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Abstract. We provide a fully quantum description of a mechanical oscillator in the presence
of thermal environmental noise by means of a quantum Langevin formulation based on
quantum stochastic calculus. The system dynamics is determined by symmetry requirements
and equipartition at equilibrium, while the environment is described by quantum Bose fields
in a suitable non-Fock representation which allows for the introduction of temperature. A
generic spectral density of the environment can be described by introducing its state through
a suitable P -representation. Including interaction of the mechanical oscillator with a cavity
mode via radiation pressure we obtain a description of a simple optomechanical system in
which, besides the Langevin equations for the system, one has the exact input-output relations
for the quantum noises. The whole theory is valid at arbitrarily low temperature. This allows
the exact calculation of the stationary value of the mean energy of the mechanical oscillator,
as well as both homodyne and heterodyne spectra. The present analysis allows in particular to
study possible cooling scenarios and to obtain the exact connection between observed spectra
and fluctuation spectra of the position of the mechanical oscillator.
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1. Introduction

Optomechanical systems in the quantum regime are very important for quantum information
processing and for testing fundamental issues of quantum mechanics [1–10]. Their theoretical
analysis therefore calls for a first principle description. In particular since the focus is on
quantum effects, the theoretical models must be fully consistent with quantum mechanics.
Actually the correct quantum description of a mesoscopic mechanical oscillator and of the
thermal noise affecting it is not a trivial task, and there is not a unique accepted model for
them [11–24].

The first aim of this paper is therefore to obtain an accurate quantum mechanical
description of a mechanical oscillator taken to be part of an opto-mechanical device.
The oscillator cannot be considered as a Brownian particle, but rather as a mesoscopic
mechanical system, say a movable mirror mounted on a vibrating structure. Dissipative
effects are essentially due to the interaction with phonons. Our strategy will be to introduce
reasonable physical requirements leading to a master equation in Lindblad form, valid for
any temperature of the thermal bath. We then translate these results into quantum Langevin
equations and we show how to obtain a suitable non-Markovian generalization at this level
of description. Relying on these results we can consider the description of the simplest
optomechanical system, that is a moving mirror interacting with an electromagnetic mode
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in a cavity via radiation pressure [1, 5–7, 25]. Again a suitable analysis of the composite
system and of the monitoring of the emitted light calls for a consistent quantum description.
We shall obtain this result by the use of quantum Langevin equations, directly deducing them
from a unitary dynamics, and exploiting the theory of measurements in continuous time.

The paper is organized as follows. In Section 2 we determine the reduced dynamics
of the mechanical oscillator. Here, the basic assumption is the use of a Markovian master
equation with a quadratic generator and having a unique equilibrium state. Its structure is
further determined by suitable symmetry requirements and by physical constraints on the
behaviour of the mean values of position and momentum. In Section 3 we introduce the
quantum Langevin equations for the mechanical oscillator alone; the whole presentation is
based on the notions of quantum noise [26, 27] and of input-output fields [28–30], as well as
on the use of quantum stochastic calculus [31, 32]. The Bose fields entering in the unitary
dynamics play the role of phonon fields. By modifying their state without changing the time
evolution operator it is possible to introduce non Markovian effects, namely a non-flat noise
spectrum. The differences with respect to usual approaches are of relevance especially at low
temperatures, where the zero-point fluctuations play an essential role.

A quantum optomechanical system is studied in Section 4 by using the quantum
Langevin approach, within a fully consistent formulation valid at any temperature. Firstly, the
typical effect of laser cooling is discussed. Then, the continuous monitoring of the emitted
light is introduced in Sections 4.3.1 (homodyne detection) and 4.3.2 (heterodyne detection).
The treatment is well based in the theory of measurements in continuous time. Detection
of the emitted light is usually assumed to give a direct measurement of the fluctuations of
the position of the mechanical component. We show that this is true, but only for not too
low temperatures; at very small temperatures, interference terms are important and the direct
connection with such fluctuations is lost. This leads to new predictions on the optical spectra
at very low temperature. We finally summarize and discuss our results in Section 5.

2. Damped mechanical oscillator: the master equation approach

As a first step towards the construction of models of optomechanical systems valid in
the quantum regime at low temperatures, we consider the reduced dynamics of an open
mechanical oscillator. A fully consistent quantum description of a massive nanomechanical
component, kept at the simplest possible level, will be our basic building block in order to
consider more complex dynamics. We therefore formulate in the first instance a Markovian
description for the mechanical oscillator, which we build up relying on general physical
constraints and symmetry requirements.

A standard approach often considered in the literature is to derive the master equation
for the harmonic oscillator from effective environmental models of bosonic oscillators [13,14,
20–24]. However, previous work [16,17] has shown that, while using careful approximations
a positive Markovian dynamics can be obtained in this framework, the final results are valid
only from medium to high temperatures of the thermal bath. To ask for a Markovian dynamics
based on symmetry arguments allows to get simpler and more universal models, but again
serious problems appear. The requirement that the equilibrium state should be the canonical
thermal state determined by the standard Hamiltonian of a harmonic oscillator is known to
be incompatible with positivity and translational invariance [11, 33, 34]. This incompatibility
induced some authors to renounce to translational invariance [15,34], or to accept non-positive
dynamical equations and to give more relevance to obtaining time evolutions very close to the
classical ones [13, 14, 35]. A non positive dynamics can be satisfactory when the system is
near the classical regime, but this approach becomes questionable when quantum effects are



CONTENTS 4

searched for [36, 37]. We shall show that it is possible to maintain positivity and translational
invariance by weakening the requests on the equilibrium state. The key point will be a weak
formulation of energy equipartition at equilibrium. Our result is therefore to single out from
the many proposals appearing in the literature a unique consistent dynamics in the Markov
approximation.

2.1. Physical constraints and symmetry requirements

We formulate now our assumptions, starting from the existence of a well defined positive
Markovian dynamics, describing damping and translationally invariant apart from the
harmonic potential. A weak equipartition condition and the existence of a unique stationary
state in Gibbs form, as we shall see, will essentially fix the structure of the reduced dynamics.
Assumption 1 (Positive Markovian dynamics with quadratic generator). The evolution of the
statistical operator of the oscillator is governed by a Markovian master equation preserving
the positivity of the states. The generator of the dynamics is at most quadratic in the position
and momentum operators of the mechanical oscillator.
The first assumption is to consider a time-homogeneous and linear time evolution. Such a
dynamics can be expressed in the form

d

dt
ρ(t) = L[ρ(t)], (1)

with L a suitable generator or Liouville operator, at most quadratic in the position and
momentum operators of the mechanical oscillator q and p, so as to have at most a quadratic
potential term and a friction effect proportional to the momentum of the mechanical oscillator.
In the case of linear systems it is known that positivity and complete positivity of the dynamics
are actually equivalent [11], therefore according to [38, 39] the generator L must have the
standard Lindblad structure. The most general quadratic Liouville operator is obtained in
terms of two Lindblad operators [11]

Rj =
1√
~

(ujq + vjp) , u, v ∈ C2, (2)

and a generic selfadjoint quadratic Hamiltonian for the mechanical system

Hm =
hq
2
q2 +

κ0

4
{q, p}+

hp
2
p2 + fqq + fpp,

where all the constants are taken to be real, so that L takes the form

L[ρ] = − i

~
[Hm, ρ] +

2∑
j=1

(
RjρR

†
j −

1

2

{
R †j Rj , ρ

})
. (3)

We ask now to have a damped oscillator, but not an overdamped one.
Assumption 2 (Damping). The “kinetic energy” term is non negative and the mean values of
position and momentum decay to zero with an oscillating behaviour.
Apart from the trivial requirement of a positive kinetic energy term, we further look for a
dynamics describing the oscillating decay of the mean values of q and p to zero. This condition
complies with the Markovian and quadratic approximations, which are expected to be good
only for small damping. Denoting by 〈X〉t the mean value of a quantum operator with the
state ρ(t) solution of the master equation we have for position and momentum

d〈q〉t
dt

= hp〈p〉t +
(κ0

2
− Im 〈u|v〉

)
〈q〉t + fp,

d〈p〉t
dt

= −hq〈q〉t −
(κ0

2
+ Im 〈u|v〉

)
〈p〉t − fq,
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with 〈u|v〉 the inner product in C2. The eigenvalues of the associated dynamical matrix are
− Im 〈u|v〉 ±

√
κ2

0/4− hphq , so that in order to have an underdamped dynamics we need
Im 〈u|v〉 > 0 and κ2

0/4 < hphq . In particular hp and hq have the same sign and are non-
vanishing. Positivity of the kinetic energy leads to hp > 0 and therefore hq > 0. Then, we can
write hp = 1/m and hq = mΩ 2

m; the above inequality on κ0 becomes κ 2
0 < 4Ω 2

m. Finally,
the vanishing of the equilibrium means imply fq = 0, fp = 0. Introducing the positive
coefficients

γm = 2 Im 〈u|v〉, Dqp = Re 〈u|v〉, Dqq = ‖v‖2 , Dpp = ‖u‖2 ,
the generator can be written in the form

~L[ρ] = − i

2m
[p, {p, ρ}]− imΩ 2

m

2
[q, {q, ρ}]− Dpp

2
[q, [q, ρ]]− Dqq

2
[p, [p, ρ]]

−Dqp [p, [q, ρ]]− i (κ0 + γm)

4
[q, {p, ρ}]− i (κ0 − γm)

4
[p, {q, ρ}] , (4)

where in particular the constraints

Dqq ≥ 0, Dpp ≥ 0, DqqDpp −D 2
qp −

(γm

2

)2

≥ 0 (5)

hold, which provide the necessary and sufficient conditions for the dynamics described by
(4) to be in Lindblad form and therefore completely positive [11, 38]. An alternative way
to get the same positivity condition is to ask the generalized Heisenberg uncertainty relation
〈q2〉t〈p2〉t − (〈{p, q}〉t/2)2 ≥ ~2/4 to hold for any time and any initial state [40].

The first two assumptions are implicitly or explicitly taken in all the Markovian
approaches. A further natural requirement is that the interaction with the environment does
not depend on the position of the oscillator.

Assumption 3 (Translational invariance). The reduced dynamics is invariant under
translations apart from the harmonic potential term. This requirement is equivalent to the
validity of the classical equations of motion for the mean values of position and momentum.

By applying the generic translation q 7→ q + x, p 7→ p to the generator (4) we see that
all the terms are invariant with the exclusion of the term containing the harmonic potential
− imΩ 2

m

2 [q, {q, ρ}] and the last term − i(κ0−γm)
4 [p, {q, ρ}]. Therefore, the above assumption

is satisfied if and only if κ0 = γm. The same conclusion is reached by considering the
equations of motion for position and momentum and asking them to be equivalent to the
classical equations in which the momentum is proportional to the derivative of the position.

The result of the first three assumptions is therefore that the Liouville operator has the
structure (4) with κ0 = γm > 0 and Ω 2

m > γ 2
m/4; moreover, the constraints (5) hold. In

particular, the Hamiltonian part of L turns out to be

Hm = H0 +
γm

4
{q, p} , H0 =

p2

2m
+

1

2
mΩ 2

mq
2, (6)

where, besides a contribution in the form of the free Hamiltonian of a harmonic oscillator with
a strictly positive frequency Ωm, one has an additional term in the form of an anticommutator
proportional to the damping constant.

The evolution equations for the mean values and second moments of position and
momentum then read:

d〈q〉t
dt

=
〈p〉t
m

,
d〈p〉t

dt
= −mΩ 2

m〈q〉t − γm〈p〉t, (7)
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d〈q2〉t
dt

=
〈{p, q}〉t

m
+ ~Dqq,

d〈p2〉t
dt

= −mΩ 2
m〈{p, q}〉t − 2γm〈p2〉t + ~Dpp,

d〈{q, p}〉t
dt

=
2〈p2〉t
m

− 2mΩ 2
m〈q2〉t − γm〈{q, p}〉t − 2~Dqp.

(8)

The dynamical matrix giving the evolution of the mean values (7) has eigenvalues−γm/2 and
−γm/2± i

√
Ω 2

m − γ 2
m/4, which naturally leads to introduce the damped frequency ωm of the

mechanical oscillator in terms of its bare frequency Ωm:

ωm =

√
Ω 2

m −
γ 2

m

4
. (9)

Let us note that according to Ω 2
m > γ 2

m/4 > 0 we have ruled out the case Ωm = 0, which
corresponds to a quantum Brownian particle, that is a massive particle not bounded by a
potential in a translation invariant environment [18, 41–45] (see [46] for a recent review).

At this stage we further have to determine the diffusion coefficients Dqp, Dqq and Dpp

appearing in (4). We will rely on the study of features of the equilibrium state, but to avoid
the known incompatibilities with translation invariance [11] we formulate the equipartition
condition in a weaker form, not asking the existence of an equilibrium Gibbs state generated
by H0.

Assumption 4 (Equipartition). At equilibrium the mean kinetic energy and the mean potential
energy have to be equal.

Since the eigenvalues of the dynamical matrix associated to (8) have a positive real part,
existence of a unique attractive equilibrium state is granted, and thanks to the linearity of the
equations the equilibrium state is actually Gaussian and determined by the mean values at
equilibrium. Then, our equipartition condition is

〈p2〉eq

2m
=

1

2
mΩ 2

m〈q2〉eq, (10)

which gives equal weight to the mean kinetic and potential energy at equilibrium. By setting
in (8) the time derivatives equal to zero we come to

Dqp =
mγm

2
Dqq. (11)

Moreover, the second moments at equilibrium turn out to be

〈q2〉eq =
~

2γm

(
Dqq +

Dpp

m2Ω 2
m

)
, 〈{q, p}〉eq = −~mDqq,

〈p2〉eq =
~

2γm

(
Dpp +m2Ω 2

mDqq

)
.

(12)

We exploit finally the residual freedom we have in the choice of the diffusion coefficients
to get a Gibbs state as equilibrium state. However, as we already noticed, it cannot be state
generated by H0, and we replace it by a generic effective Hamiltonian.

Assumption 5 (Gibbs state and temperature dependence). The equilibrium state has a Gibbs
form which is determined by an effective Hamiltonian independent from the temperature.

As we shall prove below, this assumption implies that the diffusion coefficients have the
expressions

Dqq =
γm (2N + 1)

2mωm
, Dpp =

γmmΩ 2
m

2ωm
(2N + 1) , Dqp =

γ 2
m

4ωm
(2N + 1) (13)
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and that the equilibrium state has the form

ρeq =
e−βHm

Tr {e−βHm}
. (14)

In these expressions, Hm is the mechanical Hamiltonian (6) and N ≥ 0 represents the mean
number of excitations in the equilibrium state, namely

N =
1

eβ~ωm − 1
. (15)

Let us prove the above statements. Thanks to the Gaussianity of the equilibrium state,
Assumption 5 means ρeq ∝ exp

{
−cH̃

}
for a suitable quadratic Hamiltonian (without

the liner terms, because the means of position and momentum have to be zero), say H̃ =
p2

2m̃ + 1
2 m̃Ω̃2 + γ̃2

4 {q, p}, with ω̃2 := Ω̃2 − γ̃2

4 > 0 in order ρeq to be a trace-class operator.
Then, the eigenvalues of H̃ have the form ~ω̃ (n+ 1/2) and, without changing ρeq, we can
redefine c and H̃ in such a way that ω̃ = ωm and c = β, a positive constant which can be
interpreted as the inverse temperature of the equilibrium state of the mechanical oscillator.
Then, the mean number of excitations has the expression (15). By equating the mean values
determined by ρeq with the expressions (12), after some algebraic manipulations we get

m̃2Ω̃2 = m2Ω 2
m,

mγm

m̃γ̃
=
mDqq +

Dpp
mΩ 2

m

2mDqq
,

(2N + 1)
2

=
Ω 2

m

γ 2
m

(
Dpp

mΩ 2
m

−mDqq

)2

+
4

γ 2
m

(
DqqDpp −

m2γ 2
m

4
D 2
qq

)
.

The right hand side of the last equation is greater or equal to 1 by (5) and (11). To have
H̃ independent from the temperature implies that the coefficients Dqq and Dpp are both
proportional to 2N + 1 with temperature independent coefficients. The equations above,
together with ω̃ = ωm, give the expressions (13) and H̃ = Hm.

2.2. Master equation for the mechanical oscillator

From the previous results we see that a central role is played by the mechanical Hamiltonian
Hm, which appears in the commutator part of the Liouville operator and determines the
equilibrium state (14). It will be very useful to diagonalize explicitly Hm by introducing
a suitable mode operator. By defining

am =
1√

2m~ωm

(mΩm q + iτ p) , τ =
ωm

Ωm
− i

2

γm

Ωm
, (16)

we get that the mechanical Hamiltonian (6) can be written as

Hm = ~ωm

(
a†mam +

1

2

)
. (17)

The dimensionless quantity τ has modulus equal to one and [am, a
†
m] = 1 is satisfied. The

inverse formulae giving q, p in terms of am, a
†
m are

q =

√
~

2mωm

(
τ am + τa†m

)
, p = i

√
m~Ω 2

m

2ωm

(
a†m − am

)
. (18)

Let us note that the form (14) of the equilibrium state does not come from a direct
requirement, but rather it follows from all the considered assumptions. In particular we stress
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the fact that the operator Hm is not the Hamiltonian of the isolated oscillator, but includes a
term containing γm which comes from the interaction with the bath. Combining (12) and (13)
we have in particular

〈p2〉eq

2m
=

1

2
mΩ 2

m 〈q2〉eq =
~Ω 2

m

4ωm
(2N + 1) ,

γm

4
〈{q, p}〉eq = −~γ 2

m

8ωm
(2N + 1) , (19)

indeed satisfying (5). We see that the term related to damping gives a negative contribution
to the equilibrium mean value 〈Hm〉eq arising from energy exchange with the bath. The
Lindblad operators Rj appearing in (2) now read R1 =

√
γm (N + 1) am, R2 =

√
γmN a†m

so that the Liouville operator can be finally written as

L[ρ] = − i

~
[Hm, ρ] + γm(N + 1)

(
amρa

†
m −

1

2

{
a†mam, ρ

})
+ γmN

(
a†mρam −

1

2

{
ama

†
m, ρ

})
. (20)

Let us stress that, despite the fact that the expression (20) has the form of the generator for
an optical oscillator [26], the relations (16), (18) connecting am, a

†
m with q, p account for

the description of a mechanical oscillator. A master equation for a mechanical oscillator
with the Liouville operator (20) and the relation (16) between mode and position/momentum
operators was already proposed in [12, Sects. 6, 7], inside a scheme of canonical quantization
of dissipative classical systems. The introduction of (16) in order to obtain a quantum
description of the mechanical oscillator complying with all the natural physical requirements
is a key result of this section, which we will later exploit to consistently treat optomechanical
systems.

3. Langevin equations for the mechanical oscillator

So far we have obtained a quantum master equation in Lindblad form for the mechanical
oscillator, only relying on general physical constraints and symmetry requirements. However,
optomechanical systems are typically dealt with making use of quantum Langevin equations,
which provide a suitable and powerful approach for linear systems [37]; in such a framework
not only the system of interest appears, but also some quantum noises representing the
environment. It is a general result that for any master equation in Lindblad form it is possible
to introduce in a rigourous way a unitary dynamics involving the system of interest and
suitable quantum Bose fields, which at the level of the reduced dynamics of the system exactly
reproduces the master equation. That is, these quantum Bose fields effectively describe
the thermal environment affecting the mechanical oscillator and the system/field dynamics
is given by a unitary time evolution operator satisfying a quantum stochastic differential
equation of the type introduced by Hudson and Parthasarathy [31]. Within this formalism
the Heisenberg equations for the system operators provide the quantum Langevin equations,
while, as shown in [29], the Heisenberg equations for the Bose fields give the input-output
relation of Gardiner and Collet [26, 28]. We thus obtain in a unified framework all relevant
physical information [30]. Finally, we shall show in Section 3.2 that this approach allows to
treat also non Markovian effects and to introduce noises with non flat spectrum.

Let us start introducing the Hudson-Parthasarathy equation or quantum stochastic
Schrödinger equation [31], which gives the evolution equation for the unitary dynamics
involving the system of interest and a quantum Bose field. The proper mathematical
formulation of this equation relies on the formalism of quantum stochastic calculus [32].
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For the Liouville operator (20) the associated Hudson-Parthasarathy equation reads (see
e.g. [29, 47, 48] or [26, Sections 11.2.2, 11.2.7])

dU(t) =

{
− i

~
Hmdt+

√
γm

(
amdB†th(t)− a†mdBth(t)

)
− γm

2

(
(2N + 1) a†mam +N

)
dt

}
U(t), (21)

with U(0) = 1, Hm given by (17), and Bth(t) a Bose thermal field satisfying the canonical
commutation relations

[Bth(t), B†th(s)] = min{t, s}, [Bth(t), Bth(s)] = 0, (22)

and the quantum Itô table

dBth(t) dB†th(t) = (N + 1) dt, dB†th(t) dBth(t) = N dt,

dBth(t) dBth(t) = 0, dBth(t)dt = dB†th(t)dt = 0,
(23)

with N the positive quantity introduced in (15). The commutation rules are better understood
by introducing the formal field densities: dBth(t) = bth(t) dt. Then, these densities satisfy
the standard canonical commutation relations

[bth(t), b†th(s)] = δ(t− s), [bth(t), bth(s)] = 0. (24)

Equation (21) is a quantum stochastic differential equation in Itô sense and the second
line of (21) corresponds to the Itô correction. The solution U(t) of (21) is a family of unitary
operators on the overall Hilbert space which represent the dynamics of the closed system
corresponding to “mechanical oscillator plus field”. An heuristic, but more familiar, picture
can be obtained by using the field densities introduced above. The formal expression of the
unitary evolution is indeed [49]

U(t) =
←−
T exp

{∫ t

0

[
− iHm

~
+
√
γm

(
amb

†
th(s)− a†mbth(s)

)]
ds
}
, (25)

where←−T denotes the time ordered product. From this formal expression one sees that U(t)
is the time evolution operator for system and field in the interaction picture with respect to
the free field dynamics. The thermal field Bth therefore represents the environment, say the
phonon field interacting with the mechanical oscillator.

It is possible to show that the physical thermal field Bth(t) does not admit a Fock
representation. However, it is useful for computations to have a hand a mathematical
representation of Bth(t) in terms of two commuting Bose fields A1 and A2 in the Fock
representation [29, 48]. This means that such fields satisfy the canonical commutations rules
[Ai(t), A

†
j(s)] = δijmin{t, s}, [Ai(t), Aj(s)] = 0 and that there exists a common Fock

vacuum, i.e. a normalized vector e(0) annihilated by all these operators: Ak(t)e(0) = 0 for
k = 1, 2. The field defined by

Bth(t) =
√
N + 1A1(t)−

√
N A†2(t), (26)

satisfies the canonical commutation relations (22) and the Itô table (23). It is known in
quantum field theory that there exist non unitarily equivalent representations of the canonical
commutation relations; indeed, Bth(t) cannot be obtained by unitary transformations of Fock
fields.

Let us now consider as state of the field the A-field vacuum e(0). In such a case taking
the partial trace over the Fock space of the fields, which corresponds to take the trace over the
environmental degrees of freedom in open quantum system theory, the reduced system state
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is given by ρ(t) = Trenv

{
U(t) ρ(0)⊗ |e(0)〉〈e(0)|U(t)†

}
, with ρ(0) the initial state of the

oscillator. Thanks to (21) the reduced dynamics of the mechanical oscillator can be shown to
obey exactly the master equation (20) [30]. Further, we have the important relations

〈e(0)|Bth(t)B†th(s)e(0)〉 = (N + 1) min{t, s},

〈e(0)|B†th(t)Bth(s)e(0)〉 = Nmin{t, s},
〈e(0)|Bth(t)Bth(s)e(0)〉 = 0.

(27)

It is worth noticing that the thermal parameter N does not appear in the commutation rules
of the field Bth, but rather in the quantum correlations (27). This expresses the fact that N
depends on the “state” of the field or, more precisely,N determines a non-Fock representation
of the canonical commutation relations. Note furthermore that the vacuum e(0) is not
annihilated by the fields Bth(t), but it plays the role of a thermal state [48, Sect. 6]; no
vacuum state exists for a non-Fock Bose field.

3.1. Quantum Langevin equations and input-output relations

Relying on the previously introduced formalism we are now in the position to obtain the
so-called quantum Langevin equations, providing the stochastic evolution for the system
observables in the Heisenberg picture. For a generic system operator X we denote as usual
the Heisenberg picture as X(t) = U(t)†XU(t), with U(t) the unitary operator describing
the closed dynamics of system and environment. Differentiating this expression by the rules
of quantum stochastic calculus, essentially summarized by the Itô table (23), one obtains the
quantum Langevin equations for the relevant system operators, namely for the mode operator

dam(t) = −
(

iωm +
γm

2

)
am(t)dt−√γm dBth(t). (28)

By (18) we get also the equivalent equations for position and momentum

dq(t) =
p(t)

m
dt+ dCq(t), (29)

dp(t) = −
(
mΩ 2

mq(t) + γmp(t)
)

dt+ dCp(t), (30)

in which we have introduced the Hermitian quantum noises

Cq(t) = −
√

~γm

2mωm

(
τ Bth(t) + τB†th(t)

)
,

Cp(t) = iΩm

√
m~γm

2ωm

(
Bth(t)−B†th(t)

)
,

(31)

where τ is the pase factor defined in (16). By (22) the new noises obey the commutation rules

[Cq(t), Cp(s)] = i~γm min{t, s}, [Cq(t), Cq(s)] = [Cp(t), Cp(s)] = 0. (32)

A fundamental advantage of the considered formalism is that, thanks to the unitarity of U(t),
the transformation X 7→ U(t)†XU(t) preserves all the commutation rules among system
observables, in particular the Heisenberg relations between position and momentum, as can
be checked also directly relying on (32). Warranting preservation of these fundamental
commutation relations is indeed a basic step in providing a true quantum description of a
dissipative dynamics [26, Chapts. 1, 3].

We now consider the Heisenberg picture for the thermal fields and we define

Bout
th (t) = U(t)†Bth(t)U(t). (33)
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While Bth(t) represents the field before the interaction with the oscillator, the so-called
input field, Bout

th (t) is the field after the interaction, the so-called output field. We stress in
particular that an important consequence of the Hudson-Parthasarathy equation is the identity
Bout

th (t) = U(T )†Bth(t)U(T ), ∀T ≥ t, which warrants the fact that the output fields obey
the same commutation relations as the input fields, namely (22); in other words, both the
input and the output fields behave as free fields. By differentiating the three contributions in
U(t)†Bth(t)U(t) according to the Itô rules, one gets the input-output relation

dBout
th (t) = dBth(t) +

√
γm am(t) dt. (34)

The linearity of the Heisenberg equations of motion allows for an explicit solution

am(t) = e−(iωm+ γm
2 )tam −

√
γm

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s), (35)

Bout
th (t) = −

γm
2 − iωm
γm
2 + iωm

Bth(t) +
γm

γm
2 + iωm

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s)

+

√
γm

γm
2 + iωm

(
1− e−(iωm+ γm

2 )t
)
am. (36)

The explicit expressions for q(t) and p(t) can be easily obtained from (18) and (35).

3.2. Field state and non-Markovian dynamics

In the Markovian approximation considered so far, the temperature enters the theory only
through the parameter N defined in (15). This approximation can be described stating that
the system actually sees a flat noise spectrum, or more precisely the system is only affected
by the value of the bath spectrum at the frequency ωm. A more general and physically more
realistic situation is to allow for a structured noise spectrum and this can be achieved without
any modification of the unitary dynamics (21) and of the related Langevin equations and
input-output relations. To this aim it is enough to change the state of the field by taking
mixtures of coherent states [30, 50]. Let us note that considering such a mixture of coherent
states for the description of the state of the field is actually analogous to consider a state with
a regular P -representation in the case of discrete modes (see e.g. [26]), as explained below.
This modification is new in the context of quantum stochastic calculus and will imply that the
reduced dynamics of the oscillator is no more Markovian, in the sense that a closed master
equation in Lindblad form for the statistical operator cannot be obtained.

3.2.1. The field state. In order to consider a more general field state let us first introduce the
Weyl operators [30, 32] for the Fock A-fields, defined as

WA(g) = exp

{ 2∑
k=1

∫ +∞

0

gk(s) dA†k(s)− h.c.
}
,

with gk square integrable functions. The operator WA(g) is unitary and the property
Ak(t)WA(g)e(0) =

∫ t
0

dsgk(s)WA(g)e(0) holds, so that the action of a Weyl operator on
the Fock vacuum gives a coherent state. Therefore WA(g) is nothing but a displacement
operator for the Bose fields [49]. Relying on (26), we can introduce a Weyl operator also for
the B-field

WT (f) = exp

{∫ T

0

f(s) dB†th(s)− h.c.
}
, (37)
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where f is a locally square integrable function and T denotes a suitable large time, which
we will let tend to infinity in the final formulae describing the quantities of direct physical
interest. Now,WT (f)e(0) is not a coherent state for the Bth-field, but its relevant moments
can be computed by using the A-field representation (26):

〈WT (f)e(0)|Bth(t)WT (f)e(0)〉 =

∫ t

0

f(r) dr,

〈WT (f)e(0)|Bth(t)Bth(s)WT (f)e(0)〉 =

∫ t

0

f(u) du

∫ s

0

f(r) dr,

〈WT (f)e(0)|B†th(s)Bth(t)WT (f)e(0)〉 = Nmin{t, s}+

∫ t

0

f(u) du

∫ s

0

f(r) dr,

〈WT (f)e(0)|Bth(t)B†th(s)WT (f)e(0)〉 = (N + 1) min{t, s}+

∫ t

0

f(u) du

∫ s

0

f(r) dr.

(38)

A crucial step is now to consider f to be a random process and to take the state of the
field characterizing the environment to be

σenv = E
[
WT (f)|e(0)〉〈e(0)|WT (f)†

]
. (39)

Again, in the final formulae we will take the limit T → +∞. This is nothing but an
analogue of the regular P -representation for the case of discrete modes. Indeed, in the case
of a single mode the Glauber-Sudarshan P -representation of a state ρ [26, Section 4.4.3]
is defined by ρ =

∫
d2αP (α, α∗)|α〉〈α|. If the pseudo-density P is allowed to become

negative and singular, then any state can be represented in this form. When P is a true
probability density, one speaks of a regular P -representation and the Glauber-Sudarshan
formula describes mixtures of coherent states, including in particular thermal states [26, p.
113]. In a probabilistic language, which is more suitable for generalizations to stochastic
processes and fields, the fact that a state ρ has a regular P -representation can be rephrased by
saying that it can be written as the expectation value ρ = E[|α〉〈α|], with α a complex random
variable. In order to construct a thermal state it is enough to consider the case in which the
distribution of α is Gaussian with vanishing mean E[α] = 0 and second moments E[α2] = 0,
E[|α|2] = σ2. Then, ρ = E[|α〉〈α|] turns out to be a thermal state [26, Section 4.4.5].

By analogy, to construct a thermal field state with a general thermal spectrum we take
f to be a Gaussian stationary stochastic process with vanishing mean, E[f(t)] = 0, and
correlation functions

E[f(t) f(s)] = 0, E[f(t) f(s)] =: G(t− s). (40)

Thanks to stationarity, the function G(t) is positive definite, so that according to Bochner’s
theorem [51] its Fourier transform

Ĝ(ν) =

∫ +∞

−∞
e−iνtG(t) dt (41)

is a positive function, which we assume to be absolutely integrable, thus implying a finite
power spectral density for the process. Since the field state σenv, defined by (39), turns out
to be Gaussian, we can characterize it through the means and the correlations of the thermal
field Bth, which are immediately obtained from (38) and the properties of the process f . The
only non zero contributions are given by

〈B†th(s)Bth(t)〉env = Nmin{t, s}+

∫ t

0

du

∫ s

0

dr G(r − u),

〈Bth(t)B†th(s)〉env = (N + 1) min{t, s}+

∫ t

0

du

∫ s

0

dr G(r − u).

(42)
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To better grasp the physical content of the new state and of the formulae (42) let us
introduce a set of field modes as in [49]. Using a complete orthonormal set {hn} in L2(R),
we can expand the field in terms of discrete independent temporal modes by defining them as

chn =

∫ +∞

−∞
hn(t) dBth(t).

We then obtain 〈chn〉env = 0, 〈c 2
hn
〉env = 0, together with

lim
T→+∞

〈c†hnchn〉env = N + E
[
|〈hn|f〉L2 |2

]
=

∫ +∞

−∞

∣∣∣ĥn(ν)
∣∣∣2N(ν) dν,

where we have defined the positive quantity

N(ν) = N + Ĝ(ν) (43)

and ĥn(ν) is the Fourier transform of hn(t); by normalization
∫ +∞
−∞ |ĥn(ν)|2dν = 1. So,

the reduced state of the single mode chn is exactly a thermal state expressed in the P -
representation. If we take h1 and h2 having non overlapping Fourier transforms we also
get limT→+∞〈c†h1

ch2〉env = 0, which means that these two modes are independent. Then,
N(ν) is naturally interpreted as the mean number of phonons in a given field mode ch well
peaked around the value ν of the frequency and field modes with different frequencies are
independent. A value of N(ν) different from zero in a neighbourhood of ν implies that
the mechanical oscillator can absorb from the bath phonons with energy around ~ν. On the
contrary, the approximations are such that the oscillator can emit phonons of any frequency,
even when N(ν) = 0. The physically relevant quantity is now the combination of the two
non negative contributions N and Ĝ(ν), rather than the values of the individual quantities.
Note that the Markovian reduced dynamics of Section 2 can be obtained either by considering
the non-Fock representation for the thermal field, thus assuming a strictly positive N > 0 in
(26) and taking Ĝ(ν) ≡ 0, or equivalently by considering a standard Fock representation and
formally taking the limit of constant spectrum Ĝ(ν) in all the physical quantities.

3.2.2. The equilibrium state of the mechanical oscillator. According to the definition of
reduced dynamics, the time evolved state of the mechanical oscillator is still obtained
by taking the partial trace with respect to the field degrees of freedom ρ(t) =
limT→+∞ Trenv

{
U(t) (ρ(0)⊗ σenv)U(t)†

}
. However, at variance with the case in which

the state of the field was taken to be the A-field vacuum, by taking the time derivative of this
expression no closed evolution equation is obtained unless N(ν) is constant. Not to have
a closed time-homogeneous equation for the reduced dynamics is indeed a signature of the
non-Markov features of such a dynamics.

In spite of the difficulty of not having a closed master equation, the study of the reduced
equilibrium state, namely ρeq = limt→+∞ ρ(t), can still be afforded and its expression
enlightens the physical role of the various parameters. Indeed, thanks to the requirement
E[f(t) f(s)] = 0, one has that equipartition in the sense of (10) still holds. Starting from
the explicit forms of position and momentum in the Heisenberg picture (see (35), (18)) one
can check that the equilibrium mean values of position and momentum remain equal to zero,
while the variances are still of the form (19) with N replaced by the effective mean number
of excitations

Neff =
γm

2π

∫ +∞

−∞

N(ν)
γ 2
m

4 + (ν − ωm)
2

dν. (44)

Notice that if the quantity N(ν) introduced in (43) is taken to be the constant N ,
corresponding to the Markovian case, then Neff = N . This result suggests that the
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final Markov approximation should be valid when Ĝ(ν) is approximately constant in a
neighbourhood of ωm. In fact equation (44) represents a smearing of N(ν) around the
frequency of the mechanical oscillator ωm, the more peaked the smaller the damping
constant γm. Non-Markovian effects can only be relevant if Ĝ(ν) appreciably varies in a
neighbourhood of width γm around ωm, being suppressed with decreasing γm.

Since the equilibrium state is necessarily Gaussian, by comparing (44) with (14) we get
that the new equilibrium state is again a Gibbs state with respect to the same HamiltonianHm,
but with an effective inverse temperature βeff defined by setting Neff = (eβeff~ωm − 1)−1.

3.3. Properties of the quantum noises and quantum stochastic Newton equation

Let us now come back to the quantum Langevin equations for the position and momentum
operators, so as to better understand their physical meaning and the role of the noises. In
order to study the properties of the noises we transform the Langevin equations (29), (30) in
the form of a stochastic Newton equation.

To this aim we first have to consider the quantum noises (31) appearing in these quantum
Langevin equations. The commutation relations (32) for these noises, which are state
independent, guarantee the preservation of the canonical Heisenberg commutation relations.
Their quantum correlations do instead reflect the physical properties of the field state σenv and
can be obtained starting from the B-correlations (42). Note that Langevin equations for a
mechanical oscillator of the same form and with two noises obeying the same commutations
rules (32) were used also in [36]; however, the two point correlations used in [36], taken
from [17], arise from approximations in the Caldeira-Legget model which are valid only for
medium/high temperatures, while in the present treatment they are deduced from the state of
the phonon environment and are valid at any temperature.

We stress the fact that in the present formulation the momentum operator is not related
to the time derivative of the position operator according to the classical relation, but rather
through (29) where the quantum noise Cq(t) explicitly appears. However, the connection to
the classical formulation is not completely lost. In fact from (29) we can derive the relation

q(t2)− q(t1)

t2 − t1
− 1

t2 − t1

∫ t2

t1

p(t)

m
dt =

Cq(t2)− Cq(t1)

t2 − t1
.

By (31) and (42), the mean value of the r.h.s. of the equation above vanishes, while its variance
is given by

〈(Cq(t2)− Cq(t1))
2〉env

(t2 − t1)
2 =

~γm

mωm (t2 − t1)

(
1

2
+

∫ +∞

−∞

2
(

sin ν(t2−t1)
2

)2

πν2 (t2 − t1)
N(ν) dν

)
,

so that in particular also the variance goes to zero for growing t2 − t1. Then the quantity
v(t) = p(t)/m can actually be interpreted as the “coarse grained” velocity of the mechanical
oscillator.

If we use the formal field densities bth(t), b†th(t), with commutation rules (24), take as
starting point the quantum Langevin equations (29) and (30) and eliminate the momentum,
we can rewrite the quantum Langevin equations in the Newton form:

mq̈(t) +mγmq̇(t) +mΩ 2
mq(t) = ξ(t), (45)

where we have introduced the formally Hermitian quantum noise ξ(t)

ξ(t) = Ċp(t) +mγmĊq(t) +mC̈q(t). (46)
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Most importantly the commutation relations for this noise take the singular expression

[ξ(t), ξ(s)] = 2im~γm
∂

∂t
δ(t− s). (47)

While the expectation value of this noise with respect to the field state σenv is zero, its
symmetrized correlation function can be computed from the relations

m

~γm

∂2

∂t∂s
〈Cq(t)Cq(s)〉env =

1

m~γmΩ 2
m

∂2

∂t∂s
〈Cp(t)Cp(s)〉env

=
1

ωm

{(
N +

1

2

)
δ(t− s) + ReG(t− s)

}
, (48)

1

~γ 2
m

∂2

∂t∂s
〈{Cq(t), Cp(s)}〉env = − 1

ωm

{(
N +

1

2

)
δ(t− s) + ReG(t− s)

}
+

2

γm
ImG(t− s) (49)

and has the expression

1

2
〈{ξ(t), ξ(s)}〉env =

m~γm

ωm

(
Ω 2

m +
∂2

∂t∂s

)[(
N +

1

2

)
δ(t− s) + ReG(t− s)

]
+ 2m~γm

∂

∂t
ImG(t− s). (50)

Note that (45) and (47) were already introduced in [26, Sect. 3.1.2] and [37], where the
commutation rules (47) were actually enforced by the requirement of preservation of the
commutation rules between position and momentum. However, at variance with previous
approaches, here we have provided an explicit construction of the quantum noise ξ(t) in terms
of a quantum Bose field, based on a rigorous mathematical construction.

We stress the fact that the stochastic Newton equation (45) is mathematically purely
formal due to the presence in (46) of C̈q(t), which contains the formal derivative ḃth(t) and its
adjoint. Moreover, if one were to take (45), (47) and (50) as starting point for the construction
of the quantum Langevin equations for position and momentum, then one should complete
(45), which is an equation for q(t) only, with a suitable definition of p(t). The standard
choice in this respect, considered for instance in [1, 25, 37], is to take p(t) = mq̇(t). This
works out fine as far as the commutation relations of position and momentum are concerned.
However, in this case the equation of motion (45) and the structure of the noise ξ(t) obeying
(46) imply that q̇(t) contains singular quantum fluctuations, so that it is not a well defined
operator. Also p is then not a well defined operator and its variance is actually infinite. Then,
one has to regularize the momentum, by subtracting the noise responsible of this divergence;
this is what our construction does. The identification of the momentum is given implicitly
through the first canonical equation (29), which corresponds to the coarse grained velocity, as
discussed above. No divergency appears because the whole construction is based on the well
defined unitary evolution (21).

3.3.1. Consistency of the quantum noises. It is important to stress that if a set of quantum
Langevin equations is considered as starting point for the description of a stochastic quantum
dynamics, commutations rules and symmetrized correlations of the noises cannot be given
arbitrarily. In particular, independently of the considered system, if {ξi(t)} is a set of
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operator valued noises, the quantum correlation function 〈ξi(t)†ξj(t′)〉env has to be positive
definite [51], in the sense that∑

ij

∫ +∞

0

dt

∫ +∞

0

dt′ hi(t)〈ξi(t)†ξj(t′)〉envhj(t
′) ≥ 0, (51)

for every choice of the “smooth” test functions {hi}. Since we can always write

ξi(t)
†ξj(t

′) =
1

2

{
ξi(t)

†, ξj(t
′)
}

+
1

2

[
ξi(t)

†, ξj(t
′)
]
, (52)

the necessary positivity condition introduced above becomes a consistency condition between
commutation rules and symmetrized correlations.

Relying on (48), (49), as well as the commutation relations (32) for the noises Cq and
Cp, one can immediately check this fact for the model at hand. Also for the singular noise ξ
constrained by (46) one can show that the expression 〈ξ(t)ξ(s)〉env is positive definite. These
results are due to the fact that the noise fields have here been explicitly constructed in terms
of the quantum Bose fields, so that commutation rules and correlations are not postulated, but
rather follow from the mathematical expression of the model.

3.3.2. The noise correlations. For the model at hand we denote the Fourier transform of the
correlation of the noise ξ by

R̂(ν) =
1

2

∫ +∞

−∞
dt e−iνt〈{ξ(t+ s), ξ(s)}〉env, (53)

so that according to (43) and (50) it reads

R̂(ν) =
m~γm

2ωm

(
γ 2

m

4
+ (ωm + ν)

2

)(
N(ν) +

1

2

)
+ (ν → −ν), (54)

where (ν → −ν) means to add the same contribution with ν replaced by −ν. Note in
particular that R̂(ν) is an even function of the frequency.

In our treatment, which gives rise to the expression (54), the interaction with the
environment is described in terms of exchange of quanta with the bosonic field representing
the phonons, see (25). In models in which the system of interest is coupled to other
harmonic oscillators, by some approximations it is possible to arrive to a quantum stochastic
Newton equation like (45), but with a different noise spectrum. A reference expression often
considered in the literature [26, (3.3.9)], [37] for the quantity R̂ is given by

R̂GZ(ν) = π~J(ν) coth
β~ν

2
, J(ν) :=

m

π
k(ν)ν. (55)

The quantity k(ν) contains information on both coupling constant and density of modes of
the bath in a neighbourhood of the frequency ν; J(ν) is often called spectral density. Also
in the case of this choice of the noise correlations, it is possible to show that the equilibrium
mean of q̇(t)2 diverges and therefore the identification of the momentum with mq̇(t) is not
possible, but some regularization is needed. A typical choice in this context is k(ν) = γm [26,
(3.1.1)], [1, 2, 25, 37]; this is equivalent to J(ν) ∝ ν, which is known as Ohmic spectral
density. The function k(ν) must be even due to the definition (53) and stationarity. Also the
commutations rules (47) and the positivity requirement (51) still have to hold, leading to the
requirement R̂GZ(ν)−m~γm |ν| ≥ 0, satisfied at any temperature by taking k(ν) ≥ γm > 0
for all ν. This requirement tells us that in order to have a consistent model satisfying (45), at
least at large times, and preserving Heisenberg commutation relations one cannot consider a
spectral density with gaps inside the expression (55) of R̂GZ .
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By a suitable choice of N(ν), it is possible to get R̂(ν) very similar to R̂GZ(ν), apart
from the low temperature limit. For instance, by taking

N(ν) = |ν| k(ν)
2ωm

(Ω 2
m + ν2) γm

(
eβ~|ν| − 1

) , (56)

we obtain

R̂(ν) = R̂GZ(ν) +m~
[
γ 2

m

2ωm

(
Ω 2

m + ν2
)
− k(ν) |ν|

]
; (57)

note that the difference is independent from the temperature. In (57) the compatibility with
the commutation relations is guaranteed by the first term in the square brackets; so, in (56)
there is no restriction on the choice of k(ν), apart from k(ν) ≥ 0, and even spectral gaps can
be introduced.

Besides the case (56), the freedom in the choice of N(ν) in (54) allows to model
quite different environments, for instance with a sub-Ohmic or super-Ohmic spectral density
[22–24], or with a structured occupation spectrum. In optomechanical systems the quantity
R̂(ν) enters experimental quantities, as in the cases of homodyne/heterodyne detection
discussed in Section 4.3; so, in principle it is possible to test the form of R̂(ν). However,
essentially a frequency window of width γm around ωm is experimentally relevant. Some
results at room temperature [52] seem to indicate a non-Ohmic spectral density around ωm, a
very interesting possibility, but not enough to discriminate between R̂GZ(ν) and the form (57)
for R̂(ν). At zero temperature, corresponding to N(ν) = 0 in our case (54) and to β → +∞
in (55), the difference is most evident, namely

R̂(ν) = m~γm
Ω 2

m + ν2

2ωm
(58)

versus

R̂GZ(ν) = m~k(ν) |ν| , k(ν) ≥ γm. (59)

These expressions are very different, but to discriminate between them one has to consider
very low temperatures and a ratio γm/ωm that is not too small.

4. Cooling and emission spectra of an optomechanical system

As an application of the quantum description of a mechanical oscillator developed so far
we consider the simplest optomechanical system [1, 2, 5, 6, 25, 37], namely the mechanical
oscillator is a mirror mounted on a cantilever and coupled to the light in an optical cavity by
radiation pressure. The cavity is of high quality, without thermal dissipation other than the
one due to the coupling between cantilever and phonons and tuned in such a way that only
one electromagnetic mode is relevant. Strong laser light is injected and some light is allowed
to leave the cavity so that its spectrum can be analysed.

4.1. The optomechanical model

The micro-mechanical oscillator (the mirror) is described by the operators q, p as in (18) and
by the Hamiltonian Hm (6). The cavity mode is described by the operators ac, a†c and by the
free Hamiltonian ~ωca

†
cac. The free electromagnetic field is in a coherent state describing a

perfectly monochromatic laser of frequency ω0; however we use the equivalent description of
inserting a source term for the cavity mode in the Hamiltonian and of taking the external field
in the vacuum. The final optomechanical Hamiltonian takes the form

Hom(t) = Hm + ~ωca
†
cac − ~g0qa

†
cac + i~E

(
a†ce−iω0t − aceiω0t

)
. (60)
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Note the trilinear term giving the interaction between the position of the mirror and the number
operator of the photons in the cavity, which represents the radiation pressure interaction; the
coupling constant is usually expressed as g0 = ωc/L, where L is the length of the cavity. The
laser power is P = ~ω0E

2/γc, where γc is the cavity decay rate and E the laser amplitude.
In order to include the cavity mode interacting through radiation pressure with the

mechanical oscillator, as well as the emission and absorption of the light from the free
electromagnetic field, the Hudson-Parthasarathy equation (21) is modified as follows:

dU(t) =

{
− i

~
Hom(t)dt+

(√
γm am dB †th(t) +

√
γc ac dB †em(t)− h.c.

)
− γm

2

(
(2N + 1) a†mam +N

)
dt− γc

2
a†cacdt

}
U(t). (61)

Here Bth is the thermal field satisfying (22), while Bem is an independent Bose field in the
Fock representation, describing the electromagnetic field outside the cavity. The relevant Itô
rule is dBem(t)dB †em(t) = dt, while all the other possible products vanish. Now U(t) is the
unitary operator describing the dynamics of the two interacting oscillators and the fields. The
latter are in a factorized state given by the tensor product of the thermal environment state
(39) and the electromagnetic vacuum:

σ̃env = σenv ⊗ |eem(0)〉〈eem(0)|. (62)

It is convenient to eliminate the laser frequency working in the rotating frame and
introducing the unitary operator V (t) = eiω0a

†
cactU(t), which upon differentiation obeys an

equation of the form (61) albeit with Hom(t) substituted by

Hm + ~∆0a
†
cac − ~g0qa

†
cac + i~E

(
a†c − ac

)
, (63)

with ∆0 = ωc − ω0 the nominal detuning. For a generic system operator X we define
X(t) = V (t)†XV (t), so that by differentiating according to the rules of quantum stochastic
calculus, as done in Section 3.1, we get the following quantum Langevin equations

dac(t) =

(
−
(

i∆0 +
γc

2

)
ac(t) + ig0q(t)ac(t)− iE

)
dt−√γc eiω0tdBem(t), (64)

as well as

dq(t) =
p(t)

m
dt+ dCq(t),

dp(t) =
(
−mΩ 2

mq(t)− γmp(t) + ~g0a
†
c(t)ac(t)

)
dt+ dCp(t),

(65)

where Cq and Cp are given by (31). Defining the output fields as in (33) of Section 3.1 we
have besides (34) the input-output relation for the electromagnetic field

dBout
em (t) = dBem(t) +

√
γc e−iω0tac(t)dt. (66)

In the case of a very intense laser, that is E2 large, the dynamics can be linearized in
a neighbourhood of the equilibrium mean values, determined by self-consistency from the
means of the linearized form of the quantum Langevin equations. The equilibrium mean
value of the momentum is zero, while setting ζ = 〈ac(t)〉eq, we find

ζ = − iE
γc
2 + i∆

, 〈q〉eq =
~g0 |ζ|2

mΩ 2
m

, (67)

where we have introduced the effective detuning ∆,

∆ = ∆0 − g0〈q〉eq = ωc − g0〈q〉eq − ω0. (68)
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By inserting the equations (67) into (68) we obtain the self-consistency condition

mΩ 2
m (∆−∆0)

(
γ 2

c

4
+ ∆2

)
+ ~g 2

0 E
2 = 0; (69)

this cubic equation determines ∆ as a function of the laser parameters ∆0 and E.
In writing and solving the linearized quantum Langevin equations it is useful to have

dimensionless and selfadjoint system operators. It is therefore convenient to set

q̂(t) =

√
mΩm

~
(
q(t)− 〈q〉eq

)
, p̂(t) =

p(t)√
m~Ωm

, (70)

X(t) =
ζa†c(t) + ζ ac(t)√

2 |ζ|
−
√

2 |ζ| , Y (t) =
i
(
ζa†c(t)− ζ ac(t)

)
√

2 |ζ|
. (71)

Then, the linearized quantum Langevin equations turn out to be

d~w(t) = A~w(t)dt− d ~Q(t), ~w(t) = (q̂(t), p̂(t), X(t), Y (t))
T
, (72)

where the superscript T means transposition and the dynamical matrix is given by

A =

(
Am Amc

Amc Ac

)
, Amc =

(
0 0

G
√
ωm/Ωm 0

)
, (73)

Am =

(
0 Ωm

−Ωm −γm

)
, Ac =

(
−γc/2 ∆
−∆ −γc/2

)
. (74)

The quantity G, having the dimension of a frequency, will play the role of effective coupling
constant and is given by

G = g0 |ζ|
√

2~
mωm

, (75)

so that in particular it depends on the effective detuning ∆ through ζ given in (67). The vector
of noises is given by the following field combinations:

Q1(t) = τ

√
γmΩm

2ωm
B †th(t) + h.c., Q2(t) = i

√
γmΩm

2ωm
B †th(t) + h.c., (76)

Q3(t) = ei arg ζ

√
γc

2

∫ t

0

e−iω0sdB †em(s) + h.c.,

Q4(t) = iei arg ζ

√
γc

2

∫ t

0

e−iω0sdB †em(s) + h.c.,
(77)

where τ is the phase factor defined in (16) and the quadratures Q1(t) and Q2(t), apart from a
multiplicative factor due to the change of dimensions, coincide with the noises (31).

Note the different structure of the two dynamical sub-matrices in (74). Indeed the
former describes a mechanical oscillator and the latter an optical mode, corresponding to
different interactions as discussed in Section 2. The same choice is taken, for instance,
in [1, 2, 7, 25, 36, 37], but not in [5, 9, 10].

The linearization around the equilibrium state is meaningful provided one can ensure
the existence of such a state. Its stability conditions can be obtained by applying the Routh-
Hurwitz criterion to the equations for the mean values, which correspond to the system (72)
with the noise term d ~Q(t) suppressed; the result is the couple of conditions

G2ωm∆ < Ω 2
m

(
γ 2

c

4
+ ∆2

)
, (78)



CONTENTS 20

for ∆ > 0, and

G2ωm |∆| <
γcγm

γc + γm

γcΩ 2
m + γm

(
γ 2

c

4
+ ∆2

)
+

(
Ω 2

m −
γ 2
c

4 −∆2
)2

γm + γc

 , (79)

for ∆ < 0; there is no restriction for ∆ = 0. The same stability conditions have been found
in [25], as their equations for the mean values agree with ours.

4.2. Energy fluctuations and laser cooling

To introduce the fluctuation spectra of position and momentum of the mechanical oscillator
we use a formulation tailored for (classical or quantum) processes starting at time zero and
we define the gated Fourier transforms [9]

B̂Ti (ν) =
1√
T

∫ T

0

eiνtdBi(t), i = th, em, (80)

for the Bose fields as well as for the relevant system operators

Fi(T ; ν) =
1√
T

∫ T

0

eiνtwi(t)dt, i = 1, 2, 3, 4. (81)

Here T is a large time going to infinity in the final formulae to recover a stationary situation.
Then, the spectra of the fluctuations of position and momentum of the mechanical oscillator
are defined, in analogy with the classical case [54], by the quantum expectations

Sq(ν) = lim
T→+∞

1

2
〈{F1(T ; ν), F1(T ;−ν)}〉,

Sp(ν) = lim
T→+∞

1

2
〈{F2(T ; ν), F2(T ;−ν)}〉,

(82)

Sqp(ν) = lim
T→+∞

1

4
〈{F1(T ; ν), F2(T ;−ν)}+ {F1(T ;−ν), F2(T ; ν)}〉. (83)

Let us stress that, while useful, these definitions do not correspond to some continuous
monitoring of position and momentum, even though Sq(ν) is directly related to the observed
optical spectra as we shall see in Section 4.3.

The Fourier transformed equations of motion corresponding to (72) can be solved by
purely algebraic manipulations and the vector ~F (T ; ν) can be computed; due to the length of
the expressions the result is reported in Appendix A. To compute the spectra above we need
also the field correlations, which we give in (A.9).

Due to the vanishing of the field cross-correlations, the spectra (82), (83) decompose in
a thermal and a radiation pressure contribution according to

Sq(ν) = Srp
q (ν) + Sth

q (ν), Sqp(ν) = Sth
qp(ν),

Sp(ν) =
ν2

Ω 2
m

Srp
q (ν) + Sth

p (ν).
(84)

By inserting the expressions (A.1), (A.2) into the definitions (82), (83) and by using (A.9) we
get, by some computations, the expressions for the spectra of the fluctuations:

Srp
q (ν) =

ΩmωmG
2γc

2 |d(ν)|2

(
∆2 +

γ 2
c

4
+ ν2

)
, (85)
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Sth
q (ν) =

ΩmR̂(ν)

~m |d(ν)|2

(
γ 2

c

4
+ (ν −∆)

2

)(
γ 2

c

4
+ (ν + ∆)

2

)
, (86)

Sth
p (ν) =

γm

2ωmΩm |d(ν)|2

{∣∣∣∣(Ω 2
m + ν

(
ωm − i

γm

2

))(
∆2 +

(γc

2
− iν

)2
)

−G2ωm∆

∣∣∣∣2(N(ν) +
1

2

)
+ (ν → −ν)

}
, (87)

Sth
qp(ν) = − γm

2Ωm
Sth
q (ν) +

γmG
2∆

2 |d(ν)|2

{(
N(ν) +

1

2

)
×
[
γm

2

(
∆2 +

γ 2
c

4
− ν2

)
− νγc(ωm + ν)

]
+ (ν → −ν)

}
, (88)

where (ν → −ν) means to add the same contribution with ν replaced by −ν and the quantity
R̂(ν) is the Fourier transform of the quantum correlations of the noise given in (54). The
denominator d(ν) is the characteristic polynomial of the dynamical matrix A given in (73)
and (74):

d(ν) = det (A+ iν1) =

((
ν + i

γc

2

)2

−∆ 2

)((
ν + i

γm

2

)2

− ω 2
m

)
−G2ωm∆. (89)

Note that the quantities (85)–(90) are non-negative as they should be in order to give a
sensible decomposition of the spectra. Another useful way to write Sth

p (ν) is by putting in
evidence its difference from Sth

q (ν); the resulting expression is

Sth
p (ν)− Sth

q (ν) =
ωmγmG

2∆

Ωm |d(ν)|2

{(
N(ν) +

1

2

)[
1

2
G2∆ + ν2 γmγc

2ωm

+

(
Ω 2

m

ωm
+ ν

)(
ν2 −∆2 − γ 2

c

4

)]
+ (ν → −ν)

}
. (90)

4.2.1. The peaks in the fluctuation spectra. A relevant role in determining the properties
of the system is played by the denominator d(ν) (89); indeed, the quantity Ωm[∆2 −
(ν + iγc/2)

2
]/d(ν) is sometimes interpreted as the effective mechanical susceptibility [25,

Eq. (17)]. Most importantly note that the zeros of d(ν) determine the positions and the widths
of the peaks of the fluctuation spectra: even though in principle they can be obtained by
solving the fourth order algebraic equation d(ν) = 0, it is much more convenient to have
simple expressions, even if approximate. An analysis of these zeros is given in Appendix A.1
in the case in which d(ν) can be written in the form

d(ν) =

((
ν + i

Γc

2

)2

−∆ 2
eff

)((
ν + i

Γm

2

)2

− ωm 2
eff

)
. (91)

The stability conditions (78), (79) guarantee the strict positivity of the effective damping
constants Γc and Γm. The quantity ωm

eff is known as optical spring rigidity, while the ratio
(Γm − γm)/γm is called co-operativity [5, 9].

An exact expression for the zeros is found when ∆ = ωm, which allows us to put into
evidence a crossing of the frequencies of the hybridized optical and mechanical modes [9]. If
also the condition

4G2 < (γc − γm)2 (92)
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holds, the result is

Γc =
γc + γm

2
+ ε

√
2u2 − 2ω 2

m +
(γc − γm)2

8
, (93)

Γm =
γc + γm

2
− ε
√

2u2 − 2ω 2
m +

(γc − γm)2

8
, (94)

∆ 2
eff = ωm 2

eff =
ω 2

m + u2

2
− (γc − γm)2

32
, (95)

where

u2 =

√(
ω 2

m +
(γc − γm)2

16

)2

−G2ω 2
m, ε =

{
+1 if γc > γm

−1 if γc < γm

. (96)

Always for ∆ = ωm, under the conditions

ω 2
m(γc − γm)2

4
< G2ω 2

m <

(
ω 2

m +
(γc − γm)2

16

)2

, ω 2
m >

(γc − γm)2

16
, (97)

we get instead the result

Γc = Γm =
γc + γm

2
, ∆eff =

√
x±, ωm

eff =
√
x∓, (98)

x± = ω 2
m −

(γc − γm)2

16
± ωm

√
G2 − (γc − γm)2

4
. (99)

The two alternatives in (98) are completely equivalent; there is no reason to associate the
frequency

√
x+ to the cavity and

√
x− to the mechanical oscillator, or viceversa. A striking

feature of the case ∆ = ωm is the change in the behaviour of the zeros at the critical point
γc = γ̄c, solution of G2 = (γc − γm)2/4; recall that G2 depends on γc due to (67) and (75).

In the general case, an approximate expression can be obtained under the conditions

γm

γc
� 1, |χ(∆)| � 1, |χ(∆)|

∣∣∣∣1− ∆2

ω 2
m

− γ 2
c

4ω 2
m

∣∣∣∣� 1, (100)

where

χ(∆) =
G2ωm∆(

(γc−γm)2

4 + (∆− ωm)
2
)(

(γc−γm)2

4 + (∆ + ωm)
2
) . (101)

The result for the damping constants is

Γm ' γm + χ(∆) (γc − γm) , Γc ' γc − χ(∆) (γc − γm) . (102)

The expressions for ωm 2
eff and ∆ 2

eff are then obtained by inserting Γm and Γc in the equations
(A.12). The compatibility conditions (A.13) have to hold. As one can see, when ∆ > 0
(red detuning), we have an increasing of the mechanical damping constant, Γm > γm, and a
decreasing of the spring rigidity, ωm

eff < ωm.
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4.2.2. The mean values at equilibrium. By integrating in their frequency dependence
the fluctuation spectra one obtains the second moments of position and momentum in the
equilibrium state:

〈q2〉eq − 〈q〉2eq =
~

2πmΩm

∫
R
Sq(ν)dν, 〈p2〉eq =

m~Ωm

2π

∫
R
Sp(ν)dν, (103)

1

2
〈{q, p}〉eq =

~
2π

∫
R
Sqp(ν)dν. (104)

All these quantities are finite since the integrands behave as ν−2 for |ν| → +∞. Moreover,
the reduced equilibrium state of the mechanical oscillator is a Gaussian state characterized by
(103) and (104) together with 〈q〉eq = ~g0 |ζ|2 /(mΩ 2

m), 〈p〉eq = 0.
On the contrary the integral of ν2Sq(ν), which would give the fluctuations at equilibrium

of
√
mΩm/~ q̇, does not exist. This fact is related to the features of the noise in the thermal

part and, as already noticed right before Section 3.3.1, this noticeably implies that the standard
identification of mq̇ with momentum is not possible. The expression of Sq(ν) coincides with
the one given in [1,25], where however R̂GZ(ν) with Ohmic spectral density appears instead
of R̂(ν). While in the case of [1, 25] Sq(ν) � ν−3, still q̇2 does not have a finite mean and
also in this case the identification of momentum and velocity is not possible. Notice that the
expressions for Sp(ν) and Sqp(ν) have not been obtained before. In particular Sqp(ν) 6= 0
implies that the fluctuations of position and momentum are actually correlated.

The mean energy of the harmonic oscillator at equilibrium takes the form

〈Hm〉eq =
1

2
mΩ 2

m〈q〉2eq + 〈H〉fl, (105)

where the contribution due to fluctuations is given by

〈H〉fl =
~

4π

∫
R

dν
[
Ωm

(
Sq(ν) + Sp(ν)

)
+ γmSqp(ν)

]
. (106)

It is convenient and natural to split this contribution into three distinct terms, distinguishing a
radiation pressure term from the rest and further dividing the thermal contributions into two,
putting into evidence a contribution which is not proportional to position fluctuations and does
not have a definite sign. We thus introduce the dimensionless quantities

Nrp =
1

2π

∫
R

Ω 2
m + ν2

2ωmΩm
Srp
q (ν) dν, Nth =

1

2π

∫
R

ωm

Ωm
Sth
q (ν) dν, (107)

as well as

Mth(∆) =
1

2π

∫
R

dν
G2γm∆

2 |d(ν)|2

{[
1

2
G2∆− ν γcγm

2
+ (ωm + ν)

×
(
ν2 −∆2 − γ 2

c

4

)](
N(ν) +

1

2

)
+ (ν → −ν)

}
, (108)

so that the fluctuation contribution can be written as

〈H〉fl = ~ωm

(
Nrp +Nth +Mth(∆)

)
; (109)

by construction we haveNrp +Nth +Mth(∆) ≥ 1/2. As it appears, the mean energy density
cannot be obtained from the knowledge of Sq alone, but extra terms are present. Moreover, the
contribution proportional to Mth(∆) can be negative. Depending on the parameter values,
the extra terms can be actually quite small. It is important to stress that the given expression
for the mean energy of the resonator holds for any temperature of the phonon bath, including
the case of zero temperature.
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We further stress that there is not strict energy equipartition. This can be expected since
the mechanical oscillator is coupled to the cavity through its position and also the counter-
rotating terms contribute to the final result. In the thermal part the lack of equipartition is due
to the terms proportional to ∆, which are present in Sth

p (ν) and not in Sth
q (ν). In the radiation

pressure part the term with Ω 2
m comes from the position and the one with ν2 comes from the

momentum and give different contributions to the mean energy.

4.2.3. Vanishing effective detuning. For a vanishing effective detuning ∆ = 0 all the
computations can be performed analytically. The second thermal contribution Mth(∆)
vanishes and the coupling constant takes the valueG2 = 8~g 2

0 E
2/
(
mωmγ

2
c

)
. For the spectra

of the fluctuations the explicit expressions reduce to

Srp
q (ν) =

ΩmωmG
2γc

2
(
ν2 +

γ 2
c

4

) [
(ν − ωm)

2
+

γ 2
m

4

] [
(ν + ωm)

2
+

γ 2
m

4

] ,
Sth
q (ν) =

Ωmγm

2ωm

[
N(ν) + 1

2

(ν − ωm)
2

+
γ 2
m

4

+ (ν → −ν)

]
,

(110)

leading upon integration to

1

2
mΩ 2

m

(
〈q2〉eq − 〈q〉 2

eq

)
=

~Ω 2
m

4ωm
(2Neff + 1) +

~ωmG
2 (2γm + γc)

8γm

(
(γm+γc)2

4 + ω 2
m

) ,
1

2m
〈p2〉eq =

~Ω 2
m

4ωm
(2Neff + 1) +

~ωmG
2γc

8γm

(
(γm+γc)2

4 + ω 2
m

) ,
γm

4
〈{q, p}〉eq = −~γ 2

m

8ωm
(2Neff + 1) ,

with Neff as in (44). These expressions show that equipartition of the mean energy is not
valid just due to the radiation pressure contributions. However equipartition approximately
holds for γc � 2γm, which is the case typically considered in many theoretical studies and
experiments. We further have for the fluctuation contributions to the mean energy

Nrp =
G2 (γm + γc)

4γm

(
(γm+γc)2

4 + ω 2
m

) , Nth = Neff +
1

2
, Mth(∆) = 0.

The mean equilibrium energy of the mechanical oscillator is thus increased due to the
interaction with the cavity as a consequence of the presence of the strong laser in resonance.
For the values considered in Figure 1 we haveNrp ' 1.6×104 corresponding to a temperature
of about 7.9 K.

4.2.4. Laser cooling. As discussed in many papers [1, 3, 5, 6, 53], an important effect which
can be described by the quantum models of cavity optomechanics is the laser cooling of the
mechanical resonator. Since, as already discussed, we cannot expect equipartition of the mean
mechanical energy, we cannot speak of temperature in a strict sense. A natural way to speak
about laser cooling is the comparison of the mean energy of the fluctuations of the mechanical
oscillator in the presence or the absence of the stimulating laser (corresponding to ζ = 0). So,
we have to study the value of the fluctuation contribution (109) and to compare it to its value
for ζ = 0, which is given by 〈H〉fl

∣∣
ζ=0

= 〈Hm〉eq

∣∣
ζ=0

= ~ωm

(
Neff + 1

2

)
.

To obtain explicit analytical formulae for the mean energy we consider the case of a
constant noise spectrum, that is N(ν) = const = Neff . To actually perform the calculations
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we need the expressions of the zeros of d(ν); here we consider the generic case given by the
Ansatz (91). By lengthy computations the integrals over ν can be exactly performed, leading
to involved formulae explicitly given in Appendix A.2. In order to describe cooling effects
the relevant contributions can be written in the form

Nth =
γm

Γm
Q
(
Neff +

1

2

)
, Mth(∆) =

γm

Γm
K
(
Neff +

1

2

)
, (111)

where the quantities Q and K are given in equations (A.16) and (A.17). The expression for
Nrp is given in (A.15). Note that, while Q is always positive, depending on the values of the
parameters the quantity K can be also negative. For a large choice of the parameters Q turns
out to be close to 1.

In the following figures we describe the effective cooling of the mechanical oscillator,
by considering as a figure of merit the cooling factor

C =
γm

Γm
(Q+K) . (112)

We study two cases, corresponding to the parameter regions for which an exact or approximate
analytic evaluation of the different contributions to the mean energy has been provided. In
both cases mass and bare frequency of the mechanic oscillator are taken to bem = 2.5×10−10

kg and Ωm = 2π × 107 Hz, while the mechanical damping factor is γm = 2π × 102 Hz. We
consider a cavity of length 5 × 10−4 m and resonance frequency ωc = 2πc/(1064 × 10−9)
Hz, driven by a laser with a power of 5 × 10−2 W. For the sake of comparison the values of
the fixed parameters are taken from [25].

We start by studying the case ∆ = ωm, studied in Section 4.2.1, in which the location
of the poles can be evaluated exactly, provided one distinguishes two regions according to the
value of the ratio (γc−γm)2/4G2. No approximation is taken in the expression of the integrals
giving the mean energy. If this ratio is above one, verified for a cavity damping γc > γ̄c,
where the critical damping γ̄c is introduced in the comments after (99) and corresponds for
the considered parameters to γ̄c ' 4.1×107, the effective damping rates Γm (93) and Γc (94)
are actually distinct, while ∆eff = ωm

eff and their expression is given by (95). By numerical
computations we see that the cooling factor C is a monotonic increasing function of the cavity
damping rate γc, and around the starting point γ̄c the cooling factor takes the value 2.9×10−5.
In the complementary region, corresponding to (γc−γm)2/4G2 below one, the cooling factor
is a decreasing function of the cavity damping rate, so that the optimal cooling is obtained for
γc = γ̄c. In this region, corresponding to γc < γ̄c, we have Γm = Γc with value given in
(98), while the effective frequencies ∆eff and ωm

eff are given by the expressions (98). To assess
the relevance of the various contributions in (112) we report the values for γc = γ̄c: we have
γm/Γm ' 3.05×10−5,Q ' .997 andK ' −4.18×10−2; then, (112) gives C ' 2.91×10−5,
which is a very strong cooling factor.

Instead, in Figure 1 we consider the case γc � ωm, that is a cavity damping much bigger
than the mechanical oscillator frequency. In the exact formulae for the integrals we use the
approximate expressions for Γm and Γc given in (102), relying on the conditions (100). The
stationary value of the energy of the mechanical system has a marked dependence on the
effective detuning ∆ and the optimal cooling region, corresponding to C of the order of 10−3,
is obtained for ∆ . γc. In this parameter region Nrp can be neglected with respect to CNeff ,
unless the phonon bath is below 1 K, so that indeed the quantity C given in (112) properly
describes the cooling effect. When the detuning ∆ goes to zero the cooling factor rapidly
increases in agreement with the discussion in Section 4.2.3 showing the presence of heating
at ∆ = 0; in this parameter region, the cooling effect disappears also when ∆ grows.
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Figure 1. Plot of the cooling factor C for the case in which the cavity damping is much bigger
than the mechanical oscillator frequency. We explore the dependence of the cooling factor on
both the effective detuning ∆ and the cavity damping rate γc, both expressed in Hz. It appears
that the best cooling factor is of the order 10−3 and corresponds to ∆ . γc.

4.3. Optical spectra

We consider now the monitoring of the emitted light by balanced homodyne and heterodyne
detection [56, Sect. 7.2]. The aim is to see which kind of information on the mechanical
oscillator can be obtained by detection of the emitted light.

4.3.1. Homodyne spectrum. The case of a perfect coherent monochromatic local oscillator
of frequency ω0 with detection of the whole emitted light [49, 55] corresponds to the
continuous measurement of a field quadrature of the type

Q(t;ϑ) = ie−iϑei arg ζ

∫ t

0

e−iω0rdB †em(r) + h.c.; (113)

ϑ is a free parameter which depends on the optical path and determines the observed
quadrature. As a consequence of the definition we have that [Q(t;ϑ), Q(s;ϑ)] = 0.
By the properties of the output fields, discussed after Eq. (33), the commutation rules
are preserved; this gives that the output current Qout(t;ϑ) := U(t)†Q(t;ϑ)U(t) satisfies
[Qout(t;ϑ), Qout(s;ϑ)] = 0. This is the key property expressing the fact that Qout(t;ϑ)
can be measured with continuity in time. Similarly to (80) we introduce the gated Fourier
transforms

QT (ν;ϑ) =
1√
T

∫ T

0

eiνtdQ(t;ϑ), Qout
T (ν;ϑ) =

1√
T

∫ T

0

eiνtdQout(t;ϑ). (114)

From the above relations we obtain the second key relation which guarantees the presence of
commuting observables and therefore the consistency of the theory:

[Qout
T (ν;ϑ), Qout

T (ν′;ϑ)] = 0. (115)
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The homodyne spectrum is then given by the expression

S(ν;ϑ) = lim
T→+∞

Tr
{
Qout
T (−ν;ϑ)Qout

T (ν;ϑ)ρ0 ⊗ σ̃env
}
, (116)

where the environmental state is given by (62) and ρ0 is any initial state for the mechanical
oscillator and the cavity mode. Note that this expression is nothing but the spectrum of the
classical stochastic process representing the output, and not an ad-hoc quantum definition [49,
Sect. 4]. The commutation property (115) implies that the homodyne spectrum S(ν;ϑ) is an
even function of ν.

As shown in Appendix B.1, the homodyne spectrum has both an elastic and an inelastic
component

S(ν;ϑ) = Sel(ν;ϑ) + Sinel(ν;ϑ), (117)

which turn out to have the expressions

Sel(ν;ϑ) = 8πγc |ζ|2 (sinϑ)
2
δ(ν),

Sinel(ν;ϑ) = Sth(ν;ϑ) + Srp(ν;ϑ),
(118)

with

Sth(ν;ϑ) =
2γcωmG

2
[(
γc
2 cosϑ+ ∆ sinϑ

)2
+ (ν cosϑ)

2
]

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Sth

q (ν), (119)

Srp(ν;ϑ) = 1 +
2γcωmG

2
[(
γc
2 cosϑ+ ∆ sinϑ

)2
+ (ν cosϑ)

2
]

Ωm

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) Srp

q (ν)

+ γcωmG
2 Re

[(γ 2
c

4 + ν2 −∆2
)

sin 2ϑ−∆ (γc cos 2ϑ− 2iν)

d(ν)
(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
)

×
(
γ 2

c

4
− ν2 + ∆2 − iγcν

)]
. (120)

Note that all the contributions are indeed positive as shown in Appendix B.1. It is important
to stress that the connection between Sq(ν) and Sinel(ν;ϑ) is far from simple. In particular
the last contribution in (120) comes from the interference of the electromagnetic part of the
signal with the shot noise, as detailed in Appendix B.1. This is a completely new term, in
principle detectable in experiments at very low temperatures.

Let us further stress that different quadratures are incompatible and actually one can
prove the general inequality [49, 55]

Sinel(ν;ϑ)Sinel(ν;ϑ± π/2) ≥ 1, (121)

which is just a form of the Heisenberg-Robertson uncertainty relations coming from the
canonical commutation relations of the involved Bose fields. As a result quite different
physical information can be extracted from the different quadratures.
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The case ∆ = 0. The first striking example of strong dependence on ϑ is in the case ∆ = 0.
For ϑ = π/2 we get Sel(ν;π/2) = 32πE2δ(ν)/γc and Sinel(ν;π/2) = 1: only the shot noise
contributes to the inelastic spectrum.

On the contrary, for the quadrature with ϑ = 0 we get Sel(ν;π/2) = 0 and

Sinel(ν; 0) = 1 +
2γcωmG

2

Ωm

(
γ 2
c

4 + ν2
) Sq(ν), (122)

where Sq(ν) is now explicitly given by (110). An important point is that in this case the
interference term vanishes exactly and we have a direct connection of the homodyne spectrum
with the fluctuation spectrum of the position of the mirror. This result has been found also
in [37], but with the substitution R̂(ν)→ R̂GZ(ν) in the expression (86) for Sth

q (ν)
∣∣
∆=0

. As
a result, at least in principle, when ∆ = 0 the homodyne observation of the quadrature with
ϑ = π/2 can give direct experimental information on the correct expression for R̂(ν). At zero
temperature one could experimentally discriminate between our result (58) and the standard
proposal (59).

In other cases the interference term does not vanish, but it can be negligible at high
temperatures. For instance, when the interference term is negligible, at least in the region
where N(ν) � 1, we recover for Sinel(ν; 0) the result given in [1, Sect. 3]. At high
temperatures the inelastic homodyne spectrum allows to reconstruct the fluctuation spectrum
of position, while no direct information on the fluctuation of the momentum and on the cross-
correlation is obtained. Moreover, at high temperatures we have also Sq(ν) ' Sth

q (ν); by
using the explicit expressions of Sth

q (ν) (86) and R̂(ν) (54) we get

Sinel(ν; 0) ' γcγmG
2

(
γ 2
c

4 + ν2
)(

γ 2
m

4 + (ωm + ν)
2
)

|d(ν)|2

(
N(ν) +

1

2

)
+ (ν → −ν).

This expression highlights the dependence of the homodyne spectrum on the thermal spectrum
N(ν) and the characteristic polynomial d(ν) (89) of the dynamical matrix (73) of the full
optomechanical system.

Squeezing. An important information about the non classical nature of the light generated by
optomechanical systems can be obtained considering the quadrature with ϑ = −π/4. In the
simple case of vanishing detuning ∆ = 0 and vanishing temperature N(ν) ≡ 0, it is possible
to show from (117)–(120) that we have Sinel(0;−π/4) < 1, at least in a certain region of the
parameters. This means that in a neighbourhood of ν = 0 we have Sinel(ν;−π/4) < 1 and
the emitted light is squeezed. This result shows that such a kind of optomechanical systems
can generate non classical light [3,7]. Note that, if light squeezing is present for certain values
of the parameters, then the inequality (121) implies that the complementary quadrature is anti-
squeezed. Of course, experimentally it could be difficult to tune the values of the various free
parameters in order to have squeezing; moreover, the elastic peak in the spectrum tends to
hide the squeezing around ν = 0 in the inelastic spectrum.

4.3.2. Heterodyne spectrum. In the case of heterodyne detection the local oscillator and the
stimulating light are produced by different laser sources; now, the stimulating laser frequency
ω0 and the local oscillator frequency, say µ, are in general different. Moreover, the phase
difference cannot be maintained stable and this erases some interference terms. It can be
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shown [50], [30, Sect. 3.5] that the balanced heterodyne detection scheme corresponds to the
measurement in continuous time of the observables

I(µ; t) =

∫ t

0

√
κ e−κ(t−s)/2 eiµs+iα dBem(s) + h.c., (123)

where α is a phase depending on the optical paths and
√
κ e−κt/2, κ > 0, represents the

detector response function. As we shall see, the heterodyne spectrum does not depend on α.
In the Heisenberg description the observables become the “output current”

Iout(µ; t) = U(t)†I(µ; t)U(t)

=
√
κ
∫ t

0

e−
κ
2 (t−s)+iα

(
eiµsdBem(s) +

√
γc ei(µ−ω0)sac(s)ds

)
+ h.c.

By the definition of I(µ; t) and the properties of U(t) we get [Iout(µ; t), Iout(µ; s)] = 0,
which says that the output current at time t and the current at time s are compatible
observables.

While in the homodyne scheme the spectrum of the output is analysed, in the heterodyne
scheme it is usual to register only the output power as a function of the frequency µ of the local
oscillator. The mean output power of the detection apparatus at large times is proportional to

P (µ) = lim
T→+∞

1

T

∫ T

0

dt Tr
{
Iout(µ; t)2ρ0 ⊗ σ̃env

}
; (124)

the limit is in the sense of the distributions in µ. As a function of µ, P (µ) is known as power
spectrum. Note that to change µ means to change the frequency of the local oscillator, that
is to change the measuring apparatus. In general Iout(µ; t) and Iout(µ

′; s) do not commute,
even for t = s. Then, there is no reason for the power spectrum to have some symmetry in µ.
The heterodyne power spectrum can be decomposed in an elastic and an inelastic part

P (µ) = Σel(µ) + Σinel(µ), (125)

Σel(µ) = lim
T→+∞

κγc

T

∫ T

0

dt

[
2 Re

(
ζeiα

∫ t

0

e−
κ
2 (t−s)+i(µ−ω0)sds

)]2

=
κγc |ζ|2

κ2

4 + (µ− ω0)
2

κ↓0−→ 4πγc |ζ|2 δ(µ− ω0), (126)

Σinel(µ) = lim
T→+∞

1

T

∫ T

0

dt Tr
{
Iinel(µ; t)2ρ0 ⊗ σ̃env

}
, (127)

where

Iinel(µ; t) =
√
κ
∫ t

0

e−
κ
2 (t−s)

(
eiµs+iαdBem(s)

+

√
γc

2
ei(µ−ω0)s+iϑ

(
Y (s)− iX(s)

)
ds
)

+ h.c.

The inelastic part of the spectrum is computed in Appendix B.2. Again it is possible to
identify a radiation pressure contribution and a thermal part

Σinel(µ) = Σrp(µ) + Σth(µ). (128)

For simplicity we give only the expressions for κ ↓ 0:

Σrp(µ) = 1 +
γcωmG

2Srp
q (µ− ω0)

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) − Im

γcωmG
2

d(µ− ω0)

γc
2 − i (µ− ω0 + ∆)
γc
2 + i (µ− ω0 −∆)

, (129)
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Σth(µ) =
γcωmG

2Sth
q (µ− ω0)

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) . (130)

Both contributions are positive as it follows from the expressions (130) and (B.7). Note the
presence of the interference term in (129). By simple computations one can check that

Σinel(ν + ω0) + Σinel(ω0 − ν) = Sinel(ν;ϑ) + Sinel(ν;ϑ+ π/2); (131)

this is a fundamental relation [56, Eq. (9.61)] connecting heterodyne and homodyne spectra.
Moreover, by inserting the definitions of the relevant quantities given in (54), (85) and (86),
an explicit expression for Σinel can be obtained from which it is apparent that Σinel(µ) > 1:
in the heterodyne detection the phase dependencies are lost and it is impossible to detect
squeezing in the emitted light.

Figure 2. Plot of the inelastic heterodyne spectrum Σinel as a function of ν for a range of
values of the cavity damping γc around the critical value γ̄c discussed in Section 4.2.4. It
appears how the two distinct peaks of the spectrum coalesce at critical value. The spectrum is
plotted for ∆ = ωm, while the other parameters are as in Section 4.2.4.

As in the homodyne case, the interference term in (129) is negligible when N � 1 and
we get

Σinel(µ) ' 1 +
γcωmG

2

Ωm

(
γ 2
c

4 + (µ− ω0 −∆)
2
) Sq(µ− ω0). (132)

When this approximation holds, the inelastic heterodyne spectrum too allows to reconstruct
the asymptotic dynamics of the mirror through the position fluctuations.

To explore the behaviour of the spectrum we take N(ν) as given by (56) with a Ohmic
spectral density. Then, by using the explicit expressions of Srp

q and Sth
q and by setting
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ν = µ− ω0, we get

Σinel(ν + ω0) = 1 +
γcG

2

2 |d(ν)|2

{
γcω

2
mG

2

+ γm

(
γ 2

c

4
+ (ν + ∆)

2

)[
γ 2

m

4
+ (ν − ωm)

2
+

4ωm |ν|
eβ~|ν| − 1

]}
. (133)

From this expression we see that the main features of the spectrum will be determined by the
zeros of the denominator |d(ν)|2; for instance, as discussed in Section 4.2.1, for ∆ = ωm we
can have one or two resonance frequencies depending on the value of the cavity decay rate
γc. In Figure 2 we show this phenomenon: the two distinct peaks coalesce as γc increases.
For these values of the parameters one can check that the main contribution to the inelastic
heterodyne spectrum comes from the thermal part Σth. It can be checked that in this parameter
region the behaviour of the inelastic homodyne spectrum Sinel(ν; 0) is very close to the
heterodyne one as depicted in Figure 2. Let us notice that the behaviour shown in Figure 2
does not uncover the whole rich structure of the spectrum which appears by exploring other
parameter regions.

5. Summary and outlook

In this article we have shown how to give a fully quantum description of a dissipative
mechanical oscillator. The combined use of master equations and quantum Langevin
equations allows for the construction of a dissipative dynamics respecting symmetries and
physical constraints, such as the energy equipartition at equilibrium, and subject to dissipation
with an arbitrary noise spectrum. A crucial feature allowing for these results is that for a
mechanical oscillator the definition of the creation and annihilation operators am and a †m in
terms of position and momentum is not the usual one, but rather depends on the damping
constant γm, as discussed in Section 2.2; the standard result is only recovered for a vanishing
damping constant as can be seen from (16). Moreover, the quantum Langevin equations for
the system, and the input-output relations for the noises, for both the mechanical oscillator
and for the optomechanical system, given in Section 3.1 and Section 4.1 respectively, need
not be postulated: they are nothing but the Heisenberg equations of motion determined by
the Hudson-Parthasarathy unitary evolutions (21) and (61). In this framework it appears that,
in order to preserve the Heisenberg uncertainty relations, the momentum operator can be
interpreted as the time derivative of the position operator only in a “coarse grained” picture.
An help in comparing our approach to others and in discussing the structure of the noises
comes from the quantum Langevin equation in Newton form, see Section 3.3, which at the
price of introducing singular noises does not contain the momentum operator. Indeed in the
quantum case important constraints on the correlation functions of the operator noises come
from the fact that they need to be positive definite and compatible with the commutation rules
of such noises. In this formalism, we are further able to introduce a field analog of the P -
representation for the state of the environment and this opens the possibility of treating an
arbitrary noise spectrum as done in Section 3.2.

Our description of the mechanical oscillator is not very different from other proposals
at medium and high temperatures of the phonon bath. Differences become relevant for
very small temperatures. Indeed the dynamics we have constructed is fully “quantum” at
all temperatures and this opens the possibility of constructing models of optomechanical
systems which are reliable also in a deep quantum regime. As an example we have studied
a prototypical system: a mechanical resonator interacting via radiation pressure with a single
optical mode in a cavity. For this case we have given explicit general formulae for the
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fluctuation spectra of position and momentum of the mechanical resonator and for the mean
mechanical energy at equilibrium. By using detection theory in continuous time, we have
obtained the full expressions of the homodyne and heterodyne spectra of the emitted light. For
not too low temperatures, usual results are recovered, such as laser cooling and connection
between the light spectra and the fluctuations of position of the mechanical component.
However, our description is valid also at very low temperatures, when semi-classical reasoning
is not valid and the observation of the spectra of the emitted light is not giving a direct
measurement of the mechanical fluctuations.

Many generalizations are possible [57–60], which could benefit of a systematic and
consistent treatment. The simplest generalization is to include imperfections in the detection
scheme and noise in the stimulating laser light [5, 7, 30, 50]. But also direct detection can
be included [30] or the entanglement between resonator and optical mode can be studied.
Moreover, the whole theory has in some sense “modular” properties and can be applied to
more complicated systems, say when more mechanical resonators and more optical modes
are involved.
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Appendix A. Computation of the fluctuations

The Fourier transformed equations of motion corresponding to (72) can be solved by purely
algebraic manipulations; essentially the problem reduces to compute the inverse of the matrix
A+iν1. By using the characteristic polynomial d(ν) of the dynamical matrixA (89) the final
result for large T turns out to be

F1(T ; ν) '
∆2 +

(
iν − γc

2

)2
d(ν)

√
γmΩm

2ωm
Zth

1 (T ; ν) +
G

d(ν)

√
ωmΩmγc

2
Zrp

1 (T ; ν), (A.1)

F2(T ; ν) '
√
γm

d(ν)
√

2ωmΩm

Zth
2 (T ; ν)− iνG

d(ν)

√
ωmγc

2Ωm
Zrp

1 (T ; ν), (A.2)

F3(T ; ν) ' G∆

d(ν)

√
γm

2
Zth

1 (T ; ν) +
iν (iν − γm) + Ω 2

m

d(ν)

√
γc

2
Zrp

1 (T ; ν), (A.3)

F4(T ; ν) ' −
(
iν − γc

2

)
G

d(ν)

√
γm

2
Zth

1 (T ; ν) +
iν (iν − γm) + Ω 2

m

d(ν)

√
γc

2
Zrp

2 (T ; ν)

− G2ωm

d(ν)

√
γc

2

(
ζ

|ζ|
B̂Tem(ω0 − ν)† +

ζ

|ζ|
B̂Tem(ν + ω0)

)
, (A.4)

Zth
1 (T ; ν) =

(
i (ν + ωm)− γm

2

)
τ B̂Tth(ν) +

(
i (ν − ωm)− γm

2

)
τB̂Tth(−ν)†, (A.5)

Zth
2 (T ; ν) =

[(
∆2 +

(γc

2
− iν

)2
)(

Ω 2
m − ν

(
ωm + i

γm

2

))
−G2ωm∆

]
τB̂Tth(−ν)†

+

[(
∆2 +

(γc

2
− iν

)2
)(

Ω 2
m + ν

(
ωm − i

γm

2

))
−G2ωm∆

]
τ B̂Tth(ν), (A.6)
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Zrp
1 (T ; ν) =

(
i (ν −∆)− γc

2

) ζ

|ζ|
B̂Tem(ω0 − ν)†

+
(

i (ν + ∆)− γc

2

) ζ

|ζ|
B̂Tem(ν + ω0), (A.7)

Zrp
2 (T ; ν) =

(
∆− ν − i

γc

2

) ζ

|ζ|
B̂Tem(ω0 − ν)† +

(
∆ + ν + i

γc

2

) ζ

|ζ|
B̂Tem(ν + ω0). (A.8)

To compute the spectra (82), (83) we need also the field correlations. From the
correlations (42) and the fact that Bem is a Fock field in the vacuum state we get

〈B̂Tem(ν)B̂Tem(ν)†〉env = 1, 〈B̂Tth(ν)†B̂Tth(ν)〉env = N(ν),

〈B̂Tem(ν)†B̂Tem(ν)〉env = 0, 〈B̂Tth(ν)B̂Tth(ν)†〉env = N(ν) + 1,
(A.9)

while the cross-correlations involving both Bth and Bem vanish. Also the fluctuations of the
cavity mode operators and the correlations oscillator/mode could be computed by using all
the components (A.1)–(A.4), but we do not study them in this work.

Appendix A.1. The zeros of d(ν)

Let us assume that d(ν) has two zeros of the form νm = ω m
eff − iΓm/2 and νm = ∆eff− iΓc/2

with ω m
eff 6= 0 and ∆eff 6= 0; by the property d(ν) = d(−ν), the other two zeros are −νm and

−νc. Therefore, we can write d(ν) in the form (91) or
d(ν) = (ν − νm) (ν + νm) (ν − νc) (ν + νc) . (A.10)

By equating this expression to (89) we get the algebraic system

Γm + Γc = γc + γm,

Γc |νm|2 + Γm |νc|2 = γcΩ 2
m + γm

(
∆2 +

γ 2
c

4

)
,

|νm|2 + |νc|2 + ΓmΓc = Ω 2
m + ∆2 +

γ 2
c

4
+ γcγm,

|νm|2 |νc|2 = Ω 2
m

(
∆2 +

γ 2
c

4

)
−G2ωm∆.

(A.11)

The stability conditions (78), (79) guarantee Γm > 0 and Γc > 0. By assuming Γc 6= Γm,
from this system we get in particular

∆ 2
eff =

Γc − γm

Γc − Γm
∆2 − γc − Γc

Γc − Γm
ω 2

m − (γc − Γc)
Γc − γm

4
,

ωm 2
eff =

Γc − γm

Γc − Γm
ω 2

m −
γc − Γc

Γc − Γm
∆2 − (γc − Γc)

Γc − γm

4
.

(A.12)

The case ∆ = ωm. An exact expression for Γm and Γc can be found when ∆ = ωm. We
study only the case of d(ν) of the form (A.10) with four distinct zeros.

In the case Γc 6= Γm we set x = Γc−Γm and insert (A.12) and Γc + Γm = γc +γm into
the last equation of the system (A.11); in such a way we get

x4 +
[
16ω 2

m − (γc − γm)2
]
x2 + 64G2ω 2

m − 16ω 2
m(γc − γm)2 = 0.

Then, by using the solution of the equation for x2 and Eqs. (A.12), we find the result (93)–
(96). By imposing Γc, Γm, ∆ 2

eff to be real and strictly positive and Γc 6= Γm, we get the
necessary and sufficient condition (92).

By the choice Γc = Γm, from the system (A.11) we get directly the result (98), (99),
together with the conditions (97).
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An approximate expression. To compute approximately Γm we adapt a suggestion given
in [5, 25] and based on an approximation of the mechanical susceptibility. In the expression
of d(νm) taken from (89) we make the approximation

(
νm + ∆ + iγc2

) (
νm −∆ + iγc2

)
'(

ωm + ∆ + iγc−γm2

) (
ωm −∆ + iγc−γm2

)
and we solve d(νm) = 0 for Γm under the

conditions (100), (101). By using also the first equation of the system (A.11) we get the
expression (102) for the damping constants. Once we have Γm and Γc, we can compute ωm 2

eff

and ∆ 2
eff from the equations (A.12), which do not contain approximations.

For consistency we need the positivity of ∆ 2
eff and ωm 2

eff , which means the positivity of
the right hand sides of equations (A.12). Under the approximations (100)–(102), this gives

∆2

ω 2
m

&
χ(∆)

1− χ(∆)
+ χ(∆)

(
1− 2χ(∆)

) (γc − γm)
2

4ω 2
m

,

χ(∆)

[
∆2

ω 2
m

+
(
1− χ(∆)

)(
1− 2χ(∆)

) (γc − γm)
2

4ω 2
m

]
. 1− χ(∆);

(A.13)

because χ(∆) has the same sign as ∆, conditions (A.13) give true restrictions only for
∆ > 0. We see also that conditions (A.13) are violated for ∆ positive and small. In this
situation the cavity is overdamped and the decomposition of d(ν) takes the form d(ν) =(
ν − ωm

eff + i Γm

2

) (
ν + ωm

eff + i Γm

2

) (
ν + i Γ1

2

) (
ν + i Γ2

2

)
; we do not study this case.

Appendix A.2. Computation of the mean mechanical energy

The integrals over ν in (107), (108) can be performed by the residue method, under the Ansatz
(91) and N(ν) ≡ Neff . First we set

D2 =

(
∆ 2

eff + ωm 2
eff +

(γc + γm)
2

4

)2

− 4ωm 2
eff ∆ 2

eff ,

L± =
γ 2

c ∓ Γ 2
c

4
−∆2 ±∆ 2

eff , Ωm 2
eff = ωm 2

eff + Γ 2
m/4.

(A.14)

With this notation we have

Nrp =
G2γc

4ΓmΓcD2

{
G2ωm∆

2 |νc|2 |νm|2

[
γmΩ 2

m + γc

(
∆2 +

γ 2
c

4

)
+ γmγc (γm + γc)

]
+

(
∆2 + ω 2

m +
(γc + γm)

2

4

)
(γc + γm)

}
, (A.15)

where |νc|2 |νm|2 is given by the last of (A.11). The thermal contributions Nth andMth(∆)
are given in (111) in terms of the expressions

Q =
Ω 2

m + Ωm 2
eff

2Ωm 2
eff

+
L+

2ΓcD2

{
(γc + γm)

L− + 2Ω 2
m

16
+ 2γcΩ 2

m + 2γm

(
∆2 +

γ 2
c

4

)
+

Ω 2
mL−

|νc|2 |νm|2

[
γc

(
∆2 +

γ 2
c

4

)
+ γmΩ 2

m + γcγm (γc + γm)

]}
, (A.16)

K =
G2∆

2ΓcD2

{(∆2 +
γ 2
c

4

)(
γ 2
m

4 − ω
2
m

)
2ωm |νc|2 |νm|2

[
γmΩ 2

m + γc

(
∆2 +

γ 2
c

4

)
+ γcγm (γc + γm)

]

+ ωm

(γm

2
+ γc

)
−
γc

(
∆2 +

γ 2
c

4

)
+ γm

(
γm
2 + γc

)2
2ωm

}
. (A.17)

Note that, while Q is always positive, K can also take on negative values.
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Appendix B. Computation of the optical spectra

Appendix B.1. The homodyne spectrum

The homodyne spectrum (116) involves the quantity Qout
T (ν;ϑ) (114); by the rules of

quantum stochastic calculus we can compute dQout
T (ν;ϑ), which turns out to contain the

quantities (A.3), (A.4). Then, by integration we obtain

Qout
T (ν;ϑ) ' 4

√
γc |ζ| sinϑ eiνT/2 sin νT/2

ν
√
T

+Qth
T (ν;ϑ) +Qem

T (ν;ϑ), (B.1)

Qth
T (ν;ϑ) = Eth(ν;ϑ)τ B̂Tth(ν) + Eth(−ν;ϑ)τB̂Tth(−ν)†,

Qem
T (ν;ϑ) = −Eem(ν;ϑ) iei(ϑ−arg ζ)B̂Tem(ν + ω0)

+ Eem(−ν;ϑ)ie−i(ϑ−arg ζ)B̂Tem(ω0 − ν)†,

Eth(ν;ϑ) = −G√γmγc

(γm

2
+ i (ν + ωm)

)
L(ν;ϑ), (B.2)

Eem(ν;ϑ) = −
γc
2 − i (ν −∆)
γc
2 + i (ν −∆)

+
iωmγcG

2eiϑL(ν;ϑ)
γc
2 + i (ν −∆)

, (B.3)

L(ν;ϑ) =
∆ sinϑ+

(
γc
2 + iν

)
cosϑ

d(−ν)
. (B.4)

Note that L(−ν;ϑ) = L(ν;ϑ). The key relation (115) together with [B̂Ti (ν), B̂Ti (ν)†] = 1
implies

[Qth
T (ν;ϑ) +Qem

T (ν;ϑ), Qth
T (−ν;ϑ) +Qem

T (−ν;ϑ)] = 0,

which is equivalent to

|Eth(ν;ϑ)|2 − |Eth(−ν;ϑ)|2 + |Eem(ν;ϑ)|2 − |Eem(−ν;ϑ)|2 = 0. (B.5)

By long computations this relation can be verified also explicitly by using the expressions of
Eth(ν;ϑ) and Eem(ν;ϑ).

By using (B.1), (B.5) and (A.9), from (116) we get the decomposition of the homodyne
spectrum expressed by Eqs. (117), (118) with

Sth(ν;ϑ) = |Eth(ν;ϑ)|2
(
N(ν) +

1

2

)
+ |Eth(−ν;ϑ)|2

(
N(−ν) +

1

2

)
,

Srp(ν;ϑ) =
1

2

(
|Eem(ν;ϑ)|2 + |Eem(−ν;ϑ)|2

)
. (B.6)

Note that Sth(ν;ϑ) ≥ 0 and Srp(ν;ϑ) ≥ 0. To compute the thermal part we note that
|Eth(ν;ϑ)|2 can be written by using R̂(ν) (54); by taking Sth

q (ν) from (86), we get Eq. (119).
To compute the radiation pressure component of the spectrum, we need the square

modulus of Eem (B.3), which is the sum of two terms. So, we have the square modulus
of the first term (the shot noise), the square modulus of the second term (the signal) and the
double product (the interference term):

|Eem(ν)|2 = 1 +
ω 2

mγ
2
c G

2 |L(ν;ϑ)|2
γ 2
c

4 + (ν −∆)
2

+ ωmγcG
2 Re

ie−2iϑ
(
γc
2 − i (ν −∆)

)
+ i
(
γc
2 − i (ν + ∆)

)
d(ν)

(
γc
2 + i (ν −∆)

) .
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By inserting this expression into (B.6) we get

Srp(ν;ϑ) = 1 +
ω 2

mγ
2
c G

4
(
γ 2
c

4 + ∆2 + ν2
)

(
γ 2
c

4 + (∆− ν)
2
)(

γ 2
c

4 + (∆ + ν)
2
) ∣∣∣∣∣∆ sinϑ+

(
γc
2 + iν

)
cosϑ

d(ν)

∣∣∣∣∣
2

+ ωmγcG
2

[
Re

ie−2iϑ
(
γc
2 − i (ν −∆)

)2
+ i
((

γc
2 − iν

)2
+ ∆2

)
2d(ν)

(
γ 2
c

4 + (∆− ν)
2
) + (ν → −ν)

]
.

Finally, by elaborating the argument of the real part and by using the expression (85) for
Srp
q (ν) we get Eq. (120).

Appendix B.2. The heterodyne spectrum

By a procedure similar to the one used in Appendix A and Appendix B.1, in the limit of κ ↓ 0,
κt→ +∞, we get

Iinel(ν; t) ' eiα
√
κ
∫ t

0

e−
κ
2 (t−s)+iµs

{[
−
γc
2 + i (µ− ω0 −∆)
γc
2 − i (µ− ω0 −∆)

− i~g 2
0 γc |ζ|2

md(µ− ω0)

×
γc
2 − i (µ− ω0 + ∆)
γc
2 − i (µ− ω0 −∆)

+
i~g 2

0 γcζ
2

md(ω0 − µ)
e−2i(µ−ω0)s−2iα

]
dBem(s)

+ ie−iω0sg0τ

√
~γmγc

2mωm

[
ζ

d(ω0 − µ)

(γc

2
+ i (µ− ω0 + ∆)

)
×
(γm

2
+ i (µ− ω0 − ωm)

)
e−2i(µ−ω0)s−2iα − ζ

d(µ− ω0)

×
(γc

2
− i (µ− ω0 + ∆)

)(γm

2
− i (µ− ω0 + ωm)

)]
dBth(s)

}
+ h.c..

By using the field correlations (A.9) we can compute the heterodyne spectrum; again, by
the vanishing of the field cross-correlations, the thermal contribution and the electromagnetic
contributions decouple in the expression of the spectrum. By some long manipulations and
by recalling that the limit in (127) is in the sense of distributions, we get Eq. (128) with the
thermal part given by (130) and

Σrp(µ) =

∣∣∣∣1 +
iωmγcG

2

2d(µ− ω0)

γc
2 − i (µ− ω0 + ∆)
γc
2 + i (µ− ω0 −∆)

∣∣∣∣2 +
ω 2

mγ
2
c G

4

4 |d(µ− ω0)|2
, (B.7)

which becomes (129) by expanding the absolute value and using (110).
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