
Gaussian reduced cquations are computed and used to
define the connection of bit adders from the respective
shift register stage to compute the outputs d; to d,,. The
non erased symbols contained in the shilt register arc
swilched directly through to the respective output so that
the decoded codeword with no erased bits is present at the
outputs «, through to d,,.

4 Results

We cvaluated the perfarmance of the Recovery Algorithm
with the LT codes with Soliton distribution as described in
[2]) and irregular LDPC codes. As shown in Fig. 3, the
performance of irregular LDPC codes is significantly bet-
ter than that of the LT codes for the same block length. As
a conscquance. we use LDPC codes to benchmark the re-
maining algorithms.

A panticularly strong binary code and which has a
sparse I is the cyclic LDPC code (255.175). which has
a length of 255 bits after encoding of 175 information bits.
Since the parity-check polynomial of the (255.175) ! code
is orthogonal on every bit position. the minimum Hamming
distance is | + w. where w denotes the number of ones per
row in H [12],

The applicability of the decoding methods above de-
pends on the error comrecting code being used and specif-
ically on the parity check matrix being used. The perfor-
mance of this code for the Recovery, the Guess and the In-

FThe (255.175) Cyclic LDPC code has a minimum Hamming distance
of 17.
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Figure 3. Performance of the LT codes and irrcgular LDPC
codes with crasurc probability = 0.2

place Algorithms is shown in Fig. 4 in terms of the prob-
ability of decoder error (FER) as a function of the crasure
probability for every transmitied bil.

-

Figure 4. Performance of the Cyclic LDPC (255.175) with
the Guess . the Multi-Guess and the In-place Algorithms

Due to its sparse parity check matrix. Guess algorithm
with less than 3 guesses can achieve more than 1 order of
magnitude improvement compared to that of Recovery Al-
gorithm. In addition, from Fig. 4. we also can sce that the
curve of Guess Algorithm is very close to the curve of In-
place Algorithn, which mcans Guess Algorithm is a “*near
optimal decoding™ algorithm when it has a sparse parity
check matrix.

Fig. 5 shows the performance of the (341.205) LDPC
code 2 with the Recovery, the Guess. the Multi-Guess and
the In-place Algorithms. Comparing these resulls of the
Recovery and Guess Algorithms. the Multi-Guess Algo-
rithm can obiain the results by several orders of magnitude
betier. For example, when the erasure probability equals
to 0.3, the Multi-Guess Algorithm with g, = 3 is one
order of magnitude betler than the Recovery and Guess Al-
gorithms. when gm.x = 5. the Multi-Guess Algorithm is
2 order2 of magnitude better than the Recovery and the
Guess Algorithms. As an optimal decoding algorithm, the
In-place Algorithm can achieve 4 orders of magnitude bet-

#The (341.105) L.DPC code has » minimum Hamming distance of 16,

e

Figurc 5. Performance of the Cyclic LDPC (34 1.205) with
thc Recovery, the Guess, the Multi-Guess and the In-place
Algorithms

ter than the Recovery and the Guess Algorithm.

The ultimate performance of the In-place Algorithm
as a function of error comecting code is shown in Fig. 6
for the example (255.175) code which can cormect a maxi-
mum of 80 erased bits. Fig. 6 shows the probability density
function of the number of erased bits short of the maximum
correclable which is N — L. The resulis were obtained by
computcr simulations. The probability of being able to cor-
rect only 68 biis, a shonfall of 12 bits. is 1.1 x 10~2, Sim-
ulations indicale that on average 77.6 crased bits may be
corrected for this code. In comparison the BCH (255,178)
code having similar rate is also shown in Fig. 6. The BCH
code has a similar rate but a higher minimum Hamming
distance of 22 (compared to 17). [t can be seen that it has
better performance than the (255.175) code but it has a less
sparse parity check matrix and consequently it is less suit-
able for Recovery Algorithm and Guess Algorithm. More-
over the average shonfall in erasures not corrected is virtu-
ally identical for the two codes.
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Figurc 6. Comparison of Probability Distribution of Num-
ber ol Erased Biis not Corrected from Maximum Cor-
rectible (N-L) for (255.175) code and BCH (255,178) code

The simulation results of using In-place Algorithm for
the (103.52) quadratic residuc binary code {13) arc shown
in Fig. 7. The minimum Hamming distance for this code
is 19 and the results are similar to that of the (255.178)




BCH code above. {uis found from the simulations that on
average 49.1 erasure bits are corrected (out of a maximum
of 51} and the average shorfall from the maximum is 1.59
bits.
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Figure 7. Probability Distribution of Number of Erased
Bits not Corrected from Maximum Correctible (N-L) for
(103.52) code quadratic redisue code

Similarly the results for the exiended BCH (128.64)
code is shown in Fig. 8. This code has a minimum Ham-
ming distance of 22 and has a similar probability density
function to the ather BCH codes above. On average 62.39
crasurc bits are corrected (out of a maximum of 64) and the
average shortfall is 1.61 bits from the maximum.
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Figurce 8. Probability Distribution of Number of Erased
Bits not Corrected from Maximum Correctible (N-L) for
(128.64) exiended BCH code

5 Application

In multicast and broadcast information is transmitted in
data packets with typical lengths from 30 bits to 1000 bits.
These packets could define a symbol from a Galois field
[12], viz GF(2"™) but with mn equal 1o 30 or more up lo
and beyond 1000 bits this is impracticable and it is more
convenient to use a matrix approach with the packets form-
ing the rows of the matrix and columns of bits encoded
using an crror correcting code. Usually. but not essentially

the same code would be used e encede each celumn of
symbols. The matrix of symbols may be defined as:

binbuy baabaz . . . bos =  packet |
binbiibizbiy .. by = packet2
bagbarbaabay - . . by, =  packet3
by—wobn-nbur2buya. - bu-r, = packetn

There are a total of (s + 1) - k& information sym-
bols which encoded using the parity check equations of a
sclectled code into a total number of transmitied symbols
cqual to (s + 1) - n. The symbols are transmitied in a series
of packets with each packet corresponding 1o a row as indi-
cated above. For example the row: boybaybosbag ... ... bo,
is transmitted as a single packet.

Self comained codewords are encoded from each col-

umn of symbels. For example bopbiobao .. .. .. by -1 form
the information symbols of one codeword and the remain-
ing symbols, byrobrrrobrazo------ by —10 are the parity

symbols of that codeword. As a result of nctwork con-
gestion. drop outs, loss of radic links or other multifari-
ous reasons not all of the transmitted packets are reccived.
The cflect is that some rows above are erased. The de-
coding procedure is that codewords are assemble from the
received packets with missing symbols corresponding 1o
missing packets marked as z;;. For example. if the second
packet only is missing above:

e The first received codeword comresponds 1o the finst
column above and is banz10b20 .. .. . . bu—10

e The sccond codeword corresponding to the first col-
umn above and is bgyzy bor .- .. b,.~11 and so on.

All the algorithms stated in Scction 2 may be uscd to
solve for the crased symbols zy in the first received code-
word, and for the erased symbol z,, in the second received
codeword and so on up 10 the s’th codeword (column) solv-
ing for zy.~.

As an example. the binary, exiended (128, 64) BCH
code could be used to encode the information data. The
packet length is chosen to be 100 bits, and the total trans-
mission could consist of 128 transmitted packets (12,800
bits 10tal) containing 6,400 bits of information. On average
as soon as any 66 packets from the original 128 packets
have been received. the remaining 62 packels are treated as
if they are erased. 100 codewords are assembled, decoded
with the erasurcs solved and the 6.400 bits of information
retricved. Onc advantage is that a user does not have 1o
wait until the entire transmission has been reccived.

6 Conclusions

In this paper. we presented different decoding algorithms
of LDPC codes over the BEC: Recovery. Guess. Multi-



Guess and In-place Algorithms. The Mulii-Guess Algo-
rithm is an extension to Guess Algorithm. which can push
the limit 10 break the stopping sets. We show that Guess
and Multi-Guess Algorithms are parity-check matrix de-
pendent.  For the codes with sparse parity-check matrix,
Guess and Multi-Guess Algorithms can be considered as
*Near-optimal Decoding Methods™. On the other hand. In-
place Algorithm is not. It’s an aptimal methed for the BEC
and able to correct N = L — p erasures, where pis a small
positive integer.

We atso considered these algorithms in the implemen-
Lation of multicast and broadcast. Using these algorithms. a
user docs not have 1o wait until the entire transmission has
been received.
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Key words to describe this work: Decoding complexity, Sectionlization, Permuiation.

Key results: The relationship between permutation-optimal trellis and sectionalization-optimal trellis is found.
A new method to count the decoding complexity is provided. The sectionalization method is performed with

different decoding algorithms.

How does the work advance the state-of-the-art?: The complexity of trellis-based decoding can be reduced

by up 1o 50% with sectionalization.

Motivation (Problems addressed): To reduce the computational complexity and the size of memory storage

required.

Introduction

A weilis T is an edge-labeled directed graph with
the property thal cvery state in 7" has a well-defined
depth which can represeat coresponding codes in cod-
ing theory. Currently, trellis-based algorithms are widely
used, for cxample, Viterbi algorithm [7] and MAP algo-
rithm {4}. Therc are many different factors thal impose
on the complexity of trellises, each decoding method has
different level of complexity. In this paper. we briefly sur-
vey the complexity of the Viterbi decoding algorithm with
Hamming codes and their dual.

A Review of Sectionalized Trellises

Consider an (n, k) linear block code C with a n-stage
bit-level trellis 7" in which cach branch represents a single
code bit. The trellis can be sectionalized by any positive
integer v ranging from | to n. so the section boundary set
is {ho.hy.....}owhereO=ho < hy <--- < h, =n.
An n-depth trellis has 2"~ sectionalizations. for cxam-
ple. Hamming(7.4) has 26 different sectionalizations. The
main idea in sectionalizing an original trellis is to amalga-
mate sections that involves two steps: [2].

I. deleting the states and branches between the initial
section 1o the final section:

2. connecling states from the initial section to the final
section with the combined labels.

According 10[1]. we can compute the number of
branches | B;| and the number of states | S;| for any section
from the generator matrix of C.

Viterbi decoding based on the Sectionalized
Trellis

The Viterbi algorithm is a maximum likelihoed deceding
method which chooses a codeword having the maximum
likelihood metric. or the minimum distance metric.

This decoding procedurc consists of two major sleps:
computing the branch metrics and finding the survivor

paths in the resulting trellis. The decoding implementa-
tion includes two metric: branch mmeiric and srate metric.

Vardy complexity algorithm | 1] considers the complex-
ity of computing the branch metric and the complexity of
Viterbi decoding separately.

Branch metric complexity means computing the num-
ber of operations required in all the branches in one sec-
tion. Decoding complexity [2(T)| is the number of op-
crations required to decode the trellis T. We denote the
subcade of C as C{T), and the dual subcode as C(T)1.
There are lots of pre-computations in every step, which
can not be casily ignored in the rcal implementation. In
the branch metrics. whether C(7°) is self-complementary
nced justifying. For an N-length block code. there are
NC; = Z:.\:li different C(T) need 10 be judged. As-
sume in each section. there are m codewords. So every
C(T;) nced at most

-2

S == -m+ Y i (n

comparisons. If we pre-store the self-complementary ta-
ble with the rows meaning the beginning boundary and the
columns meaning the ending boundary, N x N matrix is
required. For example. Hamming (7. 4) need NC; = 27,
J(T;) = 77 and the size of memory storage. Al (T) is
TxT.

Also in the branch metrics, we need Lo consider
whether 1 € C(T)* and the length of the section [; = 0
mod 2 or not. The dual code of C(T') can be obtained
from H matrix of C(7T’). First, to find all the possibilites
of I; = 0 mod 2, the number of the judgements is de-
noted by V.

{int)N/2

y= Y (-1-@xj @

j=0

And at each scction. there are at most i judgements
required to determine whether 1 € C{T)* or not. The



pre-table requires & x N matrix. We stilt use Hamming(7.
4} as the cxample. which neced m = 8. Y = 12. and
memory storage 7 x 7.

In the decoding part. all the subcodes of C are required
10 be considered. There are a1 most Z:\:l i x m compar-
isons for each scction. The resulls also can be pre-stored
in an A x N matrix. The number of comparisons for the
Hamming(7. 4) code is 216.

From thc analysis above. we can conclude that the
longer the code length. the more calculations and mem-
ory storage required. so the complexity of pre-determining
calculations can not be simply ignored. So we provide the
Straightforward algorithm, which rades complexity for
implementation simplicity. Recalling the Viterbi decoder.
suppose Sy, ,,, in which /i; means the current depth and p;
means the position in this depth, D,, represents the state
and O,, is the corresponding output. For example, the first
stage of branch meltric computation for Hamming (7, 4)
wrellis. we can get the equation as follows:

S0 = Sia + (D= 01)2 + (D3 — 02)2 + (D3 — 04)?
S12=S12+ (D =0\ + (D) — 02)? + (D} — 03)2
, ) 3
Sz = min{S, ;. S, 5} 4
As described in (3. 5). we consider the number of addi-
tions and the number of comparisons as the complexity of
Viterbi decoding. Because of the linear propenty. the num-
ber of operations can be obtained section by section. For
each scction. the number of addition is equal to the num-
ber of branches in this section and the number of compar-
isons is | B] — |Syere]- The Vardy's algorithm is shown as
follows:
D-;(Th_l.’) =2x |B| - |Sll (5)

Obviously. as the number of siages per scction increases.
the number of labels per branch will increase. We also
need storage 1o save the labels. So we get the updaie met-
ric as follows

I)u(’rh‘h') =2x |B|—|51|+[BI x Ial (6)

where ¢ is the number of labels per branch. Although the
complexity is higher than Vardy's method. most criteria of
Vardy’s depend on lots of comparisons which are ignored
in this algorithm. comparisons cannot be simply ignored
in real implementation especially for long block codes.

Optimal sectionalization and Optimal
Permultation

Given a code. there are very many different trellises
that represent it. of widely varying complexity. When the
permuitation-optimal trellis is chosen, the decoding com-
plexity can be minimized among all the representations. A
permutation that yields the smallest state space dimension
at every time of the code trellis and the smallest overall
branch complexity is called an optimum permutation [6].
For Hamming codes. the permulation-optimal trellises can
normally be obtained directly by natural lexicographic #f
matrix. In this case, we use Golay (24.12.8) and count
the operations with the straightforward algorithm as the
examplc shown in lable 1.

Bit-level trellis operations | Optimum sectionalization
operations | boundary
location
4472 2558 {08,12.14,
15.16.24}
89560 5630 {0.11.24}
120904 4478 {0.9.24}

Table 1: Comparison between permuiation-optimal and
sectionalization-optimal on Golay (24.12.8)

Conclusion

In this paper. the Viterbi algorithm has been modified with
sectionalized trellises.  Resuits of Hamming codes and
their dual codes show that the sectionalization method can
reduce the computing complexity and the memory stor-
age. With the sectionaliztion algorithm. the computation
complexity can be reduced by nearly 50%. Considering
the large number of pre-calculavions and large momery
storage requirements by the previous meltric, we inves-
tigated and provided the update metric: Straightforward
algorithm. which can search out the optimal sectionaliza-
tion of C more effieciently and quickly than Vardy's al-
gorithm. And the relation between sectionalization and
permutation is found in the paper. It tums out that
the sectionalization-optimal code with the permulation-
oplimal mode can drastically change the number of the
computational operations in decoding procedure. ofien by
an cxponential factor.
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A SYSTEM FOR THE CORRECTION OF MISSING OR DELETED SYMBOLS

This invention relates (o the encoeding and decoding of symbols in symbol sequences in order to correct or compensate for deleted
or missing symbols All of the symbol information is reirieved from each symbol sequence despite some of the symbols being
missing or deleted.

BACKGROUND

In many communication sysiems, Storage systems and broadcasting systems inforination is encoded as a sequence of symbols
from a finite alphabet and binary symbols arc the most common. This 1nvention 1s applicable to any finite afphabet and may be
uscd for binary symbols but is not lunited 10 these In several applications the syinbol siream 1s subject to missing symbols or
deleted symbols. Without loss of generality the total number of symbols is denoted by n and the number of information symbols
contained in the symbol stream 1s denoicd by k The number of erased symbols is denoted by m. In communication systems these
m symbols are referred to as erased symbols [ 1] In broadcusting syStems or in multicasting systems, symbols ar¢ transmitied
senially. Each symbol could be a data packet of a suitable icngth in bits In broadcasting systems or multicasting, at any point in
time, only r symbols may have been received cither because of network congeslion or interference or because only r symbols
have been transmitted up until now The systein described betow enables the k information 'mbols to be retrieved with a given
probability of symbol error, provided r 1s greater than or cqual to k In infonmnation sterage systems, such as hard drives, the
invention described below may be used 1o recover the stored inforimation before all of the n symbols of data have been read (so as

number of missing symbols than the current state of the an. for the same transmiited sequence For cxample if 64 information bits
are encoded into 128 bits by using a code. such as the extended (128.64) BCH code given in the Appendix, then the traditional
hard decision decoder |2} will be able 1o correct only up to 21 nussing buts, one bit less than the d.o, of the code which is 22. With
the invention described below:, up 1o 62 missing bits on average can be corrected and 45 missing bits can be comrected with a
probability of 0.99999.

DESCRIPTION OF THE INVENTION

The information to be stored or transiuned consists of k infonnation symbols or packets, which are encoded into n code symbols
by using a series of panty check equations. This is a well known procedure described generally, for example, in references {1} and

means of recovenng the k information symbols or packets from k+r symbols, where r is 2 small integer between 0 and sone lisae,
N The reasons for wanting to recover the k niformation symbols or packeis from k+r symbols arc manifold. Some of the
remaining symbols may have been corrupted n siorage. and arc nussing, or in a communication system, congestion, time
constraints, distortion, noise or other transmission impairments may have prevenied the reception of the remaining symbols or
packets.

The code that js used for encoding is not the subject of this invention. The opcn literature 1s a rich source of suitable codes using
binary or non binary symbols and having vanous values of k and n. Sce for cxamnple {1] and [2]

The invention uses the received symbols and the parnty chock cquations 1 three methods, Method A, Method B, and Method C,
each with increasing levels of complexity of the decoder so that in the implementation of the mvention, performance may be
traded ofY against cost

Method A

In method A the decoder insents the rece;ved symbols into the parity check equatsons substituting symbols representing unknown
variables for the missing symbols The tqualtons are scanned for the number of unknowns in each €quation. Those equations with
only one unknown symbol, are salved for the unknown symbol and the solved symbols are substituted back into the parity check
equauions. The procedure then repeats and conunucs repcating untit all missing symbols have been solved and found. A schematic
diagram for the decoder is shown in Fig 2 Without toss of gencrahiy the ivention 1s described further by way of example using
binary symbols ard with a short code length of 15.

Constder the panty check matnx for a (1 5.7) crvor correcting code with 2 dmin of 5 The cede is guaranteed to correct 4 erasures
using syndrome decoding [2] By using the decoding Method A, the average nuber of crasures corrected is approximately

5 5.The code_lengthis 15 and there are 7 information bits encoded 110 a to1al of 15 bits The stquence to be transmitted or stored

is represented as
a - . -5, Bl e - - - -2 . .
C(x) = cot 1™ + X7+ 03x4 Cox 4+ cox S+ ot o T+ CaX M+ Cov 4 Crax 1% ¢ x4 g cax Y+ g x ™

The information 1s contained in the 15 binary cocflicients co. ¢,. ¢,. ¢, c, -+ Cafollowing the encoding according to the
parity check equations

There are 8 parity check equations which define 8 of ihe coefTicienis ¢, -

Ctot et =0 ()
Ctet et =0 (2)



C2tut Gt gg=0 )

CitCat Cot Cp=0 {4
Cat+c5t+ Cyt+ =0 (5)
€t et cgt €3 =0 (6)
Cs+ ot oot ¢y=0 (7
Cr +Cgt Cot ¢4 =0 (8)

The 7 information bits may be distnbuted amongst the 15 coefficicnts in several ways, the usual convention is that the coefTicients
Co through to ¢ are sei equal to the information bus and ¢, through to ¢,. are parity check bits denved from cothrough to c,.

As an altemative representation, the parity check equanuons may be represented as a panty check matrix:

110100010000000
011010001000000
001101000100000
000110100010000
G00011010001000
000001101000100
000000110100010
000000011010001

where in each row of the matny the position of the s indicate the coefficients used in (he panty check equation corresponding to
that row
Consider a scquence of missing bits or crasurcs in positions 3,12, 1.9,2,0
The received or the available sequence is therefore represented as
CaX™ Cox®Heax®+ x"+ cox+ X' x"" x4 g

The 6 coefficients ¢y, c,. C2.C3, G5, and ¢, ; arc unknown and need 1o be deicrimined unambiguously This is impossible with the
conventional syndrome decoder as only 4 cocfficients can be determined as the code has a d,, of 5.

For each erasure, the erasure is represenicd as an unknown it each of the panty check equations that it appears as z,.where i is the
position of the erasure

The set of parity check equations becoine

Zo+ 2+ ot o, =0 (Al)
Zitzt ot =0 (A2)
Zy+ 23+ 5t 2= 0 (A3)
Lt Cet cgt €p=0 (Ad)
Cq t G5+ oyt cn=0 (AS)
Cs + ot Gt 213=0 (A6)
CetCit 29+ ¢,3=0 (A7)

Cr togt Cot =0 (A8)

All the equations are scanned 1o detenmnine the nuinber of unknowns z, in cach equation Those equations with only one unknown
are solved. These are equations (A4). (A6) and (ATyand 43 z5 and Z:arc solved to producc ¢y, ¢ and Cj2. That is

€1 = Cot Cgt ¢y

Cs = cg+ CrF ¢p3and

€2 =Cst Cot ¢y

These are then substituted into equations (A 1) through 1o (A8) 1o produce the following equations
Zotn+ ctey=0 (Bl)

Zitot et =0 (B2)
Zat eyt eyt =0 (B3)
G+ Cut st =0 (B4)
Catest et g =0 (BS)
Cs+Cet gt cy;=0 (BS)
Cg + Cy+ Cot C|3=0 (B?)

Cr ¥+t ot ¢4= 0 (BR)




‘The procedure then repeats, scanning the equations to detenimine the number of unknowns z, in each equation. Those equations
with only one unknown are solved. In this case it is equauon (B3) for the unknown 2:in order to find ¢, . The solution (s)is
substituted 1o produce a new sel of cquations

o+t ¢t =0 (0}
z)+ot Gt =0 (C2)
C2Heyt cst =0 (C3)
G tet cet¢p=0 (C4)
Catest ¢yt =0 (C5)

Cs+Cst gt ¢2=0 (C6)
c6+C1+ C9+ C|j=0 (C-’)
C1+cgt Cigt Ce=0 (C8)

The procedure then repeats, scanmung the cqualtons to detcrmune the number of unknowns z, in cach equation. Those €quations
with only one unknown are solved which s now equanon (C2) for the unknown z, in order to find € . The solution (s) is
substituted in the equations to produce a new set of equations of which there is only ane unknown z, and the new equation (D0)
solved to find ¢,. In this way all of the erasures have becn comrecied As shown in F 18 2 the received codeword is clocked into the
n stage, tri-state, shifi register, with each stage s stonng one of 3 siates, cither 0 or 1 or % 1o represent an erasure in that position,
Each shifi register stage feeds the set of parily check equations and those with only one zentry are solved and the solutions fed
back to the respective shifi register stage as shown 1n Fig 2. The procedure then repeats unul the shift register contains no z states
or until decoding fails due 10 an excessive number of erasurcs being present in the panty check equations,

Method B
In the event that each parity clieck equation contains 1wo or more erasures then the procedure of Method A will fail. Method B is

the same as Method A exceplt that in the eveint of all panty check cquations containg two or more erasures, one or more crased
bits are selected and their states are systematically guessed The basis of the selection. 1s that these erased bits are in the maximum
number of equations containing only two crasures The states of these selected bits are set to all possible symbol states, one at a
tme, substituted back into the parity check equations, and Method A invoked A schemauc diagram of the decoder is shown in Fig
3. If the procedure progresses with ali the panity cheek equations solved then decoding is declared complete. In the event that all of
the parity check equations cannot be solved. then the received symbels arc tnput agmn from the receive buffer, and new guesses
are made for the selected bits If all possible Lucsses have been made for 1he sclected bits. then 2 new selection of bits to be
guessed is made and the procedure repeated.

Method C
For the ultimate performance all of the information contained m the parity check equations necds (o be used with a consequent

increase in decoder complexity The codeword 1s reccived and unknowns &, substituted in positions of erased symbols in the parity
check equaticns Starting with one of the erased symbols. 4, . the first cquation containing this symbol is flagged that u will be
used for the solution of z, and then 1lus equation 1s subtracted from all other cquations conlaiung z, and not yet flagged, to
produce a new set of equations The procedure repeats with the next of the non Magged equations containing the next erased
symbol z,,,; flagged and subtmeted from all of the renuning non fMagged cquations comaimng ., . The procedure is a form of
Gaussian reduction of the parity check equalions

The procedure repeats unul enther no non Nagged equations remain containing the crased symbol z,, 4, (in which case a decoder
failure is declared) or no erased symbols remain thay are not in Nagged cquations In this case starting with the last flagged
equation with erased symbol z,,,, this eqiation is solved 1o find ¢y, and this equanion 1s unflagged This coefficient is substituted
back into the remaining flagged equattons conaining z,,, The procedure now repeats waith the second from last flagged equaticn
now being solved for 2,,..; : this equation 1s unflagged and followed by back substitution Of Craar.y for z,,,., in the remaining
flagged equations. A block schematic of ihe decoder is shown in Fig 4 The received symbols are stored in the shift register with
the erased symbols being replaced by the unknowns ¢, The Gausstan reduced €quanons are computed and used (o define the
connection of symbol adders from each respective shift fegister stage to compute the outputs d, through to d_ The non erased
symbols contained in the sluft register are switched directly through to their respeclive outputs so that overall, the decoded
codeword containing no erased symbols 15 present at the outputs d, through to d,

As an example of the metliod consider the (15.7) code with erasures 1n posilions ¢, €3, c;, Cq

After substitution with the unknowns in the panty check equanions. the following set of equantons are obtained:

Ctyut 23+ ;=0 (D1)
Ltz 2+ =0 (D2)
Z + 2yt ¢t =0 (D3)
3tz ot €p=0 (D4)
Zatest ¢+ ¢ =0 (D35

Cs +Cst gt ¢, =0 {Dé6)
s+ Gt cot €3=0 D7)
€ tcgt ot =0 (D8)



(TEi.s simple example could have the erasures comected by Method A . but Method C will be applied as an example of the
procedure)

Starting with z, , equation (D1) is Ragged and subtracted from equation (D2) anly because 2, 15 nol contained in the other
equations. The new set of equanions obtained 1s as follows

Ctz+ 23+ ¢ =) (El) *for z,
Cot Zyb G+ 7+ 2+ ¢ =0 (E2)
Lot ot g =0 (E3)
23+ 2+ Cst C)o =0 (E4)
ot et ot g =0 (E3)
Cs + Cot Cgt ¢)p =0 (EG)
Ce +Cyt Cot Cyy =0 (E-’)
Cr +Cgt ot ¢y =0 (E8)

The * represents the flagging of equation (E1) meaning that Uus equation will be fixed and uscd to solve for 2,

The next unknown is z, contained i unflagged equation (E2) Thus equation is lagged and subtracted from the non flagged
equations contaiming z, to produce the next sct of cquations.

Cotzt 2yt ¢ =0 (FI) * forz,
Cot Zyt ¢+ 2+ 24t =0 (F2) * for z»
Cot O+ zih g+ o5t ¢ =0 (F3)
3t 24+ cgt g =0 (F4)
Zitest oF ¢y =0 (F5)
Cs + g+ gt ¢y, =0 (F6)
Cs tcrt oot )y =0 (Fn
€7+ gt ot ¢4 =0 (ry)

The next unknown is z, contained in equation {F3) Tlus cquation 1s Nagged and subtracted from the non flagged equations
containing z, 10 produce the next sef of cquations

Co+ i+ 23+ ¢, 0 (Gl) *for z,
Cot ut ittt g 0 (G2) * for z,
G+ €+ zot g+ ot o =0 (G3) *for z,
Cot e+t ot ootz + ¢+ ¢ =0 (G4)
Cot+ cz+ Co + ¢y 0 (GS)
Cs + Cot+ gt ) 0 (G6)
Cs + &t cot )y ( (G7)
€7+ Cgt Ciot 0 (G8)

There is now only one unknown remahining tn an unflagged equation , which 1s 2)1n(G4) Tlus is solved first to find c3.which is
substituted into ajl flagged equauons that 3 appears. 1c (G1) and (G2). Equauon (G3) is solved next for z,to determine ¢4 which
is then substiuted into (G2). Equanion (G2} is solved next for zrand finally (G1) is solved for Z

Multicast and Broadcast

In multicast and broadcast applications, infornanon is transmitted i dala packets with typical packet lengths from 30 bits to 1000
bits. These packets coutd define a symbol fromn a Galais ficld 1. v12 GF(2™) but with m cqual 10 30 or more up 10 and beyond
1000 bits this is impracticable and 11 is more convenient 10 usc 3 matnx approach with the packets forming the rows of the matrix.
The columns of bus (or symbals) are cncode| using an crror correcting code Usually. but noy ¢ssentially, the same error
correcting code would be used 1o encode each column of symbols The matrix of symbols may bce defined as -

boo bt buz bo3 boa bios big by bu, = packet |

bioby, by, bisbiabisbighs by, = packet 2

b20 by by, b2y baa basbag by ba. = packet 3

B0-10 bt by 12 by by botsbas by y; b,..  =packetn
¢




Theic are a total of (s+1) k information symbnls which are encoded using the parity check equations of a selected code into a total
number of transmitted symbols cqualto (s+!)n The symbols arc transnutied 1n a serics of packets with each packet
corresponding toa row of the matnx as indicaled above For examplc the row-

b20b21 baz b3 bys bagbog by b,
is transmitted as a single packel.

Sclf contained codewords are encoded from cach column of k symbals For example Boobiobzo by by braoform the k
information symbols of one codeword and e remaining syinbols buobu,1ybress  byyoare the nk parity symbols of that
codeword and these are these are the result of enceding the k informatuon symbols

As a resull of network congesuon, drop outs, loss of radio links or other multifarious reasons, not all of the transmitted packets are
received. The effect is that some rows above Inay be considered as erased rows. Thc decoding procedure is that codewords arc
assembled from the received packets with nussing symbels corresponding to the mussing packets marked as z, corresponding to
their position in the matrix. For cxample if the second picker only is missing above

The first received codeword corresponds to the first column above and is

Boo 210 bzo b3o bao bso by brg brig

The second codeword corresponding 1o the second column above 1s
ba) 21 byy by bat by, b, by, by 1

and so on

All of the three methods outlined above may be used 1o solve for the erased symbo! 2,0 1n the first received codeword, and for the
erased symbol 2,, in the second received codeword and so on up 1o the s'th codcword (column) solving for symbeol z,, ,

As an example the binary, extended (128.64; BCH codc given in 1he Appendix could be uscd to encode the information data. The
packet length is chosen to be 100 buts. and the to1al Iransimission could consist of 128 iransnuitted packets (12,800 bits total)
containing 6,400 bits of informanon On aveiage as soon as any 66 packets from the origmal 128 packets have been received, the
remaining 62 packels are treated as 1f they are crased The 100 codewords arc asscmbled, and decoded with the results that the
erased symbols are solved and the 6,400 bits of information retrieved One additional advantage is that a user does not have to wait
until the entire transmission has been rece:ved in order to recover the 6,400 bits of inforination even if there have been no erasurcs.
For this code, on average, only 66 packets have 1o be recerved 10 recover all 6.400 buis of information. (sec results below for this
code's performance)

Results for Some Typical Codes

The applicability of the decoding methods above depends upon the error correcting code being used and specifically on the parity
check matrix being used The parity check matnx should be sparse (cach row of the mainx having a small number of non zero
cntries) for Methods A and B, The sparsenes: of the panty check mairix does rot affect the performance of Methed C

A particularly strong binary code and one which has a sparse panty check mainy is the (255.175) binary code given in the
Appendix. This code has a length of 255 bits afler encoding of 175 information bits

The perfonmance of this code for (he three mcthods above 1s shown in Fig 5 1n tenns of the probability of decoder error (FER) asa
function of the erasure probabiluty for every nansnutted bit An crasurc probabihity of 0.2 means that on average 1 bitin § is crased
or lost. Method C has the best perfoninance but at the expensc of decoder complexity The ultunate performance of this method as
a function of error correcting code ts shown i Fig 6 for ihe example (255.175) code which cun correet a maximum of 80 erased
bits. Fig 6 shows the probabiliry density funciton of the number of crased bils shon of the maxiinum correctible which is n-k. The
results werc obtained by computer simulations. The probabulily of being able 10 correct only 68 bits, a shortfall of 12 bits, is
1.1x10”  Simulations indicate that on average 77 6 erased bits may be correcied for tlus code. In comparison the BCH (255,178)
code having similar rate is also shown in Fig 6 The BCH codc has simlar a sinnlar rate but a higher minimum Hamming distance
of 22 (compared to 17). li can be scen that it has better performance than the (255.175) code but it has a less sparse parity check
matnx and consequently 11 1s less suitable for the decoding Meihods A and B Moreover the average shontfall in erasures not being
able to becorrected 15 vinuatly idenucal for the 1wo codes

The simulation results of using Method C for the (103.52) quadranc residue binary code |3] are shown 1n Fig 7. The minimum
Hammung distance for this code 15 19 and 1he resulls are sumilar to that of the (255.178) BCH code above. It is found from the
simulations that on average 49 i erasure bits arc corrected (ot of 2 maxamum of 51) and ihe average shonfall from the maximum
is 1.59 bits.

Similarly the results for the extended BCH (128.64) code are shown i Fig 8. This code has 2 minimum Hamming distance of 22
and has a simalar probabilrty densny function to the other BCH code above. On average 62 39 erasure bits are corrected {outof a
maximum of 64) and the average shonfall ss . 61 bits from the maximum
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Appendix

The parity check (H) matnx below 15 for the (255.175) binary code having a minnnuin Hamnung distance of 17, It is a sparse
matnx because a code of tlus length and performance would usually have approximaicly 80 cntries per row instead of 16,
Consequently it 15 particularly suitable for usc in Mcihod A and Mecihod B. The -1 symbol at the end of each row is only there 10
enable the matrix to be casily machine readable, it is not part of the code. The numbers represent the bit positions of the bis
involved in cach parity check equation.

61 97 106 110 113 125 150 152 172 173 183 .1
62 98 107 111 114 126 15] 133 173 175 184 -]
63 99 108 112 115 127 152 |34 174 175 1851
64 100 109 13 116 128 153 158 475 176 1861

]

4 22 30 36 65 101 110 114 117 129 154 156 176 177 187 -1
51233137 66 102 £1) 115 118 130 155 157 177 178 188 -1
6 24 32 38 67 103 112 116 119 131 136 158 178 179 189 .1
72533396368 104 113 117 120 132 157 139 179 1RO 190-)
8 26 34 40 64 69 105 114 118 121 133 158 160 130 181 19 -1
9 27 35 41 65 70 106 115 119 122 134 159 161 181 182 1921
10 28 36 42 66 71 107 N16 120 123 135 160 162 182 183 193 -1
1129 37 43 67 72 108 117 12) 124 136 161 163 183 184 194y

17 30 38 44 68 73 109 118 122 123 137 162 i:d 184 18S 195 -1
13 31 39 45 69 74 110 119 113 126 138 163 165 183 186 196 -1
14 .32 40 46 70 75 111 120 124 127 139 164 160 186 187 197 -1
1533 41 47 71 76 112 121 125 138 140 165 167 187 188 1981
16 34 42 48 72 77 113 122 126 129 141 166 168 188 189 199 -1
17 35 43 49 73 78 114 123 127 130 142 167 169 129 190 200 .1
18 36 44 50 74 79 115 124 |28 131 143 168 170 190 197 201 -)
19 37 45 51 75 80 116 125 129 132 144 169 171 191 192 202 -\
20 38 46 32 76 B) 117 126 130 133 145 170 172 192 193 203 .)
21 39 47 53 77 82 118 527 131 134 146 171 173 193 104 204 -1
22 40 48 54 78 83 119 128 132 135 147 172 174 194 195 205 -1
23 41 49 35 79 84 120 129 133 136 148 173 175 193 196 206 -1
24 42 50 36 80 €5 121 130 134 137 149 174 176 196 197 207 -1
25 43 51 57 8) 86 122 13} 135 138 150 175 177 197 198 208 -1
26 44 32 58 B2 87 123 132 136 139 151 175 178 198 199 209 -1
27 45 53 59 83 83 124 133 137 140 152 477 179 199 200 210 -1
28 46 54 60 84 89 125 134 138 131 153 178 180 200 201 21) -1
29 47 55 61 85 90 126 133 139 142 154 179 121 201 202 212 -t
30 48 36 62 86 91 127 136 140 143 135 180 182 202 203 211 -]
31 49 57 63 87 92 128 137 141 144 156 181 183 200 204 214 -1
32 50 58 64 88 93 129 138 142 145 157 182 1%4 204 205 215 -1
33 51 59 65 89 94 130 139 143 146 158 183 185 205 206 216 -1
34 32 60 66 90 95 131 140 144 147 139 184 186 206 207 2171
3553 61 67 91 96 132 14) 145 148 160 185 187 207 208 2181
36 54 62 62 92 97 133 142 146 149 161 18c 1%% 208 209 2121
37 35 63 69 93 98 134 142 147 150 162 187 139 209 210 220 -1
38 56 64 70 94 99 135 144 148 151 163 18% 199 210 21 221 -1
39 57 65 71 93 100 136 143 149 152 164 189 191 211 212 224
40 38 66 72 96 101 137 146 150 133 165 190 192 212 213 223 1
41 39 67 73 97 102 138 147 151 154 166 191 193 213 214 224-)
42 60 68 74 98 103 139 148 152 155 167 192 194 214 215 225 .1
43 61 69 75 99 104 140 149 153 156 168 193 |95 215 216 226 -1
44 62 70 76 100 105 141 150 154 157 169 194 196 216 217 227 -1
43 63 71 77 101 106 142 151 153 158 170 195 197 217 218 228 -1
46 64 72 78 102 107 143 132 136 159 171 196 118 218 219 229 -1
47 65 73 79 103 108 144 133 157 160 172 197 199 219 220 230 -1
48 66 74 80 104 109 145 134 158 161 173 198 290 220 221 231 )
49 67 75 81 105 10 146 155 139 162 174 199 201 211 222 124
30 68 76 82 106 111 147 136 160 163 175 200 202 222 223 233 -1
31 69 77 83 107 112 148 157 161 164 176 201 203 223 274 234 -1
52 70 78 84 108 113 149 138 162 165 177 202 2u4 224 225 238 -1
53 71 79 85 109 114 150 159 163 166 178 203 205 225 226 236 -i
34 72 80 86 110 115 151 160 164 167 179 204 206 226 227 237 1)
35 73 81 87 111 N6 182 161 165 168 180 205 207 227 2218 238 -|
56 74 82 88 112 117 153 162 166 169 181 206 208 228 229 2391
37 75 83 89 113 118 154 163 167 170 182 207 209 279 230 240 -1
38 76 84 90 114 119 155 164 168 171 123 208 210 230 231 24 -)
59 77 85 91 115 120 136 165 169 172 181 209 211 231 232 242.)
60 78 26 92 116 12) 157 166 170 173 185 210 212 232 233 243 .1
61 79 87 93 117 122 158 167 F70 174 186 240 213 233 234 244 .
62 80 88 94 118 123 159 168 172 175 187 212 214 234 235 245 -4
63 Bl 89 95 119 124 160 169 173 176 188 213 215 235 236 246 -1
64 82 90 96 120 125 16) 170 174 177 189 214 216 236 237 2471
€5 83 91 97 121 126 162 170 175 178 190 215 217 237 238 248 -1
66 84 92 98 122 127 163 172176 179 191 216 218 218 239 249 -]
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As before the notation 1s that each row contains the positions of buts 1 that equation. There arc 64 rows because there are 64

€quations. The k information bits (also 64) may be in any position but traditionally 1hese are 1n positions 0 1o 63.



CLAIMS

Claim 1. A system 1n which k information symbals arc enceded into n synibols using panty check equantons from an ervor
correcung code and some of the n symbois are narked as erased symbols The k tnfonnation symbols are retrieved from the
remainung symbols based on a decoder (Mcihod A above) which examines the number of crasures in each panity check equation
and solves for the erased symbols in those panty check equations that only contin one erased symbol All of these erased symbols
are determined and substituted back o the panty check equations and the procedure 15 repcated over and over again until all
erased symbols have been determined and all k information symbols retricved

Claim 2. A system according to Claim Jand m which thie n symbols containing inarked erasure symbols are stored 1n a buffer
memory. Under the condition that all of the party check equalions contain 1wo or more erased symbols then one or more of these
symbols arc guessed as to their respeciive stazs using all combinations of their respeclive states, one state at a time, and the
Buesses substituted into the parity check equittions as described i Metlhod B. Each parity check equation which has only one
erased symbol is solved for that symbol and ail the solved symbols substituted into the equations and the procedure repeated as in
Claim 1. In the event that not all equations arc solved the onginal n syinbols are retricved from the buffer memory and the whole
procedure repeated with new guesses for enc ar morc of the crased symbels until all parity check cquations are solved or a decoder
failure is declared.

Claim 3. A system in which k information symbols are encoded nto n synbols usi ng parity check equations from an error
correcting code and 1n which some of the n sy mbols-are marked as erased symbols The k information symbols are retrieved based
on adecoder (Method C above) which selects onc erased symbol at a tumc The panty check cquations are examuned and the firsg
equation containing this symbol is flagged that it will be used to find this symbol Each unflagged equation containing this symbo)
is replaced with the result of that unflagged equation minus the equation Just flagged The procedure is repeated examining all
unflagged equations for the presence of the next selected crased symbol The first unflagged equation found is flagged and
subtracted from all other unflagged equations contauung that symbeol The procedure is repeated over and over again until each
erased symbols has a comresponding flagged cquation and either there arc no erased symbols left that have not been selected or
there are no unflagged equations coniainmg the currently selected erascd symbol. [n tlus later event a decoder failure is declared.
The last flagged equation is used to solve for 1is respectively sclected erased symbol and the solved symbol 1s substituted into al)
equations in which 1t 1s present. The next to last flagged cquation 1s soived for its sclected erased symbol and then the solved
symbol is substituted into all equations 1n which 1t 1s presemt The procedure 1s repeated over and over again working through the
flagged cquations, in last to be ftagged order unul all crased symbols have been solved

Claim 4. A system 1in which the product of k and s (k s) informaion symbols arc encoded into n s symbols using parity check
equations from an error correcting code and 1mnsmiticd or stored as packets of lengih s symbols. The enceding is carried out so
that each packet contains a single coordinate symbol from each of s cncoded codewords With k or more packets received or
recovered the remaining packeis are marked i3 being erased The svinbols witlun these packets are marked as erased symbols and
the corresponding s codewords each decoded ustng onc of the three Methods A. B or C  If successful decoding is not possible
either an additional non erased packet is obtawed and the decoding procedurc attempted again or a decoding failure is declared,

Claim 5. A system of multicasting or broadcasting in which the information to be transnmtted or stored 15 partitioned into blocks
of k packets of fixed lengih or of vanable length equal to s symbols and encoded according to Claim 4 into n packets of length s
symbols. As soon as k or inore packets have been recerved or recovered the k s mformation symbols corresponding to that
partition are decoded using one of the Mcthods A. B or C In this way a system 1s provided in which information may be multicast
or broadeast in mimmum time and also be resilicut 10 lost packels
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i dments to the claims have been filed as follows
CLAIMS Amendmen

Claim 1. A system 1n which k information symbols are encoded into n symbols using panity check €quattons from an error
comrecting code and in which some of the n symbols are marked as erased symbols with k information symbols retneved based on
2 decoder which selects one erased symbol at a ime and Nags the first panity check equation contaning this symbol and replaces
cach unflagged equauzon contaimng this symbol with that unflagged equation munus the equation just flagged continuing the
procedure until cach erased symbol has a corresponding flagged equation and then the tast flagged equation 1s used to solve for s
respectively selected crased symbol and the solved symbol 15 subsututed into all cquations in which 1l 15 present followed by the
next to last flagged equation which 1s solved for s selected erased symbol with this solved symbol substinuted into all equations
in which it 15 present followed by working through the remaiming flagged equations, 1n lasl to be flagged order, until all erased
symbols have been solved.

Claim 3 A system according to Claim 2, for application in multicasting, or broadcasung . in which the information to be
transmitted or stored 1s partitioned into blocks of k packets of fixed length equal to s+1 symbols and encoded into n packets of AL
length s+1 symbols and 1n which as soon as k or more packets have been received or recovered the k.s +k information symbols *®*-

are decoded such that the ks+k informauon symbols are retneved b
Q.
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