4,741 research outputs found

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Permutation Flow Shop via Simulated Annealing and NEH

    Full text link
    Permutation Flow Shop Scheduling refers to the process of allocating operations of jobs to machines such that an operation starts to process on machine j only after the processing completes in j-1machine. At a time a machine can process only one operation and similarly a job can have only one operation processed at a time. Finding a schedule that minimizes the overall completion times for Permutation Flow Shop problems is NP-Hard if the number of machines is greater than 2. Sowe concentrates on approaches with approximate solutions that are good enough for the problems. Heuristics is one way to find the approximate solutions for a problem. For our thesis, we have used two heuristics - NEH and Simulated Annealing, both individually and in a combined form, to find the solutions for Permutation Flow Shop problems. We have compared NEH and Simulated Annealing algorithm based on result and execution time and also compared the combined algorithm with existing ones. Standard benchmarks are used to evaluate the performances of the implemented algorithm

    Scheduling flow lines with buffers by ant colony digraph

    Get PDF
    This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n - 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO

    Performance evaluation of flexible manufacturing systems under uncertain and dynamic situations

    Get PDF
    The present era demands the efficient modelling of any manufacturing system to enable it to cope with unforeseen situations on the shop floor. One of the complex issues affecting the performance of manufacturing systems is the scheduling of part types. In this paper, the authors have attempted to overcome the impact of uncertainties such as machine breakdowns, deadlocks, etc., by inserting slack that can absorb these disruptions without affecting the other scheduled activities. The impact of the flexibilities in this scenario is also investigated. The objective functions have been formulated in such a manner that a better trade-off between the uncertainties and flexibilities can be established. Consideration of automated guided vehicles (AGVs) in this scenario helps in the loading or unloading of part types in a better manner. In the recent past, a comprehensive literature survey revealed the supremacy of random search algorithms in evaluating the performance of these types of dynamic manufacturing system. The authors have used a metaheuristic known as the quick convergence simulated annealing (QCSA) algorithm, and employed it to resolve the dynamic manufacturing scenario. The metaheuristic encompasses a Cauchy distribution function as a probability function that helps in escaping the local minima in a better manner. Various machine breakdown scenarios are generated. A ‘heuristic gap’ is measured, and it indicates the effectiveness of the performance of the proposed methodology with the varying problem complexities. Statistical validation is also carried out, which helps in authenticating the effectiveness of the proposed approach. The efficacy of the proposed approach is also compared with deterministic priority rules

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Single Machine Scheduling with Uncertain Processing Times

    Get PDF

    Sequencing by enumerative methods

    Get PDF
    corecore