
MATHEMATICAL CENTRE TRACTS 69 

J.K. LENSTRA 

SEQUENCING BY 
ENUMERATIVE METHODS 

SECOND PRINTING 

MATH EMATISCH CENTRUM AMSTERDAM 1985 



AMS(MOS) subject classification scheme (1970): 90B35,68A20,65K05 

ISBN 90 6196 125 4 

First printing: 1977 
Second printing: 1985 



ACKNOWLEDGEMENTS 

This monograph is a slightly revised version of a doctoral thesis, written 

at the Department of Operations Research of the Mathematisch Centrum in 

Amsterdam under the supervision of professor G. de Leve. I am very grateful 

to him for arousing my interest in the area of sequencing and for giving me 

complete freedom in pursuing my research in this field. Also, I owe great 

appreciation to professor J.S._ Folkers of the Graduate School of Management 

in Delft, who provided detailed criticism and encouragement. 

v 

Large parts of this book evolved from my intensive cooperation with 

Alexander Rinnooy Kan. I am similarly grateful to Ben Lageweg, who conducted 

all computational experiments with machine scheduling algorithms. Without 

their participation, this book would not have been written. 

Furthermore, I have benefited from many inspiring discussions with Jack 

Anthonisse, Eugene Lawler, Hendrik Lenstra, Jr., and Tom Wansbeek. 

I want to acknowledge the various useful contributions and suggestions 

from Jack Alanen, Peter Brucker, Bernard Dorhout, Peter van Emde Boas, 

Michael Florian, Michael Garey, David Johnson, Graham McMahon, and Ira Pohl. 

The applications reported in this book arose from practical problems advanced 

by J. Berendse, J.H. Galjaard, P. ten Kate, J.S. Knipscheer, J.H. Kuiper, 

A.W. Roes, and J. Visschers. 

I thank the Mathematisch Centrum for the opportunity to publish this 

monograph in the series Mathematical Centre Tracts and all those at the 

Mathematisch Centrum who have contributed to its technical realization. 





CONTENTS 

1. INTRODUCTION 

Pa!Lt I. Sequenc,i_ng p~oblem6 

2. COMPLEXITY THEORY 

3. QUADRATIC ASSIGNMENT PROBLEMS 

3.1. The quadratic assignment problem 

3.2. The acyclic subgraph problem 

3.3. The travelling salesman problem 

4. MACHINE SCHEDULING PROBLEMS 

4.1. Classification 

4.2. Complexity 

4.3. Remarks 

Pa!Lt II. Enume.Jw;tfoe method6 

5. RECURSIVE IMPLEMENTATION 

6. AN EXAMPLE: GENERATION OF PERMUTATIONS 

6.1. Introduction 

6.2. Minimum-change generators 

6.3. Lexicographic generators 

6.4. Computational experience 

7. EXPLICIT ENUMERATION 

8. IMPLICIT ENUMERATION 

vii 

3 

7 

12 

12 

14 

16 

18 

18 

20 

38 

43 

44 

44 

45 

51 

53 

55 

57 



viii 

9. THE TRAVELLING SALESMAN PROBLEM 

9.1. Introduction 

9.2. Algorithms 

9.2.1. Lower bounds 

9.2.2. Enumeration schemes 

9.2.3. Implementations 

9.3. Computational experience 

9.3.1. Test problems 

9.3.2. Results 

9.4. Remarks 

10. ONE-MACHINE SCHEDULING I: MINIMIZING MAXIMUM LATENESS 

10.1. Introduction 

10.2. Algorithms 

10.2.1. Special cases 

10.2.2. The algorithm of Baker and Su 

10.2.3. The algorithm of McMahon and Florian 

10.3. Computational experience 

10.3.1. Test problems 

10.3.2. Results 

10.3.3. Misusing problem reductions 

10.4. Remarks 

11. ONE-MACHINE SCHEDULING II: MINIMIZING TOTAL COSTS 

11.1. Introduction 

11.2. A new algorithm 

11.2.1. Enumeration scheme 

11.2.2. Elimination criteria 

11.2.3. Implementation of the elimination criteria 

11.2.4. Lower bound 

11.2.5. Implementation of the lower bound 

11.2.6. Example 

11.3. Computational experience 

11.3.1. Compared algorithms 

11.3.2. Test problems 

11 . 3 . 3 . Results 

11.4. Remarks 

63 

63 

64 

64 

69 

71 

72 

72 

74 

76 

77 

77 

78 

78 

80 

82 

84 

84 

85 

87 

88 

89 

89 

90 

90 

91 

94 

95 

97 

99 

101 

101 

102 

103 

106 



12. PERMUTATION FLOW-SHOP SCHEDULING 

12.1. Introduction 

12.2. Algorithms 

12.2.1. Enumeration scheme 

12.2.2. Elimination criteria 

12.2.3. Implementation of the elimination criteria 

12.2.4. Lower bounds 

12.2.5. Implementation of the lower bounds 

12.2.6. Upper bounds 

12.3. Computational experience 

12.3.1. Test problems 

12.3.2. Results 

12.4. Remarks 

13. JOB-SHOP SCHEDULING 

13.1. Introduction 

13.2. Algorithms 

13.2.1. Lower bounds 

13.2.2. Enumeration schemes 

13.2.3. Implementations 

13.3. Computational experience 

13.3.1. Test problems 

13.3.2. Results 

13.4. Remarks 

PMt IV. Some. app.Uc.a:Uori6 

14. APPLICATIONS OF THE TRAVELLING SALESMAN PROBLEM 

14.1. Introduction 

14.2. Computer wiring 

14.2.1. Problem description 

14.2.2. Formulation as a TSP 

14.2.3. Results 

14.3. Vehicle routing 

14.3.1. Problem description 

14. 3. 2. Formulation as a TSP 

14.3.3. Results 

14.3.4. Remarks 

ix 

108 

108 

109 

109 

110 

112 

113 

117 

119 

120 

120 

120 

123 

125 

125 

127 

127 

129 

136 

137 

137 

137 

139 

143 

143 

143 

143 

144 

144 

146 

146 

146 

148 

148 



x 

14.4. Clustering a data array 

14.4.1. Problem description 

14.4.2. Formulation as a TSP 

14.4.3. Results 

14.4.4. Equivalence to the TSP 

14.5. Job-shop scheduling with no wait in process 

14.5.1. Problem description 

14.5.2. Formulation as a TSP 

14.5.3. Results 

14.5.4. Equivalence to the TSP 

15. AN APPLICATION OF MACHINE SCHEDULING THEORY 

15.1. Problem description 

15.2. A heuristic approach 

15.3. Results 

15.4. Remarks 

16. CONCLUSION 

BIBLIOGRAPHY 

AUTHOR INDEX 

SUBJECT INDEX 

152 

152 

153 

155 

160 

161 

161 

162 

164 

165 

166 

166 

166 

167 

167 

173 

177 

191 

195 



All thM L6 qc.U.te gen.l.Un.e ma;thema,UC6, 
a.n.d hM -U6 meJU;U,; bu,t Lt L6 jUJ.it that 
' p!Wo 6 by en.wnvr.a.tio n. o 6 ca..6 e.o ' ( a.n.d o 6 
CMeo wh,lc.h do not, at bottom, cii..f;f;eJt. 
a:t aU. p'1..of;oun.cle.y) wh,lc.h a '1.eal. ma:the
ma,Ucian. ten.d6 to deop-l6e. 

G.H. HaJr..dy, 
A Mathema,tician. '.6 Apology. 





3 

1. INTRODUCTION 

The problem of determining an optimal sequence arises under many circumstances. 

We may wish to schedule jobs on a machine, to route vehicles from depots to 

customers or to specify a chronological ordering of archeological finds. Each 

of these situations leads to problems of combinatorial optimization in which 

we seek to find the optimal element within a large but finite set of feasible 

solutions. 

In this study, we shall be especially interested in two classes of prob

lems. One class contains the quadratic assignment problem and its various spe

cializations. These include the acyclic subgraph problem of finding a total 

ordering that resembles a set of pairwise preferences as closely as possible, 

and the travelling salesman problem in which a salesman wishes to find the 

shortest route through a number of cities and back home again. Both problems 

have many surprising applications. 

The larger part of this study is devoted to machine scheduling problems. 

These problems occur whenever jobs have to be scheduled on machines of limited 

capacity. More specifically, each job is defined to consist of a sequence of 

operations, each of which is to be performed on some machine during a given 

period of time. Given some overall criterion to measure the quality of each 

possible schedule, we want to find an optimal processing order on each machine. 

Both classes of problems are typical examples of combinatorial optimiza

tion problems and as such the classical tools of combinatorial programming are 

available to solve them. On one hand, there exist ingenious algorithms that 

are good or efficient in the familiar sense of requiring a predictable number 

of steps bounded by some polynomial function of problem size; on the other 

hand, quite often there seems to be no alternative but unpredictable enumera

tive methods. 

Recent results in the theory of computational complexity allow a more 

formal analysis of the question to what extent such methods of explicit or 

implicit enumeration are really unavoidable. A class of difficult combinator

ial problems has been identified with the strong property that a polynomial

bounded algorithm for any of these problems would provide good algorithms for 

all the others as well. In view of the fact that many notorious problems such 

as the 0-1 programming problem, the graph coloring problem and the set cover

ing problem are members of this class of so-called NP-complete problems, the 

existence of such an algorithm is highly unlikely. Therefore, proving that a 

certain sequencing problem belongs to this class as well can be used as a for-



4 

mal justification to apply enumerative solution methods, since no substantial

ly better method is likely to exist. 

Along these lines, we investigate the complexity of sequencing problems 

in Part I. Our results offer a detailed insight into the location of the bor

derline between "easy" and "hard" sequencing problems. It turns out that most 

of them indeed require a solution approach based on enumeration of the set of 

feasible solutions. 

By the very nature of enumerative methods, their performance depends on 

the specific computer implementation adopted. This motivates an in-depth study 

of an approach that we have found to be particularly attractive, namely a re

cursive approach to the implementation of enumerative methods. In Part II, we 

demonstrate its properties and virtues on some simply structured schemes of 

explicit and implicit enumeration. 

Part III deals with the solution of sequencing problems by implicit enu

meration. With respect to the travelling salesman problem, two one-machine 

scheduling problems and two m-machine scheduling problems, we survey and ex

tend branch-and-bound algorithms and discuss their computational performance. 

We shall be particularly interested in curtailing the search for an optimal 

solution as much as possible through the use of sharp bounds on the values 

of solutions within certain subsets. 

We have already alluded to the many practical applications of sequencing 

theory. To illustrate this point in more detail, we shall describe five such 

applications in Part IV. Each of them arose out of some practical situation 

and involves a successful solution by means of methods discussed in previous 

chapters. It is among other things this interplay between theory and practice 

that makes sequencing problems into such a challenging area within operations 

research. 

We assume the reader of this book to be familiar with the basic princi

ples of mathematical optimization, graph theory, and computer programming. 

Throughout, graphs will be defined by vertices, (undirected) edges and (di

rected) arcs; vertices of search trees will be referred to as nodes. Several 

algorithms will be presented in the form of ALGOL 60 or quasi-ALGOL proce

dures. 



PMt I. Se.que.n.cin.9 pll.Oble.m6 





7 

2. COMPLEXITY THEORY 

Recent developments in the theory of computational complexity as applied to 

combinatorial problems have aroused the interest of many researchers. The 

main credit for this must go to S.A. Cook [Cook 1971] and R.M. Karp [Karp 

1972B] who first explored the relation between the classes P and NP of (lan

guage recognition) problems solvable by deterministic and non-deterministic 

Turing machines respectively, in a number of steps bounded by a polynomial 

in the length of the input. With respect to combinatorial optimization, we 

do not really require mathematically rigorous definitions of these concepts; 

for our purposes we may safely identify P with the class of problems for 

which a polynomial-bounded, good [Edmonds 1965A] or efficient algorithm 

exists, whereas all problems in NP can be solved by polynomial-depth back

track search. 

In this context, all problems are stated in terms of recognition prob

lems which require a yes/no answer. In order to deal with the complexity of 

a combinatorial minimization problem, we transform it into the problem of 

determining the existence of a solution with value at most equal to y, for 

some threshold y. 

The class NP is very extensive. All sequencing problems that will be 

discussed throughout this work can trivially be solved by polynomial-depth 

backtrack search and thus are members of NP. 
It is clear that P c NP, and the question arises if this inclusion is 

a proper one or if, on the contrary, P = NP. Although this is still an open 

problem, the equality of P and NP is considered to be highly unlikely and 

most bets (e.g., in [Knuth 1974]) have been going in the other direction. 

To examine the consequences of an affirmative answer to the P = NP question, 

we introduce the following concepts. 

Problem P' is reducible to problem P (notation: P' cr P) if for any 

instance of P' an instance of P can be constructed in polynomial-bounded 

time such that solving the instance of P will solve the instance of P' 

as well. 

P' and Pare equivalent if P' cr P and P cr P'. 

P is NP-complete [Knuth 1974] if P E NP and P' cr P for every P' E NP. 
Informally, the reducibility of P' to P implies that P' can be considered 

as a special case of P; the NP-completeness of P indicates that P is, in a 

sense, the most difficult problem in NP. 
In a remarkable paper [Cook 1971], NP-completeness was established with 



8 

respect to the so-called SATISFIABILITY problem. This problem can be formu

lated as follows. 

Given clauses c 1 , ..• ,cu, each being a disjunction of literals from the 

set x = {x1 , ... ,xt,x1 , ... ,xt}, is the conjunction of the clauses satis

fiable, i.e., does there exist a subset Sc X such that 

S does not contain a complementary pair of literals (xi,xi), and 

sncj f ~for j = 1, ... ,u? 

Cook proves this result by specifying a polynomial-bounded "master reduction" 

which, given P E NP, constructs for any instance of P an equivalent boolean 

expression in conjunctive normal form. By means of this reduction, a polyno

mial-bounded algorithm for the SATISFIABILITY problem could be used to con

struct a polynomial-bounded algorithm for any problem in NP. It follows that 

P = NP if and only if SATISFIABILITY E P. 

The same argument applies if we replace SATISFIABILITY by any NP-complete 

problem. A large number of such problems has been identified in [Karp 1972B] 

(see also [Karp 1975A]). Since they are all notorious combinatorial problems 

for which typically no good algorithms have been found so far, Karp's results 

afford strong circumstantial evidence that P is a proper subset of NP. 

Theorem 2.1 lists those NP-complete problems that will be used in Chap

ters 3 and 4 to establish NP-completeness of sequencing problems. 

THEOREM 2.1. The following problems are NP-complete: 

(a) 3-SATISFIABILITY 

I.e. SATISFIABILITY with at most three literals per clause. 

(b) CLIQUE 

Given an undirected graph G = (V,E) and an integer k, does G have a 

clique (i.e. a complete subgraph) on k vertices? 

(c) LINEAR ARRANGEMENT 

Given an undirected graph G = (V,E) and an integer k, does there exist a 

one-to-one function 11: V-+ {1, ••• ,IVJ} such that le·') J11(i)-11(j)\ s; k? 
l. 1 ] EE 

(d) FEEDBACK ARC SET 

Given a directed graph G = (V,A) and an integer k, does G have a feed

back arc set (i.e. a set of arcs whose removal breaks all directed cy

cles) of cardinality k? 

(e) DIRECTED HAMILTONIAN CIRCUIT 

Given a directed graph G = (V,A), does G have a hamiltonian circuit 

(i.e. a directed cycle passing through each vertex exactly once)? 



(f) DIRECTED HAMILTONIAN PATH 

Given a directed graph G' = (V',A'), does G' have a hamiltonian path 

(i.e. a directed path passing through each vertex exactly once)? 

(g) UNDIRECTED HAMILTONIAN CIRCUIT 

9 

Given an undirected graph G = (V,E), does G have a hamiltonian circuit 

(i.e. an undirected cycle passing through each vertex exactly once)? 

(h) KNAPSACK 

Given positive integers a 1 , ... ,at 1 b, does there exist a subset Sc T 

{1, ... ,t} such that l· a 1. = b? 
lES 

(i) PARTITION 

Given positive integers a 1 , ... ,at, does there exist a subset Sc T 

{1, ... ,t} such that liES ai = liET-S ai? 

(j) 3-PARTITION 

Given positive integers a 1 , ... ,a3t,b, does there exist a partition 

(T 1 , ... ,T) of T = {1, ... ,3t} such that IT.I= 3 and~ a.= b for t J liET. l 

j = 1, • • • t t? 

Proof. 

(a,b) See [Cook 1971; Karp 1972B]. 

(c) See [Garey et al. 1976B]. 

(d,e,g,h,i) See [Karp 1972B]. 

J 

(f) NP-completeness of this problem is implied by two observations: 

(A) DIRECTED HAMILTONIAN PATH E NP; 

(B) P cr DIRECTED HAMILTONIAN PATH for some NP-complete problem P. 

(A) is trivially true, and (B) is proved by the following reduction. 

DIRECTED HAMILTONIJl.N CIRCUIT cr DIRECTED HAMILTONIAN PATH. 

Given G (V ,A) , we choose i' E V and construct G' = (V' ,A') with 

V' vu {i"}, 

A' { (i,j) I (i,j) EA, j "Ii'} u {(i,i") I (i,i') EA}. 

G has a hamiltonian circuit if and only if G' has a hamiltonian path. 

(j) See [Garey & Johnson 1975A]. D 

Karp's work has led to a large amount of research on the location of the 

borderline separating the "easy" problems (in P) from the "hard" (NP-complete) 

ones. It turns out that a minor change in the value of a problem parameter 

(notably - for some as yet mystical reason - an increase from two to three) 

often transforms an easy problem into a hard one. Not only does knowledge of 



10 

the borderline lead to fresh insights as to what characteristics of a prob

lem determine its complexity, but there are also important consequences with 

respect to the solution of these problems. Establishing NP-completeness of 

a problem can be interpreted as a formal justification to use enumerative 

methods such as branch-and-bound, since no substantially better method is 

likely to exist. Conversely, if a problem is known to be in P, then branch

and-bound should certainly not be used. Investigation of these aspects should 

prevent embarrassing incidents such as the presentation in a standard text

book of an enumerative approach to the undirected Chinese postman problem, 

for which a good algorithm had already been developed in [Edmonds 1965B] 

(see also [Edmonds & Johnson 1973]). 

It should be emphasized that membership of P versus NP-completeness only 

yields a very coarse measure of complexity. On one hand, the question has 

been raised whether polynomial-bounded algorithms are really good [Anthonisse 

& Van Emde Boas 1974]. On the other hand, there are significant differences 

in complexity within the class of NP-complete problems. 

One possible refinement of the complexity measure may be based on the 

way in which numerical problem data are encoded. Taking the KNAPSACK and 

3-PARTITION problems as examples and defining a max. {a.}, we observe * 1.ET 1. 
that the length of the input is 0(t log a*) in the standard binary encoding, 

and 0(ta*) if a unary encoding is allowed. 3-PARTITION has been proved NP

complete even with respect to a unary encoding [Garey & Johnson 1975A]. 

KNAPSACK is NP-complete with respect to a binary encoding [Karp 1972B], but 

solution by dynamic programming requires 0(tb) steps [Hu 1969] and thus 

yields a polynomial-bounded algorithm with respect to a unary encoding; 

similar situations exist for several machine scheduling problems. Such 

"pseudopolynomial" algorithms [Lawler 1975B] need not necessarily be "good" 

in the practical sense of the word, but it may pay none the less to distin

guish between complexity results with respect to unary and binary encodings 

(cf. [Garey et al. 1976A]). Unary NP-completeness or binary membership of P 
would then be the strongest possible result, and it is quite feasible for 

a problem to be binary NP-complete and still to allow a unary polynomial

bounded solution. All our results hold with respect to the standard binary 

encoding; some consequences of using a unary encoding will be pointed out 

in Section 4.2. 

Other refinements of the complexity measure may be based on the worst

case analysis of approximation algorithms. For relatively simple problems, 



11 

there often exist heuristics for which the ratio of the obtained solution 

value to the optimal value is bounded by a constant, whereas in other cases 

this worst-case bound depends on the size of the problem (see [Graham 1969; 

Johnson 1974; Rosenkrantz et al. 1974; Garey & Graham 1975; Gonzales & Sahni 

1975]). Occasionally, there is no hope to obtain good algorithms even if we 

settle for approximation, since the problem of finding a feasible solution 

within any fixed percentage from the optimum has been proved NP-complete 

(see [Pohl 1975; Sahni & Gonzales 1976]). 

Altogether, the development of a measure that allows further distinction 

within the class of NP-complete problems remains a major research challenge. 

In the remaining chapters of Part I we will study the complexity of various 

sequencing problems. The results in Chapter 3 with respect to some types of 

quadratic assignment problems follow from Theorem 2.1 in a fairly straight

forward way. Chapter 4 is devoted to machine scheduling problems. In this 

area, a natural problem classification is available and it is particularly 

challenging to investigate the influence of various parameter values on the 

complexity of the problems. 



12 

3. QUADRATIC ASSIGNMENT PROBLEMS 

3.1. The quadratic assignment problem 

The quadratic assignment problem (QAP) can be stated as follows. 

Given n4 coefficients ah'. (g,h,i,j = 1, ... ,n), find a permutation TI 
g 1.J 

of { 1, ... ,n} minimizing_ 

We will restrict our attention to the special case where, given two nxn-

matrices (c .. ) and (d .. ) , we have a h .. = c hd and therefore 1.J 1.J g 1.J g ij 
1n 1n 

fQAP(TI) = li=l lj=l CTI(i)TI(j)dij" 

This formulation is given in [Koopmans & Beckmann 1957] in the context of 

the location of economic activities; fQAP(TI) represents total transportation 

costs if plants 1, .•. ,n are assigned to locations TI(l), ... ,TI(n) respectively, 

and d .. units are shipped from plant i at location TI(i) to plant j at loca-1.J 
tion TI(j) at cost cTI(i)TI(j) per unit. The QAP arises in various other situa-

tions such as planning a presidential election campaign [Lawler 1963], ar

ranging wedding guests round a table [Muller-Merbach 1970], placing modules 

on a computer backplane [Hanan & Kurtzberg 1972] (cf. Section 14.2.2) and 

scheduling parallel machines with changeover costs [Geoffrion & Graves 1976]. 

Some special cases of the QAP can be solved by polyn0mial-bounded algo

rithms. For instance, if the locations are situated on a straight line at 

unit intervals so that c .. = li-jl, and moreover d .. = e.e. for some nonneg-1.J 1.J 1. J 
ative e 1 , ... ,en, then an optimal assignment can be found in Oen log n) steps 

[Pratt 1972]. Other special cases are discussed in [Lawler 1975A]. 

The general QAP, however, is an NP-complete problem. This is implied by 

its membership of NP, which is obvious, and by the results presented in Theo

rem 3.1. In this theorem, we formulate three NP-complete problems from Theo

rem 2.1 as a QAP; any of these reductions suffices to establish NP-complete

ness of the QAP, and together they illustrate the generality of this sequenc

ing problem. 

We note that, in order to state the QAP as a recognition problem, we 

add a threshold parameter y to the problem specification and investigate 

the existence of a solution TI with value fQAP(TI) $ y. 



THEOREM 3.1. The following problems are reducible to the QAP: 

(a) CLIQUE; 

(b) LINEAR ARRANGEMENT; 

(c) DIRECTED HAMILTONIAN PATH. 

13 

Proof. The problems under (a), (b) and (c) have been formulated in Theorem 

2.1 in terms of an undirected or directed graph, G = (V,E) or G' = (V',A') 

respectively. Let in each case the vertex set be given by {1, ••• ,v}. 

(a) CLIQUE ~ QAP: 

n = v; 

( ( (i,j) E E), 
c .. 
l.) (otherwise); 

=( 
(i,j = 1, ••. ,k), 

d .. 
J.) (otherwise); 

y = 0. 

For any permutation TI of V we have 

CLIQUE has a solution if and only if there exists a TI such that 

(TI(i),TI(j)) EE for i,j = 1, ..• ,k, i.e. fQAP(TI) = 0. 

(b) LINEAR ARRANGEMENT ~ QAP: 

n = v; 

Cij li-jJ (i,j E V); 

( (i,j) E E), 

(otherwise); 

y = 2k. 

For any permutation TI of V we have 

fQAP(TI) = 2I(i,j)EEITI(i)-TI(j) I. 

It follows immediately that LINEAR ARRANGEMENT has a solution if and 

only if there exists a TI such that fQAP(TI) s 2k. 

(c) DIRECTED HAMILTONIAN PATH ~ QAP: 

n = v; 

{° ((i,j) E A')' 
cij 

(otherwise); 1 

=f 
(i = 1, .•• ,v-1, j i+l), 

d .. 
l.) 0 (otherwise); 

y = 0. 



14 

For any permutation rr of V' we have 

,n-1 
fQAP(IT) = li=l cIT(i)IT(i+l) ~ O. 

DIRECTED HAMILTONIAN PATH has a solution if and only if there exists a 

IT such that (IT(i) ,IT(i+l)) EA' for i = 1, ... ,n-1, i.e. fQAP(IT) = 0. 0 

It follows that finding an optimal QAP solution is likely to require some 

form of implicit enumeration. Branch-and-bound algorithms have been proposed 

in [Gilmore 1962; Lawler 1963; Land 1963; Gavett & Plyter 1966; Burkard 1973; 

Hansen & Kaufman 1974] and reviewed in [Pierce & Crowston 1971; Kaufman 1975]; 

they have been moderately successful in solving problems with n $ 15. Subop

timal methods have been extensively tested with varying degrees of success; 

we refer to the survey in [Hanan & Kurtzberg 1972]. The QAP is clearly very 

difficult and little progress has been made since its first formulation. 

3.2. The acyclic subgraph problem 

The acyclic subgraph problem (ASP) can be stated as follows. 

Given a directed graph G = (V,A) with a nonnegative weight c .. for each 
lJ 

arc (i,j) E A, find an acyclic subgraph of G of maximum total weight. 

If G' = (V,A') with A' c A is acyclic, then clearly A-A' is a feedback arc 

set of G, i.e. a set of arcs whose removal breaks all directed cycles. There

fore, the ASP is equivalent to the problem of finding a feedback arc set of 

minimum total weight. 

Since all c .. are nonnegative, we may restrict our attention to maximal 
lJ 

acyclic subgraphs, i.e. acyclic subgraphs G' = (V,A') such that no G" = (V,A") 

with A' ~A" is acyclic; in this case, A-A' is a minimal feedback arc set. 

Let V = {1, ... ,n}. Defining c.. 0 for (i,j) i A and taking A= vxv ob-
lJ 

viously does not change the problem. Any maximal acyclic subgraph G' = (V,A') 

is now characterized by a permutation IT of V such that A'= {(IT(i),rr(j)) [i < j}. 

Thus, the ASP can be restated as follows. Given an nxn-matrix (cij), find a 

permutation IT of {1, ... ,n} maximizing 

l~=l l~=i+1 cIT(i)IT(j) 

or, equivalently, minimizing 

,n ,i-1 
fASP(IT) = li=1 lj=1 cIT(i)IT(j)" 

Note that the c .. are allowed to be negative in this formulation. 
lJ 



15 

The ASP turns out to be a special case of the QAP; we obtain a QAP 

fASP(rr) by defining (cij) as above and (dij) as follows: 

(i = 1, ... ,n, j = 1, ... ,i-1), 

(otherwise) . 

None the less, the ASP is NP-complete. This follows from Theorem 2.1(d) and 

Theorem 3.2. 

THEOREM 3.2. FEEDBACK ARC SET cr ASP. 

Proof. Immediate from the above discussion. D 

The ASP arises in widely varying situations and there exists a large inco

herent body of literature on the problem. For an extensive survey of its 

history, mathematical aspects, optimal and suboptimal algorithms, we refer 

to [Lenstra Jr. 1973A]; see Chapter 7 for a brief comment on the construc

tion of relatively optimal solutions. We conclude this section by indicating 

some applications. 

(i) ranking by paired comparisons [Slater 19611 

A set of n dog foods has to be ordered according to the taste of a particular 

dog. Let V denote the set of dog foods and let arc (i,j) indicate that the 

dog prefers food i to food j. A complete set of ~n(n-1) paired comparisons 

yields a tournament on V, i.e. a graph G = (V,A) with l{(i,j) ,(j,i)}nAI = 1 

for each pair {i,j} [Moon 1968]. An acyclic subgraph of maximum cardinality 

corresponds to a total ordering that "resembles the tournament as closely as 

possible" and minimizes the number of (feed-back) errors of the dog. 

(ii) aggregating individual preferences [Anthonisse 1972] 

A group of persons has to rank n alternatives according to desirability. To 

this end, each of them determines an individual preference scheme, which need 

not even be a consistent partial ordering. Choosing c .. to be the number of 
1] 

persons preferring alternative i to alternative j and solving the ASP, we ob-

tain an aggregate total preference ordering that minimizes the number of ne

glected preferences. 

(iii) determining ancestry relationships [Glover et al. 1974] 

At a number of individual gravesites, n pottery types have been found at 



16 

various ground depths. Let cij be some weighted sum over all graves at which 

type i was found below type j. By solving the ASP we can determine the "most 

probable" chronological ordering of the pottery types. 

(iv) triangulating input-output matrices [Korte & Oberhofer 1968] 

Let (cij) be an input-output matrix between n sectors of industries. An op

timal ASP solution corresponds to a triangulation of this matrix, i.e. a 

"ranking from raw material to consumer" that maximizes the total supply from 

higher to lower placed sectors. 

3.3. The travelling salesman problem 

The travelling salesman problem (TSP) can be stated as follows. 

Given a directed graph G = (V,A) with a weight c .. for each arc (i,j) E 
1.J 

A, find a hamiltonian circuit on G of minimum total weight. 

If c .. =c .. for all (i,j) EA, then we have a symmetric TSP (STSP) which 
1.J J 1. 

corresponds to finding a minimum-weight hamiltonian circuit on an undirected 

graph G = (V,E). A problem for which the latter equalities need not hold is 

called an asymmetric TSP (ATSP). 

The TSP is the problem of a salesman who has to travel through a number 

of cities with intercity distances c .. , visiting each of them exactly once 
1.J 

before returning home. If the salesman is allowed to visit each city at least 

once, his problem is equivalent to a TSP with c .. equal to the length of a 
1.J 

shortest path from city i to city j; in that case, cik s cij+cjk for all 

i,j,k E V and the problem is called euclidean. 

Let V = {1, ... ,n}. Defining c .. = 00 for (i,j) I.A and taking A= vxv 
1.J 

obviously does not change the problem. There is now a one-to-one correspon-

dence between the (n-1)! hamiltonian circuits on G and the (n-1)! cyclic 

permutations of V, i.e. permutations µ of V such that for any i E V we have 

µk(i) ~ i (k = 1, ... ,n-1), µn(i) = i; 

µk(i) is the k-th city reached by the salesman from city i. The TSP may now 

be restated as follows. Given an nxn-matrix (c .. ), find a cyclic permutation 
1.J 

µ of V minimizing 

For each cyclic permutation µ of V we can find n permutations TI of V by 



17 

choosing i E V and defining rr(k) = µk(i) fork= 1, ... ,n; rrk(i) is the k-th 

city in a salesman tour. We seek to find a permutation TI of V minimizing 

,n-1 
fTSP(TI) = li=l CTI(i)TI(i+l) + CTI(n)TI(l)" 

From the latter formulation it is clear tha~ the TSP is a special case of 

the QAP; we obtain a QAP with fQAP(rr) = fTSP(rr) by defining 

d12 d23 = ••• = dn-1,n = dnl = 1 • 
dij 0 (otherwise). 

Some special cases of the TSP can be solved by polynomial-bounded algorithms. 

For instance, if there are real functions f and g with f(x)+g(x) 2 0 and real 

numbers a 1 , .•. ,an,b1 , ... ,bn such that 

c .. 
lJ IJaj f(x)dx (bi ~ aj), 

b. 
l 

Jbi 
g(x)dx (b. > a.), 

l J a. 

then an optimal sol~tion can be found in 0(n2) steps [Gilmore & Gomory 1964]. 

C, , a, +b, ( i > j) I 
l] J_ J 

then the TSP is equivalent to a linear assignment problem [Lawler 1971]. 

The general ATSP and STSP are easily shown to be NP-complete by Theorem 

2.l(e,g) and Theorem 3.3. 

THEOREM 3. 3. 

(a) DIRECTED HAMILTONIAN CIRCUIT ~ ATSP; 

(b) UNDIRECTED HAMILTONIAN CIRCUIT ~ STSP. 

Proof. Immediate. D 

Solution methods for the TSP have been surveyed in [Bellmore & Nemhauser 

1968; Isaac & Turban 1969; Eilon et al. 1971; Christofides 1975]. Branch

and-bound approaches for ATSPs and STSPs will be described in Chapter 9. 

For suboptimal algorithms we refer to [Lin 1965; Christofides & Eilon 1972; 

Lin & Kernighan 1973]; see also Chapter 7. Some applications are discussed 

in Chapter 14. 



18 

4. MACHINE SCHEDULING PROBLEMS 

4.1. Classification 

Machine scheduling problems can be verbally formulated as follows. 

A job Ji (i = 1, .•. ,n) consists of a sequence of operations, each of 

which corresponds to the uninterrupted processing of Ji on some machine 

1\ (k 1, ... ,m) during· a given period of time. Each machine can handle 

at most one job at a time. What is according to some overall criterion 

the optimal processing order on each machine? 

The following data can be specified for each Ji: 

a number of operations ni; 

a machine order vi, i.e. an ordered ni-tuple of machines; 

a processing time pik of its k-th operation, k = 1, ... ,ni (if ni 

for all Ji, we shall usually write pi instead of pi1); 

a weight wi; 

a release date or ready time ri, i.e. its earliest possible starting 

time (unless stated otherwise, we assume that ri 0 for all Ji); 

a due date or deadline di; 

a cost function fi : l'J -+ lR, indicating the costs incurred as a non

decreasing function of the completion time of Ji. 

We assume that all data (except vi and fi) are nonnegative integers. Given 

a processing order on each t\:• we can compute for each Ji: 

the starting time Si; 

the 

the 

the 

u. 
]_ 

Machine 

completion time Ci; 

lateness L. = C.-d.; 
]_ ]_ ]_ 

tardiness T. = max{O,C.-d.}; 
]_ ]_ ]_ 

= if C. $d. then 0 else 1. - ]_ ]_--

scheduling problems are traditionally classified by means of four 

parameters n,m,~,K. The first two parameters are integer variables, denoting 

the numbers of jobs and machines respectively; the cases in which m is con

stant and equal to 1, 2, or 3 will be studied separately. If m > 1, the 

third parameter takes on one of the following values: 

F 

p 

in a flow-shop where ni = m and vi = (M1 , ... ,Mm) for each Ji; 

in a permutation flow-shop, i.e. a flow-shop where passing is 

not permitted so that each machine has to process the jobs in the same 

order; 

G 

I 

in a (general) job-shop where ni and vi may vary per job; 

in a parallel-shop where each job has to be processed on just 



19 

one of m identical machines, i.e. n. 
1. 

1 for all J. and the v. are not 
1. 1. 

defined. 

Extensions to the more general situation where several groups of parallel 

{possibly non-identical) machines are available will not be considered. 

The fourth parameter indicates the optimality criterion. We will mainly 

deal with regular criteria, i.e., monotone functions K of the completion 

times c 1 , ... ,cn such that 

These functions are usually of one of the following types: 

K = f 
max 

K =If. 
1. 

The following specific criteria have frequently been chosen to be minimized: 

K = C max.{C.}; 
max i i 

K = Iwici l~=1 wici; 

K = L max.{L.}; 
max i i 

K = IwiTi l~=l wiTi; 

K = Iwiui l~=1 wiui. 

We refer to [Rinnooy Kan 1976] for equivalence relations between these and 

other objective functions. 

Some relevant problem variations are characterized by the presence of 

one or more elements from a parameter set A, such as 

prec (precedence constraints between the jobs, where "Ji. precedes J " 
j 

(notation: J. < J.) implies c. $ S.); 
1. J 1. J 

tree (precedence constraints between the jobs such that the associ-

ated precedence graph can be given as a branching, i.e. a set of directed 

trees with either indegree or outdegree at most one for all vertices); 

r.20 
1. 

C.Sd. 
1. 1. 

(possibly non-equal release dates for the jobs); 

(all jobs have to meet their deadlines); 

no wait (no waiting time for the jobs between their starting and comple-

tion times; hence, ci = si+lkPik for each Ji); 

nisn* 

pik'°P* 

pik=l 

w =1 
i 

(a constant upper bound on the number of operations per job); 

(a constant upper bound on the processing times); 

(unit processing times); 

(equality of the weights; we indicate this case also by writing 

Ici, l:Ti, Iuil. 

In view of the above discussion, we can use the notation nJmJi,AJK to indi

cate specific machine scheduling problems. 



20 

The theory of scheduling is surveyed extensively in [Conway et al. 1967; 
Coffman 1976; Rinnooy Kan 1976]. Here, we will deal with the following as
pects. In the remaining sections of this chapter we investigate the complex
ity of machine scheduling problems. In Chapters 10 to 13 we present branch
and-bound algorithms for various specific types of problems: 

the njljprec,r.~OjL problem in Chapter 10; 
i max 

the nlllpreclif. problem, and more especially the nl1I IIw.T. problem, l. l. l. 
in Chapter 11 ; 

the njmjPjc problem in Chapter 12; max 
the njmjGjc problem in Chapter 13. max 

In Chapter 15 we discuss an application, involving the nlll Jiw.C. and the 
J. l. 

njljr.~OjL problems. 
J. max 

4.2. Complexity 

All machine scheduling problems of the type defined in Section 4.1 can be 
solved by polynomial-depth backtrack search and thus are members of NP. The 
results on their complexity are summarized in Table 4.1. 

The problems which are marked by an asterisk (*) are solvable in poly
nomial-bounded time. In Table 4.2 we provide for most of these problems ref
erences where the algorithm in question can be found; we give also the order 
of the number of steps in the currently best implementations. 

The problems marked by a note of exclamation (!) are NP-complete. The 
reductions to these problems are listed in Table 4.3. 

Question-marks (?) indicate open problems. We will return to them in 
Section 4.3 to motivate our typographical suggestion that these problems 
are likely to be NP-complete. 

Table 4.1 contains the "hardest" problems that are known to be in P 
and the "easiest" ones that have been proved to be NP-complete. In this re
spect, Table 4.1 indicates to the best of our knowledge the location of the 
borderline between easy and hard machine scheduling problems. 

Before proving the theorems mentioned in Table 4.3, we will give a 
simple example of the interaction between tables and theorems by examining 
the status of the general job-shop problem, indicated by nJmJGjc . 

max 
In Table 4.1, we see that the nj2jG,n.~2jc problem is a member of P 

i max 



21 

TABLE 4.1. COMPLEXITY OF MACHINE SCHEDULING PROBLEMS 

n j -~ 1 ~achine 2 machines nes 

c * prec,r.20 * F ! m=3:F 
max l --

* F,no wait ? m=3:F,no wait 

! F,tree ! F,no wait 

! F,r.20 
l 

* G,n.~2 * n=2:G 
l --

! G,n.~3 
l 

! m=3:G,n.~2 
-- l 

! I * I,tree,pi=l 

* I,prec,ri20,Ci~di,pi=l ? m=3:I,prec,pi=1 

! I,prec,pi~2 ! I,prec,pi=l 

Iwici * tree ! F,w.=1 
l 

! F,no wait,w.=1 
l 

! prec,pi=l ? F,no wait ,w. =1 
l 

! prec,w.=1 ! I * I,r,20,p,=1 l 

! r.20,w.=1 
l l 

l l * I,prec,pi=l,wi=l * I,w, =l 

* c.~d. ,w.=1 l 

l l l ! I,prec,pi~2,wi=1 ! I,prec,pi=l,wi=l 
! ci~di 

L * prec ! F 
max 

* prec,ri20,pi=1 ! I 
! r.20 

l 

Iw.T. * ri20,pi=1 ! F,w.=1 
l l l 

? w.=1 
l ! I,wi=l 

! 

? tree,pi=1 

! prec ,pi =1,wi =1 

! r.20,w.=1 
l l 

Iw.U. * ri20,pi=1 ! F,wi=l 
l l 

* w.=1 
l ! I,w.=1 

! 
l 

? tree,pi=l 

! prec,pi=l,wi=l 

! ri20,wi=1 

* : problem in P; see Table 4.2. 

? open problem; see Section 4.3. 

NP-complete problem; see Table 4.3. 



22 

TABLE 4.2. REFERENCES TO POLYNOMIAL-BOUNDED ALGORITHMS 

Problem 

nlllprec,r.:::olc 
i max 

nJlltreeliw.c. 1. 1. 
n 11 I c . ,,d . I I c . 1. 1. 1. 
nl 1 lpreclL max 
nlllprec,r.:::O,p,=llL 

i 1. max 

nlllr.:::O,p.=lliw.T. 1. 1. 1. 1. 
nlllr.:::O,p.=lliw.u. 1. 1. 1.1. 
nl 111 Iu. 1. 
nl21Flc max 
nj2jF,no waitlc max 
nl2IG,n,,;;2lc 

i max 
nl2l1,prec,r.:::o,c.,;;d,,p.=llc 

i i 1. 1. max 
nj2II,prec,p.=11Ic. 1. 1. 

2lmjGjc max 

nlmlI,tree,p.=ljc 
i max 

nlmlI,r.:::O,p.=lliw.c. 1. 1. 1.1. 
nlmlIIIc. 1. 

nces 

[Horn 1972; Sidney 1975] ell 

[Smith 1956] 

[Lawler 1973] 

[Lageweg et al. 1976]; 
h.l., Section 10.2.1 

[Lawler 19641 

[Lageweg & Lawler 1975] 

[Moore 1968] (2) 

[Johnson 1954] 

[Gilmore & Gomory 1964] 

[Jackson 1956] 

[Garey & Johnson 1975B] 

[Coffman & Graham 1972; 
Garey 1975] 

[Szwarc 1960; 

(3) 

Hardgrave & Nemhauser 1963] 

[Hu 1961] 

[Lawler 1964] 

[Conway et al. 1967] e4l 

Order 

0(n2J 

Oen log n) 

Oen log n) 

Oen2) 

0 (n2J 

Oen3J 

0 en2) 

0(n log n) 

0(n log n) 

Oen2J 

Oen log n) 

Oen3) 

Oen2) 

0(m2 ) 

Oenl 

Oen3J 

Oen log n) 

(1) An 0(n log n) algorithm for the more general case of series parallel 

precedence constraints is given in [Lawler 1976CJ. 

(2) An 0(n log n) algorithm for the more general case of agreeable weights 

(i.e. p. < pj ~ W, ::: w.) is given in [Lawler 1976A]. 
21. 1. J 

(3) An 0(n ) algorithm for the nl2II,prec,p.=llc problem is given in 1. max · 
[Coffman & Graham 1972]; see also [Garey & Johnson 1976 J. 

(4) Polynomial-bounded algorithms for the more general case of parallel 

non-identical machines are given in [Horn 1973; Bruno et al. 1974A; 

Bruno et al; 1974B]. 



TABLE 4.3. REDUCTIONS TO NP-COMPLETE MACHINE SCHEDULING PROBLEMS 

Reduction 

LINEAR ARRANGEMENT~ nl1jprec,p.=11Lw.C. 
l. l. l. 

LINEAR ARRANGEMENT« nl1lpreclic. 
l. 

3-PARTITION « nl1lri~o1Ici 

KNAPSACK a nl1Jc.$d. IIwic. 
l. l. l. 

KNAPSACK« nJ1Jr.~OJL 
:i. max 

KNAPSACK a nJ1J !Iw.T. 
l. l. 

CLIQUE a nj1Jprec,p.=1JLT. 
l. l. 

nl1lri~OIL « nlllri~olIT. max l. 

KNAPSACK a nlll ILw.U. 
l. l. 

CLIQUE« nl1Jprec,p.=11Lu. 
l. l. 

nlllr.~OIL « nl1lr.~oliu. 
i max i i 

KNAPSACK tt nl2JF,treelc max 
KNAPSACK a nj2IF,r.~01c 

l. max 
KNAPSACK tt nl2JG,n.$3Jc 

i max 
PARTITION a nJ2JIIC max 

3-SATISFIABILITY tt nl2II,prec,p,$2lc 
· i max 

3-PARTITION a nl2JFJLc. 
l. 

PARTITION a nJ2IIILw.C. 
l. l. 

n•l2JI,prec,p.$2!c a nl2JI,prec,p.$2!Ic. 
i max i i 

KNAPSACK a nJ2JFJL max 
nJ2IIlc « nl2IIIL max max 
nl2!FIL « nl2!FILT. max i 

nl2JIIL a nl2JIJIT. max i 

nJ2JFjL a nj2jFIIu. max i 

nj2jijL a nj2JIILU. max i 

KNAPSACK a nj3IFjC 
max 

. DIRECTED HAMILTONIAN PATH a nlmlF,no waitJc 
max 

[Lawler 1976C]; 
h.l., Theorem 4.7(b) 

[Lawler 1976C]; 
h.l., Theorem 4.7(a) 

h.l., Theorem 4.5 

h.l., Theorem 4.4(j) 

h.l., Theorem 4.4(g) 

h.l., Theorem 4.4(i) 

h.l., Theorem 4.6(b) 

h.l., Theorem 4.l(j) 

fKarp 1972B]; 
h.l., Theorem 4.4(h) 

[Garey & Johnson 1976]; 
h.l., Theorem 4.6(a) 

h.l., Theorem 4.l(j) 

h.l., Theorem 4.4(f) 

h.l., Theorem 4.4(d) 

h.l., Theorem 4.4(a) 

[Bruno et al. 1974B]; 
h.l., Theorem 4.2(a) 

[Ullman 1975] 

[Garey et al. 1976A] 

[Bruno et al. 1974B]; 
h.l., Theorem 4.2(b) 

h.l., Theorem 4.1(1) 

h.l., Theorem 4.4(e) 

h.l., Theorem 4.l(i) 

h.l., Theorem 4.l(j) 

h.l., Theorem 4.l(j) 

h.l., Theorem 4.l(j) 

h.l., Theorem 4.l(j) 

h.l., Theorem 4.4(c) 

h.l., Theorem 4.8(a) 

KNAPSACK a nJ3JG,n.$2Jc h.l., Theorem 4.4(b) 
i max 

3-SATISFIABILITY a nlmlI,prec,p.=1Jc [Ullman 1975] 
l. max 

DIRECTED HAMILTONIAN PATH a nlmJF,no waitllc. h.l., Theorem 4.8(b) 
l. 

n' Im! I,prec ,p.=1 JC a n Im! I ,prec ,p. =1 J Lc. h.l., Theorem 4 .1 (1) 
i max i i 

23 



24 

and that two minor extensions, nj2jG,n,$3jC and nj3jG,n.$2ic , are NP-
i max i max 

complete. By Theorem 4.1(c,h), these problems are special cases of the 

general job-shop problem, which is thus shown to be NP-complete by Theorem 

4.1(b). Table 4.2 refers to an 0(n log n) algorithm [Jackson 1956] for the 

nj2jG,n.$2jc problem. Table 4.3 tells us that reductions from KNAPSACK 
i max 

to both NP-complete problems are presented in Theorem 4.4(a,b); the NP-com-

pleteness of KNAPSACK has been mentioned in Theorem 2.1(h). 

Theorem 4.1 gives some elementary results on reducibility among machine 

scheduling problems. It can be used to establish either membership of P or 

NP-completeness for problems that are, roughly speaking, either not harder 

than the polynomially solvable ones or not easier than the NP-complete ones 

in Table 4. 1. 

THEOREM 4.1. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

(1) 

If n' Im' I & ' , A ' J K ' o: n Im j & , A I K and n J m j & , A I K E P, then n' J m' I & ' , A ' I K ' E P. 

If n' Im' j & ' , A ' J K ' o: n Im J 2, A I K and n' Im' j & ' , !- ' I K ' is NP-complete, then 

njmj&,1-jK is NP-complete. 

nlm' J&,1-jK o: njmj&,1-jK if m' $ m or if m' is constant and m is variable. 

nl2jFjK and nJ2jPjK are equivalent. 

nl3JFJc and nJ3jPJC are equivalent. max max 
nlmJF,1-jK o: njmjG,1-jK. 

nJmj&,>-JK o: nJmJ&,/-u/-' IK if!-' 

o: njmj&,1-jK if!-' 

nJmJ&,>-JL • 

c {prec,tree,r.~O,C.$d,}. 
i i • 

nlml &,/-u/-' I K c {n,$n ,p.k$p ,p.k=l,w.=1}. 
i * i * i i 

nlmj&,>-lc o: max max 
ntm1&~>-JL o: nlmJ&~>-JK if K E {LT.,tu~}. · max ili 

nJmj&,>-IIwici o: nlmJ&,>.JiwiTi. 
n'lmJI,prec,p,$p le o: njmjI,prec,p.$p IIc .• 

i * max i * i 

Proof. Let P' and P denote the problems on the left-hand side and right-hand 

side respectively. 

(a,b) Clear from the definition of reducibility. 

(c) Trivial. 

(d,e) P' has an optimal solution with the same processing order on each ma

chine (cf. Section 12 .. ll. 

(f,g,h) In each case P' obviously is a special case of P. 

(i) Given any instance of P' and a threshold value y', we construct a corre

sponding instance of P by defining di= y' (i = 1, .•. ,n). P' has a solu-



25 

tion with value s y' if and only if P has a solution with value s 0. 

(j) Given any instance of P' with due dates di (i = 1, •.. ,n) and a threshold 

value y', we construct a corresponding instance of P by defining 

di di+y' (i = 1, .•. ,n). P' has a solution with values y' if and only 

if P has a solution with value s O. 

(k) Take di= 0 (i = 1, ••• ,n) in P. 

(1) Given any instance of P' and an integer y', 0 s y' s n'p*, we construct 

a corresponding instance ·of P by defining 

n" (n'-l)y', 

n n'+n", 

y ny'+!n"(n"+l), 

and adding n" jobs Jn'+j (j 1, ... , n") to P' with 

pn'+j,1 = l, 
J. <JI . (i 1, ... ,n'+j-1). 

i n +J 
Now P' has a solution with value s y' if and only if P has a solution 

with value s y: 

y' l:ci n'y' 
n" 

c s ~ s + l:. (y'+j) y; max ]=1 

l:ci 
n" c > y' ~ > y' + lj=l (y'+l+j) y. max D 

Remark. The proof of Theorem 4.l(c) involves processing times equal to O, 

implying that the operations in question require an infinitesimally small 

amount of time. Whenever these reductions are applied, the processing times 

can be transformed into strictly positive integers by sufficiently (but 

polynomially) inflating the problem data. Examples of such constructions can 

be found in the proofs of Theorem 4.4(c,d,e,f). 

In Theorems 4.2 to 4.8 we present a large number of reductions of the form 

P ~ nlml£,AIK by specifying nlml£,AIK and some y such that P has a solution 

if and only if nlml£,AIK has a solution with value K s y. This equivalence 

is proved for some principal reductions; in other cases, it is trivial or 

clear from the analogy to a reduction given previously. The NP-completeness 

of nJml£,AIK then follows from the NP-completeness of Pas established in 

Theorem 2.1. 

First, we deal with the problems on identical machines. Theorem 4.2 

presents two reductions which are simplified versions of the reductions 

given in [Bruno et al. 1974B]. 



26 

THEOREM 4.2. PARTITION is reducible to the following problems: 

(a) nl21Ilc ; 
max 

(b) nl2IIIIw.c .. 1. 1. 

Proof. Define A= I. a .. 
1.ET 1. 

(a) PARTITION~ nl21Ilc : 
max 

n = t; 

pi= ai (i ET); 

y = ~A. 

(b) PARTITION~ nl2IIIIw.C,: 
1. 1. 

n = t; 

p.=w.=a. (ieT); 
1. 1. 1. 2 

y = Il<"<"<t a.a. - ~A . -1.-J - 1. J 
Suppose that {Jili ES} is assigned to M1 and {Jili e T-S} to M2 ; let 

c = I a - ~A. Since pi. = w. for all i, the value of Iw.C. is not 
iES i 1. 1. 1. 

influenced by the ordering of the jobs on the machines and only depends 

Ml 

Mz 

on the choice of S [Conway et al. 1967]: 

Iw.c. = K (S). 
1. 1. 

It is easily seen (cf. Figure 4.1) that 

K(S) K(T) - (I. s a.)(I. T s a.) 1.E 1. 1.E - 1. 

Il<'< "<t a.a. - (~A+c) (~A-c) 
-1.-J- 1. J 

2 
y+c , 

and it follows that PARTITION has a solution if and only if this 

nJ2IIIIw.C. problem has a solution with value~ y. 
1. 1. 

s T-S s 
Ml 

T-S 
Mz 

value K{T) value K(S) 

D 

Figure 4.1 

Next, we investigate the complexity of the nl2JIIK problem for some irregu

lar choices of K. The criteria in question have not been mentioned in Sec

tion 4.1 and, accordingly, the results presented in Theorem 4.3 have not 

been included in Tables 4.1 and 4.3. 

We will only consider active schedules, i.e. schedules where we cannot 

decrease the starting time of any operation without increasing the starting 

time of at least one other one. 



27 

THEOREM 4.3. PARTITION is reducible to the following problems: 

(a) nl21Ill/C ; 
max 

(b) nl21Ill:c.•c : 
1. max 

(cl nl21Ill:c./c . 
i max 

Proof. Define A= l· a., T = t(t+1)A+A, a 
1.ET 1. 

l · (t+l-i) (2iA+a.). 
1.ET 1. 

(a) PARTITION cc nl 21II1/C :. 
max 

(b) 

n = t+l; 

a. (i E T); 
1. 

pn A; 

y = 2/3A. 

In any active schedule, Jn is the last job on some machine, and Cmax 

en ~ 3A/2 = 1/y. PARTITION has a solution if and only if this bound 

can be attained. 

PARTITION cc nJ2IIIIc.·c : 
i max 

n = 2t; 

pi = iA+ai, Pt+i 

y = ~GT. 

iA (i E T); 

A schedule which minimizes Ici is obtained by sequencing Ji and Jt+i 

in the i-th position on both machines [Conway et al. 1967] and has a 

value Ic. =a. If PARTITION has a solution, then there exists such a 
1. 

schedule with C = !L~ 1 p, iT. If PARTITION has no solution, then max i= i 

we have for any schedule that C > iT. 
max 

(c) PARTITION cc nl2IIIIc./c : 
i max 

n = 2t+l; 

iA (i E T); 

pn T; 

y = 1 + 2a/3T. 

Cf. reductions 4.3(a,b). 

Remarks. 

ad (a). It follows that the problem of finding the worst active nl21Ilc 
max 

schedule is NP-complete. 

ad (b).Taking y = ~T, we can use the same construction to show that the 

nl2II,min{Ic.}lc problem (i.e., minimizing C over all schedules 
i max max 

minimizing Ic. on two identical machines) is NP-complete (cf. [Bruno 
1. 

et al. 1974A]). 

D 

ad (c).The criterion L:c./C corresponds to the average number of jobs in 
i max 

the shop. 



28 

Most of our results on different machines involve the KNAPSACK problem, as 

demonstrated by Theorem 4.4. 

THEOREM 4.4. KNAPSACK is reducible to the following problems: 

(a) nl2IG,n.s3lc ; 
J. max 

Cbl nl3IG,n.s2lc ; 
J. max 

(c) nl31Flc ; max 
(d) nl2IF,r.~olc ; 

J. max 
Cel nl2IFIL / max 
(f) nl2IF,treelc ; max 
(g) nl1lr.~OIL ; 

J. max 
(h) nl1I llw.U.; 

J. J. 

(i) nl1lllwiTi; 

(j) nl1lcisdillwici. 

Proof. Define A= l· Ta .• We may assume that 0 < b <A. 
J.€ J. 

Ca) KNAPSACK~ nl2IG,n.s3lc : 
J. max 

Ml 

M2 
t 
0 

n = t+l; 

v. = (Ml) I Pu = 
J. 

a. (i 
J. 

€ T); 

v = (M2,M1 ,M2) I Pn1 = b, Pn2 = 1, Pn3 = A-b; n 
y = A+l. 

If KNAPSACK has a solution, then there exists a schedule with value 

Cmax = y, as illustrated in Figure 4.2. If KNAPSACK has no solution, 

then li.::S ai - b = c ~ 0 for each S c T, and we have for a processing 

order ({Jili .:: S}, Jn' {Jiji .:: T-S}) on M1 that 

c > O • cmax ~ li.::S Pil + Pn2 + Pn3 A+c+l > y; 

c < O • Cmax ~ Pnl + Pn2 + li.::T-S Pil A-c+l > y. 

It follows that KNAPSACK has a solution if and only if this 

nl2IG,n.s3lc problem has a solution with values y. 
J. max 

s n T-S -n n 

t f l 
b b+l A+l 

Figure 4.2 



(b) 

(cl 

KNAPSACK~ nj3jG,n.~2jc : 
i max 

n = t+2; 

v. (M1,M3), pil = pi2 J_ 

v 
n-1 (Ml ,M2) , pn-1,1 

v (M2,M3), pnl n 
y = 2A. 

29 

= a. (i E T); 
J_ 

b, pn-1,2 2(A-b); 

2b, pn2 A-b; 

If KNAPSACK has a solution, then there exists a schedule with value 

Cmax = y, as illustrated in Figure 4.3. If KNAPSACK has no solution, 

then liES ai - b = c ~ 0 for each S c T, and we have for a processing 

order ( { J. I i E 
J_ 

s}, J 
n-1' tJ. Ii E T-S}) on M1 that 

J_ 

c > 0 => c :?: liES pil + pn-1,1 + pn-1,2 = 2A+c > y, max 

c :?: minn:. s pil + pn-1,1 + l ,pn1} + pn2 + max 1-E 
c < 0 => 

= 2A+l > y, 

which completes the equivalence proof. 

s 

n 

t 
b 

n-1 

s 

KNAPSACK~ nl31Flc : max 
n = t+l; 

pil l, pi2 

pnl tb, pn2 

y = t(A+1)+1. 

t 
2b 

T-S 

n-1 
·:·:::::·:·:·:-:::::·:::·:·:·:·:·:·:·:·:·:::::::::::::::::::-:::::::::::::::::::::::::::::::::::::::J 

n T-S 

t 
A+b 

(i E T); 

t(A-b); 

r 
2A 

IiET-S pi2 

If KNAPSACK has a solution, then there exists a schedule with value 

Cmax = y, as illustrated in Figure 4.4. If KNAPSACK has no solution, 

then LiES ai - b = c ~ 0 for each S c T, and we have for a processing 

order ({J. ji Es}, J , {J. ji E T-S}) that 
i n i 

c > 0 => C > I p + p + p t(A+c)+l :?: y; max ?iES i1 n2 n3 

t(A-c)+l :?: y. 



30 

Ml 

M2 

M3 

( d) 

( e) 

(f) 

(g) 

s n T-S 

s n T-S -s n T-S 

1 t t 1 t 
0 ISI tb+ISI tb+ISl+l tA+ISl+l t(A+l)+l 

KNAPSACK cc nl2IF,r.~olc : 
J. max 

n = t+l; 

ri = O, pil tai, pi2 

rn = tb' Pnl 1, pn2 
y = t(A+l). 

Cf. reduction 4.4(c). 

KNAPSACK cc nl2IFIL : 
max 

n = t+l; 

pil = 1 , pi2 tai, d. 

pnl = tb, pn2 1, d 

y = 0. 

Cf. reduction 4.4(c). 

KNAPSACK cc nl2IF,treelc : 
max 

n = t+2; 

pil tai, pi2 

J. 

n 

= 
= 

Pn-1,1 1 I Pn-1,2 tb; 

(i E 

t(A-b); 

t (A+l) 

t (b+l); 

(i € T); 

Pnl 1, pn2 t (A-b); 

Jn-1 < Jn; 

y = t(A+l)+l. 

T); 

(i € T); 

Fi~re 4.4 

We have for a processing order ({J. Ii ER}, J 1 , {J.li Es}, J, 
J. n- J. n 

{Jili E T-S-R}) on Ml that 

R ~ ~ => cmax ~ t + Pn-1,1 + Pn-1,2 + Pnl + Pn2 = t(A+l)+2 > Y· 

The remainder of the equivalence proof is analogous to that of reduction 

4.4(c). 

KNAPSACK cc nlllr.~OIL : 
J. max 

n = t+l; 

r. = 0, pi ai, d. = A+l (i E T) ; 
J. J. 

r = b, pn 1 I d = b+l; n n 
y = 0. 

Cf. reduction 4.4(a) and Figure 4.5. 



s n T-S 
Ml I 1111111111111 I 

T i f r 
0 b b+l A+l 

Figure 4.5 

(h) KNAPSACK cc n I 1 11 I w. U. : 
l l 

n = t; 

pi = wi a.' d, b (i E T); l l 
y = A-b. 

Cf. [Karp 1972B] and Figure 4.6. 

s T-S 

IFig=e 

Ml 
f r i 
0 b A 

4.6 

(i) KNAPSACK cc nlllliw.T.: 
l l 

n = t+l; 

pi= wi ai, di= 0 (i ET); 

pn = 1, wn = 2, dn = b+l; 

y = ll<'<'<t a.a. +A - b. -1-J- l J 
Cf. Figure 4.5. We have for a processing order ({J. Ii E S}, J , 

2 n 

31 

{J. Ii E T-S}) that I. 8 a. - b = L . Since p. = w. and d. = 0 for all l lE l n l l l 

(j) 

i ET, the value of l· T w.T. is not influenced by the ordering of s lE l l 
and T-S (cf. the proof of Theorem 4.2(b)), and we have 

IwiTi liET aici + 2Tn 

ll<'<'<t a.a. + L1.ET-S a. + 2 max{O,L} -1-J- 2 J 2 n 

= yt[Lnf :2'. y. 

The equivalence follows immediately. 

KNAPSACK cc nl1lc.sd.IIw.c.: l 1. l l 
n = t+l; 

pi = wi ai, di = A+1 (i E T); 

pn = 1, wn = 0, dn = b+l; 

y = ll<'<'<t a.a. +A - b. -1-J- l J 
Cf. reduction 4.4(i) and Figure 4.5. 

This completes the proof of Theorem 4.4. D 



32 

THEOREM 4.5. 3-PARTITION is reducible to nlilr.~olic .. 
l. l. 

Proof. A reduction 3-PARTITION ~ nl1lr.~olic. can be obtained by adapting 
l. l. 

(a) the transformation of KNAPSACK to nl1lr.~o!Ic., given in [Rinnooy Kan 
l. l. 

1976] (this transformation is polynomial-bounded only with respect to 

a special type of encoding whereby subsets of identical jobs are repre

sented by a number indi.cating their cardinality and a single copy of 

the data; it is not clear, however, whether sequencing problems encoded 

in this way still belong to NP); 
(b) the reduction 3-PARTITION ~ nl2IFILC., given in [Garey et al. 1976A]. 

l. 

Both procedures can be carried out in a straightforward way and lead to 

essentially the same construction. D 

The results for single-machine scheduling subject to precedence constraints 

are collected in Theorems 4.6 and 4.7. In these reductions, the jobs will 

not be numbered from 1 up to n. They correspond to the vertices and edges 

of an undirected graph G = (V,E); therefore, there will be vertex jobs Ji 

J (h) (. ) d d . b (h) ( (. . ) ) or i i E V an e ge JO s J(i,j) or J(i,j) i,J EE • 

THEOREM 4.6. CLIQUE is reducible to the following problems: 

(a) nl11prec,p.=11Iu.; 
l. l. 

(b) nl 1 lprec,p.=1 ll:T .. 
l. l. 

Proof. Let V = {1, ... ,v}. Define e 

(a) CLIQUE cr nlllprec,p.=llLU.: 
l. l. 

n = v+e; 

d. 
l. 

d(. ') l., J 

v+e (i E V); 

k+t ( (i,j) E E); 

I El, t 

J, < J(. ') 
l. l.,J 

(i E V, (i,j) EE); 

y = t'. 

~k (k-1) I k I 

Cf. [Garey & Johnson 1976] and Figure 4.7(a). 

v-k, t' e-L 



33 

0 
0 

k 
clique 
vertices 

k 
k 

l 
c 1 ique 
edges 

k' l' 
remaining remaining 
vertices edges 

k+l 
k+lv 

t 
v+l 
v+J!..v 

t 
v+e 
v+ev 

(a) 
(b) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Figure 4.7 

n = v+ev; 

d, 
l. 

= v+tv 

(h) 
d(. ') = v+ev 

l. I J 
(v) 

(h = 1, ... ,v-1), d(. ·i 
l., J 

(i E V); 

k+tv ((i,j) EE); 

< J(l) < J(2) 
Ji (i,j) (i,j) 

(v) 
< ••• < J(i,j) (i E V, (i,j) E E) ;' 

y = t'k'+~t'(t'+l)v. 
(h) It follows from our choice of due dates that T(. ") = 0 for h = 1, ... , 
l. ,] 

v-1, (i,j) EE in every feasible active schedule. Hence, we can assume 
. { (1) (v) } . the edge jobs in a set J( .. ) 1 ••• ,J(. ·i to be scheduled consecutive-

1., J l., J 
ly and we may replace such a chain by one composite edge job J(. ·i 

l_, J 
with p ( . . l = v and d ( . . l l.,J l.,J k+tv, for each (i,j) E E. 

Consider any processing order in which Jh is the first late ver-

tex job. It is easily seen that Sh > v+tv, and therefore Jh is preceded 

directly by an edge job J(. ·i. Interchanging J(. ·i and Jh will decrease l.,J l.,J 
IT., and repeated improvements of this kind will eventually lead to a l. 

schedule in which all vertex jobs are on time. Thus, we have for any 

schedule that 

~T1, ~ ~~· (k'+iv) = y. l li=l 

If CLIQUE has a solution, then this bound can be attained, as illus

trated in Figure 4.7(b). If CLIQUE has no solution, then at least £'+1 

edge jobs are late and we have 

IT. ~ l+y > y. l. D 

With respect to Theorem 4.7, the suggestion to start from the LINEAR ARRANGE

MENT problem is due to E.L. Lawler; his reductions to slightly more restricted 

nl1lprecliw.C. problems are given in [Lawler 1976C]. l. l. 



34 

THEOREM 4.7. LINEAR ARRANGEMENT is reducible to the following problems: 

(a) nlllprecllc.; 1. 
(b) nlllprec,pi=lllwici. 

Proof. Let V = {1, ... ,v}. Define e = IEI, u. = i{(i,jllei,j) E E}i, i.e. the 1. 
degree of i. We may assume that e > maxi{ui}. 

(a) LINEAR ARRANGEMENT a: n J 1 I prec I le.: 
1. 

n = ve; 
(1) 

pi 
ehJ 

1, pi 

eh) 
Pei,j) = 0 

O (h 2, ... ,e-ui) 

eh 1,2) 

ei E VJ; 

((i,j) EE); 

J(l) < J(2) < ... 
i 1. 

< Jee-ui) (1) (2) 
i < J (i,j) < J ei,j) (i E V, (i,j) EE); 

y = ~vev+l)e+k. 

Through our choice of processing times we may assume the vertex jobs 
ell (e-u·) in a set {J. , ... ,J. 1 } and the edge 1. 1. 

. ell e2) 
jobs in a set {Je. ')'J) .. )} 1. I J 1. I J 

to be scheduled consecutively. Replacing these chains by composite ver-

tex jobs Ji and composite edge jobs J(i,j), we obtain the following 

equivalent nlllprecllw.c. problem: 1. 1. 
n = v+e; 

pi= 1, wi = e-ui 

p(. ') = 0, we. ') 1.,J 1.,J 

Ji< J(i,j) 
y = !vev+l)e+k. 

ei E V); 

2 e ei, j) E E) ; 

(i E V, ei,j) EE); 

Consider a permutation TI of V, indicating that Ji ei E V) is scheduled 

in position rr(i) among the vertex jobs. We may assume that each J(. ') 
1. I J 

e(i,j) EE) is inserted directly after the last one of its corresponding 

vertex jobs Ji and Jj. Thus we have for this schedule that 

C, = rrei), 
1. 

c(i,j) = maxfrreiJ,rr(j)}, 

and its value is given by 

l. ee-u.)rr(i) +le· ') 2 max{TI(i),rr(j)} 1.EV 1. 1. 1 ] EE 

el, v rr(i) +le· ') Ee2 maxh(i),rr(j)}-rreiJ-rrejJ) 1.E 1. 1 ] E 

~v(v+l)e +le· ') Elrr(i)-11(j) I. 
1.' J E 

It follows that LINEAR ARRANGEMENT has a solution if and only if there 

is a schedule with value $ y. 



35 

(b) LINEAR ARRANGEMENT cr nflfprec,p,=lflw,C.: l l l 
n = vt+e; 

(1) 
W, 

l 

(t-1) 
W. 

l 

(t) 
0, wi e-ui (i E V); 

where 

w(i,j) =2 

J~l) < J~2) {t) l l < ... < Ji < J (i,j) 
y !v(v+l)et+t(k+l); 

2 t = (v+3)e . 

((i,j) EE). 

(i E V, (i,j) EE); 

1 ' h h ' { (1) (t)} Rep acing t e c ains Ji , ... ,Ji by composite Ji's, we obtain an 

equivalent n[l[prec[lw.c. problem: 
l l 

n = v+e; 

pi = t, wi = e-ui 

p(. ') = 1, w(. ') l,J l,J 

Ji< J(i,j) 
y = !v(v+l)et+t(k+l). 

2 

(i E V) ; 

((i,j) EE); 

(i E V, (i,j) EE); 

Note that this is an inflated version of the n[l[prec[lw.C. problem 
l l 

under (a). Suppose that Ji occupies position rr(i) among the vertex 

jobs. It is easily seen that we may again restrict ourselves to sched-

ules in which the last vertex job preceding J(. ') is either J. or J .. l,J l J 
For such a schedule we have that 

trrei) $ ci $ trr(i)+e, 

t I rr < i l -rr < j l I s I c. -c . I s t I rr < i l -rr < j l I +e, 
l J 

max{c.,c.} < c(. ') < max{c.,c.}+e, l J l,J l J 

and hence 

tlrr(i)-rr(j) I < 2c( .. )-c.-c. < 
l,J l J 

tlrrei)-rr(j) l+3e. 

If l (. . ) EI TI (i)-TI ( j) I s k, then we 
1 1 ] E have 

lW.C. 
l l 

el. V C. +le· ') E(2C( .. )-C.-C,) lE l 1 1 ] E l,J l J 

< el. v<trr(i)+e) +le· ') <tlrr(i)-rr(j) l+3e) lE 1 1 ] EE 

!v(v+l)et + ev+3)e2 + tlc· ') lrr(i)-rrejJ I s y. l,J EE 

If le· ') Elrr(i)-rr(j) I > k, then we have 
1 1 ] E 

lwici eliEV ci + l(i,j)EE(2C(i,j)-ci-cj) 

> el trr{i) +le· ') E tlrr{i)-rr(j) I iEV l,J E 

!v<v+l)et + tlc· ') Elrr(i)-rr(j) I ? y. 
1 1 J E 

This proves the equivalence of both problems. D 



36 

The NP-completeness proofs for the problems with a no wait assumption are 

based on the well-known relation between these problems and the TSP which 

has been introduced in Section 3.3. 

Given an nJmJF,no waitJK problem, we define c .. to be the minimum length 
l.J 

of the time interval between Si and Sj if Jj is scheduled directly after Ji. 

If we define 

(4 .1) 

it is easily proved (see Section 14.5.2) that 

cij = maxk{Pik-Pj,k-1}. (4.2) 

Finding a schedule that minimizes Cmax is now equivalent to solving the TSP 

with V = {O, ••• ,n} and weights cij defined by (4.2) and by c0h = O, chO = Phm 

for h '/- 0. 

THEOREM 4.8. DIRECTED HAMILTONIAN PATH is reducible to the following problems: 

(a) 

(b) 

nJmJF,no waitJc ; max 
nJmJF,no waitJic .• 

l. 

Proof. 

(a) DIRECTED HAMILTONIAN PATH ~ nJmJF,no waitJc • 
max 

Given G' = (V',A'), we define 

n = IV' I, 
m n(n-1)+2. 

All jobs have the same machine order (M1 ,M2 , ••• ,Mm-l'Mm). To each pair 

of jobs (J.,J.) (i,j = 1, .•• ,n, i '/- j) there corresponds one machine 
l. J 

~ = MK (i,j) (k = 2, •.• ,m-1), such that for no Jh some MK (i,h) directly 

follows an MK(h,j)" Such an ordering of the pairs (i,j) can easily be 

constructed. Due to this property of the ordering, partial sums of the 

processing times can be defined unambiguously by 

kµ+>. if k K (h,j) and (h,j) € A'' 

kµ+>.+1 if k K(h,j) and (h,j) I. A', 

phk kµ->. if k+1 K(i,h) and (i,h) € A'' 
kµ->.-1 if k+l K(i,h) and (i,h) I. A', 

kµ otherwise, 

for k = 1, .•• ,m, h = 1, •.• ,n, where 

>. ~ 1' 
µ ~ 2A+3. 



(b) 

37 

The processing times are given by (cf. (4.1)) 

phl phl I 

phk phk-Ph,k-1 (k= 2 , ... ,m). 

Through the choice of µ, these processing times are all strictly posi

tive integers. 

we can now compute the c . . 1 as defined by (4.2). Through the choice 
1] 

of A, it is immediate that Pik-Pj,k-l is maximal fork= K(i,j). Hence, 

if (i,j) E A', 

if (i,j) f. A'. 

Since Pim mµ for all Ji, it now follows that G has a hamiltonian path 

if and only if this n[m[F,no wait[c problem has a solution with value max 

C s (n-1) (µ+2A)+mµ. 
max 

DIRECTED HAMILTONIAN PATH cr n[m[F,no wait[Ic .. 
1 

G' has a hamiltonian path if and only if the n[m[F,no wait[Ic. problem, 
1 

constructed as in (a) , has a solution with value 

Ic. s ~n(n-1) (µ+21.)+nmµ. 
1 

D 

Let us finally point out some consequences of the use of a unary encoding with 

respect to the binary NP-complete problems, appearing in Theorems 4.2,4-8. 

The n[2JIJc and nl2II[Lw.c. problems, dealt with in Theorem 4.2, can max 1 1 

be solved in unary polynomial-bounded time by straightforward dynamic pro-

gramming techniques. 

A similar situation exists for the nil[ [Iw.U. problem from Theorem 4.4(h), 
1 1 

which can be solved by an O(nlp.) algorithm [Lawler & Moore 1969]. For most 
1 

other problems discussed in Theorem 4.4, however, one can easily prove unary 

NP-completeness by converting the KNAPSACK reduction to a 3-PARTITION reduc

tion. The following adaptation of reduction 4.4(i) may serve as a typical 

example (cf. the slightly different construction given in [Lawler 1975B]). 

3-PARTITION cr nl1I IIwiTi: 

n = 4t-1; 

Pi wi ai, di= 0 (i ET); 

pi 1, wi = 2, di 

y = l1<"<"<3t a.a. -1-J- 1 J 

(i-3t) (b+l) 

+ h<t-l)b. 

Furthermore, reductions of 3-PARTITION 

found in [Garey et al. 1976A]. 

(i 3t+1, ... ,4t-1); 



38 

With respect to Theorem 4.5, the situation is different. In the reduc

tions of 3-PARI'ITION to nJ2JFJLci and nJ1Jri~oJici, the resulting numbers 

of jobs are polynomials in both t and b. The (unary) NP-completeness proofs 

therefore depend essentially on the unary NP-completeness of 3-PAI:a'ITION and 

no truly polynomial-bounded transformation of KNAPSACK to these problems is 

known. 

The reductions presented in Theorems 4.6-8 clearly prove unary NP-com

pleteness for the problems in question. 

4.3. Remarks 

The results presented in Section 4.2 offer a valuable insight into the loca

tion of the borderline between "easy" and "hard" machine scheduling problems. 

Computational experience with many problems proved to be NP-complete confirms 

the impression that a polynomial-bounded algorithm for one and thus for all 

of them is highly unlikely to exist. As indicated in Chapter 2, NP-complete

ness thus functions as a formal justification to use enumerative methods of 

solution such as branch-and-bound. 

Many classical machine scheduling problems have now been shown to be 

efficiently solvable or NP-complete. ·some notable exceptions are indicated 

by question marks in Table 4.1. These open problems are briefly discussed 

below. 

The most notorious one is the nJ1J JIT. problem. Extensive investigations 
J. 

have failed to uncover either a polynomial-bounded algorithm or a reduction 

proving its NP-completeness. The existence of an 0(n4Ipi) algorithm [Lawler 

1975B] implies that the problem is definitely not unary NP-complete. However, 

we conjecture that it is binary NP-complete and that an enumerative approach 

is unavoidable (see [Fisher 1974] and Chapter 11). This would indicate a major 

difference between the LTi and LUi problems, as demonstrated by Table 4.1. 

With respect to the nJlJprecJiw.C, problem, the exact location of the 
J. J. 

borderline has been determined (see Table 4.2 Note (1) and Theorem 4.7); 

with respect to other criteria of the Lf. type the situation is less clear 
J. 

and especially the status of the nJ1Jtree,p.=1Jiw.T. and nJ1Jtree,p.=lJLw.U, 
J. J. J. J. J. J. 

problems needs investigation. 

A conjecture with respect to the nl3JF,no waitJc and nJ2JF,no waitJic. max i 

problems is not obvious; both problems may well be efficiently solvable. Stim-

ulating prizes have been put up to promote research in this direction (see 



39 

[Lenstra et al. 1975]). 

The question of the complexity of the nl3II,prec,p.=llc problem has 
i max 

been raised already in [Ullman 1975]. 

Finally, let us stress again that the complexity measure provided by 

the NP-completeness concept does not capture certain intuitive variations 

in complexity within the class of NP-complete problems. For instance, in 

Chapters 12 and 13 we will report on the successful incorporation of an 

nlllr.~OIL algorithm in lower bound computations for the nlm!Plc and 
i max max 

nlmlGlc problems; note, however, that these problems are all NP-complete 
max 

and thus equivalent up to a polynomial-bounded reduction. In order to for-

malize these differences, a further investigation of the consequences of 

allowing a unary encoding seems an interesting research topic. 





PaJLt II. Erwmvz.a:ttve. me.:thodo 





43 

5. RECURSIVE IMPLEMENTATION 

The complexity results presented in Part I indicate that for many sequencing 

problems a good algorithm is highly unlikely to be found. It appears that 

with respect to these problems we have to settle for some form of enumera

tion of the solution space whereby the feasible solutions are identified 

and an optimal one is obtained, For all but the smallest problems the num

ber of feasible solutions is so large that the use of a computer for the 

actual computations is unavoidable. Thus, the computational performance of 

any enumerative method not only depends on algorithmic details such as 

those presented in Part III but also on the computer implementation. This 

latter topic forms the subject of Part II. 

More specifically, the following chapters will be devoted to a discus

sion of a recursive approach to the implementation of enumerative methods. 

We hope to demonstrate that such an approach leads to procedures that are 

elegant, easy to understand, easily programmed and easily proved. While 

these positive aspects will probably be recognized by most programmers, a 

familiar argument against recursive procedures suggests that none the less 

they require inordinate running times. Thus, ironically, many recursive 

approaches advocated in the literature.are implemented after complicated 

manipulations in an iterative fashion·[Barth 1968; Bitner et al. 1976; 

Gries 1975]! We will demonstrate on a simple example that with respect to 

efficiency a recursive implementation need certainly not be inferior to an 

iterative one; this remains true even if we consider a measure of efficien

cy that is computer and compiler independent. 

The example referred to above is closely related to many sequencing 

problems and involves the generation of all permutations of a finite set. 

In Chapter 6 we discuss various types of recursive permutation generators 

and present some results concerning their efficiency relative to iterative 

generators. 

Since feasible solutions of many sequencing problems are characterized 

by permutations, generators of permutations can be used in a straightfor

ward way to solve such problems by explicit enumeration of all feasible 

solutions. We give some examples in Chapter 7, but it should be clear that 

this approach will solve only relatively small problems. 

However, the advantages of a recursive approach carry through to forms 

of implicit enumeration as well. We illustrate this in Chapter 8 by pre

senting general frameworks for a popular type of implicit enumeration meth

od known as branch-and-bound, in which again recursion plays a crucial role. 



44 

6. AN EXAMPLE: GENERATION OF PERMUTATIONS 

6.1. Introduction 

Methods for generating combinatorial configurations can be classified as 

either lexicographic or minimum-change methods. The first mentioned type of 

method generates the configurations in a "dictionary" order, whereas the 

second type produces a sequence in which successive configurations differ 

as little as possible. The relative advantages of minimum-change methods 

have been discussed in the literature: the entire sequence is generated ef

ficiently, each configuration being derived from its predecessor by a sim

ple change; moreover, a minimum-change generator "may permit the value of 

the current arrangement to be obtained by a small correction to the immedi

ate previous value" [Ord-Smith 1971]. 

The very "cleanliness" [Lehmer 1964] of these combinatorial methods 

allows a proper demonstration of what we believe to be the advantages of a 

recursive approach to the implementation of enumerative methods. 

The algorithms which are to be presented in this chapter are defined 

as ALGOL 60 procedures. They contain no labels and generate the entire se

quence of configurations after one call. Each time a new configuration has 

been obtained, a call of a procedure "problem" is made. Parameters of this 

procedure are the configuration and, for minimum-change algorithms, the 

positions in which it differs from its predecessor. The actual procedure 

corresponding to "problem" has to be defined by the user to handle each 

configuration in the desired way. 

Previously published iterative generators usually have been organized 

in such a way that each call generates one configuration from its predeces

sor only. This necessitates continual recomputation of the information that 

is needed to find the next configuration in the sequence. A mechanism for 

performing this kind of computations efficiently has been described in 

[Ehrlich 1973A]. We do feel, however, that much of the clarity of essential

ly recursive algorithms is lost within any iterative implementation. 

For generators of various types of combinatorial configurations such 

as subsets, combinations and permutations, we refer to [Wells 1971; Ehrlich 

1973A; Even 1973; Lenstra 1973; Lenstra & Rinnooy Kan 1975B; Reingold et al. 

1976]. Permutation generators have been surveyed in [Lehmer 1964; Ord-Smith 

1970; Ord-Smith 1971]. 

In Section 6.2 two minimum-change generators of permutations are pre-



45 

sented. The first one produces a sequence in which each permutation is de

rived from its predecessor by transposing two adjacent elements. Its basic 

principles have been discovered by Steinhaus [Gardner 1974] and were redis

covered independently in [Trotter 1962] and [Johnson1963]. Trotter's itera

tive algorithm was for a number of years the fastest permutation generator. 

A more efficient iterative implementation has been presented in [Ehrlich 

1973B]; see also [Gries 1975; Dershowitz 1975]. The second minimum-change 

generator proceeds by transposing two (not necessarily adjacent) elements. 

Its transposition rules have been developed by Wells [Wells 1961] and sim

plified by Boothroyd in recursive [Boothroyd 1965] and iterative [Boothroyd 

1967A; Boothroyd 1967B] implementations. In [Ord-Smith 1971], the latter 

algorithm was found to be the fastest of six generators, including those of 

[Trotter 1962] and [Boothroyd 1967A]. 

The lexicographic generator of permutations in Section 6.3 produces 

all permutations TI of the set {1, ... ,n} in such a way that TI(n)TI(n-1) .•. TI(l) 

is an increasing n-ary number. A slight modification leads to a more effi

cient pseudolexicographic generator. 

In Section 6.4 our recursive generators are compared to previously 

published procedures. 

6.2. Minimum-change generators 

Given a set {TI*(l), ..• ,TI*(n)}, we define an undirected graph G(n) whose 

vertices are given by the n! n-permutations of this set; (TI,p) is an edge 

of G(n) iff TI and p differ only in two neighbouring components. A hamilton

ian path in G(n) corresponds to a sequence of permutations in which each 

permutation is derived from its predecessor by transposing two adjacent 

elements. 

According to Steinhaus's method, we may construct such a sequence in

ductively as follows. For n = 1, it consists of the 1-permutation. Let the 

sequence of (n-1)-permutations be given. Placing TI*(n) at the right of the 

first (n-1)-permutation, we obtain the first n-permutation. The n-1 next 

* ones are obtained by successively interchanging TI (n) with its left-hand 

* neighbour. After that, TI (n) is found at the left of the first (n-1)-permu-

tation. Replacing this (n-1)-permutation by its successor in the (n-1)-se

quence gives us the (n+l)-st n-permutation, and the n-1 next ones arise 

from successive transpositions of TI*(n) with its right-hand neighbour. Then 



46 

* TI (n) is found at the right of the second (n-1)-permutation, which is now 

replaced by the third one, and the process starts all over again. It is 

easily seen that the first and last permutations in the sequence are given by 

* * * * * * * * TI (TI (1), ... ,TI (n)) and p =(TI (2),TI (1),TI (3), ... ,TI (n)) respectively; 

they are adjacent and thus we have found a hamiltonian circuit in G(n). 

Steinhaus's method can be described more formally by a sequence S(2) 

* of n!-1 transpositions. Denoting the transposition of TI (i) and the h-th 

element in the current permutation of {TI*(l), ... ,TI*(i-1)} by i+-+h, we de

fine the transposition sequence S(i) recursively by 

S(i) = S(i+l) ,i+-+h1 ,S(i+1) ,i+-+h2 , ... ,S(i+1) ,i+-+hi-l'S(i+l) 

where 

* 

= (_k 

if TI (i) moves rightwards, 

hk * leftwards, if 1T (i) moves 

and S(n+l) is empty. Figure 6.1 and Table 6. 1 (mcl) show the graphs G(n) for 

n ,;; 4 and the sequence for n = 4. Note that G(4) is the edge graph of a 

solid truncated octahedron, replicas of which fill entire 3-space. Similar 

TABLE 6.1. PERMUTATION SEQUENCES 

mcl mc2 lex plex 

1 1234 1234 4321 4321 
2 1243 2134 3421 3421 
3 1423 2314 4231 4231 
4 4123 3214 2431 2431 
5 4132 3124 3241 2341 
6 1432 1324 2341 3241 
7 1342 1342 4312 4312 
8 1324 3142 3412 3412 
9 3124 3412 4132 4132 

10 3142 4312 1432 1432 
11 3412 4132 3142 1342 
12 4312 1432 1342 3142 
13 4321 1423 4213 4123 
14 3421 4123 2413 1423 
15 3241 4213 4123 4213 
16 3214 2413 1423 2413 
17 2314 2143 2143 2143 
18 2341 1243 1243 1243 
19 2431 3241 3214 1324 
20 4231 2341 2314 3124 
21 4213 2431 3124 1234 
22 2413 4231 1324 2134 
23 2143 4321 2134 2314 
24 2134 3421 1234 3214 



47 

statements of this remarkable property hold for all n [Lenstra Jr. 1973B]. 

The following minimum-change generator of permutations produces the 

sequence described above. 

G(1) G(2) 

1 12 21 • • • 

3241 

Figure 6. 1 Graphs G (n) . 



48 

procedure pm mcl (problem,n,pi); value n,pi; 

integer n; array pi1 procedure problem; 

begin real pin; integer k,q; boolean array rrl :n]; 

procedure rite(i); value i; integer i; 

ifi<nthen 

begin boolean rj; real pii; integer ti,j; 

pii:= pi[q]; j:= i+l; 

q:= q-1; 

rj:= r[j]; if rj then rite(j) else left(j); 

for ti:= 2 step 1 until i do 

begin k:= q+ti; 

end; 

pi[k-1]:= pi[k]; pi[k]:= pii; problem(pi,k-1); 

rj:= lrj; if rj then rite(j) else left(j) 

r[ j]: = lrj 

end else 

begin q:= O; 

for k:= 2 step 1 until n do 

begin pi[k-1]:= pi[k]; pi[k]:= pin; problem(pi,k-1) 

end 

procedure left(i); value i; integer i; 

if i < n then 

begin boolean rj; real pii; integer ti,j; 

pii:= pi[q+i]; j:= i+l; 

rj:= r[j]; if rj ~ rite(j) else left(j); 

for ti:= i-1 step -1 until 1 do 

begin k:= q+ti; 

end; 

pi[k+l]:= pi[k]; pi[k]:= pii; problem(pi,k); 

rj:= lrj; if rj then rite(j) else left(j) 

r[j]:= lrj; 

q:= q+l 

end else 

begin for k:= n-1 step -1 until 1 do 

begin pi[k+l]:= pi[k]; pi[k]:= pin; problem(pi,k) 

end; 

q:= l 

pin:= piln]; q:= O; fork:= 2 step 1 until n do rfkl:= false; 

problem(pi,O); if n > 1 then left(2) 

end pm mcl. 



49 

* A call "pm mcl (problem ,n, 1T ) " has the following effect: 

* if n 1, then a call "problem('TT ,O)" is made; else 

* * * * * * a hamiltonian path in G(n) from 1T top =('TT (2),1T (1),1T (3), ... ,1T (n)) 

is traversed; 

* * in vertex 1T a call "problem(TI ,0)" is made; 

in each vertex TI, reached by transposition of the elements in positions 

k and k+l, a call "problem(TI,k)" is made. 

The latter two assertions are clear from inspection. To prove the first one, 

we note that a call "rite(i)" ("left(il"l performs a series of i-1 transpo-

* sitions of 1T (i) with its right (left) neighbour, where the predicate r(i) 

indicates which direction has to be chosen. By induction on i we can show 

that a call "rite(i)" or "left(i)" generates all permutations in which the 

* * current order of 1T (1) , ... ,'TT (i-1) is preserved, only transposing adjacent 

elements, whereas just before such a call and immediately after its execu

tion, 1T and q have the following property: 

the indices (i, ... ,n) can be rearranged as (j 1 , ... ,j ,j . , ... ,j ) 
q q+i n 

with j 1 > ••• > j , j . < ••• < j , such that TI(k) = TI*(jk) for q q+i n 
k = 1, ... ,q,q+i, ... ,n. 

The first assertion now corresponds to the effect of a call "left(2)", which 

indeed activates the whole process. This completes the proof. 

Using the integer q to determine the place of the transpositions is 

easier and more efficient than keeping track of the inverse permutation for 

that purpose, as is done in [Ehrlich 1973A; Ehrlich 1973B]. 

In order to add to the transparency and efficiency of the procedure, 

two simple constructions have been applied. First, we have distinguished 

between the leftward and rightward moves of the elements by means of two 

procedures calling themselves and one another. Further, the deepest level 

of the recursion has been written out explicitly. This device clearly re

duces the number of checks to see if the bottom of the recursion has been 

reached already; it enables us also to deal separately with the n-th ele

ment, which is involved in (n-1)/n of the transpositions. 

Let G' (n) be an extension of G(n) on the same vertex set; (1T,p) is an edge 

of G' (n) iff 1T and p differ in only two components. A hamiltonian path in 

G' (n) corresponds to a sequence of permutations in which each permutation 

is derived from its predecessor by transposing two elements. 

Such a path is defined by a sequence of n!-1 transpositions. Denoting 

the transposition of the elements in positions k and i by k+-+£, we may de-



50 

fine the transposition sequence corresponding to the Wells-Boothroyd method 

by 

T(n) T(n-1) ,mn_ 1+-+n,T(n-1),mn_2+-+n, ... ,T(n-1) ,m1+-+n,T(n-1) 

where 

if n is even and~ < n-2, 

if n is odd or k 2 n-2; 

note that T(l) is empty. Table 6.l(mc2) shows the resulting sequence for 

n = 4. 

The above description leads directly to our second minimum-change gen

erator of permutations. 

procedure pm mc2 (problem,n,pi); ~ n,pi; 

integer n; array pi; procedure problem; 

begin real pik,pim; 

procedure even(n}; value n; integer n; 

if n > 2 then 

begin real pin; integer k,m; 

m:= n-1; pin:= pim; 

odd(m); 

for k:= m, m, m-2 step -1 until 1 do 

begin pi[n]:= pik:= pi[k]; pi[kl:= pin; pin:= pik; 

problem(pi,k,n); odd(m) 

end 

end else 

begin pi[2]:= pifl]; pifll:= pim; problem(pi,1,2) 

procedure odd(n); value n; integer n; 

begin real pin; integer k,m; 

m:= n-1; pin:= pi[n]; pim:= pifm]; 

even(m); 

for k:= m step -1 until 1 do 

begin pi[n]:= pik:= pi[m]; pi[m]:= pim:= pin; pin:= pik; 

problem(pi,m,n); even(m) 

end 

problem(pi,0,0); if n > 1 then 

begin if (n72)x2 = n then begin pim:= pHn]; even(n) end else odd(n) 

end 

end pm mc2. 



51 

* A call "pm mc2 (problem,n,11 )"has the following effect: 

if n * 1, then a call "problem(11 ,0,0)" is·made; else 

* * a hamiltonian path in G'(n) from 11 top is traversed, where 

* p 

* * * * * * 
{

(11 (2), ... ,11 (n-3),11 (n-l),11 (n),11 (n-2),11 O)) 

(11* (1), ••• ,11* (n-2) ,11* (n) ,11* (n-1)) 

* * in vertex 11 a call "problem(11 ,0,0)" is made; 

if n is even, 

if n is odd; 

in each vertex 11, reached by transposition of the elements in positions 

k and 2, a call "problem(11,k,2)" is made. 

The inductive proof is left to the reader. Again, we have distinguished be

tween two types of changes, viz. n even and n odd, and the case n = 2 has 

been handled separately. 

We make one final remark on minimum-change sequences of permutations. Given 

an undirected graph H(n) on n vertices, we define an undirected graph GH(n) 

on the set of n-permutations; (11,p) is an edge of GH(n) iff 11 can be ob

tained from p by a single transposition of the elements in positions k and 

2, where (k,2) is an edge of H(n). One [Lenstra Jr. 1973B] can prove that 

GH(n) contains a hamiltonian circuit iff H(n) contains a spanning tree. The 

"only if"-part is obvious; the "if"-part follows by an inductive argument. 

The transposition graph H(n) of Steinhaus's method is a tree with edge set 

{(k,k+l) lk = 1,, .• ,n-1}; it is properly contained in the transposition 

graph of the Wells-Boothroyd method. 

6.3. Lexicographic generators 

A lexicographic generator of permutations can be constructed even more sim

ply. At each level of the recursion exactly one component of 11 is defined 

and at the bottom a call "problem(11)" is made. 



52 

procedure pm lex (problem,n); value n; 

integer n; procedure problem; 

begin integer h; integer array pi[ 1 : n]; 

procedure node(n); value n; integer n; 

if n = 1 then problem(pi) else 

begin integer k,m,.pin; 

end; 

m:= n-1; pin:= pi[n]; 

node (m); 

for k:= m step -1 until 1 do 

begin pi[n]:= h:= pi[kl; pi[k]:= pin; pin:= h; 

node(m) 

end; 

fork:= n step -1 until 2 do pi[k]:= pi[k-1]; pi[l]:= pin 

for h:= n step -1 until 

node(n) 

do pi[h]:= n+l-h; 

end pm lex. 

A call "pm lex (problem,n)" has the following effect: 

all permutations TI of {1, ... ,n} are generated in such a way that 

TI(n)TI(n-1) ... TI(l) is an increasing n-ary number; 

for each permutation TI a call "problem(TI)" is made. 

To prove the first assertion, let us assume that, given a permutation TI, a 

call "node(£)" is made. It is easily checked that just before the ,Q, calls 

"node(,Q,-1)" on the next level of the recursion, the then current permutation 

p is given by 

p (p (1) t • • o tP (k-1) tP (k) 1P (k+l) t • o o tP (,Q,-1) ,p (,Q,) tP (£+1) t • • • tP (n)) 

(TI (1) / • • • 1 TI (k-1) 1TI(k+1) 1 TI (k+2) 1 • • • , TI ( ,Q,) 1 TI (k) 1 TI ( ,Q,+ 1) 1 • • • , TI (n) ) 1 

fork= 2,2-1, ... ,1. By induction on ,Q, it can be shown that a call "node(,Q,)" 

generates all permutations TI in which TI(2+1), ... ,TI(n) remain unchanged, in 

increasing order, whereas just before such a call and immediately after its 

execution, TI satisfies TI(l) > TI(2) > ••• > TI(2). The observation that the 

effect of a call "node(n)" corresponds to the first assertion completes the 

proof. 



53 

Our pseudolexicographic generator of permutations is derived from the lexi

cographic one; their difference can be characterized by the replacement of 

the above equalities by 

p (p(l), ••• ,p(k-l),p(k),p(k+l), ••• ,p(Q,-1),p(Q,),p{Hl), .•• ,p(n)) 

( 1f ( 1 ) 1 ••• I 1f ( k-1 ) I 1f ( Q,) 1 1f ( k+ 1 ) I • • • I 1f ( Q,-1 ) I 1f ( k) I 1f ( Q,+ 1 ) f • • • I 1f ( n) ) • 

This simplification of the transposition rules leads to a gain in efficiency 

at the expense of losing the lexicographic ordering. 

procedure pm plex (problem,n); value n; 

integer n; procedure problem; 

integer h; integer array pi[l:n]; 

J2EOCedure node(n); value n; integer n; 

if n = 1 then problem(pi) else 

integer k,m,pik,pin; 

m:= n-1; pin:= pi[n]; 

node {m); 

for k:= m step -1 until 1 do 

begin pi[n]:= pik:= pi[k]; pi[k]:= pin; 

node(m); 

pi[k]: = pik 

end; 

pi[n] := pin 

for h:= n step -1 until 

node(n) 

do pi[h] := n+l-h; 

end pm plex. 

Again, the recursive approach makes the construction and analysis of this 

generator almost trivial. Table 6.l(lex,plex) shows the lexicographic and 

pseudolexicographic sequences for n = 4. 

6.4. Computational experience 

The algorithms presented in Sections 6.2 and 6.3 have been compared to ALGOL 

60 versions of several minimum-change generators, mentioned in Section 6.1. 



54 

Table 6.2 shows the result of the comparison. The running times have 

been measured during one uninterrupted run on the Electrologica X8 computer 

of the Mathematisch Centrum; a procedure with an empty body was chosen for 

the actual parameter "problem". Our minimum-change algorithms turn out to 

be faster than corresponding previously published procedures. Although the 

time differences are not spectacular, a recursive approach should certainly 

not be rejected on grounds of computational inefficiency a priori. 

Results like the above ones unavoidably remain computer and compiler 

dependent. It is of interest to note in this context that some experiments 

using PASCAL on the Control Data Cyber 73-28 of the SARA Computing Centre 

in Amsterdam instead of ALGOL 60 on the Electrologica X8 showed a nineteen

fold increase in speed for a recursive subset generator and a fourteen-fold 

increase for an iterative one. On the other hand, the running times of the 

iterative generators may be reduced by up to twenty percent by a different 

transformation of these generators into PASCAL procedures producing all 

configurations at one call. 

In order to develop a computer independent measure of efficiency, let 

us define 

a = lim number of array subscript evaluations 
n-+m number of generated configurations 

array access being a dominant factor in this type of ALGOL 60 procedure 

[Ord-Smith 1971]. For recursive algorithms, evaluation of a is accomplished 

by the solution of recursive expressions. For the iterative algorithms ex

cept Ehrlich's ones, only lower bounds can be given; it is not clear if 

finite limits exist. 

TABLE 6.2. COMPARISON OF VARIOUS PERMUTATION GENERATORS 

generator restrictions time 

pm mcl n 2 1 42.9 

[Trotter 1962; Ord-Smith 1971] n 2 2 91.3 

[Ehrlich 1973B] n 2 3 I n '1 4 58.1 

pm mc2 n 2 1 54.3 

[Boothroyd 1965] n 2 1 103.3 

[Boothroyd 1967B; Ord-Smith 1971] n 2 5 83.6 

pm lex n 2 1 92.4 

pm plex n 2 1 82.5 

time : CPU seconds on an Electrologica X8 for n 8. 

a : average array access (in the limit). 

a 

3 

27 

3 

3.35 

6.72 

>3 .16 

6.44 

5.44 



55 

7. EXPLICIT ENUMERATION 

Generators of combinatorial configurations can be used to solve many combi

natorial optimization problems through enumeration and evaluation of all 

feasible solutions. Needless to say, only very small problems can be solved 

by such a brute force approach, even if the minimum-change property of the 

generators is exploited. However, they can be applied to validate more com

plicated solution methods by checking their results on small problems. 

As an illustration we will show how generators of permutations can be 

used to solve sequencing problems P of the form 

min {f (11)} 11 p 

where 11 runs over all permutations of {1, ... ,n}. Several problems of this 

type have been introduced in Chapter 3. We recall that the criterion function 

of the quadratic assignment problem (QAP) is given by 

f (11) = l~ l~ c . . d .. QAP i=l J=l 11(2)11(J) lJ 

where (c .. ) and (d .. ) are nonnegative nxn-matrices. If we take d .. = 1 for lJ lJ lJ 
i > j, d .. = 0 otherwise, we obtain the acyclic subgraph problem (ASP). lJ 
Analogously, the choice d 12 = d 23 = = d 1 = d 1 = 1, d .. = 0 otherwise, 

n- ,n n lJ 
leads to the travelling salesman problem (TSP), that is called symmetric if 

c. . c . . for all i, j. 
lJ Jl 

If we define the reflection of 11 by 11 = (11(n) , ... ,11(1)), it is obvious 

that fASP(TI) = li~j cij - fASP(11) for the ASP and fTSP(TI) = fTSP(11) for the 

symmetric TSP. It follows that for these two problems it suffices to enumer

ate a reflection-free set of permutations. Further, since 

fTSP((11(k+l) , ... ,11(n) ,11(1) , ... ,11(k))) = fTSP(11) for any k, we may fix one 

of the components of 11 when solving a TSP. The (n-1)!/2 solutions to a sym

metric TSP are the hamiltonian circuits in a complete undirected graph; they 

are called rosary permutations [Harada 1971; Read 1972; Roy 1973]. 

In the first minimum-change. generator of permutations, discussed in 

* * Section 6.2, the elements 11 (1) and 11 (2) are transposed half-way. If a 

permutation 11 is generated before this transposition, then its reflection 

11 occurs thereafter. Hence the first n!/2 permutations form a reflection

free set (cf. [Roy 1973]). Generally, the n!/m! permutations preserving the 

* * original order of 11 (l), ... ,11 (m) can be generated by a simple adaptation 

of "pm mcl": 



56 

procedure pp mcl (problem,n,m,pi); ... , 

begin 

if n > m then left(m+l) 

end pp mcl. 

The above sequencing problems may now be solved by calls 

pm mcl (qap,n,rr) 

pp mcl (asp ,n, 2, rr) 

pp mcl (tsp,n-1,if symmetric then 2 else 1,rr) 

where "qap", "asp" and "tsp" are procedures which compute the changes occur

ring in the criterion functions of these problems. 

A more sophisticated application of generators of combinatorial configura

tions arises in the context of a suboptimal approach to combinatorial opti

mization problems. Several heuristic methods involve the systematic explora

tion of a neighbourhood of some given solution, starting anew from improved 

solutions until no further improvement is found and a local optimum has been 

obtained [Reiter & Sherman 1965]. This exploration can sometimes be described 

in terms of checking all combinations of m out of n elements, and a minimum

change generator, such as the procedure "cb me" from [Lenstra & Rinnooy Kan 

1975B], might then profitably be applied. 

For instance, a solution rr to the ASP is called relatively optimal 

[Lenstra Jr. 1973A] if 

l~=j+l 
,k-1 
L.i=j 

(crr(j)rr(i)-crr(i)rr(j)) 

(crr(i)rr(k)-crr(k)rr(i)) 

for j,k 1, .... ,n. 

Such a solution can be constructed by systematic generation of all pairs 

(j,k) with 1 $ j < k $ n. This can be done very efficiently with a special 

version of "cb me" for m = 2; in the phase of verification, when no further 

improvement is found, this method checks each element of the matrix (cij) 

exactly once. 

A solution to the symmetric TSP is called m-optimal if it is impossible 

to obtain a better solution by replacing m of its edges by a different set 

of m edges [Lin 1965]. A 3-optimal method based on "cb me" proved to be more 

efficient than the algorithm presented in [Lin 1965]. 

Analogously, one can obtain an efficient suboptimal algorithm for the 

QAP. The approach is applicable also to other types of difficult sequencing 

problems, e.g. in the area of machine scheduling. 



57 

8. IMPLICIT ENUMERATION 

The permutation generators presented in Section 6.3 can easily be adapted 

to be used for implicit enumeration purposes by adding a lower bound calcu

lation on all possible completions of a partial configuration. In the early 

fifties, Lehmer used such an approach to solve the linear assignment problem 

(!) [Tompkins 1956]; similarly, the enumeration scheme of "pm plex" has been 

applied to the travelling salesman problem [Barth 1968]. The fact that our 

recursive generators coupled with a simple lower bound may well outperform 

sophisticated implicit enumeration algorithms that suffer from a large com

putational overhead (see Section 11.3) underlines the applicability of re

cursive programming to implicit enumeration methods of the branch-and-bound 

type in general. 

In this chapter we present a quasi-ALGOL description of branch-and-bound 

procedures, indicating in which case a recursive approach might be suitable. 

For a formal characterization of branch-and-bound procedures, we refer to 

the axiomatic framework in [Mitten 1970] and its correction in [Rinnooy Kan 

1974]; see also [Agin 1966; Balas 1968] for analyses of the case in which the 

set of feasible solutions is finite and [Kohler & Steiglitz 1974] for the 

case of permutation problems. Some standard examples of branch-and-bound 

methods have been surveyed in [Lawler & Wood 1966]. 

Suppose then, that a set X of feasible solutions and a criterion function 

* f: X + JR. are given, and define the set X of optimal solutions by 

x* = {x*lx* EX, f(x*) = min{f(x) Ix EX}}. 

A branch-and-bound procedure to find an element of x* can be characterized 

as follows. 

* Throughout the execution of the procedure, the best solution x found 

* so far provides an upper bound f (x ) on the value of the optimal solution. 

A branching rule b associates to Y c X a family b(Y) of subsets such 

* * that UY'Eb(Y) Y'nX YnX ; the subsets Y' are the descendants of the 

parent subset Y. This rule only has to be defined on a class X with 

X E X and b(Y) c X for any Y E X. 
A bounding rule lb: X ~ JR. provides a lower bound lb(Y) ~ f(x) for all 

x E Y E X. Elimination of Y occurs if lb(Y) ~ f (x*). 

A predicate~: X + {true,false} indicates if during the examination of 

Y (e.g. during the calculation of lb(Y)) a feasible solution x(Y) is 



58 

* generated which has to be evaluated. Improvement of x occurs if 

* f(x ) > f(x(Y)). 

A search strategy chooses a subset from the collection of generated 

subsets which have so far neither been eliminated nor led to branching. 

It turns out that, of the three search disciplines that have been used most 

frequently, two are suitable for recursive implementation. To illustrate 

this point, we shall now present three general procedures: 

"bb jumptrack" implements a breadth-first search where a subset with 

minimal lower bound is selected for examination; this type of tree 

search is known as frontier search; 

"bb backtrackl" implements a depth-first search where the descendants 

of a parent subset are examined in an arbitrary order; this type is 

known as newest active node search; 

"bb backtrack2" implements a depth-first search where the descendants 

are chosen in order of nondecreasing lower bounds; this type is some

times called restricted flooding. 

During the tree search, the parameters na and nb count the numbers of subsets 

that are eliminated and that lead to branching respectively. We define the 

* * operation ":ze:" in the statement "s:ze: S" to mean that s:= s with z(s ) = 

min{z(s)js ES}; hence, ":e:" indicates an arbitrary choice. 

procedure bb jumptrack (X,f,x*,b,lb,s,na,nb); 

begin local Y,Y' ,B c X, Y,Y' E X, LB: X-+ lR; 

na:= nb:= O; Y:= 0; 
LB(X):= lb(X); if s(X) then x*:fe: {x*,x(X)}; 

* if LB(X) ~ f(x ) then na:= else Y:= {X}; 

while Y '/ 0 do 

end 

Y:LBE Y; 

nb:= nb+l; B:= b(Y); Y:= CY-{Y})uB; 

while B f 0 do 

Y':E B; B:= B-{Y'}; 

LB(Y') := lb(Y'); if s(Y') then x*:fe: {x*,x(Y')} 

end; 

Y':= {y•Jy• E Y, LB(Y') ~ f(x*)}; 

na:= na+IY' I< Y:= Y-Y' 

end bb jumptrack. 



procedure bb backtrack! (X,f,x*,b,lb,s,na,nb); 

local Y' E X; 

procedure node(Y); 

begin local 8 c X, LB E JR; 

LB:= lb(Y); if UY) then x*:fE {x*,x(Y)}; 

* if LB 2 f(x ) then na:= na+l else 

begin nb:= nb+l; 8:= b(Y); 

while 8 'I 0 do 

end 

na:= nb:= O; 

node(X) 

end bb backtrackl. 

end 

Y':E 8; 8:= 8-{Y'}; 

* if LB < f (x ) then node (Y'} 

procedure bb backtrack2 (X,f,x*,b,lb,s,na,nb); 

local 8 c X, Y' E X, LB: X -+ JR; 

procedure node(Y); 

begin local Y c X; 

nb:= nb+l; Y:= 8:= b(Y); 

while B 'I 0 do 

y I : E 8; B: = 8-{ y' } ; 

LB(Y'):= lb(Y'); if s(Y') then x*:fE {x*,x(Y')} 

end; 

while Y 'I 0 do 

end 

na:= nb:= O; 

Y':LBE Y; Y:= Y-{Y'}; 

* if LB(Y') 2 f(x } then na:= na+l else node(Y'} 

LB(X}:= lb(X); if s(X) then x*:fE {x*,x(X)}; 

* if LB(X) 2 f (x ) then na:= else node(X) 

end bb backtrack2. 

59 



60 

Anyone familiar with branch-and-bound will have noticed that the above 

descriptions provide only a minimal algorithmic framework. Numerous problem

dependent variations may be included in an actual procedure. For instance, 

elimination of Y may be possible already during the calculation of lb(Y) or 

may be due to elimination criteria based on dominance rules or feasibility 

considerations. In a minor (and in our experience quite successful) variation 

on "bb backtrack!", the descendants Y' of a parent subset Y are not chosen 

arbitrarily, but according to some heuristic, e.g. preliminary lower bounds 

lb'(Y') with lb(Y) ~ lb'(Y') ~ lb(Y'). Many similar variations are possible 

but do not affect the basic mechanisms outlined above. 

From our experience with the implementation of branch-and-bound algo

rithms we may conclude that again the recursive approach produces transparent 

procedures, in which much administrative work is taken over by the compiler 

without a noticeable negative effect on overall efficiency. 

The actual solution of a problem by branch-and-bound can be conveniently 

represented by means of a search tree consisting initially of a single node 

representing X. If a subset Y leads to branching, lb(Y) I nodes are created 

representing the subsets Y' E b(Y); edges are created between the parent 

node and its descendants. Nodes can be eliminated by lower bounds or elimi

nation criteria. 

A main characteristic of many branch-and-bound procedures is the unpre

dictability of their computational behaviour. Their worst-case performance 

may be close to explicit enumeration, and no satisfying analyses of average

case behaviour have been presented up to now (see, however, [Karp 1975B]). 

Extensive computational experience seems to be the only way to test their 

quality. Branch-and-bound should not be used before one feels sure that the 

complexity of the problem is such that no better approach can be found (cf. 

Chapter 2). However, this is often the case, and methods of branch-and-bound 

are widely used for solving combinatorial optimization problems. This will 

be amply illustrated in Part III. 



P cvz;t II I . S e.q ue.nclng by -lmp.Ucl.t e.nume.JLa;t:,to YL 





63 

9. THE TRAVELLING SALESMAN PROBLEM 

9.1. Introduction 

The travelling salesman problem (TSP) has been formulated in Section 3.3 as 

follows. 

Given a directed graph G = (V,A) with a weight c .. for each arc (i,j) E 
lJ 

A, find a hamiltonian circuit on G of minimum total weight. 

We shall distinguish between the asymmetric TSP (ATSP) and the symmetric 

TSP (STSP) where c.. c .. for all (i,j) EA. In the latter case we may con-
lJ Jl 

sider the pair of arcs {(i,j),(j,i)} as one edge (i,j) and view the STSP as 

the problem of finding a minimum-weight hamiltonian circuit on an undirected 

graph G = (V ,E) . 

It has been pointed out in Section 3.3 that G may be assumed to be a 

complete graph with V = {1, ... ,n}, A= vxv and c .. 
ll 

for all i E V. 

In order to characterize feasible solutions, we note that a hamiltonian 

circuit or tour corresponds to a subgraph on V for which three requirements 

are satisfied: 

(1) every vertex has indegree one; 

(2) every vertex has outdegree one; 

(3) the subgraph is connected. 

This leads to the following formulation of the TSP as a 0-1 linear programming 

problem where xij = 1 (xij = 0) denotes inclusion (exclusion) of arc (i,j): 

min{L(i,j)EA cijxij I 
l x (j E V) (9.1) iEV ij 

\ X (i E V) (9.2) ljEV ij 

l x < lsl-1 (Sc v, sf. 0, sf. V) (9.3a) (i,j) ESXS ij -

X. • E { 0, 1} ( ( i 1 j) E A) } . 
lJ 

Conditions (9.1),(9.2),(9.3a) correspond to requirements (1) ,(2),(3) respec

tively. Alternatively, (9.3a) may be replaced by 

(S c V, S f. 0, Sf. V) (9.3b) 

The subtour elimination constraints (9.3a) are equivalent to the loop con

straints (9.3b) since 

l(i,j)ESXS xij x .. 
lJ 

x. ,• 
lJ 



64 

The 0-1 linear program contains many redundant constraints. For instance, it 
is sufficient to impose (9.3a) only for S c V with 1 ~ lsl ~ [~n], and it is 
easily seen that (9.1) and (9.3b) imply (9.2). For linear characterizations 
of the travelling salesman polytope we refer to [Gr6tschel & Padberg 1974; 

Gr6tschel & Padberg 1975]. Nevertheless, the above formulation will be a use
ful tool in describing the various solution approaches that will be reviewed 
in this chapter. 

Both the ATSP and the STSP have been proved to be NP-complete in Chapter 3; 
the only satisfactory solution methods are based on implicit enumeration. The 
branch-and-bound algorithms developed so far have in common that each node in 
the search tree is characterized by a set R of required arcs and a set F of 
forbidden arcs; the subset of solutions corresponding to this node contains 
all tours including R and excluding F. We note as a general principle that 

we may add to F each arc that together with one or more arcs from R could 
create a nonhamiltonian cycle or subtour. Each (i,j) E F can be removed from 
the problem, which may be realized by putting c .. := oo. 

l.J 
In the case of the ATSP 

we can view each vertex pair {i,j} with (i,j) E R as a single vertex with 

ch{i,j} = chi and c{i,j}k = cjk" In the case of the STSP, this would destroy 
the symmetry of the problem and the set R has to be taken explicitly into 
account. 

In Section 9.2.1 we shall consider three bounding rules developed for 

the ATSP and their refinements for the STSP. In Section 9.2.2 we investigate 
various branching rules that determine the successive augmentations of R and 
F. In Section 9.2.3 we describe some algorithms that were actually implemented. 
Our computational experience with these methods is reported in Section 9.3. 
Concluding remarks are contained in Section 9.4. 

9.2. Algorithms 

9.2.1. Lower bounds 

Generally, lower bounds will be obtained by relaxing one of the three require
ments (1), (2) and (3) characterizing a feasible tour. 

We may view each of these conditions as imposing a matroid structure on 
A. An optimal tour corresponds to a maximum-weight independent subset in the 
intersection of three matroids, where (1) and (2) define partition matroids 



65 

and (3) defines a graphic matroid. By ignoring one of the matroids, we obtain 

a two-matroid problem which, in general, can be solved by a polynomial-bounded 

algorrthm [Lawler 1976B]. 

(a) the matching approach 

Let us first relax the constraints by ignoring the connectivity requirement 

(3). We thus obtain a weighted bipartite matching or linear assignment prob

lem: 

min{L (. . ) A 
l 1 J E 

c .. x .. 
lJ lJ 

x .. 
lJ 

x .. 
lJ 

x .. ~ 0 
lJ 

(j E V), 

(i E V), 

( (i,j) E A)}. 

This problem can be solved in 0(n3 ) steps [Lawler 1976B]. Originally, the 

assignment bound has been proposed in [Eastman 1958]; it can be sLrengthened 

by a device due to [Christofides 1972]. For the ATSP, the bound has been used 

quite successfully in [Shapiro 1966; Bellmore & Malone 1971; Thompson 1975]. 

For the STSP, it has been less successful; the subgraphs corresponding to 

the optimal assignment can be expected to contain a large number of 2-cycles 

(i,j ,i). 

However, viewing the STSP as the TSP on an undirected graph G = (V,E) we 

can combine the degree requirements (1) and (2) into the single constraint 

that every vertex should have degree two. We define 

vd ={iii E v, !Rn{(i,j) ljEV}I = d} ford= 0,1,2 

as the set of vertices incident to exactly d required arcs. Removing the sets 

v 2 and R from the problem and relaxing (3), we now obtain a weighted b-match

ing problem: 

X,, E {0,1} 
lJ 

((i,j) EE)}, (9.4) 

4 where bi= 2-d for i E Vd (d 0,1). This problem can be solved in 0(n) steps 

[Edmonds 1975]. Satisfactory results have been reported in [Bellmore & Malone 

1971]. 

We note in passing that Edmonds' b-matching algorithm employs constraints 

of the form 

x .. E {O}uN 
lJ 

( (i,j) E E). 

It is a well-known secret [Edmonds 1974] that we can enforce x .. E {0,1} by 
lJ 



66 

b. b. 

inclusion 

i cij J 

0-7--8 
b. b. 

exclusion ~ 
original problem new problem 

Figure 9.1 

replacing each edge e = (i,j) by three edges (i,i) ,(i ,j) ,(j ,j) and de-e e e e 
fining b. = bj = 1, c .. =c . . 1 c .. =c .. = 0. Each variable in the new ie e l.l.e l.J l.eJe JeJ 
problem will be assigned a value from {0,1}; the combinations representing 

inclusion and exclusion of e in the original problem are shown in Figure 9.1. 

(b) the reduction approach 

A weaker ATSP bound is provided by any lower bound for the linear assignment 

problem and, more specifically, by the value of any feasible solution to the 

dual weighted bipartite matching problem: 

max{LEV u< + l· v. I u.+v. s c .. ((i,j) EA)}. ~ ~ JEV J l. J l.J 

In [Little et al. 1963] such a feasible dual solution (u. ,v.) with value lb 
l. J 

is obtained by reduction of (cij) according to algorithm LBl below. 

procedure algorithm LB1 (V,A,n,c,u,v,lb); 

begin local i,j; 

for i:= 1 ton do u. := min{c .. I (i,j) E A}; -- - - l. l.J 
for j:= 1 ton do v.:= min{c .. -u. I (i,j) EA}; -- - - J l.J l. 
lb:= sum{u. Ii E V} + sum{v.lj E v} 

l. J 
end algorithm LB1. 

Similarly, for the STSP we can replace (9.4) by 

0 s xij s 1 ( (i I j r € E) 

and imitate the approach of Little et al. by seeking a feasible solution to 

the dual weighted b-matching problem: 

u. +u. -w. . S c. . ( ( i, j) E E) , 
l. J l.J l.J 

w .. 2 0 
l.J 

((i,j)EE)}, 



67 

where b. = 2-d for i E Vd (d = 0,1). Such a feasible dual solution (u.,w .. ) 
l l lJ 

with value lb can be constructed by algorithm LB2 below (cf. [Liesegang 

1974]). The sets v2 and Rare assumed to be removed from the problem. The 

operation ":E" in the statement "s:E S" has been defined to mean that s 

becomes an arbitrary element selected from the set S (see Chapter 8). 

procedure algorithm LB2 (V0 ,v1 ,E,n,c,u,w,lb); 

begin local o,i,j; 

for i:= ton do u.:= min{if j < i then c .. -u. else c .. l(i,j) EE}; - l - -- lJ J -- lJ 
for i:= 

for i:= 

end; 

ton do for j:= 1 ton do w .. := O; --- - - lJ 
to n do if i E v0 then 

j : E { j I ( i, j) E E, c .. -u. -u . +w. . = 0} ; 
lJ l J lJ 

o:= min{cik-ui-uk+wikl (i,k) E E, k ~ j}; 

U, := U,+o; 
l l 

W .. := W, .+o 
lJ lJ 

lb:= 2 sum{uili E v0 } + sum{uili E v1 } - sum{wijl (i,j) EE} 

end algorithm LB2. 

Let us define 

W . = { j I ( i , j ) E E , c . . -u . -u . +w . . = O} • 
l lJ l J lJ 

The initial assignments to u. and w .. correspond to the reduction 
l lJ 

in algorithm LBl and yield a feasible dual solution (ui,wij) with 

for each i E V. In the case of the STSP, however, we would like to 

of (cij) 
IW. I :2'. -1 

l 

have 

lwil :2'. 2 for each i E v0 . Therefore, for each i E v0 we choose a j E wi and 

determine the subminimum cS = min{cik-ui-uk+wikl (i,k) E E, k ~ j}; if lwil = 1, 

then cS > 0 and increasing ul. and w .. by cS contributes 2cS-cS = cS to the lower 
lJ 

bound while maintaining dual feasibility. 
2 Both algorithm LBl and LB2 operate in 0(n ) steps. 

(c) the spanning tree approach 

If we ignore the degree requirement (2) instead of the connectivity constraint 

(3), the resulting problem is to find a minimum-weight connected subgraph on 

V with indegree one for every vertex. Such a subgraph consists of a spanning 

arborescence, i.e. a directed tree rooted at some vertex r with indegree one 

for every vertex in V-{r}, and one additional arc directed to the root r; it 

contains exactly one (directed) cycle, passing through r. We may arbitrarily 



68 

fix r = 1 and thus obtain an ATSP bound by constructing a minimum-weight 

spanning 1-arborescence, consisting of 

a minimum-weight spanning arborescence on V rooted at vertex 1; 

a minimum-weight arc directed to vertex 1. 

The two-matroid problem of finding an optimal arborescence can be solved by 

the algorithm from [Edmonds 1967; Karp 1972A] in O(JAJlog n) or 0Cn2l steps 

[Tarjan 1975B]. 

Similarly, for the STSP.we may relax the degree requirements (1) and 

(2) and look for a minimum-weight connected subgraph on V containing exactly 

n edges with degree two for vertex 1. Assuming that c .. 
l.J 

-oo for each (i,j) 

E R, we now obtain an STSP bound by constructing a minimum-weight spanning 

1-tree, consisting of 

a minimum-weight spanning tree on V-{1}; 

a minimum-weight pair of edges incident to vertex 1. 

The one-matroid problem of finding an optimal tree can be solved by several 

efficient algorithms of order OCJEllog n) [Kruskal 1956], Ocn2) [Prim 1957; 

Dijkstra 1959] and OCJEllog log n) [Tarjan 1975A]. 

Let {u. Ii E V} be a given set of penalties with l· V u. = 0 and let f* 
l. l.E l. 

denote the optimal solution value for the STSP. Replacing (c .. ) by (c .. +u.+u.) 
l.J l.J l. J 

does not change the weight of any tour but may lead to a different weight w(u) 

of the optimum spanning 1-tree. Thus we have 

f* ~ max {w(u)}. 
u 

An ascent method for obtaining a lower bound lb by calculating or approxi

mating max {w(u)} is given by algorithm LB3 below. We note that 
u 

a call "algorithm SlT (V,E,c,u,d,w)" delivers a spanning 1-tree that is 

of minimum weight w with respect to (c .. +u.+u.) and has degree di. for 
l.J l. J 

vertex i E V; 

if d. = 2 for all i E V the 1-tree is a tour and the STSP has been 
l. 

solved; 

if di < 2 (di > 2) vertex i is "too expensive" ("too cheap") and ui is 

decreased (increased) by t(di-2); 

if no improvement of lb occurs during p succeeding iterations, the pro

cess is terminated. 



procedure algorithm LB3 (V,E,n,c,lb,p,t); 

local u,d,w,q,i; 

lb:= - 00 ; q:= p; 

for i:= 1 ton do ui:= O; 

for q:= q-1 while q 2 0 do 

end 

algorithm S1T (V,E,c,u,d,w); 

if lb < w then- begin lb:= w; q:= p end; 

if sum{ld.-21 Ii E V} = 0 then q:= 0 else 
l --

for i:= 1 ton do u.:= u.+t(d.-2) 
- l l l 

end algorithm LB3. 

69 

This bounding approach has been introduced in [Held & Karp 1970; Christofides 

1970]. For appropriate choices of p and t as well as for alternative penal

izing strategies we refer to [Held & Karp 1971; Helbig Hansen & Krarup 1974; 

Camerini et al. 1974; Christofides 1975; Thompson 1975]. None of these meth

ods does always lead to maxu{w(u)} and, moreover, there may exist a nonremov

able duality gap f*-max {w(u)}. However, excellent results have been obtained 
u 

with this STSP bound, especially within the framework of the subgradient op-

timization approach rHeld et al. 1974] that appears in many other contexts 

as well. 

9.2.2. Enumeration schemes 

Suppose that the current node of the search tree is characterized by a set 

R of required arcs and a set F of forbidden arcs. If calculation of a lower 

bound does not lead to elimination of this node, we have to apply a branching 

rule. Below we shall discuss the branching strategies that have been proposed 

in combination with the respective bounding approaches. 

(a) the matching approach 

If the subgraph corresponding to the optimal assignment is not a tour, it 

consists of at least two disconnected subtours. Let us select the smallest 

of those subtours, consisting of, say, vertex set S = {i 1 , ... ,is} and arc 

set {a1 , ... ,as}. We can "break" this subtour by forbidding one of its arcs 

(cf. (9.3a)) or, alternatively, by requiring one of its vertices to be adja

cent to a vertex not in S (cf. (9.3b)). We will now formulate four branching 



70 

schemes, each of which eliminates the subtour by creating s descendant nodes, 

characterized by sets~ and Fk (k = 1, ••. ,s). 

(A) [Eastman 1958; Shapiro 1966] 

~ = R, 

Fk = Fu{ak}. 

(A') [Bellmore & Malone 1971] 

R = Ru{a.lj = 1, •.• ,k-1}, 
k J . 

Fk = Fu{ak}. 

(B) [Eastman 1959; Bellmore & Malone 1971] 

~ = R, 

Fk = Fu{(ik,i)ji Es}. 

(B') [Garfinkel 1973] 

~ R, 

Fk Fu{(ij,i)jj = 1, •.• ,k-1, i E v-s}u{(ik,illi ES}. 

Strategy (A) is based on constraint (9.3a); (A') is a variation on (A) with 

the additional feature that the subsets of solutions corresponding to the 

descendant nodes are disjoint. Strategy (B) is based on (9.3b); its refine

ment (B') creates mutually exclusive subsets. We note that the latter two 

schemes, unlike the first two, cannot make use of the special structure of 

the STSP. 

The choice of a subtour of minimum cardinality is justified by two ob

servations: 

a relatively narrow search tree will be created; 

imposing (9.3a) ((9.3b)) for S with JsJ = s eliminates [(n-s)!/e+~J 

([(n-s)!/e+~][s!/e+~]) feasible assignments, which is maximal for mini

mals (cf. [Bellmore & Malone 1971]). 

In the case of strategy (A'), the ordering of (a1 , ••• ,as) is of importance. 

The subset of solutions corresponding to (R1 ,F1J = (R,Fu{a1}) is the largest 

one and should have a large lower bound; the (Rs,Fs) problem is the most con

strained one and should preferably contain the optimal tour. Therefore, the 

arcs should be ordered according to increasing likelihood of their presence 

in the optimal tour, for instance, according to nonincreasing assignment 

bounds for the (R,Fk) problem. A recursive search strategy selecting the 

descendants in the order (Rs,Fs), ••• ,(R1 ,F1) seems then most suitable. Simi

lar remarks apply to strategy (B') with respect to the ordering of (i 1 , ••• ,is). 

From computational experience reported in [Bellmore & Malone 1971; Thomp

son 1975] it appears that the "disjoint" enumeration schemes (A') and (B') 

are superior to (A) and (B) respectively. For the ATSP, the proper choice be-



71 

tween (A') and (B') requires further investigation. 

(b) the reduction approach 

The branching approach taken in [Little et al. 1963] can be seen as a varia

tion on strategy (A') outlined above. We determine an arc a 1 whose removal 

leads to a maximum increase in the lower bound and an arc a 2 that forms a 

subtour together with the longest path consisting of a 1 and arcs from R. Two 

descendant nodes are then created with 

Rl R, 

F 1 Fu{a1}; 

R2 Ru{a 1}, 

F2 Fu{a2 }. 

A depth-first search proceeding along the branch corresponding to (R2 ,F2 l 

appears to be appropriate. Furthermore, a large gain in efficiency is ob

tained by choosing the first encountered arc a 1 whose removal bridges the 

gap between the local lower bound and the global upper bound; if such an arc 

exists, the node corresponding to (R1 ,F1 ) will never be chosen [Lenstra 1972]. 

(c) the spanning tree approach 

The enumeration scheme from [Held & Karp 1971] resembles the assignment strat

egy in that we again start from the structure provided by the lower bound cal

culation. Restricting ourselves to the penalties for which the maximal 1-tree 

was obtained, we order its nonrequired edges according to nonincreasing in

creases of the lower bound caused by their addition to F. We then create s 

descendant nodes according to strategy (A'), where sis the smallest index 

for which there exists a vertex i such that R does not satisfy its degree re

quirements but Rs does; the nonrequired edges incident to i can be added to 

Fs. Also in this case it seems appropriate to select the descendant nodes 

"from right to left". Computational experience from [Thompson 1975] suggests 

that Little's variation on the above approach may lead to even better results. 

9.2.3. Implementations 

(i) algorithm LEA 

Algorithm LEA implements the method of [Little et al. 1963] for ATSPs. The 

bounding approach is given by algorithm LBl. The improved branching rule and 

the search strategy have been described in Section 9.2.2(b). 



72 

In the case of the STSP, there exists for every tour an equivalent re

verse tour. Algorithm LEA avoids duplication by a simple modification of the 

branching rule that changes the leftmost nodes of the tree. If such a node 

corresponds to (R,F), we have R = 0, and if a 1 = (i,j) we characterize its 

first descendant by 

Rl 0, 
Fl Fu{(i,j),(j,i)}. 

(ii) algorithm HKO 

Algorithm HKO implements the method of [Held & Karp 1971] for STSPs. The 

bounding approach is given by algorithm LB3; we used the spanning tree algo

rithm from [Dijkstra 1959] and choose p = 20 in the root node, p = 10 else

where, and t = 1. The branching and search strategies have been described in 

Section 9.2.2(c). 

(iii) algorithm HKl 

Algorithm HKl is identical to algorithm HKO, except for the fact that in the 

root node the heuristic method of [Lin 1965] is applied to obtain a good in

itial upper bound. 

9.3. Computational experience 

9.3.1. Test problems 

The approaches sketched in Section 9.2.3 were tested on a set of 25 problems 

which can be divided into four groups. 

(1) hamiltonian symmetric 

Given an undirected graph G = (V,E), we define a hamiltonian STSP by 

( (i,j) E E), 

(otherwise) . 

Clearly, G has a hamiltonian circuit if and only if this STSP has a solution 

with value 0. Four problems of this type were tested: 

the star graph given in Figure 9.2; 

the Konigsberg graph given in Figure 9.3(b), representing Euler's famous 

Konigsberg bridge problem (cf. Figure 9.3(a)) and obtained by a general 



Figure 9.2 Star graph. 

(a) The seven bridges of KOnigsberg. (b) Konigsberg graph; vertex @ is 
adjacent to all vertices e. 

Figure 9.3 

73 

Figure 9.4 Tutte graph. 
~~~~~~~~~~~~~~~~~~~~~~~~~~--' 



74 

(and computationally useless) construction transforming a graph H into 

a graph G such that H has a eulerian path if and only if G has a hamil

tonian circuit; 

the Tutte graph given in Figure 9.4; 

the graph on 64 vertices corresponding to the 64 squares of a chess

board, where i and j are adjacent if and only if they are at a knight's 

move distance. 

(2) euclidean symmetric 

Given 2n coordinates ai,bi, we define a euclidean STSP by 

cij = v'cai-ajJ 2+Cbi-bjJ 2 • 

We obtained six problems of this type by generating 2n integers ai,bi from 

a uniform distribution between 0 and 100. Two problems from [Dantzig et al. 

1954; Held & Karp 1962], based on a road-map of the U.S.A., were also in

cluded. 

(3) random symmetric 

We obtained six problems of this type by generating ~n(n-1) integers c .. = 
1] 

c .. from a uniform distribution between O and 100. The problem from [Croes 
]1 

1958] was also included. 

(4) random asymmetric 

We obtained six problems of this type by generating n(n-1) integers c .. from 
1J 

a uniform distribution between 0 and 100. 

9.3.2. Results 

Algorithms LEA, HKO and HKl were coded in ALGOL 60 and run on the Electro

logica X8 of the Mathematisch Centrum in Amsterdam. The text of the proce

dures can be found in [Lenstra 1972]; Table 9.1 shows the computational re

sults. 

Algorithm LEA is quite successful on hamiltonian STSPs and useless on 

euclidean ones; for algorithms HKO and HKl, the situation is completely re

versed. All methods perform rather well on random problems. For algorithm 

LEA, ATSPs are easier than STSPs, and algorithm HK1 performs slightly better 

then algorithm HKO. 



TABLE 9. 1 . RESULTS 

solution time 
problem type n 

alg.LEA alg.HKO alg.HKl 

hamiltonian symmetric 

star 13 4 >540 >540 

Konigsberg 22 62 - >3400 

Tutte 46 612 - -
knight's tour 64 118 - -

euclidean symmetric 

20 >3600 70 53 

20 >3600 63 57 

20 - 47 58 

[Held & Karp 1962] 25 >3600 122 146 

25 >3600 198 197 

25 - 194 227 

25 - 248 127 

[Dantzig et al. 1954] 42 - 3170 1410 

random symmetric 

[Croes 1958] 20 23 11 27 

20 42 60 73 

20 59 64 76 

20 77 76 89 

25 288 124 132 

25 576 1240 647 

25 92 126 40 

random asymmetric 

20 52 

20 7 

20 52 

30 "86 

30 151 

30 352 

solution time : CPU seconds on an Electrologica X8. 

number of nodes : including eliminated nodes. 

algorithm LEA, HKO, HK1 : see Section 9.2.3. 

75 

number of nodes 

alg.LEA alg.HKO alg.HKl 

55 - -

963 - -
3693 - -

125 - -

- 21 1 

- 26 16 

- 20 20 

- 1 1 

- 41 31 

- 50 50 

- 55 24 

- 221 73 

235 1 1 

473 27 27 

642 26 26 

587 29 29 

2507 33 23 

4695 207 123 

631 37 1 

699 

37 

715 

653 

1117 

2773 



76 

Although our experiments involve problems which are, by current stan

dards, of a relatively small size, some valuable conclusions may be drawn. 

In general, the distinction between the several types of TSPs turns out to be 
very crucial and the choice of an algorithm to solve a particular TSP should 

depend on the type of the problem involved. Not surprisingly, it appears use

ful to obtain a good initial upper bound. 

9.4. Remarks 

Due to its deceptive simplicity and wide applicability, the TSP occupies a 

central position in research on problems of combinatorial optimization. The 

development of optimal TSP algorithms has reached the advanced stage where 

the specific computer implementation has become crucial. This applies to the 

selection of a procedure for computing lower bounds as well as to the branch

ing rule and the type of tree search to be chosen. 

Typical examples of this phenomenon are provided by the improvements of 

Held and Karp's algorithm described in [Helbig Hansen & Krarup 1974] and by 

the computational experiments reported in [Thompson 1975]. From the latter 

paper it appears that ATSP bounds based on linear assignment are generally 

stronger than those based on spanning arborescences, while, on the contrary, 

the b-matching approach to the STSP is completely dominated in efficiency by 

the spanning tree relaxation. Altogether, we feel that a large scale computa

tional comparison of TSP algorithms, emphasizing the various proposed imple

mentation devices, is justified by the present confusion. 

With respect to new algorithmic developments, we note that quite recently 

a promising and powerful bounding approach has been developed by De Leve (see 

[Wesseling 1975]). The investigation of elimination criteria has received lit

tle attention and seems a worth-while research topic. 



77 

10. ONE-MACHINE SCHEDULING I: MINIMIZING MAXIMUM LATENESS 

10.1. Introduction 

The one-machine problem which will be studied in this chapter is the 

njljprec,r.2'.0jL problem. It can be formulated as follows. 
i max 

Each of n jobs J 1 , ... ,Jn has to be processed on a single machine which 

can handle only one job at a time. Job Ji (i = 1, ... ,n) is available 

for processing at its release date ri, requires an uninterrupted pro

cessing time pi and should preferably be completed by its due date di. 

Given precedence constraints define a partial ordering < between the 

jobs; "J. < J." 
1. J 

J. . The sets B. 
1. 1. 

means that J. cannot 
J 

= {jjJ. < J,} and A. 
J 1. 1. 

start before the completion of 

= {jjJ. < J.} indicate the jobs 
1. J 

which are constrained to come before and after Ji respectively. Given 

a feasible processing order of the jobs, we can compute for each Ji 

a starting time s. 2: r. with s. 
1. 1. 1. 

c. = Si+pi with c. s s. for all 
1. 1. J 

want to find a processing order 

L = max . { L . } . 
max i i 

2: Cj for all j E Bi, a completion time 

j E Ai, and a lateness Li= ci-di. We 

that minimizes the maximum lateness 

To stress the symmetry inherent to the problem, it is useful to describe it 

in an alternative way. Let M1 and M3 be non-bottleneck machines of infinite 

capacity and M2 a bottleneck machine of capacity one, and let K be some con

stant with K 2: maxi{di}. Ji (i = 1, ... ,n) has to visit M1 ,M2 ,M3 in that order 

and has to spend 

a head r. on Ml from 0 to r.; 
1. 1. 

a body pi on M2 from s. to C.; 
1. 1. 

a tail qi = K-d. on M3 from c. to L~ = ci+qi. 
1. 1. 1. 

We want to minimize the maximum completion time L~ax 

on M3 . 

max. {L!} 
1. 1. 

L +K 
max 

The problem, now defined by n triples (ri,pi,qi) and <, is clearly 

equivalent to its inverse problem defined by (qi,pi,ri) and<' with Ji <' Jj 

if J. < J.; an optimal schedule for one problem can be reversed to obtain J 1. 

an optimal schedule for the other problem with the same solution value. 

A number of special cases of this problem in which all ri, pi or qi are 

equal can be solved by polynomial-bounded algorithms, as will be indicated 

in Section 10.2.1. Such a good method is unlikely to exist for the case in 

which ri, pi and qi may assume arbitrary values and Ai B. = 0 for all J .. 
1. 1. 



78 

The NP-completeness of this n/llr.~0/L problem has been established in 
i max 

Chapter 4 and justifies an enumerative approach such as branch-and-bound. 

Algorithms of this type have been proposed in [Dessouky & Margenthaler 1972; 

Bratley et al. 1973; Baker & Su 1974; McMahon & Florian 1975]. The first of 

these algorithms is not stated very clearly; the second one is surpassed by 

the fourth one in elegance and efficiency [McMahon & Florian 1975]. The re

maining two algorithms will be described and extended to the general 

nlllprec,r.~OIL case in Sections 10.2.2 and 10.2.3. Extensive computa-
i max 

tional experience is reported in Section 10.3. Some remarks, notably on the 

wide range of potential applications of this problem, are contained in Sec

tion 10.4. 

10.2. Algorithms 

10.2.1. Special cases 

Let us first assume that A.= B. = 0 for all J .. 
]. ]. ]. 

If all ri are equal, an optimal schedule is provided by Jackson's rule 

[Jackson 1955]: L~ax is minimized by ordering the jobs according to nonin

creasing qi. 

If all qi are equal, the problem is similarly solved by ordering the 

jobs according to nondecreasing ri. This result can be interpreted as a 

consequence of the symmetry discussed above. 

If all pi are equal, such a simple solution method is usually not 

available, unless pi= 1 for all Ji. In the latter situation, algorithm JR 

below involving repeated application of Jackson's rule produces an optimal 

schedule [Horn 1974; Baker & Su 1974]. 

procedure algorithm JR (n,r,q,C); 

local S,Q,t,i; 

S:= {1, ... ,n}; t:= O; 

while S ~ 0 do 

begin t:= max{t,min{r. lj 
J 

Q:= {jlj E S, r. ,, 
J 

i:E { j I j E Q, qj 
c ·= t:= t+l 

]. 

end 

end algorithm JR. 

E S}}; 

t}; 

max{qklk E Q}}; S:= s-{i}; 



79 

The proof of this result is straightforward and depends on the fact that no 

job can become available during the processing of another one, so that it 

is never advantageous to postpone processing the selected Ji. This argument 

p* does not divide all ri; e.g., 

2, postponing J 1 is clearly advan

the general problem if we allow 

job splitting (i.e., interrupt_ions in the processing of a job); in this 

does not apply if pi = p* for all J. and 
1. 

if n = p* = 2 I rl = ql = 0, r2 = 1 t q2 = 

tageous. However, algorithm JR does solve 

case we can interpret Ji as pi jobs with heads r. I 
1. 

bodies 1 and tails qi. 

Let us now examine the introduction of precedence constraints in the problems 

discussed so far. As a general principle, note that we may set 

r ·= max{r.,max{r.+p.lj E B.}}, 
i" J. J J J. 

q.:= max{q.,max{p.+q.lj EA.}}, 
J. J. J J J. 

because in every feasible schedules. 2 C. 2 r.+p. for all j E B. and 
J. J J J J. 

Lj 2 Ci+pj+qj for all j E Ai. Hence, if Ji< Jj, we will assume that 

qi 2 p /qj > qj . 

It follows that the case in which all qi are equal is again solved by order

ing the jobs according to nondecreasing ri. Such an ordering will respect 

all precedence constraints in view of the preceding argument. 

If we apply this method to the inverse problem to solve the case in 

which all ri are equal, the resulting algorithm can be interpreted as a 

special case of the general nlllpreclif. algorithm from [Lawler 1973]. 
J. 

Similarly, if pi = 1 for all Ji, algorithm JR will produce a schedule 

respecting all precedence constraints. 

In the case of the general nlllprec,r.20IL' problem, however, the 
J. max 

precedence constraints are not respected automatically. Consider the 

sj1j{J4<J2 },r.20jL 1 example specified by the data in Table 10.1 (cf. 
J. max 

[Lenstra & Rinnooy Kan 1973]); note that r 4+p4 ~ r 2 and q 4 2 p 2+q2 . If the 

precedence constraint J 4 < J 2 is ignored, the unique optimal sj1jr.20IL' 
1 max 

TABLE 10.1. DATA FOR THE EXAMPLE 

i 2 3 4 5 

r. 0 2 3 0 7 
1. 

pi 2 2 2 2 

qi 5 2 6 3 2 



80 

Jl 
I 

J2 
I 

J3 
I 

J4 
I 

JS 
I 

0 1 2 3 4 5 6 7 8 9 10 11 12 Fi~e 10.1 
Schedule for the example. 

schedule is given by (J1 ,J2,J3,J4,J5) with value L~ax = 11 (cf. Figure 10.1). 

Explicit inclusion of this constraint lea.ds to Li:iax = 12. 

10.2.2. The algorithm of Baker and Su 

The branch-and-bound algorithm to be discussed now has been presented in 

[Baker & Su 1974] for the problem without precedence constraints. It will 

be referred to as algorithm BS. 

The enumeration scheme is defined by algorithm AS1 below. Algorithm ASl 

generates all active schedules, i.e. schedules where we cannot decrease the 

starting time of an operation without increasing the starting time of at 

least one other one. 

procedure algorithm AS1 (n,r,p,C); 

begin local i; 

procedure node(S,t); 

if s = ~ then comment an active schedule has been generated else 

begin local Q; 

Q:= {jlj ES, rj < min{max{t,rk}+pklk ES}}; 

while Q -F ~ do 

begin i:E Q; Q:= Q-{i}; 

C.:= max{t,r.}+p.; 
l. l. l. 

node (S-{i} ,c.) 

end 

node({l, ••• ,n},O) 

end algorithm AS1. 

l. 



81 

At the £-th level of the recursion, jobs are scheduled in the £-th position. 

If the first assignment to Q is replaced by Q:= S, all n! schedules are gener

ated. By means of the current assignment, only active schedules are generated; 

if rj ~ max{t,rk}+pk for some j,k E S, Jj is no candidate for the next posi

tion in the partial schedule since it can be preceded by Jk without post

ponement of C j. 

The bounding rule is based on the observation that the value of an op

timal schedule will not increase if we allow job splitting. A lower bound 

on all possible completions of a partial schedule (Jn(l) , ... ,Jn(£)) is pro

duced by the use of algorithm JR to schedule the remaining jobs from en(£) 

onwards while allowing job splitting. If no job splitting occurs, this par

ticular completion is an optimal one, and the value of the complete solution 

is an upper bound on the value of an optimal solution. A partial schedule 

can be eliminated if its lower bound is not smaller than the global upper 

bound. 

The branch-and-bound algorithm is now completely defined if we specify 

a search strategy indicating which partial schedule will be chosen for fur

ther examination. The strategy used in [Baker & Su 1974] selects a partial 

schedule with minimum lower bound. We implemented the recursive scheme of 

algorithm AS1, selecting the unscheduled jobs in the order in which they 

appear in the solution, produced by algorithm JR. Experiments in which these 

descendant nodes were chosen in order of nondecreasing lower bounds showed 

a 50 to 60 per cent increase in solution time. Note that these three strate

gies correspond to the procedures "bb jumptrack", "bb backtrackl" and "bb 

backtrack2" respectively (see Chapter 8) . 

The above algorithm can easily be adjusted to take precedence constraints 

into account. As noted previously, they are automatically respected during 

the lower bound calculation and the only necessary change is a replacement 

of the first assignment to Q by 

Q:= {jJj Es, Bjns = 0, rj < min{max{t,rk}+pkJk E s, Bkns = 0}}. 

Algorithm BS is fairly straightforward and its general principles can be 

extended to other NP-complete sequencing problems with non-equal release 

dates. 



82 

10.2.3. The algorithm of McMahon and Florian . 

A more sophisticated branch-and-bound algorithm for the problem without 

precedence constraints has been described in [McMahon & Florian 1975]. Al

gorithm MF is based on algorithm LS below, a heuristic method suggested in 

[Schrage 1971] for generating a good solution. 

procedure algorithm LS (n,r,p,q,C); 

begin local S,Q,t,i; 

.S:= {1, ••• ,n}; t:= O; 

while S -F ~ do 

end 

t:= max{t,min{r.lj Es}}; 
J 

Q:= {jlj E S, rj s t}; 

i:E {jlj E Q, pj max{pklk E Q, qk = max{qili E Q}}}; 

S:= S-{i}; 

end algorithm LS. 

The schedule (Jn(l), ••• ,Jn(n)) produced by algorithm LS can be decomposed 

into blocks. Jn(h) is the last job in a block if Cn(h) s rn(i) for 

i = h+l, ••• ,n, i.e., if no job is delayed when Jn(h) is completed. A set 

of jobs {Jn(g)' ••• ,Jn(h)} forms a block if 

(a) g = 1 or Jn(g-l) is the last job in a block, and 

(b) Jn(i) is not the last job in a block, for i = g, ••• ,h-1, and 

(c) Jn(h) is the last job in a block. 

It follows that Jn(g) is the first job in a block if Sn(g) = rn(g) s rn(i) 

for i = g+l, ••• ,n. 

With respect to Ji in ~lock {Jn( ), •.• ,Jn(h)}, we define 

Pi {jlsn(g) s sj s Si}, qi= min{qjjj E Pi} and P~ = {jlj E Pi, qj = <}. 
We claim that lower bounds on the value of an optimal schedule are given by 

LB' 
i 

LB~' 
]. 

ri+pi+qi, 

* 
ri+qi 

* ci+qi+l 

if 

if 

i € * Pi, 

i * i P .• 
]. 

LBi requires no comment, but the justification of LBi is actually rather 

subtle. Defining c .. as the minimum completion time of J. if this job would 
Jl. J 

be scheduled as the last one of {Jklk E Pi}, we note that cji ~ cii ci for 

all j E Pi. A valid lower bound is now given by 



83 

min{C .. +q.lj E P,}. 
J 1. J 1. 

* is obvious that for all j In the case that i E pi' it E P. 
1. 

* ( 10 .1) cji+qj 2 cii+qi Ci+qi. 

* i * Suppose next that i i P,. If j p •I we have 
1. 1. 

(10. 2) 

Consider finally the case that ii P: and j E P:. If we move Jj to the last 

position of {Jklk E 

unless a Jk with rk 

pi}, 

:::: s. 
J 

a gap of at least one unit idle time is unavoidable, 

< Sk can be moved forward to start at S .. From al-
* J gorithm LS we know that, if such a job exists, then k E P. and pk:::: p .. Thus, 
1. J 

a gap now threatens to occur between Sk and Sk+l. Repeating this argument as 

often as necessary, we conclude that c .. 2 C.+1, and therefore 
Jl. 1. 

* C .. +q. 2 C,+q.+1. 
J 1. J 1. 1. 

(10 .3) 

Inequalities (10.1), (10.2) and (10.3) establish the validity of LBi· 

At every node of the search tree, application of algorithm LS yields 

value L' 
max 

and a lower bound a complete solution (JTI(l), ... ,JTI(n}) with 

LB= max.{max{LB~ ,LB'.'}}. We may adjust the 
1. 1. 1. 

upper bound UB on the value of 

an optimal solution by setting UB:= min{UB,L' }. If LB 
max 

eliminated; else, we apply the branching rule described 

2 UB, the node is 

next. 

Let the critical job Ji be defined as the first job in the schedule 

with Ci+qi = L~ax· The schedule can only be improved of ci can somehow be 

reduced. The set of solutions corresponding to the current node can now be 

partitioned into disjoint subsets, each characterized by a particular J. 
J 

which is to be scheduled last of {Jklk E Pi}. However, jobs Jj with j E Pi, 

q. 2 q.-L' +UB need not to be considered, since in that case c .. +q. 2 J 1 max Jl. J 
C1.+q1.-Lm'ax+UB = UB. Therefore, only for each J. with j E P., q. < q.-L' +UB 

J i J 1 max 
a descendant node is actually created. 

We can effectively implement the precedence constraints 

{Jk < Jjlk E Pi-{j}} by adjusting rj and qk (k E Pi-{j}) as described in 

Section 10.2.1. During the next application of algorithm LS, J. will then 
J 

be scheduled last of {Jklk E P.}. To maintain disjointness at deeper levels 
1. 

of the tree, we would have ta update rk and qk for k i Pi as well in view 

of previous choices. This would lead to the time consuming administration 

of a continually changing precedence graph. Dropping the requirement of 

disjoint descendants, we will force J. to follow the critical J. rather 
J 1. 

than the whole set {Jklk E Pi-{j}}. This can be done by putting rj equal 

to any lower bound on c .. -p. not less 
Jl. J 

Ci-pj, or simply ri, as in [McMahon & 

than ri' such as max{rk+pklk E Pi-{j}}, 

Florian 1975]. Computational experi-



84 

ments have shown that the choice of a specific new r. has only a minor in
J 

fluence on the performance of the algorithm; in our implementation, we put 

rj:= max{ri+pi,ci-pj}. 

The search strategy used in [McMahon & Florian 1975] is of the jump

track type, selecting a node with minimum lower bound. Again, our implemen

tation is of the recursive backtrack type, choosing the descendant nodes in 

the reverse of the order in which the corresponding jobs J. appear in the 
J 

solution produced by algorithm LS. 

Algorithm MF is easily adapted to deal with given precedence constraints. 

Since we may assume that r. < r. and q. > q. if J. < J., they are respected 
i J i J i J 

by algorithm LS. Obviously, the lower bound remains a valid one. With re-

spect to the branching rule, descendant nodes have to be created only for 

jobs J. with j 
J 

E P., q. < q.-L' +UB, A.nP. = 0. We could branch by adding 
i J i max J i 

the precedence constraints {Jk < Jjlk E Pi-{j}}; many heads and tails would 

then have to be adjusted. If, however, we drop the requirement of disjoint 

descendants and aim to preserve only the original precedence constraints, 

we may just as well restrict ourselves to adjust r. in the way described 
J 

above and update rk for all k E Aj. Since the tails still reflect the orig-

inal precedence constraints, new solutions produced by algorithms LS will 

respect those constraints. Again, more extensive adjustments turn out to 

result in additional computing time. 

10.3. Computational experience 

10.3.1. Test problems 

For each test problem with n jobs, 3n integer data ri,pi,qi were generated 

from uniform distributions between 1 and r*, p* and q* respectively. Here, 

r* R.p* and~= Q.p*. In the precedence graph, each arc (J.,J.) with 
i J 

i < j was included with probability P. Table 10.2 shows the values of 

(n,p*,R,Q,P) during our experiments; the values used in previously reported 

tests are also given. For each combination of values with R s Q five problems 

were generated; inversion of these problems provided test problems with 

R ~ Q (cf. Section 10.1). Significant and systematic differences between 

the solution times of a problem and its inverse would indicate advantages 

to be gained from problem inversion. 



85 

TABLE 10.2. VALUES OF PARAMETERS OF TEST PROBLEMS 

parameter [Baker & Su 1974] [McMahon & Florian 1975] h.l. 

n 10,20,30 20,50 20,40,80 

p* 2000/n 25 so 
R .Sn .Sn,2n . S, 2 , . Sn, 2n 

Q . 7Sn, .87Sn,n t .4, 1,3 . S, 2 , . Sn, 2n 

p 0 0 0, .OS, .1S, .45 

·[· In this case, the qi are not distributed uniformly. 

10.3.2. Results 

Algorithms BS and MF were coded in ALGOL 60 and run on the Control Data 

Cyber 73-28 of the SARA Computing Centre in Amsterdam. 

Tables 10.3 and 10.4 show the computational results for problems without 

precedence constraints, i.e. with P = 0. Algorithm BS solves 294 out of 300 

problems with up to 80 jobs within the time limit of ten seconds. The limit 

is never exceeded for problems of the type for which the method has been 

tested in [Baker & Su 1974]. Inspection of the results revealed no obvious 

rule according to which problem inversion might be advantageous and this ad

ditional feature was therefore not incorporated into algorithm BS. 

Even better results were obtained with algorithm MF. It turns out that 

this method has been tested in [McMahon & Florian 197S] on the very easiest 

types of problems. In general, algorithm MF performs especially well on 

problems with R > Q. Accordingly, we also tested algorithm FM, which inverts 

a problem if max.{r.}-min.{r,} < max.{q.}-min.{q.} before applying algorithm 
l l l l l l l l 

MF. The remarkable quality of algorithm FM is clear from Tables 10.3 and 

10.4. 

Table 10.5 shows the effect of precedence constraints, which was inves

tigated only with respect to algorithms MF and FM. For problems with P <o .15, 

most of the solution time is spent on adjusting the ri and qi in accordance 

with the precedence constraints, as described in Section 10.2.l; this takes 

.06 seconds for n = 20, P = .1S and .70 for n = 80, P = .4S. For each posi

tive value of P which we tested, the median number of generated nodes is 

equal to one; for P = .4S branching never occurs. Inversion according to 

the rule given above leads to some improvement, albeit not so spectacular 

as in the case without precedence constraints. 



86 

TABLE 10. 3. SOLUI'ION TIMES FOR P 0: A SURVEY 

median maximum 
n p 

alg.BS alg.MF alg.FM alg.BS alg.MF alg.FM 

20 0 .OS .02 .03 >10:2 .99 • 11 

40 0 .09 .06 .06 1.09 >10:1 .17 

80 0 .23 .16 .lS >10:4 >10:3 .S7 

TABLE 10.4. MAXIMUM SOLUTION TIMES FOR P = 0: THE INFLUENCE OF R AND Q 

n = 80 lgorithm BS algorithm MF lgorithm FM 

Rt Q+ .s 2 .Sn 2n .s 2 .Sn 2n .s 2 .Sn 2n 

.s .26 .2S S.S4 S.7S .19 .21 1.64 >10:1 .19 .2S .lS .14 

.2S .19 

2 
.2S >10:1 4.84 >10:1 

.24 .27 .19 

.Sn 
3.43 3.67 .47 

>10:1 >10:2 3.60 .10 

2n 
2.S4 .11 

.10 . 11 2.Sl 2.SS .09 .07 .13 .13 .09 .08 .12 

TABLE 10. s. SOLUTION TIMES: THE INFLUENCE OF P 

median maximum 
n p 

alg.MF alg.FM alg.MF alg.FM 

20 0 .02 .03 .99 . 11 

.OS .06 .OS .41 .43 

.lS .07 .07 .14 .lS 

.4S .07 .08 .12 . 11 

80 0 .16 .lS >10:3 .S7 

.OS .36 .33 >10:6 >10:4 

.lS .47 .42 .8S .S7 

.4S .73 .7S .81 .80 



87 

LEGEND TO TABLES 10.3,4,5 

Each entry in Table 10.3 (Tables 10.4,5) represents 100 (5,100) test problems. 

solution times : CPU seconds on a Control Data Cyber 73-28. 

>i:k : the time limit i is exceeded k times. 

algorithm BS 

algorithm MF 

see Section 10.2.2. 

see Section 10.2.3. 

algorithm FM algorithm MF with problem inversion if 

maxi{ri}-mini{ri} < maxi{qi}-mini{qi}. 

n : number of jobs. 

R relative range of ri. 

Q relative range of qi. 

P expected density of precedence graph. 

10.3.3. Misusing problem reductions 

Let us consider a particular instance of the KNAPSACK problem (see Theorem 

2.l(h)), defined by ai = 90+2i (i = 1, •.. ,9), b = 401. Clearly, this KNAPSACK 

problem has no solution. 

We applied improved versions of two well-known knapsack optimization al

gorithms (see [Lageweg & Lenstra 1972]) to this problem. Moreover, we trans

formed it into two types of machine scheduling problems, according to the re

ductions given in Chapter 4 and applied three algorithms which are described 

in the present and following chapter. The results are presented in Table 10.6. 

TABLE 10.6. RESULTS FOR A DIFFICULT SCHEDULING PROBLEM 

solution time number of 
problem formulation solution method in seconds nodes in 

on CDC 73-28 search tree 

max{Ia.x.\Ia.x.Sb, dynamic programming .26 -
l. l. l. l. [Hu 1969] 

xi E:{O, 1}} 

branch-and-bound .09 178 
[Kolesar 1967] 

n\1\r.<:O\L algorithm BS 69~05 14121 
i max (see Section 10.2.2) 

(see Theorem 4.4 (g)) 

algorithm FM 8.63 1254 
(see Sections 10.2.3, 10.3.2) 

n\1\\Iw.T. algorithm NA >300 >97214 
l. l. 

(see Section 11. 2) 
(see Theorem 4. 4 (i)) 



88 

10.4. Remarks 

The computational experience reported in Section 10.3 leads us to conclude 

that the nlllprec,r.20IL problem can be satisfactorily solved by the 
i max 

algorithms described in Sections 10.2.2 and 10.2.3. If solution by implicit 

enumeration is indeed unavoidable, there seems to be little room for further 

improvement. 

This is a hopeful result, especially in view of the wide applicability 

of this scheduling model. In Sections 12.2.4 and 13.2.1 the problem arises 

in the theoretical context of computing lower bounds for flow-shop and job

shop problems. In Chapter 15 we describe a practical scheduling situation 

in which a processing order on a critical machine is obtained by solving a 

problem of this type. 

It might be worth-while investigating if the ideas underlying algorithms 

BS and MF could be applied to other machine scheduling problems. An interest

ing candidate is the nl2IF,r.2olc problem. This problem can be interpreted 
i max 

as a variation on the three-machine model introduced in Section 10.1: a non-

bottleneck machine M1 deals with the release dates and two bottleneck ma

chines M2 and M3 constitute the flow-shop. Again, the case in which all ri 

are equal can be solved in 0(n log n) steps [Johnson 1954], whereas the gen

eral problem is NP-complete (see Chapter 4) . Similar remarks apply to the 

inverse n[2IFIL problem. max 



89 

11. ONE-MACHINE SCHEDULING II: MINIMIZING TOTAL COSTS 

11.1. Introduction 

In this chapter we examine the general nlllpreclLf. problem. It can be for-
1. 

mulated as follows. 

Each of n jobs Jl, ... ,Jn lJ.as to be processed on a single machine which 

can handle only one job at a time. Job J. (i = 1, ... ,n) is available 
l. 

for processing at time t = 0 and requires an uninterrupted processing 

time pi; costs fi(t), nondecreasing in t, are incurred if Ji is com

pleted at time t. Given precedence constraints "J. < J." indicate that 
l. J 

Jj cannot start before the completion of Ji; we use the notations 

Bi= {jlJj <Ji} and Ai= {jlJi < Jj}. We seek to find a processing 

order with associated completion times Ci (i = 1, .•• ,n) that minimizes 

the total costs~~ 1 f. (C.). 
ll.= l. l. 

Complexity results for various special cases of this problem have been pre-

sented in Chapter 4. For instance, there exist 0(n log n) algorithms for 

the nllltreellwici problem [Horn 1972; Sidney 1975] and for the nlll IJ.ui 

problem [Moore 1968]; the nlllpreclLc., nlll ILw.T, and nlll ILw.u. problems l. l. l. l. l. 
have been proved NP-complete. However, the complexity of the nlll ILT. prob-

1. 

lem remains an open question. 

Altogether, it is not surprising that all methods for the general 

nlll ILfi problem developed so far are based on implicit enumeration. Apart 

from the work on quadratic and general cost functions in [Schild & Fredman 

1962] and dynamic programming formulations for the general criterion in 

[Held & Karp 1962; Lawler 1964], most researchers have concentrated on the 

weighted tardiness function f. (t) = w.max{O,t-d.}; wl.. and di. stand for l. l. l. 
weight and due date of Ji respectively. 

Especially with respect to the nl1I ILT. problem, many elimination 
l. 

criteria have been developed that lead to precedence constraints respected 

by at least one optimal schedule. These criteria have to be incorporated 

in some enumeration scheme and combined with a bounding mechanism to yield 

an enumerative algorithm. For instance, the €limination criteria from 

[Emmons 1969] were successfully implemented in a dynamic programming al

gorithm [Srinivasan 1971] that turned out to be superior to other nlll ILT. l. 
algorithms surveyed in [Baker & Martin 1974]. For more general cost functions 

no really powerful elimination criteria have been found so far. A branch

and-bound algorithm for the nlll ILw.T. problem, using a few simple elimina-
1. l. 

tion criteria, was developed in [Shwimer 1972] (see Section 11.3.1). In 



90 

general, the performance of branch-and-bound algorithms for these types of 

problems has been rather disappointing. This may be explained by the fact 

that only one or two jobs out of a subset of jobs on the processing costs 

of which a lower bound was sought actually contributed to this bound. 

In Section 11.2 we shall describe a new and general algorithm for the 

n/1/prec/Lf. problem, incorporating elimination criteria which imply all 
]_ 

criteria developed so far for the n/1/ /LT. and nlll ILw.T. problems, and a 
]_ ]_ ]_ 

lower bound which at least does not suffer from the defect mentioned above. 

In Section 11.3 we report on the algorithm's performance on the n/1/ ILw.T. 
]_ ]_ 

problem; our method is compared to Shwimer's algorithm and to a simple brute 

force approach. Section 11.4 contains concluding remarks. 

We will use the notation P(Q) = l· Q P. for any Q c {1, ... ,n}. 
l.E ]_ 

11.2. A new algorithm 

11.2.1. Enumeration scheme 

The enumeration scheme generates all feasible schedules according to al

gorithm BF below. Algorithm BF fills a schedule from back to front. This is 

possible because there obviously exists an optimal solution without machine 

idle time; the total time needed to process a set of jobs is therefore in

dependent of the processing order. 

procedure algorithm BF (n,p,A,C); 

local i; 

procedure node(S,t); 

if S = 0 then comment a feasible schedule has been generated else 

local Q; 

Q:= {j/j ES, SnA. 0}; 
J 

while Q # 0 do 

end 

i:E Q; Q:= Q-{i}; 

c .,,; t· i. , 

node(S-{i},t-p.) 
]_ 

node ( { 1 , ... , n} , sum { p . I i E { 1 , ... , n} } ) 
]_ 

end algorithm BF. 



Each node in the search tree is characterized by a set {J. [i E S} of un
i. 

scheduled jobs, which have to be processed from 0 to P(S) = 1 pl..; liES 

91 

S = {1, ... ,n}-s will denote the index set of the jobs which have been sched-

uled from P(S) to P({l, ... ,n}). We enter a descendant node by scheduling a 

Ji with i E S, SnAi = 0 from P(S)-pi to P(S). 

11.2.2. Elimination criteria 

At each node we can apply the elimination criteria which are to be presented 

in this section. Throughout, our theorems hold for 

problem; implications for the special case of the 

formulated as corollaries. 

the general n[1[ flfi 

n[l[ [/:w.T. problem are 
1. 1. 

Any relation Ji < Jj which is established by previous application of 

elimination criteria implies that i E B. and j EA .. We will restrict our-
J 1. 

selves to schedules satisfying these precedence constraints. 

THEOREM 11.1. At least one optimal schedule has J. preceding J. (i,j ES) if 
1. J 

(a) f. (t)-f. (t) is nondecreasing in ton the interval (P(B.)+p. ,P(S-A.)), 
1. J J J 1. 

and 

Proof. Consider any schedule in which J, precedes J .. Denote by D the start-
] 1. 

ing time of J, and by E the completion time of J .. Compare this schedule 
J 1. 

with the schedule obtained by interchanging Jj and Ji (cf. Figure 11.1). 

The contribution to total costs by all jobs except J. does not increase, 
J 

because of condition (b).As to J,, it follows from 
J 

P(B.)+p. :". D+p. :". E :". P(S-A.) 
J J J 1. 

and condition (a) that 

f. (E)-f. (E) ;:o, f. (D+p.) -f. (D+p.). 
1. J 1. J J J 

D 

Figure 11.1 

J, 
1. 

E 

(11.1) 



92 

Because of condition (b), we have 

fi (D+pj) 2 fi (D+pi). (11.2) 

Together, (11.1) and (11.2) imply 

f.(E)+f.(D+p,) 2 f.(D+p.)+f,(E}, 
i J J i i J 

which means that the joint contribution of J. and J. to total costs also 
i J 

does not increase. D 

COROLLARY 11.1. At least one optimal schedule has J. preceding J. (i,jES} if 
i J 

(a) d. s 
i 

max{d. ,P(B .)+p.}, 
J J J 

(b) W, 2 
i 

wj, and 

(c) pi s pj. 

Proof. If d. s d., then condition (b) implies that f. (t)-f.(t) is nondecreas-
i J i J 

ing on the interval (0,P(S)), and we can apply Theorem 11.1 with B.= A. = 0 
J i 

(cf. Figure 11.2(a)). If d. s P(B.)+p,, then f. (t) is increasing for 
i J J i 

t > P(B.)+p., and it follows from condition (b) that f. (t)-f.(t) is nonde-
J J i J 

creasing on the interval as required in Theorem 11.1 (cf. Figure 11.2(b)).0 

0 t 

f. (t) 
J 

0 d. 
J 

f. (t)-f. (t) 
i J 

d 4 P (B.) +p. 
~ J J 

f. (t) 
J 

t 

Figure 11.2(a) Figure 11.2 (b) 

THEOREM 11. 2. At least one optimal schedule has J. preceding J. (i, j E S) if 
i J 

(a} 

(b) 

f.(P(B,}+p,) = f.(P(S-A.)-p,), and 
J J J J i J 

f. (t)-f. (t) is nondecreasing in ton the interval (P(S-A.)-p.,P(S-A.)). 
i J i J i 

Proof. Clearly, conditions (a) and (b) imply that f. (t)-f.(t) is nondecreas-
i J 

ing on the interval (P(B,)+p,,P(S-A.)), so in the case that p 4 s p, we can 
J J i ~ J 

apply Theorem 11.1. Suppose now that p. > p .. Again, consider any schedule 
i J 

in which J. precedes J .. Denote by D the starting time of J. and by E the 
J i J 



93 

D 

Figure 11. 3 

J. 
l. 

J. 
l. 

E 

completion time of Ji. Compare this schedule with the schedule obtained by 

putting J. directly after J. (cf. Figure 11.3). The contribution to total J l. 

costs by all jobs except Jj does not increase. As to Jj' it follows from 

P(B,)+p, ~ D+p. ~ E-p. ~ P(S-A.)-p. 
J J J J l. J 

and condition (a) that 

f. (E-p.) = f. (D+p.). ( 11. 3) 
J J J J 

Because of condition (b), we have 

f. (E) -f. (E) :2: f. (E-p.) -f. (E-p.). (11.4) 
l. J l. J J J 

Together, ( 11. 3) and (11. 4) imply 

f. (E) +f. (D+p.) :2: f. (E-p.) +f. (E) , 
l. J J l. J J 

which means that the joint contribution of Ji and Jj to total costs also 

does not increase. D 

COROLLARY 

(a) d, :2: 
J 

11.2. At least one optimal schedule has Ji preceding Jj (i,jES) if 

P ( S-A. ) -p . , 
l. J 

(b) d. ~ 
l. 

d., and 
J 

(c) W, :2: 
l. 

w .• 
J 

Proof. Condition (a) implies that f.(P(B.)+p.) = f.(P(S-A,)-p.), and it 
J J J J l. J 

follows from conditions (b) and (c) that f. (t)-f,(t) is nondecreasing on 
l. J 

the interval (0,P(S)) (cf. Figure 11.2(a)). D 

THEOREM 11.3. At least one optimal schedule has Ji preceding Jj (i,j E S) if 

(11.5) 

Proof. We can apply Theorem 11.2, since its conditions (a,b) follow from 

( 11. 5). D 



94 

COROLLARY 11.3. At least one optimal schedule has J. preceding J. (i,jES) if 
J_ J 

d. 2: P(S-A.). 
J J_ 

THEOREM 11. 4. In at least one optimal schedule J. ( j E S) comes last among 
J 

{J .1 i E S} if 
J_ 

f. (p.) = f. (P (S)). (11.6) 
J J J 

Proof. Since (11.6) implies (11.5) for all i E S, we can apply Theorem 11.3 

to each pair (J. ,J.) with i E s-{j}. 
J_ J 

D 

COROLLARY 11.4. In at least one optimal schedule J. (j ES) comes last among 
J 

{J. Ii E s} if 
J_ 

d. 2: P(S). 
J 

Corollary 11.1 is given in [Shwimer 1972]. Corollaries 11.1, 11.2 and 11.3 

are extended versions of Theorems 1, 2 and 3 in [Emmons 1969]. Our proofs, 

however, are considerably simpler than the original ones. Corollary 11.4 

can be found in [Elmaghraby 1968]. 

11.2.3. Implementation of the elimination criteria 

The only problem arising with the implementation of the elimination criteria 

in an nlllprecllfi algorithm is the possible creation of precedence cycles; 

it is perfectly imaginable that two theorems lead to incompatible conditions. 

The nature of our elimination criteria, however, is such that applying them 

successively, while guarding against precedence cycles, will always lead to 

a collection of schedules containing at least one optimal one. We avoid the 

creation of precedence cycles by immediately constructing the transitive 

closure of the set of known precedence constraints whenever we find a new 

relation J. < J.: 
J_ J 

A ·= Ahu{j}uAj for every h E { i} UB. ; h" J_ 

Bk:= Bku{i}uBi for every k E {j}uA .. 
J 

Furthermore, if we restrict ourselves to examining pairs (k,h) between which 

no relation has been found so far, we can never create a precedence cycle. 

For if we found that Jk < Jh and it then turned out that i E Bj for some 

i E Ah, j E Bk, then we would have set k E ~· h E Bk in a previous stage 



95 

and therefore would not have examined this pair again. 

In the case of general cost functions we can apply Theorems 11.1 to 

11.4 at every node; the set S decreases and the sets Ai and Bi increase in 

size as we progress through the search tree. In the case of weighted tardi

ness functions we apply Corollary 11.4 at every node, whereas Corollaries 

11.1, 11.2 and 11.3 are used only at the root node with S =- {1, ••• ,n}. In 

principle, all corollaries could be applied at every node, but the advantages 

of doing so are in this case outweighed by the disadvantages of complicated 

and time-consuming bookkeeping. 

Corollaries 11.1, 11.3 and 11.2 are now implemented by running through 

them in this order (keeping in mind the above remarks) and repeating this 

process until no further improvements are possible. If after this process 

the earliest possible completion time P(B.)+p, of J. is larger than its due 
J J J 

date, then we can set d.:= P(B,)+p,, thereby incurring costs w,(P(B,)+p.-d.) 
J J J J J J J 

and increasing the chances of successful application of Corollary 11.4. The 

latter corollary is checked at every node. To avoid contradictions with the 

precedence constraints found previously by the other corollaries, we restrict 

ourselves to the set {J.lj Es, SnA. = ~}. 
J J 

11.2.4. Lower bound 

The lower bound LB on the value of all possible schedules at a node has the 

form 

- * LB = F(S)+LB • 

Here F(S) denotes the known total costs incurred by the set {J. Ii E s} of 
i 

* scheduled jobs, and LB is a lower bound on the total costs of scheduling 

the set {J, Ii Es} of remaining jobs from 0 to P(S). 
i * 

To compute LB , we put s = Is! and renumber the jobs in {J. Ii E s} 
i 

from 1 up to s. Our lower bound is now based on the observation that, if 

P1 = 
given by 

= ps = p*, the costs f .. of putting J. in the j-th position are 
i] i 

fij = fi(jp*), 

and an optimal schedule corresponds to a solution to the following linear 

assignment problem: 

(11.7) 



96 

where TI runs over all permutations of {1, ... ,s} (cf. [Lawler 1964]). 

If not all pi are equal, the above idea can be used to compute lower 

bounds in two ways. 

Assuming all pi are integers, we can find their greatest common divisor 

g and treat each Ji as a sequence of pi/g new jobs of equal length g. Problem 

(11.7) now becomes a (P(S)/g)xs linear transportation problem, that produces 

a lower bound if we succeed in defining appropriate cost coefficients f ... 
l.J 

For the case that f. (t) = w~max{O,t-d. }+w'.'t, suitable cost coefficients have 
J. J. J. J. 

been developed in [Gelders & Kleindorfer 1974; Gelders & Kleindorfer 1975]. 

Three problems remain with the transportation approach. 

(1) In the optimal solution to the transportation problem job splitting 

can occur. 

(2) Usually g is equal to 1 and the size of the transportation problem 

tends to be very large. It then becomes practically impossible to 

solve this problem at every node. 

(3) It seems to be difficult to define effective cost coefficients for 

general cost functions. 

For the above reasons, we prefer a different approach, which basically in

volves redefining the cost coefficients for the sxs linear assignment problem 

so that f .. becomes a lower bound on the costs of putting J 1. in the j-th 
l.J 

position. To accomplish this, we compute the earliest possible completion 

time c .. of J. if we put J. in the j-th position and if we observe the prec-
J.) J. J. 

edence constraints, given by Bi and Ai. Using the notation 

R.(q) = min {P(Q)jQ c {1, ... ,s}-(B.u{i}uA.), IQ! q}, 
J. Q J. J. 

we have 

C = P(B.)+p.+R.(j-IB.l-1) ij J. J. J. J. 

as can be easily checked. Redefining 

f .. 
l.J 

{
f. (C .. ) 

J. l.J 

00 

for IB. I 
J. 

< j 

for I Bi I < j 

otherwise, 

,,; l{l, ... ,s}-A.I, 
J. 

,,; I { 1 ' ... , s }-A. I ' 
J. 

and using these cost coefficients in problem (11.7) now gives the desired 

* lower bound LB . This is easily proved as follows. If an optimal schedule 

* * for our original problem is given by a permutation TI with minimum costs F , 

then we have 

F* ~ r: l f * (.) . ~ LB* 
J= TI J J 

since the C .. underestimate the true completion times, the f. are nondecreas-
*J.J J. 

ing, and TI is a feasible solution to problem (11.7). 



97 

11.2.5. Implementation of the lower bound 

After the computation of the lower bound LB at the current node, the solution 

to (11.7) can also be evaluated as a schedule, which may lead to a decrease 

in the value UB of the best schedule found so far. If LB ~ UB the node is 

eliminated. Otherwise, the jobs in the set {J.Ji ES, SnA. = 0} are candidates 
l. l. 

for the s-th position in the schedule. Choosing any of them leads to a new 

node in the search tree. Fortunately, we can do better than solving ab initio 

the assignment problem at each of these descendant nodes, by exploiting the 

solution to (11.7) at the current parent node. This problem can be reformu

lated as 

min{}:~=l I;=1 f .. x .. I;=1 x .. (i 1, •.. ,s), 
l.J l.J l.J 

I~=1 xij (j 1, • • • ,S) I (11.8) 

x .. ~ 
l.J 

0 (i,j 1, ••. ,s)}, 

where x .. = 1 corresponds to 1T (j) 
l.J 

= i in (11.7). Its dual problem is given 

max{Ii~=l u. + l~ 1 v. I u.+v. ~f .. (i,j = 1, •.• ,s)}. 
l. J= J l. J l.J 

An optimal solution to these problems has the value LB* and is denoted by 

(x~.) and (u~,v~), respectively. 
l.J l. J 

At the parent node, we can with little computational effort obtain a 

lower bound LBr on the value of all schedules whereby Jr occupies the s-th 

* * position. Observing that (u.,v.). 4 • 4 is a feasible dual solution to the 
i J irr,JrS 

by 

assignment problem, obtained from (11.8) by deleting row rand columns, we 

define 

- \ * \ * LBr F(Su{r}) + lifr ui + ljfs vj 

(F(S)+f ) + (LB*-u*-v*) 
rs r s 

LB+ (f -u*-v*> ~LB. 
rs r s 

Clearly, any potential descendant node for which LBr ~ UB can be eliminated. 

From the remaining candidates a Jr with minimal LBr is scheduled in the 

s-th position, and we start to explore the corresponding descendant node. 

Application of the elimination criteria at this node may increase LBr. For 

example, if in the case of weighted tardiness functions a J. is scheduled 
J 

in position s-1 by application of Corollary 11.4, then we have f. 1 = 0 
],S-

* * and LB can be replaced by LB -u.-v 1 ~LB . However, if this new LB does 
r r J s- r r 

not lead to elimination of the node, we have to solve its assignment problem. 

Indexing the jobs as at the parent node and considering only indices that 



98 

correspond to unscheduled jobs or unfilled positions, we can still profit 

from the optimal solution to the assignment problem at the parent node in 

the following ways. 

(a) If we pass from the parent into the descendant node, the earliest corn-

(b) 

pletion 

f ... So 
1.J 

problem. 

* 

times C .. will not 
* * 1.J 

(u. ,v.) provides a 
1. J 

decrease, nor will the cost coefficients 

feasible dual solution to the new assignment 

(x .. ) provides a partial primal solution to the new problem and can 
1.J 

* point for finding an optimal solution. (x .. ) and 
* * 1.J complementary by resetting x .. = 0 if u.+v~ < f ... 
1.J 1. J 1.J 

serve as a starting 

* * (u. ,v .l can be made 
1. J 

Remark (a) suggests an alternative bounding mechanism whereby the assignment 

problem is solved only at the root node and provides lower bounds throughout 

the whole search tree by means of sums of appropriate dual variables. (In 

fact, this idea has been implemented in [Gelders & Kleindorfer 1974; Gelders 

& Kleindorfer 1975] since it is not feasible to find a new optimal solution 

to their large transportation problem at every node again.) Although we ob

tained reasonable computational results with this approach, we preferred 

the stronger bound; even then the trees may become quite large for moderate 

size problems. 

In selecting a method for solving the assignment problems, ideally we 

would like to have a fast algorithm, not requiring an initial basic solution 

and producing a sequence of nondecreasing feasible dual solutions each of 

which may lead to early elimination of the current node. The dual method 

from [Dorhout 1975] turned out to be more suitable than primal methods such 

as the stepping-stone algorithm or primal-dual ones such as the Hungarian 

method. 

Dorhout's algorithm can be considered as a synthesis of ideas proposed 

in [Tomizawa 1971; Tabourier 1972]. Essentially, the algorithm works on a 

complete bipartite graph G = (SuT,E) where the vertex sets S and T corre

spond to the sets of unscheduled jobs and unfilled positions respectively; 

edge e .. E E (i E S, j E T) has a weight w .. 
1.J 1.J 

starts with a feasible dual solution (u,,v.) 
1. J 

=f .. -u.-v .. The algorithm 
1.J 1. J 

and a partial primal solution 

(xij), which is complementa~y to the dual one and defines a matching on G. 

The algorithm constructs the shortest augmenting path from any exposed ver

tex in S to the nearest exposed vertex in T, using the shortest path algo

rithm from [Dijkstra 1959]. The matching is then augmented and the dual so-

lution is changed in such a way that its feasibility is maintained and com

plementarity is restored. 



11.2.6. Example 

Consider the 7111 IIw.T. problem specified by the data in Table 11.1. 
l. l. 

TABLE 11 • 1 • DATA FOR THE EXAMPLE 

i 2 3 4 5 6 7 

12 13 14 16 26 . 31 32 

42 33 51 48 63 88 146 

7 9 5 14 10 11 8 

Figure 11.4 
.__ ___________ ..... Precedence graph for the example. 

LEVEL 0 

LEVEL 1 

LB=455 
LEVEL 2 =UB J3 

Figure 11.5 
n" =(2,1,4,5,3,6,7) Search tree 

99 

.__ _______________________ __.for the example. 



100 

Since d7 = 146 > 144 = P({l, ... ,7}), Corollary 11.4 implies J 7 comes last. 

Further application of the elimination criteria {here only Corollary 11.1) 

leads to the precedence graph, given in Figure 11.4. Figure 11.S represents 

the search tree. Because J 7 can be scheduled in the last position, there is 

only one node at the first level, where J 3 , JS and J 6 are candidates for the 

sixth position. The assignment problem at this node can be found in Table 

11.2; the cells in the optimal primal solution and the optimal values of the 

dual variables are printed in a different type face. We find LB= f({7})+LB* 

= 0+34S = 34S; when evaluated as a schedule, the assignment solution 

(J2 ,J1,J4 ,J5 ,J6 ,J3 ,J7) has value UB 

> UB, only J 3 .and J 6 with LB 3 = LB6 

4SS. Since LBS= 34S+(490-325) = S10 

LB remain candidates for the sixth 

position. The two assignment problems at the second level of the tree are 

given in Table 11.3. If J 3 is scheduled in the sixth position, we have LB 

f({3,7})+LB* 30S+150 = 455 = UB, and this node can be eliminated. If J 6 
is scheduled in the sixth position, we have LB= f({6,7})+LB* = 264+190 = 

4S4; the schedule (J2 ,J1,J4 ,JS,J3 ,J6 ,J7 ) has value UB = 4S4 and hence must 

be optimal. 

TABLE 11. 2. ASSIGNMENT PROBLEM AT THE FIRST LEVEL 

* V. 

TABLE 

0 

0 

0 

0 

11. 3. 

2 

0 

0 

0 

0 

0 

0 

3 

0 

72 

0 

0 
0 

0 

0 

4 

17S 

306 

20 

98 

40 

0 

40 

s 6 * u. 
l 

392 0 
S8S 0 
lSO 305 -20 

0 
180 490 0 

0 264 -61 

61 325 

ASSIGNMENT PROBLEMS AT THE 

* 

SECOND LEVEL 

* 2 3 4 s u. 2 3 4 5 U, 
l l 

Jl 0 0 0 17S 392 0 Jl 0 0 0 17S 0 

J2 0 0 72 306 S8S 0 J2 0 0 72 306 0 

J4 0 0 0 0 J3 0 20 150 -20 

JS 0 0 40 3SO 0 J4 0 0 0 98 0 

J6 0 0 0 110 -41 JS 0 0 40 180 0 
* 

V. 0 0 0 40 151 * 
V. 0 0 0 40 170 



101 

11.3. Computational experience 

11.3.1. Compared algorithms 

Our general algorithm was tested on the case of weighted tardiness functions 

and compared to the algorithm from [Shwimer 1972] and a simple lexicographic 

algorithm. These three methods will be referred to as algorithms NA, JS and 

LE, respectively. 

Algorithm JS has been designed specifically for the n[l[ IIw.T. problem. 
1. 1. 

The enumeration scheme is equivalent to ours. Shwimer applies only two elim-

ination criteria, formulated here as Corollary 11.4 and the static part of 

Corollary 11.1 (i.e., d. 5 d.). His lower bound tries to eliminate potential 
1. J 

descendants in the parent node; instead of LBr he uses 

LB' = F(Su{r}) 
r 

+min. S { }{w.max{O,P(S-{r})-d.} 
1.E - r 1. 1. 

+ minh S { . }{wh} •T (S-{r,i})}, 
E - r,i. max 

where Tmax(Q) denotes the minimal maximal tardiness over all possible sched

ules of the set {Jh[h E Q}, found by ordering these jobs according to nonde

creasing ~ (cf. Section 10.2.1). It is clear that Shwimer's bound can be 

computed much more quickly than our bound LB, but that (loosely speaking) 

only two jobs contribute to its value. Moreover, Shwimer's bound depends 

explicitly on a property of the tardiness function. It is possible to solve 

the general n[l[ [f problem [Lawler 1973], but the number of operations 
max 2 

then increases from 0(n log n) to 0(n ). 

Algorithm LE is a straightforward extension of the lexicographic gen

erator of permutations "pm lex", presented in Section 6.3. The method enu

merates schedules according to algorithm BF (see Section 11.2.1), always 

choosing a Jr with maximal dr from the remaining candidates in {Ji[i Es}. 

Corollary 11.4 can then easily be applied; no other elimination criteria 

have been incorporated. Also a simple bounding mechanism is used, with 

LB" = F(Su{r}). 
r 

For a more general remark on the possible use of such a quick complete enu-

meration method, we refer to Section 11.4. 



102 

11.3.2. Test problems 

We shall now describe in detail the way in which we generated random data 

on which to test these three methods. The reasons for this detailed approach 

will become apparent as we proceed. 

Each nl1I IIw.T. problem is completely specified by n integer triples 
l. i 

(pi,di,wi). We regard these triples as a three-dimensional sample from a 

joint distribution with density function $(x,y,z). 

In all our tests, the third random variable ~ is independent of E. and 

d (see [Hemelrijk 1966]). We have 

$(x,y,z) = $ d(x,y)$ (z), 
p w 

where~ is uniformly distributed over the interval (4.5,15.5). 

In what follows, we shall introduce four parameters that determine 

$pd(x,y) and that we believed a priori to be of possible influence on any 

algorithm's performance. In fact, three of them are already mentioned as 

such in [Srinivasan 1971; Baker & Martin 1974]. These papers indicate that 

the choice of a particular function may have a strong influence on the per

formance of any tardiness algorithm in a way that may be characteristic for 

the algorithm in question. 

The first parameter measures the correlation between E. and -9_, p(.E_,-9_). 

It is intuitively plausible that there may be a significant difference be

tween problems where longer jobs tend also to have later due dates, and 

problems where there is no correlation whatsoever. If all weights are equal, 

then a problem with perfect correlation can be trivially solved by ordering 

the jobs according to nondecreasing di [Emmons 1969]. To investigate the 

influence of correlation, we use two different kinds of functions $pd(x,y). 

Either 

in which case E. and -9_ are independent random variables and p(p,d) 0, or 

in which case the due date generated depends explicitly on the processing 

time and P<.12.1 -9_) depends on the particular form of the density functions 

involved. 

In both cases, E. is normally distributed with expectation µ and vari-
2 b . . . 100 . d 2 h p h ance o . We ar itrarily fix µ = . With regar s to o , owever, we ave 
p p p 

to introduce as the second possibly significant ~arameter the relative vari-



103 

ation of processing times s = a /µ . We introduce s because our lower bound 
p p 

will presumably be sharper when processing times differ relatively little, 

as will be obvious from Section 11.2.4. Hence, we may expect problems with 

small s to be relatively easy for our algorithm. 

In the case of noncorrelated E_ and 3_, £ is uniformly distributed with 

expectation µd and variance a! A!/12, where Ad denotes the length of the 

interval on which ~d(y) > 0. 

We fix µd by introducing as a third parameter the average tardiness 

factor t = 1-µd/(nµp). The value oft roughly indicates the average fraction 

of jobs that will be late [Baker & Martin 1974]. Problems with t = 1 or t = 0 

tend to be easy - if all jobs are late, then ordering the jobs according to 

nonincreasing wi/pi produces an optimal schedule, and if we find by ordering 

the jobs according to nondecreasing di that no job is late, then clearly this 

schedule is optimal. 

Finally, Ad is fixed by the fourth parameter, the relative range of 

due dates r = Ad/(nµp). Intuitively, a large r increases the number of times 

that Corollaries 11.1 and 11.2 can be applied, thereby speeding up computa

tions. 

In the case of correlated E and 3_, £.IE=P is again uniformly distributed, 

with µdip and Adlp specified analogously by t = 1-µdlp/(np) and r = Adlp/(np). 

Specific values of s, t and r determine the value of p(E_,£). We have 

P(E_,3_) = (1-t)/yf(1+1/s2Jr2/12 + (1-t) 2 

as can be established by straightforward calculations. 

Choosing for noncorrelated or correlated E. and £_, and fixing s, t and 

r, we can generate n triples (pi,di,wi) to obtain a test problem. Each gen

erated value is rounded off to the nearest integer, and if a negative di is 

generated, we reset di:= O, which implies adding a constant to fi(t) and 

therefore does not influence the final schedule. 

11.3.3. Results 

Algorithms NA, JS and LE were coded in ALGOL 60 and run on the Control Data 

Cyber 73-28 of the SARA Computing Centre in Amsterdam. 

Tables 11.4 and 11.5 show the computational results. They are classified 

according to the value of the average tardiness factor t, this factor having 

a major influence on the performance of the algorithms. There is a signifi-



104 

TABLE 11.4. SOLUTION TIMES 

number ian maximum 
n t of 

problems .NA alg.JS alg.LE alg.NA alg.JS alg.LE 

10 .2 24 .1 .o .o . 3 .1 .o 
.6 24 .6 .8 1.4 3.3 42.4 47.9 

15 .2 12 .o .o .o .6 .3 .3 

.4 12 .8 .6 .2 8.2 3.9 14.8 

.6 12 6.3 76.7 >60 121.8 >300:3 >60:10 

.8 12 45.6 >300 >60 85.6 >300:12 >60:12 

20 .2 6 .8 .2 .1 1.2 . 3 .2 

.4 6 1.1 2.2 1. 7 20.3 10.2 21.6 

.6 6 180.8 >300 >60 >300:2 >300:6 >60:6 

.8 6 >300 >300 >60 >300:3 >300:6 >60:6 

TABLE 11 . 5. NUMBERS OF NODES 

number median maximum 
n t of 

problems alg.NA alg.JS alg.LE alg.NA alg.JS alg.LE 

10 .2 24 1 2 6 8 14 64 

.6 24 56 132 3239 456 12284 96328 

15 .2 12 1 1 1 28 69 572 

.4 12 44 86 305 541 586 36231 

.6 12 647 13066 - 9564 - -

.8 12 4532 - - 9952 - -
20 .2 6 9 12 105 29 29 580 

.4 6 25 281 3564 1206 1130 57671 

.6 6 11105 - - - - -

.8 6 - - - - - -

TABLE 11.6. ALGORITHM NA ON FISHER'S TEST PROBLEMS 

number lution time number of nodes 
n of 

problems dian maximum median maximum 

20 25 1.0 35.7 12 19987 

30 25 5.6 >300: 1 315 

50 16 41.6 >300:3 6022 



LEGEND TO TABLES 11.4,5,6 

solution times : CPU seconds on a Control Data Cyber 73-28. 

numbers of nodes : including eliminated nodes. 

>£:k : the time limit £ is exceeded k times. 

algorithm NA see Section 11. 2. 

algorithm JS see Section 11.3.1. 

algorithm LE see Section 11.3,1. 

n number of jobs. 

t average tardiness factor 

cant difference between "easy" problems with t 

problems with t = .6 or t = .8. 

.2 or t 

105 

.4 and "difficult" 

On the easy problems, algorithm LE is rather successful and runs quickly 

through large search trees. Algorithm JS also performs well, notably for 

n 15 and t = .4. In fact, Shwimer tested his method only on problems where 

t (n-1)/2n, i.e., t = .47 for n = 15. Algorithm NA exhibits a satisfactory 

and steady behaviour. Both the median and maximum numbers of nodes examined 

by this method are significantly smaller than the numbers for the other two 

methods, so our lower bound is indeed more effective in pruning the search 

tree. For these problems, however, it seems hardly worth-while to spend much 

time on the computation of sophisticated lower bounds. 

Turning to the difficult problems, we see that algorithm NA is by far 

superior to the other algorithms. This is most clearly shown by the results 

for the problems with 15 or 20 jobs. Of the latter set of twelve problems, 

algorithms JS and LE do not finish any problem at all; algorithm NA succeeds 

in finishing seven of them and finds better solutions to the remaining five. 

The measures of performance become completely useless in this situation. Our 

results seem to contradict the remark in [Srinivasan 1971] that problems with 

t = .65 are the most difficult ones; problems with t = .8 are clearly the 

most difficult here. 

We will now discuss the influence of the remaining three parameters p, 

s and r on the performance of algorithm NA. 

As to the correlation p, no influence at all could be demonstrated. 

The relative variation of processing times s has a significant influ

ence for problems with 15 or 20 jobs, as demonstrated by the sign test 

(a< .02). For n = 20, eleven out of twelve problems with s = .05 were fin

ished with a median solution time of 8 seconds, while only eight out of 

twelve problems with s = .25 were finished with a median of 150 seconds. On 



106 

the average, 70 per cent of the nodes were eliminated by the underestimate 

LBr or by Corollary 11.4 when s = .05, and only 40 per cent when s = .25. 

Furthermore, the first schedule found by algorithm NA, corresponding to the 

assignment in the root node, was at worst 1 per cent from the optimum when 

s = .05 and at worst 20 per cent when s = .25. As expected our lower bound 

depends heavily on s. 

The relative range of due dates r has a considerable influence. Problems 

with r = .95 are significantly easier than problems with r = .20. 

Algorithm NA was also tested on a set of problems from [Fisher 1974]. In 

this paper, a dual algorithm for the nlll IIT. problem is developed, using 
i 

a subgradient approach to produce strong lower bounds. Table 11.6 shows that 

algorithm NA performs rather well on Fisher's test problems. However, they 

are easy ones with equal weights, p = 0, s = .54, t = .5 and r = 1, and both 

methods cannot be compared from these data alone. 

11.4. Remarks 

In view of our computational results, our main conclusion clearly has to be 

that the nl1I IIw.T, problem remains a very difficult one. The same remark 
i i 

applies a fortiori to the general nlllpreclif. problem. The results indicate 
i 

that even stronger elimination criteria and sharper lower bounds are needed 

to cut down the size of the search tree. 

The usefulness of elimination criteria is strongly underlined by our 

experiments. An easy extension of our algorithm would be to check all of 

them at every node. Also it may be worth-while to look for more elimination 

criteria. We feel that we have thoroughly examined the possible effects of 

interchanging two jobs, but one may look into the effects of moving three 

or more jobs at a time. 

The idea of computing lower bounds by solving linear assignment prob

lems whose coefficients f .. underestimate the costs of putting J~ in posi-
iJ • 

tion j can be applied to a hroader set of problems, e.g., to the nlmlPIIf. 
i 

problem. In view of the lack of any algorithm in this area, this seems an 

interesting object for future research. 

For the one-machine problem this bounding principle has turned out to 

be very useful. It could be strengthened by considering only those solutions 

to the assignment problem that respect known precedence constraints. It is 



107 

difficult to predict the effectiveness of this approach, since the resulting 

linear assignment problem with precedence constraints is NP-complete (cf. 

Theorem 4.6). Moreover, the precedence constraints are observed already in 

the computation of the present cost coefficients. 

None the less, it seems necessary to develop a fundamentally stronger 

lower bound. The general nil! !It. bound from [Fisher 1974], which is based 
i 

on the use of Lagrangean multipliers, might be a step in the right direction. 

Especially, very sharp bounds should be used in the upper levels of the 

search tree, where pruning may lead to large reductions in the number of 

potentially optimal solutions. As we move down the tree, pruning leads to 

smaller reductions, and simpler lower bounds combined with more extensive 

enumeration become more attractive. This observation suggests the use of 

lower bounds of varying computational complexity throughout the tree: a 

gliding lower bound. We tried to apply this idea in our algorithm by using 

lexicographic enumeration in the seven deepest levels of the tree. This led 

to a disappointingly small decrease in computation time, but the idea could 

become useful in the future. 

In spite of all the work done so far, the problem of minimizing total 

costs in one-machine scheduling is likely to remain a challenge to research

ers for a long time to come. 



108 

12. PERMUTATION FLOW-SHOP SCHEDULING 

12.1. Introduction 

The general flow-shop problem, indicated by nlmlFlc , can be formulated 
max 

as follows. 

Each of n jobs J 1 , ... ,Jn has to be processed on m machines M1 , ... ,Mm 

in that order. Job Ji (i = 1, ... ,n) thus consists of a sequence of m 

operations oi 1 , ... ,0im; Oik corresponds to the processing of Ji on~ 

during an uninterrupted processing time pik" We want to find a process

ing order on each Mk (k = 1, ... ,m) such that the time required to com

plete all Ji (i = 1, ... ,n) is minimized. 

It is well known [Conway et al. 1967; Rinnooy Kan 1976] that there exists an 

optimal nlmlFlc schedule with the same processing order on M1 and M2 and 
max 

the same processing order on Mm-l and Mm. This result cannot be extended any 

further, as is shown by the 2l41Flcmax example with p 11 = p 22 = p 23 = P 14 = 1, 

p 13 = p 24 = 3; the unique optimal schedule is illustrated in Fig-

ure 12.1. If, none the less, we restrict ourselves to minimization over all 

0 2 3 4 5 6 7 8 9 10 11 
~~~~~~~~~~~~~~~~~~~~Figure 12.1 

permutation schedules (i.e. schedules with the same processing order on each 

machine), the resulting problem is called the permutation flow-shop problem 

(nJmJPJc ); it will be studied in the present chapter. To find the true 
max 

nJmlFJc optimum, we can apply any of the algorithms for the general job-
max 

shop problem (nlmlGJc ), which is to be discussed in Chapter 13. 
max 

In Chapter 4 we have seen that there exists an 0(n log n) algorithm for the 

nl2IPJc max 
problem [Johnson 1954], but that the nJ3JPJc problem is already 

max 
NP-complete. Thus, we shall restrict ourselves to nJmJPJc algorithms of 

max 



109 

the branch-and-bound type. A number of these has been developed, each of which 

is based on the enumeration scheme described in Section 12.2.1 below. Elimina

tion criteria that can be applied within this enumeration scheme are surveyed 

in Section 12.2.2. In Section 12.2.4 we develop a conceptual framework for 

generating lower bounds; it leads to two bounds that together dominate all 

bounds presented previously but not each other. In Sections 12.2.3 and 12.2.5 

we consider the implementation of elimination criteria and lower bounds. Sec

tion 12.2.6 presents some simple heuristics for obtaining an initial upper 

bound. In Section 12.3 we report on computational experience. Concluding re

marks are contained in Section 12.4. 

12.2. Algorithms 

12.2.1. Enumeration scheme 

The enumeration scheme used in all branch-and-bound algorithms developed so 

far generates all n! permutation schedules according to algorithm PS below. 

procedure algorithm PS (n,cr); 

begin local i; 

procedure node(S,i); 

if S = ~ then comment a permutation schedule a has been generated else 

begin local Q; 

Q:= S; 

while Q ~ ~ do 

begin i:E Q; Q:= Q-{i}; 

cr(i):= i; 

node(S-{i},i+l) 

end 

node ( { 1 , .•• , n} , 1 ) 

end algorithm PS. 

A node at the i-th level of the search tree is characterized by a partial 

schedule a= (cr(l), ••. ,cr(i-1)), indicating that Jcr(i) occupies the i-th po-



110 

sition on each machine, for i = 1, ... ,t-1. Any permutation a of the index 

sets of unscheduled jobs defines a completion of a, i.e. a complete permu

tation schedule aa = (a(l), ... ,a(t-1),cr{l), ... ,0(s)), where s = lsl = n-t+1. 

By placing any Ji (i E S) in the t-th position, we enter a descendant node, 

corresponding to a partial schedule ai = (a(l), ... ,o(t-1),i). 

12.2.2. Elimination criteria 

In this section, we shall be interested in finding conditions under which 

all completions of a partial schedule a' can be eliminated because a schedule 

at least as good exists among the completions of another partial schedule a". 

We define S' and S" as the index sets corresponding to a' and a" respectively, 

and C(o,k) as the completion time of the last job in the partial schedule a 

on~· Then a" dominates a' if for any completion a'a' of a' there exists a 

completion a"a" of a" such that C(a"cr" ,m) s C(a'cr' ,ml. 

THEOREM 12.1 [Ignall & Schrage 1965; Smith & Dudek 1967; McMahon 1969]. If 

S' = S" and C(o",k) s C(a',k) fork= 1, ... ,m, then a" dominates a'. 

Proof. Tri vial. D 

For the case that S' = S", the above criterion is the strongest possible one 

in the following sense: if C(a",k) > C(o',k) for some k, then processing times 

for the unscheduled jobs can be chosen in such a way that C(a"u,m) > C(a'u,m) 

for every completion [McMahon 1969]. 

For the case that S'u{j} = S", several elimination criteria have been 

developed that give conditions for the dominance of a' = ai by a" = aji. 

Defining nk = C(aji,k)-C(ai,k), we can now formulate the following conditions, 

each of which has been claimed to imply dominance of ai by aji. 

(a) [Dudek & Teuton 1964] 

C(aji,k) s C(aij,k) (k 2, ... ,m); 

((3) [Smith & Dudek 1967] 

6k-1 s pjk (k 2, ... ,m); 

(y) [Smith & Dudek 1969] 

6k-1 s pjk and C(aj,k-1) s C(ai,k-1) (k 2, ... ,m); 

(al [Bagga & Chakravarti 1968] 

nk s pjk (k 2, ... ,m); 



111 

(E) [McMahon 1969; Szwarc 1973] 

max{i\_1 ,t.k} :;; pjk (k 2, ..• ,ml; 

(/;;) [Szwarc 1971] 

Lik-1 :;; Lik :;; pjk (k 2, ••. ,m); 

<nl [Szwarc 1973] 

max{LiR, I R, 1, ... ,k} :;; pjk (k 2, ••. ,m) i 

(8) [Gupta 1971] 

Lik :> min{pjR.li = k, ••• ,m} (k = 2, •.. ,m). 

Elimination criteria (a), (8) and (o) have been proved incorrect through 

counterexamples in [ Karush 1965; McMahon 1969; Szwarc 1971]. With respect to 

the remaining ones we have the following theorems. 

THEOREM 12.2. Condition (y) implies condition (E). 

Proof. If (y) holds, then Lik-l :> pjk' and we have only to show that Lik :> pjk" 

C(crji,k-l)+pik 

C(crj,k)+pik 

C(cri,k-l)+Lik-l+pik 

:> C(cri,k-l)+pik+pjk 

::; C(cri,k)+pjk; 

max{C(crj,k-1),C(cr,k)}+pjk+pik 

:> max{C(cri,k-1) ,C(cr,k)}+pik+pjk 

C(cri,k)+pjk" 

Together, (12.1) and (12.2) imply that Lik::; pjk" 

(12 .1) 

( 12. 2) 

D 

THEOREM 12.3 [Szwarc 1973]. Conditions (E), (/;;), (n), and (8) are equivalent. 

Proof. See [Szwarc 1973; Szwarc 1975]. D 

THEOREM 12.4 [McMahon 1969; Szwarc 1971]. If condition (E), (/;;), (n), or (8) 

holds, then crji dominates cri. 

Proof. First, we prove by induction on IPI and k that (/;;) implies 

C(crjip,k)-C(crip,k) ::; Lik for any p and k. (12.3) 

For p = 0 or k = 1, (12.3) is trivially true. Assuming that (12.3) has been 

proved for p p'h, k = R.-1 and p = p', k = R., we have for the case that 

p = p'h, k R. that 



112 

C(ojip'h,£)-C(oip'h,£) 

max{C(ojip'h,£-1) ,C(ojip' ,£)}+ph2-max{C(oip'h,£-1) ,C(oip' ,£)}-ph£ 

$ max{C(ojip'h,£-1)-C(oip'h,£-1) ,C(ojip',2)-C(oip',£)} 

Now, it follows from (12.3) and (s) that 

C(ojip,k) $ C(oip,k)+pjk $ C(oipj,k) for any p and k. 

Thus, by Theorem 12.1, ojip dominates oipj for every p. This implies that 

oji dominates oi. D 

We refer to [McMahon 1969] for a systematic example showing that, (E), and, 

by Theorem 12.3, (s), (n), and (8) as well, are again the strongest possible 

conditions for elimination in the previously mentioned sense. 

The above analysis can be extended to the case that S' c S" with S"-S' 

of arbitrary cardinality [McMahon 1969]. This leads to very stringent condi

tions and it is questionable if the reduction in the size of the search tree 

compensates for the additional computational requirements at each node. 

Computational experience reported in [McMahon 1971; Baker 1975] indi

cates that enumerative methods based on the simple elimination criteria above 

are inferior to those based on lower bounds; inclusion of these criteria in 

the latter type of algorithm leads to a gain in efficiency only for problems 

of moderate size (n $ 15). Altogether, it seems that the elimination criteria 

discussed in this section are of little algorithmic value. 

12.2.3. Implementation of the elimination criteria 

The elimination criteria from Theorem 12.4 were combined with some of the 

more successful lower bounds which will be presented below. 

In order to find out if oi is dominated by oji, it is sufficient to 

check condition (s). It follows easily that in that case 

(k 2, ... ,m). ( 12. 4) 

The dominance relation is transitive; however, the stronger condition (s) 

need not be transitive and we have to check (s) for each pair (i,j) such 

that (12.4) holds for j. Dominance cycles can occur and have to be avoided. 

Altogether, application of elimination criterion (s) for all i,j E S requires 

0(ms2 ) calculations. 



113 

12.2.4. Lower bounds 

Given a partial schedule cr, we now want to find lower bounds on the value 

of all possible completions crcr. We shall be particularly concerned with the 

trade-off between the sharpness of a lower bound and its computational re

quirements; a stronger bound eliminates relatively more nodes of the search 

tree, but if its computational ~equirements become excessively large it may 

become advantageous to search through larger parts of the tree, using a 

weaker but more quickly computable bound. 

We shall generally obtain lower bounds by relaxing the capacity con

straints on some machines, i.e. by treating bottleneck machines of capacity 

one as non-bottleneck machines of infinite capacity. 

From the complexity results in Chapter 4 we know that any problem in

volving three or more bottleneck machines is likely to be NP-complete. Let 

us therefore restrict ourselves to choosing at most two machines Mu and Mv 

(1 $ u $ v $ m) to be bottleneck machines. Since any remaining sequence of 

non-bottleneck machines can obviously be treated as one non-bottleneck ma

chine, it follows that each partial schedule a defines a problem involving 

at most five machines, of which at most three are non-bottleneck ones. They 

are indicated by M(O,u-l)' M(u+l,v-l) and M(v+l,m)' and the processing times 

on these machines are defined by 

Pi(O,u-1) max{C(cr,R.) Iu-1 I 
+ k=R. pik R. 1, ••• ,u} (i E S); 

pi (u+l ,v-1) 
lv-1 

k=u+l pik (i E S); 

Pi(v+l ,m) I:=v+1 pik (i E S). 

The pi(O,u-l) may be interpreted as release dates of Ji (i E S) on Mu. Note 

that, if u = v, at most three machines are involved, including one bottle

neck M . 
u 

Thus, by relaxing capacity constraints, we obtain a problem of sched-

uling {J. Ii E S} on M(O l), M , M( 1 l), M , M( 1 ) in that order, 
i ,u- u u+ ,v- v v+ ,m 

where again the maximum completion time is to be minimized. Any lower bound 

for this problem provides a valid lower bound on all possible completions 

aa; in fact, all lower bounds presented in the literature can be interpreted 

in these terms. 

To arrive at a further classification of possible approaches to this 

lower bound calculation, note that we may eliminate non-bottleneck machines 

M(g,h) from the problem and compensate for this by adding terms 

p*(g,h) = miniES{pi(g,h)} 



114 

to a lower bound on the remaining problem (if u = 1, v = u+l or v = m, we 

have p*(O,u-l) = C(a,1), p*(u+l,v-l) = 0 or p*(v+l,m) = 0, respectively). 

The lower bound that we shall explore here is obtained by finding the optimal 

schedule with respect to this remaining problem. 

Any such approach can be characterized by a string Q of at most five 

syr:ibols from {0,o,*} where 

0 indicates a bottleneck machine; 

o indicates a non-bottleneck machine on which the various processing 

times are taken into account; 

* indicates a non-bottleneck machine that is to be eliminated through 

the device introduced above. 

* Thus, we obtain a lower bound LB(u,v,Q) by finding the optimal value LB (u,v,Q) 

of the problem on machines Mu and Mv of type 0 and possible machines .M(g,h) 

of type o, and adding to it terms p*(g,h) for machines M(g,h) of type*· If 

u # v, LB*(u,v,Q) can be strengthened by exploiting the fact that Mv is not 

available before C(a,v). 

Defining z = {(u,v) J1 ~ u ~ v ~ m}, we conclude that 

LB(W,Q) = max{LB(u,v,Q) J (u,v) E W} 

is a valid lower bound for any W c z. 
If we do not distinguish between symmetric pairs of strings such as 

(*Oo) and (oO*l, we can obtain the nine different strings which together 

constitute the vertex set of the directed graph drawn in Figure 12.2. An 

arc (Q,Q') in this graph indicates that Q' dominates Qin the sense that 



115 

for any pair (u,v) we can find a pair (u',v') such that LB(u',v',Q') ~ 

LB(u,v,Q). The correctness of the dominance rules expressed by Figure 12.2 

is easily proved. Apart from the relations implied by transitivity consider

ations, no other relations hold. Thus, for example, LB(Z,(o0o)) can be larger 

or smaller than LB(Z, (*[Jo0*)), depending on the processing times; an example 

appears below. 

We shall now discuss each .lower bound and compare it to bounds presented 

in the literature, using the following notations: 

r. 
l.U Pi(O,u-1)' 

r 
*U P*(O,u-1); 

p*(v+l,m)" 

Eliminating M(O,u-l) and M(u+l,m)' we have to minimize the maximum completion 
time C on Mu. Clearly LB*(u,u,(*0*)) = l· S p. and max J.E iu 

Note, as a general principle, that we may replace r*U+q*V by 

min{r. +q. li,j E s, i ~ j}, leading to a possibly sharper bound. l.U JV 
LB({(u,u) lu = 1, ... ,m},(*0*)) is the so-called machine-based bound used 

in [Ignall & Schrage 1965; McMahon 1971]; through its use of riu instead of 

C(a,u) it is slightly stronger than the bounds used in [Lomnicki 1965; Brown 

& Lomnicki 1966; McMahon & Burton 1967]. 

(b) (*Do) 

Eliminating M(O,u-l), we have to minimize the maximum lateness Lmax with re

spect to due dates K-qiu on Mu (cf. Section 10.1). LB*(u,u,(*Oo)) is found 

by ordering the jobs according to nonincreasing qiu (cf. Section 10.2.1); 

adding r*U yields LB(u,u,(*00)). 

Analogously, LB(u,u,(o0*)) is obtained by ordering the jobs according 

to nondecreasing r. and adding q to the resulting solution value. Through l.U *U m-1 
its use of rim instead of C(a,1) + lk=l pik' LB(m,m,(00*)) is stronger than 

the noninterference bound proposed in [Ashour 1970]. 

(c) {00o) 

Computation of LB(u,u, (o[Jo)) corresponds to solving an nlllr.~OIL' prob-
i max 

lem, defined by Is! triples (riu'piu'qiu), on Mu (cf. Section 10.1). We have 

proved this problem to be NP-complete in Chapter 4. However, the excellent 

performance of some enumerative nlllr.~OIL' algorithms, as reported in 
i max 

Section 10.3, justifies serious consideration of this lower bound approach. 



116 

Eliminating M(O,u-l)' M(u+l,v-l) and M we obtain LB*(u,v,(*0*0*)) by 
(v+l ,m) ' 

solving the nl21Plc problem on M max u 
and Mv by means of Johnson's algorithm 

[Johnson 1954]. The optimal order of the jobs can be determined in advance; 

it does not change if some jobs are removed, nor is it influenced by the 

availability of Mv from C(a,v) onwards. Applying the principle mentioned 

under (a), we find 

= LB*(u,v,(*0*0*)) + · { + + lh · · S h _, '} min rh p . ( 1 1 ) q . , 1 , J E , r J • 
U 1. u+ ,V- JV 

(el <*DoO*l 

Eliminating M(O,u-l) and M(v+l,m)' we have to solve a special nl31Plcmax 

problem where Mu and Mv are separated by a non-bottleneck machine M(u+l,v-l)" 

LB*(u,v,(*OoO*)) is found by applying Johnson's nl21Plc algorithm using max 
processing times piu+pi(u+l,v-l) and pi(u+l,v-l)+piv (i E S) [Conway et al. 

1967, 94-95]; the availability of M on C(a,v) again does not change the 
v 

optimal processing order. Adding min{r. +q. li,j Es, if. j} yields 
l.U JV 

LB(u,v, (*Do0*)). The so-called job-based bound from [McMahon 1971] 

maxu{r*U + maxiES{pi(u,m) + lhES-{i}min{phu,phm}}} 

and the similar bound from [McMahon & Burton 1967], using C(a,u) instead of 

r. , are easily seen to be underestimates of LB({(u,m) lu = 1, ... ,m-1},(*0o[]*)). 
1.U 

(f) (*0*0o), (*Oo[]o), (OO*Dol, (o[]o[]o) 

The nl2IPIL' problem corresponding to LB*(u,v,(*0*00)) has been shown to max 
be NP-complete in Chapter 4, as has the nl2IP,r.~Olc problem corresponding 

1 max 
to LB*(u,v,(o[]*O*)). Essentially, we have replaced a non-bottleneck machine 

in (oOo) bv a bottleneck one (cf. Section 10.4). No specific algorithms have 

been developed for these problems as yet. Similar remarks apply to the NP

complete problems corresponding to the remaining lower bound approaches. 

In view of the above discussion, the lower bounds under (c) and (e) are ob

vious candidates for further investigation. LB(Z,(*000*)) dominates all pre

viously developed bounds. There are, however, situations in which LB(Z, (o0o)) 

is stronger then LB(Z,(*[]o0*)), and vice versa. 



117 

Example. Take n = m = p 12 = p 13 = p 22 = p 31 = P 32 = 3, P 11 = P 33 = 2, 

p 21 = p 23 = 1. The optimal 3j3jPjcmax value is equal to 12, and we find that 

LB(2,2, (oDo)) 12 > LB(Z,(*Do0*)) = max{ll,11,11} = 11. 

If we change the pi2 to (i 1,2,3), then the optimal value equals 9, and 

LB(l,3, (*DoD*l) = 9 > LB(Z, (oDo)) = max{8,6,8} = 8. 

12.2.5. Implementation of the lower bounds 

In this section we shall discuss in detail the implementation of each lower 

bound that was tested. For all lower bounds except LB(Z,(00o)) we replaced 

riu by C(o,u); since each of these bounds only involves r*u' very little is 
gained and, in fact, solution times are increased by using riu instead of 
C(o,u). 

In each case we applied a recursive search strategy of the type "bb 

backtrack2" where descendant nodes are chosen in order of nondecreasing 

lower bounds (see Chapter 8). We can distinguish two types of calculations: 

(1) calculations performed once at the root node of the search tree; 

(2) calculations performed at the node corresponding to CT in order to ob

tain lower bounds LB(W,Q) for all oi (i ES). 

(a) LB(Z, (*D*l) 

(1) At the root node q. is calculated for all (i,u) in 0(mn) steps. J.U 

(2) For each Mu, liES piu is calculated and indices i~ and i~ with 

qi' u min{q. Ii E s}, 
u' J.U 

qi" ,u min{q. Ii E s-{i'}} 
J.U u u 

are found in 0(s) steps. For each choice i E S, LB(u,u, (*D*)) is then 

calculated in 0(1) steps as 

r·· if i f i~, 
max{C(o,u) ,C(Gi,u-1)} 

liES 
J. ,u + piu + u 

qi" ,u if i i I• 

u u 
Altogether, calculation of LB(Z,(*D*)) for all oi (i ES) requires 

0(ms) steps. 



118 

(b) LB(Z, (*00)) 

(1) At the root node the qiu are calculated and, for all u, ordered into 

a nondecreasing sequence in 0(rnn log n) steps. 

(2) For each choice i ES, LB(u,u,(*[io)) is calculated in 0(s) steps by 

scheduling {J.Jj E S-{i}} according to the ordering found in the root 
J 2 

node. Calculation of LB(Z,(*00)) for all ai (i ES) requires 0(ms) 

steps. 

We have not considered LB(Z,(o0*)); this bound performed very poorly in some 

initial testing. 

(c) LB (Z, (o[lo)) 

(1) At the root node the qiu are calculated and ordered in 0(rnn log n) steps. 

(2) Calculation of LB(Z,(O[io)) for all ai (i ES) requires the solution of 

0(ms) nJ1Jr.~OJL 1 problems. 
1 max 

This bound was not implemented; it is dominated by LB(W,(*Do0*)) and requires 

the same computational effort. 

(eO) job-based bound 

(1) At the root node pi(u,m) and min{piu'pim} are calculated for all (i,u) 

in 0(rnn) steps. 

(2) The job-based bound for ai on Mu can be rewritten as follows: 

where 

C(ai,u) + maxjES-{i}{pj(u,m) + lhES-{i,j}min{phu'phm}} 

C(ai,u) + T - min{p. ,p.} + max. {'}{u.} 
U 1U 1ffi JES- 1 JU 

Tu lhESmin{phu'phm}, 

u. p,( )-min{p. ,p.}. 
JU J u,m JU JID 

Accordingly, for each Mu the T and u. (j E S) are calculated and 
U JU 

indices i' 
u 

U, I 
1 ,u 

u 

ui" ,u 
u 

and i" with 
u 

max{u. Jj "E s}, 
JU 

max{ u. I j E s-{ i'}} 
JU U 

are found in 0(s) steps. For each choice i E S, the bound on M 
u 

calculated in 0(1) steps as 

C (a i, u) + T - min { p. , p. } + 
U 1U 1m 

{
\J,' 

1 ,u 
u 

U. II 
1 ,u 

u 

if i 

if i 

i' i I ' 
u 

i I ~ 
u 

is then 



119 

Altogether, calculation of the job-based bound for all oi (i E S) re

quires 0(ms) steps. 

We note that the composite bound LB(McM) = max{LB(Z, (*D*)) ,job-based bound} 

from [McMahon 1971] is the strongest lower bound developed so far. 

(e) LB(W, {*DOD*)) 

(ell w = wl = {(u,m) Ju= 1, ... ,m-1}. 

(e2) W = w2 consists of m pairs of critical machines for which I~=l piu' 

I:=l Piv and I:=l (piu+piv) are relatively high; these pairs are deter

mined in 0(mn) steps. 

( 1) At the root node the p. +p. ( 1 l) and p. ( 1 l)+p. are calculated 
iu i u+ ,v- i u+ ,v- iv 

and an optimal order of the jobs with respect to LB*(u,v,(*DoD*)) is 

found for all (u,v) E W in 0(mn log n) steps. 

(2) Note that for any subset of unscheduled jobs an optimal order with re

spect to LB*(u,v,(*DoD*)) has been determined at the root node. Calcula-

tion of LB(W, (*DoD*)) for all oi (i ES) can now easily be seen to re

quire 0(ms2 ) steps. 

12.2.6. Upper bounds 

The value of the best solution found during the tree search provides an upper 

bound on the value of the optimal solution. At the root node a heuristic 

method is used to obtain an initial upper bound. Two well-known methods are 

available for this purpose. 

(A) [Palmer 1965] 

Calculate slope indices 

\ID m+l 
Ai= lk=l (k--2-)pik (i = 1,, .. ,n), 

order the jobs according to nondecreasing Ai and evaluate the resulting 

nJmJPJc schedule. This procedure requires 0(max{mn,n log n}) steps. 
max 

(B) [Campbell et al. 1970] 

apply Johnson's nJ2JPJc algorithm using processing 
max 

P.k and lkm- 1 0 p,k (i = 1, ... ,n) and evaluate the resulting 
i -m+ -~ i 

For 2 = 1, ... ,m-1, 
. ,2 

times lk=l 

processing order as nJmJPJc schedule. Choose the best solution value as 
max 

initial upper bound. This procedure requires 0(mn log n) steps. 



120 

The second method turned out to produce superior results. In the case of 

LB(W,(*[]o[]*)), it also outperformed evaluation of the optimal LB*(u,v,C*[]o[]*)) 

schedule for all (u,v) E W. Accordingly, in each implementation heuristic 

(B) was chosen to provide an initial upper bound. 

12.3. Computational experience 

12.3.1. Test problems 

For each test problem with n jobs and m machines, mn integer data pik were 

generated from uniform distributions between aik and Bik. The parameters 

aik and Bik are characterized by the following two aspects, thought to be 

of possible influence on an algorithm's performance: 

correlation between the processing times of a job, in the sense that 

the pik (k = 1, ••• ,m) are consistently relatively large or relatively 

small; for problems with correlation, n additional integers yi were 

randomly drawn from {1,2,3,4,5}; 

a trend within the processing times pik as k increases. 

For each chosen combination of n and m, four groups of three problems each 

were generated according to Table 12.1. A second set of twelve problems was 

obtained by inversion, i.e., by renumbering~ as Mm+l-k fork= 1, .•• ,m; 

thus, problems with a positive trend are transformed into problems with a 

negative trend. 

TABLE 12. 1. VALUES OF PARAMETERS OF TEST PROBI..EMS 

aik : 8ik 
no correlation correlation 

no trend 1 : 100 20yi+l : 20yi+20 

positive trend 12!(k-1)+1 : 12~(k-1)+100 2~(k-1)+20y,+1 : 2~(k-1)+20y,+20 
l. l. 

12.3.2. Results 

The algorithms were coded in ALGOL 60 and run on the Control Data Cyber 73-28 

of the SARA Computing Centre in Amsterdam. Tables 12.2,3,4,5 show the compu

tational results. 



121 

First, all lower bounds were tested on three sets of problems with 

nlm equal to 613, 615 and 6IB respectively. These experiments indicate that 

the "one-machine bounds" LB ( Z, ( *D*) ) , LB ( z, (*Do) ) and LB ( z, ( oOo) ) produce 

inferior results. Furthermore, the job-based bound can be combined quite 

easily with LB(Z,(*D*l) or LB(Z,(*00)); the latter combination dominates the 

former one but leads to increased solution times. 

Consequently, only the composite bound LB(McM) and both "two-machine 

bounds" LB(W1 ,(*Do0*)) and LB(W2 ,C*DoD*)) were compared on larger problems 

with nlm equal to 1013, 1015, 1513, 2013, 2015, and 50!3. Since LB(W1 ,(*0oD*ll 

dominates LB(McM), the search tree created by the former bound is in most 

cases smaller than the tree created by the latter bound. However, 

LB (W 1 , ( *DoD*) ) is computationally more expensive. The behaviour of 

LB(w2 , (*DoD*)) is rather erratic. Note that quite often these two-machine 

bounds achieve the minimum number of nodes, which is equal to n+l in the 

case that the initial upper bound is optimal and ~n(n+l) otherwise. 

An increase in the number of machines drastically increases the solution 

times. Less than half of the 2015 problems could be solved within one minute. 

The same three bounds were combined with the elimination criteria. Pre-

vious research [McMahon 1971] indicates that these criteria have a positive 

influence on solution times only for small problems. In our experiments this 

was confirmed only with respect to LB(McM). An explanation of this phenomenon 

might be that the computational requirements of the elimination criteria are 

of a larger order of magnitude than the requirements of this lower bound. In 

combination with LB(W,(*DoD*)), however, use of elimination criteria leads 

to significant decreases in solution times and numbers of unsolved problems, 

especially if the number of machines is small. Apparently, the elimination 

criteria eliminate nodes that would be eliminated by lower bounds in any 

case, but do so with less computational effort. 

Altogether, the best results were obtained with algorithms incorporating 

the elimination criteria and LB(W,(*DoD*)). Table 12.4 indicates that if one 

minute running time is available to solve a particular problem, it should be 

allocated to such an algorithm. 

Finally, Table 12.5 indicates that both correlation and trends influence 

the computational performance. Problems with correlation are definitely more 

difficult. Also, problems with a negative trend are more difficult than prob

lems with a positive trend, confirming earlier impressions [McMahon 1971] 

that it is helpful to invert a problem if that leads to "fuller" machines 

Mk for k > ~m. 



122 

TABLE 12.2. MEDIAN SOLUTION TIMES 

(I;) (1;) (I;) 

(a) (b) (c) (eO) (b,eO) (a,eO) (el) (e2) (a,eO) (el) (e2) 

613 . 17 .26 .38 .08 . 13 .07 .05 .06 .07 .05 .06 

615 .63 1.18 2.57 .18 .26 .15 .16 .39 .14 .13 .32 

618 1.03 !. 39 3.17 .18 .28 .19 .22 1.06 .18 .25 .86 

1013 .20 .25 .34 .21 .18 .25 

1015 .91 .40 6.22 1.09 .42 3.62 

1513 .34 .57 .89 .48 .41 .49 

2013 .55 .62 .81 2.99 .36 .54 

2015 - - - - - -
5ol3 3.73 31.60 28.98 - 13.94 27.29 

TABLE 12.3. MEDIAN NUMBERS OF NODES 

EC - - - - - - - - ( 1;) ( 1;) (S) 

LB (a) (b) (c) (eO) (b,eO) (a,eO) (e1) (e2) (a,eO) (el) (e2) 

613 69 64 60 46 19 23 7 7 16 7 7 

615 208 203 179 47 33 35 30 54 29 22 36 

618 260 212 167 26 23 23 16 136 23 19 97 

1013 55 55 55 55 55 55 

1015 290 55 971 220 55 599 

1513 129 120 120 120 120 120 

2013 219 116 116 978 116 116 

2015 - - - - - -
50l3 1681 2356 1275 - 1275 1275 

TABLE 12.4. NUMBERS OF UNSOLVED PROBLEMS 

EC - - - ( 1;) ( 1;) (1;) 

LB (a,eO) (el) (e2) (a,eO) (el) (e2) 

613 0 0 0 0 0 0 

615 0 0 0 0 0 0 

618 0 0 0 0 0 0 

1013 1 1 1 1 1 1 

10j5 3 0 8 2 0 7 

1513 7 2 1 5 2 1 

2013 10 6 5 10 2 2 

2015 15 14 19 13 13 18 

5ol3 11 10 9 12 8 10 



123 

TABLE 12.5. NUMBERS OF UNSOLVED PROBLEMS FOR ALL nJm 

EC - - -
LB (a,eO) (ell (e2) 

correlation+ no yes no yes no yes 
trend+ 

no 1 9 1 6 1 8 

no 4 8 3 5 5 8 

positive 0 9 0 7 0 8 

negative 7 9 4 7 5 8 

LEGEND TO TABLES 12.2,3,4,5 

Each entry in Tables 12.2,3,4 (Table 12.5) represents 24 (27) test problems. 

solution times : CPU seconds on a Control Data Cyber 73-28. 

numbers of nodes : including eliminated nodes. 

numbers of unsolved problems with a time limit of 60 seconds. 

EC elimination criteria; see Section 12.2.3. 

LB lower bound; see Section 12.2.5; 

(a) LB(Z,(*0*)); 

(b) LB(Z,(*[]o)); 

(c) LB(Z,(o[]o)); 

(eO) job-based bound; 

(e1) LB(W1 ,(*Do0*)); 

(e2) LB(W2 ,(*Do0*)). 

nJm : number of jobslnumber of machines. 

12.4. Remarks 

The computational experiments reported in the preceding section confirm that 

the new two-machine bound is superior to previous bounds in solving nlmlPlc 
max 

problems. It has to be investigated in more detail for which set of machine 

pairs this bound should be calculated. 

As long as the number of machines is small, problems with up to 50 jobs 

can often be solved reasonably quickly. An increase in the number of machines 

makes lower bounds less reliable and drastically increases solution times. 



124 

For these larger problems a strong lower bound might be obtained by relaxing 

the assignment of processing times to jobs, i.e. by ordering plk'···•Pnk on 

~ (k = 1, ... ,m) in such a way that the resulting arrangement, when evaluated 

as an nlmlPlc schedule, has an optimal solution; however, it is unknown 
max 

how to solve this problem form > 2. Also, a subgradient approach based on 

Lagrangean multipliers seems an interesting topic for future research. 

Contrary to expectations, the use of elimination criteria led to signi

ficant improvements when used in combination with the two-machine bound. In 

view of this empirical result, it may be worth-while to investigate the com

putational influence of more intricate elimination criteria such as those 

developed in [McMahon 1971]. 



125 

13. JOB-SHOP SCHEDULING 

13.1. Introduction 

This final chapter of Part III is devoted to the general job-shop problem, 

indicated by nlm!Glc . The problem can be formulated as follows. max 
There are n jobs J 1 , ... ,Jn that have to be processed on m machines 

M1 , ... ,Mm. Job Ji (i = 1, ... ,n) consists of a sequence of ni operations 

0 11 ; these operations are indexed by u = Ni_ 1+1, ... ,Ni, where Ni= 

I;=l nj. Machine Mk (k = 1, ... ,m) can handle only one job at a time; 

the set of operations to be performed on Mk is also indicated by l\. 
Operation Ou (u = 1, ... ,Nn) corresponds to the processing of job lu 

on machine µu during an uninterrupted processing time Pu· We seek to 

find a processing order on each machine such that the maximum comple-

tion time is minimized. 

There exists an 0(n log n) algorithm 

son 1956], but two minor extensions 

for the nl2IG,n.s2lc problem [Jack-
i max 

of this problem, nl2IG,n.s3lc 
i max 

and 

nl3IG,n.s2lc , have been shown to be 
i max 

NP-complete in Chapter 4. Even within 

the class of NP-complete problems, the general nJm!G!c problem appears to max 
be a very difficult one. A classical and by now traditional quotation from 

[Conway et al. 1967] asserts pessimistically that "many proficient people 

have considered this problem, and all have come away essentially empty-hand

ed. Since this frustration is not reported in the literature, the problem 

continues to attract investigators who just cannot believe that a problem so 

simply structured can be so difficult until they have tried it." 

An nlm!G!c problem can be conveniently represented by means of a max 
disjunctive graph G = (V,CuV) [Roy & Sussmann 1964] where 

Vis the set of vertices, representing the operations, including fic

titious initial and final operations o0 and O*: 

V = {0,1, ... ,N ,•}; 
n 

C is the set of directed conjunctive arcs, representing the given ma

chine orders of the jobs: 

C = {(u,u+1)!1 = l 1 } u {(O,N. 1+1),(N,,*lli = 1, ... ,n}; u u+ 1- i 

V is the set of directed disjunctive arcs, representing the possible 

processing orders on the machines: 

V = { (u,v) lµu = µv, u i' v}; 

a weight pu is attached to each vertex u, with p 0 0. 



126 

The disjunctive graph for a 3J3JGJc example is drawn in Figure 13.1. 
max 

0 

Figure 13.1 Disjunctive graph G (V,CuV) for the example. 

A pair of disjunctive arcs {(u,v), (v,u)} is called settled if one of the 

two arcs has been added to a subset D c V of chosen arcs and the other one 

has been rejected; by choosing {u,v), we assign precedence to O over O 
u * v 

on their common machine. A feasible schedule is defined by a subset D c V 

such that 

(u,v) E D* if and only if {v,u) E V-D*; 

the directed graph G(D*) = (V,CuD*) is acyclic. 

The value of such a schedule is given by the weight of the maximum-weight 

path (also called "longest" or "critical") path in G(D*). The nJmJGJc 
max 

problem now consists of finding a minimaximal path in G, i.e. a maximum-

* weight path that is minimal over all subsets D , satisfying the above re-

* quirements. With respect to our example, the graph G(D ) corresponding to 

processing orders {o1,o4 ,o7) on M1, {o6 ,o2 ,o5 ) on M2 and (o3 ,o8) on M3 is 

drawn in Figure 13.2; the value of the schedule is equal to 14. 

* Figure 13.2 Directed graph G(D ) 

0 

(V,CuD*) for the example. 



127 

The complexity results indicate that our quest for optimal solutions has to 

involve some form of implicit enumeration. In Section 13.2 several branch

and-bound approaches will be described in terms of the disjunctive graph 

model above. Accordingly, subsets generated during the tree search will cor

respond to subsets D c V of chosen disjunctive arcs; the successive augmen

tations of Dare determined by the branching rule. In Section 13.2.1 we dis-

* cuss how to compute lower bounds on all possible completions D ~ D of a 

partial feasible schedule defined by D. In Section 13.2.2 we examine how a 

strong bound appearing from this discussion can be combined with several 

branching rules to yield branch-and-bound algorithms of reasonable quality. 

In Section 13.2.3 we describe two algorithms that were actually implemented. 

Section 13.3 reports on some limited computational experience with these 

methods and Section 13.4 contains concluding remarks. 

13.2. Algorithms 

13.2.1. Lower bounds 

Let D c V be a subset of chosen disjunctive arcs such that G(D) = (V,CuD) is 

acyclic. We seek to find a lower bound on the weight of the critical path in 

G(D*) with respect to every n* ~ D that corresponds to a feasible schedule. 

* We obtain such a bound LBk(D) (1 $ k $ m) by relaxing the capacity con-

straints on all machines except Mk. This relaxation corresponds to disregard

ing all disjunctive arcs in V-D except those on r\. Accordingly, for each 

0 u E r\ we can determine 

a head ru, i.e. the maximum weight of a path in G(D) from 0 to u: 

r 0 o, 
r max{r +p I (u,v) E CuD}; v u u 

a body pu' i.e. the given processing time; 

a tail qu' i.e. the maximum weight of a path in G(D) from u to * minus 

pu: 

o, 
max{p +q I (u,v) E Cun}. -v v 

Furthermore, we have a precedence constraint Ou < Ov if G(D) contains a path 

from u to v. 



128 

The heads ru are the earliest possible starting times for Ou. The latest 

possible starting times Ru can be determined by 

R 
* 

R 
u 

r*, 

min{R -p I (u,v) E Cun}; 
v u 

they are related to the tails qu by Ru+pu+qu = r*. 

Clearly, extending D by settling more pairs of disjunctive arcs will 

never decrease the ru and~· It follows that 

provided by the optimal solution value of the 

* a valid lower bound LBk(D) is 

!Mk I I 1 [prec ,r. 2'0 I L' problem, 
i max 

defined by triples (ru,pu,qu) and precedence constraints (cf. LB(k,k,(oOo)) 

in Section 12.2.4). 

* A general lower bound LB (D) is given by 

* * I LB (D) = max{LBk(D) k 1, ... ,m}. 

In fact, we may take 

where k' runs over all machine indices such that there are still unsettled 

pairs of disjunctive arcs on Mk,. 

* These observations extend to every lower bound LBk(D) on LBk(D). It 

turns out that all bounds presented in the literature correspond to special 

* choices LBk(D) s LBk(D), as indicated by the following survey. 

(a) (cf. [Schrage 1970A; Charlton & Death 1970B; Ashour & Parker 1971; 

Ashour & Hiremath 1973; Ashour et al. 1973; Ashour et al. 1974]) 

LBk(D) = min0 M {r } + louEM. Pu· 
UE k U --k 

(b) (cf. [Nemeti 1964; Greenberg 1968; Schrage 1970A; Charlton & Death 

1970A; Charlton & Death 1970B; Nabeshima 1971; Ashour & Parker 1971; 

Sussmann 1972; Ashour et al. 1973; Ashour et al. 1974]) 

LBk(D) = max {r +p +q } 
0 EM u U u 

u k 
(cf. LB~ in Section 10.2.3). 

]_ 

(c) (cf. [Brooks & White 1965; Florian et al. 1971; Sang & Florian 1970; 

Ashour et al. 1974]) 

LBk(D) = LBk(D) + mino M {q} 
UE k U 

where LBk'(D) is the value of the optimal IM. I [1[r.~olc schedule on 
k i max 

l\, obtained by ordering the Ou E ~ according to nondecreasing ru 

(cf. Section 10.2.1). 



129 

(d) [Schrage 1970B] 

LBk(D) = minOUE~{ru} + LBk(D) 

where LBk (D) is the value of the optimal I~ 1 I 11 I L~ax schedule on t\, 
obtained by ordering the Ou E Mk according to nonincreasing ~ (cf. 

Section 10.2.1). 

(e) [Bratley et al. 1973; McMahon & Florian 1975] 

LBk (D) = LBk'(D) 

where LBk"'(D) is the value of the optimal I Mk 1 I 11 r. ?:0 I L' schedule on 
i max 

~· obtainable by enumerative methods such as algorithms BS and MF 

(see Sections 10.2.2 and 10.2.3). 

Lower bounds (a,b,c,d) can be calculated by polynomial-bounded algorithms; 

it is easy to construct examples in which they are strictly exceeded by 

* LBk(D). The problem of finding bound (e) has been shown to be NP-complete 

* in Chapter 4; an example with LBk(D) < LBk (D) can be found in Section 10. 2 .1. 

The relatively small increase in solution times caused by the incorpo

ration of precedence constraints in algorithms for obtaining LBk(D) (see 

* Section 10.2.3) justifies serious consideration of LBk(D) as a lower bound. 

In the next section we shall see how this bound can be combined with two 

branching 

Note 

rules to yield nlmlGlc branch-and-bound algorithms. max 
* that we may stop calculating LBk(D) as soon as an upper bound on 

* * LBk(D) is. not greater than the largest LBi(D) (i # k) found so far at the 

node under examination. Moreover, the node can be eliminated as soon as any 

* lower bound on LBk(D) appearing during its calculation reaches the current 

upper bound UB. 

13.2.2. Enumeration schemes 

Suppose that at the current node of the nlmlGlc search tree we have max 
* LB (D) < UB. In that case the node cannot be eliminated and we have to apply 

some branching rule. In this section we discuss two enumeration schemes; a 

third one, presented in [Balas 1969] (see also [Agarwal 1975]) has turned 

out to produce disappointing computational results [Florian et al. 1971] 

and will not be considered here. 



130 

(i) generating active schedules 

(cf. [Brooks & White 1965; Florian et al. 1971]) 

A frequently used enumeration scheme generates all active schedules according 

to algorithm AS2 below (cf. algorithm ASl in Section 10.2.2). 

procedure algorithm AS2 (G,r); 

begin local k,u,T; 

procedure node(S,T,(t lo ET)); 
v v 

if T = ~ then comment an active schedule has been generated else 

local Q; 

k:E {ilmin{t +p lo E 
v v v 

Q:= {O lo E SOM_ , t u u -1<: u 
while Q 1' ~ do 

snM 0 } = min{t +p lo E ,., v v v 
< min{t +p lo E s}}; v v v 

.begin o :E Q; Q:= Q-{o }; 
u u 

r := t · u u' 

s}}; 

node(if 1 
- u 

1u+l then (S-{O })u{o 1} else s-{o }, u u+ -- u 

end 

T-{O), 

(if 1v = tu or µv 

I 0 E T-{0 })) 
v u 

T:= {o Iv= 1, .•• ,N }; 
v n 

node({ON· +lli = 1, .•. ,n},T,(Olo € T)) 
i-1 v 

end algorithm AS2. 

µu then max{t ,t +p } else t 
-- v u u -- v 

THEOREM 13.1. (cf. [Giffler & Thompson 1960]). Algorithm AS2 generates every 

active schedule with respect to a disjunctive graph G exactly once. 

Proof. Whenever a call "node(S,T,(t lo ET))" is made, T contains all un
v v 

scheduled operations Ou' the tv indicate their earliest possible starting 

times, and s c T consists of·those Ou for which {o 11 = t , v < u} has been 
v v u 

scheduled. Thus, we have only to show that the restriction to Q c S is the 

proper one, i.e. that 

(1) each generated schedule is active; 

(2) a schedule that is not generated is not active; 

(3) all generated schedules are different. 



131 

We prove (1) and (2), (3) being obvious. 

(1) Suppose that in some schedule generated by algorithm AS2 we try to de

crease rv for some ov. If this is at all possible, it follows that at some 

earlier stage we must have been able to set r':= t with r' < r but have 
v v v v 

set ru:= tu instead, where µu µv, tu < tv+pv and tu+pu > tv. Hence, ru 

would have to be increased. 

(2) Suppose that we set ru:= tu for an Ou E S-Q. If lu = lu+!' then we have 

at the next stage Ou+l E S-Q since tu+l ~ tu+pu ~ tv+pv for some Ov E SnMk, 

and Ou+l should not be scheduled immediately. Thus, if the resulting schedule 

is at all active (which need not be the case) , it can be generated by algo-

rithm AS2. D 

Selecting Ou E Q for the next position on ~ implies that we settle the pair 

of disjunctive arcs {(u,v) ,(v,u)} for each o E (TnM1 )-{0} by choosing (u,v) 
v < u 

and rejecting (v,u). Thus, if a parent node corresponds to a subset D c V of 

chosen disjunctive arcs, its descendants are characterized by subsets 

Du{ (u,v) lo E (TnMk)-{O }} for o E Q. v u u 
* To combine this enumeration scheme with LB (D), we consider the struc-

ture of the precedence constraints on ~. Let Mk = ~\ -T and Mk_ = Mkn'I' indi

cate the sets of scheduled and unscheduled operations on l\ respectively. 

Then M{ precedes Mk_ and a processing order for Mk has been determined, the 

definitive starting time of O E rt' being given by r . It follows that find-u k u 
ing LBk*(D) in this case boils down to solving an IM"I l1lprec,r.~OIL 1 prob-k i max 

** lem only with respect to Mk; we obtain a value LBk (D) and take 

* ** LBk (D) = max{max '" {r +p +q } ,LBk (D)}. 
OuE"'k u u u 

We finally note that the precedence constraints on Mk are of a special type; 

for o ,o E M-" we have O < O only if l = l and u < v. Hence, if for a u v k u v u v 
certain problem µu = µv implies that lu ~ lv for all (u,v), then LBk'(D) 

* LBk(D) and thus provides an equally strong bound. 

(ii) settling essential conflicts 

(cf. [Nemeti 1964; Charlton & Death 1970A; Lenstra & Rinnooy Kan 1973]) 

A second enumeration scheme proceeds by choosing a branching pair {u,v} with 

{(u,v) ,(v,u)} c V-D and partitioning the parent subset corresponding to Din 

two disjoint descendants corresponding to Duv = Du{(u,v)} and Dvu = Du{(v,u)} 

respectively. An advantage of such a scheme is that it might allow early 

settlement of particularly crucial disjunctive pairs, after which all other 

settlement decisions may follow more or less automatically. 



132 

In some respects this branching rule compares unfavourably to the one 

outlined under (i).The precedence constraints on~ can now have an arbi

trary structure and must be taken into account explicitly during the calcu-

* lation of LBk(D). Furthermore, the maximum depth of the search tree is 

H~=ll~l<lr\l-ll as compared to Nn for scheme (i).It seems that this sec

ond scheme can be competitive only if 

(a) we succeed in taking essential branching decisions in the upper levels 

of the tree; 

(b) we can choose a branching pair {u,v} in such a way that G(Duv) and 

G(Dvu) are acyclic. 

With respect to (b) we note that a cycle in G(Duv) or G(Dvu) can only occur 

if G(D) contains a path from v to u or from u to v. In that case, u and v 

are linked by an arc in the transitive closure of G(D); construction of this 

closure would therefore take care of problem (b). 

It turns out, however, that certain indicators calculated to solve 

problem (a) often allow solution of (b) at the same time. In fact, cycles 

will be avoided altogether if we restrict the choice of a branching pair 

{u,v} to the set C(D) defined by 

C(D) {{u,v}lµu = µv' ru+pu > rv' rv+pv > ru}. 

A pair {u,v} E C(D) will be called a conflict on machine µu µ • 
v 

THEOREM 13.2. If {u,v} E C(D), then G(D ) and G(D ) are acyclic. 
UV VU 

Proof. If G(D) contains a path from v to u or from u to v, then either 

rv+pv $ ru or ru+pu $ rv, which implies that {u,v} i C(D). 0 

THEOREM 13.3. If C(D)n{{u,v}lµu = µv = ~} = ~, then the ru define an opti

mal one-machine schedule on~ with value at most equal to r*. If C(D) = ~, 
then the r define an optimal nlm!Glc schedule with value r*. u max 

Proof. For each pair {u,v} i C(D) with µu = µv = Mk we have either ru+pu $ 

rv or rv+pv $ ru. The value of the one-machine schedule is given by 

* LBk(D) max0 M {r +p +q } 
UE k U U U 

r + max {r -R } $ r . 
* OUE~ U U * 

For each pair {u,u+l} with lu = lu+l we have ru+pu $ ru+l· The value of the 

overall schedule is given by 

* LB (D) = max {r +p +a } 
u u u \l 

0 



133 

It follows that, if no conflict exists, there is no need to branch at all. 

On the other hand, if the r do not yield a feasible schedule, we know that 
* u C(D) ~ 0. Since LBk(D) > r* indicates the presence of a conflict on Mk, a 

natural way to find an Mi on which at least one conflict exists is checking 

* the Mk for conflicts in order of nonincreasing LBk(D). 

A way to find a suitable branching pair on this Mi is now provided by 

the introduction of penalties 

The usefulness of these penalties as branching indicators is illustrated by 

the following theorem and its corollary. 

THEOREM 13.4. G(Duv) contains a path of weight r*+Puv 

Proof. A path with the required weight is given by the maximum-weight paths 

from 0 to u and from v to* joined by arc (u,v): 

r +p +r -R 
u -u * v 

r +P 0 * UV 

Remark. If Puv > 0, then r*+Puv need not be equal to the weight of a maxi

mum-weight path in G(Duv). For instance, if G(D) contains a path from v to 

u of weight ir*, then ru > ir*, Rv < ir*, Puv > ru-Rv > 0 and G(Duv) con
tains a cycle. 

COROLLARY 13.1. 

(a) If Puv ~ 0, then LB(Duv) ~ r*+Puv 

(b) If Puv ~ UB-r*, then the node corresponding to Duv can be eliminated. 

Proof. Immediate from Theorem 13.4. 

Corollary 13.1 suggests that a reasonable indicator of the cruciality of a 

potential branching pair is given by 

p* = min{P ,P }. 
UV UV VU 

A plausible candidate for branching is a pair {u*,v*} such that 

* * I P * * = max{P µ = µ =Mn, {(u,v) ,(v,u)} c V-D}. U V UV U V ~ 

0 

Unfortunately, however, the following example shows that, if {u*,v*} i C(D), 

then G(Du*v*) or G(Dv*u*) may contain a cycle. 



134 

Example. Consider the 4l21Glc problem specified by the data in Table 13.1. max 
The disjunctive graph G (V,CuVJ is drawn in Figure 13.3. At the root node, 

* * where D = 0, we find r* 2, LB 1 (0) = LB2 (0) = 3; note that C(0) = 

{{1,2},{4,6}}. We may choose M1 as machine on which to find a branching pair. 

We have P:2 = P:5 = P;5 = 0 and may select {u*,v*} = {2,5} as branching pair. 

* At the descendant node corresponding to D52 = {(5,2)} we find r* = LB 1 (D52 J 

* LB2 (D52 J 4; now C(D52 J = {{4,6}}. Looking for a branching pair on M2 , we 

* * * * * have P34 P36 = P46 = -2 and we may select {u ,v} = {3,4}. Choosing (4,3) 

and rejecting (3,4) would create a cycle (2,3,4,5,2). 

TABLE 13 .1. DATA FOR THE EXAMPLE 

u 2 3 4 5 6 

1 Jl J2 J2 J3 J3 J4 u 

µu Ml Ml M2 M2 Ml M2 

Pu 1 1 1 1 1 1 

Figure 13.3 Disjunctive graph G (V,CuV) for the example. 

The following theorem identifies some cases in which the absence of cycles 

is guaranteed for both descendants. 



135 

THEOREM 13.5. G(Duv) and G(Dvu) are acyclic if any of the following condi

tions holds. 
* (a) p 
UV 

> O; 

(b) IPUV-PVUI < pu+pv; 

(c) p > p > r -R ; 
vu UV v v 

(d) p > p > r -R 
UV vu u u 

Proof. 

(a) If p* > 0, then {u,v} e C(D) since UV 

ru+pu-rv 2 ru+pu-Rv 

rv+pv-ru 2 rv+pv-Ru 

p > 0, 
UV 

p > 0, 
vu 

and we can apply Theorem 13.2. 

(b) If G(D) contains a path from v to u, we have 

Pu$ (ru+pu)-(rv+pv)' 

pv $ Ru - RV. 

Addition of these inequalities yields 

p +p $ p -P $ IP -P I ( 13 .1) U V UV VU UV VU 

which contradicts condition (b).The existence of a path from u to v 

leads to a similar contradiction, and hence both G(D ) and G(D ) are UV VU 
acyclic. 

(c) If G(D) contains a path from v to u, then it follows from (13.1) that 

we have 

p < p 
VU UV 

The existence of a path from u to v implies that 

(d) Analogous to (c). 

The above discussion leads to various strategies for selecting a branching 

pair {u*,v*}. These branching rules are outlined below. In all cases, we 

restrict our attention to the set 

{{u,vJIµ = µ = M,, {(u,v),(v,u)} c V-D} u v x, 

D 

where the machine MQ, on which at least one conflict exists has been found by 

* checking the Mk for conflicts in order of nondecreasing LBk(D). 



136 

Bl. 

B2. 

B3. 

B4. 

{u * ,v*} maximizes 

{u*,v*} maximizes 

{u * ,v*} maximizes 

conditions: 

(a) {u,v} E C(D); 

min{r +p -r ,r +p -r } over all. {u,v}. 
* u u v v v u 

P over all {u,v} E C(D). 
UV 

p* over all {u,v} which satisfy any of the following 
UV 

(b) IP -P I < pu+pv; UV VU 

(c) p > p > r -R ; 
vu UV v v 

(d) p > p > r -R . 
* *UV VU u u 

{u ,v } maximizes p* over all {u,v}. 
UV 

Branching rules Bl, B2 and B3 guarantee that both G(Du*v*) and G(Dv*u*) are 

acyclic; in case of rule B4, possible cycles will be detected during the 

calculation of r in the descendant nodes. 
* 

13.2.3. Implementations 

(i) algorithm GAS 

Algorithm GAS combines lower bound LB*(o) with enumeration scheme (i).We 

implemented a recursive depth-first search, choosing the descendant nodes 

in order of nondecreasing lower bounds. 

It appears useful to find a feasible solution heuristically at some or 

all nodes of the search tree in order to adjust the upper bound. We tested 

the following possibilities. 

(A) Strategy UBO makes no heuristic attempts to adjust the upper bound. 

(B) Strategy UBl evaluates the one-machine schedules obtained during the 

* calculation of LB (D) as one overall schedule at every node of the tree. 

(C) Strategy UB2 applies a priority rule at every node. This rule constructs 

an active schedule according to algorithm AS2, whereby highest priority 

is granted to the scheduleable Ou E Q minimizing 

t + max{l 0 T 
u µv=µu' vE 

Pv' Pu+ max{l p lo E Q-{o }}}. 
t =t ,O ET W v u 
w v w 

(D) Strategy UB3 involves the use of this heuristic at four equidistant 

levels of the tree. 

(ii) algorithm SEC 

* Algorithm SEC combines lower bound LB (D) with enumeration scheme (ii) and 

upper bounding strategy UBl. The branching rules B1, B2, B3 and B4 were im-



137 

plemented using two recursive search strategies Sl and S2, which choose the 

descendant nodes according to nondecreasing ru+pu-rv and nondecreasing Puv 

respectively. 

13.3. Computational experience 

13.3.1. Test problems 

The two approaches sketched in Section 13.2.3 were tested on three problems, 

two of which appear in the literature. The data for these problems are pre

sented in Table 13.2. 

13.3.2. Results 

Algorithms GAS and SEC were coded in ALGOL 60 and run on the Control Data 

Cyber 73-28 of the SARA Computing Centre in Amsterdam. 

Table 13.3 shows the results obtained with algorithm GAS. Trying to 

adjust the upper bound at every node of the search tree appears to be too 

time-consuming; especially strategy UBl performed rather badly. The best 

results were obtained with strategy UB3, applying the priority rule at four 

levels of the tree. 

Table 13.4 shows the results obtained with algorithm SEC. The branching 

strategies B3 and B4 performed very poorly in some initial testing; the 

choice of B1 or B2 has only a minor influence on the algorithm's performance. 

On the other hand, the search strategy S2 based on the penalties Puv is 

clearly superior to search strategy Sl based on ru+pu-rv. 

Altogether, algorithm SEC is clearly worse than algorithm GAS. For 

somewhat larger problems (e.g., the 10J10JGJc and 20JsJGJc problems max max 
from [Muth & Thompson 1963, 236-237]) both algorithms failed to produce an 

optimal schedule within five minutes of running time. In view of the fact 

that previous experiments [McMahon & Florian 1975] confirm that algorithm 

GAS is the currently best nlmJGJc algorithm, this clearly indicates that max 
in spite of some progress a large amount of work remains to be done. 



138 

TABLE 13.2. TEST PROBLEMS 

problem 130404 130504 360606 

n 4 5 6 

m 4 4 6 

optimum 35 13 55 

source [Nemeti 1964] [Muth & Thompson 
1963, 236] 

u l I µ' Pu l I µI Pu l I µI 
Pu u u u u u u 

1 1 1 6 1 1 2 1 3 1 
2 1 3 9 1 2 3 1 1 3 
3 1 4 5 2 1 3 1 2 6 
4 2 2 7 2 3 3 1 4 7 
5 2 3 6 2 2 2 1 6 3 
6 2 4 7 3 1 1 1 5 6 
7 3 2 3 3 2 3 2 2 8 
8 3 1 7 3 4 2 2 3 5 
9 3 4 6 4 1 4 2 5 10 

10 3 3 4 4 4 1 2 6 10 
11 4 2 9 4 3 3 2 1 10 
12 4 1 6 5 4 4 2 4 4 
13 4 4 5 5 3 4 3 3 5 
14 3 4 4 
15 3 6 8 
16 3 1 9 
17 3 2 1 
18 3 5 7 
19 4 2 5 
20 4 1 5 
21 4 3 5 
22 4 4 3 
23 4 5 8 
24 4 6 9 
25 5 3 9 
26 5 2 3 
27 5 5 5 
28 5 6 4 
29 5 1 3 
30 5 4 1 
31 6 2 3 
32 6 4 3 
33 6 6 9 
34 6 1 10 
35 6 5 4 
36 6 3 1 

l~ and µ~ denote the indices of lu and µu respectively, 

i.e., lu = J 1 , and µu = Mµ,· 
u u 



TABLE 13.3. RESULTS FOR ALGORITHM GAS 

solution time number of nodes 
problem 

UBO UBl UB2 UB3 UBO UBl UB2 UB3 

130404 .21 .27 .45 .35 19 8 8 8 

130504 .30 .28 .28 . 21 22 11 5 5 

360606 5.39 9.15 6.87 2.83 279 279 62 62 

TABLE 13. 4. RESULTS FOR ALGORITHM SEC 

solution time number of nodes 
problem 

Sl S2 Sl S2 

Bl 130404 .92 .93 23 23 

130504 .40 .32 13 11 

360606 29.88 15.91 347 175 

B2 130404 .59 .58 15 15 

130504 . 51 .28 17 11 

360606 36. 39 15.24 411 181 

LEGEND TO TABLES 13.3,4 

solution time : CPU seconds on a Control Data Cyber 73-28. 

number of nodes : including eliminated nodes. 

algorithm GAS : see Section 13.2.3; 

UB : upper bounding strategy. 

algorithm SEC : see Section 13.2.3; 

B branching strategy; 

S search strategy. 

13.4. Remarks 

139 

The pessimistic prediction by Conway, Maxwell and Miller, quoted in Section 

13.1, seems to have lost little of its validity. Only very small problems 

can be solved optimally within reasonable time, the main reason being that 

* the lower bound LB (D), though the strongest one available, is still too 

weak to prune large parts of the search tree at an early stage. 



140 

In further research on the job-shop problem, the search for stronger 
bounds deserves priority. One might try to develop two-machine bounds, com
parable to those presented in Chapter 12, and, again, a subgradient approach 
seems worth investigating. 

Although our results so far hardly confirm this, we do feel that a 
flexible branching rule that reveals essential conflicts in the problem 
under consideration should be more effective than the rigid one used in 
algorithm GAS. Additional work is needed to provide more accurate indica
tors than Puv on which to base a branching decision. 



PMt IV. Some applic..a,Uon.6 





143 

14. APPLICATIONS OF THE TRAVELLING SALESMAN PROBLEM 

14.1. Introduction 

In this chapter we discuss four apparently unrelated problems that arise in 

the context of computer wiring, vehicle routing, clustering a data array 

and job-shop scheduling with no wait in process. It turns out that each of 

these problems can be formulated as a travelling salesman problem (TSP) . 

Three of them originated from real-world situations and were not immediately 

recognized as TSPs; use of TSP algorithms led to better solutions, as will 

be illustrated below. 

Moreover, not only are the four problems special cases of the TSP, but 

the TSP can conversely be interpreted as a special case of any of these 

problems. Formulation as a TSP thus is essentially the simplest way to solve 

them. The equivalence of the last two problems to the TSP is nontrivial and 

will be discussed in Sections 14.4.4 and 14.5.4. 

The TSP has been introduced in Section 3.3 and solution methods have been 

surveyed in Chapter 9. Here, we shall be using the following algorithms: 

(i) algorithm LIN, i.e. a heuristic procedure for generating 3-optimal tours 

for symmetric TSPs, implementing the enumeration scheme given in [Lin 

1965] with deletion of some superfluous checks for improvement (see also 

Chapter 7); 

(ii) algorithm LEA, i.e. a branch-and-bound procedure based on !Little et al. 

1963], incorporating an improved branching rule that allows early pruning 

of a branch through sufficiently large penalties (see Section 9.2.3); 

(iii) algorithm HK1, i.e. a branch-and-bound procedure for symmetric TSPs, 

based on [Held & Karp 1971] and algorithm LIN (see Section 9.2.3). 

14.2. Computer wiring 

14.2.1. Problem description 

The following problem arises frequently during the design of computer inter

faces at the Institute for Nuclear Physical Research in Amsterdam. 

An interface consists of a number of modules, and on each module several 

pins are located. The position of each module has been determined in advance. 



144 

A given subset of pins has to be interconnected by wires. In view of possible 

future changes or corrections and of the small size of the pin, at most two 

wires are to be attached to any pin. In order to reduce signal cross-talk 

and to improve ease and neatness of wiring, the total wire length has to be 

minimized. 

14.2.2. Formulation as a TSP 

Let W = {1, ... ,n} denote the set of pins to be interconnected, c .. the dis
lJ 

tance between pin i and pin j, and H the complete undirected graph on the 

vertex set W with weights c .. on the edges. 
lJ 

If any number of wires could be attached to a pin, an optimal wiring 

would correspond to a minimum spanning tree on H, which can be found effi

ciently by the algorithms in [Kruskal 1956] or [Prim 1957; Dijkstra 1959]. 

However, the degree restriction implies that we have to find a minimum 

hamiltonian path on H. This problem corresponds to finding a minimum hamil

tonian circuit on G with V = {O, •.. ,n} and ciO = c 0i = 0 for all i E V. In 

this way the wiring problem can be converted into a symmetric TSP. 

A more difficult problem occurs if the positions of the modules have 

not been fixed in advance but can be chosen so as to minimize the total 

wire length for all subsets of pins that have to be interconnected. For a 

review of this placement problem, which is related to the quadratic assign

ment problem, we refer to [Hanan & Kurtzberg 1972]. 

14. 2 • 3 • Results 

The procedure that was used originally produced clearly non-optimal wiring 

schemes like the example with two subsets of pins in Figure 14.l(a). The 

size and number of the problems was such that algorithm LIN had to be used. 

The 3-optimal results on the example are given in Figure 14.l(b). 

More examples and details about the computer implementation can be 

found in [Visschers & Ten Kate 1973]. 



145 

Figure 14.l(a) Wiring without optimization. 

Figure 14.1(b) 3-0ptimal wiring. 



146 

14.3. Vehicle routing 

14.3.1. Problem description 

In 28 towns in the Dutch province of North-Holland telephone boxes have been 

installed by the national postal service (PTT). A technical crew has to visit 

each telephone box once or twice a week to empty the coin box and, if neces

sary, to replace directori.es and perform minor repairs. Each working day of 

at most 445 minutes begins and ends in the provincial capital Haarlem. The 

problem is to minimize the number of days in which all telephone boxes can 

be visited and the total travelling time. 

A similar problem arose in the city of Utrecht. Here about 200 mail 

boxes have to be emptied each day within a period of one hour by trucks op

erating from the central railway station. The problem is to find the minimum 

number of trucks able to do this and the associated minimum travelling time. 

14.3.2. Formulation as a TSP 

Both problems are types of classical vehicle routing problems (VRP) . They 

will be denoted by Pl and P2 respectively, and can be characterized more 

formally as follows. 

n cities i (i = 1, ... ,n) (the customers) are to be visited 

[Pl: 28 towns; P2: 200 mail boxes] 

by m vehicles 

[P1: m working days; P2: m trucks] 

operating from city 0 (the depot) 

[Pl: Haarlem; P2: Utrecht, central railway station]; 

the travelling time between cities i and j is d .. 
l.J 

i,j E {O, ••• ,n}; 

d .. minutes, for 
Jl. 

the time to be spent in city i is ei minutes, for i E {1, ... ,n} 

[Pl: 8 x number of telephone boxes in town i; P2: 1]; 

there are global const!aints, imposed by the vehicles, e.g., the maxi

mum allowable time for any vehicle to complete its route is f"minutes 

[Pl: 445; P2: 60]; 

there may be local constraints, imposed by the customers 

[Pl: one town (nr.28, D.en Helder) has to be visited twice on different 

days]; 



147 

criteria by which solutions are judged are: 

U , the number of vehicles used; 

T(U), the total time used for U vehicles. 

If a city has to be visited twice, it is duplicated, appropriate travelling 

and visiting times are added, and n is increased by one. 

[Pl: Den Helder is split up into two cities 28 and 29; d 28129 := 00 ; 

n:= 29.] 

We replace the depot (city 0) by m artificial depots (cities n+l, ... ,n+m) 

and extend the definition of (dij) and (ei) as follows (cf. Figure 14.2): 

di,n+t diO for £= 1 , .... ,m; 

d 

d 

e 

i 

n 

n+l 

n+m 

dOj for k = 1, ..... ,m; n+k,j 
A for k,Q, = 1, .... ,m; 

n+k,n+t 
0 for k = 1 I. •. ,m • n+k 

... j ... n 

di1 ···d1j···d1n 
. 

d, 1 • .. d ..... d. i l.J in 
. . 

d 1 ... d .... d 
n nJ nn 

do1 · · .doj ··.don 

. 
dOl · · .dOj ··.don 

n+l ... n+m 

dio· .. dlO 

diO" .. diO 

d no· .. dnO 

A ••• A 

A • •• A 
Figure 14.2 The matrix (d .. ). 

l.J 

We obtain a symmetric euclidean TSP by defining V = {1, ... ,n+m} and c .. = 
l.J 

!ei+dij+~ej for all i,j E V. A salesman's tour is feasible for the VRP pro-

vided that the additional global and local constraints are respected. If a 

TSP solution contains m-U links between artificial depots, then the corre

sponding VRP solution uses only U vehicles. Adding another vehicle decreases 

the number of links between artificial depots by one and hence the objective 

function by A. Thus, -A may be interpreted as the cost of a vehicle. We may 

now consider three possible choices of A: 

A= +00 will lead to minrr{T(m)}, 

i.e. the minimum total time form vehicles (cf. [Eilon et al. 1971, 188]); 

A = O will lead to min {T(U) [u 
IT 

1, ... ,m}, 

i.e. the minimum total time for any number of vehicles (cf. [Eilon et al. 

1971, 188]); 



148 

A= - 00 will lead to min {T(min{uju = 1, ... ,m})}, 
TI 

i.e. the minimum total time for the minimum number of vehicles. 

The latter objective is the criterion function for both Pl and P2. 

An appropriate method for obtaining good VRP solutions is the following. 

Choose an initial tour which satisfies the VRP constraints. 

Apply an iterative procedure for improving the tour and check the con

straints whenever a possible decrease in tour length occurs. 

14.3.3. Results 

Figures 14.3 and 14.4 illustrate some results, obtained for Pl and P2 by 

J. Berendse and J.H. Kuiper from PTT. In both figures, the links with the 

depot, indicated by*, are not shown. 

For Pl, algorithm LIN was used. All 3-optimal solutions obtained require 

four days, representing a 50 per cent decrease with respect to the schedule 

that was previously used. An example is given in Figure 14.3(a). Exchanging 

three links in this solution resulted in the schedule given in Figure 14.3(b); 

it involves only three days, including however one of 449~ minutes. Computa

tional experience revealed that the heuristic procedure converged much faster 

with A = -oo than with A = 0. More details about this application can be found 

in !Kuiper 1973]. 

For P2, a variation on algorithm LIN was used, whereby only a limited 

number of promising potential improvements was checked. The number of trucks 

needed was reduced from ten (Figure 14.4(a)) to eight (Figures 14.4(b,c,d)). 

In view of the size of the problem, both possibilities A = 0 and A = - 00 have 

been run only once; in this incidental case, the convergence with A = - 00 was 

relatively slow. 

14.3.4. Remarks 

In view of the usual size of practical routing problems, the variety of the 

additional constraints and the fundamental complexity of the TSP, we depend 

on approximate algorithms for obtaining satisfactory solutions to the VRP. 

Many heuristics have been developed, both for constructing a good initial 

tour and for improving it in a systematic way. For surveys of the literature 



< 
/) 

tour time 

444 
432~ 
175 
287 

Figure 14.3(a) 
Pl: 3-optimal solution; 
I. = -oo; 

.._ ___________ ___, T (4) = 1338~. 

tour time 

444 Figure 14.3(b) 
445 P1: infeasible solution, 
449~ obtained by hand 

from Figure 14.3(a); 
.._ ___________ ____,T (3) = 1338~. 

149 



150 

. 14.4 (a) 
Figure . sly used P2: previou 
solution; 
T(lO) = 442. 

14 4 (b) 
Figure liy optimal 
P2· loca t'ng 

· . star i 
solution, 14 4(a); 
from Figure . 
A = O; 
T (S) = 404. 



151 

Figure 14.4(c) 
P2: locally optimal 
solution, starting 
from Figure 14.4(a); 
A = -co 

~----------------------- T(8) = 405. 

Figure 14.4(d) 
P2: locally optimal 
solution, starting 
from an improvement by 
hand on Figure 14.4(c); 
A = -oo; 

'------------------------ T (8) = 398. 



152 

we refer to [Eilon et al. 1971, Ch.9; Christofides 19761. Without going into 

detail we remark here that some recently proposed sophisticated methods which 

are based on the euclidean nature of the VRP [Wren & Holliday 1972; Gillett 

& Miller 1974; Jonker 1974], perform excellently on standard test problems 

but seem to fail in handling local constraints appropriately. 

An interesting variation on the VRP arises in the context of money col

lection at post offices. For security reasons, several good routes have to 

be available. The problem is· then equivalent to the peripatetic salesman 

problem where m edge-disjoint hamiltonian circuits of minimum total weight 

are sought [Krarup 1975]. No algorithms for this problem have been proposed 

so far. 

An important extension of the VRP is the general routing problem (GRP) , 

where m vehicles have to be routed on a graph G = (V,A), thereby traversing 

a subset W c V of required vertices and a subset B c A of required arcs 

[Orloff 1974A; Orloff 1974B; Lenstra & Rinnooy Kan 1976]. The GRP special-

izes to the TSP form= 1, W V and B = 0, and to the Chinese postman prob-

lem (CPP) form= 1, W = 0 and B =A. Since the TSP is NP-complete and the 

CPP is efficiently solvable, it seems advantageous to convert required ver

tices to required arcs as far as possible. Such conversions lead to subopti

mal but very satisfactory results. 

14.4. Clustering a data array 

14.4.1. Problem description 

Suppose that a data array (a .. ) (i E R, j E S) is given, where a .. measures 
l.J l.J 

the strength of the relationship between elements i E R and j E S. A clus-

tering of the array is obtained by permuting its rows and columns and should 

identify subsets of R that are strongly related to subsets of s. 

This situation occurs in widely different contexts. Here we will apply 

a clustering technique to three examples. In the first one [McCormick et al. 

1972] R is a collection of 24 marketing techniques, S is a collection of 17 

marketing applications, 

for application j, and 

et al. 1972] arises in 

a .. = 
l.J 

a .. = 0 
l.J 

airport 

1 if technique i has been successfully used 

otherwise. The second example [McCormick 

design; R (= S) is a set of 27 control vari-

ables and a .. measures their interdependence. The third example [Roes 1973] l.J 
deals with import-export analysis; R (= S) is a set of 50 regions of the 



Indonesian islands, a .. = 1 if in 1971 a quantity of at least 50 tons of 
l.J 

rice was transported from region i to region j, and a .. = 0 otherwise. 
l.J 

153 

These three examples indicate that the approach is useful for problem 

decomposition and data reorganization. A more elaborate discussion of its 

applicability and further examples can be found in [McCormick et al. 1972]. 

To convert this problem into an optimization problem, some criterion 

has to be defined. In [McCormick et al. 1972], the proposed measure of ef

fectiveness (ME) is the sum of all products of horizontally or vertically 

adjacent elements in the array. Figure 14.5 shows how this criterion relates 

to various permutations of a 4x4 array. The problem is to find permutations 

of rows and columns of (aij) maximizing ME. 

2 3 4 1 2 3 4 2 3 4 3 2 4 3 2 4 

0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 
2 0 1 0 1 2 0 1 0 1 3 1 0 1 0 2 0 0 1 1 3 1 1 0 0 
3 1 0 1 0 4 0 1 0 1 2 0 0 1 4 0 0 1 1 2 0 0 1 1 
4 0 1 0 1 3 1 0 1 0 4 0 0 1 3 1 1 0 0 4 0 0 1 1 

ME = 0 ME = 2 ME = 4 ME = 6 ME = 8 

Fi~re 14.5 ME for various permutations of a 4x4 array. 

14.4.2. Formulation as a TSP 

Let R {1, ••• ,r} and S {1, •.• ,s}. With the conventions 

p(O) = p(r+l) a (0) a (s+l) 0, 

aiO = a 0j = 0 for i € R, j € S, 

the ME, corresponding to permutations p of R and a of S, is given by 

ME(p,cr) 

~ liER ljES ap(i)cr(j) (ap(i)cr(j-1)+ap(i)cr(j+1)+ap(i-1)cr(j)+ap(i+1)cr(j)) 

l;=O liER aicr(j)aicr(j+l) + l~=O ljES ap(i)jap(i+l)j 

ME(cr) + ME(p), 

so ME(p,cr) decomposes into two parts, and its maximization reduces to two 

separate and similar optimizations, one of ME(cr) for the columns and the 

other of ME(p) for the rows. It is stated in [McCormick et al. 1972] that 

both subproblems may be rewritten as quadratic assignment problems. More 

precisely, they are symmetric TSPs: 



154 

TSPcol, vcol { 0, ... , s}, 
col 

-IiER for j,k Vcol, 
cjk aijaik E 

row vrow { 0, ... ,r}, 
row 

-l:jES for h,i 
row TSP chi ahjaij E v , 

for ME(o) and ME(p), respectively (cf. [Lenstra 1974; Carvajal et al. 1974]). 

In general, the clustering problem for a p-dimensional array can be stated 

as p TSPs. It may be attacked by any algorithm for the TSP; in fact, the 

bond energy algorithm (BEA), proposed in [McCormick et al. 1972], is a simple 

suboptimal TSP method which constructs a tour by successively inserting the 

cities (cf. [Muller-Merbach 1970, 76]). 

If the data array is symmetric (i.e. a .. =a .. for all i,j), then TSProw 
l.J Jl. 

and TSPcol are identical and only one optimization needs to be performed 

(see the airport example) . 

If the data array is square (i.e. r = s) but not necessarily symmetric 

and we want to have equal permutations of rows and columns (i.e. p =a), 

then one symmetric TSP results: 

(see the import-export example). 

cow 
c .. 

l.J 
col 

c .. 
l.J 

row 
+ c .. 

l.J 
for i,j E Vcow 

The size of the TSPs might be reduced by assigning identical rows or 

columns to one single city under the assumption that these rows or columns 

will be adjacent in at least one optimal solution. This assumption is justi

fied under the conditions expressed by the following theorem. 

row THEOREM 14.1. If a .. E {0,1} for all i E R, j E s, and ckk 
roiJ 

for some k,£ E V , then row k and row £ are identical, and adjacent in at 

least one optimal solution to TSProw. 

Proof. We define S = {j [ j E S, a .. 
i l.J 

for all i E R, j E S, we have 

row 
and ckk 

row 
c .. 

l.J 

are identical: 

row 
c££ implies that sk 

a£j for all j E s. 

1} for all i E Vrow. Since a .. E {0,1} 
l.J 

(14 .1) 

S . Hence row k and row £ 

(14. 2) 

Now consider any permutation p of R with p(p) = k, p(q) = £, fp-qf > 1. 

Insert£ between k and p(p+l). This will not decrease ME(p) if 

row row row > row 
ckp(p+l) + cp(q-1)£ + cip(q+l) - ck£ 

row row 
+ c£p(p+1) + cp(q-l)p(q+l) · 



By (14.1) and (14.2), this is equivalent to 

which is true, since 

lsp(q-llnsil + lsinsp{q+ll I 

lsin(sp(q-llusp(q+l)ll + Jsinsp(q-lJnsp(q+lll 

,, lsil + lsp(q-llnsp(q+l) 1. 

Analogous theorems hold for TSPcol and TSPcow Defining R. 
J 

for all j Vcol 
E ' we have in the latter case 

cow 
-Is. ns. I JR.nR. J for all i,j vcow 

c .. = E 
1] l. J l. J 

, 

and we have to show that 

akj a£j for all j E S, 

aik aH for all i E R. 

cow cow cow 
It follows from (14.3) and ckk =ck£ = c££ that lskl+IRkl = 

155 

D 

a .. 
l.J 

(14. 3) 

(14.4) 

lsknsil+l~nRil = jsil+IRil· If !ski > lsknsil, then IRkl < l~nRi!, which 

is impossible; hence !ski = lsknsij = lsil and IRkl = IRknRil = IR£1, which 

trivially leads to (14.4). 

These results cannot be generalized to cover the case where a .. can 
l.J 

take on other values than 0 or 1. For example, if R = {1,2,3} and 

a 1 j = a 2 j = 1, a 3 j = 2 for j E S, then the identical rows 1 and 2 are sepa

rated by row 3 in the optimal solution. 

14.4.3. Results 

The techniques and applications pertaining to the marketing example are 

given in Table 14.1. Figure 14.6 shows the initial data array, the cluster

ing produced by the BEA as reported in [McCormick et al. 1972], and a clus

tering corresponding to optimal solutions of TSPcol and TSProw, found by 

algorithm LEA after applica~ion of Theorem 14.1. It turns out that the BEA 

clustering is optimal. 

The control variables in the airport example are given in Table 14.2. 

Figure 14.7 shows the symmetric initial data array, the BEA clustering 

[McCormick et al. 1972], and a clustering corresponding to an optimal solu

tion of TSPcol (= TSProw), found by algorithm HK1. The BEA clustering is not 

1} 



156 

TABLE 14.1. MARKETING EXAMPLE 

Marketing techniques 

1. Regression & correlation analysis 
2. Discounted cash flow 
3. Incremental analysis 
4. Multiple regression/correlation 
5. Random sampling 
6. Sampling theory 
7. Bayesian approach 
8. Cost-benefit analysis 
9. Critical path method 

10. Decision trees 
11. Dynamic programming 
12. Exponential smoothing 
13. Industrial dynamics 
14. Input-output analysis 
15. Linear programming 
16. Markov processes 
17. Monte Carlo simulation 
18. Nonlinear programming 
19. Numerical taxonomy 
20. PERT 
21. Queueing models 
22. Risk analysis 
23. Sensitivity analysis 
24. Technological forecasting 

Marketing applications 

1. Advertising research 
2. Acquisition screening 
3. Brand strategy 
4. Customer segmentation 
5. Customer service 
6. Distribution planning 
7. Market segmentation 
8. Pricing strategy 
9. Product life-cycle analysis 

10. Product line analysis 
11. Product planning 
12. R&D planning 
13. ROI analysis 
14. Sales forecasting 
15. Test marketing 
16. Venture planning 

C)-(\l('O')~U)U> 

-N"'3'lll<0r...cocn-..-.~--

l CJ•CJ•. •CJCJ• ••• •CJ•. 
2 •••• •CJ•. •CJ•CJCJ• •• 
3 CJ• •• •CJ•CJ•. •CJ• ••• 
.. CJ•CJ• •••••••• •CJ•. 
5 ............. 0••• 
6 CJ• CJ •••••••••• CJCJ• 

z 8::::: :99:'::8::: 
i 8 eiei: : : : : ei: 899: : 99 
11 CJ••••••••• •CJO• •0 
1·2•••••••••••••Co• 
1 _3 ...... a. a •••• Ill II o • 

l'+ • • • • • • • • •CJOO•O•O 
SO••••C•••••••a.9• 
s •• ea"' • °' •• ., ••• o •• 

17 •CJO• •0• ••CJ•••• •l:i ! ' 
8: eiei: 9Ci: : : : : : : : : 
• • • • • • • • • OCJO • • CJCJ •••• ace •••••• Ill • 9 

~ ~ 88: : : : : 8: 8: : : : : : 
24 • • • • • •C•DCCC•O•C 

(a) Initial array; ME 

.:1" OU>c-.1 .... cr'I U) 

3'~-m-~~""-cn-<De.n .... 
16 CJ •• 

i~s:s· ·:::::::::: 
4 •• • ........ ., ••• 
6 • • • ••• °' ...... a 

l2ee ••••tPo••••••• 
14 • •a• • • •DCCC• 0 • • • 

2 ... aa •••• CJOCJOC •••• 
9 • e e • e • e[J[J[J[J11 11 e •D 

~~:::a: :a88';1C:: :a:r;i 
2 •••••••C•C••DC•• 

l} ••••D•••CD••D••• 
7••••[Jeeeoooe[Joe& 

1 o : : : : 88eiei:: 999::: 
22 ••••COCO•••••••• 
2 ~ ::::8899:ei:::ei:: 
13 aee••C••oeoee[Jee 
2 i .............. aa. 
H ::::B::::::::B:: 

5 ···········••11t•• 

39. 

(b) BEA clustering; ME 97. 

(c) Optimal clustering; ME = 97. 

Figure 14.6 Marketing example; 
• = 0, a = 1. 



TABLE 14.2. AIRPORT EXAMPLE 

Control variables 

1. Passenger check-in 
2. Baggage check-in 
3. Baggage claim 
4. Baggage moving system 
5. Intra-airport transportation 

system 
6. Cargo terminal 
7. Close-in parking lots 
8. Remote parking lots 
9. Main access roads to and from 

airport 
10. Circulation roads within airport 
11. Service area for rental cars 
12. Parking lots for rental cars 
13. curb space for unloading 
14. Curb space for loading 
15. Waiting areas at gates 
16. Stations for intra-airport 

transportation system 
17. Aircraft loading system 
18. Concessions 
19. Rental car desk 
20. Runway capacity 
21. Number of gates 
22. Passenger information 
23. Cargo transfer 
24. Air-traffic-control system 
25. Refuse removal 
26. Flight operations and crew 

facilities 
27. Aircraft service on the apron 

O-N~3~W~W~O-N~j~W~ 

-N~3~w~ro~-----....- .......... -NNC'JNNNNN 

1 ••• '**" .. •®• .• '*'. ·•· ...• 
2 ... '**' •. •(19• '*' '*' ·•· ••.• 
3 '** ....... * .. *' ..... .. 
4 ......... "" "**" "'*" ................ .. 
5 • * ••• ®®** •••.••.. *. ®* ••.•. 6.... .• *' .•.. '*"*"®' '*® 
'***'!>® *""**"'*>l"'<lo""'*'""'fll'"lll 
8 ***'® ••.. '*' ..•••••••. 
9 •••• * ................ . 

10 •• "* **®®". '*' ...... . 
11 : : : : : : -: : : z::;; : : : : ; : : : : : : : : 
I 3 ®®'*' '*' ·®·*•' '*' '*' ·e· · · · · 

4 ''®*'"*''ii'*'®'*''*'''''''' 
5 ........... 0 " ......... •* ** ... •* ....... * 

16 • ** .•• ** .••• ***•*** ·@@· •••• 

17 '''*'*''''''''**®''**'*"""• 
8 *' •••••..•..• '**"®'. '*" ·®·. 
9 "'**"'*"' ... "'*"'***"*"' ••• "'*"' .. " 0 .. 

0 : : : :0:::: ::: : :":: :n: :~::; 
~! ••. '*'*' ••• '®'*®'**' .•.•••. 
23 .............. "*' •••••• "* 
B : : : : : : : : : : ; : : : : : : ®: !! : : ! -~; 
26 •••• '*' ........... '**"®•@• 
2 7 ••••• ® •••••••• * .•••. *. ** •• 

(a) Initial array; ME = 592. 

(b) BEA clustering; ME = 1154. 

~ ~~~w~-w o ~N 3t;ToN-03w 
NW-NN--N-itOm~-....-N-N3M _ _..._NNN 

z~::z*:::::::®;:::::::::::;:; 
1 7 '**~ .. *** ••...••.• * •••.• * .. 
21 *®He•**'···············'*' 
H : : : !II;:;: : : : : : ;; : : : : : : ! : : : 
B : : n : !"1"9: : : : : !" : : : : : : : : ®;; 
16. '*' '**@@@*' '**®'*'***' ..•• 

5 • • • • • • ·Mm*i'*®" '*'*' • • • • 
8 ............ "'*;11!1• •** .. *'" .......... . 

13 :~::::::: : •• ®:::: :;;;;::: 
l~::::::::z!~~!;iii;~~;;:::: 
22 ·····**'®*•••*®e••···*····· 

l ••••• * •• •fi* •• *®!!!®• ••.•••. 
~ : : ; : : : : : : : : : : :~u10; ~: : : : : 
3 ••••••• '***''*' •• •ff@*· •.•• 

14 •••••••• * ••. ®* •••• *••** .••• 
19 .......... **"'"'*"'**"'*"'**•*"'"'"'"' 
1 2 •••••••••••• *. * •••.• **" •.. 
11 ••• "*' ••••• '**' ••.•.. ·••*'. * 0 • * * •..• ® .••..•••••.•••• *••* 
~~ :;:!":: ::: : : : : : : : : : : : : : : :!n 

157 

(c) Optimal clustering; ME = 1160. 

Figure 14.7 Airport example; 
• = 0, * = 1, @ = 2, @ = 3. 



4-5° 

o I 

1. Singapore 12. Ridar II 23. Jateng II 34. Sulut II 

2. Malay 13. Rikep 24. Surabaya 35. Suteng I 

3. Sabang 14. Jambi 25. Jatim 36. Suteng II 

4. Aceh I 15. Sumsel I 26. Pontianak 37. Makasar 

5. Aceh II 16. Sumsel II 27. Kalbar 38. Sulsel 

6. Belawan 17. Bengkulu 28. Kalteng 39. Sulteng 

7. Sumut I 18. Lampung 29. Kalsel 40. Bail 

8. Sumut II 19. Jaya I 30. Kaltim I 41. Nusa Tenguara 

9. Sumbar 20. Jaya II 31. Kaltim II Bar at 

10. Dumai 21. Jabar 32. Sulut I 42. Nusa Tenguara 

11. Ridar I 22. Jateng I 33. Bitung Timur 

Figure 14.8 Import-export example: regions of the Indonesian islands. 

43. Malut 
44. Malteng 
45. Malsel 
46. Irbaut I 
47. Irbaut II 
48. Irbaut III 
49. Irbasel I 
50. Irbasel II 

.... 
lJ1 
CJ) 



6 .. Ill 9 e 0 e ID• 0 0 0 0 II 9 0 0 0 0 Ille 0 Ill 0 0 Ill II <II 9 8 0 0 0 e e Ille 8 e e e e e ID 0 e e 8 e .. cc 
9fa o 111G111111oooo•11 o o o it Ge ao •.., • o o 1111111111111CD•CJ• • •DD•CJ• • • •D• •••ODD 
fatr 8 ••• e 1111 •• Ill ••••• 9 e .. G 9 •• D. Ill •• •D• •••• ·Deso· •Cl• •• •D•DD• 
E ft .. 111 "'• o., " • s • • o • • a ., • • • • • • • • e • • e • • • ••DCC s·· ••••••CDC•• 
8~ 9111 ••••·····················a••·······D D•••D•·D···· 
t .. : : : : : : : : : : : : : : : : : : : : : : ·: : : : : : ·: : : : c: ~'=': : : : : BB':I~: : : : 
?tr••••••a•••••••••11te•o•o••••••·•••••s e••••DD•••••• 
+.£0111111••••••••0•••••••.•••••••••••••• '•DD••D•••••••• 
?£ • 111 It. 9. <II •• "'." •••••••• • •••••••••• • ···88888EIDD• • • • • • • • • 
SE•111Go&eG111111990CJoeooo••••••••••••••• DC•••••••••• 919 ...... 9 ••••••••••• It ••• •.·• •••••••• ·s·cscc· .... ·D· ••• 
E OC11100<1&o•e•o•9•••••••••••••••••D•• CD D•••••••••••• s ................ 1111 •••••• •D• e •• e •• •D88ccc• • • • • • • • • • • • • 
!i1•0>ooooee•11ee•C•••••••••••••••••• -·-D•••••••••••••• 
L •••oeeoe•••sC••ee••••••••••••••••~B••••••••••••••• 
8 111t11110111111••eeeo9eeooooeoo11100000•••••• ••••••••••D•••• 
6Z•0111111••0•••••ooooooe111o•••••••••••D DC•••••••••••••• 
'l:Z ooooooeeeooeeeeoooeeeoeoaoooe•ioCoooeoooooooooeoooe 

I : : : : : : : : : : : : : ~: : '?: : : : : : : : : : : : cf:!: : : : : : : : : : : : : : : : : : : 
iZ•••••e••••••••••••••••••••C•D••••···••••••••D•••••• t ••• 9 •••• ., Ill •• lit •• e Oil •• e. e •••• •D11 ••• •D•DDD• ••• •D• ...... z •••••• e ••••••• e •••••• fl. •CHJDDC•DDDD•BD• •••• 9 •• 9 •••• 

t!:::::::::::::::::: :c:: :';18':1r;':C!: :';': :.: . : : : : : : : : : : : : : : 
EZ •••••11>••••••eeooooo111•••D••••••••••o0eo•o••ctoeeoee• 
e i • "• • e o •. o • •. •. e e"' e ••••DO•.•••• ·ssCI•.• • • • • • o • • • o • • • • at •••e•••••••e••e•o••"•D•••e•DD•D •••••eee••••o•••• 
9t ••••ooooe•oeo111011•D••DD••ee••DBD• D••D•••••••D••e••• SI ••a•• o o o o e • e • 111 e o • o e[Je • • e • e e • o • e o It •DDe o e e e e e., o o o o o 

:l:::::::::: :a::: :8088: :~: :cc8E8ooc: =~~=:::::::::::: 
ft :::::::::::::C!BB888:::::c::cBBBBEB:cc::::::::::::: 
0 i 0 • 0 0 0 • • • • • • 8 • •DO• • • e • • • 0 e • • •."'DCCC• • • • o • • o 1t • o a o e o 

•••• 0 0 0 ••••• OD •• It •• It ••• It. G ••• ODD• •• Cl ......... Ill •• 

¥ : : : : :: : : : : :88::::: :: : : : :: : :r'!::: =~ . : : : : : :: : : : : : :· 
O'••••oooeee[Joee••••o••••••••D••••••u 00111oaeoooo••01t 

ooooeeect•C•111111111e•eeeeoe111eooe[Joeooeoe [Jooooooooooeeo 
/,. • • e • o e • •DO a • o o • • e 111 e • • • e " • o • [J'o • 1111 • o o • • o • o • o • • o o • o • • • 
Oft•••••• •Ce • • • 111 • e e • • 411••111 o a• o • e e e o • • • • • •D• o o • • • e • • • • e s "' •••••• c ••••••• e ••••••• 9 • e •• 8 e ......... a·· •••••••• c •• 
'~::::c~:::::::::::::::::::!:::::::::::~:::::::::::: 
Q•o•D•••••eeeeoe•ooeoeoooee•e•ooooeoo•••••••••••••• 

~ : 8';'';1 : : : : : : : : : 8: : : : : : : : : : : : : : : : : : : : : c: : : : : : : : : : : : : : 
£OD•••• e e • • • o • 111••111 111 • G • • • e • • • e o e ••••!II• o o 1111 • • o o o o o e o o • 
~#U')mN~~m~~CMOO...ecNCW).:t~U)(D~~WOM:) ....... N~ ..... 8~~WU)('<l~...to~~8W~ 

38#~ ~~~ ............... ~-....NNN""""~ NN~N~~~~CWU-3#~3888 

OS •••••eoee ............ D••••O••···················C•••D 
6"1eoeeooeeeeeoee•••••0000•0•••.,••••••eeooooooa•C••C• ! ~ • • o e e o 1111 • • e o • o e e.• • ·e 111 o • • o • • • e • o o a • [] e • o • e o • o • • et • • • C • • 
9 ~ c: : : : : : : : : : : : : : : : :c,c.: : :c: : : : : : : : 8-: : : c-: .: : : D: D: D~: D: 
~~ ::::::::::::::::::c::::cc::::::c8:::c:c::::B~c:::: 
£"1 eeeeoeeoeooeoaoeooeoeeeCOooeee11to[]oo•DDC•••DD•••••• 
Zft o e e 111 o o • e e 9 e 9 • • 9 o • o • • •" elJ[Je e e o • e o • e • •DD• o DC••• e e • • • 
t ft 11> o e • e o "'e o • o"' • • • • e o • • e • •C• • e eCe ••••••CJ•• •DD• • • • • • • 0 g; • e ·• • e 1111 •• • • o ,. o • • • • • •" • • e • •D.• • • • • e • • • • • D •DODD• • • • • e e • 

e e : : : : : : : : : : : : : : : : : : : : : : : : '?: : : : : :: : ~: : ~DDB: : E;1: : : : : : : : 
'£ : : : : : : : : : : : : : : : : : : : : : : : 8· c: : : : c;i: : a: : cC!Bc: : : : : : : : : : : 
~§ e It•"• 111 o e o • • e o 111 e • 111 • • e e.•• [Joe• •011 •D•DDBD• e • e • • • • • • • • tt£ ••••oooeoeoeo1111eoeooe11111101J••••••••DD•D D••••111•0••••• 

~1-;i::::: :: : : : : : ::: : :: : : : :88-: :: : : :cB:cc8B·:::::::::::: 
t E • 1111 ••• e • e • • • • • • e e • • • • o • • D • • " • • CDe • • • •cc·· • • " • • • • • • • " 
OE eo@•••••••o••"'•"••C••••DD••eCJDD•••••DD·•••••••••••"' l'l: 0000•11110<1>eocie1110111«1000 ••••CJ••e•CJ•••••••DD"•••••••••••e 
z • • • • • • • • • • • o • • 1t e • • • • •DD• • • 111CC• • • • • • • •D• • • • • • • "'• • • e 
'Zoe '11e111o11111!1 • o • • • o e • • • •DCJDDD•DD• • o •••••a•••••••••••• e • 
'Z D 8 ... 0 0 e • 0 • e •• 0 •••• CODD. DCCC. D. "' •••••• D •••• e ••••• e " 

S'l: 9 e •••• 0 •• ., ..... 0 0 ••••• eCJeDD• eCJD• e •••• •Cs· •••• e II •• 9 0 G 

ftZ 0111000C0oooooeooooeo1teooCoooeCoaoeoeoo •••••••••••o 
6Z eoo111ooeoooeeo•1111ooe••••D•••••eeoeeoooeoeoeoeooeeo•• 
'Z'Z eeo1110111•111eoeoooooooo••D•••••••••11•eeooeooeooeoee11eo 
t 'l: •" • e e • • • • • • o o •DIJ • • • 1111[Je • • • • e o • • • • • • • • • o o o • o • e o • • • • • if • e & o o e e GI o o o 111 e o e • o·o •D• ••••CJ• 8 e • e • • • • • & •••CJ• o o •••a•• 

•" e e • • 11111111 • o • • • o • • • •D• •••CD•"••• o •D• • o •D• •C• •••••••a 
D Ill 8 • O!I • 0 ••• 0 • 9 • e •• DCD. D. 9 • e •• CJ •••••••••• 0 ••• 0 •••••• 

/,.t 0$8<81Ge••Do•••111••D•D••••••••eoeeooeeeoeeooeeeeee•111• 
9t •• 8 1111••De01111 •D• ·sc· •DB•D•D•. ••D• •••••••• 0 •D• •••••••• s I .. tl ••••• 9..... • • • • . •• •CD• •••••• 0 •.••. 9 .• 1111 .•..• 0 9. 
2t c:::: :8::: :8c88:: :8B·:o:~f:!DCf:!C:c::::::::::::::::::: 
Z1D•111 ••CD• eCJCJDDD• e • • •D•D•• • • • •D• •• e" •• •D• o • • e • • • • • • • 
t t D• • • • •D• •DCJCJCJCJ• • • •DDDD•DD• • •D"• • o • • • • •D• a• Ge o o o • • e • 
Ot D• • 111 e •C• •CD• e • • • • • • • •D•C• • o •D·· • o • o e •Da • o •,. • o • • •" 111 • 

6 •••••o••O••eoooee111[JeoooCC1111111oooooeooaeooooGGOOO•••• 
8 •••••••CJ••••••oeooeo·oooooa,eoeeoeoGGooeooe••ooo•o• 
L ·····DD••••••e•••••••••••••e••••••ct•t1••··········· 

~ ';!: : DD8r;'D: : : : : : : : : : : : : ~: '=1C!: : : : ~: : : -: : : ';''?: : : : : : : : : : : : 
ft eooCJ•D•••••••••••••••••O•o••••••••••••oooo11eeooa•• t ••DD•••"•••••ooeeooooeeoeoe&o1tooeoooeaoooo11••••eeo 

•D•••••••••••••••o•eooeoooeeoooeoooeoeoeoeeeeooooo 
D• • • • • • • • • 11 D • • • • • • • • • • • • • • • • • • • • • • • • • • • • • o • •••• • • • 
~N~3m~~O)Oto.-tN~~ll)cO~m~or4N~8mUll'-qno~Nf')~.,,.....CDCne>~N~8m'°""'CDO'lo 

.-.....~~~~NNNNNN~N~~C'IM'l'H'l)~t"Kf)~~33333333~m 

0 

°' N 

0 

II 

0. 

2 
.µ 
u 
QJ .,..., 
§ 
Ul 

Cl 
i:: 
·rl 
k 
QJ 
.µ 

~ 
u 

M 

~ 
·rl .µ 

8' 
I 

M 

M 
N 
N 

~ 

~ 
k 
k 
Ill 

M 
Ill 
·rl 
.µ 
·rl 
i:: 
H 

3 

159 

.... 

a 

0 

II 

QJ 
M 

~ 
>< 
OJ 

.µ 
k 
0 

~ 
QJ 
I 

.µ 
k 
0 
[§' 

H 

°' 
<:!' .... 
OJ 
k 
::I 
Cl 

-.-1 

"' 



160 

optimal and, in fact, not even 3-optimal, since it can be improved by exchang

ing three links. 

The geographical distribution of the regions of the Indonesian islands 

in the import-export example is given in Figure 14.8. Figure 14.9 shows the 

square but asymmetric initial data array and a clustering corresponding to 

a 3-optimal solution of TSPcow, found by algorithm LIN. 

14.4.4. Equivalence to the TSP 

Not only can the clustering problem be formulated as one or two symmetric 

TSPs, but the symmetric TSP can be formulated as a clustering problem as 

well. 

The symmetric TSP corresponds to finding a minimum hamiltonian circuit 

in the complete undirected graph G on the vertex set V = {1, •.• ,n} with a 

weight c .. for each edge (i,j). This problem is equivalent to finding a 
l.J 

minimum hamiltonian path in the complete undirected graph G' on the vertex 

set V' = {O, .•. ,n} with weights c' defined by 
ij' 

col 2\, 

COj cij c 1/>- for j 2, ..... ,n, 

c!. c .. for i,j 2, ..... ,n, 
1.J 1.J 

where A is greater than the length of any tour. Such a path will have ver

tices 0 and 1 as extreme points and these vertices can then be joined to 

arrive at the optimal tour. Now we define a clustering problem with 

R V', 

S {(i,j) li,j E V', i < j}, 

ai(i,£) -ci_i for i E R, (i I R_) E S, 

ai(k,i) 1 for i E R, (k,i) E s, 

ai(k,£) 0 for i E R, (k,£) E S, k,£ f i. 

The contribution of the adjacency of rows i and j with, say, i < j to the 

ME is equal to 

l(k,£)ES ai(k,£)aj(k,£) = ai(i,j)aj(i,j) = -cj_j' 

and therefore any permutation p of R maximizing ME(p) minimizes the weight 

of the hamiltonian path (p(l), .•. ,p(n)) in G'. 

It follows that the clustering problem is NP-complete. Moreover, the 

symmetric TSP and the clustering problem are of the same difficulty in the 



161 

sense that the formulations presented in Sections 14.4.2 and 14.4.4 can be 

interpreted as linear problem reductions with multiplicative coefficients 

equal to 1. 

14.5. Job-shop scheduling with no wait in process 

14.5.1. Problem description 

One of the basic assumptions in most existing theory on machine scheduling 

is that a job is allowed to wait arbitrarily long before being processed on 

its next machine. This assumption is highly unrealistic in some real world 

situations where intermediate storage space is limited or may even be non

existent. The former situation exists for instance in a computer system 

where buffer space is limited and costly; the latter situation is met in 

steel or aluminium rolling where the very high temperature of the metal has 

to be maintained throughout the production process. 

We will consider the nlmlG,no wait le problem under the following 
max 

additional assumptions: 

(a) each job visits each machine at least once; 

(b) no passing is permitted, i.e. the processing order is identical on all 

machines. 

Most previous research has been concentrated on the nlmJF,no waitlc prob-
max 

lem [Piehler 1960; Reddi & Ramamoorthy 1972; Wismer 1972; Liesegang & Ruger 

1972; Grabowski & Syslo 1973; Syslo 1974]; see [Van Deman & Baker 1974] for 

the nlmlF,no waitll:c. problem. In these cases, (a) and (b) are redundant 
l 

conditions. 

Extension to a job-shop where different processing orders on the machines 

are allowed complicates the situation considerably. In the algorithms proposed 

in [Reddi & Ramamoorthy 1973B; Goyal 1975] the computation of a lower bound 

is equivalent to solving a TSP and accordingly these methods appear to be 

time-consuming. 

Another extension to the case of non-zero but finite intermediate 

storage has been considered only for the two-machine flow-shop [Dutta & 

Cunningham 1975]. 



162 

14.5.2. Formulation as a TSP 

The problem under consideration can be formulated as follows. 

Each of n jobs J 1 , •.• ,Jn has to be processed on each of m machines 

M1 , ••• ,Mm. Job Ji consists of a sequence of ni operations oi1 , •.• ,oin. 

operation oik (i = 1, ••• ,n; k 

of job Ji on machine vi(k) 

1, ••• ,n.) corresponds to the processifig 
l. 

during an uninterrupted processing time pik" 

Under the conditions of no wait and no passing, we want to find a 

processing order such that the time required to complete all jobs is 

minimized. 

We define 

kj_R. min{kjv, (k) MR.' k 1, ••• ,n.}; 
l. l. 

k" max{kj v. (k) MR., k 1, ••. ,n.}; 
iR. l. l. 

n. 
P, Ik~1 pik; l. 

n. 
Pj_R. Ik~k~ Pik; 

k" iR. 
P" l iR. = k=l Pik· iR. 

o.k, and o.k" are the first and last operations of J 1• on M0 • 

l. iR. l. iR. /(, 
For each pair of jobs (Ji,Jj), we will calculate a coefficient cij' 

representing the minimum difference between the starting times of oil and 

ojl if Jj is scheduled directly after Ji. The no passing condition implies 

that O,k" has to precede o.k, on M0 , for R. 1, ••• ,m. We introduce a 
l. iR. J jR. /(, 

directed graph G .. with vertex set V .. and arc set A1.J., defined by 
l.J l.J 

vij {ohklh = i,j; k = 1, ••• ,~}; 

A,. 
l.J {(Ohk,oh,k+l>lh=i,j;k=l, ... ,nh-l} u {(oik" ,o.k, >IJl.=1, •.. ,m}; 

iR. J jR. 

a weight phk is attached to each vertex ohk E Vij" For an example with m 

the graph G .. is given in 
l.J Vi= (M2,M1,M2,M3,M2) and vj = (M1,M2,M3,M1), 

Figure 14.10. As to the maximum-weight path in Gij' 

it starts from 01. l· and ends in o . 
Jnj 

it contains exactly one arc (O.k" ,o.k, ) • 
l. iR. J jR. 

it is clear that 

(14.5) 

(14.6) 

The no wait condition implies that cij is equal to the latest possible 

starting time of o. 1 in G .. if o. 1 starts at time zero and o. finishes 
J l.J i Jnj 

as early as possible. It follows from (14.5) and (14.6) that 

3, 



J, 
1. 

Figure 14.10 Graph Gij for the example. 

c .. ~ max 0 {P'.' 0 +P'. 0 } - P .. 
1.J N 1.N Jh J 

The minimum time to complete all jobs is now given by 

where TI runs over all permutations of {1, ... ,n}. 

163 

(14. 7) 

(14.8) 

We add a job J 0 with n 0 = m, v 0 (k) = Mk and Pok= O fork= 1, ... ,m, 

representing beginning and end of a schedule. According to (14.7), its co

efficients are given by c 0 i = O, ciO =Pi for i = 1, ... ,n. Determination of 

(14.8) now correspond to solving a TSP with V {O, •.. ,n} and (cij) defined 

by (14. 7). 

This asymmetric TSP is euclidean, i.e. cij+cjk ~ cik for all i,j,k E V: 

max {P" +P' } + max {P" +P' } ~ max {P" +P' } + P .. 
t it jt t jt kt t it kt J 

This is true, since for any t E {1, ... ,m} 

(P" +P' ) + (P" +P' ) > (P" +P' ) + P it jt jt kt - it kt j" 

Remark 1. In a flow-shop we know that vi = (M1 ,M2 , ... ,Mm) for i = 1, ... ,n, 

and (14. 7) simplifies to c .. = max, {P'.' 0 -P': 0 1 }, which corresponds to the 
1.J h 1.h )tN-

reSUltS given in [Piehler 1960; Reddi & Ramamoorthy 1972; Grabowski & Syslo 

1973] (cf. Section 4.2 Formula (4.2)). 

Remark 2. So far, distances have been defined as differences between the 

starting times of the first operations of jobs. More generally, one might 

arbitrarily select any two operations o.k* and o.k** for each J. and define 
1. i 1. i 1. 

c .. as the minimum difference between the starting times of o. * and o.k** 
1.J iki J j 

if Ji precedes Jj directly. This will lead to modifications in (14.7) and 

(14.8), but to an equivalent TSP (cf. [Goyal 1973; Reddi & Ramamoorthy 1973A]). 



164 

14.5.3. Results 

To illustrate the consequences of the no wait condition, we solved the three 

job-shop problems from [Muth & Thompson 1963, 236-237] under this restric

tion, using algorithm LEA. In Table 14.3 the solution values are compared 

with the lengths of the schedules when arbitrary waiting times are allowed. 

Figure 14.11 illustrates the optimal schedules for one of these problems; 

the unrestricted schedule was found by the method from [Florian et al. 19711. 

In general, the no wait and no passing conditions can be expected to lead to 

large amounts of idle time on the machines. 

TABLE 14. 3. EFFECT OF THE no wait CONDITION 

number number value of value of 
of of no wait unrestricted 

jobs machines schedule schedule 

6 6 120 55 

* 10 10 2433 972 

20 5 2132 1165 

* indicates that the optimality has not 
been proved 

lmmmltr/.11 
l:mml ml I 

M J:::H 1111111111 I 
B Ima • Umm:::I IIllil I 

60 '70 80 90 100 110 12.0 

Figure 14.11 Optimal schedules for a 6X6 problem. 



165 

14.5.4. Equivalence to the TSP 

In Chapter 4 we have seen that the nj2jF,no waitlc problem can be solved 
max 

in 0(n2 ) steps [Gilmore & Gomory 1964] and that the nlmlF,no waitlc prob-
max 

lem is NP-complete. The reduction given in Theorem 4.B(a) can easily be 

adapted to formulate any TSP in terms of an nlmjF,no wait le problem. 
· max 

Together with the formulation presented in Section 14.5.2 this establishes 

the complete equivalence of the TSP and the no wait problem. 



166 

15. AN APPLICATION OF MACHINE SCHEDULING THEORY 

15.1. Problem description 

The practical scheduling situation that we shall describe arises in the 

context of the production of aluminium airplane parts. In a certain section 

of the factory in question, the production is centered around a rubber press. 

The metal pieces are first processed either by a cutting or by a milling 

machine. They next have to pass a fitting shop and subsequently have to 

spend a full working day in an annealing furnace before being pressed into 

their proper shape by the rubber press. After passing the fitting shop for 

a second time they are completely finished. The processing time of each 

operation is known in advance. 

There are nine operators available to process the jobs. One of them 

operates the cutting and milling machines, six are working in the fitting 

shop and two handle the rubber press; the annealing furnace requires no 

attention and can be assumed to have an infinite capacity, i.e., it can 

handle any number of jobs at the same time. 

Since the rubber press is a relatively costly machine, the objective 

is to choose processing orders in such a way that the total completion 

time is minimized while idle time on the rubber press is avoided as much 

as possible. 

If we denote the operations of Ji by Oik with processing times pik 

(k = 1, ••• ,5), typical data for a week's production of 35 jobs look like 

those presented in the left-hand part of Table 15.1. Note that some jobs, 

which are left over from last week, have completed some of their intial 

operations. 

15.2. A heuristic approach 

We can model the above situation as a job-shop with four machines: 

Ml represents the cuttipg and milling machines and has capacity 1 ; 

M2 represents the fitting shop and has capacity 6; 

M3 represents the annealing furnace and has capacity oo; 

M4 represents the rubber press and has capacity 1. 

Each job has the same machine order (Ml,M2,M3,M4,M2). 

Approaching the problem in a heuristic way, we note that 



167 

\35 \35 \35 \35 
li=1 pil = 56 ' li=1 pi2 = 70 • li=1 pi4 = 48 · 5 • li=1 pi5 = 202 · 

Clearly, not all jobs can be processed on M1 and M4 within one week of 40 

hours and some overflow will result. It seems quite possible to schedule 

oi2 and oi3 directly after the completion of Oil' but some waiting time 

for the jobs before the processing of oi4 and oi5 seems unavoidable. It is 

expedient to schedule Oil in such a way that many jobs are quickly avail

able for further processing, thereby taking pi4 and pi5 into account. 

These intuitive considerations led to the following heuristic method, 

in which Cik stands for the completion time of Oik" 

1. Schedule Oil on M1 according to nonincreasing (p14+pi5 )/pil' thereby 

minimizing the total weighted completion time I~ 5 1 (p. 4+p. 5 Jc. 1 (cf. 
i= i i i 

[Smith 1956]). 

2. Schedule oi2 as early as possible on M2 according to nondecreasing Cil" 

3. Schedule oi3 on M3 according to ci3 := sfci2/sl+B <f xl is the smallest 

integer not less than x). 

4. Schedule o. 4 on M4 by solving the nlllr.~OIL' problem as discussed 
i i max 

in Chapter 10, defined by heads ci3 , bodies pi4 and tails pi 5 . 

5. Schedule oi5 as early as possible on M2 according to nondecreasing ci4 . 

15.3. Results 

The above heuristic was applied to the problem data in Table 15.1. The one

machine problem on M4 was solved by algorithm MF (see Section 10.2.3); the 

first application of algorithm LS yielded an optimal solution. The resulting 

schedule is given by the completion times in Table 15.1; the corresponding 

Gantt-chart is shown in Figure 15.1. This schedule compares favourably with 

several schedules obtained by trial-and-error and rules of thumb. 

15.4. Remarks 

The approach described above seems to be more generally applicable. Basi

cally, it involves the determination of critical machines in the production 

process, i.e., the machines that are important from a cost minimizing point 

of view and on which the processing orders have a crucial influence on the 

quality of the schedule as a whole. The problem is then decomposed into 

problems involving one or more of those critical machines; these problems 



168 

TABLE 15.1. A PRACTICAL SCHEDULING PROBLEM: DATA AND RESULTS 

i 
pi1 

ci1 ci2 ci3 ci4 ci5 pi1 pi2 Pu pi4 pi5 pi4+pi5 

1 4 4 8 2 6 .50 32 36 48 50 56 
2 2 2 8 1 4 .40 22 24 32 33 38 
3 1 1 8 1 2 .33 6 7 16 27.5 32 
4 - 2 8 .5 6 - 0 2 16 22 32 
5 6 2 8 2 7 .67 50 52 64 66 73 
6 1 1 8 1 3 .25 4 5 16 24 33 
7 1 1 8 .5 4 .22 2 3 16 22.5 31 
8 - 5 8 .5 7 - 0 5 16 18.5 27 
9 1 1 8 .5 4 .22 3 4 16 23 34 

1.0 - - 8 2 6 - - 0 8 14 20 
11 1 1 8 .5 2 .40 23 24 32 33.5 36 
12 1 1 8 .5 2 .40 24 25 40 45 47 
13 1 1 8 1 2 .33 7 8 16 28.5 34 
14 2 1 8 1 4 .40 26 27 40 43 47 
15 - 5 8 1 9 - 0 5 16 17 26 
16 7 10 8 2 16 .39 20 30 40 42 58 
17 - - - 1. 5 6 - - - 0 6.5 12.5 
18 1 1 8 1.5 6 .13 1 2 16 20 30 
19 - - 8 2 8 - - 0 8 10 18 
20 6 6 8 3 6 .67 56 62 72 75 81 
21 - - - 2.5 12 - - - 0 2.5 15 
22 - - 8 2 7 - - 0 8 12 19.5 
23 - - - 2.5 11 - - - 0 5 16 
24 2 2 8 1.5 3 .44 28 30 40 44.5 47.5 
25 - - - - 4 - - - - 0 6 
26 6 3 8 2.5 7 .63 44 47 56 61.5 68.5 
27 - - 8 1 5 - - 0 8 15 20 
28 1 1 8 1 3 .25 5 6 16 26.5 34 
29 - - - 1.5 6 - - - 0 8 14 
30 1 1 8 1 2 .33 8 9 24 29.5 35 
31 1 1 8 1 2 .33 9 10 24 30. 5 36 
32 - 3 8 1 7 - 0 3 16 18 25 
33 6 6 8 3 7 .60 38 44 56 59 66 
34 - 6 8 1.5 6 - 0 6 16 21.5 31 
35 4 2 8 1.5 10 .35 13 15 24 25.5 41 

may be solved by methods inspired by sequencing theory. The resulting sched

ules are concatenated by suitable processing orders on the other machines 

leading to an overall schedule of reasonable quality. 

our experience with this heuristic approach has been limited to the 

small example above and our only conclusion would be that it merits further 

experimentation. We feel that through this approach the models from sequencing 
theory, which may well correspond to an oversimplified picture of reality, 

can find application in varying situations that do not fit the standard 

models. In view of the frequent complaint about the lack of successful prac

tical applications of machine scheduling theory, this seems a worth-while 

area for future research. 



M 1 11s1119lsl23IJl19l3ol31I 35 I t6 I 2 1111121 t4 I 24 I t I 33 I 26 I 5 I 20 

M2 35 27 t6 3 , 33 26 5 20 I 5 I I 20 

23 24 9 3t t6 

I I I I 6 130 I I " I I , I I 2• 

~ 

32 I 2t I I 15 I I I I 
~ I 29 I to I s I 7 I 35 I I t2 

I 11 2 5 I I t9 I 32 I 34 I 26 I " I 
M 3 I to, 19,2Z 21. J ~4~.1.s.9.t3.1s.t~28,32,3•J 30,31,35 I 2, 11 I 12,14,16,24 I t I 26, 33 

Mt. 17 29 19 16 1 24 1 33 26 

I I I I 11 I I I I I I I I I ' I I I I I I I I I I I I I I ' I I I I I I I I 11 I I I 11 I I I 11 I I I I ' I I I I ' I I I 11 I I I 11 I I I 11 I I I I ' 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Figure 15.1 A practical scheduling problem: Gantt-chart. 

>-' 
()'\ 

'° 





"What abou.t yoWt 1!.e.advv., - 11\Y l!.e.ade.M ! 
What .6hail. I te.U them?" 

"Any&ng you like.," Wa.6 the. bland 
1!.e.ply. "T e.U them 1 Wa.6 mUl!.de.l!.e.d by my 
mathe.mcitleli tu.tol!., ..L6 you like.." 

The. Se.ve.n Pe.1!. Ce.nt Solution, 
Bung a Re.pM.nt 61!.0m the. Re.mln..l.6-
c..e.nc..u 06 John H. Wat.6on, M.V., 
CL6 EdU.e.d by N..Lc..hola.6 Me.ye.I!.. 





173 

16. CONCLUSION 

In this final chapter we intend to indicate briefly some promising areas 

for future sequencing research. Here we can fruitfully distinguish between 

questions concerning problems in P, for which a good algorithm exists, and 

problems that are known to be NP-complete. 

With respect to the former category there are two important directions 

for further investigations. First, we can try to find a better polynomial

bounded algorithm or improve the quality of the currently best implementa

tion. Secondly, we may derive sharp lower bounds on the number of steps min

imally required to solve the problem. Whenever these two approaches meet, 

optimality of a certain algorithm has been proved. 

With respect to the latter category, we have already advocated several 

times the need for further refinement of the complexity measure provided by 

the NP-completeness concept. Two possible ways of doing this have been in

dicated and proved useful in preliminary research. We can study the various 

possibilities of encoding the problem data and distinguish between complex

ity results with respect to unary and binary encodings. Furthermore, we may 

attempt to investigate the existence of an algorithm that finds a solution 

within a constant percentage from the optimum. For some problems, such an 

approximate algorithm has been identified; in other cases, even this approx

imation problem turns out to be NP-complete. 

Given NP-completeness of a problem, the use of enumerative methods 

seems inevitable and in fact still more sophisticated ones may be required 

for its solution. Problems of reasonable size may be solved only if we apply 

branching schemes, bounding rules and elimination criteria that exploit the 

characteristic features of the specific type of problem under consideration. 

Sharper bounds might for instance be based on relaxations to "easier" NP

complete problems or on a form of Lagrangean relaxation. A recursively im

plemented depth-first search appears to be an attractive approach for many 

branch-and-bound algorithms, provided that programming languages and compil

ers are available that are well suited for recursive procedures. 

None the less, approximate methods turn out to be unavoidable for many 

problems. An investigation of the worst-case behaviour of such methods and 

probabilistic analyses of their average-case or "almost everywhere" behav

iour still leads to a host of challenging mathematical problems. Generally 

though, the development and testing of very general heuristics does not seem 

the most appropriate way to attack practical problems, where often special 



174 

structural properties allow a more tailor-made approach. With respect to those real-world problems, we finally feel that the potential applicability of machine scheduling theory has been sorely underestimated, especially when compared to the many varied applications of quadratic assignment problems. The area of sequencing research should be one of the prime examples of a specialization within operations research where the artificial distinction between theoretical and practical work is minimized to the benefit of all. 







177 

BIBLIOGRAPHY 

A.K. AGARWAL (1975) Multiple reversal procedure in implicit enumeration algo

rithm for machine sequencing via disjunctive graphs. Presented at ORSA/ 

TIMS meeting, Chicago. 

N. AGIN (1966) Optimum seeking with branch-and-bound. Management Sci. _!l, 

B176-185. 

J.M. ANTHONISSE (1972) Private communication. 

J.M. ANTHONISSE, P. VAN EMDE BOAS (1974) Are polynomial algorithms really 

good? Report BW 40, Mathematisch Centrum, Amsterdam. 

S. ASHOUR (1970) A branch-and-bound algorithm for flow-shop scheduling prob

lems. AIIE Trans. ~,172-176. 

S. ASHOUR, K.-Y. CHIU, T.E. MOORE (1973) An optimal schedule time of a job 

shop-like disjunctive graph. Networks l,333-349. 

s. ASHOUR, S.R. HIREMATH (1973) A branch-and-bound approach to-the job-shop 

scheduling problem. Internat. J. Production Res. l!_,47-58. 

S. ASHOUR, T.E. MOORE, K.-Y. CHIU (1974) An implicit enumeration algorithm 

for the nonpreemptive shop scheduling problem. AIIE Trans. §_,62-72. 

S. ASHOUR, R.G. PARKER (1971) A precedence graph algorithm for the shop 

scheduling problem. Operational Res. Quart. ~,165-175,379. 

P.C. BAGGA, N.K. CHAKRAVARTI (1968) Optimal m-stage production schedule. 

Canad. Operational Res. Soc. J. §_,71-78. 

K.R. BAKER (1975) A comparative study of flow-shop algorithms. Operations 

Res . .?2_,62-73. 

K.R. BAKER, J.B. MARTIN (1974) An experimental comparison of solution algo

rithms for the single-machine tardiness problem. Naval Res. Logist. 

Quart. ~,187-199. 

K.R. BAKER, z.-s. SU (1974) Sequencing with due-dates and early start times 

to minimize maximum tardiness. Naval Res. Logist. Quart. ~,171-176. 

E. BALAS (1968) A note on the branch-and-bound principle. Operations Res. 

_!_§_, 442-445, 886. 

E. BALAS (1969) Machine-sequencing via disjunctive graphs: an implicit enu

meration algorithm. Operations Res. _!2,941-957. 

W. BARTH (1968) Ein ALGOL 60 Programm zur Losung des traveling Salesman 

Problems. Ablauf- und Planungsforschung ~,99-105. 

E.F. BECKENBACH (ed.) (1964) Applied Combinatorial Mathematics. Wiley, New 

York. 



178 

M. BELLMORE, J.C. MALONE (1971) Pathology of traveling-salesman subtour

elimination algorithms. Operations Res . .!2_,278-307,1766. 

M. BELLMORE, G.L. NEMHAUSER (1968) The traveling salesman problem: a survey. 

Operations Res . .!.§_,538-558. 

J.R. BITNER, G. EHRLICH, E.M. REINGOLD (1976) Efficient generation of the 

binary reflected Gray code and its applications. Comm. ACM .!2_,517-521. 

J. BOOTHROYD (1965) Algorithm 6, Perm. Comput. Bull. ~,104. 

J. BOOTHROYD (1967A) Algorithm 29, Permutation of the elements of a vector. 

Comput. J. _!Q,311. 

J. BOOTHROYD (1967B) Algorithm 30, Fast permutation of the elements of a 

vector. Comput. J • .!..Q_,311-312. 

P. BRATLEY, M. FLORIAN, P. ROBILLARD (1973) On sequencing with earliest 

starts and due dates with application to computing bounds for the 

(n/m/G/Fmax) problem. Naval Res. Logist. Quart. lQ_,57-67. 

G.H. BROOKS, C.R. WHITE (1965) An algorithm for finding optimal or near op

timal solutions to the production scheduling problem. J. Indust. Engrg . 

.!.§_, 34-40. 

A.P.G. BROWN, Z.A. LOMNICKI (1966) Some applications of the "branch-and

bound" algorithm to the machine scheduling problem. Operational Res. 

Quart . .!2_,173-186. 

J. BRUNO, E.G. COFFMAN, Jr., R. SETHI (1974A) Algorithms for minimizing mean 

flow time. [Rosenfeld 1974, 504-510]. 

J. BRUNO, E.G. COFFMAN, Jr., R. SETHI (1974B) Scheduling independent tasks 

to reduce mean finishing time. Comm. ACM .!2_,382-387. 

R.E. BURKARD (1973) A perturbation method for solving quadratic assignment 

problems. Presented at 8th Mathematical Programming Symposium, Stanford. 

P.M. CAMERINI, L. FRATTA, F. MAFFIOLI (1974) Traveling salesman problem: 

heuristically guided search and modified gradient techniques. Politec

nico di Milano. 

H.G. CAMPBELL, R.A. DUDEK, M.L. SMITH (1970) A heuristic algorithm for the 

n job, m machine sequencing problem. Management Sci . .!.§_,B630-637. 

R. CARVAJAL, G. ESPINOSA, A .. LOPEZ (1974) The traveling salesman problem 

and the bond energy algorithm used in cluster analysis. Comunicaciones 

Tecnicas ~B No.79, Centro de Investigacion en Matematicas Aplicadas y 

en Sistemas, Universidad Nacional Aut6noma de Mexico. 

J.M. CHARLTON, c.c. DEATH (1970A) A generalized machine scheduling algorithm. 

Operational Res. Quart. ~,127-134. 



179 

J.M. CHARLTON, c.c. DEATH (1970B) A method of solution for general machine 

scheduling problems. Operations Res . .!.§_,689-707. 

N. CHRISTOFIDES (1970) The shortest Hamiltonian chain of a graph. SIAM J. 

Appl. Math • .!2_,689-696. 

N. CHRISTOFIDES (1972) Bounds for the travelling-salesman problem. Operations 

Res. ~,1044-1056. 

N. CHRISTOFIDES (1975) Graph Theory: an Algorithmic Approach. Academic Press, 

New York. 

N. CHRISTOFIDES (1976) The vehicle routing problem. Rev. Fran9aise Automat. 

Informat. Recherche Operationnelle .!Q.2,55-70. 

N. CHRISTOFIDES, s. EILON (1972) Algorithms for large-scale travelling sales

man problems. Operational Res. Quart. ~,511-518. 

E.G. COFFMAN, Jr. (ed.) (1976) Computer and Job-shop Scheduling Theory. 

Wiley, New York. 

E.G. COFFMAN, Jr., R.L. GRAHAM (1972) Optimal scheduling for two-processor 

systems. Acta Informat. ±._,200-213. 

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling. Addison

Wesley, Reading, Mass. 

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd 

Annual ACM Symp. Theory Comput., 151-158. 

G.A. CROES (1958) A method for solving traveling salesman problems. Opera

tions Res • .§_,791-814. 

G.B. DANTZIG, D.R. FULKERSON, S.M. JOHNSON (1954) Solution of a large scale 

traveling salesman problem. Operations Res. ±_,393-410. 

N. DERSHOWITZ (1975) A simplified loop-free algorithm for generating permu

tations. BIT _!2,158-164. 

M.I. DESSOUKY, C.R. MARGENTHALER (1972) The one-machine sequencing problem 

with early starts and due dates. AIIE Trans. !,214-222. 

E.W. DIJKS'I'RA ( 1959) A note on two problems in connexion with graphs. Numer. 

Math. l_,269-271. 

B. DORHOUT (1975) Experiments with some algorithms for the linear assignment 

problem. Report BW 39, Mathematisch Centrum, Amsterdam. 

R.A. DUDEK, O.F. TEUTON, Jr. (1964) Development of M-stage decision rule for 

scheduling n jobs through M machines. Operations Res. ~,471-497. 

S.K. DUTTA, A.A. CUNNINGHAM (1975) Sequencing two-machine flow-shops with 

finite intermediate storage. Management Sci. ~,989-996. 



180 

W.L. EASTMAN (1958) Linear Programming with Pattern Constraints. Thesis, 
Harvard University, Cambridge, Mass. 

W.L. EASTMAN (1959) A solution to the traveling-salesman problem. Econometrica 
~,282. 

J. EDMONDS (1965A) Paths, trees, and flowers. Canad. J. Math . .!2_,449-467. 
J. EDMONDS (1965B) The Chinese postman's problem. Operations Res . .!]_ Suppl.1, 

B73. 

J. EDMONDS (1967) Optimum branchings. J. Res. Nat. Bur. Standards 2.!_B,233-240. 
J. EDMONDS (1974) Private communication. Presented at the NATO Advanced Study 

Institute on Combinatorial Programming: Methods and Applications, Ver
sailles, September 2-13. 

J. EDMONDS (1975) Some well-solved problems in combinatorial optimization. 
[Roy 1975, 285-301]. 

J. EDMONDS, E.L. JOHNSON (1973) Matching, Euler tours and the Chinese postman. 
Math. Programming 2,88-124. 

G. EHRLICH (1973A) Loopless algorithms for generating permutations, combina
tions and other combinatorial configurations. J. Assoc. Comput. Mach. 
20,500-513. 

G. EHRLICH (1973B) Algorithm 466, Four combinatorial algorithms. Comm. ACM 
.!.§_,690-691. 

S. EILON, C.D.T. WATSON-GANDY, N. CHRISTOFIDES (1971) Distribution Management: 
Mathematical Modelling and Practical Analysis. Griffin, London. 

S.E. ELMAGHRABY (1968) The one-machine sequencing problem with delay costs. 
J. Indust. Engrg • ..!2_,105-108. 

H. EMMONS (1969) One-machine sequencing to minimize certain functions of 
job tardiness. Operations Res • .!2_,701-715. 

S. EVEN (1973) Algorithmic Combinatorics. Macmillan, London. 

M.L. FISHER (1974) A dual algorithm for the one-machine scheduling problem. 
Math. Programming, to appear. 

M. FLORIAN, P. TREPANT, G. McMAHON (1971) An implicit enumeration algorithm 
for the machine sequencing problem. Management Sci . .!2_,B782-792. 

M. GARDNER (1974) Some new and dramatic demonstrations of number theorems 
with playing cards. Sci. Amer. 231,122-125. 

M.R. GAREY (1975) Private communication. 

M.R. GAREY, R.L. GRAHAM (1975) Bounds for multiprocessor scheduling with 

resource constraints. SIAM J. Comput. i,187-200. 



181 

M.R. GAREY, D.S. JOHNSON (1975A) Complexity results for multiprocessor sched

uling under resource constraints. SIAM J. Comput. !,397-411. 

M.R. GAREY, D.S. JOHNSON (1975B) Two-processor scheduling with start-times 

and deadlines. Bell Laboratories, Murray Hill, N.J. 

M.R. GAREY, D.S. JOHNSON (1976) Scheduling tasks with nonuniform deadlines 

on two processors. J. Assoc. Comput. Mach. ~,461-467. 

M.R. GAREY, D.S. JOHNSON, R. SETHI (1976A) The complexity of flowshop and 

jobshop scheduling. Math. Operations Res . .!_,117-129. 

M.R. GAREY, D.S. JOHNSON, L. STOCKMEYER (1976B) Some simplified NP-complete 

graph problems. Theoret. Comput. Sci . .!_,237-267. 

R.S. GARFINKEL (1973) On partitioning the feasible set in a branch-and-bound 

algorithm for the asymmetric traveling-salesman problem. Operations Res. 

~,340-343. 

J.W. GAVETT, N.V. PLYTER (1966) The optimal assignment of facilities to loca

tions by branch and bound. Operations Res. l.!,210-232. 

L. GELDERS, P.R. KLEINDORFER (1974) Coordinating aggregate and detailed sched

uling decisions in the one-machine job shop: part I. Theory. Operations 

Res. ±1.1 46-60. 

L. GELDERS, P.R. KLEINDORFER (1975) Coordinating aggregate and detailed sched

uling in the one-machine job shop: II - computation and structure. Opera

tions Res. ~,312-324. 

A.M. GEOFFRION, G.W. GRAVES (1976) Scheduling parallel production lines with 

changeover costs: practical application of a quadratic assignment/LP 

approach. Operations Res. ~,595-610 .. 

B. GIFFLER, G.L. THOMPSON (1960) Algorithms for solving production-scheduling 

problems. Operations Res . .§_,487-503. 

B.E. GILLETT, L.R. MILLER (1974) A heuristic algorithm for the vehicle-dis

patch problem. Operations Res. ±1.,340-349. 

P.C. GILMORE (1962) Optimal and suboptimal algorithms for quadratic assign

ment problems. J. SIAM _!Q,305-313. 

P.C. GILMORE, R.E. GOMORY (1964) Sequencing a one-state variable machine: a 

solvable case of the traveling salesman problem. Operations Res. 12_, 

655-679. 

F. GLOVER, T. KLASTORIN, D. KLINGMAN (1974) Optimal weighted ancestry rela

tionships. Management Sci. lQ_,B1190-1193. 

T. GONZALES, S. SAHNI (1975) Flow shop and job shop schedules. Technical Re

port 75-14, Department of Computer Sciences, University of Minnesota, 

Minneapolis. 



182 

S.K. GOYAL (1973) A note on the paper: On the flow-shop sequencing problem 
with no wait in process. Operational Res. Quart. 24,130-133. 

S.K. GOYAL (1975) Job-shop sequencing problems with no wait in process. 
Internat. J. Production Res . .:!_l,197-206. 

J. GRABOWSKI, M.M. SYSLO (1973) On some machine sequencing problems (I). 

Zastos. Mat . .:!_l,339-345. 

R.L. GRAHAM (1969) Bounds on multiprocessing time anomalies. SIAM J. Appl. 

Math. 12.,263-269. 

H.H. GREENBERG (1968) A branch-and-bound solution to the general scheduling 
problem. Operations Res . ..!..§_,353-361. 

D. GRIES (1975) Recursion as a programming tool. Technical Report 234, Depart
ment of Computer Science, Cornell University, Ithaca. 

M. GROTSCHEL, M.W. PADBERG (1974) Lineare Charakterisierungen von travelling 
Salesman Problemen. z. Operations Res., to appear. 

M. GROTSCHEL, M.W. PADBERG (1975) Partial linear characterizations of the 
travelling salesman polytope. Math. Programming ~,378-381. 

J.N.D. GUPTA (1971) An improved combinatorial algorithm for the flowshop

scheduling problem. Operations. Res. ~,1753-1758. 

M. HANAN, J.M. KURTZBERG (1972) A review of the placement and quadratic as
signment problems. SIAM Rev. _!i,324-342. 

P. HANSEN, L. KAUFMAN (1974) A note on the quadratic assignment problem. 
Cahiers Centre Etudes Recherche Oper . ..!..§_,441-446. 

K. HARADA (1971) Generation of rosary permutations expressed in hamiltonian 
circuits. Comm. ACM _!i,373-379. 

W.W. HARDGRAVE, G.L. NEMHAUSER (1963) A geometric model and a graphical algo
rithm for a sequencing problem. Operations Res. !!_,889-900. 

G.H. HARDY (1940) A Mathematician's Apology. Cambridge University Press, 
Cambridge. 

K. HELBIG HANSEN, J. KRARUP (1974) Improvements of the Held-Karp algorithm 
for the symmetric traveling-salesman problem. Math. Programming 2_,87-96. 

M. HELD, R.M. KARP (1962) A dynamic programming approach to sequencing prob
lems. J. SIAM l.2_,196-210. 

M. HELD, R.M. KARP (1970) The traveling-salesman problem and minimum spanning 
trees. Operations Res. l§_,1138-1162. 

M. HELD, R.M. KARP (1971) The traveling-salesman problem and minimum spanning 
trees: part II. Math. Programming l,6-25. 



183 

M. HELD, P. WOLFE, H.P. CROWDER (1974) Validation of subgradient optimization. 

Math. Programming _§_,62-88. 

J. HEMELRIJK (1966) Underlining random variables. Statistica Neerlandica 

20,1-7. 

W.A. HORN (1972) Single-machine job sequencing with treelike precedence or

dering and linear delay penalties. SIAM J. Appl. Math. ~,189-202. 

W.A. HORN (1973) Minimizing average flow time with parallel machines. Opera

tions Res. ~,846-847. 

W.A. HORN (1974) Some simple scheduling algorithms. Naval Res. Logist. Quart. 

~, 177-185. 

T.C. HU (1961) Parallel sequencing and assembly line problems. Operations 

Res. ~,841-848. 

T.C. HU (1969) Integer Programming and Network F.Iows. Addison-Wesley, Read;i-ng., 

Mass. 

E. IGNALL, L. SCHRAGE (1965) Application of the branch-and-bound technique 

to some flow-shop scheduling problems. Operations Res . ..!2_,400-412. 

A.M. ISAAC, E. TURBAN (1969) Some comments on the traveling salesman problem. 

Operations Res. !2_,543-546. 

J.R. JACKSON (1955) Scheduling a production line to minimize maximum tardi

ness. Research Report 43, Management Science Research Project, Univer

sity of California, Los Angeles. 

J.R. JACKSON (1956) An extension of Johnson's results on job lot scheduling. 

Naval Res. Logist. Quart. 2,201-203. 

D.S. JOHNSON (1974) Approximation algorithms for combinatorial problems. 

,J. Compu-t. System Sci. 2_,256-278. 

S.M. JOHNSON (1954) Optimal two- and three-stage production schedules with 

setup times .included. Naval Res. Logist. Quart. 1._,61-68. 

S.M. JOHNSON (1963) Generation of permutations by adjacent transposition. 

Math. Comp. }_~ 1 282-285. 

R. JONKER (1974) The one depot vehicle scheduling problem: an improved heuris

tic approach. Inst.ituµt voor Actuariaat en Econometrie, Universiteit van 

Amsterdam. 

R.M. KARP (1972A) A simple derivation of Edmonds' algorithm for optimum 

branchings. Networks 1._,265-272. 



184 

R.M. KARP (1972B) Reducibility among combinatorial problems. [Miller & 

Thatcher 1972, 85-103]. 

R.M. KARP (1975A) On the computational complexity of combinatorial problems. 

Networks ~,45-68. 

R.M. KARP (1975B) Non-heuristic analysis of heuristic search methods. Pre

sented at Workshop on Integer Programming, Bonn, September 8-12. 

W. KARUSH (1965) A counterexample to a proposed algorithm for optimal se

quencing of jobs. Operations Res. _!2,323-325. 

L. KAUFMAN (1975) The Location of Economic Activities by 0-1 Programming. 

Thesis, Vrije Universiteit, Brussels. 

D.E. KNUTH (1974) A terminological proposal. SIGACT News .§_.1,12-18. 

W.H. KOHLER, K. STEIGLITZ (1974) Characterization and theoretical comparison 

of branch-and-bound algorithms for permutation problems. J. Assoc. Com

put. Mach. ~,140-156. 

P.J. KOLESAR (1967) A branch and bound algorithm for the knapsack problem. 

Management Sci. _!2,723-735. 

T.C. KOOPMANS, M. BECKMANN (1957) Assignment problems and the location of 

economic activities. Econometrica ~,53-76. 

B. KORTE, W. OBERHOFER (1968) Zwei Algorithmen zur Losung eines komplexen 

Reihenfolgeproblems. Unternehmensforschung _!2,217-231. 

J. KRARUP (1975) The peripatetic salesman and some related unsolved problems. 

[Roy 1975, 173-178]. 

J.B. KRUSKAL (1956) On the shortest spanning subtree of a graph and the 

traveling-salesrnan problem. Proc. Amer. Math. Soc. 3_,48-50. 

J.H. KUIPER (1973) "Hoe een PTT-er handelsreiziger werd" - een routing prob

leem. Unpublished Report. 

B.J. LAGEWEG, E.L. LAWLER (1975) Private communication. 

B.J. LAGEWEG, J.K. LENSTRA (1972) Algoritmen voor knapzakproblemen. Report 

BN 14, Mathematisch Centrurn, Amsterdam. 

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) Minimizing maximum 

lateness on one machine: computational experience and some applications. 

Statistica Neerlandica l9_,25-41. 

A.H. LAND (1963) A problem of assignment with inter-related costs. Operational 

Res. Quart . .!_i,185-199. 

E. L. LAWLER ( 1963) The quadratic assignment problem. Management Sci. ~. 586-599. 

E. L. LAWLER (1964) On scheduling problems with deferral costs. Management 

Sci . .!_!_, 280-288. 

E.L. LAWLER (1971) A solvable case of the traveling salesman problem. Math. 



185 

Programming l_,267-269. 

E.L. LAWLER (1973) Optimal sequencing of a single machine subject to prece

dence constraints. Management Sci . .!2_,544-546. 

E.L. LAWLER (1975A) The quadratic assignment problem: a brief review. [Roy 

1975, 351-360]. 

E.L. LAWLER (1975B) A pseudopolynomial algorithm for sequencing jobs to 

minimize total tardiness. Ann. Discrete Math. l_, to appear. 

E.L. LAWLER (1976A) Sequencing to minimize the weighted number of tardy 

jobs. Rev. Fran9aise Automat. Informat. Recherche Operationnelle .!Q_.5 

Suppl.27-33. 

E.L. LAWLER (1976B) Combinatorial Optimization: Networks and Matroids. 

Holt, Rinehart, and Winston, New York. 

E.L. LAWLER (1976C) Sequencing jobs to minimize total weighted completion 

time subject to precedence constraints. To appear. 

E.L. LAWLER, J.M. MOORE (1969) A functional equation and its application to 

resource allocation and sequencing problems. Management Sci. ~,77-84. 

E.L. LAWLER, D.E. WOOD (1966) Branch-and-bound methods: a survey. Operations 

Res. _!_i,699-719. 

D.H. LEHMER (1.964) The machine tool of combinatorics. [Beckenbach 1964, 5-31]. 

H. W. LENSTRA, Jr. (197 3A) The acyclic subgraph problem. Report BW 26, Mathe

matisch Centrum, Amsterdam. 

H.W. LENSTRA, Jr. (1973B) Private communications. 

J.K. LENSTRA (1972) Branch-and-bound algorithmen voor het handelsreizigers

probleem. Report BN 16, Mathematisch Centrum, Amsterdam. 

J.K. LENSTRA (1973) Recursive algorithms for enumerating subsets, lattice

points, combinations and permutations. Report BW 28, Mathematisch Cen

trum, Amsterdam. 

J.K. LENSTRA (1974) Clustering a data array and the traveling-salesman prob

lem. Operations Res. ~,413-414. 

J.K. LENSTRA, A.H.G. RINNOOY KAN (1973) Towards a better algorithm for the 

job-shop scheduling problem - I. Report BN 22, Mathematisch Centrum, 

Amsterdam. 

J.K. LENSTRA, A.H.G. RINNOOY KAN (1975A) Some simple applications of the 

travelling salesman problem. Operational Res. Quart. 26,717-733. 

J.K. LENSTRA, A.H.G. RINNOOY KAN (1975B) A recursive approach to the genera

tion of combinatorial configurations. Report BW 50, Mathematisch Centrum, 

Amsterdam. 

J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) On general routing problems. Networks 

.§_,273-280. 



186 

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1975) Complexity of machine 

scheduling problems. Ann. Discrete Math . .!_, to appear. 

D.G. LIESEGANG (1974) Moglichkeiten zur wirkungsvollen Gestaltung von Branch 

and Bound-Verfahren dargestellt an ausgewahlten Problemen der Reihen

folgeplanung. Thesis, Universitat zu K6ln, Cologne. 

D.G. LIESEGANG, M. RUGER (1972) Letter. Operational Res. Quart. ~,591. 

S. LIN (1965) Computer solutions of the traveling salesman problem. Bell 

System Tech. J. 44,2245-2269. 

S. LIN, B.W. KERNIGHAN (1973) An effective heuristic algorithm for the trav

eling-salesman problem. Operations Res. ~,498-516. 

J.D.C. LITTLE, K.G. MURTY, D.W. SWEENEY, C. KAREL (1963) An algorithm for 

the traveling salesman problem. Operations Res . .!..!_,972-989. 

Z.A. LOMNICKI (1965) A branch-and-bound algorithm for the exact solution of 

the three-machine scheduling problem. Operational Res. Quart . .!.§_,89-100. 

W.T. McCORMICK, Jr., P.J. SCHWEITZER, T.W. WHITE (1972) Problem decomposition 

and data reorganization by a clustering technique. Operations Res. 20, 

993-1009. 

G.B. McMAHON (1969) Optimal production schedules for flow shops. Canad. Oper

ational Res. Soc. J. 2_,141-151. 

G.B. McMAHON (1971) A Study of Algorithms for Industrial Scheduling Problems. 

Thesis, University of New South Wales, Kensington. 

G.B. McMAHON, P.G. BURTON (1967) Flow-shop scheduling with the branch-and

bound method. Operations Res • .!:2_,473-481. 

G.B. McMAHON, M. FLORIAN (1975) On scheduling with ready times and due dates 

to minimize maximum lateness. Operations Res. ~,475-482. 

N. MEYER (1975) The Seven Per Cent Solution, Being a Reprint from the Remi

niscences of John H. Watson, M.D. Hodder and Stoughton, London. 

R.E. MILLER, J.W. THATCHER (eds.) (1972) Complexity of Computer Computations. 

Plenum Press, New York. 

L.G. MITTEN (1970) Branch-and-bound methods: general formulation and proper

ties. Operations Res . .!.§_,24-34. 

J.W. MOON (1968) Topics on T9urnaments. Holt, Rinehart, and Winston, New York. 

J.M. MOORE (1968) Ann job, one machine sequencing algorithm for minimizing 

the number of late jobs. Management Sci . .!:2_,102-109. 

H. MULLER-MERBACH (1970) Optimale Reihenfolgen. Springer, Berlin. 

J.F. MUTH, G.L. THOMPSON (eds.) (1963) Industrial Scheduling. Prentice-Hall, 

Englewood Cliffs, N.J. 



187 

I. NABESHIMA (1971) General scheduling algorithms with applications to paral

lel scheduling and multiprogramming scheduling. J. Operations Res. Soc. 

Japan _!i, 72-99. 

L. NEMETI (1964) Das Reihenfolgeproblem in der Fertigungsprogrammierung und 

Linearplanung mit logischen Bedingungen. Mathematica (Cluj) .§_,87-99. 

R.J. ORD-SMITH (1970) Generation of permutation sequences: part 1. Comput. J. 

_!l, 152-155. 

R.J. ORD-SMITH (1971) Generation of permutation sequences: part 2. Comput. J. 

_!i, 136-139. 

C.S. ORLOFF (1974A) A fundamental problem in vehicle routing. Networks !,35-64. 

c.s. ORLOFF (1974B) Routing a fleet of M vehicles to/from a central facility. 

Networks !,147-162. 

D.S. PALMER (1965) Sequencing jobs through a multi-stage process in the min

imum total time - a quick method of obtaining a near optimum. Operational 

Res. Quart . .!_§_,101-107. 

J. PIEHLER (1960) Ein Beitrag zum Reihenfolgeproblem. Unternehmensforschung 

!,138-142. 

J.F. PIERCE, W.B. CROWSTON (1971) Tree-search algorithms for quadratic assign

ment problems. Naval Res. Logist. Quart. l..§_,1-36. 

I. POHL (1975) Practical and theoretical considerations in heuristic search 

algorithms. Memo HP-75-1, Department of Information Sciences, University 

of California, Santa Cruz. 

V.R. PRATT (1972) An n log n algorithm to distribute n records optimally in 

a sequential access file. [Miller & Thatcher 1972, 111-118]. 

R.C. PRIM (1957) Shortest connection networks and some generalizations. Bell 

System Tech. J. 36,1389-1401. 

R.C. READ (1972) A note on the generation of rosary permutations. Comm. ACM 

~,775. 

S.S. REDDI, C.V. RAMAMOORTHY (1972) On the flow-shop sequencing problem with 

no wait in process. Operational Res. Quart. ~,323-331. 

S.S. REDDI, C.V. RAMAMOORTHY (1973A) Reply to Dr. Goyal's comments. Opera

tional Res. Quart. 24,133-134. 

S.S. REDDI, C.V. RAMAMOORTHY (1973B) A scheduling problem. Operational Res. 

Quart. 24,441-446. 

E.M. REINGOLD, J. NIEVERGELT, N. DEO (1976) Combinatorial Computing. To ap-

pear. 



188 

S. REITER, G. SHERMAN (1965) Discrete optimizing. J. SIAM ..!2_,864-889. 

A.H.G. RINNOOY KAN (1974) On Mitten's axioms for branch-and-bound. Operations 

Res., to appear. 

A.H.G. RINNOOY KAN (1976) Machine Scheduling Problems: Classification, Com

plexity and Computations. Nijhoff, The Hague. 

A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA (1975) Minimizing total costs 

in one-machine scheduling. Operations Res. 23,908-927; [Roy 1975, 343-

350]. 

A.W. ROES (1973) Enige methoden ter verkrijging van een routeschema voor de 

interinsulaire scheepvaart in Indonesie. Unpublished Report, Universiteit 

van Amsterdam. 

J.L. ROSENFELD (ed.) (1974) Information Processing 74. North-Holland, Amster

dam. 

D.J. ROSENKRANTZ, R.E. STEARNS, P.M. LEWIS (1974) Approximate algorithms for 

the traveling salesperson problem. Proc. 15th Annual Symp. Switching & 

Automata Theory, 33-42. 

B. ROY (ed.) (1975) Combinatorial Programming: Methods and Applications. 

Reidel, Dordrecht. 

B. ROY, B. SUSSMANN (1964) Les problemes d'ordonnancement avec contraintes 

disjonctives. Note DS No.9 bis, SEMA, Montrouge. 

M.K. ROY (1973) Reflection-free permutations, rosary permutations, and adja

cent transposition algorithms. Comm. ACM l§_,312-313. 

S. SAHNI, T. GONZALES (1976) P-complete approximation problems. J. Assoc. 

Comput. Mach. ~,555-565. 

N. SANG, M. FLORIAN (1970) A note on lower bounds for the machine scheduling 

problem. Publication #49, Departement d'Informatique, Universite de 

Montreal. 

A. SCHILD, I.J. FREDMAN (1962) Scheduling tasks with deadlines and nonlinear 

loss functions. Management Sci. 2_,73-81. 

L. SCHRAGE (1970A) Solving resource-constrained network problems by implicit 

enumeration - nonpreemptive case. Operations Res. -1:..§_,263-278. 

L. SCHRAGE (1970B) A bound based on the equivalence of min-max-completion 

time and min-max-lateness scheduling objectives. Report 7042, Department 

of Economics and Graduate School of Business, University of Chicago. 

L. SCHRAGE (1971) Obtaining optimal solutions to resource constrained network 

scheduling problems. Unpublished manuscript. 



189 

D. SHAPIRO (1966) Algorithms for the Solution of the Optimal Cost and Bottle

neck Traveling Salesman Problem. Thesis, Washington University, St. Louis. 

J. SHWIMER (1972) On the N-job, one-machine, sequence-independent scheduling 

problem with tardiness penalties: a branch-and-bound solution. Management 

Sci . .!.§_,B301-313. 

J.B. SIDNEY (1975) Decomposition algorithms for single-machine sequencing 

with precedence relations .and deferral costs. Operations Res. ~,283-298. 

P. SLATER (1961) Inconsistencies in a schedule of paired comparisons. Bio

metrika 48,303-312. 

R.D. SMITH, R.A. DUDEK (1967) A general algorithm for the solution of the 

n-job, m-machine sequencing problem of the flowshop. Operations Res. 

_!2, 71-82. 

R.D. SMITH, R.A. DUDEK (1969) Errata. Operations Res. 12_,756. 

W.E. SMITH (1956) Various optimizers for single-state production. Naval Res. 

Logist. Quart. 1_,59-66. 

V. SRINIVASAN (1971) A hybrid algorithm for the one-machine sequencing prob

lem to minimize total tardiness. Naval. Res. Logist. Quart . .!.§_,317-327. 

B.G. SUSSMANN (1972) Scheduling problems with interval disjunctions. Z. Oper

ations Res. 1.§_,165-178. 

M.M. SYSLO (1974) On some machine sequencing problems (II). Zastos. Mat. _!_i, 

93-97. 

W. SZWARC (1960) Solution of the Akers-Friedman scheduling problem. Opera

tions Res. _§_, 782-788. 

W. SZWARC (1971) Elimination methods in the mxn sequencing problem. Naval 

Res. Logist. Quart . .!.§_,295-305. 

W. SZWARC (1973) Optimal elimination methods in the mxn sequencing problem. 

Operations Res. ~,1250-1259. 

W. SZWARC (197 5) Remarks. Operations Res. ~. 1043. 

Y. TABOURIER (1972) Un algorithme pour le probleme d'affectation. Rev. Fran-

9aise Automat. Informat. Recherche Operationnelle .§_.V3,3-15. 

R.E. TARJAN (1975A) Finding minimum spanning trees. Memorandum No.ERL-M501, 

Electronics Research Laboratory, University of California, Berkeley. 

R.E. TARJAN (1975B) Finding optimum branchings. Memorandum No.ERL-M506, 

Electronics Research Laboratory, University of California, Berkeley. 

G.L. THOMPSON (1975) Algorithmic and computational methods for solving sym

metric and asymmetric travelling salesman problems. Presented at Work

shop on Integer Programming, Bonn, September 8-12. 



190 

N. TOMIZAWA (1971) On some techniques useful for solution of transportation 

network problems. Networks .!_,173-194. 

C. TOMPKINS (1956) Machine attacks on problems whose variables are permuta

tions. Proc. Sympos. Appl. Math . .§_, Amer. Math. Soc., Providence, 195-211. 

H.F. TROTTER (1962) Algorithm 115, Perm. Comm. ACM ~,434-435. 

J.D. ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci • 

..!Q_,384-393. 

J.M. VAN DEMAN, K.R. BAKER (1974) Minimizing mean flowtime in the flow shop 

with no intermediate queues. AIIE Trans. ~,28-34. 

J. VISSCHERS, P. TEN KATE (1973) BAKALG, een bedradingsprogramma met optima

lisatie van draadlengte. Report S0-1, Instituut voor Kernphysisch Onder

zoek, Amsterdam. 

M.B. WELLS (1961) Generation of permutations by transposition. Math. Comp . 

..!2_,192-195. 

M.B. WELLS (1971) Elements of Combinatorial Computing. Pergamon, Oxford. 

J.A.M. WESSELING (1975) Nieuwe ondergrenzen voor handelsreizigersalgorithmen. 

Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam. 

D.A. WISMER (1972) Solution of the flowshop-scheduling problem with no inter

mediate queues. Operations Res. ~,689-697. 

A. WREN, A. HOLLIDAY (1972) Computer scheduling of vehicles from one or more 

depots to a number of delivery points. Operational Res. Quart. ~,333-344. 



AUTHOR INDEX 

Agarwal, A.K., 129,177 

Agin, N., 57,177 

Anthonisse, J.M., 10,15,177 

Ashour, S., 115,128,177 

Bagga, P.C. 110,177 

Baker, K.R., 78,80,81,85,89,102,103, 

112,161,177,190 

Balas, E. I 57,129,177 

Barth, w., 43,57,177 

Beckenbach, E.F., 177,185 

Beckmann, M., 12,184 

Bellmore, M., 17,65,70,178 

Berendse, J. I 148 

Bitner, J.R., 43,178 

Boothroyd, J., 45,50,51,54,178 

Bratley, P., 78,129,178 

Brooks, G.H., 128,130,178 

Brown, A.P.G., 115,178 

Brucker,_P., 39,186 

Bruno, J., 22,23,25,27,178 

Burkard, R.E., 14,178 

Burton, P.G., 115,116,186 

Camerini, P.M., 69,178 

Campbell, H.G., 119,178 

Carvajal, R., 154,178 

Chakravarti, N.K., 110,177 

Charlton, J.M., 128,131,178,179 

Chiu, K.-Y., 128,177 

Christofides, N., 17,65,69,147,152, 

179,180 

Coffman, E.G., Jr., 20,22,23,25,27, 

178,179 

Conway, R.W., 20,22,26,27,108,116, 

125,139,179 

Cook, S.A., 7,8,9,179 

Croes, G.A., 74,75,179 

Crowder, H.P., 69,183 

Crowston, W.B., 14,187 

Cunningham, A.A., 161,179 

Dantzig, G.B., 74,75,179 

Death, c.c., 128,131,178,179 

De Leve, G., 76 

Deo, N., 44, 187 

Dershowitz, N., 45,179 

Dessouky, M.I., 78,179 

191 

Dijkstra, E.W., 68,72,98,144,179 

Dorhout, B., 98,179 

Dudek, R.A., 110,119,178,179,189 

Dutta, S.K., 161,179 

Eastman, W.L., 65,70,180 

Edmonds, J., 7,10,65,68,180,183 

Ehrlich, G., 43,44,45,49,54,178,180 

Eilon, s., 17,147,152,179,180 

Elmaghraby, S.E., 94,180 

Emmons, H., 89,94,102,180 

Espinosa, G., 154,178 

Euler, L., 72,180 

Even , S. , 44, 180 

Fisher, M.L., 38,104,106,107,180 

Florian, M., 78,82,83,84,85,128,129, 

130,137,164,178,180,186,188 

Folkers, J.S., 47 

Fratta, L., 69,178 

Fredman, I.J., 89,188 

Fulkerson, D.R., 74,75,179 

Gardner, M., 45,180 



192 

Garey, M.R., 9,10,11,22,23,32,37 

180,181 

Garfinkel, R.S., 70,181 

Gavett, J.W., 14,181 

Gelders, L., 96,98,181 

Geoffrion, A.M., 12,181 

Giffler, B., 130,181 

Gillett, B.E., 152,181 

Gilmore, P.C., 14,17,22,165,181 

Glover, F., 15,181 

Gomory, R.E., 17,22,165,181 

Gonzales, T., 11,181,188 

Goyal, S.K., 161,163,182,187 

Grabowski, J., 161,163,182 

Graham, R.L., 11,22,179,180,182 

Graves, G.W., 12,181 

Gray, F. , 1 78 

Greenberg, H.H., 128,182 

Gries, D., 43,45,182 

Gr6tschel, M., 64,182 

Gupta, J.N.D., 111,182 

Hanan, M., 12,14,144,182 

Hansen, P., 14,182 

Harada, K., 55,182 

Hardgrave, W.W., 22,182 

Hardy, G.H., 1,182 

Helbig Hansen, K., 69,76,182 

Held, M., 69,71,72,74,75,76,89,143, 

182,183 

Hemelrijk, J., 102,183 

Hiremath, S.R., 128,177 

Holliday, A., 152,190 

Horn, W.A., 22,78,89,183 

Hu, T.C., 10,22,87,183 

Ignall, E., 110,115,183 

Isaac, A.M., 17,183 

Jackson, J.R., 22,24,78,125,183 

Johnson, D.S., 9,10,11,22,23,32,37 

181,183 

Johnson, E.L., 10,180 

Johnson, S.M., 22,45,74,75,88,108, 

116,119,179,183 

Jonker, R., 152,183 

Karel, C., 66,71,143,186 

Karp, R.M., 7,8,9,10,23,31,60,68,69, 

71,72,74,75,76,89,143,182,183, 

184 

Karush, w., 111,184 

Kaufman, L., 14,182,184 

Kernighan, B.W., 17,186 

Klastorin, T., 15,181 

Kleindorfer, P.R., 96,98,181 

Klingman, D., 15,181 

Knuth, D.E., 7,184 

Kohler, W.H., 57,184 

Kolesar, P.J., 87,184 

Koopmans, T.C., 12,184 

Korte, B. , 16, 184 

Krarup, J., 69,76,152,182,184 

Kruskal, J.B., 68,144,184 

Kuiper, J.H., 148,184 

Kurtzberg, J.M., 12,14,144,182 

Lageweg, B.J. 22,87,184,188 

Land, A.H., 14,184 

Lawler, E.L., 10,12,14,17,22,23,33, 

37,38,57,65,79,89,96,101,184, 

185 

Lehmer, D.H., 44,57,185 

Lenstra, H.W., Jr., 15,47,51,56,185 

Lenstra, J.K., 22,39,44,56,71,74,79, 

87,131,152,154,184,185,186,188 

Lewis, P.M., 11,188 



Liesegang, D.G., 67,161,186 

Lin, S., 17,56,72,143,186 

Little, J.D.C., 66,71,143,186 

Lomnicki, Z.A., 115,178,186 

L6pez, A., 154,178 

Maffioli, F., 69,178 

Malone, J.C., 65,70,178 

Margenthaler, C.R., 78,179 

Martin, J.B., 89,102,103,177 

Maxwell, W.L., 20,22,26,27,108,116 

125, 139, 179 

McCormick, W.T., Jr., 152,153,154, 

155,186 

McMahon, G.B., 78,82,83,84,85,110, 

111,112,115,116,119,121,124, 

128,129,130,137,164,180,186 

Meyer, N., 171,186 

Miller, L.R., 152,181 

Miller, L.W., 20,22,26,27,108,116, 

125,139,179 

Miller, R.E., 184,186,187 

Mitten, L.G., 57,186,188 

Moon, J.W., 15,186 

Moore, J.M., 22,37,89,185,186 

Moore, T.E., 128,177 

Muller-Merbach, H., 10,12,154,186 

Murty, K.G., 66,71,143,186 

Muth, J.F., 137,138,164,186 

Nabeshima, I., 128,187 

Nemeti, L., 128, 131, 138, 187 

Nemhauser, G.L., 17,22,178,182 

Nievergelt, J., 44,187 

Oberhofer, W., 16,184 

Ord-Smith, R.J., 44,45,54,187 

Orloff, C.S., 152,187 

Padberg, M.W., 64,182 

Palmer, D.S., 119,187 

Parker, R.G., 128,177 

Piehler, J., 161,163,187 

Pierce, J.F., 14,187 

Plyter, N.V., 14,181 

Pohl, I., 11,187 

Pratt, V.R., 12,187 

Prim, R.C., 68,144,187 

Rarnamoorthy, C.V., 161,163,187 

Read, R.C., 55,187 

Reddi, S.S., 161,163,187 

Reingold, E.M., 43,44,178,187 

Reiter, S., 56,188 

193 

Rinnooy Kan, A.H.G., 19,20,22,32,39, 

44,56,57,79,108, 131, 152, 184, 

185,186,188 

Robillard, P., 78,129,178 

Roes, A.W., 152,188 

Rosenfeld, J.L., 178,188 

Rosenkrantz, D.J., 11,188 

Roy, B., 125,180,184,185,188 

Roy, M.K., 55,188 

Ruger, M., 161, 186 

Sang, N., 128,188 

Sahni, s., 11,181,188 

Schild, A., 89,188 

Schrage, L., 82,110,115,128,129, 

183, 188 

Schweitzer, P.J., 152,153,154,155, 

186 

Sethi, R., 10,22,23,25,27,32,37,178, 

181 

Shapiro, D., 65,70,189 

Sherman, G., 56,188 

Shwimer, J., 89,90,94,101,105,189 

Sidney, J.B., 22,89,189 



194 

Slater, P., 15,189 

Smith, M.L., 119,178 

Smith, R.D., 110,189 

Smith, W.E., 22,167,189 

Srinivasan, v., 89,102,105,189 

Stearns, R.E., 11,188 

Steiglitz, K., 57,184 

Steinhaus, H., 45,46,51 

Stockmeyer, L., 9,181 

Su, Z.-S., 78,80,81,85,177 

Sussmann, B.G., 125,128,188,189 

Sweeney, D.W., 66,71,143,186 

Syslo, M.M., 161,163,182,189 

Szwarc, W., 22,111,189 

Tabourier, Y., 98,189 

Tarjan, R.E., 68,189 

Ten Kate, P., 144,190 

Teuton, O.F., Jr., 110,179 

Thatcher, J.W., 184,186,187 

Thompson, G.L., 65,69,70,71,76,130, 

137,138,164,181,186,189 

Tomizawa, N., 98,190 

Tompkins, C., 57,190 

Trepant, P., 128,129,130,164,180 

Trotter, H.F., 45,54,190 

Turban, E., 17,183 

Turing, A.M., 7 

Tutte, W.T., 73,74,75 

Ullman, J.D., 23,39,190 

Van Deman, J.M., 161,190 

Van Emde Boas, P., 10,177 

Visschers, J., 144,190 

Watson, J.H., M.D., 171,186 

Watson-Gandy, C.D.T., 17,147,152,180 

Wells, M.B., 44,45,50,51.,54,190 

Wesseling, J.A.M., 76,190 

White, C.R., 128,130,178 

White, T.W., 152,153,154,155,186 

Wismer, D.A., 161,190 

Wolfe, P., 69,183 

Wood, D.E., 57,185 

Wren, A., 152,190 



SUBJECT INDEX 

active schedule, 26,80,130 

acyclic subgraph problem (ASP), 3, 

14,55 

agreeable weights, 22 

algorithm ASl, 80,81 

- AS2, 130,136 

- BF, 90,101 

- BS, 80,85,86,87 

- FM, 85,86,87 

- GAS, 136,137,139 

- HKO, 72,74,75 

- HKl, 72,74,75,143,155 

- JR, 78,81 

- JS, 101,103,104,105 

- LB!, 66,67,71 

- LB2, 67 

- LB3, 68,69,72 

- LE, 101,103,104,105 

- LEA, 71,74,75,143,155,164 

- LIN, 143,144,148,160 

- LS, 82,167 

- MF, 82,85,86,87,167 

- NA, 87,101,103,104,105,106 

- PS, 109 

- SEC, 136,137,139 

almost everywhere behaviour, 173 

application, 4,15,143,166,174 

approximation algorithm, 10,173 

ascent method, 68 

asymmetric TSP (ATSP), 16,63 

average-case behaviour, 60, 1_73 

average tardiness factor, 103 

bb backtrack!, 58,59,60,81 

- backtrack2, 58,59,81,117 

- jumptrack, 58,81 

binary encoding, 10,173 

- NP-complete, 10,37,38 

bipartite matching, 65 

block, 82 

b-matching, 65 

body, 77,127,167 

195 

bond energy algorithm (BEA), 154,155 

bottleneck machine, 77,88,113 

bounding rule, 57,81 

branch-and-bound, 4,10,43,57,64,78, 

87,89,109,127,143,173 

branching, 19 

- pair, 131 

- rule, 57,69,83,129 

breadth-first search, 58 

capacity, 77, 166 

cb me, 56 

Chinese postman problem, 10,152 

chosen arc, 126 

classification, 18 

CLIQUE, 8,13,23,32 

clique, 8 

clog, 38 

clustering, 152 

completion, 57,81,110 

- time, 18,77,89,125,166 

complexity, 4,7,20,21 

composite bound, 119,121 

computational experience, 53,72,84, 

101,120,137 

computer wiring, 143 

conflict, 132 

conjunctive arc, 125 

correlation, 102,105,120,123 

cost function, 18 



196 

criterion, 3,18,26,57,147 

critical job, 83 

- machine, 88,167 

customer, 146 

cyclic permutation, 16 

data array, 152 

deadline, 18 

depot, 146 

depth-first search, 58,71,136 

descendant, 57,60 

different machines, 28 

DIRECTED HAMILTONIAN CIRCUIT, 8,17 

- - PATH, 9,13,23,36 

disjunctive arc, 125 

- graph, 125 

dominance, 110 

- cycle, 112 

duality gap, 69 

dual problem, 66,97 

due date, 18,77,89 

dynamic programming, 10,37,87,89 

edge job, 32 

efficient algorithm, 3,7 

elimination criteria, 60,76,91,94, 

101,110,112,123 

enumeration scheme, 69,80,90,101, 

109,129 

equivalence, 7,14,17,25,77,143, 

160 I 165 

euclidean, 16,152,163 

eulerian path, 74 

explicit enumeration, 4,43,55 

FEEDBACK ARC SET, 8,15 

feedback arc set, 8,14 

flow-shop, 18,88,108,163 

forbidden arc, 64,69 

frontier search, 58 

Gantt-chart, 167,169 

general routing problem, 152 

gliding lower bound, 107 

global constraints, 146 

good algorithm, 3,7 

hamiltonian circuit, 8,9,16,46,51, 

63,72,144,152,160 

- path, 9,45,49,144,160 

head, 77,127,167 

heuristic, 11,56,72,82,119,136,143, 

166I173 

identical machines, 19,25 

idle time, 83,90,166 

implementation, 4,20,43,44,58,71,76, 

84,94,97,112,117,136,173 

implicit enumeration, 4,43,57,61 

intermediate storage, 161 

inverse permutation, 49 

- problem, 77,79 

iterative generator, 43,44 

job, 3,18,77,89,108,125,162,166 

--based bound, 116,118,121 

--shop, 18 I 88 I 108 I 125, 161 I 166 

- splitting, 79,81,96 

KNAPSACK, 9,10,23,28,37,87 

Konigsberg graph, 72,73 

Lagrangean multipliers, 107,124 

lateness, 18, 77 

lexicographic generator, 45,51 

LINEAR ARRANGEMENT, 8,13,23,33,34 



linear assignment problem, 17,57,65, 

95,96,107 

- transportation problem, 96 

local constraints, 146,152 

loop constraints, 63 

lower bound, 57,64,81,82,95,97,101, 

113,117,123,127 

machine, 3,18,77,89,108,125,162,166 

--based bound, 115 

- order, 18 

- scheduling, 3,18,161,166 

matching, 65,69,98 

matroid, 64,68 

measure of effectiveness (ME) , 153 

minimaximal path, 126 

minimum-change generator, 44,45 

m-optimal, 56 

newest active node search, 58 

non-bottleneck machine, 77,88,113 

noninterference bound, 115 

NP, 7,12,20,32 

NP-complete, 3,7,12,15,17,20,23,64, 

78,89,107,108,113,116,125,129, 

160,165,173 

number of operations, 18 

one-machine scheduling, 77,89 

open problem, 7,20,38 

operation, 3,18,108,125,162,166 

P, 7 ,20 

parallel machines, 19 

--shop, 18 

parent, 57,60 

PARTITION, 9,23,26,27 

penalty, 68,133 

197 

peripatetic salesman problem, 152 

permutation flow-shop, 18,108 

- generator, 43,44 

- schedule, 108 

placement problem, 144 

pm lex, 52,54,101 

- mcl, 48,54,55,56 

- mc2, 50,54 

- plex, 53,54,57 

polynomial-bounded algorithm, 3,7, 

12,17,20,22,65,77,129,173 

pp mcl, 56 

precedence constraints, 19,32,77,79, 

81,84,89,107,127 

- cycle, 94 

- graph, 19,83,84 

priority rule, 136 

processing order, 3,18,77,89,108, 

125,162 

- time, 18,77,89,108,125,162,166 

pseudolexicographic generator, 45,53 

quadratic assignment problem (QAP), 

3,12,15,17,55,144,153 

ready time, 18 

recursive approach, 4,43,44,57,173 

- generator, 43 

reducible, 7 

reduction, 66,71 

reflection, 55 

regular criterion, 19 

rejected arc, 126 

relatively optimal, 15,56 

release date, 18,77 

required arc, 64,69,152 

- vertex, 152 

restricted flooding, 58 



198 

rosary permutation, 55 

SATISFIABILITY, 8 

search strategy, 58,70,81,84,117 

- tree, 60,69,83,91,109,129 

secret, 65 

series parallel precedence con-

straints, 22 

settled pair, 126 

slope index, 119 

spanning arborescence, 67 

- tree, 51,67,71,144 

- 1-arborescence, 68 

- 1-tree, 68 

starting time, 18,77 

subgradient approach, 69,106,124,140 

subtour, 64,69,71 

- elimination constraints, 63 

symmetric TSP (STSP), 16,55,63,143 

tail, 77,127,167 

tardiness, 18,89,101 

test problem, 72,84,102,120,137,138 

threshold, 7,12,24 

total costs, 89 

tour, 63,69 

tournament, 15 

transitive closure, 94,132 

transposition graph, 51 

- sequence, 46,50 

travelling salesman problem (TSP) , 

3,16,36,55,57,63,143 

trend, 120,123 

Turing machine, 7 

Tutte graph, 73,74 

unary encoding, 10,37,39,173 

unary NP-complete, 10,37,38 

UNDIRECTED HAMILTONIAN CIRCUIT, 9,17 

upper bound, 57,71,72,76,81,83,119, 

129,136 

vehicle, 146 

- routing, 146 

vertex job, 32 

waiting time, 19,167 

weight, 18,89,125 

worst-case analysis, 10 

--- behaviour, 60,173 

0-1 linear programming problem, 63 

3-optimal, 56,143 

3-PARTITION, 9,10,23,32,37 

3-SATISFIABILITY, 8,23 



MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1%3. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized MarkOvian decision processes. part 
I: model and method. 1964. 
4 G. de Leve. Gen~ralized Mafkovian decision processes, part 
11: probabilistic backgrormd 1964. 
5 G. de Leve, H.C. Tijms, P J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1%5. 
13 H.A. Lauwerier. Asymptotic expansions. 1%6, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. I %6. 
15 R. Doornbos. Slippage tests. I %6. 
16 J.W. de Bakker. Formal definition t,,programming 
~a9:f:"'ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part/. 1%8. 
18 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part 2. 1%8. 
19 J. van der Slot. Some properlies related to compactness. 
1%8. 
20 P.J. van der Houwen. Finite difference methods for solving 
partial differential equations. 1968. 
21 E. Watte!. The compactness operator in set theory and 
topology. I %8. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part/. 1%8. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1 %8. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R .. Paerl. Representations of the Lorentz group and projec
tive geometry. 1%9. 

f~lii~ropean Meeting I %8. Selected statistical papers, part I. 

f ~lii'.iropean Meeting I %8. Selected statistical papers, part II. 

28 J. Oosterhoff. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoeff. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 
31 W. Molenaar. Approximations to 1he Poisson. binomial and 
hypergeometric distribution frmctions. 1970. 
32 L. de Haan. On regular varialion and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. 1970. 
34 I. Juhisz, A. Verbeck, N .S. Kroonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of bormdary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, PJ. van der Houwen, G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 lnformatica 
Symposium. 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compormd words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972. 
41 A. V erbeek. Superextensions of topological spaces. 1912. 
42 W. V ervaat. Success epochs in Bemoulli trials (with applica
tions in number theory). f972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. 1973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkerna. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riet. ABC ALGOL. a portable language for 
formula manipulation systems, part I: ihe language. 1913. 
47 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation systems. part 2: ihe compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC·compiler for the EL·XB. 1973. 
49 H. Kok. Connected orderable spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoff, C.H. Lindsey. L.G.l..T. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part /. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part/: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr .. J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1915. 
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non·periodic Lame 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 
74 H.J.J. te Riele. A theoretical and computational stutly of 
generalized aliquot sequences. 1916. 
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Emperical distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical stutly of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer 
science II, part 2. 1976. 
83 l..S. van Benthem Juttin~: Checking Landau's 
"Grundlagen" in the AUTOMATH system. 1979. 
84 H.1..1.. Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?}, books 
vii-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program· 
ming SfStem for opera/ions on vectors and matrices over arbi
trary fields and oj variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Complex Fourier transfonnation and 
analytic functionals with unbounded carriers. 1978. 



90 l.P.J. Groenewegen. Characterization of optimal stra1egit•s 
in t{~·namic games. 1981. 
9I J.M. Geysel. Transcendence in field<; of positive characteris
tic. 1979. 
92 P.J. Weeda. Finite generalized Markm1 programnung. 1979. 
93 H.C. Tijms. J. Wessels (eds.). Markm· decision Theory. 
1977. 
94 A. Bijlsma. Simultaneous approximarions in transcendental 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. Vitilnyi. lindenrnayer systems: structure, languages. 
and growth functions. 1980. 
97 A. Federgruen. Markovian comrol problems; fum·rional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic ~rpe. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan. P. van Emde Boas 
(eds.). Interfaces between computer science and opera1ions 
research. 1<178. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of 1he Wiskundig Genootschap. part 
/. 1979. 

IOI P.C. Baayen, D. van Dulst. J. Oosterhof[ (eds.). Proceed
ings bicentennial congress of Ihe Wiskundig Genoorschap. part 
2. 1979. 

rn~s?· van Dulst. Reflexive and superrejlexive Banach spaces. 

103 K. van Harn. Classifying infinite()' divisible distributions 
by functional equations. l 978. 
104 J.M. van Wouwe. Go-spaces and generali=ations of merri
zabiliw 1979. 
l05 R. Helmers. Edgewonh expansions for linear combinations 
of order statistics. 1982. 

}~~9~. Schrijver (ed.). Packing and covering in rnmbinatorics. 

i07 C. den Heijcr. The numerical solution of nvnlinear opera
tor equatwns b_y imbedding methods. 1979. 
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, par/ 1. 1979. 
109 J.W. de Bakker. J. van Leeuwen (eds.). Foundations (f 
computer science Ill, part 2. 1979. 
l 10 J.C. van Vliet. ALGOL 68 transput, part I: historical 
review and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part JI: an implemen· 
tation model. 1979. 
112 H.C.P. Berbce. Random walks with staiionan· increments 
and renewal rheory. 1979. · 
l I 3 T.A.B. Snijders. Asvmptotic opcimali~v theory for testing 
problems with restricreJ alternatives. 1979. 
114 A.J.E.M. Janssen. Application of the Wigner distriburion ro 
harmonic ana?vsis of generalized stochastic proasses. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures 11. 
part I. 1979. 
116 P.C. Baayen. J. van Mill (eds.). Topological struclllres JI, 
part 2. 1979. 
l 17 P.J.M. Kallenberg. Branchinf!, processes wi1h continuous 
state space. 1979. 
118 P. Groeneboom. Large deviations and as_ymptotic ejficien
cies. 1980. 

119 F.J. Pet~rs. Sparse matrices and ~ubstructures, with a novel 
m1plementatwn oj finite elemenr algorahms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic ana(~·sis of large
scale ocean circulation. )980. 
121 W.H. Haemers. EigenMlue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solurion of svsrems of non/inear 
equarions. 1980. · 

~~~OJ .. Yuhitsz. Cardinal functions in ropology - ten years later. 

124 R.D. Gill. Censoring and slochastic integrals. 1980. 
125 R. Eising. 2-D sy:aems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction merhods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. ComhinalOI"}' reduction syslems. 1980. 
128 A.J.J. Talman. Variable dimension fixed poinl algorithms 
and lriangularions. 1980. 
129 G. van der Laan. Simplicialfixedpoinr algorithm-.. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot. H.J. 
Sint, A.H. Veen. ILP: intermediate language for pictures. 
1980. 

131 R.J.R Back. Correctness pn.:sen·mg program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder.. The interva!function <!fa graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of /ocarion esri
mators. 1981. 
1_34 J.C. van Vliet, H. Wuppcr (eds.). Proceedings imerna· 
t10nal conference on ALGOL 68. 1981. 
135 J.A.G. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal me1hods in the study of language, pan r 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, pan I!. 198 l. 
137 J. Telgen. Redundancy and linear program<;. 1981. 
138 H.A. Lauwerier. Mathemalical models of epidemics. 1981. 
139 J. van der Wal. S10clwstic dynamic programming. succes
sive approxhnations and 11ear(r optimal strategh's for Markov 
decision pro£"esses and Markov games. 198 I. 
140 J.H. van Geldrop. A mathemalical theory 1?( pure 
exchange economies without the no-critical-point ~vpothesis. 
1981. 
141 G.E. Welters. Abel-Jacohi isogeniesfor certain ~rpes oj 
Fano 1hreefolds. 1981. 
142 H.R. Benneu, D.J. Lutzer (eds.). Topolog_1· and order 
s1ruc1ures, part I. 1981. 
143 J.M. Schumacher. Dvnamicfeedback. in finitt'- and 
i1~fini1e-dimensional linear .~}'stenL'>. 198 I. · 
144 P. Eijgenraam. The solution of initial 11alue problems using 
imerval arithmetic; formulation and ana(rsis of an algorirhm. 
1981. 
145 A.J. Brentjes. Multi-dimensional conrinuedfraction a~~o
rirhms. I 98 L 
146 C.V.M. van dcr Mee. Semigroup andfactori=mion 
me/hods in transport theory. 1981. 
147 H.H. Tigelaar. Identification and informatii'e _\·ample si::e. 
1982. 
148 L.C.M. Kallenberg. Linear programmiltK a11dj/11ite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans. M.A. Kaashoek. W.A.J. Luxemburg. 
W.K. Vietsch (eds.). From A to Z. proceedings(!( a :,ymposium 
in honour of A.C. Zaanen. 1982. 
150 M. Veldhorsl. An ana(vsis o_f sparse matrix swrage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order a.~vmptmics for simple linear 
rank statistics. 1982. 
152 G.F. van der Hoeven. Projections of lawless sequences. 
1982. 

153 J.P.C. Blanc. Application ofth~ rheory 1·b_ounda_ry· \'U!Ut' 
problems in the ana?rs1s o_f a queuemg mode wuh pwred ser-
1•ices. 1982. 
154 H.W. Lenstra, Jr .. R. Tijdeman (eds.}. Compurational 
methods in number theory·. pan I. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory. part 11. 1982. 
156 P.M.G. Apers. Query processing and data al!ocatwn in 
distributed database :,ystems. l 983. 
157 H.A.W.M. Kneppers. The cmiariam classification of two
dime11sional smooth commutarive formal groups over an alge
braical(.r closed field of posillve characteristic. l 983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, dislributed .~rsterns. part I. 1983. · 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations oj 
computer science IV, distribured systenu. part:!. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplecric group. 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid method<; for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with conlinuous lime parameter. 1983. 
165 P.C.T. van der Hoeven. On point pron'sses. 1983. 
166 H.B.M. Jonkers. Abstral"tion, spec~ficatio11 and implemc11-
1ation techniques. with an application to garhage collection. 
1983. 
167 W.H.M. Zijm. Nonnegative matrices in ({rnam1c program" 
mmg. 1983. 
168 J.H. Evertse. Upper hounds for the numhers 1f so/Ii/ions of 
diophanrine equations. 1983. 
169 H.R. Bennett, D.J. Lutz.er (eds.). Topo/ogr and order 
srructures, part 2. 1983. 



CWI TRACTS 
I D.HJ. Epema. Swfaces with canonical hyperplane sections. 
1984. 
2 JJ. Dijkstra. Fake topological Hilbert spaces and characteri
zations Of dimension in temrs of negligibility. 1984. 
3 AJ. van der Schatt. System thetxetic descriptions of physical 
systems. 1984. 
4 J. Koone. Minimal cost flow in processing network.<, a primal 
approach. 1984. 
5 B. Hoogenboom. Intertwiningfanctions on compact Lie 
grwps. 1984. 
6 A.P.W. BOhm. Datajlow cornputalion. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984. 
9 C.PJ. Koymans. Models of the lambda calculus. 1984. 
IO C.G. van der Laan, N.M. Temme. Calculation of special 

fanctions: the gamma (unction, the exponential integrals and 
error-like fanctions. 1984. 
11 N .M. van Diik. Controlled Markov processes; time
discretizatiotL 1984. 
12 W.H. Hundsdorfer. The numerical solution ofnonlinear 
stiff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Ana{Ytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 FJ. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 RJ.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case-stu4Ji in Fourier integral opera
tors. 1985. 
17 H.M.M. ten E.ikelder. Symmetries for dynamical and Ham
iltonian systems. 1985. 
l~s~:D.M. Kester. Some large deviation results in statistics. 

19 T.M.V. Janssen. Foundmions and ':!l,lirotions of Montague 
~r, part 1: Philosophy, framewor computer science. 

20 B.F. Schriever. Order dependence. 1985. 




