238 research outputs found

    Closed-loop prosthetic hand : understanding sensorimotor and multisensory integration under uncertainty.

    Get PDF
    To make sense of our unpredictable world, humans use sensory information streaming through billions of peripheral neurons. Uncertainty and ambiguity plague each sensory stream, yet remarkably our perception of the world is seamless, robust and often optimal in the sense of minimising perceptual variability. Moreover, humans have a remarkable capacity for dexterous manipulation. Initiation of precise motor actions under uncertainty requires awareness of not only the statistics of our environment but also the reliability of our sensory and motor apparatus. What happens when our sensory and motor systems are disrupted? Upper-limb amputees tted with a state-of-the-art prostheses must learn to both control and make sense of their robotic replacement limb. Tactile feedback is not a standard feature of these open-loop limbs, fundamentally limiting the degree of rehabilitation. This thesis introduces a modular closed-loop upper-limb prosthesis, a modified Touch Bionics ilimb hand with a custom-built linear vibrotactile feedback array. To understand the utility of the feedback system in the presence of multisensory and sensorimotor influences, three fundamental open questions were addressed: (i) What are the mechanisms by which subjects compute sensory uncertainty? (ii) Do subjects integrate an artificial modality with visual feedback as a function of sensory uncertainty? (iii) What are the influences of open-loop and closed-loop uncertainty on prosthesis control? To optimally handle uncertainty in the environment people must acquire estimates of the mean and uncertainty of sensory cues over time. A novel visual tracking experiment was developed in order to explore the processes by which people acquire these statistical estimators. Subjects were required to simultaneously report their evolving estimate of the mean and uncertainty of visual stimuli over time. This revealed that subjects could accumulate noisy evidence over the course of a trial to form an optimal continuous estimate of the mean, hindered only by natural kinematic constraints. Although subjects had explicit access to a measure of their continuous objective uncertainty, acquired from sensory information available within a trial, this was limited by a conservative margin for error. In the Bayesian framework, sensory evidence (from multiple sensory cues) and prior beliefs (knowledge of the statistics of sensory cues) are combined to form a posterior estimate of the state of the world. Multiple studies have revealed that humans behave as optimal Bayesian observers when making binary decisions in forced-choice tasks. In this thesis these results were extended to a continuous spatial localisation task. Subjects could rapidly accumulate evidence presented via vibrotactile feedback (an artificial modality ), and integrate it with visual feedback. The weight attributed to each sensory modality was chosen so as to minimise the overall objective uncertainty. Since subjects were able to combine multiple sources of sensory information with respect to their sensory uncertainties, it was hypothesised that vibrotactile feedback would benefit prosthesis wearers in the presence of either sensory or motor uncertainty. The closed-loop prosthesis served as a novel manipulandum to examine the role of feed-forward and feed-back mechanisms for prosthesis control, known to be required for successful object manipulation in healthy humans. Subjects formed economical grasps in idealised (noise-free) conditions and this was maintained even when visual, tactile and both sources of feedback were removed. However, when uncertainty was introduced into the hand controller, performance degraded significantly in the absence of visual or tactile feedback. These results reveal the complementary nature of feed-forward and feed-back processes in simulated prosthesis wearers, and highlight the importance of tactile feedback for control of a prosthesis

    Cortical Sensorimotor Mechanisms for Neural Control of Skilled Manipulation

    Get PDF
    abstract: The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cup of coffee without spilling. Despite the ubiquitous nature of hand use in everyday activities involving object manipulations, there is currently an incomplete understanding of the cortical sensorimotor mechanisms underlying this important behavior. One critical aspect of natural object grasping is the coordination of where the fingers make contact with an object and how much force is applied following contact. Such force-to-position modulation is critical for successful manipulation. However, the neural mechanisms underlying these motor processes remain less understood, as previous experiments have utilized protocols with fixed contact points which likely rely on different neural mechanisms from those involved in grasping at unconstrained contacts. To address this gap in the motor neuroscience field, transcranial magnetic stimulation (TMS) and electroencephalography (EEG) were used to investigate the role of primary motor cortex (M1), as well as other important cortical regions in the grasping network, during the planning and execution of object grasping and manipulation. The results of virtual lesions induced by TMS and EEG revealed grasp context-specific cortical mechanisms underlying digit force-to-position coordination, as well as the spatial and temporal dynamics of cortical activity during planning and execution. Together, the present findings provide the foundation for a novel framework accounting for how the central nervous system controls dexterous manipulation. This new knowledge can potentially benefit research in neuroprosthetics and improve the efficacy of neurorehabilitation techniques for patients affected by sensorimotor impairments.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Using evolutionary artificial neural networks to design hierarchical animat nervous systems.

    Get PDF
    The research presented in this thesis examines the area of control systems for robots or animats (animal-like robots). Existing systems have problems in that they require a great deal of manual design or are limited to performing jobs of a single type. For these reasons, a better solution is desired. The system studied here is an Artificial Nervous System (ANS) which is biologically inspired; it is arranged as a hierarchy of layers containing modules operating in parallel. The ANS model has been developed to be flexible, scalable, extensible and modular. The ANS can be implemented using any suitable technology, for many different environments. The implementation focused on the two lowest layers (the reflex and action layers) of the ANS, which are concerned with control and rhythmic movement. Both layers were realised as Artificial Neural Networks (ANN) which were created using Evolutionary Algorithms (EAs). The task of the reflex layer was to control the position of an actuator (such as linear actuators or D.C. motors). The action layer performed the task of Central Pattern Generators (CPG), which produce rhythmic patterns of activity. In particular, different biped and quadruped gait patterns were created. An original neural model was specifically developed for assisting in the creation of these time-based patterns. It is shown in the thesis that Artificial Reflexes and CPGs can be configured successfully using this technique. The Artificial Reflexes were better at generalising across different actuators, without changes, than traditional controllers. Gaits such as pace, trot, gallop and pronk were successfully created using the CPGs. Experiments were conducted to determine whether modularity in the networks had an impact. It has been demonstrated that the degree of modularization in the network influences its evolvability, with more modular networks evolving more efficiently

    EEG and TMS-EEG Studies on the Cortical Excitability and Plasticity associated with Human Motor Control and Learning

    Get PDF
    More than half of the activities of daily living rely on upper limb functions (Ingram et al., 2008). Humans perform upper limb movements with great ease and flexibility but even simple tasks require complex computations in the brain and can be affected following stroke leaving survivors with debilitating movement impairments. Hemispheric asymmetries related to motor dominance, imbalances between contralateral and ipsilateral primary motor cortices (M1) activity and the ability to adapt movements to novel environments play a key role in upper limb motor control and can affect recovery. Motor learning and control are critical in neurorehabilitation, however to effectively integrate these concepts into upper limb recovery treatments, a deeper understanding of the basic mechanisms of unimanual control is needed. This thesis aimed to investigate hemispheric asymmetries related to motor dominance, to evaluate the relative contribution of the contralateral and ipsilateral M1 during unilateral reaching preparation and finally to identify the neural correlates underlying the formation of a predictive internal model enabling to adapt movements to new environments. To this end electroencephalography (EEG), transcranial magnetic stimulation (TMS), simultaneous TMS-EEG were employed during a simple motor and a highly standardised robot-mediated task. The first study used TMS-EEG to examine differences in cortical excitability related to motor dominance by applying TMS over the dominant and non-dominant M1 at rest and during contraction. No hemispheric asymmetries related to hand dominance were found. The second study assessed the temporal dynamics of bi-hemispheric motor cortical excitability during right arm reaching preparation. TMS was applied either to the ipsilateral or contralateral M1 during different times of movement preparation. Significant bilateral M1 activation during unilateral reaching preparation was observed, with no significant differences between the contralateral and ipsilateral M1. Unimanual reaching preparation was associated with significant interactions of excitatory and inhibitory processes in both motor cortices. The third study investigated the neural correlates of motor adaptation. EEG was recorded during a robot-mediated adaptation task involving right arm reaching movements and cortical excitability was assessed by applying TMS over the contralateral M1 and simultaneously recording TMS responses with EEG before and after motor adaptation. It was found that an error-related negativity (ERN) over fronto-central regions correlated with performance improvements during adaptation, suggesting that this neural activity reflects the formation of a predictive internal model. Motor adaptation underlay significant modulations in cortical excitability (i.e. neuroplasticity) in sensorimotor regions. Finally, it was shown that native cortical excitability was linked to motor learning improvements during motor adaptation and explained the variability in motor learning across individuals. These experiments demonstrated that even unimanual motor control relies on interactions between excitatory and inhibitory mechanisms not only in the contralateral M1 but in a wider range of brain regions, shown by a bi-hemispheric activity during movement preparation, the formation of a predictive model in fronto-central regions during motor adaptation and neuroplastic changes in sensorimotor regions underlying motor adaptation during unimanual reaching

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Prediction and control in human neuromusculoskeletal models

    Get PDF
    Computational neuromusculoskeletal modelling enables the generation and testing of hypotheses about human movement on a large scale, in silico. Humanoid models, which increasingly aim to replicate the full complexity of the human nervous and musculoskeletal systems, are built on extensive prior knowledge, extracted from anatomical imaging, kinematic and kinetic measurement, and codified as model description. Where inverse dynamic analysis is applied, its basis is in Newton's laws of motion, and in solving for muscular redundancy it is necessary to invoke knowledge of central nervous motor strategy. This epistemological approach contrasts strongly with the models of machine learning, which are generally over-parameterised and largely data-driven. Even as spectacular performance has been delivered by the application of these models in a number of discrete domains of artificial intelligence, work towards general human-level intelligence has faltered, leading many to wonder if the data-driven approach is fundamentally limited, and spurring efforts to combine machine learning with knowledge-based modelling. Through a series of five studies, this thesis explores the combination of neuromusculoskeletal modelling with machine learning in order to enhance the core tasks of prediction and control. Several principles for the development of clinically useful artificially intelligent systems emerge: stability, computational efficiency and incorporation of prior knowledge. The first study concerns the use of neural network function approximators for the prediction of internal forces during human movement, an important task with many clinical applications, but one for which the standard tools of modelling are slow and cumbersome. By training on a large dataset of motions and their corresponding forces, state of the art performance is demonstrated, with many-fold increases in inference speed enabling the deployment of trained models for use in a real time biofeedback system. Neural networks trained in this way, to imitate some optimal controller, encode a mapping from high-level movement descriptors to actuator commands, and may thus be deployed in simulation as \textit{policies} to control the actions of humanoid models. Unfortunately, the high complexity of realistic simulation makes stable control a challenging task, beyond the capabilities of such naively trained models. The objective of the second study was to improve performance and stability of policy-based controllers for humanoid models in simulation. A novel technique was developed, borrowing from established unsupervised adversarial methods in computer vision. This technique enabled significant gains in performance relative to a neural network baseline, without the need for additional access to the optimal controller. For the third study, increases in the capabilities of these policy-based controllers were sought. Reinforcement learning is widely considered the most powerful means of optimising such policies, but it is computationally inefficient, and this inefficiency limits its clinical utility. To mitigate this problem, a novel framework, making use of domain-specific knowledge present in motion data, and in an inverse model of the biomechanical system, was developed. Training on simple desktop hardware, this framework enabled rapid initialisation of humanoid models that were able to move naturally through a 3-dimensional simulated environment, with 900-fold improvements in sample efficiency relative to a related technique based on pure reinforcement learning. After training with subject-specific anatomical parameters, and motion data, learned policies represent personalised models of motor control that may be further interrogated to test hypotheses about movement. For the fourth study, subject-specific controllers were taken and used as the substrate for transfer learning, by removing kinematic constraints and optimising with respect to the magnitude of the medial knee joint reaction force, an important biomechanical variable in osteoarthritis of the knee. Models learned new kinematic strategies for the reduction of this biomarker, which were subsequently validated by their use, in the real world, to construct subject-specific routines for real time gait retraining. Six out of eight subjects were able to reduce medial knee joint loading by pursuing the personalised kinematic targets found in simulation. Personalisation of assistive devices, such as limb prostheses, is another area of growing interest, and one for which computational frameworks promise cost-effective solutions. Reinforcement learning provides powerful techniques for this task but the expansion of the scope of optimisation, to include previously static elements of a prosthesis, is problematic for its complexity and resulting sample inefficiency. The fifth and final study demonstrates a new algorithm that leverages the methods described in the previous studies, and additional techniques for variance control, to surmount this problem, improving sample efficiency and simultaneously, through the use of prior knowledge encoded in motion data, providing a rational means of determining optimality in the prosthesis. Trained models were able to jointly optimise motor control and prosthesis design to enable improved performance in a walking task, and optimised designs were robust to both random seed and reward specification. This algorithm could be used to speed the design and production of real personalised prostheses, representing a potent realisation of the potential benefits of combined reinforcement learning and realistic neuromusculoskeletal modelling.Open Acces

    Feedback Systems: An Introduction for Scientists and Engineers

    Get PDF
    This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of disciplines, illustrating the generality of many of the tools while at the same time showing how they can be applied in specific application domains. A major goal of this book is to present a concise and insightful view of the current knowledge in feedback and control systems. The field of control started by teaching everything that was known at the time and, as new knowledge was acquired, additional courses were developed to cover new techniques. A consequence of this evolution is that introductory courses have remained the same for many years, and it is often necessary to take many individual courses in order to obtain a good perspective on the field. In developing this book, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods. This book was originally developed for use in an experimental course at Caltech involving students from a wide set of backgrounds. The course was offered to undergraduates at the junior and senior levels in traditional engineering disciplines, as well as first- and second-year graduate students in engineering and science. This latter group included graduate students in biology, computer science and physics. Over the course of several years, the text has been classroom tested at Caltech and at Lund University, and the feedback from many students and colleagues has been incorporated to help improve the readability and accessibility of the material. Because of its intended audience, this book is organized in a slightly unusual fashion compared to many other books on feedback and control. In particular, we introduce a number of concepts in the text that are normally reserved for second-year courses on control and hence often not available to students who are not control systems majors. This has been done at the expense of certain traditional topics, which we felt that the astute student could learn independently and are often explored through the exercises. Examples of topics that we have included are nonlinear dynamics, Lyapunov stability analysis, the matrix exponential, reachability and observability, and fundamental limits of performance and robustness. Topics that we have deemphasized include root locus techniques, lead/lag compensation and detailed rules for generating Bode and Nyquist plots by hand. Several features of the book are designed to facilitate its dual function as a basic engineering text and as an introduction for researchers in natural, information and social sciences. The bulk of the material is intended to be used regardless of the audience and covers the core principles and tools in the analysis and design of feedback systems. Advanced sections, marked by the “dangerous bend” symbol shown here, contain material that requires a slightly more technical background, of the sort that would be expected of senior undergraduates in engineering. A few sections are marked by two dangerous bend symbols and are intended for readers with more specialized backgrounds, identified at the beginning of the section. To limit the length of the text, several standard results and extensions are given in the exercises, with appropriate hints toward their solutions. To further augment the printed material contained here, a companion web site has been developed and is available from the publisher’s web page: http://press.princeton.edu/titles/8701.html The web site contains a database of frequently asked questions, supplemental examples and exercises, and lecture material for courses based on this text. The material is organized by chapter and includes a summary of the major points in the text as well as links to external resources. The web site also contains the source code for many examples in the book, as well as utilities to implement the techniques described in the text. Most of the code was originally written using MATLAB M-files but was also tested with LabView MathScript to ensure compatibility with both packages. Many files can also be run using other scripting languages such as Octave, SciLab, SysQuake and Xmath. The first half of the book focuses almost exclusively on state space control systems. We begin in Chapter 2 with a description of modeling of physical, biological and information systems using ordinary differential equations and difference equations. Chapter 3 presents a number of examples in some detail, primarily as a reference for problems that will be used throughout the text. Following this, Chapter 4 looks at the dynamic behavior of models, including definitions of stability and more complicated nonlinear behavior. We provide advanced sections in this chapter on Lyapunov stability analysis because we find that it is useful in a broad array of applications and is frequently a topic that is not introduced until later in one’s studies. The remaining three chapters of the first half of the book focus on linear systems, beginning with a description of input/output behavior in Chapter 5. In Chapter 6, we formally introduce feedback systems by demonstrating how state space control laws can be designed. This is followed in Chapter 7 by material on output feedback and estimators. Chapters 6 and 7 introduce the key concepts of reachability and observability, which give tremendous insight into the choice of actuators and sensors, whether for engineered or natural systems. The second half of the book presents material that is often considered to be from the field of “classical control.” This includes the transfer function, introduced in Chapter 8, which is a fundamental tool for understanding feedback systems. Using transfer functions, one can begin to analyze the stability of feedback systems using frequency domain analysis, including the ability to reason about the closed loop behavior of a system from its open loop characteristics. This is the subject of Chapter 9, which revolves around the Nyquist stability criterion. In Chapters 10 and 11, we again look at the design problem, focusing first on proportional-integral-derivative (PID) controllers and then on the more general process of loop shaping. PID control is by far the most common design technique in control systems and a useful tool for any student. The chapter on frequency domain design introduces many of the ideas of modern control theory, including the sensitivity function. In Chapter 12, we combine the results from the second half of the book to analyze some of the fundamental trade-offs between robustness and performance. This is also a key chapter illustrating the power of the techniques that have been developed and serving as an introduction for more advanced studies. The book is designed for use in a 10- to 15-week course in feedback systems that provides many of the key concepts needed in a variety of disciplines. For a 10-week course, Chapters 1–2, 4–6 and 8–11 can each be covered in a week’s time, with the omission of some topics from the final chapters. A more leisurely course, spread out over 14–15 weeks, could cover the entire book, with 2 weeks on modeling (Chapters 2 and 3) — particularly for students without much background in ordinary differential equations — and 2 weeks on robust performance (Chapter 12). The mathematical prerequisites for the book are modest and in keeping with our goal of providing an introduction that serves a broad audience. We assume familiarity with the basic tools of linear algebra, including matrices, vectors and eigenvalues. These are typically covered in a sophomore-level course on the subject, and the textbooks by Apostol [10], Arnold [13] and Strang [187] can serve as good references. Similarly, we assume basic knowledge of differential equations, including the concepts of homogeneous and particular solutions for linear ordinary differential equations in one variable. Apostol [10] and Boyce and DiPrima [42] cover this material well. Finally, we also make use of complex numbers and functions and, in some of the advanced sections, more detailed concepts in complex variables that are typically covered in a junior-level engineering or physics course in mathematical methods. Apostol [9] or Stewart [186] can be used for the basic material, with Ahlfors [6], Marsden and Hoffman [146] or Saff and Snider [172] being good references for the more advanced material. We have chosen not to include appendices summarizing these various topics since there are a number of good books available. One additional choice that we felt was important was the decision not to rely on a knowledge of Laplace transforms in the book. While their use is by far the most common approach to teaching feedback systems in engineering, many students in the natural and information sciences may lack the necessary mathematical background. Since Laplace transforms are not required in any essential way, we have included them only in an advanced section intended to tie things together for students with that background. Of course, we make tremendous use of transfer functions, which we introduce through the notion of response to exponential inputs, an approach we feel is more accessible to a broad array of scientists and engineers. For classes in which students have already had Laplace transforms, it should be quite natural to build on this background in the appropriate sections of the text. Acknowledgments: The authors would like to thank the many people who helped during the preparation of this book. The idea for writing this book came in part from a report on future directions in control [155] to which Stephen Boyd, Roger Brockett, John Doyle and Gunter Stein were major contributors. Kristi Morgansen and Hideo Mabuchi helped teach early versions of the course at Caltech on which much of the text is based, and Steve Waydo served as the head TA for the course taught at Caltech in 2003–2004 and provided numerous comments and corrections. Charlotta Johnsson and Anton Cervin taught from early versions of the manuscript in Lund in 2003–2007 and gave very useful feedback. Other colleagues and students who provided feedback and advice include Leif Andersson, John Carson, K. Mani Chandy, Michel Charpentier, Domitilla Del Vecchio, Kate Galloway, Per Hagander, Toivo Henningsson Perby, Joseph Hellerstein, George Hines, Tore Hägglund, Cole Lepine, Anders Rantzer, Anders Robertsson, Dawn Tilbury and Francisco Zabala. The reviewers for Princeton University Press and Tom Robbins at NI Press also provided valuable comments that significantly improved the organization, layout and focus of the book. Our editor, Vickie Kearn, was a great source of encouragement and help throughout the publishing process. Finally, we would like to thank Caltech, Lund University and the University of California at Santa Barbara for providing many resources, stimulating colleagues and students, and pleasant working environments that greatly aided in the writing of this book

    The development of rapid online control in children with and without Developmental Coordination Disorder

    Get PDF
    The online control of manual actions is critical for the development of functional skills in children, not the least because demands on behaviour and complexity of the environment increase with age. When unexpected changes occur during the course of action, rapid online corrections are necessary to ensure that movement parameters (like force and timing) can be quickly updated. Developmentally, the motor network supporting online control is thought to mature rapidly over childhood; however, cross-sectional research suggests that the trajectory of change is not linear because the mode of control undergoes reorganisation during middle childhood. At the same time, development of frontal executive systems (particularly inhibition) may influence the way children enlist motor functions like online (predictive) control. Maturational theories that once considered these systems to be unitary in their development are now being challenged by a more parsimonious neuro-behavioural hypothesis—interactive specialization; this suggests behaviour can be strengthened and supported by the interaction of separate but overlapping neural networks. growing body of research indicates that online control processes may be disrupted for children with motor coordination problems (aka Developmental Coordination Disorder; DCD). As well, it has been widely reported that these children show problems related to executive function including tasks that involve response inhibition. It is argued here that deficits in predictive online control may be exacerbated under task conditions that require concurrent inhibitory control as when one is required to withhold a response to a compelling cue and move to an alternate location. However, there is not a clear picture of developmental change in the ability to couple motor and executive systems, nor of differences in growth patterns between typically developing children (TDC) and children with DCD. The purpose of my research was to address this knowledge gap by conducting cross-sectional and longitudinal studies of development to examine the unfolding interaction between online and executive systems in healthy and atypically developing children. Specifically, I examined how TDC and DCD groups corrected their arm movement mid-flight during a step-perturbation paradigm, and how a concurrent inhibitory load constrained their responses to a target shift
    corecore