78 research outputs found

    Interference Management And Game Theoretic Analysis of Cognitive Radio

    Get PDF

    Capacity and performance analysis of advanced multiple antenna communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) antenna systems have been shown to be able to substantially increase date rate and improve reliability without extra spectrum and power resources. The increasing popularity and enormous prospect of MIMO technology calls for a better understanding of the performance of MIMO systems operating over practical environments. Motivated by this, this thesis provides an analytical characterization of the capacity and performance of advanced MIMO antenna systems. First, the ergodic capacity of MIMO Nakagami-m fading channels is investigated. A unified way of deriving ergodic capacity bounds is developed under the majorization theory framework. The key idea is to study the ergodic capacity through the distribution of the diagonal elements of the quadratic channel HHy which is relatively easy to handle, avoiding the need of the eigenvalue distribution of the channel matrix which is extremely difficult to obtain. The proposed method is first applied on the conventional point-to-point MIMO systems under Nakagami-m fading, and later extended to the more general distributed MIMO systems. Second, the ergodic capacity of MIMO multi-keyhole and MIMO amplify-and-forward (AF) dual-hop systems is studied. A set of new statistical properties involving product of random complex Gaussian matrix, i.e., probability density function (p.d.f.) of an unordered eigenvalue, p.d.f. of the maximum eigenvalue, expected determinant and log-determinant, is derived. Based on these, analytical closedform expressions for the ergodic capacity of the systems are obtained and the connection between the product channels and conventional point-to-point MIMO channels is also revealed. Finally, the effect of co-channel interference is investigated. First, the performance of optimum combining (OC) systems operating in Rayleigh-product channels is analyzed based on novel closed-form expression of the cumulative distribution function (c.d.f.) of the maximum eigenvalue of the resultant channel matrix. Then, for MIMO Rician channels and MIMO Rayleigh-product channels, the ergodic capacity at low signal-to-noise ratio (SNR) regime is studied, and the impact of various system parameters, such as transmit and receive antenna number, Rician factor, channel mean matrix and interference-tonoise- ratio, is examined

    A Comprehensive Framework for Spectrum Sensing in Non-Linear and Generalized Fading Conditions

    Get PDF
    We derive a comprehensive analytical framework for the ED over generalized, extreme, and non-linear fading conditions which addresses the topic completely. This is carried out for both conventional and diversity receptions and it is based on the area under the ROC curve (AUC), which is an efficient performance measure that is widely used in physical sciences and engineering. This differentiates the considered methodology from the aforementioned routine approaches and additionally provides generic results on the arbitrary derivatives of the MGF of useful generalized processes. The asymptotic behavior of the derived expressions is also analyzed providing direct and concrete insights on the role and effect of the involved parameters on the ED performance. The offered analytic results are subsequently employed in quantifying the performance of ED over various types of fading conditions, which exhibits that ED performance is significantly degraded by even slight variations of the severity of fading. To this end, it is shown that the detrimental effects of fading can be effectively mitigated with the aid of square-law combining and switch-and-stay combining methods, as a low number of diversity branches can ensure sufficient and holistic performance improvement even in severe fading conditions

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Performance analysis for cooperative wireless communications

    Get PDF
    Cooperative relaying has been proposed as a promising solution to mitigate and combat the deleterious effects of fading by sending and receiving independent copies of the same signal at different nodes. It has attracted huge attention from both industry and academia. The purpose of this thesis is to provide an analytical performance evaluation of the cooperative wireless systems while taking some realistic conditions into consideration. To achieve this, first, performance analysis of amplify-and-forward (AF) relaying using pilot-aided maximum likelihood estimation is studied in this thesis. Both disintegrated channel estimation (DCE) and cascaded channel estimation (CCE) are considered. Based on this analysis, optimal energy allocation is proposed. Then, performance analysis for AF relaying corrupted by interferers are investigated. Both randomly distributed and fixed interferers are considered. For random interferers, both the number and the locations of the interferers are random while for fixed interferers, both the number and the locations are fixed. Next, multihop relaying and multiple scattering channels over α - μ fading are analyzed. Channels with interferences and without interferences are considered. Exact results in the form of one-dimensional integral are derived. Also, approximate results with simplified structure and closed-form expressions are provided. Finally, a new hard decision fusion rule that combines arbitrary numbers of bits for different samples taken at different nodes is proposed. The best thresholds for the fusion rules using 2 bits, 3 bits and 4 bits are obtained through simulation. The bit error rate (BER) for hard fusion rule with 1 bit is provided. Numerical results are presented to show the accuracy of our analysis and provide insights. First, they show that our optimal energy allocation methods outperform the conventional system without optimal energy allocation, which could be as large as several dB’s in some cases. Second, with the increase of signal-to-interference-plus-noise ratio (SINR) for AF relaying with interference, the outage probability decreases accordingly for both random and fixed interferers. However, with the change of interference-to-noise ratio (INR) but with the SINR fixed, the outage probability for random interferers change correspondingly while the outage probability for fixed interferers remains almost the same. Third, our newly derived approximate expressions are shown to have acceptable performances in approximating outage probability in wireless multihop relaying system and multiple scattering channel considering interferences and without interferences. Last, our new hard decision fusion rule is shown to achieve better performance with higher energy efficiency. Also they show that there is a tradeoff between performance and energy penalty in the hard decision fusion rule
    • …
    corecore