6,080 research outputs found

    Reflection positivity and invertible topological phases

    Full text link
    We implement an extended version of reflection positivity (Wick-rotated unitarity) for invertible topological quantum field theories and compute the abelian group of deformation classes using stable homotopy theory. We apply these field theory considerations to lattice systems, assuming the existence and validity of low energy effective field theory approximations, and thereby produce a general formula for the group of Symmetry Protected Topological (SPT) phases in terms of Thom's bordism spectra; the only input is the dimension and symmetry group. We provide computations for fermionic systems in physically relevant dimensions. Other topics include symmetry in quantum field theories, a relativistic 10-fold way, the homotopy theory of relativistic free fermions, and a topological spin-statistics theorem.Comment: 136 pages, 16 figures; minor changes/corrections in version 2; v3 major revision; v4 minor revision: corrected proof of Lemma 9.55, many small changes throughout; v5 version for publication in Geometry & Topolog

    Quantum Langevin equations for optomechanical systems

    Get PDF
    We provide a fully quantum description of a mechanical oscillator in the presence of thermal environmental noise by means of a quantum Langevin formulation based on quantum stochastic calculus. The system dynamics is determined by symmetry requirements and equipartition at equilibrium, while the environment is described by quantum Bose fields in a suitable non-Fock representation which allows for the introduction of temperature. A generic spectral density of the environment can be described by introducing its state trough a suitable P-representation. Including interaction of the mechanical oscillator with a cavity mode via radiation pressure we obtain a description of a simple optomechanical system in which, besides the Langevin equations for the system, one has the exact input-output relations for the quantum noises. The whole theory is valid at arbitrarily low temperature. This allows the exact calculation of the stationary value of the mean energy of the mechanical oscillator, as well as both homodyne and heterodyne spectra. The present analysis allows in particular to study possible cooling scenarios and to obtain the exact connection between observed spectra and fluctuation spectra of the position of the mechanical oscillator.Comment: 37 pages, 2 figures. Major revisions; new reference

    Reflection Positivity and Monotonicity

    Get PDF
    We prove general reflection positivity results for both scalar fields and Dirac fields on a Riemannian manifold, and comment on applications to quantum field theory. As another application, we prove the inequality CDCNC_D \leq C_N between Dirichlet and Neumann covariance operators on a manifold with a reflection.Comment: 11 page

    Quantum Spacetime: a Disambiguation

    Full text link
    We review an approach to non-commutative geometry, where models are constructed by quantisation of the coordinates. In particular we focus on the full DFR model and its irreducible components; the (arbitrary) restriction to a particular irreducible component is often referred to as the "canonical quantum spacetime". The aim is to distinguish and compare the approaches under various points of view, including motivations, prescriptions for quantisation, the choice of mathematical objects and concepts, approaches to dynamics and to covariance.Comment: special issue of SIGMA "Noncommutative Spaces and Fields

    A Semidefinite Hierarchy for Containment of Spectrahedra

    Full text link
    A spectrahedron is the positivity region of a linear matrix pencil and thus the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The hierarchical criterion is stronger than a solitary semidefinite criterion discussed earlier by Helton, Klep, and McCullough as well as by the authors. Moreover, several exactness results for the solitary criterion can be brought forward to the hierarchical approach. The hierarchy also applies to the (equivalent) question of checking whether a map between matrix (sub-)spaces is positive. In this context, the solitary criterion checks whether the map is completely positive, and thus our results provide a hierarchy between positivity and complete positivity.Comment: 24 pages, 2 figures; minor corrections; to appear in SIAM J. Opti

    Stability of Covariant Relativistic Quantum Theory

    Full text link
    In this paper we study the relativistic quantum mechanical interpretation of the solution of the inhomogeneous Euclidean Bethe-Salpeter equation. Our goal is to determine conditions on the input to the Euclidean Bethe-Salpeter equation so the solution can be used to construct a model Hilbert space and a dynamical unitary representation of the Poincar\'e group. We prove three theorems that relate the stability of this construction to properties of the kernel and driving term of the Bethe-Salpeter equation. The most interesting result is that the positivity of the Hilbert space norm in the non-interacting theory is not stable with respect to Euclidean covariant perturbations defined by Bethe-Salpeter kernels. The long-term goal of this work is to understand which model Euclidean Green functions preserve the underlying relativistic quantum theory of the original field theory. Understanding the constraints imposed on the Green functions by the existence of an underlying relativistic quantum theory is an important consideration for formulating field-theory motivated relativistic quantum models.Comment: 29 pages, Latex, corrected typos, added background section, improved proof of key resul
    corecore