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Abstract 

High fidelity virtual environments can be inhabited by virtual living crea-
tures. A virtual creature should be able to learn by itself how to improve its old 
behaviours and produce new related behaviours so as to be more adaptive and 
autonomous and hence reduce human design work. This thesis presents a study 
of an-adaptive and multifunctionalComputational Behaviour Generation (CBG) 
model for virtual creatures with the ultimate goal of enhancing a creature's adap-
tation and multifunctionality in behaviour control by learning. Specifically, we 
require that the CBG model can learn to perform variable behaviours in various 
environments and situations. 

The design of the CBG model is inspired by the natural behaviour control 
system in the brain. It can perform the whole procedure of selection, program-
ming and execution of motor actions, and its hierarchical architecture provides 
the material basis for adaptive and multifunctional learning implementation. The 
concrete achievement of adaptation and multifunctionality by learning is obtained 
with the help of a Multi-agent based Evolutionary artificial Neural network with 
Lifetime learning (MENL), which can learn to select suitable motor actions for 
varied behaviours in varied situations. MENL maintains a batch of agents in 
every evolutionary generation to co-decide the actions to be executed. These 
agents are subject to evolutionary learning through all of their lifetime. The fit-
ness function of MENL is designed without many specific constraints, and can be 
easily extended for a variety of behaviours. In consequence the CBG with MENL 
can obtain high adaptation and generalisation in behaviour. 

The CBG model combined with the MENL learning algorithm enables a 
virtual creature to learn several space occupying behaviours independently and 
jointly in unknown environments. These behaviours are exploration, goal reach-
ing, and wandering. The virtual creature is first asked to learn exploration only 
in a series of increasingly complex environments. This creature adapts to various 
environments and explores them successfully. The successful exploration experi-
ment is achieved due to the competition and cooperation among multiagents and 
their continuous lifetime learning. Inspired by multifunctional neural networks in 
the natural behaviour control, the CBG combined with MENL is then required to 
learn exploration and goal reaching jointly, and exploration, goal reaching, and 
wandering jointly in some unknown environments. Experimental results have 
shown that the CBG with MENL can perform multiple space occupying be-
haviours competently. Moreover, the overall performance of the multifunctional 
learning is better than that of the sum of learning every behaviour independently. 

The research presented in this thesis leads to the conclusion that the CBG 
model and the MENL learning algorithm, which are inspired by the biological 
neural mechanisms for behaviour, are useful methods for achieving adaptive and 
multifunctional behaviour control for virtual creatures. 
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Chapter 1 

Introduction 

1.1 Motivation 

Virtual environments are at the heart of virtual reality. They are computer-

generated worlds that the human user can participate in and interact with. For 

enhanced fidelity virtual environments can be designed to be inhabited by virtual 

living creatures. For constructing realistic virtual lives in virtual environments, 

the generation of believable behaviours for these lives is a very important fac-

tor. This is because the human user recognises not only form, colour and sound, 

but also changes in behaviours [9]. Additionally, manipulation of a virtual life is 

only realistic if this life responds appropriately to the user's actions. Although 

believable behaviours are so important to virtual lives, how to attach them to 

computer-generated virtual lives in real-time is a thorny problem that has trou-

bled researchers for a long time. 

Traditional approaches to creating moving virtual objects by computers are 

to employ skilled artists and animators to generate an animation off-line and 

then present it with existing graphics techniques. By using animation techniques 

such as keyframe, kinematics, and dynamics, skilled human animators have pro-

duced very realistic characters in Disney animation and many movies like Batman 

and Terminator. However, the very intensive and time-consuming labour of hu-

man animators in specifying every motion of the characters makes traditional 
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animation unsuitable to real-time virtual environments. Most importantly, the 

animated characters created in traditional animation are very rigid and fixed 

objects which have only the move sequences predefined by human animators. 

The behaviours of these characters can only be created beforehand and replayed 

afterwards. They are not flexible, re-organisable, and reusable behaviours that 

are able to adjust to various changes spontaneously. It is obvious that those 

completely hand-crafted animated characters are not true virtual lives that are 

capable of living in continuously changing virtual environments. 

Recent development in Behavioural Animation [133] is a new attempt to give 

virtual lives real-time, believable behaviours. The key idea of behavioural ani-

mation is to impart to virtual lives useful knowledge about behaviours so that 

the lives can decide themselves when, where, and how to move their bodies ap-

propriately according to environmental conditions. This is just what real lives 

do in nature. Therefore, virtual lives in behavioural animation are actually self-

animated by simulating some of the natural mechanisms fundamental to life. To 

date, a series of virtual lives have been produced in both academic and com-

mercial areas, including virtual plants, virtual animals, and even virtual humans. 

Some representative examples are the "boids" of Reynolds [133], artificial fish of 

Terzopoulos et al. [162], and the synthetic dog of Blumberg [20]. These virtual 

lives have presented some "life" characteristics by simulating the real lives from 

different directions. Some virtual lives, for example, can grow up and this growth 

is somewhat affected by certain environmental changes. Some virtual creatures 

can move in a virtual environment based on their perceived environmental in-

formation. In addition, they can accomplish some simple tasks when moving 

around. Some creatures have enhanced believability and even friendliness when 

emotional state and changes are produced. Compared with traditional animated 

characters, the virtual lives created by behavioural animation have exhibited 

much more flexibility and autonomy. 

Nevertheless, the design of previous virtual lives suffers from several serious 

limitations. One important limitation is that these virtual lives lack an efficient 

learning capability to improve their behaviours continuously according to knowl- 
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edge gleaned by themselves. Although some virtual lives are endowed with certain 

learning skills, the behaviours of the previous virtual lives heavily depend on hu-

man design and are not improvable once they are set or learned. It is usually 

the human designer that tells the virtual lives what to do in what situations by 

providing some behaviour control rules. The virtual lives can execute or learn 

a few behaviours in some recommended conditions, but they may not be able 

to adjust to new, complex, or even unknown environmental changes by using 

their own knowledge. In consequence the behaviours of these virtual lives are 

in fact confined to a scope prescribed by the human designer. Because virtual 

environments are real-time environments that are dynamically changed by the 

participation of the human user, and because these changes are not always pre-

dictable, it is questionable whether these virtual lives can survive the changes 

in virtual environments. In particular, the virtual lives may face a "fatal" prob-

lem in some urgent, unexpected situations, if they cannot learn to improve their 

behaviours so as to find a way out of their difficulties by themselves. 

Another limitation in previous work on virtual lives lies in their incapacity to 

reuse knowledge and mechanisms for generating more than one behaviour. Gen-

erally, those virtual lives require the human designer to carefully design necessary 

executing details of every designated behaviour, even when the common knowl-

edge and shared mechanisms across some related behaviours have been given to 

the lives already. It is obvious that, if the virtual lives can reuse the shared mech-

anisms and transfer the knowledge they have learned from one behaviour for the 

implementation of other behaviours, the generation of new behaviours would be 

much easier and more efficient in both space and time. This kind of multifunc-

tionality of performing several behaviours together is common to real lives that 

can produce numerous behaviours in a limited anatomical structure, by sharing 

many neural circuits in executing functionally related behaviours [43, 122]. Due 

to the lack of knowledge sharing and transference, the design effort in designing 

behaviours for virtual lives is usually very high. Moreover, the adaptive and au-

tonomous ability of the virtual lives is limited too. Ideally, a virtual life should 

be able to learn by itself how to apply what it acquires from one behaviour to an- 
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other if there is something in common in these behaviours. For achieving powerful 

adaptation and autonomy in virtual life behaviours, there is still much remaining 

to be done. 

1.2 Aims 

This thesis presents an adaptive and multifunctional Computational Behaviour 

Generation model for virtual lives, and in particular, for virtual creatures, in an 

attempt to address the above limitations in recent work on virtual creatures. (We 

are especially interested in the behaviours of virtual creatures because creatures 

are always much more active and flexible relative to plants, and their behaviours 

may demonstrate our behaviour model more easily and clearly.) By being adap-

tive, we hope that a virtual creature is able to learn to cope with new, com-

plicated, unpredictable situations encountered during its lifetime, by using the 

information available in its environment without human intervention. With the 

multifunctionality property, a virtual creature should learn to perform multiple 

functionally related behaviours with efficiency and economy in time and space, 

by taking advantage of the shared knowledge and mechanisms across these be-

haviours. With efficient adaptive and multifunctional learning ability, virtual 

creatures can have enhanced adaptation and autonomy in their behaviours. 

Given our objective to construct adaptive and multifunctional behaviours in 

virtual creatures, is it possible to develop a behaviour generation model that 

learns to improve its behaviours continuously, and learns multiple behaviours 

more efficiently than sequential learning? Our answer to this question is defi-

nitely positive. We propose a hierarchical Computational Behaviour Generation 

(CBG) model and a novel learning algorithm, Multi-agent based Evolutionary ar-

tificial Neural network with Lifetime learning (MENL), to achieve adaptation and 

multifunctionality in virtual creatures. As the CBG model provides the neces-

sary mechanisms, the MENL learning algorithm learns correct decision-making of 

motor action selection for various behaviours in various environments. The gen-

erated behaviours are adaptive and multifunctional. The principles underlying 
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the behaviour model and the learning algorithm will be introduced in Chapter 

3 and Chapter 4 respectively. We will demonstrate that this behaviour model 

combined with the learning algorithm works in adaptive learning in Chapter 4 

and in multifunctional learning in Chapter 5. 

1.3 Methodology 

During the construction of the adaptive and multifunctional Computational Be-

haviour Generation model, many ideas have been drawn from biology (especially 

neuroscience) and other fields of computer science, such as agents, artificial neural 

networks, evolutionary algorithms, robotics, and so on. 

The architecture of the Computational Behaviour Generation (CBG) model 

itself is inspired by recent studies of the natural behaviour control system in the 

brain [79, 29]. In particular, the hierarchical structure of the natural behaviour 

control system, the input from body states and environmental information, the 

adaptation by learning, and the generality in various behaviour systems are the 

main sources for us to build the CBG model. The CBG model finally constructed 

holds a mixture of top-down and bottom-up control information flows, which is 

similar to the natural behaviour control system. In consequence the CBG model 

is able to utilise the bi-directional information flows to compare its intended 

actions with actual executed results, and hence learn to improve its behaviours 

from both successful and unsuccessful experiences. Because the CBG model has 

a similar hierarchy to the natural behaviour control system and because this 

hierarchy maintains considerable generality for different behaviour systems, the 

CBG model also has the capability to produce multiple behaviours in the same 

structure. The architecture provides the CBG model with the potential strengths 

of adaptation and multifunctionality. 

We propose a Multi-agent based Evolutionary artificial Neural network with 

Lifetime learning (MENL) to instantiate the latent power of adaptation and mul-

tifunctionality in the CBG model. MENL is composed of an artificial neural 

network evolved by Evolutionary Strategies (ESs). It uses multi-agent system 
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technology to maintain the diversity of solutions. Meanwhile, MENL adopts a 

concept of lifetime learning to achieve generalisation in solutions, and employs a 

relaxed and general fitness function design to search for suitable solutions in a 

broad space. When the MENL learning algorithm is introduced into the CBG 

model to select suitable motor actions, the CBG model generates improved be-

haviours continuously, which are adaptive to varied situations and environments. 

The implementation of multifunctionality in the CBG model combined with 

MENL is also inspired by the natural behaviour control system. In nature, there 

are many multifunctional neural networks sharing some or even all of their neu-

rones to perform different but functionally related behaviours. Because the fitness 

function designed in the MENL learning algorithm involves both general sensory 

feedback and specific behavioural objectives, MENL can easily learn several ac-

tion selection policies for implementing several related behaviours in the same 

behaviour control model. These are the hierarchical architecture of the CBG 

model and the common knowledge shared across related behaviours that help 

new behaviours to be learned and implemented smoothly based on previously 

learned behaviours. 

The potential of the adaptive and multifunctional Computational Behaviour 

Generation model is demonstrated by learning several space occupying behaviours' 

that are common and fundamental to natural animals. Using the CBG model 

combined with the MENL learning algorithm, a virtual creature has learned many 

space occupying behaviours, including exploration, goal reaching and wandering, 

both independently and jointly in various unknown environments. 

1.4 Organisation of the Thesis 

In the following chapters, we will present and demonstrate our proposed adaptive 

and multifunctional Computational Behaviour Generation (CBG) model in detail. 

Research work relevant to virtual lives, the CBG model, and the MENL learning 

'Behaviours like exploration, navigation, wandering, etc., which involve movement from 
one place to another, are called space occupying behaviours in this thesis. The corresponding 
movement is space occupying movement. See Section 3.5 for more information. 
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algorithm will be introduced. Because the design of the CBG model, MENL, 

and their adaptive and multifunctional learning has touched upon many different 

areas in neuroscience and computer science, a review of the research work related 

to these topics will be delivered in specific chapters when their design is explained. 

The rest of the thesis is structured as follows. Chapter 2 contains an overview 

of past work on believable behaviours of virtua[lives. It is followed by a brief 

discussion on our opinions of virtual lives in virtual environments. This includes 

a working definition of Virtual Life and some key issues which we think are 

important to the construction of virtual lives. This chapter helps us have a basic 

understanding of virtual lives. It also shows how our work fits into virtual life 

research as a whole. 

Chapter 3 describes the architecture of the Computational Behaviour Gener-

ation model. It first summarises the fundamental concepts in biological neural 

control for behaviours, and then presents the CBG model based on these concepts. 

Potential strengths of the CBG model including adaptation, multifunctionality, 

and some others are discussed next. An instantiation of the CBG model for 

generating space occupying behaviours is introduced too. 

Chapter 4 presents the novel learning algorithm of MENL and shows how the 

CBG model works with MENL to learn single behaviours adaptively. Natural 

space occupying behaviours, which are fundamental to natural creatures, are 

used as sample behaviours for the CBG and MENL to learn. In this chapter, a 

series of experiments on learning exploration in various unknown environments 

has been conducted for demonstrating the adaptive learning ability of the CBG 

with MENL. There are several natural and robust behaviours emergent from these 

experiments. 

Empirical experiments on demonstrating the multifunctional learning ability 

of the CBG and MENL are shown in Chapter 5. Several space occupying be-

haviours, such as exploration, goal reaching, and wandering, have been learned 

in an integrated way in the same behaviour control model and the same MENL. 

Multifunctional learning has shown better learning performance when compared 

with learning every behaviour independently. Moreover, many interesting nay- 
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igation trajectories have illustrated the reliability and continuously improving 

capability of multifunctional learning. 

The adaptive and multifunctional CBG model presented in this thesis is finally 

concluded in Chapter 6, with a reflective look at what has been accomplished and 

some promising directions for future work. 



Chapter 2 

Virtual Life in Virtual Environments 

In this chapter, we give an introduction to the study of Virtual Life. We first 

point out the importance of presenting virtual lives in virtual environments, and 

then present a review of previous work on virtual lives. In order to get a deeper 

understanding of virtual life, we analyse the concept of Virtual Life and how to 

construct believable virtual lives in virtual environments. In particular, we sug-

gest that the behaviours of a virtual life should be at least autonomous, adaptive, 

and interactive. Following this discussion is a simple comparison between virtual 

lives and real lives. Next, we outline our work by putting it in the context of 

virtual life research. 

2.1 Presentation of Virtual Life 

Virtual Reality (VR) has become a conspicuous technology since its introduction 

around 1985, due to its ability to provide the effect of immersion in a realistic 

computer-generated world [31]. Through the use of various sensorial channels 

(these channels could be visual, auditory, tactile, smell, taste, etc), the human 

user can sense and interact within this world in real time, in which virtual ob-

jects have spatial presence. This computer-generated world providing realistic 

computer simulation and real-time interaction is called a Virtual Environment 

[30]. 

Virtual environments play a very important role in virtual reality. They are 



the virtual place to immerse the human user and the main sphere for his activity. 

Convincing immersive virtual reality requires high fidelity virtual environments 

[9]. To provide high realism in virtual environments, we need to solve a series of 

key issues, including the ease of interaction, the high quality of the visual, audi-

tory, and other sensorial presentation, and the realistic presence of virtual objects 

in virtual environments. The virtual objects presented in virtual environments 

include not only lifelike static objects, such as sky, mountains and buildings, but 

also vivid and active lives, such as plants, animals and even humans. Those 

simulated lives, called virtual lives, will help virtual environments to be more dy-

namic and similar to the real world. Like natural living things, virtual lives have 

lifelike visual shapes and appearances, and believable behaviours. They inhabit 

the virtual world subject to physical laws. They can receive information from 

the outside, behave in the virtual world naturally, and interact with real people 

and other virtual lives properly. They may grow, reproduce, and die. They may 

even have their own beliefs, desires, and intentions. From virtual plants to vir-

tual creatures, from virtual insects to virtual humans, virtual lives with different 

complexity will have different characteristics, abilities, and intelligence. A timid 

virtual animal, for example, runs away when perceiving a human presence, but 

a virtual pet will run to the person enthusiastically, and the virtual human will 

talk to it with gestures and emotions. With realistic and dynamic virtual lives, 

a virtual environment has enhanced fidelity, and helps to maintain the illusion in 

the user that it is real. 

2.2 Previous Work 

In this section, we review the work on modelling virtual lives that have life char-

acteristics. This will enable us to carefully position our work and give the neces-

sary background information to understand the technology used in current virtual 

lives. We embark on the modelling work of virtual plants, then move on to the 

modelling of virtual creatures. Both achievements and drawbacks are introduced 

in each work. 
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2.2.1 Virtual Plants 

As plants are an indispensable part of nature, the computational simulation of 

plants is also an essential topic in the study of virtual lives. The methodology 

used to model living plants should take many important factors into account, 

such as the growth, dynamics and ageing of plants, and external factors like soil, 

water flow, fertilisers and even the damage caused by insects to the plants. 

The first computer model of tree structure is thought to have been constructed 

by Honda [71]. This model used parameters to define the skeleton of a tree. Aono 

and Kunii then proposed a three-dimensional geometric model containing a set 

of rules [7]. By utilising some nonuniform deviators (i.e., attractors and/or in-

hibitors), this model could bend the branches at particular growth levels without 

affecting others. Oppenheimer formed trees following fractal theory [117]. He 

presented a fractal tree model and specified parameters at each branch, including 

branching angle, the size ratio between the main stem and branch, and the num-

ber of branches per stem. De Reffye et al. had impressive results on modelling 

plants with a procedural model [131]. With the integration of time, their model 

could grow to a certain age by using probabilities of death, pause, ramification 

and reiteration. All of this research work has produced considerably realistic plant 

images, however, the simulation of the dynamic characteristics of plants and their 

interaction with the external world were not a focal point of these methods. 

2.2.1.1 Prusinkiewicz 

The pioneering work on modelling plants with "life" properties has been con-

ducted by Prusinkiewicz et al. Their work utilised extended string rewriting 

systems (h-systems) to describe plants as configurations of modules in space 

[127]. Therefore, the essence of plant development at the modular level could be 

conveniently captured by an L-system that replaced individual parent, mother or 

ancestor modules by configurations of child, daughter or descendant modules. An 

L-system based virtual plant began with an initial string called the axiom, and 

proceeded in a sequence of discrete derivation steps. In each step, a set of rewrite 

rules defined how to substitute modules in the predecessor string by successor 
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modules. The applicability of a rewrite rule might depend on a predecessor's 

context (in context-sensitive L-systems), values of parameters (in parametric L-

systems), or on random factors (in stochastic L-systems). The resultant strings 

were interpreted as geometric commands that manoeuvred a LOGO-style turtle 

[128] in three-dimensions. As a consequence, the development of virtual plants 

could be presented geometrically from birth to death. 

Recent work by Prusinkiewicz et al. has taken the effect of environments 

into consideration when they modelled virtual plants [101]. In this study, plants 

and environments were treated as two separate processes, communicating via a 

standard interface. An open L-system embedded with communication modules 

was introduced to specify plant models that could exchange information with 

environments. This study has been successfully applied to capture collisions 

between plant branches, the propagation of clonal plants, the development of 

roots in soil, and the development of tree crowns competing for light. 

An important issue in Prusinkiewicz's virtual plants is that they have only 

limited developmental and interactive characteristics, most of which are generated 

by prescribed modules and rewrite rules. It would be desirable to design virtual 

plants that can infer themselves growth rules, response rules, and interaction rules 

with the environment and other living organisms, and have them be changeable 

with internal/external conditions. Another problem in the modelled virtual plants 

is that an abstract mathematical formulation of L-systems is absent, which would 

make their construction more powerful. However, as Prusinkiewicz has said, the 

"construction of such a theory still seems remote" [128]. It is mainly because of 

the "lack of a precise mathematical description of plant form". 

2.2.2 Virtual Creatures 

There have already been a number of impressive efforts in the area of modelling 

creatures in a virtual world. Here we highlight a few of the most important 

examples. 
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2.2.2.1 Boids 

The fundamental work on behavioural animation has been done by Reynolds 

[133], who modelled flocks of birds and schools of fish by specifying the behaviours 

of the individual animals that made up the group. The aggregate motion of the 

simulated flock was the result of the dense interaction of the relatively simple 

behaviours of the individual simulated birds. Each individual in the flock, named 

a boid, was a point mass attached with a local 3D coordinate system and aligned 

with its velocity. Based on its local perception of the environment, a boid's 

behavioural controller computed a steering force at each iteration step of the 

simulation through arbitration among a series of possible behavioural desires: 

collision avoidance with nearby boids, velocity match with nearby boids, staying 

close to nearby boids, and attempting to fly towards a goal. These desires were 

expressed as acceleration requests that were computed and added in a priority 

order until the magnitude of the resulting acceleration exceeded the maximum 

allowed acceleration. Two types of collision avoidance approaches were imple-

mented: one was based on the force field concept which postulated a field of 

repulsion force emanating from the obstacle out into space; the other was called 

steer-to-avoid by which the boid found the silhouette edge of the obstacles closest 

to the point of the eventual impact, and aimed itself to pass by the edge with a 

suitable tolerance. The former approach may work in undemanding situations, 

but the latter is a better simulation of a natural bird guided by vision. 

The boid animation designed by Reynolds is per se superior to the traditional 

animation techniques that require detailed pose specifications. In each simulation 

run of the boid flock, the animator only provided the initial parameters of the 

boid model (e.g., initial position, heading, velocity, etc), and all other aspects of 

the flock would be implemented automatically and deterministically. The same 

algorithm of Reynolds' boid model was used to generate some behaviours of the 

bats in the movie Batman II. 

Generally speaking, Reynolds' work only simulated the very simplistic, iso-

lated behaviours of low complexity. His boids had simple desires to avoid colli-

sions or fly to a given point in space according to confined principles. Therefore, 
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these boids had similar behaviours almost everywhere. In addition, the behaviour 

systems of the boids were specific to little birds or fish, rather than a general be-

havioural model for many virtual creatures. Sometimes very careful tuning of the 

low-level parameters were required in order to generate specific behaviours. Nev-

ertheless, Reynolds' original work represents a good example of blending low-level 

behaviours to arrive at an interesting aggregate motion, and opened the -minds 

of researchers to generating animations by building behaviour controllers. 

2.2.2.2 Artificial Fish 

The impressive artificial fish created by Terzopoulos et al. [64, 162] have shared 

with Reynolds' original work a skillful manual design of physical morphology and 

behavioural control mechanism. Unlike Reynolds' boids, the artificial fish had a 

fairly complicated physics-based model that consisted of 23 nodal point masses 

and 91 springs [162]. Moreover, the artificial fish had a more complex behaviour 

system than that of boids, and could conduct a number of more complex activities, 

including mating, feeding, learning and predation. 

The behaviour system of the artificial fish mediated between its perception 

system and its motor system. Synthetic vision was adopted and focused on only 

some of the most useful information for motion. Based on the incoming sens-

ing information, the fish's habit and the fish's mental states (i.e., hunger, libido 

and fear), an intention generator generated dynamic goals for the fish, such as 

to hunt and feed on prey. This generator also chose behaviour routines for ac-

complishing the goals according to a fixed and prioritised set of rules, and the 

behaviour routines in turn drove appropriate motor controllers to control the sim-

ulated muscles of the fish. The artificial fish possessed eight behaviour routines: 

avoiding-static-obstacle, avoiding-fish, eating-food, mating, leaving, wandering, 

escaping and schooling. To avoid dithering, the intention generator employed a 

simple memory mechanism that could "remember" one interrupted intention at 

a time. 

In the early design of the artificial fish, their behaviour control was carefully 

crafted by using knowledge gleaned from the biomechanics literature. Later, some 
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learning techniques were introduced to train the fish to learn locomotion skills 

[64]. Simulated annealing, a stochastic optimisation algorithm, was used to set 

the parameters controlling muscular coordination of the artificial fish to produce 

efficient swimming. By applying a short-time Fourier analysis, the learning pro-

cess then abstracted control functions that produced efficient swimming into a 

compact representation. Simulated annealing was finally applied again to opti-

mise over the selection, ordering and duration of abstracted controllers so that 

the artificial fish could perform some compound skills like the stunts a dolphin 

performs in marine animal parks. 

Terzopoulos' fish have achieved striking visual accuracy and realistic look-

ing motion. Nevertheless, the large degree of artificial design by the animator 

restricted the fish's autonomy and its application to more dynamic and com-

plicated environments. The fixed rules of the intention generator, for example, 

determined that avoiding obstacles always dominated avoiding predators - this 

may cause "fatal" problems to the artificial fish when they are much nearer to 

a predator than an obstacle. When training the fish to perform stunts, the ani-

mator needed to introduce additional "style" terms into the objective function of 

the learning process so as to afford extra control of the learning. As the number 

of tasks grows, the very delicate human design of such appropriate learning guid-

ance would be very difficult and the optimisation complexity of learning would 

be very high. Furthermore, learning by simulated annealing is usually too time 

expensive to be made to work in real time animation. 

2.2.2.3 Synthetic Dog 

Faced with the difficulties of designing real-time and natural interactions, sev-

eral researchers have drawn inspiration from other disciplines, such as biology. 

Blumberg, one of those pioneer researchers, has developed a behavioural control 

mechanism inspired by findings in ethology (the study of animal behaviours), in-

cluding behaviour hierarchies, releasers, and fatigue [20, 21]. These findings were 

used to control a synthetic dog which could interact with others and with the 

user in a 3D software environment. 
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The synthetic dog used synthetic vision to extract useful information (e.g. 

an object, the user's gesture, etc) from an image rendered from the creature's 

viewpoint. The basic structure of the creature consisted of three parts (Geometry, 

Motor Skills and Behaviour System) with two layers of abstraction between these 

parts (Controller and Degrees of Freedom). The abstraction layers provided a 

common interface between the three basic parts. As a consequence, the layered 

behaviour control architecture could be generalisable and extensible. 

The purpose of the Behaviour System of the synthetic dog was to determine 

the "right" set of control signals to send to the Motor Skills system, to best satisfy 

the dog's goal. Groups of behaviours competed for control of the creature accord-

ing to their self-assessed values and their mutual inhibition via the "avalanche 

effect" [107]. That is, the competition was conducted from behaviour groups 

to subgroups and so on, until a leaf behaviour was selected. Every behaviour 

was responsible for assessing its own current relevance or value based on its Re-

leasing Mechanisms (objects to filter sensory input and identify objects and/or 

events relevant to the Behaviour), its Level of Interest, and the Internal Variables 

(strength of motivations). The winning behaviour sent its commands directly to 

the motor systems, nevertheless, those behaviours that lost out in competition 

were still able to express their preferences or suggestions for actions as Secondary 

commands or Meta-commands. Due to the usage of mutual inhibition and the 

level of interest of behaviours, the chosen activities neither dithered among mul-

tiple activities nor persisted too long in a single activity. They were capable of 

interrupting a given activity if a more pressing need or an unforeseen opportunity 

arose. 

In Blumberg's behaviour control mechanism, the motor system was hard-

wired and learning was not yet integrated into the motor skills generation. The 

only learning happened in the Behaviour System in which temporal-difference 

reinforcement learning [151] was adopted to learn instrumental conditioning and 

classical conditioning action selections. Therefore, the synthetic dog was able to 

learn how to apply its behaviours in different contexts so as to satisfy previously 

unassociated motivational variables and how to better predict known contexts. 
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Motivational variables acted as the reinforcement variable that drove learning. 

When the motivational variables underwent a significant change, the dog sought 

to explain the change in terms of its recent behaviours and the recently changed 

objects in the environment. 

The behaviour control mechanism proposed by Blumberg has given us a good 

example of how Ideas from ethology may offer valuable contributions to the con-

struction of interactive and intelligent virtual creatures. The advantages of this 

mechanism brought by ethology were embodied in relevance (do the right thing), 

coherence (show the right amount of persistence), and extensibility of behaviours 

of virtual creatures. Nevertheless, full design of every behaviour and their com-

petition were required for generating correct actions in the synthetic dog. Since 

the motor system was fixed, the dog had strict behaviours that could not be im-

proved or extended in new situations or for accomplishing new motivations. The 

only learning in the Behaviour system resulted in a combination of existing be-

haviours (like the learning of artificial fish), rather than learning of the behaviours 

themselves. In addition, because the behaviour model of the synthetic dog was 

built upon the study of ethology, which is more concerned with an explanation 

at the behaviour level (i.e., what the behaviours are and how they interact), the 

inherent mechanisms behind behaviours (i.e., how behaviours are generated at 

the neural level) are unclear. 

2.2.2.4 Virtual Humans 

In Switzerland, the Computer Graphics Lab directed by Thalmann has endeav-

oured to model and animate the most complex living system - human being 

[154]. This lab has created a group of virtual humans that have impressive human 

appearances and behaviours. These virtual humans used articulated structures 

as the graphical and animation model. The animation was based on several inte-

grated methods and their blending: keyframe, inverse kinematics, direct/inverse 

dynamics, and biomechanics-based animation. The virtual humans were aware 

of an h-system based virtual environment through different kinds of simulated 

sensors, including synthetic vision, virtual audition and virtual tactile sensors. 
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Guided by their perceptions, virtual humans could perform a series of human be-

haviours such as visually directed navigation, tennis playing, and communication 

with other virtual humans and even the real human user. 

Most of the behaviours of virtual humans were simply rule-based, but a few of 

them had certain adaptive ability. In visually directed navigation, for instance, 

the navigation tasks were decomposed into global navigation and local navigation 

[116]. In global navigation, a dynamic octree served as global 3D visual memory 

and allowed a virtual human to memorise the environment that he "saw". Based 

on the octree, heuristic search algorithms were used to search possible routes to 

allow the virtual human to reach global goals. The local navigation strategies 

were implemented as a series of Displacement Local Automata (DLA), which 

executed prescribed movements, such as follow-the-corridor, avoid-obstacle, clos-

est-to-goal, and so on. In tennis playing, a specialised "tennis play" automaton 

was applied in virtual humans to control the tracking of the tennis ball by the 

vision system. It estimated the future racket-ball collision position and time to 

perform a hit with given force and a given resulting ball direction. In the com-

munication between virtual humans, information defining the behaviours in one 

virtual human was passed directly to a second virtual human. Therefore, a virtual 

human could easily know other virtual humans' postures and then decide corre-

sponding communication actions according to its attitude, character, emotional 

states, relationships with the other virtual human, and its desire to communicate. 

During the communication between virtual humans and real humans, a virtual 

human used an image processing program to match a real human's posture to one 

of the predefined postures repertoire. Recent studies of virtual humans included 

the application of virtual humans in network games and group behaviours. 

The virtual humans constructed by Thalmann et al. have had very realistic 

visual effects. However, their behaviours were quite mechanical. Most behaviours 

of the virtual humans were prescribed. Although some learning and planning were 

introduced into certain behaviours, they were usually very limited and hence 

could not be applied to dynamic or unknown environments. In addition, those 

mechanical behaviours always resulted in the same or very similar behaviours in 



different situations and even on different virtual humans. Sometimes, they could 

generate the always correct behaviours (e.g., in the simulation of tennis playing), 

and this is almost impossible in reality. Another problem in virtual humans is 

that they are lacking an integrated, systematic behaviour control model. The 

behaviours of the virtual humans were studied and implemented from various 

aspects and they were relatively independent of each other. In order to simulate 

the congruous, sophisticated behaviours of human beings, a virtual human needs 

a comprehensive behavioural model that can generate behaviours systematically 

and with powerful autonomous and adaptive abilities. 

2.2.2.5 Woggles 

Bates et al., studied the creation of believable agents in the Oz project that pro-

posed to construct artistically effective simulated worlds [12, 13]. Bates et al. 

believed that one way to create such agents was to give them a broad set of 

integrated capabilities, even if some of the capabilities were somewhat shallow. 

Therefore, Bates' agents, called Woggles, had simple reactive behaviours, emo-

tions, and intentionality. The action system for generating reactive behaviours 

was a rule-based, goal-directed architecture. It had no planning, learning and 

almost no world modelling. Instead, it used a minimalist conception of goals to 

manipulate a set of behaviours. 

Woggles actually placed great emphasis on conveying their emotional states 

and intentionality through movement. The goals, and the agents' appraisals of 

events with respect to the goals, were key to producing a clearly defined emotional 

state in the creature. Each emotion was mapped into a behavioural feature in a 

personality-specific way, which in turn affected the action-generating rules of the 

behaviour architecture. 

Although Woggles have exhibited plenty of emotional changes, most of their 

behaviours and emotional states were artificially designed and very limited. The 

world that the Woggles inhabited was also constrained to a certain degree. In 

order to help the user to imagine that the simulated world is real, Woggles may 

need have not only broad capabilities, but also deep capability in each component. 
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2.2.2.6 Evolutionary Virtual Creatures 

Worthy of mention is the study of Sims on evolutionary virtual creatures whose 

morphology and behaviour were both generated by using genetic algorithms [148, 

149]. This study is different from previous work in which the control system for 

behaviour is generated for fixed, user-defined structures. The genotypes of the 

virtual creatures were structured as directed graphs of nodes and connections. 

Different fitness evaluation functions were used to rate the creatures' capabilities 

for generating some specific behaviours including swimming, walking, jumping, 

following, and competing with another creature for resources. As the virtual 

creatures were evolved towards certain goals, their morphology and behaviour 

showed conspicuous autonomy and flexibility, although these creatures were only 

composed of simple cubes. 

The evolutionary virtual creatures with simple shapes focused more on evo-

lutionary procedures than the simulation of real creatures. Apart from ensuring 

that some constraints are fulfilled, the evolution may evolve in its own way and 

result in interesting but unreasonable creatures. Therefore, the user or human 

designer has virtually no control over what is going on in the evolution of the 

virtual creatures. Besides, the evolution of those evolutionary creatures is also 

the most time consuming process. For example, an evolution with population 

size 300, run for 100 generations, may take around three hours to complete on a 

parallel Connection Machine CM-5 with 32 processors. The long time evolution 

and the lack of control make those virtual creatures unsuitable to live in real-time, 

interactive virtual environments, at least until processors speed up more. 

2.2.2.7 Commercial Products 

Apart from academic research work in virtual lives, there have also been some 

commercial products completed in the entertainment industry. Typical examples 

are Creatures produced by Millennium Interactive Ltd [41], SiinLife and El-Fish 

by Maxis [100], Dogz and Catz by PFMagic Inc. [123], Fin-Fin by Fujitsu [53], 

Galapagos by Anark [3], and Black & White by [19]. These virtual animals, 

acting as virtual pets, had lovely shapes and appearances, together with some 
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immediate actions and/or emotions to respond to the human user. By using 

some artificial intelligence techniques, which were relatively simpler than those 

proposed in the academic work, the virtual animals possessed some degree of 

autonomy, intelligence and interactive ability. Dogz, one of the very appealing 

commercial products, could mature into a full dog over time, be fed by the user, 

play fetch and tug-of-war, and learn to do tricks in return for rewards. Black & 

White, a state-of-the-art computer game, utilised a standard BDI (Belief, Desire, 

and Intention) architecture [26, 129] augmented in many ways and could learn 

to achieve various goals by imitation. However, like many other commercial 

products, Black & White creatures usually had a precomputed plan library in 

which lists of suitable actions can be chosen. It would be better if the creatures 

knew how to plan dynamically to satisfy a goal. In order to achieve real-time 

interaction on personal computers that are popularly used in home entertainment, 

the virtual worlds and animals in many commercial products were over simplified 

and looked a bit cartoonish. Creatures, for example, inhabited a "two-and-a-half 

dimensional" world: a 2D platform environment with multiplane depth cueing so 

that objects can appear, relative to the user, to be in front of or behind each other 

[58]. Nevertheless, these virtual animals worked rather well as entertainment. 

2.2.3 Summary 

Modelling dynamic, lifelike behaviours of living organisms by the computer is 

a recent endeavour, nevertheless, much conspicuous work has been done in this 

area. In the new approach of behavioural animation, many virtual lives have 

been constructed, including virtual plants, collective boids (birds), artificial fish, 

synthetic dog, virtual human, and some other virtual creatures. These virtual 

lives may have or may not have lifelike abstract body shapes and appearances. 

But their behaviours all exhibited autonomy to a certain degree, by following 

some behaviour generation strategies describing what to do in what situations. 

In particular, the boids created by Reynolds have produced lifelike collective be-

haviours of small, simple organisms. These behaviours are very difficult or almost 

impossible to create in the traditional animation approach. The artificial fish and 
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synthetic dog have been endowed with not only impressive visual appearances, 

but also certain learning ability of organising behaviours. Some virtual lives, like 

Woggles, have taken some other characteristics of living organisms, such as emo-

tions, intentionality, and interaction with the external world and/or the human 

user. These characteristics helped a virtual life to be more friendly and believable. 

Although previous work on virtual lives has obtained great achievements, it is 

fax from perfect yet. Each work has many of its own problems, as we mentioned 

in relevant sections. Generally speaking, the behaviours of those virtual lives 

are still quite limited to human designed rules, and are not suited to changed 

environments and applications. Most virtual lives have only repeatable, designed 

behaviours to certain prescribed stimuli, as in virtual plants, boids, virtual hu-

mans, Woggles, and some commercial products. A few virtual lives have learning 

ability, but this learning is quite limited and usually requires detailed knowledge 

of learning every single behaviour, such as the learning shown in the artificial fish 

and the synthetic dog; otherwise, the learning of behaviours is often very hard to 

control, like the behaviours shown in the evolutionary virtual creatures of Sims. 

These drawbacks in those virtual lives have resulted in much constrained be-

haviours. It would be much better if the study of virtual lives could be advanced 

in some way so that virtual lives can learn themselves how to behave well so as 

to suit new changing situations and motivations, based on their perceived exter-

nal environmental information, past experiences and obtained knowledge from 

other behaviours. The virtual lives constructed in this way will relieve the hu-

man designer from delicate design work, and most importantly, enhance the lives' 

autonomy and adaptation abilities. To generate believable behaviours in virtual 

lives suitable to various environments and applications, further study of virtual 

life and appropriate behaviour generation strategies is an immediate requirement. 

2.3 Virtual Life 

In this section, we state our views on Virtual Life, and especially, on the con- 

struction of virtual lives in virtual environments. To date, the phrase "virtual 
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life", together with its derivatives like "virtual plants", "virtual humans", "vir-

tual creatures", and "virtual robots", have been often used to refer to simulated 

objects in virtual worlds, which have life properties. However, little work has 

been done to study and explain the concept of Virtual Life systematically. Inter-

estingly, there is not yet a clear definition of "virtual life". So, in this section, we 

first give a working definition to "virtual life" and then analyse it from a system-

atic viewpoint. We hope this exploratory work will stimulate more investigation 

and development of virtual lives. 

2.3.1 Definition 

Whenever a concept involves abstraction, it is hard to define it with absolute 

precision. In fact, there is not yet an exact definition of "life". Many biologists 

try to define "life" by stating what it looks like and what it does. So here we 

would like to use the same method to define "Virtual Life". 

A Virtual Life is a computational entity that simulates real lives in virtual 

environments. It has a lifelike visual shape and appearance, and believable be-

havioural patterns. Inhabiting a virtual environment, a virtual life can perform 

actions autonomously, adapt to environmental changes, and interact with the 

outside, especially with the human user, by characteristic activities. 

People may have come across some other terms that are very close to the 

study of simulation of living things, including "digital actors", "synthetic agents", 

"softbots", and "avatars". These terms, together with "virtual life", sometimes 

are used synonymously. However, their origins can be traced back to disparate 

applications that are different in terms of scope and purpose. In terms of the 

simulation of real lives in virtual environments, we prefer the term, "virtual life". 

2.3.2 Construction of Virtual Life 

For a true feeling of presence, convincing graphics and believable actions of a vir- 

tual life are both important. Realistic action can enhance the realism of graphics, 

while geometric and texture fidelity can make actions more intriguing. There- 
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fore, visually realistic shape and appearance and believable behaviours are two 

important components for constructing virtual lives. 

Simulating lifelike visual images and motions is an essential topic in computer 

graphics. With dramatically improved computation speed and control methods 

to portray computer graphics, people are no longer satisfied by visually impres-

sive objects with simple or cartoonish actions. However, when a simulated object 

shows complicated behaviours, it is usually very mechanical and non-interactive 

and the result of a painstaking human design process [93]. This problem is es-

pecially significant in the application of virtual environments, which are highly 

dynamic and interactive worlds continuously changed by the participation of vir-

tual lives and the human user. Since the user may wish to interact with the 

virtual environments and their virtual lives at will, it is incredibly hard for the 

human designer to predict every possible action of every user and program the 

corresponding reactions into virtual lives beforehand. Ideally, it should be up 

to the virtual lives themselves to observe and analyse the user's behaviours, and 

then decide when, where, and how to move its body to react to the user ap-

propriately. Therefore, virtual lives should be self-controlled, self-animated by 

simulating the natural mechanisms fundamental to life. To enable this, a vir-

tual life may have sensors to accept external information, and effectors to create 

movement. More importantly, it needs a behaviour model to analyse and process 

information, make suitable decisions based on its own intentions, and perform 

varied tasks in a dynamically changing environment without human intervention. 

Therefore, the design of a virtual life involves a visual model and a behaviour 

model. 

2.3.2.1 Visual Model 

To produce lifelike living things with realistic visual effect is always a challenge 

in computer graphics. Generally, it involves a number of stages: 

. Generate three-dimensional models, 

. Determine viewing specifications, such as skin texture and hair, 
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• Calculate colour values of visible surfaces and shadows, and 

• Define animated sequences with time-varying changes. 

Because of the complexity of the world, it is still impossible to achieve perfect 

visual realism, especially in a real time simulation. Effective and fast methods are 

still being researched. In the conflicting requirements of realism and real time, 

suitable compromises must be made. 

2.3.2.2 Behaviour Model 

The major interest of this thesis is in the behaviour model of virtual lives. A 

sound behaviour model is indispensable for a virtual life to produce appropriate 

behaviours and to maintain a good life in a virtual world. In the study of real 

lives, many people believe that the essence of life is in its metabolism, reproduc-

tion, autonomy, adaptation, responsiveness, etc. [147]. Compared with real lives, 

we think a virtual life, and particularly its behaviour model should have at least 

the following characteristics: 

1. Autonomy 

Autonomy is an important aspect of virtual lives. Indeed, autonomy is universal 

in natural organisms but not confined to them. It is reflected in the movement 

that occurs within an organism or results from internal changes [147]. A virtual 

life is said to be autonomous in the sense that it senses and acts in its environ-

ment, and decides itself what actions to take so as to best achieve its goals [94]. 

Such kinds of behaviours represent the capacity of the life to maintain its viabil-

ity in varied, changing environments. Plants may seem motionless, but they also 

experience spontaneous growth toward a position with better living conditions. 

Although the growth is a slow movement, there is considerable movement within 

their cells, and from cell to cell. 

The need to have autonomous behaviour for virtual lives arises from two con-

siderations: the less work done by the human designer and the more faithful 
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illusion in the user that a virtual life is a real one [155]. As we mentioned before, 

due to the dynamic nature of virtual environments and virtual lives, it would be 

very hard and time-consuming for the human designer to design every detailed 

behaviour of every virtual life beforehand. However, if a virtual life always stops 

to seek help from the human designer during its running or just "paralyses" sud-

denly when it encounters problems, it would cause great disappointment to the 

user. Therefore, it would be best for a virtual life to possess powerful autonomy 

so that it can analyse the environment information actively, and decide how to 

relate its receptor information to effector actions correctly by itself. In partic-

ular, when a virtual life is in an urgent, difficult situation, it should be able to 

find a way to solve its problem promptly and spontaneously without intervention 

from the designer. To date, many autonomous techniques have been presented in 

the research area of autonomous agents, robotics, and some other related areas, 

and resulted in very interesting autonomous behaviours. However, despite these 

achievements, building full autonomy in virtual lives remains an elusive goal, es-

pecially in real-time applications. 

2. Adaptation 

Another indispensable characteristic of virtual lives is adaptation. Adaptation 

of a virtual life is the way it is organised to improve itself over time in the en-

vironment it inhabits. There is a continuum of ways in which a virtual life can 

be adaptive, like real lives [94]. In a narrow sense, adaptation is to enhance a 

virtual life's ability via learning so as to make it survive in more or less unpre-

dictable and dangerous environments. This includes how to utilise environmental 

resources best and how to change situations for its benefit. In a broad sense, 

adaptation is to adjust a virtual species genetically to changed environmental 

conditions. When a species reproduces, it is not just a simple copy, but a compli-

cated transfer of certain parts (structures) to its offspring. This reproduction with 

changes is responsible for the evolution of life. Although the broad adaptation 

always takes a very long time in nature, the long time evolution is not necessary 
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in a simulated world. Virtual evolution in generations may be achieved in a short 

time in simulation by showing the procedures the human user is interested in 

only. 

With suitable adaptation ability, a virtual life or a virtual life species can 

learn to improve its behaviours continuously for a better subsistence in its virtual 

environments. - 

3. Interaction 

In real lives, responsiveness is a distinctive feature too. It occurs to some ex-

tent in all living things. Living organisms not only maintain themselves through 

environmental changes, they also respond to these changes by characteristic ac-

tivities [147]. Even plants will react to changes in sunshine, nutrition, and other 

environmental conditions. Responsiveness is extremely obvious in higher animals, 

e.g., human beings. 

Virtual lives should be able to interact with their outside (e.g., the virtual 

environment, other virtual lives, and the human user), for an exchange of the best 

"living resources" to maintain in the virtual environment. In particular, virtual 

lives should be able to interact with the human user who is the main actor in 

virtual reality. The user in VR will expect to be able to interact with virtual 

plants, animals, humans, and to see what response he will get [155]. It would be 

very intriguing if the user receives distinctive responses from virtual lives during 

their interaction. For example, the user must be very frustrated if he continuously 

looks at a fossil that has not changed for millions of years. However, the user 

may be very interested and satisfied, and think that it can "understand" him if 

the fossil exhibits its evolutionary procedures in a short time and with emphasis 

on the user's interests. In this regard, virtual lives are not just a simulation of 

real lives, even though they come from the real ones. 

Here, we rename "responsiveness" to "interaction" as a characteristic of vir-

tual lives for coordination with Virtual Reality in which interaction is an essential 

factor. 
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The above three characteristics are fundamental to virtual lives. They are the 

basic requirements of virtual lives in virtual environments. Without any one of 

them, a virtual life may not "live" well in its environment. That is, the life may 

not look believable or useful from the human user's point of view. Lives at higher 

levels will have more features. Virtual humans, for example, still have their own 

personalities, emotions, high intelligence, and some other characteristics [155]. 

These extra features will make a high-level life more functional and believable, 

but they are not universal or indispensable to all of the lives. Rather a virtual 

life can be profitably endowed with varying levels of both fundamental and extra 

features depending on the nature of the life and the nature of its environment. 

2.3.3 Virtual Life vs. Real Life 

As we mentioned before, virtual lives are not a simple copy of the real lives. 

They derive from the real lives, but have their own features since their living 

environments are simulated ones. 

An essential distinction between virtual lives and real lives is that the metabolism, 

growth and reproduction, the essential hallmarks of real lives, could be left out 

in virtual lives. In nature, every organism goes through procedures from birth, 

development, to death. Some organisms also reproduce their kinds in genera-

tions. These procedures are maintained by metabolism. There are also frequent 

information flows in virtual lives, which are often thought of as the metabolism 

of virtual lives. However, the life time of a virtual life may not depend on its 

"metabolism", but its application roles in a virtual environment. A hero in a 

game, for example, may be mature when he appears for the first time. He may 

never die as the user wishes. But the virtual dinosaur species may only live for 

several hours and become extinct quickly. In other words, the standard life period 

of natural organisms is no longer a necessity to virtual lives. 

Another difference between virtual lives and real lives is that a virtual life 

may possess some abilities and features that its corresponding real life does not 

have. Some virtual lives may even not exist on the earth. If a user comes into a 

computer-generated fairy world, for instance, then trees speak, virtual humans fly, 



and virtual robots walk around and do their job. Moreover, virtual lives may have 

overstated body shapes and appearances, and exaggerated behaviours to capture 

the user's interests. This is a technique commonly used in the animation world. 

In Disney animation, for example, a character tends to rear back in preparation 

for a rapid forward motion. Strictly speaking, this behaviour is unrealistic, but 

it is essential for people to grasp  the meaning in the motion. So, being lifelike or 

"alive" is not the same as being realistic [12]. However, one should bear in mind 

that, whatever unrealistic changes are made in virtual lives, they should help the 

user to think those virtual lives are believable and motivate the user to interact 

with them. It is in this sense that "believable" is used in our definition of Virtual 

Life. 

2.4 Our Work 

The previous work on behavioural animation has made a breakthrough on giving 

virtual lives believable behaviours, as we have introduced. However, compared 

with natural behaviours of living organisms that are autonomous, adaptive and 

interactive, the overall behaviours generated in behavioural animation still have 

many deficiencies. In particular, those behaviours have a common but serious 

problem in that they lack a powerful autonomous and adaptive functionality. This 

is essentially reflected in that those virtual lives cannot improve their behaviours 

continuously so as to deal with new complex situations, nor can they be aware 

of generating new behaviours based on their own knowledge and resources so as 

to serve new behavioural motivations. In consequence the human design work on 

virtual life behaviours is usually very high, and the autonomy and adaptation of 

virtual lives are affected as well. 

In Section 2.3.2, we explained that the design of a virtual life includes two 

important components: a visual model and a behaviour model. In this thesis, 

we mainly focus on the construction of a reasonable behaviour model as our first 

step towards the construction of a complete virtual life. The design of a vivid 

visual model is one of our future goals. 
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We present a Computational Behaviour Generation (CBG) model in this the-

sis, which is a natural progression of virtual lives in an attempt to construct a 

useful behaviour model and suitable behaviour generation strategies for them. 

The CBG model helps virtual lives build effective adaptation and autonomy in 

their behaviours based on continuous interaction with the external environments. 

By using this behaviour -model, a virtual life can not only learn to generate 

behaviours for achieving particular behavioural motivations, but also learn to 

generate multiple behaviours without human intervention. The learning ability 

of the CBG model presented in this thesis involves two aspects: learning to im-

prove its behaviours so as to deal with more and more situations (these situations 

may be unknown to the virtual lives, and much more complicated than any other 

situations met before), and learning to perform new related behaviours based on 

pre-learned behaviours by making use of their common knowledge and resources 

(i.e., multifunctional learning). This learning ability is particularly achieved by 

a novel learning algorithm, a Multi-agent based Evolutionary artificial Neural 

network with Lifetime learning (MENL). With this effective learning algorithm, 

a virtual life is able to decide appropriate motor actions on its own, and adjust 

to a wide range of situations and behaviours dynamically. As a consequence, the 

virtual life can obtain certain autonomy and adaptation in its behaviours. The 

human designer can therefore be relieved from very heavy and time-consuming 

design work. The adaptive and multifunctional Computational Behaviour Gen-

eration model proposed in this thesis is not designed for some specific virtual 

creatures. Instead, it is intended to be built as general purpose so as to suit 

many virtual lives. 

In addition to the work on the construction of believable behaviours for vir -

tual lives, similar work has also been done in robotics, which pursues animal-like 

or human-like behaviours in robots inhabiting the real world. Due to the huge 

amount of literature in this area, we won't review them here, but relevant work 

will be introduced in specific chapters. In comparison with the research work on 

both virtual lives and robots, our work on the adaptive and multifunctional Com-

putational Behaviour Generation model has presented many original properties, 
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which are embodied in its neuroscience inspiration, the hierarchical architecture of 

the CBG model possessing many potential strengths, a Multi-agent based Evolu-

tionary artificial Neural network with Lifetime learning (MENL) that has robust 

and continuously improved learning ability, and the multifunctional learning of 

the CBG with MENL that can efficiently learn multiple behaviours together. 

These properties will be explained in detail in the following chapters. 

2.5 Conclusion 

This chapter has presented a snapshot of current development of virtual lives and 

our attitude towards Virtual Life. In particular, we have reviewed recent work on 

constructing realistic and believable behaviours in virtual lives, and pointed out 

some major problems in that work. When explaining our views on virtual lives, we 

presented a working definition of Virtual Life, which is currently absent, and some 

suggestions on constructing virtual lives. We believe a visual model for visually 

lifelike shapes and appearances and a behaviour model for believable behaviours 

are two important components of virtual lives. In addition, this behaviour model 

should have at least the characteristics of autonomy, adaptation and interaction so 

as to help a virtual life maintain a normal life in changing virtual environments. 

Finally, we have described how our work on the CBG model and the MENL 

learning algorithm fits into virtual life research. 
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Chapter 3 

The Computational Behaviour 

Generation Model 

In this chapter, we present the architecture of the adaptive and multifunctional 

Computational Behaviour Generation (CBG) model for virtual creatures, which 

is capable of producing various behaviours in various environments and situa-

tions. The next section is a brief introduction to the CBG model. Section 3.2 

discusses recent work on the construction of behaviour control models for virtual 

creatures, which is related to the CBG model and places our work in this con-

text. Section 3.3 explains some biological results of neural control of behaviour, 

which are fundamental to the design of the CBG model. Section 3.4 describes the 

proposed CBG model and its formal description. Section 3.5 introduces several 

potential strengths held in the CBG model. Space occupying behaviours, which 

are functions fundamental to many natural animals, are introduced in Section 

3.6. In this thesis, these behaviours are used as model behaviours for the CBG 

and MENL to learn both individually and multifunctionally. In Section 3.7, we 

give an instantiation of the CBG model, which shows how the CBG model can be 

implemented to generate space occupying behaviours. The last section concludes 

with a summary of the chapter. 
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3.1 Introduction 

As a behaviour generation model, a basic requirement of the CBG model is that 

it should be able to implement the whole procedure from planning to execution 

of motor actions for a designated behaviour, by initiating and coordinating suit-

able motors of virtual creatures A -major objective for the CBG model- is that 

its architecture should allow and encourage adaptive and multifunctional imple-

mentation of behaviours. In addition, this architecture should be as general as 

possible so as to serve a variety of virtual creatures. 

The construction of the CBG model is mainly derived from an understanding 

of the hierarchical behaviour control system in the brain. Similar to the natu-

ral behaviour system, the CBG model has sensors and motors to interact with 

the outside world, a body State module to report body activities of a virtual 

creature, and a behavioural Motivation module to generate behavioural motiva-

tions based on body needs. In addition, the CBG model contains within it a 

Computational Motor Control (CMC) system that it utilises to perform decision, 

programming and execution of motor actions for achieving various behavioural 

motivations. The CMC system is hierarchically composed of a Strategy module, 

a Program module and a Movement module. The Strategy module is responsible 

for designing a general strategy for achieving a particular behavioural motivation. 

It also selects the appropriate motor actions to execute in the current situation. 

The motor actions are decomposed into detailed motor programs in the Program 

module. The actual initiation of motors for executing every motor program is 

engaged in the Movement module. Based on this hierarchical control, the higher 

levels (e.g., the Strategy and Program modules) of the CMC system only make 

general design of motor plans and programs concerning a designated behaviour. 

It is the lower level (e.g., the Movement module) that implements this design by 

encoding each element of movement in detail. During behavioural execution, the 

CBG model monitors body states and environmental information at every step, 

so every level of motor control can adapt according to both internal and external 

changes of the body. The architecture of the CBG model designed in this way 

has provided many potential strengths like adaptation and multifunctionality, as 
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we will see in Section 3.5. 

3.2 Related Work 

To design a reasonable behaviour control model is very important to the construc-

tion of virtual creatures. This model is directly responsible for generating proper 

behaviours, and hence maintaining a normal life of virtual creatures in virtual 

environments. A sensible behaviour control model for virtual creatures should be 

complete so as to include the whole procedure of selection and execution of motor 

actions for generating behaviours. It should also be general so as to implement 

various behaviours on a variety of virtual creatures. 

In previous work on virtual creatures, as we reviewed in Section 2.2, several 

behaviour control models have been proposed for controlling virtual creatures' be-

haviours. Those models have provided the behaviour control of virtual creatures 

of many different types and complexities. Some behaviour control models, such as 

the model of Woggles created by Bates et al. [12, 13] designed certain behaviours 

composed of a set of unchanging action plans and the implementation of those 

actions was a direct manipulation of the graphical elements of virtual creatures. 

The behaviours designed in this manner were heavily combined with the graphi-

cal models of virtual creatures. If the graphical models or part of the behaviours 

were changed, the generation of the entire behaviours had to be redesigned. The 

incapability of these behaviour control models to respond to changes restricted 

them to only a few virtual creatures that have prescribed behaviours. 

Some research work on virtual creatures has concentrated on designing elab-

orated motor movements. The resulting virtual creatures, such as the virtual hu-

mans created by Thalmann et al. [154] had delicate body shapes and structures, 

and involved lots of body joints. In order to produce an effect of natural-looking 

motions, biomechanical data and control techniques were often used to coordi-

nate the sophisticated joint and muscular activities of those virtual creatures. 

However, in these virtual creatures with visually lifelike motions, the information 

about when and what motions to produce was often a priori built into them, 
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rather than arising from the autonomous decisions made by the creatures them-

selves. In contrast with their realistic movements, these virtual creatures lacked 

the powerful strategies that could decide actions autonomously and adaptively. 

The behaviour control model of artificial fish constructed by Terzopoulos et 

al. [64, 162] was an integration of both selection and execution of motor actions. 

This model organised these two abilities as two layered individual modules. As 

the top-level module of decision-making chose suitable motor actions and cal-

culated necessary movement parameters, the low-level module transferred the 

parameters into exact graphical values and initiated corresponding graphical el-

ements (motors) to move. Behaviour control models organised in this manner 

separated motor action selection from real graphical models of virtual creatures. 

As a consequence, they could be used to produce more complicated, compound 

actions that are composed of a series of motor movements. However, in artificial 

fish, the movement parameters generated by the high-level module of motor ac-

tion selection were embedded with much information specific to fish movement, 

the behaviour control model was therefore limited to a particular species (fish) 

that had particular motors (fish-like muscles). 

Blumberg [20, 21] has applied another kind of hierarchical behaviour control 

model in his virtual creatures, which had two modules named Controller and 

Degree of Freedom (DOF) working as abstract barriers between behaviours and 

motor skills and between compound motor skills and the geometry of virtual crea-

tures. The Controller mapped generic commands of behaviours into motor skills• 

and relevant parameters. The DOF then mapped abstract movement parame-

ters (often numbers between 0 and 1) into the graphical space of the creatures 

via interpolators and inverse kinematics. Due to these two abstract barriers, the 

input commands sent from the higher levels were relatively independent of the 

concrete virtual creature and its graphical model. The behaviour control was 

hence general to a series of virtual creatures with different motors. 

Along with behaviour control models constructed for virtual creatures, a large 

number of behaviour models with partial or complete behaviour generation pro-

cedures have also been presented in the robotics area [1, 2, 27, 34, 67, 135, 161]. 
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In particular, [1, 2, 135] proposed robot control models sharing similarities with 

the layered architecture of the vertebrate brain. Our proposed Computational 

Behaviour Generation (CBG) model is similar to these models and the one of 

Blumberg's, in the sense that it is also a general and complete behaviour control 

model. The CBG model generates control information not only for selection of 

motor actions (in the Strategy module), but also for programming and execution 

of these motor actions (in the Program and Movement modules respectively). The 

selection of motor actions can therefore be based on abstract and general motor 

actions, since the interpretation of motor actions into detailed motor programs 

and then real movement signals is implemented in the Program and Movement 

modules respectively. 

Compared with other behaviour models in both virtual creature and robot 

studies, our CBG model has also been designed with important information and 

mechanisms for adaptive and multifunctional implementation of behaviours. In 

particular, the bidirectional feedforward and feedback information flows in the 

natural behaviour control have been revealed and implemented in the CBG model. 

Due to the bidirectional information flows, the CBG model is able to obtain infor-

mation of both top-down control and bottom-up sensory feedback so continuous 

adjustment of behaviours can be made according to both useful and harmful ex-

perience. The resulting behaviours can therefore have improved functionality in 

a wide range of situations. The adaptive learning algorithm adopted in the CBG 

model, MENL, has also shown its originality and advantages, when compared 

with other adaptive learning technologies, such as evolutionary robotics and re-

inforcement learning. This will be introduced in detail in the following chapter. 

Another conspicuous property held in the CBG model is its multifunctionality. 

The multifunctionality suggests that the CBG model may be able to use the 

same mechanisms to generate a series of functionally related behaviours by tak-

ing advantage of the shared resources and knowledge across these behaviours. 

Because the CBG model is constructed in a hierarchical and general way, many 

components at different levels are reusable for different behaviours. To imple-

ment multifunctionality in the same behaviour control mechanisms is a concept 
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broadly overlooked in previous behaviour control models for virtual creatures and 

robots. Those models usually cannot use what they have obtained for one be-

haviour to generate other relevant behaviours in the same control mechanisms. 

Having strong adaptation and multifunctionality, the CBG model can produce 

multiple behaviours with varied motivations in varied conditions. In consequence 

the CBG model can reduce the laborious and difficult work of artificial design. 

The experimental results in the following chapters have supported this. 

In the next section, we will briefly introduce the recent studies on the neural 

control of behaviour, which provide the fundamental basis of the CBG design. 

3.3 Biological Basis 

The gross features of the natural behaviour control system in the brain (espe-

cially the vertebrate's brain) provides a good example when we design an arti-

ficial behaviour controller for virtual creatures. In particular, the hierarchical 

structure of the natural behaviour control system, the input from body states 

and environmental information, the adaptation by learning, and the generality 

in various behaviour systems gave us direct and useful ideas when we designed 

the architecture and functions of the CBG model. In this section, we introduce 

the characteristics of the natural behaviour control system briefly. For detailed 

explanation of the natural behaviour control system, see [79, 29]. 

3.3.1 Hierarchical Behaviour Control System 

The pathways between sensory input and motor output are a complex system 

in both anatomical and functional aspects [6]. There are a number of different 

structures intervening between sensors and motors, and there is a great deal of 

interaction between these structures. However, a voluntary decision regarding 

which action to perform is usually controlled by roughly hierarchical levels in the 

brain [29, 79, 122, 142]. This hierarchy is illustrated in Figure 3.1, a diagram of 

major components involved in voluntary movements. 

In the hierarchy shown in Figure 3.1, the limbic system governs basic bio- 
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Figure 3.1: Diagram of major components involved in voluntary movements (after 

[29])_ 

logical drives of the body, including feeding, drinking, reproduction, and other 

life-preserving activities. These drives are regulated by the hypothalamus. After 

the limbic system makes decisions on the relevant information about the perceived 

needs of the body, the sensorimotor system is then enabled to convert needs into 

actions. 

The sensorimotor system deals with (nonlimbic) sensations, their perceptions 

and sensorimotor functions. The highest level of the sensorimotor system, the 

nonlimbic cerebral cortex, is responsible for elaborating perceptions and forming 

overall motor plans (strategies) for the body needs. The strategies are converted 

into detailed motor programs (tactics) at the middle level of the sensorimotor 

system, which consists of the brain stem, the thalamus, the cerebellum, and part 

of the basal ganglia. Motor programs at this level determine and correlate move 

programs and hold programs, such as body equilibrium, movement directions, 

force, speed, and mechanical stiffness of the joints. The tactical instructions from 



the middle level are then carried by descending paths to the spinal cord, the 

lowest level of the sensorimotor system. In the spinal cord, those instructions are 

finally coordinated and translated into exact joint and muscular activities that 

are regulated through stretch reflexes. 

Through the above description of the hierarchical behaviour control system, 

we see that the - higher levels of the control system are responsible for collecting 

all the information relating to a behaviour to implemented, and making general 

action plans for carrying it out. Instead of controlling each basic element at the 

lower levels directly, those action plans are only general commands that are sent 

to relatively autonomous lower level systems. The lower level systems then anal-

yse those general action plans, produce basic spatiotemporal patterns underlying 

movements, and eventually drive concrete motors to move. This kind of hierar-

chical control information flow from general to specific relieves higher levels from 

having to consider every exact property of lower levels, and simplifies the control 

of one level by another. 

3.3.2 Body States and Environmental Information 

The hierarchical control system of behaviours correlates and adjusts its actions 

by means of two types of signal: internal body states and external world informa-

tion. A body state is the spatial distribution of body activities at a given moment 

in time [56]. It may involve the configuration of the body (such as joint angles, 

angular velocities, and muscle positions and load), the interaction of the body 

with the world (such as contact with an object), and even the neuron activities 

in a microscopic view (such as neuron membrane potential, firing frequency, the 

onset and termination of bursts, the integrated activity across a population, and 

the like). When the body is situated in an environment, environmental informa-

tion, such as the location of the object to be manipulated, the available places 

and obstacles in the environment, etc., is another essential factor to affect mo-

tor actions. Body state variables and environmental knowledge can be collected 

from sensory signals and information sent from related regions in the brain, or 

estimated when exact information about them cannot be acquired directly. The 
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Figure 3.2: Feedforward and feedback configurations for regulation of a controlled 

system (after [721). The system is feedforward (open-loop) when the regulation 

by the controller is only based on sensors that detect potential disturbances. The 

system is feedback (closed-loop) when effects of disturbances on regulated variables 

are considered. 

information about the body states and the environment provides the behaviour 

control system with fundamental knowledge about the body itself, both internally 

and externally. This information can contribute to the preparation of movement, 

and more often, it can help the adjustment and execution of the overall plan 

for generating a behaviour, by informing the behaviour control system of in-

stant changes of the body and environment after every action execution. The 

responses of the body and environment to executed actions constitute the impor-

tant feedback to the behaviour control system (Figure 3.2) for adaptive learning, 

as explained in the next section. In a purely feedback-controlled system, the only 

information that needs to be stored in the behaviour control system is the body 

state variables or behaviour objectives since it is the environment that holds the 

information necessary to control movement. Taken together, body needs, body 

states, and environmental information are sufficient for the behaviour control 

system to determine future movement of the body. 

3.3.3 Learning 

Behaviours are adaptive with learning [29]. Learning can help behaviours to 

adjust to a wide range of situations and applications. 
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Learning happens when behaviours are not executed as expected. Once a 

behaviour is launched, the behaviour control system monitors its progress via 

continuous sensory feedback including changed body states and environmental 

responses to executed movements as described above. In this closed-loop system 

(Figure 3.2), the sensory feedback reflecting the movement progress is sent back 

to all levels of the sensorimotor system for a comparison with the commands 

previously issued for intended movement. Any difference between intended and 

actually executed movement will be found out, and the proposed action plan can 

be adjusted accordingly. Inappropriate commands should be removed from or 

revised in the plan, as correct commands are kept for the next use. When the 

behaviour has been repeated many times, the behaviour control system can learn 

a proper action plan and a correct execution of these actions. The behaviour can 

therefore be produced smoothly and successfully thereafter. Sometimes, when 

speed is the critical requirement or when immediate sensory feedback is unavail-

able, behaviours may be carried out straightforwardly without instant feedback, 

but the proposed action plans can still be corrected at the end of behaviour exe-

cution, if the final behaviour results are not correct. The complete ignorance of 

feedback may apply to very well learned behaviours [29]. In this case, a mode of 

"open loop" control (Figure 3.2) is formed (i.e. feedforward only). 

Behaviours can also be learned from past experience when they are successfully 

produced. When success has been achieved for a behaviour, it will be recognised 

at the higher levels of the behaviour control system, and sent back to lower levels 

successively. Both neural and muscular activities associated with the behaviour 

are committed to memory as programs. Repeated use of the same programs 

increases the accuracy of the memory, and hence that of the behaviour generation. 

Thereafter, the successful behaviour can be executed more automatically to a 

greater or lesser degree. This kind of learning from success is representative of 

many animals [29]. 

By learning from both harmful and useful experience, behaviours are contin-

uously improved in performance. 



3.3.4 Generality in Behaviour Systems 

A behaviour system describes the assembly of elements that is most actively in-

volved in a particular behaviour at any given time [29]. Although different be-

haviours may differ in their nature, their drives, the experience of the subject, 

and some other conditions, they have similar overall information flows in their 

execution. For example, a general scheme concerning how to perform a behaviour 

usually comes first at the highest level of the control system, which is then de-

composed into motor programs and motor commands suitable for concrete mo-

tors to execute at lower levels. At the same time, all levels of the system are 

informed about successful or unsuccessful execution of the behaviour for learning 

and adjustment. The whole control system is a mixture of the top-down control 

information and bottom-up sensory feedback. 

By making general decisions first and leaving implementation details to be 

decided later, the natural behaviour control system also provides many shared 

components at various levels in different but functionally related behaviour sys-

tems [29]. If we have learned how to use a pen to write on paper, for instance, 

we will very probably know how to use a brush to write on a big board. The 

written letters in those two approaches are usually very similar. In this case, the 

same general writing scheme is implemented on different muscles. The same set 

of motors can also be used for different behaviours in some other cases. Knowing 

that we use the same arms to perform different behaviours such as swimming and 

writing, it is clear that sometimes we have to use our limited motors to execute 

numerous behaviours although the general strategies of these behaviours are dif-

ferent. Because the high level strategies do not manipulate the detailed motor 

execution directly, it is the lower level systems that determine what motors to 

use from a limited set of motors. 

As the natural behaviour control system produces varied behaviours, it is im-

portant that the common components involved should be able to make the right 

decisions for those behaviours at the right time. Many neural networks in the nat-

ural behaviour control system can be reconfigured to provide different behaviour 

outputs. These neural networks are called multifunctional neural networks [55]. 
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In the nudibranch mollusc Tritonia, one set of premotor interneurons has been 

found to be able to generate the pattern for swimming at one time and the pattern 

for withdrawal at another time [55]. Since then, many multifunctional neural net-

works have been found in many animals. Due to the hierarchical structure of the 

behaviour control system and multifunctional neural networks, varied behaviour 

systems share their generality in not only the mixed information flows, but also 

many common units across them. 

3.4 The Computational Behaviour Generation Model 

From the above description of the biological behaviour control system, we know 

that: 

• The formation of a behaviour is initialised in the motivational limbic system, 

and designed, programmed and executed in the hierarchical sensorimotor 

system, with the assistance of body states and world information; 

• Behaviours can learn from their successful or unsuccessful experience with 

the help of sensory feedback; 

• Different behaviour systems have similar feedforward and feedback infor-

mation flows during behaviour implementation, and functionally related 

behaviour systems may have the same functional units to share. 

Inspired by these biological concepts, we present a Computational Behaviour 

Generation (CBG) model that can produce complete behaviour control for virtual 

creatures, with concurrent adaptive and multifunctional strengths. In addition, 

the CBG is designed with the consideration of easy and effective implementation 

on a wide range of virtual creatures. Nevertheless, it should be noted that, rather 

than mimicking the natural behaviour control and learning system exactly, the 

CBG model and the following MENL learning algorithm proposed in this thesis 

only take the spirit of the natural system for reference. The real natural behaviour 

control system is indeed a much more complicated mechanism involving numerous 

interrelated structures. 
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Figure 3.3: The basic structure of the Computational Behaviour Generation (CBG) 

Model 

3.4.1 The Basic Structure of the CBG Model 

The basic structure of the Computational Behaviour Generation model is shown 

in Figure 3.3. Similar to the natural behaviour control system, the CBG model 

consists of a Motivation module, a hierarchical Computational Motor Control 

(CMC) system, a State module, and Sensor and Motor systems. All parts of the 

CBG model cooperate and coordinate with each other to generate behaviours. 

CBG sensors and motors are the interface of the CBG to its external world. 

The former (sensors) are responsible for collecting external environmental infor -

mation for the CBG, including perceived environmental knowledge and environ-

mental responses to body movements of a virtual creature. The latter (motors) 

are the concrete mechanism to perform motor actions commanded by the Compu-

tational Motor Control system. Because virtual creatures are actually graphical 

models in virtual environments, their sensors and motors are also simulated ones. 
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Particularly, CBG motors are procedures that attempt to modify graphical en-

tities embedded in the graphical model of a virtual creature for producing a 

sequence of animated motions. 

The State module in the CBG model records the current and previous body 

state information (e.g., motor positions, activities of all levels of the CMC system, 

etc.). This information provides the fundamental basis for selecting, programming - 

and executing motor actions. The State module is monitored by all levels of the 

CBG, so the exact movement required for carrying out a behaviour is dependent 

on the states of the body. 

The Motivation module is the command system of the CBG model. It collects 

desires or needs of a virtual creature and generates corresponding behavioural 

motivations for the Computational Motor Control system to achieve. If there 

is no obvious body desire presented or if the Motivation module falls "asleep" 

after initiating the CMC system, the CBG model may still work well, but in a 

less purposeful manner. A typical behaviour example of this type is wandering, a 

kind of movement from place to place without any special purpose or destination. 

The Computational Motor Control (CMC) system is the core of the CBG 

model. It is responsible for recognising, selecting and analysing behavioural mo-

tivations, and implementing them based on relevant sensory information. The 

CMC system of the CBG model is hierarchically constructed by three separate 

but interrelated modules: Strategy, Program and Movement. The demands ex-

pressed by the Motivation system are first analysed by the Strategy module, and 

in there, general strategies for fulfilling these demands are formed. The Strategy 

module also makes decisions about what motor actions to take in the current situ-

ation, and the decisions are passed to the Program module. The Program module 

then converts abstract decisions into more detailed motor programs that are ap-

propriate for motors to execute. Because body movements, which always involve 

several joints, can be composed of simple movements that affect only one joint 

[29], it is in the Movement module that those basic and simple motor movements 

are formed. The simple movements are subprograms of the motor programs 

designed in the Program module. So, when the Program module informs the 
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Movement module when and which specific motor action to take, the Movement 

module will translate these commands into specific simple motor movements. 

Similar to the biological behaviour control system, the hierarchical control of 

the CMC system is assisted by the State module and the external world. For se-

lecting and executing appropriate motor actions, the CMC system is continuously 

receiving with body information recorded by the State module and environmen-

tal information collected by the Sensor system. The concrete execution of motor 

actions by the Motor system in turn updates State variables and environmen-

tal information, which are necessary for correct selection and execution of motor 

actions at the next step. Body and environmental feedback on executed motor 

actions are sensed by the Sensory system and sent to all levels of the CMC sys-

tem, especially to the Strategy module, the highest level of the CMC system. The 

Strategy module already knows about what motor actions are to be executed via 

output copies of Movement commands (see Figure 3.3). Thus, through exami-

nation of the sensory feedback, the Strategy module can have an image of how 

the intended actions have been performed. By comparing the intended actions 

with their completion, the Strategy module is able to adjust its proposed action 

plans accordingly so that a proper generation of a designated behaviour can be 

effected. 

After each motor action execution, the CBG model will check whether the 

desired target state for a behaviour is reached. If the target is reached, this 

means the proposed motivation is satisfied. Otherwise, the distance between 

the present state and the target state will continuously drive the CBG model to 

completion. 

3.4.2 Formal Description of the CBG Model 

The Computational Behaviour Generation model and its behaviours can be de-

scribed as a tuple E = (S,.6, 9, A, ,7r, ), where 

• S is a nonempty set of body states, 

• E is a set of environmental information, including environmental knowledge 
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perceived by the virtual creature and environmental responses to executed 

motor actions, 

• g is a set of motivational goals (it can be null in some cases), 

. A is a nonempty set of motor actions, 

• 7r  E, ) -* A, is the action function mapping each input triplet (S, E, g) 

into an action in A, and 

• O(S, A, E) -p 8, is the state transition function. 

A virtual creature may have finite motor actions A, body states 8, and mo-

tivational goals g. However the environments it encounters may be endless, so 

the environmental information E can be infinite. The state transition function 

can be either deterministic or non-deterministic, depending on the nature of the 

performed behaviours and related actions. 

Assume at time t, the body is in state s,  at situation et,  and driven by 

motivation g. Then the action a t  e A selected for execution at time t is 

at  = '/r(et ,st ,g) 	 (3.1) 

After the execution of a t , the body state is consequently changed to 	at 

time t + 1. According to the state transition function, it is known that 

= (St, at , et) 
	

(3.2) 

3.4.3 State Transition Diagram 

A virtual creature usually has many body states. These states result from various 

motor actions taken by the creature. According to actions performed and their 

contributions to a designated behaviour, body states of a virtual creature can 

be functionally mapped into several categories. The relationship between motor 

actions and changed body states constitutes a kind of state transition diagram 

that can explain how behaviours are executed. 
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In the case of space occupying movement in environments for certain motiva-

tions, for instance, the body states of a virtual creature can be simply classified 

into five major state categories: No-action, Turn, Movement, Collision and Tar -

get. These states are caused by different kinds of motor actions, i.e., standing 

still, turning, successful movement, wrong movement causing collisions, and par -

ticular actions achieving behavioural motivations at a particular time. Figure 3.4 

shows these states and their transitions driven by those kinds of motor actions. 

The No-action state indicates that a virtual creature intends to do nothing at 

present and hence its body is in a static state. The Turn state means the crea-

ture changes its direction by turning. When the body of the creature moves and 

executes a correct movement, it is in the Movement state. Otherwise, if the body 

moves but causes a collision, it is in the Collision state. The body arrives at the 

Target state if its current behavioural motivation is achieved after a particular 

action. This particular action can be a forward movement that moves the virtual 

creature into a goal destination, or an action that is the last one executed in 

a permitted time. The four states of No-action, Turn, Movement and Collision 

and their transitions compose an action set in practice. When the behavioural 

motivation is achieved, no matter which action state the body is in, the Target 

state is entered and the given behaviour has been carried out. All states in the 

action set can transit to the Target state, and all transits to the Target state are 

unidirectional and irreversible. 

From the state diagram (Figure 3.4), we can see that, for a good performance, 

the CMC system needs to select an appropriate motor action at  = 7r (et ,  s,, g) at 

each time t so as to obtain the highest probability of reaching the Target state 

and the least probability of reaching the Collision state, that is, 

Prob{st+i  = Tar get} -* 1 	 (3.3) 

and 

Prob{st+i  = Collision} - 0 	 (3.4) 

Therefore, the principal obligation of the CMC system is to employ a rational 

action selection policy 7r to each behaviour so as to implement this behaviour 
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Figure 3.4: State transition diagram for space occupying behaviours 

quickly and successfully. At the same time, the function ir should comply with 

some constraints defined by the behaviour, such as the obstacle avoidance con-

straint (equation 3.4) in space occupying behaviours. 

It is worth mentioning that it is possible for the action set of the state tran-

sition to have been already launched but for the behavioural motivation to be 

absent if the Target state is not defined. In this case, the body state transition will 

loop within the action set endlessly and the Target state will never be reached. 

This inner cycle in the action set results in restless locomotion in space occupying 

behaviours. However, even in this endless movement, a unique purpose of obsta-

cle avoidance is still retained, i.e., to satisfy equation 3.4. An example of this 

kind of movement procedure is endless wandering in space occupying behaviours. 

In order to terminate endless wandering, a "stop" signal should be initiated from 

the Motivation module and sent to the CMC system so as to force a direct body 

state transition to the Target state. 

3.5 Potential Strengths 

In the last section, we introduced the basic structure and principles of the Com- 

putational Behaviour Generation model. The proposed architecture of the CBG 

model has many potential strengths. For instance, the CBG model can become 
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adaptive by learning if it exploits its sensory feedback and past experience prop-

erly. It can also be multifunctional and perform several functionally related or 

similar behaviours together. In addition, the CBG model may possess some other 

strengths, such as autonomy, generalisability, and modularity. 

3.5.1 Adaptation 

A behaviour control system can possess varied adaptive abilities through several 

different but complementary approaches (see [102, 103, 65] for a comprehensive 

review of adaptive behaviours, and the Proceedings of the International Confer-

ences on the Simulation of Adaptive Behaviour for recent results). High-quality 

sensory mechanisms are one way to enhance adaptation, by gathering useful infor-

mation for a designated behaviour [37, 39, 86, 119], and by predicting perceptual 

consequences of a given action in a given sensory context [52]. Flexible selection 

schemes that choose the behaviour most suitable to the current situation from 

several possible behaviour reactions are another approach to endow a behaviour 

control system with adaptation capabilities [20, 27, 92, 161]. Providing adaptive 

behaviour control in this manner can reflect the changes in motivations [102]. A 

behaviour control system can have considerable adaptation when it learns from 

previous action selections that have been shown to be useful or harmful in the 

past [73, 77, 95, 152, 175]. A behaviour control system would also be able to 

move on varied terrain and produce various complex postures if it knows how 

to coordinate and program its motor apparatus appropriately [42, 81, 99]. How-

ever, it is obvious that it is not easy to achieve adaptation in these aspects all 

at once, especially when these aspects are closely related to each other. Indeed, 

it is not even easy to achieve complete adaptation in just one aspect. In this 

thesis, we would like to study the adaptive learning ability of decision-making on 

correct motor action selection in the Strategy module as our first step towards 

full adaptation in the CBG model. 

The main purpose of the Strategy module in the CBG model is to design an 

appropriate strategy for executing particular behaviours successfully. For differ-

ent behaviours, the concrete strategies would be different. Nevertheless, generally 
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speaking, these strategies have the same objective of selecting correct motor ac-

tions at every step so as to achieve behavioural motivations quickly and efficiently. 

This procedure can be simply summarised as a loop between decision-making of 

action selection and performance evaluation of action execution. This simple 

strategy, as shown in Figure 3.5, analyses the information input to it first, in-

cluding perceived environmental information, body states, and commands sent 

from the higher level, i.e., the Motivation module. The strategy then selects 

between actions, which are to be elaborated and executed by the lower levels 

of the CMC system. After action execution, the Strategy module checks to see 

if the designated behavioural motivation has been achieved successfully. If so, 

the strategy finishes at a "Success" state. However, in most cases, more than 

one decision of motor actions would be required for carrying out a particular be-

haviour. Therefore, the question, "Are the failure conditions satisfied?" (that is, 

"Are the resources, such as time, energy, etc., running out?") will be asked if the 

particular behavioural motivation is not yet achieved. If the limited resources are 

used up, the strategy ends at a "Failure" state, since the behavioural motivation 

cannot be achieved. Otherwise, the Strategy module makes its next selection of 

actions toward the behavioural motivation based on the new current input in-

formation. This loop continues until the behaviour is carried out successfully or 

failure constraints are reached. 

The above strategy is clearly very simple: the control goes straightforward and 

does not take any past experience on selecting and executing motor actions into 

consideration. The Strategy module can become adaptive if it is aware of how 

to learn from its sensory feedback and past experience. Because the hierarchical 

architecture of the CBG model is similar to that of the natural behaviour control 

system, and has mixed information flows of top-down control commands and 

bottom-up sensory feedback, it has already been implied that the CBG model 

ought to be able to possess the adaptive learning ability in the same way as the 

natural system does. In particular, the Strategy module of the CBG should be 

able to utilise the correct decisions of actions and the mismatch between intended 

actions and executed results to improve its decision-making ability. 
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Figure 3.6: An improved strategy with adaptive learning 

An improved strategy with additional procedures of adaptive learning is shown 

in Figure 3.6. This strategy can learn from both successful and unsuccessful 

experience. The dotted lines in Figure 3.6 illustrate the first kind of adaptive 

learning, that is, to learn from successful experience. In this case, the Strategy 

module has made correct decisions of motor action selection, which are just right 

for a designated behaviour. The knowledge gained about the successful decisions 

is then kept in memory for future use. This kind of learning is positive, since it 

derives from the useful information on carrying out a behaviour. 

The improved strategy can be even more adaptive if it adjusts its ability 

through negative feedback from failed execution of an intended action or a be-

haviour. This kind of learning is marked as solid lines to the learning procedure 

in Figure 3.6. By comparing intended actions with their actual execution results, 

the Strategy module can figure out any mismatch between them, and generate a 

new reasonable policy to correct the errors. If the errors are corrected in a timely 
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fashion, the improved Strategy can not only save the behaviour control from cur-

rent difficult situations, but also keep it from the same errors in the future. This 

kind of immediate adjustment to the strategy during ongoing activity is essential 

to the execution of the present behaviour. 

By taking past experience and sensory feedback into account, the CBG model 

and the Strategy module hold the potential of adaptive learning to improve gener-

ated behaviours continuously. A key point for achieving adaptation by learning is 

then to design a reasonable learning algorithm that can learn to make suitable de-

cisions of motor actions from both useful and harmful experience. The algorithm 

we adopt in this thesis is a Multi-agent based Evolutionary artificial Neural net-

work with Lifetime learning (MENL). Detailed information of the work engine of 

MENL and its adaptive learning ability will be presented in the following chapter. 

3.5.2 Multifunctionality 

From the Computational Behaviour Generation model described above, we can 

easily show that it may possess multifunctional ability. With presence and ab-

sence of behavioural motivations and the variety of such motivations, the CBG 

model may be expected to perform a number of different behaviours. The mul-

tifunctional ability of the CBG model benefits from shared hardware resources 

and software knowledge across multiple behaviours. 

3.5.2.1 Shared Resources 

The hierarchical architecture of the CBG model has provided the material base 

for the generation of multiple behaviours together. A series of functionally related 

or similar behaviours can share many hardware resources of the CBG, ranging 

from sensors and motors, motor invocation procedures (in the Movement module), 

compound motor programs (in the Program module), and even general strate-

gies (in the Strategy module) for carrying out those behaviours. The hierarchical 

architecture of the CBG model gives similar behaviours a high probability of 

resource sharing. When performing a particular behaviour, a general strategy 

is first generated in the Strategy module. Rather than designing and execut- 
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ing every action by itself, the Strategy module calls lower levels to carry out its 

"thoughts". The Program module organises executable motor programs for those 

"thoughts", and the concrete execution of the programs by motors is initiated 

in the Movement module. Therefore, once the diagram of strategy generation, 

motor programming, and motor execution are settled for one behaviour, other 

similar behaviours that have the same motors, the Same motor programs, or the 

same strategies, can summon corresponding parts of the CBG directly without 

the need to repeat the exact design work over and over again. To divide the 

behaviour control into several layered modules according to their functionality 

makes the multifunctional implementation not only feasible but also economical 

in both time and resources. In the following chapters, we will see that the gen-

eration of several space occupying behaviours shares most resources of the CBG, 

including sensors, motors, the Movement module, the Program module, and part 

of the Strategy module. The only difference between these behaviours is in their 

different action selection policies. The resultant multifunctional implementation 

of these behaviours is quite efficient and effective. 

3.5.2.2 Shared Knowledge 

While the CBG model provides the material resources for producing multiple 

behaviours together, the knowledge shared between these behaviours makes their 

multifunctional implementation possible. Although shared knowledge is an ab-

stract concept and varies with behaviours of different kinds, we try to explain 

this concept in this section by using the formal description of the CBG model 

and examples of space occupying behaviours. 

The behaviours in a creature which are generated by a particular CBG can 

share their generality in many ways. They may have the same motor actions A, 

the same body states S, or potentially the same environmental information S. 

Moreover, these behaviours may have much in common in their body states and 

state transition activities. At least, the intention to choose the correct motor 

actions at each step so as to reach the Target state quickly is common to every 

behaviour. Usually there is still much more shared in related behaviours, such as 
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the common purpose to avoid the Collision state shared in all space occupying be-

haviours like exploration and goal reaching. For functionally related behaviours, 

most motor actions may have similar effects on body states. For example, the 

action set shown in the state transition diagram (Figure 3.4) is common to varied 

space occupying behaviours. The most obvious difference in multiple functions 

may lie in their different action functions ir, which are caused by different mo-

tivations . The actual decisions on which motor actions to select and execute 

are dependent on the particular behavioural motivations at that time. Even so, 

there are still inevitable similarities in the decision-making procedures for related 

behaviours. 

Suppose there are two kinds of space occupying behaviours, 81 and 82, which 

the CBG model can perform. Both functions have the same motor actions (e.g., 

to move forward, turn, etc.), the same general knowledge of environments, and 

the same categories of body states and most of the state transition activities 

as shown in Figure 3.4. Also, at each movement, both behaviours 81 and 82 

are required to execute the best motor actions so as to achieve the Target state 

quickly and avoid the Collision state simultaneously, that is, to satisfy equations 

3.3 and 3.4. However, because these two behaviours have differing motivational 

signals sent from the Motivation module, the concrete motor actions selected by 

the CMC system each time may be different, even if all the other conditions 

of these two behaviours are the same. For example, if the body of the virtual 

creature sits at place xl in an environment shown in Figure 3.7, it will easily 

move forward without collisions if its current motivation is only to explore the 

environment. But if the motivation is to arrive at a destination Cl quickly, the 

body of the creature should turn to the right first and then move forward. The 

different selection of motor actions is caused by different behavioural objectives. 

However, if the body is at xl but its goal destination is changed to G2 , then the 

CMC system should assert a "Move Forward" signal so as to reach the destination 

G2 quickly. This command is just the same as that in exploration. In this case, 

the knowledge about motor action selection (i.e. Move Forward) for two kinds of 

space occupying behaviours overlaps despite their differing motivations. Another 
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Figure 3.7: Same and different action selection procedures for varied behavioural 

motivations (see context for the full detail). 

example of knowledge sharing between those two space occupying behaviours 

is when the body sits at a place x2 and faces to the southeast. Here, if the 

body moves forward, it will definitely crash into the obstacle. In this emergent 

situation, obstacle avoidance takes precedence over accomplishing any other task. 

So, whatever the behavioural motivation is at that moment, the CMC system 

should initiate a "Turn" command first to force a release of the body from the 

predicament. This kind of emergent skill of obstacle avoidance is fundamental to 

all space occupying behaviours, and is in fact shared by all of them. 

In addition to the above examples, there is much other knowledge shared in 

various kinds of space occupying behaviours. Due to the resources and knowl-

edge shared by functionally related behaviours, the CBG model ought to be able 

to perform these behaviours easily and efficiently if what it learns for one be-

haviour can be used for others. Similarly to potential adaptation, the concrete 

implementation of multifunctionality in the CBG requires a sensible algorithm 

to select appropriate actions for varied behaviours. In Chapter 5, we will present 

our techniques and experiments on using the MENL learning algorithm to learn 
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suitable decision-making policies for multiple space occupying behaviours in the 

same CBG model. 

3.5.3 Other Strengths 

In addition to adaptation and rnultifunctionality, the CBG model has some other 

potential strengths, such as autonomy, generalisability, and modularity. 

A certain autonomy is brought directly by the adaptive and multifunctional 

abilities of the CBG. After the CBG has learned how to use its past experience and 

sensory feedback to make correct selections of motor actions, the CBG can behave 

in various situations without human interference. Similarly, after the CBG has 

learned how to draw inferences about other behaviours from an already learned 

behaviour, it can perform many related behaviours based on its own pre-learned 

knowledge, so the human designer won't have to design repeated details for every 

behaviour. Of course, autonomous decision-making as to the correct action at 

any one time is only one type of autonomy, the tip of the "autonomy" iceberg. In 

order to achieve complete autonomy, the CBG needs to introduce autonomy into 

every other part, such as sensing, motivation generation, and motor programming 

and execution. 

Due to its hierarchical architecture, the CBG has also the strength of gener-

alisability. The multifunctional ability of the CBG is one kind of generalisability: 

the CBG can be generalised to more than one behaviour by taking advantage of 

the shared knowledge and resources across these behaviours. The generalisabil-

ity of the CBG is also present in its easy extension to a wide range of virtual 

creatures. Although the sensory and motor apparatus may be varied from one 

virtual creature to another, the general strategies and/or the motor program may 

remain the same, since it is the Movement module that finally invokes specific 

motors to perform. The Movement module performs as an abstraction between 

the higher level for planning and the lower level for execution. Therefore, some 

parts of behaviours of the CBG model can be executed in a creature-independent 

way. The generalisability of the CBG to both various behaviours and virtual 

creatures would save the human designer from laborious design work and enrich 

57 



the variety of virtual creatures and behaviours to be implemented. 

Another advantage brought by the CBG's hierarchical architecture is its mod-

ularity. The modularity of the CBG is obvious since components of the archi-

tecture can be replaced with others in a relatively straightforward manner. For 

instance, the action selection strategy used in the Strategy module can be di-

rectly changed from hand-crafted rules to -  autonomous learning algorithms. As 

long as these strategies produce the same functionality, the rest of the CBG won't 

be affected at all. Similar replacement can also happen in other modules, such 

as Motivation, Program, Movement, and even Sensor and Motor systems. The 

modularity of the CBG is particularly useful in extending the CBG's generality 

to different behaviours and virtual creatures. 

The above discussions in Section 3.5.1 to 3.5.3 have shown that the CBG 

model can possess many potential strengths, including adaptation, multifunction-

ality, autonomy, generalisability and modularity, provided there are appropriate 

approaches to implement them. In this thesis, we concentrate on the implemen-

tation of adaptation and multifunctionality of the CBG by learning. Research on 

the other potentials of the CBG is our future work. 

3.6 Space Occupying Behaviours 

To illustrate how the CBG model works, we will give an instantiation of the CBG 

model when it is used to generate space occupying behaviours in the following 

section. Before presenting the instantiation, however, we briefly introduce what 

space occupying behaviours are and why we choose them as sample behaviours 

for the CBG model and the following MENL learning algorithm to learn to im-

plement. 

In nature, animals spend much of their time moving from here to there in 

order to reach their shelters or some other destinations (i.e., navigation or goal 

reaching), explore surroundings (i.e., exploration), forage for food sources (i.e., 

foraging), or sometimes just move around randomly (i.e., wandering). The be- 



haviours are the process of determining and maintaining a course or trajectory 

from one place to another, and hence called space occupying behaviours in this 

thesis. Space occupying behaviours are functions fundamental to natural animals. 

The survival of a natural animal is contingent upon the adaptive skills of quick 

and safe space occupying movement. 

Space occupying behaviours are also fundamental to artificial creatures. They 

have received much attention in both the robotics and virtual creature literature. 

(See [159] for a review on the recent work on simulating space occupying be-

haviours.) Space occupying behaviours have been well studied with the assistance 

of an environmental map or landmarks in the environment. An environmental 

map provides an explicit global representation of the environment, and based on 

it, routes or trajectories of movement can be planned. An environmental map 

can be built in a previous phase or from geometrical information gathered as the 

robot or virtual creature travels [8, 116, 118, 158, 160, 164]. A variety of method-

ologies have been proposed in this context, but potential problems still remain. 

Besides the prior-knowledge required in creating maps, the effort involved in re-

vising a map when any change occurs in the environment can be substantial. 

Moreover, this approach does not correspond to reality where natural creatures 

do not always have a map of their environment when carrying out space occupy-

ing behaviours. Some approaches used landmarks to obtain a local representation 

of the environment [14, 87, 96, 114]. This representation comprises a topologi-

cal modelling of the environment. Usually a robot or virtual creature acquires a 

graphical representation of landmark types as it moves in the environment. The 

landmark scheme is likely to improve robustness in space occupying behaviours, 

but the behaviours can only be executed in the environments that have landmarks 

and when the landmarks are discernible. 

In addition to the behaviours based on landmarks or a map of the environment, 

space occupying behaviours can also be generated without specific environmental 

knowledge. In nature, living creatures can move promptly and appropriately by 

utilising the environmental information they presently perceive. For instance, vi-

sion is a popular means of collecting necessary information from the environment. 
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Sometimes only the current visual information is enough for living creatures to 

decide what to do next (e.g., finding available places and avoiding obstacles). 

When the environment is new, or the goal location is out of sensory field, many 

living creatures including bees, birds, fish, turtles, etc., can determine their move 

direction or distance or even their global position by using some other tools to as-

sist, such as a sun compass or magnetic sense [61, 89, 165]. The creatures achieve 

their goals through tentative movements and their movement skills are improved 

after they obtain more and more experience. Such space occupying behaviours 

may be less efficient or optimal compared with planned ones, but they are ro-

bust and general to a wide range of situations. These skills are especially useful 

when the creatures are out of the niches that they are familiar with or when 

the environment is completely unknown. These space occupying behaviours are 

complementary and coexist with map-based and landmark-based behaviours in 

many different animal species [126]. The space occupying behaviours, which are 

based on local environmental information and general to various situations, are 

called general space occupying behaviours in this thesis. 

The CBG model combined with the MENL learning algorithm has been 

trained to learn general space occupying behaviours as a test of its adaptive 

and multifunctional behaviour generation. In addition to the fact that general 

space occupying behaviours are important skills to many animals, there were a 

number of reasons to choose them as model behaviours for the CBG and MENL 

to learn: 

. General space occupying behaviours are adaptive 

General space occupying behaviours are adjustable to different environ-

ments and situations. They can be adjusted to new circumstances and 

continuously improved through practice [147]. This adaptation of general 

space occupying behaviours is suitable to test whether the CBG combined 

with MENL is able to learn behaviours adaptively. 

. General space occupying behaviours are full of variety. 

General space occupying behaviours are a general designation of behaviours 
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that involve movement from one place to another according to current en-

vironmental information. These behaviours include exploration, foraging, 

goal reaching, wandering, and some others, which are differentiated from 

their different behavioural objectives. The achievement of these behaviours 

by an animal involves the same motors and motor actions but different 

decisions about which motor action to execute at a particular time The 

commonalities and differentiations between these functionally related be-

haviours are good examples to test the multifunctionality of the CBG model 

and MENL. 

. General space occupying behaviours are robust 

As explained above, general space occupying behaviours are not specific 

to any environment or object. They are general and robust to a wide 

range of situations. Therefore, virtual creatures that have general space 

occupying ability should be able to decide for themselves how to achieve 

their behavioural goals in various environments without help from a human 

designer. Such robust behaviours can enhance virtual creatures' survival 

ability in dynamically changing environments. 

. General space occupying behaviours are of assistance to many other be-

haviours. 

Although general space occupying behaviours differ somewhat from other 

space occupying behaviours, such as those based on landmarks or a map of 

the environment, the implementation of general space occupying behaviours 

can assist the achievement of other behaviours. For example, when full 

knowledge of the environment is absent, general exploration can collect 

the necessary place information for the construction of a map. When a 

landmark is too fax to sense, general navigation can help the creature to 

reach the areas that have landmarks. This kind of self-sufficiency can help 

virtual creatures to accomplish complex behaviours in their environments. 
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3.7 An Instantiation of the CBG Model for Space 

Occupying Behaviours 

In this section, we present an instantiation of the CBG model where it is used 

to produce some general space occupying behaviours, such as exploration, goal 

reaching, and wandering. The implementation of the space occupying behaviours 

is decomposed into a sequence of procedures from general to specific for the CMC 

system to execute. Meanwhile, the behaviours are implemented with assistance 

of all the other parts of the CBG model. This instantiation should give us a 

clear image of how the CBG model can be implemented to generate concrete 

behaviours for virtual creatures. The virtual creature adopted here is an abstract 

two-dimensional bot with an arrow pointing in the direction in which it is facing, 

as shown in Figure 3.8. When the CBG model is applied to the virtual creature 

to generate space occupying behaviours, the implementation details of every part 

of the CBG model are summarised as follows. 

3.7.1 Synthetic Visual Input Pattern 

The Sensor system of the CBG model can be constructed with different kinds of 

sensors. In this thesis, we are mainly interested in simulated vision sensing. 

Simulated vision sensing is a direct and natural method to acquire environ-

mental information. This is mainly because vision is a rich source of information 

concerning a creature's living world; and it can be exploited in a very wide range 

of behaviours. In the study of virtual creatures, synthetic vision is the one often 

used [20, 116, 132, 133, 1621. Because the computer graphics system contains all 

the information about the simulated environments and objects for their rendering 

and display, synthetic vision can directly use this information from the graphical 

system. For instance, for each pixel in the rendered scene viewed by a creature, 

synthetic vision can easily conclude its position, the distance between the eye 

and the point from which it is projected, and the object which it belongs to. 

However, it should be noticed that not all information can be provided to the 

virtual lives directly. It is necessary to simulate not only the abilities but also the 



Figure 3.8: A virtual creature and its visual input. The circle represents the virtual 

creature and the arrow its view direction. The shaded area is the visual field of the 

creature. 

limitations of the perception systems of animals for producing natural behaviours 

[153]. Therefore, sensible choices should be made on what sensory information 

can be provided to the virtual creatures and what information cannot. 

In the work reported here, the virtual creature is equipped with a straightfor-

ward visual sensor. Its field of vision ranges over 90 degrees and five squares in 

distance, as shown in Figure 3.8. This visual sensor simulates the current visual 

field of the creature and is concerned with only one kind of information, which 

identifies whether a square is occupied by an obstacle or not. This is mainly 

because we believe a primitive movement can be made on the information about 

the availability of places in the visual field, without knowing some other specific 

knowledge such as obstacle shape or size. Therefore, each point in the simulated 

visual field of the virtual creature has only one of two values: 0 represents a place 

occupied by obstacles, and 1 a free place. This information can be easily obtained 

from the graphical system. A visual input value V, which is a real number nor-

malised in the interval [0,1], then results from a weighted sum of all the points in 

visual field: 

V = >( 2 a(x)) a(x) = 10, 1}, Vx in the visual field 	(3.5) 

where d(x) is the distance of a point x to the current position of the virtual 



creature, and a(x) indicates the availability of the point x. 

The points in the visual field have gradually decreasing weights from near to 

far with respect to the creature. Therefore, close areas in the visual field will 

have more significance than far areas. The result of combining all the places in 

the visual field gives an input value V to feed the CBG. 

Because the visual sense adopted in the CBG model is related to theavail-

ability of places in the visual field, it is independent of specific environments and 

objects. It is therefore suitable to any situations. 

3.7.2 Virtual Motors 

At present, the virtual creature has two kinds of virtual motor for executing 

space occupying behaviours: Motor-Move and Motor-Direction. The Motor-Move 

motor is used to move the creature straight forward for one square. The Mo-

tor-Direction motor takes one parameter, a, and turns the creature's body clock-

wise to a particular angle a. When the CMC system in the CBG model sends 

a motion command to a virtual motor, this motor makes the corresponding ac-

tion on the graphical model of the creature. Specifically, it is a reposition and 

reshaping of the virtual creature in the graphics model. 

3.7.3 The State Module 

According to the body state classification introduced in Section 3.4.3, the creature 

has five major state categories in space occupying movement: No-action, Turn, 

Movement, Collision and Target. The State module records not only the current 

body state and its transitions, but also past state activities. The latter are used to 

store the related information about body states and motor actions the creature 

has made when performing a particular behaviour. It serves as the "working 

memory", a temporary storing of information, to guide a future action. For 

example, when the CBG executes space occupying behaviours, the State module 

will record the position of the accessed place, the body state of the creature, 

and the result of executing the chosen motor action at each time step. Though 
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information like sensory input for places accessed in the past may be useful for 

some other behaviours, it is not necessary for space occupying behaviours. The 

useful information saved in the State module can be accessed by every part of 

the CMC system and the Motivation module for them to decide what to do at 

the next step. 

3.7.4 The Motivation Module 

The Motivation module is responsible for establishing behaviour goals for the 

virtual creature. In this thesis, it acts primarily as an interface to a human 

commander. When the human commander informs the Motivation module of 

a behavioural motivation, the Motivation module generates and sends a corre-

sponding motivational signal to the Computational Motor Control (CMC) system 

to achieve this motivation. In the following experiments conducted in Chapter 4 

and 5, the Motivation module will be informed of three candidate values (wander-

ing, exploration and goal reaching) and their various combinations. This result in 

three corresponding space occupying behaviours executed both individually and 

jointly. 

3.7.5 The Computational Motor Control System 

3.7.5.1 The Strategy Module 

The top level of the Computational Motor Control (CMC) system, the Strategy 

module, analyses the motivational signal sent from the Motivation module and 

constructs an overall strategy and motor plan for achieving the corresponding 

motivation. The strategy adopted in the Strategy module is the adaptive strategy 

explained in Section 3.5.1 and shown in Figure 3.6. 

Motor Action Selection 

For different behavioural motivations, the policies of choosing suitable motor 

actions are usually different. Thus, the module of "Make decisions" in Figure 

3.6 will be implemented differently. For example, when selecting actions for 
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carrying out the goal reaching behaviour, the Strategy should consider both the 

possible reactions (responses) from the environment and body states, and the 

distance of the place to be accessed from the goal destination. When executing 

exploration, the responses from the environment and body states are the same, 

but the information about whether a place to be accessed has been visited before 

is another factor to consider. The Strategy needs to choose an action that - will 

access an unexplored place in the environment if there is any. For the behaviour 

of wandering, the action selection is relatively easy. Because there is no obvious 

behavioural objective in wandering, only the responses from the environment 

and body states will be considered. The different factors involved in motor action 

selection result in different actions to be chosen for achieving different behavioural 

motivations. 

Despite the different motor action selection, the remaining parts of the adap-

tive strategy used for carrying out varied space occupying behaviours are quite 

similar. This similarity again shows that functionally related behaviours have 

some knowledge in common relating to their execution. 

Motor Actions 

The virtual creature adopted in our work is assumed to make at most one step 

at each time interval in its movement. Accordingly, there are eleven motor ac-

tions designed in the CBG model. These actions are "move one square straight 

forward", "move diagonally one square to the right forward", "move diagonally 

one square to the left forward", "remain stationary", and turn to the other seven 

different directions. A pictorial explanation of these actions is shown in Figure 

3.9. 

Of eleven motor actions, "move diagonally one square to the right forward" 

and "move diagonally one square to the left forward" are compound movements, 

which need to call more than one motor in their execution. For executing those 

compound movements, the creature should first turn to the correct direction by 

using the Motor-Direction motor and then move one step forward by using the 

Motor-Move motor. 



Figure 3.9: Eleven motor actions of the virtual creature. The creature can move one 

step forward in its visual field following directions 0, 1 and 7 respectively, and turn to 

the other 7 directions other than its current direction 0 by turning around. The last 

action choice is to remain at its original place. 

Compound motor actions are very popular in natural animals. Animals can 

decide between numerous sophisticated movements and the implementation of 

these movements may require the use of many individual "motors" many times. 

To choose compound movements is obviously quicker and more efficient than 

to choose single motor movements one by one. In the CBG model, because 

the decision-making of motor actions is relatively independent of the concrete 

execution of these motor actions, the Strategy module is able to decide between 

compound movements and leave the implementation details of these movements 

to the following modules of the CMC system. 

3.7.5.2 The Program Module 

The selection of motor actions made by the Strategy module is first sent to the 

Program module for further elaboration. The Program module is responsible for 

designing detailed motor programs in space and time for the abstract selection of 

motor actions made in the Strategy module. The Program module decomposes 

those decisions into detailed programs that can drive the motors. In the eleven 

motor actions, the decision to move one square straight forward can be achieved 

by calling the moving motor (Motorivlove), and the decisions to turn to the 
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other seven directions can be achieved with a direct invocation of the direction 

changing motor (Motor-Direction). The movement pace of Motor-Move is one 

abstract unit of movement each time. The turning scale of Motor-Direction is 

a value between 1 and 7, which is an abstract description of the direction to be 

reached, according to the direction labelling shown in Figure 3.9. 

= The Program module needs to divide the decisions "move diagonally one 

square to the right forward" and "move diagonally one square to the left forward" 

into sequential movements of direction change and straight forward movement, 

so the motors of Motor-Direction and Motor-Move will be invoked in turn. The 

turning values of Motor-Direction for those two compound decisions are set to 1 

and 7 respectively. The movement paces of the Motor-Move motor are still one 

abstract unit of movement for both compound decisions. 

The motor programs and their coefficients (e.g., the movement pace and turn-

ing values) generated by the Program module are still relatively abstract and 

separated from the real execution of motors. Those motor programs are then 

sent to the Movement module for a concrete execution of the virtual motors. 

3.7.5.3 The Movement Module 

The concrete invocation of the creature's motors is implemented in the Movement 

module by setting real turning angles and movement distances. The Movement 

module interprets the abstract coefficients sent from the Program module into 

actual turning and movement parameters acting on the graphical model of the 

creature. The movement distance of the Motor-Move motor is actually one grid 

distance of the virtual environment. The turning values (1 '-- 7) of the Mo-

tor-Direction motor are translated into 45 '-' 315 clockwise degrees. After receiv-

ing invocation signals and real graphical parameters from the Movement module, 

the Motor system launches the corresponding virtual motors to reposition and 

reshape the graphical elements of the virtual creature. In consequence a sequence 

of movements can be generated for carrying out various kinds of space occupying 

behaviours. 

The translation of abstract motor actions into real graphical parameters makes 
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the decision-making of motor action selection and their decomposition to be sep-

arate from the actual graphical model of the virtual creature. As a result, the 

CBG model can be applied to different kinds of virtual creatures and motors 

without much redesign. 

In this section, we explained how to set the CBG model concretely so as to 

produce particular behaviours such as space occupying behaviours. Through this 

explanation, we can see that the concrete execution of a behaviour is achieved by 

the coherent collaboration of every part of the CBG model. An important part 

of which motor actions to choose at a certain time for a particular behavioural 

motivation is not presented here. This part is accomplished by the MENL learning 

algorithm and its implementation will be introduced in the next chapter. 

3.8 Conclusion 

The Computational Behaviour Generation (CBG) model proposed in this chapter 

provides a general and complete framework of behaviour control for virtual crea-

tures. This model has taken its inspiration from and has been designed based on 

the natural behaviour control system in the brain. In particular, the CBG model 

utilises a hierarchical Computational Motor Control (CMC) system to perform 

the whole procedure of selection, programming and execution of motor actions. 

This hierarchy provides a top-down control scheme in which higher levels produce 

general commands for lower levels to implement without detailed description of 

concrete implementation of lower level elements. The CBG model designed in 

this manner has clear generality in its behaviour control and can therefore be 

applied to a wide range of virtual creatures. In addition to the top-down control, 

a bottom-up feedback is formed in the CBG model, as the sensory system contin-

uously reports to the CBG the changes in the external environment and internal 

body states after every motor action execution. By means of the top-down and 

bottom-up information flows, the CBG model can compare its intended actions 

with actual movements and learn from its successful or unsuccessful experiences. 



In consequence the behaviours generated by the CBG model can be adaptive 

by learning. Due to its hierarchical structure, the CBG model supplies a great 

amount of commonality in functionally related or similar behaviours, including 

both hardware resources and software knowledge. The CBG model may there-

fore be multifunctional, if it takes what it learns from one behaviour to another. 

In addition to adaptation and multifünctiOñality, the CBG model also possesses 

some other potential strengths, such as autonomy, generality, and modularity. 

In the next chapter we will present the learning algorithm of Multi-agent based 

Evolutionary artificial Neural network with Lifetime learning and introduce how 

this algorithm can be used in the CBG model to produce adaptive behaviours. 
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Chapter 4 

Learning Single Behaviours: 

Combining the CBG Model with the 

MENL Learning Algorithm 

In the previous chapter, we explained that the Computational Behaviour Gen-

eration (CBG) model can become adaptive, provided it has a sensible learning 

algorithm that can learn to choose suitable motor actions for generating be-

haviours. The learning algorithm adopted in this thesis is MENL, a Multi-agent 

based Evolutionary artificial Neural network with Lifetime learning. This chap-

ter gives a full explanation of the learning algorithm MENL and its adaptive 

learning of single behaviours when it is combined with the CBG model. (The 

learning of multiple behaviours by the CBG combined with MENL will be pre-

sented in the next chapter.) In particular, the next section is a review of the 

recent work on evolved behaviours and reinforcement learning, which are related 

to the adaptive learning of MENL. Section 4.2 outlines the main ideas behind the 

multi-agent based evolutionary artificial neural network with lifetime learning. 

Section 4.3 describes the implementation details of MENL when it is employed 

in the Strategy module of the CBG model to learn correct motor action selection 

for generating space occupying behaviours. In this chapter, the CBG combined 

with MENL is required to learn exploration behaviour independently, that is, to 
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access places in an unknown environment as far as possible. The experimental 

work is presented in Section 4.4. The experimental results have shown that the 

CBG with MENL has successfully learned exploration in various unknown envi-

ronments. Some efficient and believable behaviours emergent in the experiments 

are introduced in Section 4.5. The last section concludes this chapter. 

4.1 Related Work 

Evolved behaviours and reinforcement learning are two important approaches to 

generating adaptive behaviours for artificial animats. Our MENL learning algo-

rithm is associated with both of them because it uses not only evolution strategies 

but also sensory feedback to shape behaviours. Based on a skillful combination of 

evolutionary learning and reinforcement learning, MENL also utilises the agent 

technology and the lifetime learning in its design so as to achieve improved adap-

tation in behaviour generation. In this section, we review the related work on 

both evolved behaviours and reinforcement learning and place our work in the 

context. Instead of an exhaustive survey of a very large domain, we would like 

to focus on those works closely related to our study. 

4.1.1 Evolved Behaviours 

The idea that an animal's behaviour is partially determined by its genome and 

hence evolvable through natural selection has inspired much research work on 

using evolutionary procedures to develop the mapping between environmental 

situations and actions [16, 38, 45, 84, 115, 105, 134]. The large number of evolved 

behaviours includes obstacle-avoidance, locomotion, wall-following, box pushing, 

finding food sources, etc (see [57, 104] for a comprehensive review). The rich 

variety of structures that have been put under evolution include directed graphs, 

Lisp code and artificial neural networks. Directed graphs have been used to 

represent the morphology and behaviours of virtual creatures, and evolved to 

achieve specific behaviours such as swimming, walking, and jumping [148, 149]. 

The Lisp code, also called genetic programming, has been applied to recreate 
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the patterns of locomotion of a lizard [84], determine the optimal number and 

orientation of the sensors for developing corridor-following behaviours [134], or 

design both controllers and morphology of robots [80, 88, 911. 

In order to avoid the artificial interference brought by the human designer, it 

is believed that the primitives manipulated by the evolutionary process should 

be at the lowest level [69]. Therefore, artificial neural networks composed of 

the very basic units of neurons are frequently chosen as the building blocks for 

evolutionary learning of behaviours. The genotype-phenotype mapping of evolu-

tionary algorithms can be consequently implemented in a classical neural network 

[51, 50, 120, 173] or in a dynamic neural network [38, 63, 68, 178]. Cliff, Hus-

bands and Harvey, for instance, employed an extended genetic algorithm with 

variable-length genotypes to evolve the number of hidden units and specific con-

nections of recurrent real-time artificial neural networks for controlling robots 

to avoid obstacles or to reach a particular target [68, 69]. One of their major 

claims was that artificial evolution of neural networks represented a better choice 

for the development of autonomous behaviours than design by hand [38]. Cliff 

also provided a theoretical background for the study of simulated organisms in 

a closed environment and presented a concept of Computational Neuroethology 

as an attempt to relate behaviours with the activities of artificial neural mech-

anisms [36]. In this study, Cliff concluded that connectionist models could only 

be meaningful if they are embedded in a sensorimotor system. 

Floreano [51] studied the evolution of a feedforward neural network which 

exhibited a nest-based foraging behaviour. Since the fitness function was simply 

the number of food objects eaten, the location of the nest and the ability to 

periodically visit it were indirect achievements. A similar result was obtained in 

the experiment of Floreano and Mondada [50], in which the periodical return to 

a battery recharge station was indirectly achieved in the evolutionary learning of 

a discrete-time recurrent neural network. The experimental results showed that 

more complex behaviour emerged by reducing the constraints imposed by the 

fitness function. 

The work by Noll also concluded that the lesser power of current artificial 
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evolution models might be due to the lack of some important properties of natural 

evolution, and the usage of a very specific selection criterion implied that the 

evolutionary process was used in at least a partially distorted way [115]. In his 

research work on a garbage collecting robot that was trained to keep an arena 

clean, Nolfi carefully "canalised" the evolutionary process in the "right" direction, 

by favouring the emergence of the required competencies. Through experiments, 

Nolfi also found that the amount of canalisation pressure should be kept as small 

as possible. 

Inspired by biomimetic processes such as cell division, axonal growth, and pro-

tein synthesis regulation, evolutionary algorithms have also been used to evolve 

developmental procedures of neural controllers [46, 63, 105, 106]. Michel, for 

instance, applied genetic algorithms to evolve morphogenesis production rules 

which were decoded into a dynamical neural network driving a mobile robot 

[106]. Eggenberger designed an artificial genome composed of regulatory units 

and structural genes [46]. The activities of structural genes were regulated by 

regulatory units in evolution and resulted in a network of cells through cell dif-

ferentiation, cell construction, cell division and cell connection. The developed 

network were successfully linked to the sensor and motors of a real robot. A 

grammar tree based cellular encoding with syntactic constraints was proposed 

by Gruau et al. [62, 631. Based on this encoding, a neural network was finally 

generated from a single cell via various kinds of cell divisions. During the ëvolu-

tion or development of cells, the fitness of evolutionary individuals were given by 

the experimenter interactively by hand. The AnimatLab at Paris has proposed 

an evolutionary paradigm of SGOCE [105], which is an integration of an axonal 

growth process [32, 163] and the cellular encoding of Gruau et al. A series of work 

has been conducted in this lab to use SGOCE to evolve neural controllers for gen-

erating behaviours such as rolling [35], walking [47, 481, swimming [76] and flying 

[44]. Some of the behaviours were produced in an incremental way by taking 

advantage of the geometrical nature of the developmental controllers. In [82, 83], 

for example, locomotion controllers were first generated by evolution. Neural con-

trollers for gradient-following and obstacle-avoiding were subsequently evolved, 
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whose neurons established flexible connections with neurons of the evolved loco-

motion controllers. Experimental results have shown that the controllers obtained 

from the first stage were less efficient than those obtained from the subsequent 

stage, and meanwhile, the evolution of evolving all the controllers simultaneously 

had worse average performance or more evolution time than the incremental evo-

lution [35, 44]. By means of incremental evolution, neural controllers can become 

increasingly complicated and hence control more and more complex behaviours. 

While most research on evolutionary robots has employed genetic algorithms 

(GAs) or their variations, Salomon studied the application of evolution strategies 

(ESs) to the evolution and optimisation of different controllers for Braitenberg 

vehicles [137]. The aim of the application was to make the vehicles move forward 

quickly with obstacle avoidance in an arena. Compared with other research on 

Braitenberg controllers that applied GAs, the experimental results have shown 

that the ES-based approach was much faster and more competent than GA-based 

approaches, especially when encountering epistasis problems. 

Our approach of MENL learning is much influenced by the above research 

work on evolved behaviours. In particular, a feedforward neural network is 

evolved in MENL via evolution strategies to learn appropriate situation-action 

mapping for the generation of behaviours. The objective of the behaviour to be 

achieved is a factor in the fitness function guiding the evolution of the neural 

network. Different from evolving behaviours in a traditional way, the MENL 

learning algorithm also takes into account the sensory feedback on executed ac-

tions (including environmental and body state feedback) in its action selection 

learning. The sensory feedback is used as another important factor to discover 

general properties of behaviours of the same kind. The learned behaviour is 

therefore also shaped by the immediate feedback from the environment and body 

states. In this sense, our approach is also related to reinforcement learning. 

4.1.2 Reinforcement Learning 

The main purpose of reinforcement learning is to learn an action policy, or an 

associative mapping from situations to actions by maximising a scalar reinforce- 
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ment of the task performance from environments. There are two main strategies 

for solving reinforcement-learning problems: value function methods and policy 

space methods (see [78, 112] for a comprehensive review). 

The value function methods attempt to learn the optimal policy via a value 

function, instead of a representation of the policy, which returns the expected 

cumulative reward for the policy from any state. Q-learning, a technique for 

propagating rewards temporally across sequences of actions [170, 171], is one of 

the most well known value function methods. Much of the work on robot learning 

is derived from it. Mahadevan and Connell used Q-learning with some clustering 

techniques to train a mobile robot to push large boxes for extended periods of 

time [95]. The clustering techniques were weighted Hamming Distance and statis-

tical clustering that generalised rewards spatially across similar states. Mataric 

described a robotics experiment with a high dimensional state space based on 

Q-learning [97]. Four mobile robots travelled within an enclosure to collect small 

disks and transported them to a destination region. Pre-programmed signals 

called progress estimators were used to break the monolithic task into subtasks. 

State space was also quantised into a small number of discrete states according 

to pre-defined boolean features of the underlying sensor. The performance of the 

Q-learning policies was almost as good as a simple hand-crafted controller for 

the job. In order to reuse the same sequence of situation-action pairs so as to 

back-propagate delayed rewards, Sutton studied a class of reinforcement learning 

architectures called DYNA, which included an internal world model in learning 

[151, 152]. DYNA simultaneously used experience to modify the world model by 

relaxation planning and the value function by temporal difference reinforcement 

learning [150], and used the world model to adjust the value function. When 

DYNA was used to navigate in a maze, it required fewer steps of experience than 

Q-learning to arrive at an optimal policy, but more computational effort at the 

same time. 

Reinforcement learning can also be achieved via policy-space methods, which 

maintain explicit representations of policies and modify them through a variety 

of search operators, such as evolutionary algorithms. Grefenstette et al. pre- 
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sented the SAMUEL system that combined evolution with aspects of temporal 

difference reinforcement learning [59]. They used a rule-based single chromo-

some to represent a policy, i.e., a situation-action mapping. So, each individual 

of the evolutionary population was a policy represented as a rule set and each 

gene was a rule that maps the states of the world to actions to be performed. 

SAMUEL has been ai5lfed  to learn a series of behaviours for robots and other au-

tonomous vehicles, including collision avoidance and local navigation behaviours 

[138, 139, 140], and herding a second robot to a "pasture" [140]. Several other 

systems used Classifier Systems to find food, avoid obstacles, or produce goal-

seeking sequences [23, 70, 1751. In classifier systems, a policy is represented by a 

set of distributed if-then rules called classifiers. Each chromosome represents a 

single decision rule that maps part of the sensory input to an appropriate action 

and the entire population represents the agent's policy. Every classifier has a 

statistic called strength that estimates the utility of the rule. Genetic Algorithms 

are usually applied to highly fit classifiers to generate new rules. 

In order to obtain higher generalisation over the input space, some work used 

neural networks to approximate a situation-action policy [15, 174, 177]. A neural 

network for a decision policy is represented as a sequence of real-valued connec-

tion weights, and these weights are continuously optimised via an evolutionary 

algorithm to search out an optimal policy. This representation requires little mod-

ification of the standard evolutionary algorithms. In the SANE system [110, 111], 

two separate populations were maintained and evolved: a population of neurons 

and a population of network blueprints. The evolution of neurons provided eval-

uation and recombination of the individual neurons which were used to construct 

dynamic neural networks. The evolution of network blueprints then searched for 

effective network combinations by these neurons. SANE explicitly decomposed 

the neural network search problem into several parallel searches for effective single 

neurons. The SANE system has been shown to be effective in game-tree search 

[109] and obstacle avoidance learning in a robot arm [1101.  In evolutionary algo-

rithms for reinforcement learning, almost all the fitness functions reflected accu-

mulated rewards received during the course of interaction with the environment. 
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Fitness might also reflect effort expended, or amount of delay. 

Similar to reinforcement learning, our approach of MENL learns behaviours 

by maximising sensory feedback from environments. MENL is especially simi-

lar to the evolutionary algorithms for reinforcement learning because it also uses 

evolutionary algorithms to learn an implicit representation of the situation-action 

policy. However, MENL differs from the traditional reinforcement learning in sev-

eral fundamental ways. The rewards that MENL obtains are simple and general 

responses of not only environments but also body states to executed actions. The 

responses are not specific to a particular behaviour. Instead, they are general in-

formation common to behaviours of the same kind. For example, when learning 

space occupying behaviours, the sensory feedback only indicates that successful 

walk is better than direction change and direction change is better than no mov-

ing and collision making. This information suits all space occupying behaviours 

like exploration and goal reaching, and more importantly, it is easy to design and 

obtain. This is in contrast to the difficult reward calculation and credit assign-

ment in reinforcement learning [94]. The fitness function adopted in MENL is 

also different from that in traditional reinforcement learning. The fitness function 

of MENL consists of both sensory feedback and behaviour objectives. While the 

sensory feedback provides the generic information of behaviours, the objective of 

the behaviour to be learned helps the creature to learn how to perform a particu-

lar behaviour through evolutionary learning. In consequence, the MENL learning 

algorithm can be used to learn more than one behaviour easily and efficiently, by 

changing the behaviour objective in the fitness function. (The following chapter 

will support this claim.) The characteristic of multifunctional learning in MENL 

is in contrast to reinforcement learning that has difficulties to deal with varying 

goals [94]. If the goals change, almost everything of reinforcement learning has 

to be reset. The inflexibility in reinforcement learning is not suitable to virtual 

creature applications that may have various goals and behaviours to achieve. 

In order to improve the adaptation of a behaviour to be learned, and especially 

to improve the robustness and generalisation of the behaviour, the MENL learn- 



ing algorithm has also adopted multiagents in its evolutionary learning and this 

learning is kept through the lifetime of an animat. The learned behaviours there-

fore can be continuously improved and suited to a wide range of situations, as 

demonstrated by the following experiments. 

In the next section, we will introduce the basic design of MENL in detail. 

4.2 Multi-agent Based Evolutionary Artificial Neu-

ral Network with Lifetime Learning (MENL) 

Multi-agent based Evolutionary artificial Neural network with Lifetime learning 

(MENL) is an evolutionary artificial neural network that can continuously learn 

how to select suitable motor actions for generating designated behaviours based 

on its own knowledge and experience. This learning algorithm has a strong 

ability to adapt to continuous changes in the environment. To enable this ability, 

many technologies and concepts have been introduced into MENL. Particularly, 

Evolution Strategies (ESs) are used to evolve the parameters of the artificial 

neural network. The fitness function of MENL is a relaxed and general design 

composed of both behaviour objectives and sensory feedback on executed motor 

actions. Therefore, the learning of MENL is guided by not only the objective of a 

behaviour but also the environment that provides the feedback. In order to take 

advantage of the whole population information, a batch of agents is maintained in 

evolutionary learning, each of which is an evolutionary neural network individual. 

Through constant interaction with the environment, these agents cooperate and 

compete with each other for correct decision-making of motor action selection. 

These agents are subject to evolution via evolution strategies in the absence of 

a correct decision, and this kind of evolutionary learning continues through the 

lifetime of the ANN. In consequence, MENL obtains a more enhanced and general 

ability as the evolutionary learning proceeds during its lifetime. 

In this section, we introduce the strategies used in MENL, including artificial 

neural networks, evolutionary learning, multiagents, lifetime learning, and a re-

laxed and general fitness function design. When introducing these strategies, we 
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also explain the reason we use them and the ways to implement them in MENL. 

The entire work engine of MENL is then presented. At the end of this section, we 

briefly explain how adaptive learning is achieved when MENL is combined with 

the CBG model. 

4.2.1 Strategies Used in MENL 	 - 

4.2.1.1 Artificial Neural Networks 

In animals that have neurons, neural networks are always involved in behaviours 

[147]. These networks at least act as the conductor that sets off effector re-

sponses. Usually they are responsible for the transference and transformation of 

environmental information received by the receptor to action commands for the 

effector to carry out. The pathway and connection in a neural network (receptors-

neurons-effectors) determine what the action responses will be in the end. Neural 

networks can be modified. By establishing alternative routes of information flow, 

they can revise old responses and produce new responses so as to adapt to a new 

situation. At the same time, the old responses can be recalled when they are 

required. Neural networks are the cornerstone of behaviours, especially in higher 

invertebrates or vertebrates. 

By simulating some of the structures and characteristics of biological neural 

networks (BNNs), artificial neural networks (ANNs) in computer science possess 

some functions of BNNs on certain levels. ANNs can also function as an in-

ternal engine between simulated receptor and effector for producing animal-like 

behaviours. Due to their outstanding ability for information abstraction, ANNs 

are able to learn internal relationships between environmental information and 

appropriate action responses. Knowledge of relationships is then implicitly stored 

and distributed in neurons and connection weights. When encountering new sit-

uations, ANNs can also revise old knowledge and fuse new information so as to 

deal with these situations competently, by adjusting the structure and parameters 

of the network. 

This type of implicit knowledge processing in artificial neural networks is in 

contrast to the explicit symbolic knowledge processing in traditional artificial 
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intelligence. Explicit representationalism could account for only a small part 

of what we call intelligence, but the rest may have nothing to do with systems 

of symbols [145]. This idea is shared by both the reactive and connectionist 

approaches. However, guided by Brooks [27, 28], the reactive advocators tend to 

deny the need for symbolic representations within the machine as fax as possible, 

and use only some form of representation if it is really necessaiy. This leads 

to a subtle and difficult choice in design of the primitive reactive modules and 

the necessary representations and, as a result, they suffer from the designer's 

influence to some extent [145]. 

Unlike reactionists, the connectionists try to develop a new learning theory 

of implicit representation that does not require explicit processing rules [143]. 

Without explicit symbols, a kind of implicit knowledge representation and pro-

cessing arise spontaneously and distributively from the artificial neural networks. 

By adjusting the structure and synaptic weights appropriately, artificial neural 

networks act as a powerful and general statistical pattern recogniser that can 

learn any functional mapping [18]. When ANNs are applied to practical prob-

lems, some pre-processing of the input data and post-processing of the output 

are usually required. However, because the learning of artificial neural networks 

is based on low level primitives of the weights and neurons, it may avoid some 

undesirable choices made by a human designer [38]. ANNs have been favoured 

by many researchers as the controllers for producing autonomous and adaptive 

behaviours for virtual creatures and robots [38, 49, 63, 64, 105, 115, 120, 173, 1781. 

MENL is appointed as a decision-maker in the Strategy module of the CBG 

model to choose appropriate motor actions to execute. The ANN in MENL is 

therefore responsible for learning the action function 7r(S, E, ) as introduced in 

Section 3.4.2. In addition to the environmental information currently perceived 

by the CBG sensors, the ANN can also utilise the environmental and body state 

feedback on executed motor actions and the behavioural motivation to guide its 

selection of motor actions. The learning of the action function ir by the ANN is 

achieved with the assistance of an evolutionary learning algorithm - Evolution 

Strategies. 
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4.2.1.2 Evolutionary Artificial Neural Networks 

There are several ways to improve the structure and parameters of an ANN. 

A common method is to train ANNs via a large set of sample data. This is 

called supervised learning. However, in the case of natural behaviour learning, it 

is rather difficult to employ strictly supervised learning algorithms because the 

correct system output is not always available or computable [108]. In many cases, 

only some simple signs which indicate the output effect are obtainable from the 

environment. Therefore, a suitable way to train an ANN for learning natural 

behaviours may be self-supervised learning, that is, to let the ANN learn by itself 

the correct behaviours through continuous interaction with the environment. 

Evolutionary algorithms are good candidates to train an ANN for this type 

of self-supervised learning because they do not require a direct specification of 

the desired values for network outputs at any given moment. Instead they use a 

fitness function to specify a measure of overall performance. Among evolutionary 

algorithms, Genetic Algorithms (GAs) are widely used to evolve neural control 

structures [38, 49, 50, 69, 115, 178]. However, recent studies have disclosed that 

another evolutionary algorithm, Evolution Strategies (ESs) have obtained better 

results than genetic algorithms in many real valued parameter optimisation [10, 

130, 136, 137, 141]. Therefore, in the study reported here, we adopt Evolution 

Strategies to train the artificial neural network of MENL. 

Evolution Strategies 

Evolution Strategies (ESs) are especially designed for applications that involve 

real-valued parameters [130, 141]. The solution vector is usually represented as 

a string of n floating point values, each of which represents one of the objective 

variables. Together with each value is a control parameter a that determines 

the characteristic mutation size for that variable. There may also be an extra 

control parameter, rotation angle a, which allows mutations to be correlated and 

the axes of the problem to be rotated arbitrarily. Hence, an individual ã in a 

generation of evolution strategies can be represented as d = (, O,  ). 
Evolution strategies use search operators such as mutation and/or recombi- 



nation to generate new solutions, and use a selection scheme to test which of 

the newly generated solutions should survive to the next generation. Histori-

cally mutation was the primary move operator in evolution strategies, which is 

effected by the addition of Gaussian noise (Gaussian mutation) to each objective 

variable, with a standard deviation controlled by the relevant o. More recently, 

a variety of recombination operators have been introduced to either produce one 

new individual from two random parent individuals or to allow components to 

be taken for one new individual from potentially all individuals available in the 

parent population. 

Presently, the two most widely used ES algorithms are ( + A) - ES and 

A) - ES, which are distinguished by their different selection mechanisms. The 

former selects the best p individuals from both the i parents and A offspring as 

the parents of the next generation. The latter selects the best 1a parents only from 

the A offspring. It is believed that the (, A) - ES outperforms the (IL + A) - ES 

because (, A) - ES is less likely to land in local optima [10]. The numbers of 

parents and offspring are recommended to be at a ratio of IL/A  1/7 [10]. (See 

[10, 11] for further details.) 

A key concept of ESs is that both the objective variables Y and the strategy 

parameters (6, 6) are evolved during the search, exploiting an implicit link be-

tween an appropriate internal model and good fitness values. This self-adaptation 

mechanism of strategy parameters allows ESs to self-adapt to different fitness 

landscapes. In consequence, ESs have no other parameter that has to be tuned 

by the designer apart from the population size. 

In MENL, ESs are used as the main engine to evolve ANN variables (i.e., 

weights and biases). However, instead of selecting the optimal individual from 

the last generation and using it as a unique solution, MENL keeps the whole 

generation of evolution and treats each individual in it as an active agent to 

make co-decisions. 
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4.2.1.3 Multiagents 

An agent is a system that tries to fulfil a set of goals in a complex dynamic envi-

ronment [94]. Humans and animals are at the high end of being an agent, with 

numerous small agents for multiple senses, multiple actions, and complex control 

structures. Each small agent has also its own specific competence [27, 107] to 

make contributions to the whole agent system. In a multi-agent system, agents 

coordinate their knowledge, goals, skills and plans jointly to take actions or solve 

problems collectively [221. These agents may work toward separate but related 

goals, or toward a single global goal. We presume even a simple behaviour may 

involve a small agent society, in which many small homogeneous agents cooperate 

and compete with each other to perform the same type of function. When we 

walk, for example, sometimes we can walk quickly without deep consciousness, 

but sometimes we may hesitate and clearly have some different ideas conflict-

ing in the brain. If one idea, controlled by an agent, is strong enough to cope 

with the current situation, the movement quickly resumes. Otherwise, intensive 

competition or even revision of the agents (e.g., further learning) is evoked. 

When the multi-agent system is introduced into the evolution of ANNs, each 

individual ANN in a generation is an agent. These agents have the same goal 

but make their own decisions when environmental information is received. While 

one agent makes only one decision at an instant, multiagents provide more kinds 

of solutions. Even when the individual which has the highest fitness fails, others 

with useful ideas can still take over the situation and the behaviour would not 

be "paralysed". Since multiagents make use of all the population information 

that is no less than the information held by any single individual, they have en-

hanced robustness and generalisation ability. In [179], Yao and Liu made use of 

the population information in evolutionary ANNs to improve generalisation of 

learned systems. They utilised linear combinations to integrate different individ-

uals in the last generation of evolution to form integrated systems. In contrast to 

these artificially combined systems, a whole population of agents is maintained 

in MENL and their relationship is coordinated autonomously and naturally by 

themselves. (In Section 4.4.2, we will see multiagents compete and complement 
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with each other to form a coalition for implementing a designated task.) Further-

more, MENL multiagents are not fixed at the last generation of evolution. They 

are flexible and subject to evolution whenever the situation is out of control. This 

evolutionary learning is kept through the whole life of an evolutionary ANN. 

4.2.1.4 Lifetime Learning 

In evolutionary computation, most research work tends to wait for an optimal 

individual or an optimal generation which satisfies all the pre-designed require-

ments. Once such a solution appears, it is used as an ideal scheme to deal with 

all the other problems and won't be improved any more. The ability of the final 

solution to solve problems then becomes a criterion to consider whether a learn-

ing algorithm is successful or riot. However, it may be questioned whether an 

omnipotent solution can always be found, especially in a dynamically changing 

world. When simulating natural behaviours, it is more important for a solution to 

be general enough to provide reasonable performance in varied situations, rather 

than just optimal in some special cases. Even if a solution is optimum on many 

occasions, there is no guarantee that it will be suitable in other unfamiliar and 

unusual situations. This solution should therefore be continuously improved so 

as to suit more and more situations. 

Learning is often thought to be equal to optimising an error function or max-

imising a fitness function. However, we consider learning to be in fact different 

from optimisation because the learned system should have best generalisation, 

while the optimised system has best specific competence [115, 179]. A general 

ability may not be optimal at all, but it should be suitable and adjustable to a 

wide range of situations. Such an ability is usually accumulated through constant 

learning in varied situations and this learning will never cease. Those abilities 

that obtain some functionality but do not update again may face a serious main-

tenance problem when the situation is not the one they are familiar with. 

In the learning algorithm of MENL, a batch of evolutionary agents is main-

tained. Contrasting to traditional evolutionary computation, these agents are not 

unchangeable at the last generation of evolution when the evolutionary learning 



is finished. Instead, the agents in MENL are flexible and can update themselves 

through another period of evolutionary learning whenever they encounter prob-

lems. This can have a natural bearing on lifetime learning. For example, when 

the best decision made by the multiagents fails to make a valid action, an evolu-

tionary strategy is then immediately introduced and a new generation of agents 

is evolved. New decisions are produced and the best -  one Of these is executed 

again. The new agents will survive the predicament and will be used to control 

the next situation if a desired result is obtained. Otherwise, further evolution 

proceeds until new qualified agents are evolved. As this evolutionary procedure 

iterates during the whole life of MENL, multiagents will have a more enhanced 

and general ability. This kind of learning is called lifetime learning in our study. 

Learning continuously in changing environments is also pursued by lifelong 

learning [157] and anytime Learning [24, 60, 121]. Lifelong learning studies learn-

ing in the context of a long-living robot, which faces collections of learning tasks. 

An explanation-based neural network learning algorithm (EBNN) is designed to 

integrates inductive neural network learning and analytical explanation-based 

learning so the robot can exploit synergy between related learning tasks and 

transfer knowledge from previously encountered learning tasks to other new learn-

ing tasks. This makes the robot particularly applicable to a whole collection of 

learning tasks over its entire lifetime. Different from lifelong learning which learns 

tasks one after another, anytime learning learns a particular task and improves 

its performance continuously. In anytime learning framework, there are usually 

two systems running in parallel: a learning system that learns behaviours in 

simulated environments, and an execution system that uses the best controller 

produced by the learning system so far to implement behaviours in real envi-

ronments. At the same time, a monitor module in the execution system checks 

whether the simulated model still matches the real environments, and if not, no-

tifies the learning system to update its simulated model. The lifetime learning of 

the MENL algorithm is similar to anytime learning in improving the performance 

of executing a behaviour continuously. However, different from anytime learning, 

MENL's lifetime learning does not require any simulated models because it learns 
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behaviours running on actual enviroments. Instead of an engine seperated from 

the execution system, lifetime learning is indeed part of the execution system 

and its commands are immediately executed by the execution system. The re-

sulted learning can therefore reflect instant changes in the environment quickly 

and efficiently. 

Due to the utilisation of multiagents and lifetime learning, MENL can attempt 

to learn a great number of generalisations of behaviours for a wide range of 

situations. The following exploration experiments in Section 4.4 have shown that 

evolutionary agents with lifetime learning outperform non-improved multiagents, 

while multiagents surpass the single agent with the highest fitness. 

4.2.1.5 Relaxed and General Fitness Function Design 

Usually people think the job of designing a rational fitness function is quite deli-

cate and laborious. In order to channel the evolutionary process in a desired di-

rection, many constraints are craftily imposed on the fitness function. Although 

these designed fitness functions may obtain some desirable results, they restrict 

the autonomy of evolution [98] and the generalisation of the solution [50, 179] 

at the same time. With regard to natural evolution, we find that nature does 

not enforce any particular criterion on living organisms. It discovers competen-

cies because they can enhance reproductive success. Nevertheless, this happens 

without specific constraints. As a consequence, it is not surprising that complex 

and general behaviours are difficult to obtain through artificial evolution confined 

by many conditions. Recent study on evolutionary learning has confirmed this 

viewpoint and suggested that behaviours with more complexity could emerge by 

reducing the constraints imposed on the fitness function and by increasing the 

affordances of the environment [50]. 

In order to release the designer from laborious design work, MENL adopts a 

relaxed fitness function that sketches the effects of decisions made by each agent. 

This fitness function takes into account the sensory feedback on motor actions 

and the behavioural objectives. Unlike the previous work of fitness function 

design that imposes extra constraints to achieve some specific behaviour effects, 
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such as obstacle avoidance, straight-line walk, etc., the fitness function adopted 

here employs environment and body state feedback to shape certain aspects of 

behaviours. 

So, the fitness function 1 of an agent ak at time t is: 

t) = > (Response (e(ak,  1)) + Aim (e(ak, 1))) 	 (4.1) 

where e is the action selection function of agent ak. 

The first term in the fitness function, Response, is the sensory feedback of 

the motor action e(k,  1) decided by agent dk at time 1. The feedback includes 

corresponding environmental responses and body changes. Instead of being an 

exact value representing the contribution of an action to a designated behaviour, 

such as those used in reinforcement learning, the sensory feedback used here is just 

a simple and general indication of whether an action is good in relation to other 

actions. For example, when learning space occupying behaviours, the sensory 

feedback only suggests that successful movement is better than direction change, 

and direction change is better than no movement which is in turn better than 

the movement causing collisions. This feedback is a kind of general information 

common to the behaviours of the same kind (i.e. space occupying movement). It 

is also easy to observe and obtain. 

The second term of the fitness function, Aim, indicates the behaviour objective 

of a particular behaviour. For simplicity, it can be a negative term that indicates 

how far it is to the behaviour objective at the present time. This term is mainly 

used to encourage an agent to act for a designated behaviour, and not to be lost 

in some other meaningless actions. As a result, when assisted by the general 

sensory feedback to behaviours of the same kind, MENL can learn to perform 

particular behaviours with the guidance of specific behaviour objectives. 

The fitness function 4D is a sum of all the effects of actions e(ok, 1) chosen 

from the initial time 1 = 0 to the present moment t. The fitness function hence 

not only reflects the effect of the current decision made by an agent, but also 

takes into account the decision-making history of the agent. 

When selecting a decision of actions to execute, those agents that may produce 

the best effect in the current situation are considered first. Past experience is 
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the second factor to affect selection. So, if more than one agent selects the 

best action(s) at an instance, the one that has the highest fitness value (i.e., 

the best experience) will take priority to control the current situation. This 

design derives from an attempt to balance the relationship between generalisation 

and optimisation. By only thinking of an immediate action and not making a 

comprehensive consideration of past experience, it is possible to produce a local 

optimum result suitable for limited occasions. On the other hand, considering 

past experience too much and not focusing on the current situation may cause a 

mediocre solution that implements a task at a low level of competence. Here, we 

try to balance these two factors by providing a general but also capable framework 

of action selection. Further study on this topic is our future work. 

4.2.2 Work Engine of MENL 

Through the above introduction of the essential strategies used in MENL, it 

should be clear how MENL works in general. Table 4.1 gives an algorithmic 

description of MENL. The concrete working procedure of MENL for achieving a 

behavioural motivation can be described as follows. 

When MENL starts, a population of evolutionary ANN individuals P(s) = 

{(s), ..., (s)} at generation s = 0 and time t = 0, is created. The population 

consists of M individuals, ak E I = RxR, Vk E 11, ..., pl. Every individual ak is 

composed of an n-dimensional vector Xk that is the object variable component to 

be learned, and an n-dimensional vector 6k  which is the mutation size component. 

For simplicity, MENL does not adopt the rotation angle o. Each individual in a 

population is actually an artificial neural network, which is also a MENL agent. 

The object variables in Y of each individual are therefore the weights and biases 

of the neural network this individual represents. 

After the population creation, MENL checks if the goal G  of the behaviour 

to be achieved is reached. The goal can be that the virtual creature has arrived 

at a designated location in the goal reaching behaviour, or that a maximum 

time is reached in the exploration behaviour. If the goal of the behaviour is 

reached, the work of the MENL algorithm then stops. Otherwise, MENL should 
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t=0; s=0; 

initialise P(s) = Id, (s),...,  di, (s)} E I' 

where I = R x 

and ak=(xk,ok), VkE{1,...,ji}; 

if (goal g is achieved) goto step 15; 

else goto step 4; 

make decisions on P(s) : { e(a 1 (s), t), ..., e(a;(s), t)} 

where e(k,t) = ANN(ak, V, t), that is, the output of an ANN at time 

t, whose parameters come from ak and input is V (e.g., the currently perceived 

environmental information); 

evaluate P(s) : {( l (s),t),...,cI(á L (s),t)} 

where I(ak, t) = Et=O Ef fect(e(ak, 1)) 

and Ef fect(e) = Response(e) + Aim(e); 

select the best decision eb€8 	e(, t) which has max(I, t)), 

j E {kl max (Effect(e(ak,t)))}, k Cz {1,...,j}; 

execute e3 

t=t+1; 

if (Response(eb est ) == penalty) goto step 9; 

else goto step 3; 

recombine: a' (s) = r'(P(s)) Vk E 11, ..., 

mutate: ã(s) = rn{TT!P}(ak(s)) Vk e {1, ..., 

make decisions on P" (s) : {e((s),t), ..., 

evaluate P"(s) :  

select: P(s + 1) = s(,,.x)(P(s)); 

s=s+1; 

goto step 3; 

stop. 

Table 4.1: The algorithmic description of MENL 
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make decisions about what action to take next. Based on the input information 

V at time t (e.g., the perceived environmental information about the present 

situation), all of the current agents existing in MENL simultaneously make their 

own decisions of action selection for achieving the behaviour. Each agent ak, 

which is also a neural network individual, uses its network parameters to calculate 

a decision output, 0(k,  t) ANN(ãk, V, -t),-  which -is a mapping from the input 

information at time t to a decision on actions. All of the output solutions are 

evaluated by the fitness function '1. Among those output solutions suggested 

by the multiagents, the one finally chosen ebest  to instruct the behaviour should 

have the best effect max(Effect(e(ak, t))) in the current situation t, and the 

best decision-making history (the highest fitness ) if there are more than one 

solution producing the best effect. All of the multiagents are kept to control the 

next situation at time t +1 if a positive response is obtained after the execution of 

the selected solution. However, if a penalty is received, it means that there is no 

competent agent present at the moment to instruct the behaviour properly. In this 

situation, evolutionary learning is immediately triggered to search for new agents. 

The population at generation s is first recombined by the recombination operator 

r' , and produces A offspring ä, 'v.1k E 11, ..., Al. Then, the offspring are mutated 

by the mutate operator m{TTF 3}' where r, T' , and ,8 are parameters for generating 

the mutation size ä. The best IL evaluated individuals in the offspring is chosen 

as new i parents (multiagents) at generation s + 1. New evolved agents make 

their decisions for the current situation and the best decision is executed. These 

new agents are maintained if they are able to resolve the situation. Otherwise, 

even further evolutionary learning is involved until a new generation of qualified 

agents is obtained. The above procedure iterates until the goal of the designated 

behaviour is achieved. The last multiagents surviving the behaviour achievement 

should possess the basic skills for that behaviour. Nevertheless, those agents are 

still subject to update whenever they cannot work in new situations and/or for 

achieving new behaviours. 

When MENL makes decisions on action selection for a particular behaviour, 

the perceived information, such as that of the environment, is an important in- 
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put to MENL. In addition, whenever a decision made by MENL is executed, 

some responses from the outside (e.g., environment) are obtained, which indicate 

how good the decision is. These responses are useful for determining whether 

the current multiagents are competent in the current situation. The responses 

are also essential to the evolution of agents when these agents are incompetent. 

Because responses are recorded by - term Response -  in the fitness function and ac-

cumulated from the beginning to the current time, they actually compose part 

of the decision-making history of agents. This history provides a useful guidance 

to guide the evolutionary learning to move towards the successful achievement of 

the behaviour, together with the behavioural objective also encoded in the fit-

ness function. In this sense, MENL is much more than a reactive controller that 

purely reacts to the environment. Indeed, MENL can be goal-oriented because it 

can select actions according to behavioural objectives, and this selection can be 

continuously improved based on the sensory feedback and past experience. As 

the perceived environmental information constitutes the direct input to MENL, 

the information about the sensory feedback and past experience is the implicit 

knowledge stored in the artificial neural network and evolutionary learning of 

MENL. Based on the perceived and collected information, MENL can learn to 

make correct decisions of action selection for achieving single and multiple be-

haviours. 

4.2.3 Adaptive Learning of MENL in the CBG Model 

When the MENL learning algorithm is introduced into the CBG model, we mainly 

use it in the Strategy module of the CBG model to learn the correct motor action 

selection policies. Therefore, MENL is responsible for the implementation of the 

module "Make decisions" in the adaptive strategy shown in Figure 3.6. The 

CBG module provides MENL with the necessary information (e.g., perceived 

environmental information, body states of the virtual creature, and collected 

sensory feedback), and executes the motor actions that MENL selects. In turn, 

MENL should learn the correct action function 74S, E, ) mapping each input 

triplet (S,.6, ) into a selection of candidate actions in A (see Section 3.4.2). 



The learning of the action function ir is achieved by the multiagents in MENL. 

From the above description of the MENL work engine, we see that every agent 

in MENL has an output function e that translates its input information into a 

motor action selection output. In terms of both the explicit and implicit input 

information involved in the translation, this output function is actually the action 

function irk  of  MENL agent, as the goal of the behaviour to be achieved is g E c, 
and the body states st  E S and the environmental information et  E £ at time t 

provide the explicit information about the environment and the body states and 

the implicit information about sensory feedback on executed motor actions. The 

decision of action selection made by agent ak at time t is therefore: 

e(ok,t) = 'lrk(st, et, g) 
	

(4.2) 

Among the decisions made by multiagents, the actual action chosen by MENL 

and then executed by the CBG model is the result produced after two extra 

selection procedures. The first selection procedure fi  chooses the decisions that 

have the best effects in the current situation for achieving the behaviour g. The 

second selection procedure f2  then selects the one that has the highest fitness 

from those decisions preferred by the first selection. So, the actual action decided 

by MENL at time t is: 

lr(st, et, g) = f2(fl(7rk(st, et,  g))) 	Vk e {1,...jt} 	 (4.3) 

where 7r is the action function of MENL and Irk  is the action function of agent dk 

in MENL. 

As multiagents make their own decisions on action selection, the real action 

determined is a sensible selection on these decisions. Therefore, the action func-

tion of the MENL learning algorithm is a result selected from the multiple choices 

provided by the multiagents in MENL. Because the individual action function of 

every agent is continuously evolved through evolutionary learning, the resulting 

action function of MENL is constantly improved as well. 

In Chapter 3, we introduced the notion that the CBG model provides the 

Strategy module with the basis for adaptive learning, allowing the Strategy mod-

ule to learn from past useful or harmful experience. How then, does the MENL 
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learning algorithm utilise this mechanism to adjust its action selection policies 

when it is embedded in the Strategy module of the CBG model? 

The adaptive learning of MENL in the CBG model is achieved by the self-

adjustment of multiagents (ANN individuals) via evolutionary learning. The 

exploitation of lessons from unsuccessful experience is obvious: when the CBG 

model detects from its sensory feedback that an unexpected result is generated, 

MENL will be informed of such information immediately. Evolutionary learning is 

then triggered in MENL to correct the mistake by evolving new qualified multia-

gents. The memorisation and utilisation of successful experience is automatically 

achieved in MENL. Once a correct decision of action selection has been made and 

successfully executed, the current multiagents are kept to deal with subsequent 

situations. The useful decision-making skills held by these multiagents are there-

fore maintained and can be reused in the future. Even if the agents are evolved 

when they fail to generate correct decisions in some other occasions, the valuable 

experience obtained by these agents can still be retained for the following genera-

tions through evolution. The new generated multiagents therefore have not only 

new learned skills from their own practice, but also useful knowledge inherited 

from their parents. Due to the continuous self-adjustment, the CBG combined 

with MENL can have more and more enhanced action selection ability and can 

cope with more and more situations during its life. The following experiments 

on exploration learning of the CBG combined with MENL have supported this 

claim. 

4.3 Implementation of MENL for Space Occupying 

Behaviours 

In Section 3.7, we introduced how to set up the Computational Behaviour Gener-

ation model for achieving space occupying behaviours. When the MENL learning 

algorithm is applied in the Strategy module of the CBG model to learn the suit-

able action selection policies for space occupying behaviours, the implementation 

details of MENL are as follows. 



Figure 4.1: The feedforward artificial neural network in MENL 

4.3.1 ANN Structure 

The artificial neural network adopted in MENL is a simple feedforward neural 

network with one hidden layer (Figure 4.1). Ten hidden neurons are used to 

connect one visual input and one action output. 

The input to MENL is the visual information of the current situation which is 

collected by the synthetic visual sensor of the CBG model as described in Section 

3.7.1. The output of the network consists of a single component that selects one 

of the eleven motor actions of the virtual creature (see Section 3.7.5.1 for the 

explanation of motor actions). 

In addition to the visual information input, the information such as the be-

havioural objective and sensory feedback on executed motor actions is also used 

to guide the decisions of motor action selection of the ANN. This information, 

as explained above, is introduced into the fitness function of the evolutionary 

artificial neural network to evolve the action selection policies. 

4.3.2 Evolution Strategies 

Evolution strategies, as introduced in Section 4.2.1.2, are the main engine to 

evolve the ANN in MENL. As recommended in [141], (15,100)-ESs are adopted 

here. That is, at each step of evolution, 15 parents survive from 100 offspring and 

act as the current multiagents. For simplicity, only standard deviation a is used 
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and no rotation angle a is presented. The initial strategy parameter (standard 

deviation) is set to 0.5. The initial objective parameters (weights and biases of 

the ANN) are small random numbers in the interval [-1,1]. In evolution, strategy 

parameters are operated on by discrete recombination and objective parameters 

by panmictic intermediate recombination. 

The fitness function of an evolutionary individual, also a MENL agent d k , con-

sists of the sensory feedback Response and the behavioural objective Aim (see 

Section 4.2.1.5). Because the eleven motor actions (moving forward in three dif-

ferent directions, turning to the other seven directions other than the current one, 

and doing nothing) produce four types of results in an environment: successful 

walk, direction change, no movement and collision, four kinds of environmental 

responses to motor actions are accordingly designed. These environmental re-

sponses are reward to successful movement (reward-move), reward to direction 

change only (reward_dir), reward to no action (reward-fix), and penalty to move-

ment causing collisions (penalty-collision). In addition, when the body states in-

dicate that the creature is detained at a place for a long time by several direction 

changes or no movement, the State module of the CBG model will report an-

other two penalty responses: penalty to unuseful direction changes (penalty_dir) 

and penalty to no actions (penalty-fix). Therefore, the sensory response function 

Response((9(ak, t)) to an action 9 decided by agent ak at time t has six pos-

sible values: rewardmove, rewarddir, reward-fix, penaltydir, penaltyflx, and 

penalty-collision. As the reward responses generate an appraisal on the decision 

of actions, the penalties indicate a harmful decision that should be corrected via 

evolutionary learning. All the responses may have arbitrary values 1,  but satisfy 

the following condition: 

reward-move > rewardilir> reward-fix > 

penaltydir > penalty.j ix > penalty-collision 	(4.4) 

The behavioural objective Aim in the fitness function indicates the behavioural 

motivation of the virtual creature, which the CBG model should achieve. When 

'The response values can be positive or negative, as long as they satisfy the condition 4.4. 
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simulating space occupying behaviours, the behavioural objective is always rep-

resented by a negative item. In exploration, it is the accessing variable Access 

of an environmental place to be accessed by agent k, which implies how many 

times the creature has been in this place before 2  The accessing variable for a 

location is incremented by one each time it is visited. So, combining the sensory 

responses Response and the behavioural objective Access together, the fitness 

function 1 for exploration is expressed as: 

	

1(ãk, t) = 	(Response (e(ak, 1)) - Access(e(ak, 1))) 	 (4.5) 

In the behaviour of goal reaching, the sensory feedback to motor action de-

cisions is the same as that in exploration. However, the behavioural objective 

of goal reaching is different. This objective is represented by a negative item, 

Dis(e, Goal) in the fitness function, which is the distance of the place about to 

be accessed by an agent from the goal destination. Guided by this item, an agent 

can move towards a place nearer to the goal destination. The fitness function for 

the goal reaching behaviour is therefore: 

	

(ak, t) = 	> (Response (ê(ak,  1)) - Dis(e(ak, 1), Goal)) 	 (4.6) 

In the behaviour of wandering, a clear motivation is absent. The potential 

purpose is only to move around in an environment without causing collisions. This 

is mainly controlled by the sensory feedback. So there is only sensory feedback 

present in the fitness function for wandering, shown by the following equation: 

	

= 	(Response (e(ak,l))) 	 (4.7) 

2Recent study on magnetic sense has suggested that some animals may use the magnetic 
field of the earth as not only a possible cue for move orientation and/or distance, but also a 
potential source of world-wide positional information [89, 90, 165]. Here, we assume the virtual 
creature has a similar simulated magnetic sense to determine its position and the distance to 
a goal. Because the State module records the position information when executing a space 
occupying behaviour, the virtual creature can easily use the State module to find out the access 
times of a place. The information (place position and distance between two places) can actually 
be obtained from the graphical system of the virtual environment. 
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In Section 3.7.5.1, we mentioned that both common and different factors are 

involved in the action selection for generating various space occupying behaviours. 

These factors are considered in the fitness functions of multiagents. As the term 

Response is the common feedback obtained from the environment and body states 

after action execution, the term Aim takes different factors into account to reflect 

different behavioural motivations. Guided by the common and different fãctois, 

multiagents in MENL are evolved to learn the correct action selection policies for 

implementing different but functionally related behaviours. 

4.4 Experiments 

We have introduced the basic ideas of the CBG model and the MENL learning 

algorithm, and the implementation details of the CBG combined with MENL for 

achieving space occupying behaviours. In this section, we report some experi-

ments to test the adaptive learning ability of the CBG combined with MENL. 

Specifically, a virtual creature is equipped with the CBG with MENL to learn 

the exploration behaviour. The creature should access places in an unknown en-

vironment as much as possible within a limited period. In addition, the creature 

should carry out obstacle avoidance during its exploration. The main purpose of 

the experiments is to examine whether the creature equipped with the CBG with 

MENL can learn exploration in various unknown environments and how adaptive 

its learning ability is. Some hand-crafted exploration experiments are also de-

signed separately for an evaluation of the learning performance of the CBG with 

MENL. 

4.4.1 Experimental Setup 

In the exploration learning experiments, the virtual creature is put into various 

unknown environments to learn the exploration behaviour. Every exploration 

experiment is repeated for fifty runs. In each run, the virtual creature needs to 

explore a test environment many times so as to learn the proper exploration in 

this environment. Every exploration results in an exploration trajectory in the 



environment. Each trajectory, starting from an arbitrary position, only lasts for 

a certain period, which is a count of the number of actions executed by the crea-

ture. An exploration trajectory is said to be "successful" if there is no collision 

or evolutionary learning involved. Otherwise, a trajectory is said to be "unsuc-

cessful" or "failed". One run of learning of exploration within an environment 

is finished only when the virtual creature conducts one hundred successful tra-

jectories successively. In this case, we think the creature has grasped the basic 

exploration skills in this environment. The learning performance averaged over 

fifty runs of each experiment is shown in the following figures. 

Three kinds of performance indices are recorded in every exploration trajec-

tory for a test of the learning performance. The indices adopted here are an 

external performance metric, instead of an internal performance metric such as 

the fitness function. Internal measures of performance do not always coincide 

with external measures of performance: sometimes the internal metric indicates 

that a controller's performance is improving, while the external metric denotes 

it is decreasing [176]. In order to evaluate the CBG and MENL's actual per-

formance, we utilise the external measure in this thesis, which comes from an 

external observer's estimate of performance. 

For the three performance indices, the first one records the number of places 

accessed by the virtual creature in an exploration trajectory as a percentage of 

the number of free places in the environment. This index is called exploration 

efficiency. The second index, collision times, is the number of collisions the 

creature makes in a trajectory. The third index records learning times, that 

is, how many times the multiagents have been evolved in a trajectory. The 

evolutionary learning is due to the wrong actions selected and executed which 

cause unexpected penalties. As the virtual creature explores an environment more 

and more times, we expect that the creature gradually learns how to select correct 

motor actions to execute. In consequence both the learning times and collision 

times spent in each exploration trajectory should decrease and the exploration 

efficiency of each trajectory should increase. 



Figure 4.2: Environment El and an exploration starting from the bottom left corner 

4.4.2 Exploration Learning in Various Unknown Environments 

In the experiments, the virtual creature equipped with a randomly initialised 

CBG and MENL is first put into a simple environment to learn basic exploration 

skills. It is then introduced into other more complicated environments to test 

its adaptation ability further. During the experiments, the creature is also put 

back into simpler environments after learning in more complicated environments 

to investigate whether the creature still remembers how to explore in an ear-

her environment and whether learning in more complex environments implies 

knowledge of simpler environments. All the environments used in the test are 

completely unknown to the creature. 

4.4.2.1 Fresh Learning in a Simple Environment El 

A simple environment El (Figure 4.2) is chosen as the first testing ground for ex-

ploration. There are three big obstacles present in this environment, represented 

as black boxes in Figure 4.2. A fresh virtual creature that is furnished with an 

initialised CBG and MENL is used to conduct fresh learning of exploration in 

El. In each run of fresh learning, the creature is trained in the environment 

El via trajectories starting from various initial positions that are all randomly 

selected. In order to give the virtual creature plenty chances to explore the envi- 

100 



ronment, every trajectory of exploration consists of two hundred and forty steps, 

i.e., two hundred and forty actions executed by the virtual creature. This number 

is about twenty percent more than the number of spare places in the environment 

El, which is one hundred and ninety five. The creature executes exploration tra-

jectories one after another until one hundred successive trajectories have been 

executed successfully. The recorded learning results are shown in Figure 4.3 , 

which are averaged over fifty runs of this experiment. 

In Figure 4.3, Figure 4.3 (a) shows the exploration efficiency of each explo-

ration trajectory, which indicates how many places are visited in this trajectory. 

Figure 4.3 (b) shows the number of evolutionary learning procedures and col-

lisions made by the creature in each trajectory. Figure 4.3 (c) lists the total 

learning times and collision times of all trajectories, which are required in the 

fresh exploration learning, and the exploration efficiency the creature achieves at 

the end of the learning. 

As expected, the virtual creature has gradually grasped the exploration skills 

in El through adaptive learning. The learning has taken a maximum of 173 

trajectories to reach success in fifty runs. The exploration efficiency obtained in 

each trajectory obviously increases as the creature explores the environment El 

(see Figure 4.3 (a)). When learning starts, the fresh creature cannot explore the 

environment very well: it accesses 85 squares on average in the first trajectory, 

which are only 43.6 percent of all the free squares in El. However, the virtual 

creature visits more and more squares in each trajectory thereafter, by using new 

learned policies of motor action selection. As a result, the exploration efficiency of 

each trajectory gradually improves. When learning finishes, the virtual creature 

can produce exploration so smoothly that there is no longer any collision or 

evolutionary learning generated. The exploration efficiency finally achieved by 

the creature is 75.7%, about 32.1 percentage points higher than the efficiency 

obtained at the beginning of the learning. 

Along with the increasing exploration efficiency, the learning procedures and 

31n this thesis, the experimental data shown in the result graphs are the means of the 
fifty runs. The error bars show the 95% confidence intervals. See Appendix A for detailed 
calculations. 
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Figure 4.3: Fresh exploration learning in environment El (averaged over fifty runs). In each 

run, a fresh virtual creature furnished with a randomly initialised CBG and MENL conducts 

exploration trajectories in the environment continuously, until one hundred successive and 

successful exploration trajectories have been executed. Every exploration trajectory starts 

at different positions and lasts two hundred and forty steps. The exploration efficiency 

reached by each trajectory is shown in Figure (a). The learning times and collision times 

made in each trajectory are shown in Figure (b). Both figures show results averaged over 

fifty runs and do not include the last 100 successive and successful trajectories. Figure (c) 

is a summary of the total learning times and collision times spent in fresh learning and the 

exploration efficiency finally achieved by the fresh learning, averaged over fifty runs. The 

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs. 
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Figure 4.3: Fresh exploration learning in environment El (averaged over fifty runs). In each 

run, a fresh virtual creature furnished with a randomly initialised CBG and MENL conducts 

exploration trajectories in the environment continuously, until one hundred successive and 

successful exploration trajectories have been executed. Every exploration trajectory starts 

at different positions and lasts two hundred and forty steps. The exploration efficiency 

reached by each trajectory is shown in Figure (a). The learning times and collision times 

made in each trajectory are shown in Figure (b). Both figures show results averaged over 

fifty runs and do not include the last 100 successive and successful trajectories. Figure (c) 

is a summary of the total learning times and collision times spent in fresh learning and the 

exploration efficiency finally achieved by the fresh learning, averaged over fifty runs. The 

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs. 
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No. of 

46p. 

Croon.ro 

poilioo 

Son,o, 

input 

Acliom 

ohom, 

Updno 

1 (0.14.2) 0.331 10 no 

2 (1.14,2) 0.221 10 yc 

3 (1.14.2) 0.221 6 no 

4 (1.14,7) 0.11 11 00 

5 (0.14,6) 0 8 no 

6 (0,14,5) 0.214 7 no 

7 (0.14.3) 0.655 3 yo 

8 (0.14,5) - 0.214 11 - 	 no 

9 (0,13,4) 0.469 11 no 

10 (1. 12.3) 0.503 5 no 

11 (1.12.7) 1 0.441 11 no 

12 (0.12.6) 0 11 

13 (0,12.5) 0.214 11 no 

14 (0,11,4) 0.552 11 no 

IS (1,10.3) 0.669 5 no 

16 (1.10.7) 0.524 11 no 

17 (0.10.6) 0 11 yc 

18 (0.10.5) 0.214 11 no 

19 (0.9.4) 0.607 11 no 

20 (1.8.3) 1 10 no 

21 (2.7.3) 0.986 10 no 

22 (3.6.3) 0.979 10 no 

Figure 4.4: An example of the CBG combined with MENL at work. The virtual creature 

starts to explore El from the bottom left corner and faces to the east, as shown in Figure 

4.2. Creature position (x, y, d) indicates the current square location the creature occupies 

along the horizontal (from left to right) and vertical (from top to bottom) axis, and the 

current view direction of the creature (see Figure 3.9 for the meaning of direction labelling). 

Actions 1 "-i  8 correspond to no movement and direction changes to the other 7 directions. 

Actions 9, 10 and 11 refer to movements to the left forward, straight forward, and right 

forward. 

collisions required in each trajectory are decreasing (see Figure 4.3 (b)). When 

the virtual creature starts to learn exploration, there are a few collisions and many 

learning procedures involved in each trajectory. Nevertheless, the average number 

of learning procedures rises and falls and is kept below one after 131 trajectories. 

At the same time, the average number of collisions is approaching null. When the 

experiment finishes, there are no evolutionary learning or collisions present at all. 

The total numbers of learning times and collision times spent in fresh exploration 

learning are 726.8 and 56.7 respectively, averaged over fifty runs. 

Figure 4.2 shows a small part of the exploration trajectory where the virtual 
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creature starts from the bottom left corner. Figure 4.4 illustrates how the CBG 

combined with MENL works in this trajectory. This figure shows the sensory 

information and the motor actions chosen at each time step. It also indicates 

whether the multiagents should be evolved after the execution of the motor ac-

tions. 

At the first step, the virtual creature is placed at the bottom left corner 

(labelled as (0,14) with the original set at the top left corner), and faces to the 

east (i.e., direction 2 according to the direction labelling shown in Figure 3.9). 

Accordingly the sensors of the creature feed an input value 0.331 to the CBG 

model, and the multiagents of MENL make their own decisions of what action to 

execute based on this input. Of 15 decisions, 11 of them is to change to a different 

direction. Three other decisions are to move to the right forward, which cause 

the creature to crash into the wall. There is only one agent that chooses motor 

action 10, which is to move straight forward. Since this action will safely move 

the creature to a new spare square in the environment, it becomes the winner 

of the agent decisions. This action is then executed by the CBG model and the 

creature is now moved into a new place (1,14). 

In the new situation, the creature directly faces a big obstacle. The sensory 

input value is therefore changed to 0.221. Based on the new input, the multiagents 

make decisions to move either straight forward, left forward or right forward for 

the next movement. Because the last agent which correctly moved the creature 

into the new place obtains a high reward in the fitness, its current decision is 

chosen to execute again, which is also to move straight forward. However, while 

the creature tries to move one step forward, it actually bumps against the big 

obstacle. This collision reflects a penalty from the environment, indicating the 

failure of the multiagent decisions. In consequence evolution strategies are used to 

evolve the multiagents in order to seek new competent agents to solve the current 

problem. After evolutionary learning, another generation of the multiagents is 

generated and these new agents make new deicisions on motor action selection 

based on the input value 0.221. This time, a direction change motor action is 

selected which changes the view direction of the creature to the southwest, i.e., 
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In the new location the multiagents insist on a move to the right forward, and 

as a result, the creature changes to direction 5 but hits the wall. The hit results 

in a penalty from the environment and accordingly a new evolution is made of the 

multiagents. Located at place (0,12) and facing northwest, new agents choose to 

move to the only free square (0,11) in the current visual field. The right forward 

movement is carried out again so the creature moves to the square (1,10) with 

view direction 3. Faced with the big obstacle, motor action 5 is again chosen 

by the multiagents so as to change the view direction of the creature. After the 

direction change, the multiagents still decide to move right forward, and therefore, 

the creature moves to a new location (0,10) with direction 6. 

In the new location, the multiagents choose the movement to the right for-

ward again. Therefore the creature turns direction to its right but cannot move 

forward anymore. Since the attempt to move forward results in a collision with 

the wall, the multiagents are updated by evolutionary learning for a correct de-

cision in the new situation. After evolution, the multiagents decide to move to 

the free places (0,9) first and (1,8) next. Now with an open visual field full of 

free squares, multiagents make several easy decisions of moving straight forward. 

These decisions finally help the creature move away from the big obstacle. 

From Figure 4.2 and Figure 4.4, we can see that, even though the creature is 

initially "puzzled" by the walls and obstacles and is almost lost in the bottom 

left corner, it at last steps out of the impasse after many sessions of evolutionary 

learning. The creature then moves smoothly thereafter. 

Multiagents vs. the Best Agent 

As we introduced in Section 4.2.1, multiagents in MENL co-decide decisions on 

motor action selection for the creature to carry out. After the creature has learned 

how to explore the unknown environment El in fresh exploration learning, we 

are eager to know what contributions the multiagents make to exploration, and 

whether the best agent alone is competent in successful exploration. Bearing these 

questions in mind, we command the virtual creature with the learned multiagents 

and a creature with the best of the multiagents, i.e., that which has the highest 
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Efficiency 
achieved 

Collision 
times 

Learning 
times 

Multiagents 743% 	77.8% 0 0 

Best agent 0.51-35.6% 0-240 0 

Table 4.2: Comparison of multiagents and the best agent in their decision-making 

ability of suitable motor action selection (averaged over fifty runs). Both the group 

of learned multiagents after fresh exploration learning in El and the best agent of 

the group are used to explore El for an extra ten times but with no more learning. 

This table lists the exploration efficiencies and the numbers of collisions of those ten 

trajectories, averaged over fifty runs. 

fitness, to execute an extra ten exploration trajectories starting from random 

squares. Neither the multiagents nor the best agent are learning via evolutionary 

strategies any more. This experiment is repeated 50 times, and the average results 

are shown in Table 4.2. 

In ten exploration trajectories, the multiagents perform quite well compared 

with the best agent. The multiagents do not hit any obstacles, and access 145 to 

152 squares, which are 74.3% to 77.8% of the free squares in El. It appears that 

the multiagents have acquired a good exploration ability. Contrasting with the 

good performance of the multiagents, the best agent alone is not able to explore 

the environment El competently. The best agent can only traverse 69 squares at 

most in one trajectory, resulting in a low exploration efficiency of 35.6%. In the 

worst case, the best agent cannot move around since it starts the exploration by 

insisting on moving forward when facing a big obstacle. Therefore, the original 

square where it is put is the only place that it visits, and the number of collisions 

can be up to 240. The best agent is often unable to free itself when encountering 

a difficulty. 

In multi-agent exploration, there is usually more than one agent contributing 

to the action selection, rather than only the best one. Figure 4.5 shows an example 

of the contribution times of each agent in one experimental run, averaged over 
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Figure 4.5: Contribution times of multiagents in one experimental run (averaged over ten 

trajectories). Multiagents compete and cooperate with each other to conduct ten random 

exploration trajectories successfully. The contribution times indicate how many times the 

decisions of action selection made by one agent are finally chosen to be executed by the 

virtual creature. 

A e  n b2I:A 11 

01 91 

__ 

_ 

13 2.3 

15 37.5 

Table 4.3: Selection times of each motor action by contributing agents in one experimental 

run (averaged over ten trajectories). Blank cells in this table indicate zero selections have 

been made. Actions 1 - 8 correspond to no movement and direction changes to the other 

7 directions. Actions 9, 10 and 11 refer to movements to the left forward, straight forward, 

and right forward. Actions and agents not listed have no contribution in this run. 
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ten trajectories. The contribution times indicate how many times the decisions 

of action selection made by one agent are finally chosen to be executed by the 

virtual creature. Table 4.3 shows the corresponding motor actions chosen by those 

contributing agents to explore the environment. Of the fifteen agents, there are 

mainly six agents contributing to exploration. The fourth agent is the best agent 

and controls the most situations in one trajectory (in average 167 situations in 

240 steps). However, there are still some situations that the best agent cannot 

deal with. Once the best agent fails, it cannot escape from its difficulties by 

itself. Fortunately, some other agents can still have different but useful decisions 

to take charge of these difficult situations. These agents include the 3rd, 6th, 

7th, 13th and 15th agents. Although these agents cannot generally supersede 

the best one, they may save the virtual creature on some occasions. Because 

different agents with different structures are good in varied situations, actions 

co-decided by multiple agents are more robust than those decided by only the 

best one. A successful exploration is indeed accomplished by the cooperation of 

a whole generation of agents. 

It is interesting to see that, of the choice of eleven possible motor actions, sev-

eral different actions are favoured by different agents (see Table 4.3). Agent No.4, 

for instance, prefers to move straight forward and left forward in most cases, or 

to turn to two other different directions occasionally. The third agent, neverthe-

less, can also decide to move left forward and change to a third direction when 

agent No.4 fails to make a correct action selection in some situations. Agents 6, 

7 and 13, share the straight forward movement with the fourth agent in minor 

situations. Agent 15 then undertakes the entire responsibility of the right for -

ward movement. As a result, the whole exploration is implemented by not only 

the competition but also the cooperation in the multiagents. This cooperation 

naturally arises from the autonomous, adaptive learning of multiagents, instead 

of being designed by a human designer beforehand. Although some agents (those 

not listed in Table 4.3) have no contribution in this experimental run, they are 

maintained with contributing agents. The population information held in all of 

the fifteen multiagents can therefore be used or transferred to their offspring as 

109 



a whole for implementing future tasks. 

Figure 4.6 and Table 4.4 present another experimental run in which multia-

gents exhibit varied contributions to exploration. This time, seven agents con-

tribute to the finally selected motor actions. Similarly to the first example, the 

movement of going forward is the most favoured by several agents, whilst the left 

forward movement, right forward movement, and direction changes are used to 

assist the exploration. Due to the presence of multiple agents, the exploration is 

executed smoothly and successfully. 

4.4.2.2 Successive Learning in a More Complicated Environment E2 

The creature that learned successfully in El is put into another unknown environ-

ment E2 (Figure 4.7) to test if it can explore in a more complicated environment. 

Environment E2 is a larger environment than El and possesses several obstacles 

which have different sizes and shapes. The exploration is therefore more difficult 

than that in El because the situations the virtual creature would meet are more 

varied and the creature has to execute correction actions in response to various 

visual input. In E2, a trajectory of exploration starts from an arbitrary position 

and consists of 650 steps which is about 20% more than the number (552) of the 

spare squares. The creature should conduct exploration trajectories continuously 

until one hundred consecutive and successful trajectories are executed. Every 

creature of the previous fifty runs of fresh exploration in El is used to continue 

the exploration in E2. The average results over the fifty runs in E2 are shown in 

Figure 4.8. Similar to the previous experiment, these results record the average 

exploration efficiency, collision times and learning times of every trajectory. 

Because the environment E2 is a new environment different from the previ-

ously traversed environment El, the creature encounters many new difficulties 

that it has not met before. The creature inevitably makes collisions when it uses 

the old exploration skills to deal with new situations. However, due to the life-

time learning maintained in multiagents, the creature learns to overcome these 

difficulties through continuous evolutionary learning. As Figure 4.8 (b) shows, 

there are some collisions in early trajectories of the successive learning, but the 
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Figure 4.6: Contribution times of multiagents in another experimental run (averaged over 

ten trajectories). Multiagents compete and cooperate with each other to conduct ten 

random exploration trajectories. The contribution times indicate how many times the deci-

sions of action selection made by one agent are finally chosen to be executed by the virtual 

creature. 

IV 2 5 9 iO 11 

1 13 

2 4.8 54.9 104.7 

3 4.9 5.9 17.3 

8 1.4 

9 21.1 4.1 

11 5.9 

12 2 

Table 4.4: Selection times of each motor action by contributing agents in another experi-

mental run (averaged over ten trajectories). Blank cells in this table indicate zero selections 

have been made. Actions 1 8 correspond to no movement and direction changes to the 

other 7 directions. Actions 9, 10 and 11 refer to movements to the left forward, straight 

forward, and right forward. Actions and agents not listed have no contribution in this run. 
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Figure 4.7: Environment E2 and an exploration starting from a random place S 

number of collisions is eventually reduced to zero after 103 trajectories. The total 

number of collisions the creature makes for learning successful exploration in E2 

is about 56.7, averaged over fifty runs. In order to overcome collisions and learn 

to explore E2, there are also some evolutionary learning procedures involved in 

the experiment. However, all the creatures in fifty runs have learned exploration 

successfully in a maximum of 121 trajectories. They execute smooth exploration 

without collision or learning after successful learning. In total, 348.7 sessions of 

evolutionary learning are required for learning exploration in E2, averaged over 

fifty runs. As the creature learns exploration further, it accesses more and more 

places in each trajectory. The exploration efficiency is therefore continuously im-

proved. The efficiency is about 65.7% at the beginning of the experiment, but 

increases to 73.3% when the learning finishes. The virtual creature has adapted to 

the new environment E2 through its continuous interaction with the environment. 
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Figure 4.8: Successive exploration learning in environment E2 (averaged over fifty runs). Every 

creature which has learned from the previous fifty runs of fresh exploration in El is asked to explore 

a new unknown environment E2. The creature should conduct continuous exploration trajectories in 

E2 until one hundred successive and successful trajectories are executed. An exploration trajectory in 

E2 starts from an arbitrary position and lasts 650 steps. Figure (a) records the exploration efficiency 

achieved by each trajectory in the successive learning in E2, and Figure (b) shows the learning times 

and collision times made in each trajectory. Both figures show results averaged over fifty runs and 

do not include the last 100 successive and successful trajectories. Figure (c) lists the total learning 

times and collision times, and the exploration efficiency finally achieved in the successive learning, 

averaged over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges 

over fifty runs. 
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Accumulated Exploration Skills 

By comparing the successive learning in E2 with fresh learning in El, we have 

found that learning in E2 is even faster and easier than that in El: not only are 

fewer learning procedures required in E2 than in El, but the exploration efficiency 

also starts at a higher rate in E2. This fact is somewhat surprising because 

environment E2 is actually more complicated and bigger than environment El. 

In order to test if the previous learned exploration ability in El has any effect 

on the successive exploration in E2, a fresh virtual creature equipped with a 

randomly initialised CBG with MENL is asked to conduct exploration learning in 

E2 separately. This new creature is commanded to execute arbitrary exploration 

trajectories in E2 until it conducts successful trajectories for 100 successive times. 

Fresh learning in E2 is executed for fifty runs and the average results are shown 

in Figure 4.9. 

Through the experimental results of fresh learning in E2, we see that the fresh 

virtual creature has also learned the exploration ability in E2 successfully. The 

creature requires a maximum of 220 trajectories to learn the exploration in fifty 

runs. For fresh learning in E2, the creature has tried to access more and more 

places whilst avoiding obstacles. Both learning and collision times gradually de-

crease via evolutionary learning. Meanwhile, the exploration efficiency increases 

from 39% to 67.1%. 

However, the fresh creature's overall performance in E2 is worse than that 

of the creature with successive learning. Compared with successive exploration, 

fresh learning in E2 involves many more collisions and learning procedures, which 

are on average 131.6 and 964.3 respectively. In addition, while the successive ex-

ploration learning starts from a high exploration efficiency (65.7%), fresh explo-

ration learning in E2 only starts from 39%. Even when fresh learning finishes, the 

traversed places are still about 6 percentage points less than those traversed in 

the successive learning. Contrasted with learning from scratch, successive learn-

ing in E2 is much enhanced and accelerated through the accumulated experience 

obtained from early exploration learning in El. The exploration skills transferred 

from El to E2 have helped the learning in E2 to be much easier and more efficient. 
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Figure 4.9: Fresh exploration learning in environment E2 (averaged over fifty runs). In 

each run, a fresh creature equipped with an initialised CBG and MENL is used to explore 

environment E2. Every exploration trajectory in E2 starts at an arbitrary position and lasts 

650 steps. The exploration efficiency reached by each trajectory is shown in Figure (a). The 

learning times and collision times made in each trajectory are shown in Figure (b). Both 

figures show results averaged over fifty runs and do not include the last 100 successive and 

successful trajectories. Figure (c) lists the total learning times, the total collision times, and 

the exploration efficiency finally achieved in fresh learning, averaged over fifty runs. The 

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs. 
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Evolutionary Multiagents vs. Non-improving Multiagents 

In Section 4.4.2.1, multiagents have demonstrated correct action selection ability 

and successful exploration in El. However, these multiagents have had to learn 

further so as to adapt to new situations in E2. What then, would the exploration 

be if the multiagents explore the environment E2 without learning? Are they still 

able to cope with the new environment through their coordination? 

In order to test the exploration ability of non-improving multiagents, a virtual 

creature with the learned multiagents from environment El is put into E2 to 

conduct ten random exploration trajectories. This time, there is no lifetime 

learning kept in those multiagents so the multiagents cannot be improved by 

learning even when they encounter difficulties. The experimental results averaged 

over fifty runs are shown in Table 4.5. 

In ten exploration trajectories, the places explored by non-improving multia-

gents range from 0.6 to 37.7 percent of the free places in environment E2. Those 

agents cannot always avoid collisions properly and the collision times could be 

up to 504 in a 650-step trajectory. Indeed, non-improving multiagents are not 

able to execute smooth exploration in E2. A common case in the experiment is 

that non-improving multiagents usually can move around for some steps based 

on their co-operation, but they will find themselves stuck in a predicament once 

they fail to make a suitable movement to avoid a big obstacle or move out from 

a corner. Without lifetime learning, non-improving multiagents cannot improve 

themselves to cope with new difficulties. 

In contrast to non-improving multiagents, evolutionary multiagents have shown 

much more flexibility and adaptation in their exploration in E2, as shown in the 

results above (Figure 4.8). Although multiagents with lifetime learning also meet 

difficulties in their exploration, they are able to learn to generate new solutions 

to overcome these difficulties. 

Figure 4.7 shows a typical exploration trajectory in which the creature is 

initially placed at a random place S. This trajectory is a good example to illus-

trate how evolutionary multiagents use their lifetime learning to handle difficult 

situations. In this trajectory, the virtual creature starts its exploration from a lo- 
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I Efficiency I 	Collision Learning 
I 	achieved times times 

Non-improving I I 
I 	0.6-37.7% 0-504 I 	0 	I 

Multiagents I 	I 

Table 4.5: Exploration of non-improving multiagents in E2 (averaged over fifty runs). 

The multiagents learned from environment El are used to explore the new environ-

ment E2 with no more learning. These agents conduct ten random trajectories in E2 

and this experiment repeats for fifty runs. This figure lists exploration efficiencies and 

collision times made by non-improving multiagents in ten trajectories, averaged over 

fifty runs. 

cation S. It walks forward and soon gets into the corner of the F-shaped obstacle. 

The multiagents with limited exploration ability acquired from fresh learning in 

El always attempt to move straight forward but all crash into the obstacle. If 

the multiagents are not improved, the exploration can only end with 7 squares 

accessed in environment E2. 

When multiagents learn through evolutionary learning during their lifetime, 

they continuously improve their abilities through trial and error. After 7 move-

ments, the virtual creature walks into the F-shaped corner and hits the obstacle 

for the first time. In this situation, an evolutionary strategy is immediately trig-

gered to evolve the multiagents. After a short period of self-adjustment, new 

agents decide to turn to the right and hence move out from the corner success-

fully. When the virtual creature with new agents executes the traverse from the 

original place S again, it stops at the F-shaped corner. Instead of moving forward, 

the creature turns to the right first and then moves forward. This time, there is 

no collision made at all. Evolved multiagents have not only learned how to deal 

with difficult situations, but also remember the learned skills so as to process 

these difficulties properly in the future. Due to their continuous updating ability, 

evolutionary agents with lifetime learning have presented much better exploration 

performance than non-improving agents. 
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Re-exploration in Environment El 

The successive training in E2 after fresh exploration in El has shown that the 

virtual creature can be trained to explore both environments El and E2 compe-

tently. However, it is not clear whether the creature can still perform well in the 

earlier environment El after the sequential training in E2. For the purpose of 

test, we put the creature into environment El again to investigate whether it still 

remembers the earlier learned exploration skills in El. Therefore every creature 

of the previous fifty runs of successive exploration in E2 is used to explore envi-

ronment El for a second time. Similar to the fresh learning in El, each trajectory 

in re-exploration includes 240 steps and starts from an arbitrary place. This ex-

ploration continues until one hundred consecutive and successful trajectories are 

executed. The average results over fifty runs in the second exploration of El are 

shown in Figure 4.10. 

The experimental results show that the virtual creature after sequential learn-

ing can still explore environment El quite well. There are only very occasional 

evolutionary learning and collisions made in some exploration trajectories. In fifty 

runs, thirty six experimental runs have no learning or collisions present at all. 

That is, the virtual creatures in these runs move in environment El freely with 

no problem. All of the creatures in the remaining fourteen runs have collected 

their previously learned exploration skills in El in a maximum of 20 trajecto-

ries. The total numbers of evolutionary learning and collisions involved in the 

re-exploration are in average about 5.1 and 0.7 respectively. 

When the creature explores environment El for a second time, it is worth not-

ing that the exploration efficiency is clearly improved. During the re-exploration 

of El, the exploration efficiency is kept around 78.7%, which is 3 percentage 

points more than that achieved in the fresh exploration. After learning a new 

environment E2, the creature can still explore the previously learned environment 

El competently. 
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Figure 4.10: Re-exploration in El (averaged over fifty runs). Every creature which has been 

trained in El and E2 sequentially in the previous fifty runs is asked to explore the environment El 

again. The creature conducts continuous exploration trajectories in El until one hundred successive 

and successful trajectories are executed. An exploration trajectory in El starts from an arbitrary 

position and lasts 240 steps. Figure (a) records the exploration efficiency achieved by each trajectory 

in the second exploration in El, and Figure (b) shows the learning times and collision times made in 

each trajectory. Both figures show results averaged over fifty runs and do not include the last 100 

successive and successful trajectories. Figure (c) lists the total learning times and collision times, 

and the exploration efficiency finally achieved in the successive learning, averaged over fifty runs. 

The numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs. 
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Figure 4.11: Environment E3 and an exploration trajectory starting from a random 

place S 

4.4.2.3 Successive Learning in a Maze E3 

The third testing ground for the exploration test is a maze E3, shown in Figure 

4.11. All the obstacles in the maze are randomly generated. This new envi-

ronment E3 is much more complicated than the previous two environments El 

and E2. Even worse, the obstacles and their arrangement in E3 are not regular 

and have no clear rules to follow. The virtual creature faces a great challenge of 

adapting to its new environment, after exploring in El and E2. 

When exploring E3, the virtual creature starts from arbitrary places and ori-

entations and explores E3 for 780 steps in each trajectory. This number is again 

about 20% more than the number (630) of free places in the environment. The 

experiment is finished when the creature has successfully explored the maze for 

one hundred consecutive trajectories. The creatures resulting from previous fifty 

runs of successive exploration in E2 (also from the fresh exploration in El) are ap- 
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Figure 4.12: Successive exploration learning in maze E3 (averaged over fifty runs). The 

creature having learned from El and E2 is asked to learn exploration in E3. Each creature 

resulting from the previous fifty runs of successive exploration in E2 (also from fresh explo-

ration in El) continuously conducts exploration trajectories starting from random positions 

in E3 until it explores the environment successfully for one hundred successive times. Each 

exploration trajectory in E3 consists of 780 steps. Figure (a) shows the exploration effi-

ciency achieved in each trajectory, and Figure (b) shows the learning times and collision 

times made in each trajectory, all averaged over fifty runs. The last 100 successive and 

successful trajectories are not shown in Figure (a) and (b). Figure (c) lists the total learning 

times, the total collision times, and the exploration efficiency finally achieved in successive 

learning in E3, averaged over fifty runs. The numbers in brackets in Figure (c) are the 

corresponding result ranges over fifty runs. 
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plied to conduct another fifty runs of successive learning in E3. The experimental 

results averaged over those fifty runs are shown in Figure 4.12. 

As expected, the virtual creature suffers from great difficulties during its ex-

ploration in E3. It has made many collisions and much evolutionary learning 

accordingly. The average number of collisions is around 6 in each trajectory at 

the beginning of the experiment, and the average number of learning procedures 

is around 18. However, both learning and collision times decrease when learn-

ing progresses. At the same time, the exploration efficiency gradually increases. 

When the creature explores the environment E3 for a maximum of 638 trajecto-

ries in fifty runs, it has learned how to explore E3 successfully. The average total 

number of evolutionary learning procedures used in the experiment is 2877.9, and 

the average total number of collisions made is 758.2. When successive learning 

in E3 finishes, the creature can accesses 67.9% percent of the free squares in E3. 

Accumulated Exploration Skills 

A fresh creature with an initialised CBG and MENL is asked to conduct ex-

ploration learning in E3. Figure 4.13 shows the experimental results over fifty 

runs. Similar to the successive learning in E3, the fresh creature experiences an 

intensive learning procedure and a gradually increased exploration ability. How-

ever, compared with the creature which has accumulated exploration experience 

from the previous exploration in El and E2, the fresh creature exhibits a poorer 

learning ability. At the early stages of the experiment, the fresh creature requires 

almost twice the learning procedures to complete an exploration trajectory of 780 

steps. The exploration efficiency is only about 44.1% when the experiment starts, 

which is ten percentage points lower than that of successive learning. The total 

number of collisions made by the fresh creature is as high as 883.9 on average over 

fifty runs and the total number of learning procedures on average reaches 3546.4 

when fresh learning finishes. After conducting 651 trajectories, the fresh crea-

ture "grasps" the regulation of exploration in E3. The final exploration efficiency 

comes up to 67.5% at last, which is similar to that of successive learning. 

Due to the inherent complexity of the maze E3, both creatures with accumu- 
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Figure 4.13: Fresh exploration learning in maze E3 (averaged over fifty runs). In each run, 

a fresh creature with initialised CBG and MENL is used to conduct exploration learning in 

E3 independently. Each exploration trajectory in E3 starts at an arbitrary position and lasts 

780 steps. The exploration efficiency reached by each trajectory is shown in Figure (a). 

The learning times and collision times made in each trajectory is shown in Figure (b). Both 

figures show results averaged over fifty runs and do not include the last 100 successive and 

successful trajectories. Figure (c) lists the total learning times, the total collision times, 

and the learned exploration efficiency of fresh learning in E3. The numbers in brackets in 

Figure (c) are the corresponding result ranges over fifty runs. 
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lated exploration experience and with no experience at all encounter great diffi-

culties in their exploration. However, in both cases, the creatures have adapted 

to the new complicated environment through adaptive learning. Compared with 

fresh learning, the successive learning in E3 has once again demonstrated that the 

exploration experience accumulated in simple environments can help the learning 

of exploration in a complicated environment to be carried out more smoothly 

and competently, even though the final performance (final efficiency) of the two 

creatures might be similar. 

4.4.2.4 Exploration Learning from Complex to Simple Environments 

In the above sections, we have tested the exploration learning ability of a virtual 

creature equipped with CBG and MENL from simple to complex unknown en-

vironments. The experiments have shown that the creature can learn to explore 

these environments successfully, and the learning in simpler environments can 

help the following exploration in more complex environments. In this section, 

we conduct another experiment to investigate the learning performance of CBG 

and MENL from complex to simple environments. In particular, we use what the 

virtual creature learned from fresh exploration in the most complex environment 

E3 to explore the less complex environment E2. Therefore, every virtual creature 

in the fifty runs of fresh exploration in E3 should explore environment E2 con-

tinuously until one hundred successive trajectories have been successfully made. 

Each trajectory in E2 lasts 650 steps and starts from an arbitrary square. The 

average results over fifty runs are illustrated in Figure 4.14. 

From the experimental results, we can see that the creature after fresh ex-

ploration learning in E3 can learn to explore the simpler environment E2 quite 

well. Due to the different environment layout, the virtual creature has spent 

some evolutionary learning to learn to explore environment E2. However, the 

learning performance is much better than any other kind of learning in E2 exe-

cuted before, including fresh learning and successive learning in E2 after the fresh 

learning in El. Having obtained exploration skills in the complex environment 

E3, the learning in a less complicated environment is clearly easier. When the 
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Figure 4.14: Successive exploration learning in E2 after fresh learning in E3 (averaged over 

fifty runs). The creature learned from complex environment E3 is asked to learn a simpler 

environment E2. Each creature resulting from the previous fifty runs of fresh exploration 

in E3 continuously explores E2 from random positions until it explores the environment 

successfully for one hundred successive times. Each exploration trajectory in E2 consists of 

650 steps. Figure (a) shows the exploration efficiency achieved in each trajectory, and Figure 

(b) shows the learning times and collision times made in each trajectory, all averaged over 

fifty runs. The last 100 successive and successful trajectories are not shown in Figure (a) and 

(b). Figure (c) lists the total learning times, the total collision times, and the exploration 

efficiency finally achieved in this learning, averaged over fifty runs. The numbers in brackets 

in Figure (c) are the corresponding result ranges over fifty runs. 
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creature starts to explore the environment E2, it immediately accesses 72% of 

the free squares in the environment. The exploration efficiency is improved to 

76.1% when the learning finishes, which is 9 percentage points higher than the 

efficiency achieved in fresh learning in E2 and 2.9 percentage points higher than 

in the sequential learning of El and E2. At the same time, the creature has spent 

much fewer evolutionary learning times and collisions during its successive explo-

ration in E2 after fresh exploration in E3. Over fifty runs, the average number 

of evolutionary learning procedures spent is only 69.2 and the average number of 

collisions is only 18.1. This is in constrast with the 964.3 evolutionary learning 

procedures and 131.6 collisions spent in fresh exploration in E2, and the 348.7 

evolutionary learning procedures and 56.7 collisions in the successive learning of 

E2 after fresh learning in El. If we take cumulative cost into account, learning 

E3 then E2 has in total 3615.6 evolutionary procedures and 902 collisions. The 

number of evolutionary procedures is much lower than that of learning E2 then 

E3, which is 3925.3. The number of collisions made in learning E3 then E2 is 

similar to that in learning E2 then E3, which is 897.3. (Due to limited space, we 

don't introduce the sequential learning of E3 after fresh exploration in E2 here. 

Interested readers can refer to Appendix B for the relevant experimental results.) 

When the virtual creature uses CBG combined with MENL to learn a be-

haviour continuously, the learned skills of executing this behaviour can be accu-

mulated from environment to environment, both from simple to complex, or from 

complex to simple environments. 

4.4.3 Hand-crafted Exploration in Unknown Environments 

For a better understanding of the performance level of the adaptive learning of the 

CBG with MENL, a controller is hand-crafted to take full responsibility for the 

decision-making of motor action selection for exploration. Because each time a 

virtual creature moves it can only move one step, this controller takes advantage 

of the places in front of the creature in its visual field, by carefully selecting 

a suitable place to move to. In this thesis, the creature can only detect three 

places next to it, that is, places 0, 1, and 7 as illustrated in Figure 3.9. So the 
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availability of these three places is considered when the controller decides which 

place to move to. The place chosen should be free of obstacle and should have 

been so far accessed least among the three places in front of the virtual creature. 

If all the places in front of the creature are full of obstacles, the controller then 

decides to turn around so as to find an available place to explore. The hand-

crafted controller can help us to determine how good an exploration ability a 

reasonably successful exploration might achieve, and how the adaptively learned 

exploration ability of the CBG with MENL compares relative to the hard-wired 

controller. 

A new virtual creature starting off with the hand-made controller has executed 

exploration experiments in environments El, E2 and E3 respectively. In each 

environment, the creature conducts one hundred trajectories continuously, and 

each trajectory starts at a randomly selected position. The trajectories in each 

environment consist of the same numbers of steps as those in adaptive learning. 

That is, an exploration trajectory is 240 steps in environment El, 650 steps in E2 

and 780 steps in E3. The experiment in every environment is repeated for fifty 

runs and the average exploration efficiencies obtained are shown in Figure 4.15. 

With the hand designed exploration policy, the virtual creature always selects 

the best place in front of it to move to so as to avoid obstacles and explore 

the environments successfully. In consequence the creature accesses on average 

about 74.9% of the free squares in El through 240 steps. In environment E2, the 

average exploration efficiency reaches about 75.6% in a trajectory. In maze E3, 

it is 70.5%. 

Figure 4.16 is a list of performances achieved by hand-crafted experiments, 

fresh learning experiments, and successive learning experiments in the three test-

ing grounds El, E2 and E3. The performances include the final exploration 

efficiencies achieved in all experiments, and the learning times and collision times 

required in adaptive learning experiments. From this figure, we can see that, the 

adaptive learning of the CBG model combined with MENL, especially successive 

learning, has reached similar exploration efficiencies to those of the hand-crafted 

controller that is based on the information about the places in front of the virtual 
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Figure 4.15: Hand-crafted exploration in unknown environments El, E2 and E3 (averaged 

over fifty runs). A hand-crafted controller is designed to choose the best motor actions 

according to the availability information of the places in front of the virtual creature in 

the visual field. The creature uses such a controller to explore unknown environments El, 

E2 and E3 respectively, each for one hundred trajectories. Every exploration trajectory 

starts at an arbitrary position and consists of the same number of steps as that in adaptive 

learning, that is, 240 steps in El, 650 steps in E2, and 780 steps in E3. Figure (a) shows 

the exploration efficiency of each trajectory in El, and Figure (b) in E2 and Figure (c) in 

E3. The results shown in the figures are averaged over fifty runs. 
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El E2 E3 

Hand 74.9% 75.6% 70.5% 

emited (74.8%-75.0%) (75.5%-75.7%) (70.4%-70.6%) 

Fresh 75.7% 67.1% 67.5% 

learning (75.5%-75.9%) (66.9%-67.3%) (67.4%-67.6%) 
Final 

73.2% 67.9% 

efficiency X (73.0%-73.4%) (67.8%-68.0%) 
Successive 

 
(El -eEl) (El-cE2-cE3) 

78.7% 76.1% learning 

(77.3%-80.1%) (75.9%-76.3%) X 

(El -e El -c El) (El -c El) 

Fresh 726.8 964.3 3546.4 

learning (523.1-930.5) (818.2-1110.3) (2696.1-4396.8) 
Learning 

348.7 2877.9 

times X (128.5-569.0) (2150.4-3605.2) 
Successive (El -c El) (El -c El -c E3) 

5.12 69.2 learning 

(1.1-9.1) (36.5-101.9) X 

(El.eEl-eEl) (E3-cE2)  

Fresh 56.7 131.6 883.9 
learning (34.5-79.0) (86.2-177.1) (637.5-1130.4) 

Collision 
56.7 758.2 

times X (0-116.9) (667.9-948.5) 
Successive (El -c El) (El -c El  -c El) 

0.7 18.1 leamrng 

(0-2.1) (4.9-31.3) X 

(El-eEl-eEl) (E3-cE2)  

Figure 4.16: List of performances achieved by hand-crafted experiments, fresh learning 

experiments, and successive learning experiments in three environments El, E2 and 

E3. The numbers in brackets are corresponding result ranges over fifty runs. 

creature. When the CBG and MENL learn exploration in the simplest environ-

ment El, and especially when they re-explore environment El after successive 

learning of El and E2, the exploration efficiency achieved is even better than 

that of the hand-crafted exploration. 

Compared with fresh learning in E2, both successive learning in E2 after fresh 

learning in El and in E3 has shown clearly better performance. The final ex-

ploration efficiencies obtained by both successive learning are about 5 percentage 

points and 9 percentage points higher than that obtained by fresh learning. More-

over, successive learning has generated much fewer collisions and required much 

less evolutionary learning to learn successful exploration in E2 than fresh learn-

ing. The better performance of successive learning benefits from the knowledge 

transferred from the previously learned environments. Even when the creature 
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successively learned exploration in El and E2 explores the earlier environment 

El again, it can still conduct the exploration competently with only a few ad-

justments. 

When the CBG and MENL learn exploration in the maze E3, the fresh learn-

ing and the successive learning after learning in El first and E2 next have achieved 

similar exploration efficiencies. Because the maze E3 is much more complicated 

than environment El and E2, both successive learning and fresh learning have 

encountered much difficulty in their exploration of E3. However, compared with 

fresh learning, successive learning in E3 has still exhibited a better overall learn-

ing performance since the average learning procedures and the average collisions 

required in total are fewer in successive learning. In addition, due to the explo-

ration skills transferred from previous exploration learning, successive learning in 

E3 can start at a better exploration ability with higher exploration efficiency and 

lower learning and collision times. 

When the CBG combined MENL learns behaviours continuously, the skills 

learned for executing the behaviours can be transferred not ony from simple to 

complex environments, but also from complex to simple environments. After 

the creature equipped with the CBG and MENL has learned exploration in the 

most complex environment E3, it can easily learn to explore the less complex 

environment E2 very well. With the exploration skills obtained from E3, the 

creature starts to explore E2 with an efficiency as high as 72%, which is similar to 

that achieved by the successive learning of El then E2. The successive learning 

from complex to simple environments has also exhibited both obviously fewer 

learning procedures and collisions, compared with other exploration learning in 

E2, such as fresh exploration and successive exploration from simple to complex 

environments. The cumulative learning cost of learning E3 then E2 is similar to 

that of learning E2 then E3. 

Though the above experimental results have demonstrated that the CBG 

model combined with MENL can learn to adapt to a series of unknown environ-

ments, we also find that incremental learning in consecutive environments is often 

more expensive than direct learning of an environment. For instance, it costs more 
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to learn El then E2 then E3 than to learn just E3. Also, having learned in E3 

alone it is then cheaper to learn E2 than to do E2 first. This suggests that it 

would be better for a virtual creature to learn the hard environment first if it 

knows which is the hard environment beforehand. However, because a virtual 

creature can move around continuously during its lifetime, it is always difficult 

to know what kind of environments it is going to meet. Actually the creatures 

can run across any unknown environments and situations with varied complexity 

at any time. If a creature learns each environment from scratch every time, it 

is obvious that it would take the creature a hugh amount of time and effort to 

suit all of the environments. But with the control of the CBG model, a virtual 

creature can have behaviours and abilities accumulated from environment to envi-

ronment. The creature would be able to execute behaviours in new environments 

at a certain level, by using the knowedge learned from other environments. At 

the same time, the creature can learn to improve its behaviours continuously in 

new environments. Due to the knowledge transferred from other environments, 

incremental learning is usually much easier and more efficient than learning from 

scratch in a new environment alone. As learning is retained through its whole 

lifetime, a virtual creature can have accumulated and improved behaviours to suit 

a wide range of environments and situations. The property that learning of one 

environment implies knowledge of another environment helps the CBG model to 

be an adaptive and general behaviour control model suitable to virtual creatures. 

4.4.4 Summary 

In this section, we have conducted several exploration experiments in various 

unknown environments to test the adaptive learning ability of the CBG model 

combined with MENL. A virtual creature equipped with the CBG and MENL has 

been required to explore three unknown environments El, E2 and E3 successively. 

The experimental results have shown that this creature has adaptively improved 

its exploration ability through evolutionary learning of multiagents, and learned 

how to explore all these environments successfully. Some comparison results have 

also demonstrated that the co-decision of multiagents is more robust and flexible 
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than the solo decisions made by the best agent; and multiagents with continuous 

evolutionary learning through their lifetime are more competent and adaptive 

than non-improving multiagents. 

With the increasing complexity of the environments, the exploration learning 

of the virtual creature has experienced increased difficulty. However, compared 

with fresh learning in a complicated environment, successive learning that is 

achieved after learning in simple environments is always relatively easier and 

involves much fewer collisions and shorter learning time. In some cases (e.g. in 

E2), the learned exploration efficiency of successive learning is also better than 

that of fresh learning. It is obvious that the accumulated exploration experience 

learned from simple environments has helped the virtual creature to learn the 

exploration in successive complicated environments more easily and competently. 

Hand-crafted exploration experiments have also been conducted in three un-

known environments. In these experiments, a hand designed controller takes 

responsibility for choosing the best motor actions according to the information 

about the places in front of the creature. In each environment, the resulting ex-

ploration has traversed similar numbers of places to the exploration adaptively 

learned by the CBG with MENL. These results indicate that the adaptive learning 

of the CBG combined with MENL is almost as good as a hand-crafted controller 

for exploration. 

4.5 Emergent Behaviours 

In the above experiments, the virtual creature has exhibited many emergent be-

haviours. These behaviours are not imposed by pre-programmed mechanisms nor 

are they directly enforced by the fitness function. The behaviours are lifelike, ef-

ficient and robust. In this section, we use somewhat anthropomorphic language 

to describe the behaviours of the virtual creature, as Braitenberg does in [251. 

1. Moving in a straight line 

One of the impressive emergent behaviours is the virtual creature's decision 
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to move in a straight line. As the above figures show, despite many possible 

choices, the creature prefers to go ahead. Moving straightforward is a common 

characteristic of walking animals. However, in many other works, this feature has 

been achieved by special design of the fitness function in which an extra term is 

used to favour straight movement by penalising turns [50, 137]. In contrast to 

these, the straight movement reported here has emerged out of our design. 

Avoiding stagnation 

When surrounded by obstacles, the moving behaviour may become incom-

patible with the avoidance behaviours. This problem is referred to as stagnation 

[5]. A variety of strategies have been suggested for overcoming this weakness, 

mainly using additional constraints to force the creature to move [4, 85]. How-

ever, through evolutionary learning under a relaxed fitness function with fewer 

constraints, our creature can autonomously learn to find available paths to free 

itself from the predicament. Figure 4.7 shows an example of avoiding stagnation, 

in which the virtual creature learns to avoid the IF-shaped obstacle via evolution 

strategies. 

Active direction selection 

Sometimes the creature may not step out from an impasse immediately, espe-

cially when the visual field is almost full of obstacles. The exploration trajectory 

shown in Figure 4.7 is a good example. When the creature starts from the bottom 

left corner, it is surrounded by walls and obstacles. In this situation, the simu-

lated creature attempts to adjust its visual direction actively, instead of moving 

impetuously. A final decision is made after viewing more situation details from 

varied directions. It seems that this creature collects more environmental infor -

mation and considers it carefully. Such a careful decision is often a unique or 

better choice in such a situation. 

The above behaviours have emerged out of the design. By walking in a straight 

line and selecting actions after careful "consideration", the creature can move 
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more efficiently. By avoiding stagnation actively, the creature's behaviours are 

more robust to its environments. Moreover, the emergent behaviours look quite 

natural and believable. They can often be found when living animals move in 

their environments. These behaviours can help a virtual creature look more like 

a real living creature and hence enhance its believability to the human user. 

The emergent behaviours are not independent of each other. They can happen 

in parallel and result in more sophisticated motions, such as walking in a nar-

row aisle without collision, following a wall, stepping out from a corner, moving 

around a big obstacle to avoid it, and so on. These advantages may benefit from 

the multi-agent engine which is evolved under a relaxed fitness function. While 

a high-ranked agent obtains an initiative to control the movement, it is quite 

possible that this agent will win again in the next competition due to its success-

ful experience. Therefore, a good movement can be repeated and some natural 

behaviours (e.g., moving ahead) can be generated. When the virtual creature 

encounters problems and current agents cannot take positive roles, new candi-

dates are sought with the assistance of evolutionary learning. Unconstrained by 

many specific requirements, the evolutionary search proceeds in a broad space so 

that there is a high possibility of finding feasible solutions to avoid a series of 

predicaments. 

4.6 Conclusion 

This chapter presents a learning algorithm, Multi-agent based Evolutionary ar-

tificial Neural network with Lifetime learning (MENL), which can learn to make 

correct decisions of motor action selection based on sensory feedback and past 

experience. The MENL has a number of notable merits: 

• There are a batch of multiagents maintained in MENL, which cooperate 

and compete with each other for the decisions of action selection. This co-

decision mechanism enhances the adaptation and robustness of behaviours. 

• The evolutionary learning of the multiagents is kept through the lifetime of 
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MENL. In consequence MENL can learn to improve its ability continuously, 

and is able to cope with more and more situations in its lifetime. 

. The fitness function of MENL is a relaxed design, so the evolutionary search 

may proceed in a broad space with few constraints. The fitness function 

is also designed for more than one behaviour, since it takes account of 

both general sensory feedback on executed actions and specific behavioural 

objectives. 

When MENL is embedded in the Strategy module of the CBG model to 

choose motor actions, its learning and decision-making become meaningful: the 

CBG model carries out motor actions chosen by MENL in practice and reports 

execution results of these actions through continuous sensory feedback. Any 

mismatch of intended actions and actual action execution results will urge MENL 

to use evolution strategies to revise unqualified agents that have generated results 

unexpected and/or harmful to the achievement of a behaviour. On the other 

hand, the successful execution of intended actions will be memorised implicitly 

in multiagents (i.e., ANN individuals) for future use. By getting rid of the unfit 

agents and retaining the essential, MENL can improve its ability continuously in 

response to changing situations. 

A virtual creature is equipped with a CBG model combined with MENL 

to execute exploration in several unknown environments. Experimental results 

have shown that the virtual creature has adapted to various unknown environ-

ments and explored them successfully. The exploration ability of the creature 

is obviously increased through trial and error and this ability is accumulative 

from environment to environment. Because the creature learns behaviours from 

scratch and based on the information about the currently perceived environment, 

the learned exploration ability is general and robust, and not specific to any par -

ticular environment or object. During exploration, there is always more than one 

agent that contributes different but useful ideas to the exploration in various situ-

ations. The whole exploration is implemented by the competition and cooperation 

of multiagents. In experiments, evolutionary multiagents with lifetime learning 

have also exhibited much more robust and adaptive ability than non-improving 
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multiagents. It is the lifetime learning that helps the creature to enrich its explo-

ration experience constantly. As a result, the creature has achieved exploration 

at a performance level similar to that of hand-crafted exploration which is based 

on information about the places immediately next to the creature. 

Through the combination with Multi-agent based Evolutionary Artificial Neu-

ral Network with Lifetime Learning (MENL), the CBG model has produced adap-

tive exploration in many environments. The resulting exploration is flexible to 

various situations, able to improve from mistakes, and proactive for a specific 

behavioural motivation. This kind of exploration, one of the space occupying 

behaviours, is fundamental to many living creatures. 

In the next chapter we will introduce the multifunctional learning of the CBG 

combined with MENL and show how they are used to learn several space occu-

pying behaviours together. 
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Chapter 5 

Learning Multiple Behaviours: 

Combining the CBG Model with the 

MENL Learning Algorithm 

In this chapter, we present multifunctional learning of the CBG model combined 

with the MENL learning algorithm. In the next section, we give a brief review of 

recent work on knowledge transfer in artificial neural networks and relate our work 

to this. Some biological findings on multifunctional neural networks for natural 

behaviour control are explained in Section 5.2, which provide the main inspiration 

and basis for our work. In Section 5.3, we introduce the multifunctional learning 

of the CBG and MENL for producing multiple behaviours. Section 5.4 describes 

the experiments we have conducted when the CBG with MENL is applied to 

learn multiple space occupying behaviours. The last section concludes with a 

summary of this chapter. 

5.1 Related Work 

Recently there has been increasing interest in transferring knowledge learned by 

artificial neural networks across related tasks. This is initiated by the realisation 

that complex environments will require learning to perform multiple tasks [146] 
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and the learning can be greatly saved or simplified if the tasks to be learned can 

share what they learn [33, 1251. In this section, we review some typical work in 

this area and put our work in the context. 

Pratt et al. have studied the sequential transfer of learned knowledge between 

artificial neural nets [124, 125]. In their previous study, Pratt et al. presented 

somewhat surprisingly better effects of pre-setting neural network weights on 

subsequent learning, compared with untrained weights [124]. They demonstrated 

that the relative magnitudes of the preset weights were important for retaining 

the locations of pre-trained hyperplanes. Pratt also proposed a Discriminability-

Based Transfer (DBT) algorithm to estimate the utility of hyperplanes defined by 

source weights in the target network and to rescale transferred weight magnitudes 

accordingly [125]. The DBT algorithm used the target training data and weights 

from the source network, along with two coefficients to calculate a modified set 

of weights for initialising training on the target task. Several empirical results 

on speech recognition, disease diagnosis, pattern recognition, and chess problems 

proved that target networks initialised via DBT learned significantly faster than 

networks initialised randomly. Similar results have also been reported by Sharkey 

and Sharkey, which have shown that what was learned for one task could be used 

as a good bias for other tasks [144]. 

In addition to speeding up learning, improved generalisation on sequences of 

learned tasks has been studied as well [33, 156, 157]. Thrun et al. suggested study 

of robot learning problems not in isolation, but in the context of the multitude 

of learning problems that a robot would face over its entire lifetime [156, 1571. 

They proposed an Explanation-Based Neural Network (EBNN) to generate tar -

get values by explaining and analysing each observed training example of the 

target function in terms of the domain theory acquired in previous learning tasks 

[157]. Action models that captured important domain knowledge independently 

of the particular control learning problem at hand were used to bias learning of 

the control function of the current problem. In an experiment concerned with 

grabbing a cup, for instance, EBNN learned the evaluation function based on 

pretrained action models, and discovered the correlation of the distance of the 
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cup and the success of the grab action [157). Even when the observed training 

examples were very few, the evaluation function learned by EBNN still had a 

more correct shape than plain learning with no transferred knowledge from ac-

tion models. As a consequence, EBNN was able to replace real-world experiments 

efficiently and support accurate learning by previously learned bias. 

Caruana [33] has proposed multitask learning (MTL), an inductive transfer 

mechanism that improves task generalisation by taking advantage of domain in-

formation contained in the training signals of related tasks. Specifically, multitask 

learning could be achieved by learning several related tasks in parallel while using 

a shared representation (e.g., a shared hidden layer in a backpropagat ion ANN). 

Therefore, what was learned for each task may help other tasks to be learned 

better. Sometimes, better performances of main tasks were obtained by learning 

extra features of other tasks. Caruana has implemented multitask learning in sev-

eral different mechanisms, such as backpropagation ANNs, K-nearest neighbour 

and decision trees [33]. The ability to achieve multitask learning with different 

inductive methods pointed to the generality of its basic idea. Nevertheless, the 

principal goal of MTL was to improve the performance of learning on main tasks 

by using extra outputs of related tasks. For better performance on the main 

tasks, the learner allowed performance on the extra tasks to degrade or could 

even ignore the extra tasks. 

Ijspeert, Hallam, and Wilishaw have studied how neural swimming controllers 

for a lamprey could be adapted for controlling both the swimming and the walk-

ing of a salamander-like animat [74]. Initially, they used genetic algorithms to 

evolve over several stages the swimming controllers of a simulated lamprey, which 

had similar neural configurations to a biological connectionist model of the Cen-

tral Pattern Generators (CPGs) controlling the swimming of a real lamprey [75]. 

The evolved controllers produced neural connections and control efficiency close 

to those observed in the real lamprey. Ijspeert et al. then extended the swim-

ming controllers of the simulated lamprey to control the swimming and walking 

of a simulated salamander. As little was known about the neuronal circuits un-

derlying the locomotion of salamanders, the walking controllers of the simulated 
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salamander were evolved based on the structure of two interconnected oscillatory 

networks of the swimming controllers. All neurones of the swimming and walk-

ing controllers received simple excitatory signals from the "brain stem" through 

different pathways. Therefore, swimming or walking patterns were generated 

depending on which controllers were excited, and the speed of locomotion was 

proportional to the level of excitation. The successful development of the walking 

controllers based on the mechanisms transferred from the swimming controllers 

suggest a reasonable conjecture that the oscillators for the limbs have followed a 

corresponding specialisation from the trunk segmental networks through natural 

evolution. 

These studies on knowledge transfer in artificial neural networks have demon-

strated that learning of a new task can be achieved based on previous learning of 

other tasks, and the subsequent learning of new tasks may have accelerated the 

learning speed or improved the generalisation ability. However, the knowledge 

transfer usually happened between two different mechanisms in these studies, 

and the transfer was only from one task to another rather than mutual knowl-

edge transfer between different tasks. Also, it is not clear whether the mechanisms 

(ANNs) using transferred knowledge to learn new tasks can integrate knowledge 

of different tasks and implement both previous and new tasks well. Although 

Caruana used the same neural network to learn multitasks, the purpose of the 

multitask learning was to improve the performance of the main tasks, not all 

of the multiple tasks. In addition, there is more than one output of the neural 

network, each of which is for a particular task. Differing from the above work of 

knowledge transfer, our study on multifunctional learning uses the same mech-

anisms (MENL and its ANNs) to learn varied action selection policies equally 

well for more than one behaviour. The artificial neural networks of MENL are 

evolved as a whole to learn for multiple behaviours. In consequence the com-

mon knowledge shared in executing these behaviours is transferred from one to 

another, and the different properties of these behaviours are naturally integrated 

together via evolutionary learning. The resultant MENL can therefore execute 

140 



multiple action selection policies and the total time spending on learning these 

policies together is much lesser than that on learning these policies individually. 

During its multifunctional learning, MENL works just like those biological multi-

functional neural networks producing different output for implementing different 

behaviours. The multifunctional neural networks in biological behaviour control 

are introduced in the next section. 

5.2 Biological Multifunctional Neural Networks 

It is well known that the brain can perform numerous functions although its 

anatomical structure and size are finite. This powerful feature of the brain may 

be contributed to shared knowledge and resources across related behaviours and 

multifunctional neural circuits that can be modulated for the purpose of perform-

ing more than one specific function [43, 56, 122, 142]. The multifunctionality of 

these neural circuits doesn't mean that an olfactory system can be used as an au-

ditory system. But, within the confines of the anatomical substrate (the anatom-

ical organisation), the functional organisation of multifunctional neural networks 

appears to be under dynamic control, changing in accordance with the expression 

and modulation of the constituent cellular, synaptic, and network building blocks 

[56]. 

The concept of multifunctional neural networks was proposed and elaborated 

by Getting and Dekin [551 to explain the control of swimming and defensive with-

drawal in the nudibranch mollusc Tritonia. In their study, Getting and Dekin 

found that afferent depolarisation of one set of premotor interneurons reconfig-

ures a pattern-generating circuit from a state in which it generates a pattern for 

withdrawal to a state in which it generated the pattern for swimming [55]. There-

after, numerous recordings from neurones have noted that many biological neural 

networks participate in a series of different but functionally related behaviours, 

including walking, scratching and posture in cats [54]; pyloric and gastric mill 

rhythms in the stomatogastric system of crabs [172]; jumping and kicking in the 

locust [66]; rhythmic hatching and stepping movements of legs of chicks [17]; dif- 
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ferent forms of scratching in the turtle [113]; and so on. The neural networks 

controlling one behaviour may share a portion or even all of their neurones with 

networks controlling other behaviours. 

At present, the actual mechanism for configuring multifunctional neural cir-

cuits is not yet clear. However, it is known that, at least in the case of central 

pattern generators (CPGs) (neural networks underlying rhythmic movements), 

the nature of afferent, central, and neuromodulatory signals are the main sources 

of input that could act to build varied neural circuits [122, 142]. While the brain 

adjusts these inputs intentionally, CPGs can change or even discontinue their 

behaviour patterns accordingly, and elicit interactions with other functionally di-

verse circuits in many different ways. As a consequence, the neural networks 

responsible for basic rhythmic movements are not fixed, but flexible and multi-

functional systems capable of producing different motor output patterns. 

5.3 Multifunctional Learning of the CBG Combined 

with MENL 

After giving the virtual creature exploration ability, we want the virtual crea-

ture to also be able to produce some other space occupying behaviours, such as 

reaching goal locations, wandering randomly, and so on. Hence, the CBG model 

combined with MENL needs to select suitable motor actions and execute these ac-

tions for carrying out different space occupying behaviours. All these behaviours, 

including exploration, goal reaching, and wandering, share the same sensors and 

motors, motor programs, motor actions, and even part of the motor action se-

lection policies, as we introduced in Section 3.5.2. The only difference among 

these behaviours is that, guided by different behavioural motivations, the exact 

motor action selected at a particular time may be different for each behaviour. If 

we use every single MENL learning algorithm to learn the correct motor action 

selection policy for every behaviour, we would have a collection of MENLs in the 

CBG model. While the number of behaviours to be implemented increases, it is 

questionable if it is economical and practical for the CBG model to hold many 
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MENLs and corresponding multiagents (artificial neural networks) with similar 

functionality within a limited structure and space. In order to sensibly implement 

multiple behaviours in the same behaviour control model, we hope MENL and its 

ANNs can learn multiple motor action selection policies for multiple behaviours, 

by taking advantage of common properties shared in these behaviours. 

= In the last section, we introduced the biological multifunctional neural net-

works in the brain, which can participate in or generate more than one behaviour 

[43, 56, 122, 142]. The generated behaviours usually involve either the same 

muscle groups or functionally related muscle groups, but are driven for diverse 

objectives. Inspired by biological multifunctional neural networks, we consider 

constructing multifunctional artificial neural networks in MENL and the CBG 

model. As the CBG model provides basic mechanisms (many shared resources 

at various layers) for potential multifunctionality, we hope the MENL learning 

algorithm can implement this potential, by choosing correct motor actions for 

multiple behaviours in the same artificial neural networks and by utilising the 

common knowledge shared between these behaviours. If the CBG model with 

MENL can adaptively learn to implement functionally related behaviours accord-

ing to different behavioural objectives, not only would the required mechanisms 

(e.g., neural networks) be much reduced, but the common knowledge and re-

sources across these behaviours would also have the opportunity of being used 

efficiently. 

In Chapter 4, we presented the adaptive learning of exploration achieved by 

the CBG and MENL. The multiagents maintained in MENL were driven by the 

behavioural objective in the fitness function to learn the proper action selection 

policy for exploration in various unknown environments. In this chapter, we will 

change the behavioural objective in the fitness function so that MENL and its 

multiagents can learn to carry out some other behaviours. Moreover, we hope 

MENL agents can appropriately integrate the knowledge learned for different 

behaviours so MENL can be multifunctional and implement different behaviours 

in the same ANNs. In addition to the behavioural objectives, the item of sensory 

feedback in the fitness function provides the learning of MENL with some general 
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knowledge common to behaviours of the same kind. The common knowledge 

across functionally related behaviours ought to help MENL to learn multiple 

behaviours more competently and effectively. 

In the following section, we will test the potential multifunctionality held in 

the CBG and MENL by doing some experiments. In particular, we will command 

the CBG combined with MENL to learn to produce several space occupying 

behaviours together in some unknown environments, including exploration, goal 

reaching, and wandering. The downstreaming central signals from the Motivation 

module of the CBG model are the main impetus to drive the artificial neural 

networks of MENL to work for different behaviours. The experiments will test 

whether the CBG with MENL can learn to perform more than one behaviour 

together, and if it can, how good its multifunctional learning performance is. 

5.4 Experiments 

In this section, the abstract bot virtual creature embedded with a CBG and 

MENL is again used but this time to carry out multifunctional learning. Several 

experiments on learning multiple space occupying behaviours have been designed, 

with differently complex environments and different numbers of behaviours to 

learn. In the first experiment, the virtual creature is required to learn two kinds 

of space occupying behaviours (exploration and goal reaching) jointly in a simple 

environment El. The creature is also used to learn these two space occupying 

behaviours together in a more complicated environment E2. In the last experi-

ment, the creature tries to learn three kinds of space occupying behaviours (i.e., 

exploration, goal reaching, and wandering) together in E2. Some interesting tra-

jectories generated in the experiments are also presented, which show the robust 

and continuously improved behaviours of the virtual creature. 

5.4.1 Multifunctional Learning and Independent Learning 

When more than one different behaviour is learned in a common CBG model, 

especially in the same artificial neural networks, the successful learning of one 
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behaviour usually cannot guarantee the integrity of other behaviours learned be-

fore. In fact, due to the disparity between these behaviours, learning of an extra 

behaviour may bring some negative effects to the other learned behaviours. In 

Section 3.5.2, we exemplified that the actual motor actions selected may be dif-

ferent for generating different space occupying behaviours in some cases even 

when all the other conditions are the same. So, if artificial neural networks that 

have learned the successful action selection policy for exploration are trained to 

learn a new action selection policy for goal reaching, it is possible that the neural 

networks are re-stored with new learned knowledge for goal reaching and the col-

lection of the previously learned knowledge for exploration is diminished. In order 

to execute both exploration and goal reaching behaviours successfully, the artifi-

cial neural networks need to re-learn exploration and maybe goal reaching many 

times so as to remember and integrate different knowledge for different behaviours 

correctly. Therefore, in multifunctional learning of the CBG and MENL, learning 

of multiple behaviours will be conducted alternately until every behavioural learn-

ing is executed smoothly. Figure 5.1 examplifies the experimental procedures of 

learning three behaviours in multifunctional learning. 

Although the learning of different behaviours may adversely affect each other, 

the learning processes may have mutual benefits too because functionally related 

behaviours have much shared common knowledge, as explained in Section 3.5.2. 

If the common knowledge is obtained by learning of one behaviour and is applied 

to learning of other behaviours properly, the learning of other behaviours will 

become easier and more efficient. To test this claim, independent learning of 

three space occupying behaviours has been conducted. In independent learning, 

every space occupying behaviour is learned on a randomly initialised CBG model 

and MENL, and a behaviour is considered to have been learned after one hundred 

consecutive trajectories are conducted successfully. Learning cost and learning 

results of independent learning will be compared with those of multifunctional 

learning. 

In both multifunctional and independent learning, learning of wandering re-

quires the virtual creature to move from a random starting point and keep mov- 
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Figure 5.1: Experimental procedures of learning multiple behaviours in multifunctional 

learning 

ing for a limited number of steps in each trajectory. (The limitation is 240 steps 

in environment El and 650 steps in E2.) Whenever the creature makes a colli-

sion, evolutionary strategies will be immediately triggered to evolve new qualified 

agents in MENL. The learning of wandering is completed (or temporarily finished 

in multifunctional learning) if the creature conducts one hundred successive tra-

jectories successfully. Evolutionary learning times and collision times taken for 

the learning are performance indices to evaluate wandering learning ability. 

In exploration learning, the creature needs to explore the environment as far 

as possible in the same limited number of steps as in wandering learning. All 

the starting points of exploration are randomly chosen. The exploration learn-

ing is finished when the creature executes one hundred successive trajectories 

successfully. When independent exploration or an episode of exploration in mul-

tifunctional learning has been learned, in addition to learning times and collision 

times, another performance index used to test the learning ability is the final 

exploration efficiency achieved by successful exploration learning. 
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In goal reaching learning, the creature, starting from arbitrary initial places 

and orientations, is required to reach randomly selected goal destinations. The 

creature should find an available route to the goal in the limited number of steps, 

the same as that of wandering and exploration learning. Likewise, goal reach-

ing learning finishes when one hundred successive goal destinations are reached 

successfully. A goal reaching trajectory is deemed as a "success" if the goal is 

achieved within the limited number of steps; otherwise the conduction of goal 

reaching is a "failure". In addition to evolutionary learning times and collision 

times, another two indices are adopted to estimate the performance of goal reach-

ing learning. One index is goal reaching efficiency, that is, the steps involving 

movement as a percentage of all the steps the creature makes. Those steps causing 

collisions or fixation at a place are thought to impair the navigation. The other 

performance index is the success rate of goal reaching, which indicates whether 

the creature has reached the goal destination in each trajectory. Because every 

goal reaching experiment is conducted for fifty runs, the success rate is actually 

the probability of conducting a successful trajectory in fifty runs. One experi-

mental run of goal reaching learning is finished when the creature conducts one 

hundred successful goal reaching trajectories successively. 

The settings of the CBG and MENL are those described in Section 3.7 and 

4.3 for both multifunctional and independent learning. The fitness functions 

adopted for exploration, goal reaching, and wandering are equations 4.5, 4.6, and 

4.7 respectively. 

It may be worth reminding the reader that the key idea of the MENL learning 

algorithm is to find a general solution that can be applied to a wide range of 

situations. Sometimes, this solution may not be optimal at all. Similarly, in 

multifunctional learning, the main contribution of MENL is to seek a general 

solution that can be applied to multiple behaviours in a wide range of situations, 

rather than to optimise every behaviour in some specific situations. However, the 

investigation of a better compromise between generalisation and optimisation is 

part of our future work. 
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5.4.2 Learning Two Space Occupying Behaviours Together in 

the Simple Environment El 

In this experiment, the virtual creature with an initialised CBG and MENL at-

tempts to learn exploration and goal reaching together in a simple environment 

El. The main purpose of this- experiment is to check if the CBG with MENL 

can learn more than one behaviour, and how the learning of one behaviour af-

fects another. The virtual creature that has already obtained exploration skills 

through fresh exploration learning (i.e., independent exploration learning) in El 

is firstly trained to learn a second behaviour of goal reaching. Further exploration 

is then executed for an estimation of the influence of the extra learning of goal 

reaching on the previously learned exploration ability. Even more goal reaching 

and exploration learning are executed one after another so the creature can learn 

both behaviours appropriately. Finally, a comparison between the performance 

of multifunctional learning and independent learning is presented. 

5.4.2.1 Subsequent Learning of Goal Reaching After Fresh Exploration 

The first part of the experiment is the additional learning of goal reaching in 

environment El. The virtual creature has just learned exploration in El and 

hence possesses certain exploration and obstacle avoidance skills (experimental 

information of fresh exploration learning in El is presented in Section 4.4.2.1, 

so we won't repeat it here). In subsequent goal reaching learning, we want the 

creature to reach arbitrary goal destinations from random initial positions and 

orientations in 240 steps until it executes successful goal reaching one hundred 

successive times. Every creature generated from the fifty runs of fresh exploration 

learning in El is used to conduct subsequent goal reaching learning. The goal 

reaching efficiency and success rate of reaching a goal destination in each trajec-

tory averaged over fifty runs are shown in Figure 5.2 (a). Figure 5.2 (b) shows 

the number of evolutionary learning procedures and the number of collisions the 

creature makes in each trajectory, also averaged over fifty runs. Figure 5.2 (c) 

lists the average total learning times and collision times spent in fifty runs of the 

subsequent goal reaching learning, and the average goal reaching efficiency and 
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Figure 5.2: Subsequent goal reaching learning after fresh exploration in El (averaged over fifty 

runs). Each creature of the fifty runs of fresh exploration in El is applied to reach various randomly 

selected goal destinations in no more than 240 steps until the creature has reached one hundred 

successive goal destinations successfully. The goal reaching efficiency and success rate of each 

trajectory averaged over fifty runs are recorded in Figure (a). The average learning times and 

collision times spent in each trajectory over fifty runs are shown in Figure (b). The last 100 

successive and successful trajectories are not shown in Figure (a) and Figure (b). Figure (c) lists 

the total numbers of learning procedures and collisions required for the subsequent goal reaching 

learning, and the goal reaching efficiency and success rate obtained at the end of the learning, all 

averaged over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges 

over fifty runs. 
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success rate achieved when the learning finishes. 

The results in Figure 5.2 have shown that the virtual creature has learned the 

new behaviour of goal reaching successfully in subsequent goal reaching learning. 

In addition, the creature implemented this learning with ease. There are very few 

collisions made in the whole experiment: the average number of total collisions is 

only 2.2 in fifty runs. The learning times are also kept very small. The number 

of learning procedures is no more than 2 in each trajectory, and it gradually 

decreases to be lower than 0.1 in the last twenty trajectories. The average number 

of total learning procedures is 31.9 in fifty runs. 

The goal reaching efficiency of subsequent goal reaching learning starts from 

a very good point of 77%. It is slowly raised to 82.5% when the learning finishes. 

This improvement indicates the virtual creature spends more time on sensible 

movement towards the goal destination, and there is only 17.5 percent of its 

movements wasted on hesitation, direction changing, etc, which have no direct 

contribution to the navigation. The last noticeable result presented in the sub-

sequent learning is the virtual creature's very high success rate in reaching goal 

destinations. Even at the beginning of the experiment, the probability of reaching 

a random goal destination in fifty runs is as high as 92%. When the experiment 

finishes, the creature has learned how to locate various goal destinations in un-

known environment El, and reached all destinations in the limited number of 

steps without problem. The success rate of goal reaching is therefore 100% at the 

end of the subsequent goal reaching learning. 

Through deliberated adjustment of its ANN structures that were first set for 

exploration, the virtual creature has learned a second behaviour of goal reaching 

successfully. 

Independent Goal Reaching Learning 

From the good performance of the subsequent goal reaching learning after fresh 

exploration, we conjecture that the previously learned exploration may have some 

good effects on the later learned goal reaching. For a demonstration of this con-

jecture, we use a fresh virtual creature with an initialised CBG and MENL to 
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conduct independent goal reaching learning in environment El. Similarly, the 

creature should manage to reach its goal destinations starting from arbitrary 

places and orientations in 240 steps while keeping its obstacle avoidance compe-

tence. This learning is repeated fifty times, by using different initialisation of the 

creature in each learning episode. The averaged learning results over fifty runs 

are shown in Figure 5.3. -- 

As expected, the fresh creature has acquired goal reaching ability through 

adaptive learning of the CBG and MENL. However, compared with the sub-

sequent learning, the independent goal reaching learning has presented worse 

learning performance. There is intensive evolutionary learning involved in the 

independent learning. The total learning sessions are as many as 364.2, an av-

erage over fifty runs. This number is almost 11 times more than that required 

by the subsequent learning of goal reaching. The initial goal reaching ability the 

fresh creature displays at the beginning of the independent learning is also poor. 

The initial efficiency is only 35.5% and the initial success rate is 80%. They 

are 35 points and 12 points lower than those of the subsequent goal reaching 

learning respectively. Both subsequent and independent goal reaching learning 

have achieved similar navigation efficiency (82.5% and 82.9% respectively) and 

the same success rate (100%) in the end. 

Because the subsequent goal reaching learning starts from the point which is 

defined by the previous exploration learning, the learning of the subsequent goal 

reaching is much easier and smoother than the independent learning starting 

from random. This result suggests that some useful knowledge contained in 

exploration learning has been utilised or transferred to goal reaching learning. 

The good performance of the subsequent goal reaching learning also supports 

Pratt's inference that an appropriate pre-setting for neural network weights plays 

a positive role on its subsequent learning [124]. 

5.4.2.2 Further Exploration 

After extra training in goal reaching, the creature needs to explore El again, for a 

test of whether it still remembers the previously learned exploration ability. The 
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Figure 5.3: Independent goal reaching learning in El (averaged over fifty runs). In each run, a 

fresh virtual creature equipped with a randomly initialised CBG and MENL is asked to reach various 

random goal destinations from arbitrary places and orientations in no more than 240 steps. The 

learning is finished when one hundred successive goal destinations are reached successfully. The 

goal reaching efficiency and success rate of each trajectory averaged over fifty runs are recorded 

in Figure (a). The average learning times and collision times spent in each trajectory over fifty 

runs are shown in Figure (b). The last 100 successive and successful trajectories are not shown in 

Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures and collisions 

required for independent goal reaching learning, and the final goal reaching efficiency and success 

rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure (c) 

are the corresponding result ranges over fifty runs. 
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creature should continuously explore environment El starting from various ran-

dom points in 240 steps, until one hundred successive and successful exploration 

trajectories have been executed. Every virtual creature of the fifty runs of sub-

sequent goal reaching learning conducts further exploration learning. Figure 5.4 

shows the results of the second exploration learning in environment El, averaged 

overfiftyriins. - -- -- -- 

The experimental results have shown that there are some collisions and evolu-

tionary learning during further exploration, however, both collisions and learning 

procedures are very few. For instance, the total collisions made in the whole 

exploration are only 1.7, and the total learning times are only 16.9 (averaged 

over fifty runs). At the same time, the exploration efficiency of each trajectory 

is maintained at a relatively stable state of 76.7%. This efficiency is similar to 

that obtained by fresh exploration learning, which is 75.7%. After exploring the 

environment El even further (a maximum of ninety one trajectories in fifty runs), 

the virtual creature has properly recollected its early learned exploration ability. 

5.4.2.3 Further Goal Reaching 

After the successful learning of further exploration, the creature is put in environ-

ment El again but to execute further goal reaching. This is for an inspection of 

the further exploration's influence upon goal reaching. The creature starts from 

random places and orientations and tries to reach various goal destinations in no 

more than 240 steps. Further goal reaching continues until the creature reaches 

one hundred successive goal destinations successfully. Similarly, every creature 

of the previous fifty runs of further exploration is used to conduct a further goal 

reaching experiment. The experimental results averaged over fifty runs are shown 

in Figure 5.5. 

From the experimental results, we can see that there are only very occasional 

collisions and unreached goal destinations involved in further goal reaching ex-

periments. The average number of total collisions made over fifty runs is less 

than one, and the average number of total learning procedures is only 3.8. Mean-

while, the virtual creature can reach most goal destinations in fifty runs. It is 
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Figure 5.4: Further exploration learning in El (averaged over fifty runs). The virtual creature 

which learned subsequent goal reaching ability is asked to conduct another exploration experiment 

to recollect its previously learned exploration ability. Every virtual creature resulting from the fifty 

runs of subsequent goal reaching learning conducts continuous exploration trajectories, until one 

hundred successive and successful exploration trajectories have been executed. The exploration 

efficiency reached by each trajectory is shown in Figure (a). The learning times and collision times 

made in each trajectory are shown in Figure (b). Both figures show results averaged over fifty runs 

and do not include the last 100 successive and successful trajectories. Figure (c) is a summary of 

the total learning times and collision times spent in further exploration learning and the exploration 

efficiency finally achieved by the learning, averaged over fifty runs. The numbers in brackets in 

Figure (c) are the corresponding result ranges over fifty runs. 
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Figure 5.5: Further goal reaching learning in El (averaged over fifty runs). Every creature of the 

previous fifty runs of further exploration in El is applied to reach various randomly selected goal 

destinations in no more than 240 steps until the creature has reached one hundred successive goal 

destinations successfully. The goal reaching efficiency and success rate of each trajectory averaged 

over fifty runs are recorded in Figure (a). The average learning times and collision times spent in each 

trajectory over fifty runs are shown in Figure (b). The last 100 successive and successful trajectories 

are not shown in Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures 

and collisions required for further goal reaching learning, and the final goal reaching efficiency and 

success rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure 

(c) are the corresponding result ranges over fifty runs. 
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only in a few cases that the creature could not find the goals. The efficiency 

of the goal reaching is also quite stable: it is about 84% throughout the experi-

ment. Despite the further exploration conducted beforehand, the virtual creature 

maintains most of its learned goal reaching ability. 

5.4.2.4 Last Exploration and Goal Reaching 

In the above further exploration and goal reaching, there is still some evolutionary 

learning occurring in both experiments. For real multifunctionality, the creature 

should be able to switch from one behaviour to another smoothly without learn-

ing. In order to test if the creature has already learned two space occupying 

behaviours completely, or if it still needs even further learning, a third set of ex-

ploration and goal reaching experiments are conducted in environment El. The 

fifty creatures of the second goal reaching learning should first conduct continu-

ous exploration trajectories until one hundred successive trajectories are executed 

without collision and learning, and then continuously locate various goal destina-

tions from arbitrary places until one hundred successive destinations are reached 

without problem. 

On the third repetition, all the creatures in fifty runs have successfully ex-

ecuted both exploration and goal reaching experiments successfully with no in-

volvement of any collision or evolutionary learning. These creatures can now 

conduct either exploration or goal reaching well. Meanwhile, the average explo-

ration efficiency is about 77.1%, and the average goal reaching efficiency is about 

84.1%, while the creature reaches all goal destinations successfully. 

After three sessions of multifunctional learning procedures, the virtual crea-

ture at last has the multifunctionality of both exploration and goal reaching. 

While the multifunctional learning proceeded, the creature switched between 

these two behaviours more and more smoothly. The successful learning of ex-

ploration and goal reaching together shows that the CBG model combined with 

the MENL learning algorithm has the capability of learning more than one be-

haviour. 
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5.4.2.5 Comparison of Multifunctional Learning with Independent Learning 

Figure 5.6 presents the comparison of multifunctional learning of exploration and 

goal reaching in environment El and the corresponding independent learning of 

exploration and goal reaching. As shown in Figure 5.6 (a), multifunctional learn-

ing and independent learning have achieved similar efficiencies in both exploration 

and goal reaching. But the total collision numbers made in the multifunctional 

learning is on average 20 less than the sum of the collisions made in every single 

behaviour learning, shown by Figure 5.6 (b). The clear superiority of multifunc-

tional learning over independent learning is reflected in much obviously saved 

learning. Where independent exploration learning has spent 726.8 learning proce-

dures learning single exploration ability and independent goal reaching has spent 

364.2 learning procedures learning single goal reaching ability, multifunctional 

learning of exploration and goal reaching has only required 779.4 evolutionary 

learning procedures to learn both behaviours properly. After learning explo-

ration independently, the same artificial neural networks used for multifunctional 

learning have only used 52.6 evolutionary learning procedures to adjust its func-

tionality to comprise a new behaviour of goal reaching and to mediate different 

knowledge learned for different behaviours. Therefore, about 312 sessions of evo-

lutionary learning have been saved in total in multifunctional learning, which is 

almost one third of the sum of the total learning times spent in independent ex-

ploration and goal reaching learning. As independent behaviour learning utilises 

two copies of multiagents (artificial neural networks) to learn action selection 

policies for two different behaviours, multifunctional learning uses just one batch 

of multiagents to learn different behaviours together. The resulting multifunc-

tional learning has not only saved the materials for behaviour conduction, but 

also significantly accelerated learning. 
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Figure 5.6: Comparison of multifunctional learning and independent learning: learning 

exploration and goal reaching in the simple environment El (averaged over fifty runs). 
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5.4.3 Learning Two Space Occupying Behaviours Together in 

the More Complex Environment E2 

In this experiment, a fresh virtual creature which has a randomly initialised CBG 

and MENL is asked to learn two kinds of space occupying behaviours (exploration 

and goal reaching) together, but in a more complicated environment E2. Sim-

ilarly to the last experiment, the virtual creature starts from fresh exploration 

learning in E2 and then learns a new behaviour of goal reaching by using the 

same behaviour model and artificial neural networks. The creature should repeat 

multifunctional learning of exploration and goal reaching one after the other until 

it is competent in both behaviours. The results of multifunctional learning will 

be compared with those of independent learning of exploration and goal reaching. 

5.4.3.1 Subsequent Learning of Goal Reaching After Fresh Exploration 

Section 4.4.2.2 has shown the independent exploration learning of a fresh virtual 

creature in environment E2. In this section, such a creature that has learned 

exploration in E2 is used to learn an additional behaviour of goal reaching. The 

creature should learn to find a way to various goal destinations from arbitrary 

starting points in E2, until it successfully reaches one hundred successive desti-

nations. Every goal reaching trajectory should not go beyond 650 steps. In this 

experiment, each creature of the fifty previous runs of fresh exploration in E2 is 

used for subsequent goal reaching learning. The average results over fifty runs 

are shown in Figure 5.7. 

The virtual creature takes a maximum of 117 trajectories to complete its 

subsequent goal reaching learning in fifty runs. Most of the learning is aggregated 

in the first 20 trajectories, in which the average learning times range from 1 to 

11 in each trajectory. During the remaining 97 trajectories, the virtual creature 

endeavours to correct minor movement errors. In addition to a little learning 

on overcoming collisions (an average of 3.2 learning procedures in total), most 

learning is on avoiding useless turning or fixation at a place so that the creature 

can move towards goal destinations more directly and quickly. Even so, there are 

only on average 61.7 evolutionary learning procedures present in total. 

159 



efficieniy - 

success---. 

20 40 60 80 100 
Number of Trajectories 

 

learning times - 

-. .TT...................................................coll 
	... 

..... H .... : ............ i ............ : ............ ; ............ : 

20 	40 	60 	80 	100 
Number of Trajectories 

 

Total learning Total collision Final Final 

times times efficiency success rate 

61.7 3.2 88.8% 100% 

(0-125.3) (0.8-5.6) (87.9%-89.7%) (I00%-100%) 

 

Figure 5.7: Subsequent goal reaching learning after fresh exploration in E2 (averaged over fifty 

runs). Each creature after fifty runs of fresh exploration in E2 is applied to reach various randomly 

selected goal destinations in no more than 650 steps until the creature has reached one hundred 

successive goal destinations successfully. The goal reaching efficiency and success rate of each 

trajectory averaged over fifty runs are recorded in Figure (a). The average learning times and 

collision times spent in each trajectory over fifty runs are shown in Figure (b). The last 100 

successive and successful trajectories are not shown in Figure (a) and Figure (b). Figure (c) lists the 

total numbers of learning procedures and collisions required for subsequent goal reaching learning, 

and the goal reaching efficiency and success rate obtained at the final of the learning, all averaged 

over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges over fifty 

runs. 
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Due to the intensive learning in the early stage of the experiment, both goal 

reaching efficiency and success rate have exhibited an obvious increasing tendency. 

In the first 20 trajectories, the goal reaching efficiency is improved from 76% 

to 85% and the success rate is improved from 90% to 98%. In the remaining 

trajectories, the goal reaching efficiency is maintained around 88.6% and the 

success rates are kept at 100%. Through continuous adaptive learning, the virtual 

creature that has already learned exploration ability adjusts its functionality to 

goal reaching successfully. 

Independent Goal Reaching Learning 

For an estimation of the performance of goal reaching learning following fresh 

exploration learning, an independent goal reaching experiment in environment 

E2 is conducted. A fresh creature equipped with a random CBG and MENL 

conducted goal reaching continuously until it reached one hundred successive 

goal destinations successfully. The average learning results over fifty runs are 

shown in Figure 5.8. 

The fresh goal reaching learning in environment E2 is conducted quite well, 

however, its learning results are not so good as those of the subsequent learning. 

While the subsequent goal reaching learning after fresh exploration soon reaches a 

relatively stable learning stage with only minor errors, the independent learning 

suffers from intensive collisions and evolutionary adjustment for quite a long 

time. As a result, the goal reaching efficiency and success rate of fresh goal 

reaching learning oscillate back and forth continually. The total collisions and 

evolutionary learning procedures involved in the independent learning are almost 

10 and 7 times more than those of subsequent learning. In addition, the initial 

goal reaching ability of independent learning is very low (e.g., 47% efficiency and 

72% success rate). This contrasts to the very high starting point of subsequent 

goal reaching learning, whose efficiency and success rates are as high as 76% and 

90% respectively. 

The much better learning performance of the subsequent goal reaching learn-

ing in a more complicated environment E2 again suggests that the common space 
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Figure 5.8: Independent goal reaching learning in E2 (averaged over fifty runs). In each run, a 

fresh virtual creature equipped with a randomly initialised CBG and MENL is asked to reach various 

random goal destinations from arbitrary places and orientations in no more than 650 steps. The 

learning is finished when one hundred successive goal destinations are reached successfully. The 

goal reaching efficiency and success rate of each trajectory averaged over fifty runs are recorded 

in Figure (a). The average learning times and collision times spent in each trajectory over fifty 

runs are shown in Figure (b). The last 100 successive and successful trajectories are not shown in 

Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures and collisions 

required for independent goal reaching learning, and the final goal reaching efficiency and success 

rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure (c) 

are the corresponding result ranges over fifty runs. 
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occupying knowledge contained in the previously learned fresh exploration has en-

dowed the virtual creature with a fairly good goal reaching ability and helped the 

following goal reaching learning to be much quicker and more efficient. 

5.4.3.2 Comparison of Multifunctional Learning with Independent Learning 

After learning a new behaviour in the same behaviour model CBG and MENL, the 

previously learned exploration is inevitably affected to some extent. This is the 

same as what happened in the multifunctional learning in El, as we introduced 

in the last experiment. In order to learn both exploration and goal reaching well, 

the virtual creature has had to repeat learning these two behaviours one after 

another four times. The final efficiency obtained for exploration is 76.1% and the 

final efficiency obtained for goal reaching is 89.6%. The total learning times and 

collision times required are 1056 and 139.7, averaged over fifty runs. 

Together with the multifunctional learning results, Figure 5.9 shows the out-

come of the independent exploration and goal reaching learning in environment 

E2. Compared with these two independent learning procedures, the overall 

performance of learning exploration and goal reaching multifunctionally again 

exhibits its superiority. The average exploration and goal reaching efficiencies 

achieved by multifunctional learning are about 9 points and 1 point higher than 

those achieved by the corresponding single behaviour learning. Even during the 

learning, the collisions made in the multifunctional learning are 25 fewer than the 

sum of the collisions made in single behaviour learning. Most conspicuously, the 

total learning procedures in multifunctional learning have been much improved. 

While independent learning uses a sum of 1422.5 evolutionary learning procedures 

to learn exploration and goal reaching individually, multifunctional learning only 

uses 1056 learning procedures to learn both behaviours together. There are 366 

learning procedures saved in total in multifunction learning. The much better 

overall performance of learning exploration and goal reaching together in envi-

ronment E2 has shown the feasibility and efficiency of multifunctional learning, 

just as it did in the simple environment El. 
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Figure 5.9: Comparison of multifunctional learning and independent learning: learning 

exploration and goal reaching in the complex environment E2 (averaged over fifty 

runs). 
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5.4.4 Learning Three Space Occupying Behaviours Together 

In the last two experiments, the virtual creature has demonstrated its ability to 

learn two different but related space occupying behaviours in the same behaviour 

model. In this section, the virtual creature is challenged by learning three space 

occupying behaviours together (wandering, exploration and goal reaching) in the 

complicated environment E2. The creature should learn these behaviours one 

after another and repeat this learning periodically until the learning of every 

behaviour is executed free of error. 

Three kinds of multifunctional learning procedures composed of different be-

haviour learning orders are selected, for an investigation of learning order's effect 

on multifunctional learning. These multifunctional learning procedures start with 

learning of different behaviours, which are repeated learning of Exploration+ Goal 

reaching+Wandering (noted as EGW multifunctional learning), Goal reaching+ 

Wandering+Exploration (GWE), and Wandering+Exploration+Goal reaching 

(WEG). Every multifunctional learning procedure starts from a fresh creature 

with initialised CBG and MENL, and is conducted for fifty runs. The exper-

imental results have confirmed that the virtual creature learns all three space 

occupying behaviours successfully in every multifunctional learning procedure. 

In particular, EGW repeats its learning of behaviours for at most four times in 

fifty runs to learn all three behaviours together. GWE repeats at most twice 

and WEG repeats at most five times to finish their learning in fifty runs. The 

total learning and collision times taken for each multifunctional learning and the 

resulting exploration and goal reaching efficiencies are compared with the results 

of three corresponding independent behaviour learning procedures, i.e., the sum 

of the learning and collision times required for learning three behaviours individ-

ually and the efficiencies achieved by independent exploration and goal reaching 

learning. Figure 5.10 shows the comparison results, averaged over fifty runs. 
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Figure 5.10: Comparison of multifunctional learning and independent learning: learn-

ing exploration, goal reaching, and wandering in environment E2 (averaged over fifty 

runs). 
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5.4.4.1 The Overall Performance of Multifunctional Learning is Better 

Than that of Independent Learning 

Similarly to the multifunctional learning of two space occupying behaviours, all 

three multifunctional learning procedures on three space occupying behaviours 

present better overall performances than the summation of independent learn-

ing. The average learning procedures required by every multifunctional learning 

over fifty runs is clearly much less than the average total learning procedures re-

quired by three independent behaviour learning procedures (see Figure 5.10 (b)). 

Although the independent learning of wandering and goal reaching is relatively 

easier (446.2 and 458.2 learning steps required respectively), the learning of ex-

ploration is quite hard: nearly 964.3 steps of evolutionary learning are required. 

Therefore, a total of 1868.7 learning steps are presented when these three space 

occupying behaviours are learned independently. On the other hand, the multi-

functional learning procedures of EGW, GWE and WEG take only 1143.8, 1076.4 

and 1200.9 times of evolutionary learning respectively, when they have learned 

all three space occupying behaviours in an integrated way. Corresponding to 

the fewer learning procedures, the collisions made in multifunctional learning 

are also much fewer than those in all independent behaviour learning. Of the 

three kinds of multifunctional learning procedures, EGW and GWE in particular 

are good: their collision times are less than one third of the sum of the total 

collisions made in single behaviour learning. The relatively greater number of 

collisions made in WEG may be because of the different learning order of be-

haviours, as explained below. As every independent behaviour learning spends 

its own energy on learning collision avoidance and specific space occupying skills, 

multifunctional learning procedures easily learn all space occupying behaviours 

due to their mutual benefit. 

Apart from much lower learning cost, multifunctional learning achieves similar 

or slightly higher exploration and goal reaching efficiencies. In both independent 

and multifunctional learning, WEG learning exhibits the best exploration learning 

ability (75.8% of the exploration efficiency), and GWE has the best goal reaching 

ability (92% of the goal reaching efficiency). In contrast, independent exploration 
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learning has the worst efficiency of 67.1% and single goal reaching learning has 

the lowest efficiency of 88.6%. 

5.4.4.2 The Savings in Learning of Multifunctional Learning May Be Due 

to Mutual Optimisation Among Functional Learning Procedures 

The above comparison results have shown that, when three kinds of space oc-

cupying behaviours are learned together, they have much less learning cost than 

learning each behaviour independently. This seems to conflict with our custom-

ary views of knowledge learning and integration, which suggest that more cost 

would be required on knowledge integration for different tasks. Through our 

experimental results, we have found that it is true that extra effort is required 

to integrate varied knowledge about varied behaviours (e.g., repeated learning 

of multiple space occupying behaviours), however, there is even greater mutual 

optimisation across the learning of related behaviours. It may be the mutual 

optimisation that saves learning time in multifunctional learning. 

Figure 5.11 lists the gain/loss rates of learning a behaviour in multifunctional 

learning relative to independent learning of this behaviour. The positive values 

in the figure are gain rates, which indicate how much learning is saved when 

a behaviour is learned completely within a multifunctional learning procedure, 

compared with its corresponding independent learning; the negative values are 

loss rates, which show how much more learning is required to learn a behaviour 

within a multifunctional learning procedure. In EGW multifunctional learning, 

exploration learning has lost (spent) 10.2% more learning than independent ex-

ploration learning. However, the learning of goal reaching and wandering is opti-

mised so much that about 84.4% and 97.8% learning is gained (saved), compared 

with their independent learning. In GWE learning, goal reaching took 13.9% 

more learning time, but the learning of exploration and wandering took 47.1% 

and 90.1% less respectively. In WEG, learning of wandering is 1.3% more than 

independent wandering learning. But both exploration and goal reaching learning 

have gained 30.2% and 81.6% learning time. 

From Figure 5.11, we can see that the loss values always take place in the 



Exploration Goal reaching Wandering 

EGW -10.2% +84.4% +97.8% 

GWE +47.1% -13.9% +90.1% 

WEG +30% +81.6% -1.3% 

Figure 5.11: Gain/loss rates of learning a behaviour in multifunctional learning rela-

tive to independent learning. The positive values in the figure are gain rates, which 

indicates how much learning is saved when a behaviour is learned completely in a multi-

functional learning procedure, compared with its corresponding independent learning. 

The negative values are loss rates, which present how much more learning is required 

in learning a behaviour in a multifunctional learning procedure. 

first learned behaviour in multifunctional learning. This may be because the 

first behaviour usually requires more learning in removing negative effects caused 

by learning of other behaviours. However, the subsequent learning of other be-

haviours is always much easier and faster: it always obtains a positive gain value 

to a certain degree. The gains in learning of the later learned behaviours may 

benefit from the earlier learned behaviours that have learned the common knowl-

edge across them. Due to those gains, the total learning cost in multifunctional 

learning is much smaller than in independent learning procedures. 

Another phenomenon we find in the gain/loss rate table is that, for the three 

different space occupying behaviours, their gain/loss rates within the three mul-

tifunctional learning procedures are quite different. The reason may be their 

different learning orders in the multifunctional learning procedures. If wandering 

is learned later in a multifunctional learning procedure, for instance, it can al-

ways achieve high gains from the earlier learned exploration or goal reaching (e.g., 

+97.8% in EGW and +90.1% in OWE). However, later learning of exploration 

benefits much less from the learning of the other two behaviours (e.g., +30.2% 

in WEG and +47.1% in GEW). These results indicate that although these three 
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space occupying behaviours are similar and related, their mutual effects are dif-

ferent. This may also explain the greater number of learning procedures and col-

lisions made in WEG learning relative to the other two multifunctional learning 

procedures (see Figure 5.10). The less purposeful behaviour of wandering seems 

to contribute little to the subsequent learning of exploration and goal reaching 

which have specific goals to achieve. Mutual effects between different behaviours 

is one of the subjects of our ongoing research. 

5.4.5 Interesting Trajectories 

The above multifunctional learning experiments have exhibited many interesting 

trajectories which may prove the creature's robust and continuously improved 

space occupying ability. In this section, we briefly introduce some typical exam-

ples of these trajectories. Because these trajectories are in particular plentiful in 

goal reaching experiments, and because goal reaching is a broadly studied topic 

in the robot and virtual creature research area, interesting trajectories shown 

in goal reaching experiments are presented. Specifically, some trajectories dis-

play the virtual creature's ability to overcome classical canyon problems (e.g., 

box canyon and quasibox canyon) through its own endeavour. These trajecto-

ries have all happened when the creature has learned successful goal reaching 

ability. Some other interesting trajectories indicate the creature's improved goal 

reaching ability after further learning of exploration. Somewhat anthropomorphic 

language is again used in the following description, to explain the impression a 

human user may get from the virtual creature's behaviour. 

Box Canyon 

Figure 5.12 shows a goal reaching trajectory when the creature meets a trap 

(marked by the big circle), known as a "box canyon". The situation is similar 

to that described in general exploration learning in Section 4.4.2.2 and shown 

in Figure 4.7. But this time, the problem the creature encounters is even more 

difficult: in addition to finding a way out of the trap the creature should consider 

how to reach the goal destination in the top left corner of the environment at the 
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Figure 5.12: A box canyon problem. The creature, which has already learned the goal 

reaching ability, encounters a box canyon marked by the big circle. It turns around 

several times at the canyon and then moves down. The creature successfully avoids 

the canyon without collision and finally reaches the goal destination at the top left 

corner. 

same time. The latter is actually conflicting with its escape behaviour. According 

to the experiment, the creature adjusts its direction at the corner several times, 

and finally goes straight down. As a result, the creature steps out of the trap, 

and moves towards the goal destination directly. There is neither collision nor 

evolutionary learning involved in this trajectory. 

To make things more complicated, we extend the obstacle A (see Figure 5.12) 

towards the left until it is connected to the I'-shaped obstacle (see Figure 5.13). 

Now, the creature is not able to move down to escape the canyon. There is only 

one way out of the canyon, which is to move to the right, but the creature is still 

commanded to reach the top left corner of the environment. In this situation, 

the creature adjusts its direction first and then decides to move straight down, 
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Figure 5.13: A more complicated box canyon problem. The creature, which has 

already learned the goal reaching ability, encounters a more complicated box canyon 

marked by the big circle. The creature firstly moves down and faces a big obstacle. 

It then moves up into the canyon again. Next, the creature turns to its right and 

steps out of the canyon. The creature finally reaches its goal destination at the top 

left corner without any problem. 

as it did last time. Unfortunately, there is a big obstacle ahead. It is interesting 

that faced with this difficulty, the creature turns round, moves forward, and gets 

back to the previous corner again. In the old trap, the creature "subtly" turns 

to the right first and then "forges ahead without hesitation". Once the creature 

bypasses the obstacle, it adjusts its direction to the goal destination and moves 

towards it "unswervingly". In this trajectory, there is no collision or evolutionary 

learning present either. 
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Quasibox Canyon 

In the trajectory presented here, the creature encounters a quasibox canyon (e.g., 

a box canyon with an exit). This quasibox canyon is marked by the big circle 

in Figure 5.14. This time, the creature starts from a random place S and tries 

to reach the goal location at the top right corner of the environment. During 

this trajectory, the creature moves towards the goal destination directly when 

it starts. However, it encounters a big obstacle hindering its route to the goal. 

The creature changes its direction to its right and moves along the obstacle in an 

attempt to avoid this obstacle. After a while, it steps into the quasibox canyon. 

Without much consideration, the creature quickly "figures out" that there is an 

exit at the left of the canyon and this way can get it nearer to the goal location. 

The creature follows this way, steps out of the canyon, and hence avoids the big 

obstacle successfully. Almost at the same time, the creature "finds" that its goal 

is just overhead and moves towards it without any hesitation. 

Improved Goal Reaching Ability After Further Learning of Exploration 

In multifunctional learning experiments, we found many goal reaching trajectories 

improved after further learning of exploration. Sometimes when the creature has 

finished the learning of goal reaching in multifunctional learning, it can reach goals 

eventually in some complicated situations but the resulting navigation trajectories 

are poor and unnecessarily tortuous. The solid line in Figure 5.15 shows a typical 

example of such tortuous trajectories. This trajectory happens when the creature 

has learned goal reaching for the first time after fresh exploration in E2 (see 

Section 5.4.3). In this example, the creature starts at the top right corner of 

environment E2 and eventually arrives at a destination Gi. Because there is no 

learning during this travel, the weak goal reaching ability could not be improved 

this time and has to be retained in the following further exploration. 

After the immediate learning of further exploration, a notable improvement 

on the previous goal reaching trajectory has appeared. When it starts from the 

top right corner of E2 and moves to G1 again, the virtual creature does not re-

peat the last poor and long-winded trajectory but goes towards the destination 
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Figure 5.14: A quasibox canyon problem. When the creature learned goal reaching 

ability moves into the quasibox canyon marked by the big circle, it immediately turns 

to its right and walks along the exit to step out of the canyon. It then moves in a 

direct manner towards the goal at the top right corner. 

directly (shown by the dashed line in Figure 5.15). The creature in fact selects 

the shortest route for this goal reaching navigation. Such trajectory improvement 

has been found in many runs of the multifunctional learning of exploration and 

goal reaching in environment E2. Because this goal reaching trajectory is made 

immediately after further exploration, we have reason to believe that the im-

proved goal reaching ability arose from the knowledge learned from exploration. 

Due to the common knowledge shared between exploration and goal reaching, 

the creature is able to improve one space occupying ability by learning another. 

The above interesting trajectories and their similarities have also been no-

ticed in the other exploration and wandering experiments, and in environments 

other than E2. The creature has shown its robust problem solving ability and 

174 



Goal navigation before further exploration 

Goal navigation after further exploration 

Figure 5.15: The improved goal reaching trajectory after further learning of explo-

ration. In the multifunctional learning of exploration and goal reaching in environment 

E2 (see Section 5.4.3), the creature has exhibited improved goal navigation ability af-

ter further exploration learning. The solid line shows a goal reaching trajectory when 

the creature has finished the first learning of goal reaching after fresh exploration 

in E2. This trajectory starts from the right top corner and ends at a place of Cl. 

Although the goal Cl is reached, this trajectory is unnecessarily tortuous. After it 

conducts the immediate second exploration learning in E2, the creature reaches the 

goal Cl directly. Such improved goal trajectories have been found in many runs of 

the multifunctional learning experiment in E2. 
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continuously improved space occupying ability throughout the experiments. 

5.4.6 Summary 

In this section, we have conducted a body of experiments to demonstrate that 

the MENL learning algorithm can achieve multifunctional learning in artificial 

neural networks, and when multifunctional MENL is used in the Strategy module 

to choose suitable motor actions for varied behaviours, the CBG model becomes 

multifunctional as well. 

Specifically, we have utilised the CBG model combined with the MENL learn-

ing algorithm to control a virtual creature to learn multiple space occupying 

behaviours jointly in some unknown environments. Different behavioural moti-

vations initiated in the Motivation module of the CBG model are embodied in 

different fitness functions guiding MENL to learn different action selection poli-

cies. The CBG combined with MENL has been used to learn exploration and 

goal reaching together in a simple unknown environment El and a more complex 

environment E2. In both environments, the subsequent learning of goal reach-

ing based on the first learned exploration is obviously easier than learning goal 

reaching independently. Due to the extra learning of a new behaviour in the same 

behaviour model and the same artificial neural networks, the previously learned 

exploration is inevitably affected to some extent. However, the exploration abil-

ity is soon recovered after a few more evolutionary learning procedures. After 

several repetitive learning episodes of exploration and goal reaching, the CBG 

with MENL eventually conducts both space occupying behaviours quite well. 

The total cost of learning these two behaviours together is much less than the 

sum of learning each behaviour independently. The learned exploration and goal 

reaching efficiencies are similar to or even slightly better than those achieved by 

independent learning. 

The CBG model combined with MENL has also learned three space occupying 

behaviours (exploration, goal reaching, and wandering) together in environment 

E2. Three multifunctional learning procedures with different function learning 

orders are conducted in this experiment. The experimental results have shown 
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that the overall performance of all multifunctional learning procedures have again 

surpassed independent behaviour learning. Because the later learned behaviours 

can usually benefit from the common knowledge learned by earlier behaviours, the 

total learning cost has been greatly reduced in multifunctional learning. Never-

theless, the reduced cost varies when multiple behaviours are learned in different 

orders. This suggests that multiple behaviours may have different mutual effects 

on each other. 

During the experiments, we have found many interesting trajectories executed 

by the virtual creature, including the overcoming of several classical canyon prob-

lems in goal reaching and improved goal reaching trajectories after further ex-

ploration. These trajectories have shown the creature's robust and continuously 

improved behaviours. 

5.5 Conclusion 

This chapter has shown that it is possible to endow the Computational Behaviour 

Generation (CBG) model with multifunctional learning ability. Inspired by bio-

logical multifunctional neural networks in the brain, a multifunctional MENL is 

constructed, which can be dictated to by varied behavioural motivation signals 

to select correct motor actions for varied behaviours. These behaviours share 

all of the materials in the CBG model, including sensors and motors, and three 

modules (Movement, Programming, and Strategy) in the Computational Motor 

Control (CMC) system. The MENL learning algorithm is used to learn multiple 

action select policies in the same artificial neural networks in the Strategy mod-

ule, by taking advantage of the shared common knowledge across functionally 

related behaviours. 

The multifunctional learning ability of the CBG and MENL has been tested 

by several experiments. A virtual creature equipped with a CBG and MENL has 

been trained to learn several space occupying behaviours together. This includes 

learning of exploration and goal reaching together in unknown environments El 

and E2, and learning of exploration, goal reaching, and wandering together in 
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environment E2. Satisfactory experimental results support the claim that MENL 

can adaptively learn different action selection policies for multiple behaviours 

in the same artificial neural networks and in the same CBG model. Moreover, 

the overall performance of multifunctional learning is better than that of the 

sum of learning every behaviour independently. Compared with independent 

behaviour learning, mu1tfuñctiona1 learning that learns new behriöfrsbased on 

pre-learned related behaviours has not only saved material resources (artificial 

neural networks), but also accelerated learning speed and achieved sometimes 

slightly better performance when implementing behaviours. 
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Chapter 6 

Conclusion 

High fidelity virtual environments can be inhabited by virtual lives. A virtual life 

is a computational entity that has a lifelike visual shape and appearance and be-

lievable behavioural patterns. In order to "inhabit" its environments successfully, 

a competent virtual life should possess at least several important properties in 

behaviours. That is, the life should be autonomous to decide what to do in what 

circumstances based entirely on its own decisions, adaptive to adjust to changing 

conditions and environments and improve its behaviours accordingly, and inter-

active to obtain the information and resources necessary for its subsistence from 

the environments, other virtual lives, and even the human user. 

Previous work of behavioural animation has made a breakthrough on giving 

virtual lives autonomy and adaptation properties to a certain degree, and releas-

ing the lives from the very rigid, man-made behaviours. By designing several be-

haviour generation rules, behavioural animation has produced lifelike behaviours, 

which are almost impossible to create in the traditional animation approach. 

However, although great efforts have been made in behavioural animation, the 

virtual lives created so far have two serious limitations in their behaviours. First, 

these virtual lives cannot learn efficiently to improve their behaviours adaptively 

according to continuously changing situations and environments. Second, the 

lives do not know how to produce new behaviours by taking advantage of exist-

ing resources and pre-learned knowledge for related behaviours. These limitations 

inevitably restrict the autonomy and adaptation ability of virtual lives. 
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This thesis is concerned with the generation of believable behaviour for virtual 

lives. It has addressed the above two limitations in behaviour control of virtual 

lives by constructing an adaptive and multifunctional Computational Behaviour 

Generation (CBG) model and an efficient learning algorithm, a Multi-agent based 

Evolutionary artificial Neural network with Lifetime learning (MENL). Both CBG 

and MENL have taken their inspiration from the natural behaviour control mech-

anisms in the brain. Moreover, the design of the MENL learning algorithm 

has drawn on the experience of some other technologies, including evolutionary 

robotics, reinforcement learning, multi-agent systems, and knowledge transfer be-

tween artificial neural networks. As the CBG model provides the fundamental 

resources and information for adaptive and multifunctional learning, MENL ob-

tains an increasingly improved learning ability with less human supervision and 

fewer constraints, and implements multifunctional learning of related behaviours 

in the same artificial neural networks with economy and efficiency in both space 

and time. 

The CBG model is designed as a general and complete system. It consists 

of sensors and motors to collect information from and act on the virtual en-

vironments respectively. It has a Motivation module to generate behavioural 

motivations. It also contains a Computational Motor Control (CMC) system hi-

erarchically composed of Strategy, Program and Movement modules to perform 

the whole procedure of selection, programming, and execution of motor actions 

for achieving behavioural motivations. The CBG model possesses the poten-

tial adaptation and multifunctionality due to its bi-directional information flows 

(top-down control information and bottom-up sensory feedback) and hierarchical 

architecture. 

MENL is an evolutionary artificial neural network that can learn varied motor 

action selection policies for varied behaviours in the Strategy module of the CBG 

model. MENL utilises a batch of agents, each of which is an evolutionary artificial 

neural network, to cooperate and compete with each other for deciding actions to 

be executed. Based on the instant input of the perceived environmental informa-

tion, MENL agents co-decide motor actions in various situations. These decisions 
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are guided by top-down commands of behavioural motivations sent from the Mo-

tivation module of the CBG system. The top-down commands are embedded in 

the fitness functions of agents. In addition to behavioural motivations, the gen-

eral sensory feedback on executed motor actions obtained from the environment 

and body states is another important factor contributing to the fitness functions. 

As a consequence MENL agents can learn to choose suitable motor actions ac-

cording to both successful and unsuccessful experience. The learning of MENL 

agents is continued through all of their lifetime, so the agents have continually 

improved decision-making ability which is adaptive and robust to varied situa-

tions and environments. By adjusting the behavioural motivations in the fitness 

functions, MENL agents can also be multifunctional to learn to produce multiple 

behaviours together. These behaviours have different objectives but share the 

same artificial neural networks in MENL for motor action selection and most 

other parts of the CBG model for action execution. Due to the general fitness 

function design, MENL can learn the common knowledge shared across these be-

haviours and transfer the common knowledge from learning of one behaviour to 

another. By executing motor actions selected by MENL, the CBG can generate 

sequences of movement to carry out single and multiple behaviours. 

Successful experiments on a virtual creature have verified the adaptation and 

multifunctionality by learning of the CBG model combined with the MENL learn-

ing algorithm. Specifically, this virtual creature is equipped with the CBG model 

and MENL and required to learn several space occupying behaviours that are 

common and fundamental to many natural animals. The virtual creature is first 

asked to learn exploration in a series of unknown environments with increasing 

complexity. Starting from scratch, the creature should learn to explore these 

environments as far as possible in a limited number of steps and with atten-

tion to obstacle avoidance. Experimental results have shown that this creature 

has learned successful exploration in these environments without collision. Its 

exploration ability is similar to and sometimes slightly better than that of the 

hand-crafted exploration based on the availability of the places (squares) adjacent 

to the virtual creature. During the experiment, the creature's exploration abil- 
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ity is shown to be increased via MENL learning and this ability is accumulated 

from environment to environment. The whole successful exploration experiment 

is achieved by the competition and emergent cooperation among multiagents and 

their continuous lifetime learning. 

The virtual creature commanded by the CBG model and the MENL is asked 

to learn multiple space occupying behaviours jointly. In particular, this crea-

ture is required to learn exploration and goal reaching together, and exploration, 

goal reaching and wandering together in some unknown environments. By goal 

reaching, we mean that the creature should reach arbitrary goal destinations in 

a limited number of steps without any collision. By wandering, we mean that 

the creature moves randomly in the environment as long as it does not hit any 

obstacle. In all multifunctional learning experiments, the virtual creature has suc-

cessfully learned to perform multiple behaviours in the same behaviour model, 

and it can switch from one behaviour to another smoothly. Since new behaviours 

are obtained from previously learned related behaviours, the learning of subse-

quent behaviours is easy, economic, and computationally efficient. In addition, 

the overall performance of learning multiple behaviours together is better than 

that of the sum of learning each behaviour independently. 

By means of the CBG model combined with the MENL learning algorithm, 

a virtual creature can possess the fundamental properties of virtual lives (i.e., 

autonomy, adaptation and interaction) to some extent. The virtual creature can 

interact with its outside (e.g., environment) to obtain necessary information and 

to execute its behaviours via CBG sensors and motors. Based on the interaction, 

the virtual creature can execute various behaviours according to its own decisions. 

Moreover, the creature can learn to improve its behaviours adaptively in various 

situations and environments, and learn to generate new related behaviours by 

taking advantage of the knowledge learned from previous behaviours. In conse-

quence the virtual creature has enhanced autonomy and adaptation in behaviours. 

The human design on designing every detail of every behaviour can therefore be 

greatly reduced as well. 

In the rest of the chapter, we will draw conclusions on the contributions of the 
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research work described in this thesis, and then discuss directions for extending 

this research. 

6.1 Contributions 

The work described here has made a number of contributions to the study of 

virtual lives, especially to the implementation of adaptation and multifunctional-

ity in their behaviours by learning. These contributions are mainly embodied in 

the CBG model, the MENL learning algorithm, and the adaptive and multifunc-

tional learning of the CBG model combined with MENL. These contributions are 

summarised below. 

The Computational Behaviour Generation Model 

Inspired by the natural behaviour control in the brain, the CBG model is designed 

with procedures of not only abstract selection, but also concrete programming 

and execution of motor actions. These procedures are hierarchically organised in 

the CBG model, so the higher levels of the CBG model can work without much 

consideration of elaborate implementation details of lower levels. 

Not surprisingly, the CBG model is somewhat similar and related to some 

other behaviour models in virtual life and robot studies. However, the CBG 

model distinguishes itself from others by providing the fundamental support in 

its architecture for adaptive and multifunctional learning. The adaptation and 

multifunctionality of the CBG model have been proved by its successful learning 

of various space occupying behaviours, as shown in the above experiments. 

Multi-agent based Evolutionary Artificial Neural Network with Lifetime Learn-

ing 

The particular evolutionary multiagents and lifetime learning proposed in MENL 

are new. Multiagents hold the whole population information of every evolu-

tionary generation, and hence increase the probability and reliability of solving 

problems. While learning continuously during their lifetime, multiagents have 
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increased adaptation to more and more situations and problems. The learning 

of exploration in experiments confirms that multiagents outperform the single 

agent with the best fitness, and multiagents with lifetime learning surpass non-

improving multiagents. 

The fitness function designed in MENL is not just for solving one specific 

problem. It contains also the information about general sensory feedback which 

is common to problems of the same kind. This kind of design helps choose general 

solutions suitable for a wide range of situations, and preserves useful common 

knowledge across functionally related behaviours, which is useful for learning 

multiple behaviours together in the same MENL. The CBG combined with MENL 

therefore is able to learn single and multiple space occupying behaviours in various 

unknown environments, as shown in the experiments. 

Adaptive Learning of the CBG Combined with MENL 

The adaptive learning of the CBG with MENL is achieved on-line with little 

human supervision and few constraints. As the CBG collects the feedback on 

executed actions from the environment and body states, MENL discovers useful 

information in this feedback and improves its decision-making ability accordingly. 

These processes are implemented autonomously. The resulting behaviours can 

therefore be adaptively improved to overcome new complicated situations with-

out seeking help from the human designer. In addition, the learned behaviours 

are accumulative during its lifetime and applicable to a series of virtual envi-

ronments. When the CBG model combined with MENL is used to learn space 

occupying behaviours, we see that the learned behaviours are adaptive to various 

unknown environments and the behaviours are transferred from environment to 

environment. Some emergent behaviours that are robust, efficient and lifelike are 

also found in the experiments. 

Multifunctional Learning of the CBG Combined with MENL 

To the author's knowledge, the CBG model combined with MENL is the first 

to implement multifunctional learning in the same behaviour control model, and 
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especially in the same artificial neural networks. With a general fitness function, 

MENL easily learns how to make multifunctional action selection decisions for 

varied behaviours, by extending the fitness function to include varied behavioural 

objectives. The multifunctional learning of the CBG with MENL works quite well 

in empirical tests, often resulting in conspicuously accelerated learning as well as 

improved learning results. - 

6.2 Future Work 

Our work on the CBG model and the MENL learning algorithm is just a start. 

There are a number of improvements and extensions that could be done to the 

work described in this thesis. Some of the major issues we would like to pursue 

in the future are: 

Improvement of the CBG Model 

Although the CBG model proposed in this thesis involves a complete procedure 

of behaviour generation, this model only simply simulates a very small part of 

the natural behaviour control system. As we explained in Section 3.3, the real 

natural behaviour control system is a very comprehensive model involving much 

more complicated structures and mechanisms and numerous functions. In order 

to simulate complex, varied behaviours of natural creatures, the CBG model 

should be improved and enriched in every part and in many ways. To enable 

this, further study of neuroscience, ethology, psychology and some other related 

disciplines will be needed. 

One particular improvement of our interest is to implement adaptation and 

multifunctionality in the CBG model at various levels. At present, we have only 

studied how to make the CBG model adaptive and multifunctional at the motor 

action selection level in the Strategy module. The concrete implementation of 

the Motivation, Program and Movement modules are pre-designed. In future, we 

will study correct and autonomous function generation in these three modules 

as well. Also, the function generation should be adaptive to new situations and 
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multifunctional to new behaviours. One possible way to do this is to use MENL, 

which has been proved to be adaptive and multifunctional, to learn suitable 

functions at different levels. In addition to study the biological mechanisms in the 

natural behaviour control systems further, we may need to extend and improve 

the MENL algorithm when necessary so that it suits new learning tasks. 

Improvement of the MENL Learning Algorithm 

In the learning experiments of space occupying behaviours, the space occupying 

abilities eventually learned are not the best. For instance, the efficiency obtained 

in exploration experiments is no more than 80% and the efficiency achieved in goal 

reaching is lower than 93%. The exploration performance is only similar to that 

of the hand-crafted controller which takes consideration of the information about 

the immediate positions of the virtual creature. However, since MENL has also 

shown slightly better exploration performance than the hand-crafted controller 

in fresh learning in environment El and in multifunctional learning in El and E2, 

we are confident that an improvement in the MENL learning algorithm could be 

made to surpass the hand-crafted design. This may be achieved by giving MENL 

• more efficient artificial neural network structure, a good memory mechanism, 

• better balance between generalisation and optimisation, and a more sensible 

coalition of multiagents. 

Another possible improvement of the MENL learning algorithm is to extend 

MENL's capability in changing environments. In the experiments presented in 

this thesis, an environment is static once it is set up and a virtual creature is the 

only active entity in the environment. In future work, an environment may be 

dynamically changing and the human user and more than one virtual creature 

may move in the environment at the same time. We believe that MENL is able 

to deal with changing environments, because its output decisions are based on 

the local environmental information perceived at the current moment. Further 

work on this study will be conducted. 
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Further Theoretical and Empirical Study of Multifunctional Learning 

We have empirically demonstrated that the CBG with MENL possesses multi-

functional learning ability and this learning is better than independent behaviour 

learning. Nevertheless, a more sophisticated study of multifunctional learning is 

still required. In particular, although we have mentioned some possible common 

knowledge shared between space occupying behaviours in Chapter 3, what knowl-

edge is exactly transferred is uncertain. We hope to study this issue in future and 

propose some appropriate knowledge acquisition and utilisation techniques for a 

better sharing of common knowledge between similar behaviours. We also expect 

to study the actual functions of multiagents and the mutual effects of different 

behaviour learning procedures in MENL's multifunctional learning. Thus work 

may be conducted theoretically by using automata theory to analyse the states 

and their activity changes of the CBG model, or empirically by executing more 

experiments to test agent functions and multifunctional learning functionality. 

Further Study of Optimisation and Generalisation in Behaviours 

In both chapters 4 and 5, we mentioned the difference and relationship between 

optimisation and generalisation. Generally speaking, in behaviour learning, a 

behaviour is expected from being general so as to suit a wide range of situations, 

rather than being optimal only in a limited number of situations. However, the 

generality of a behaviour should not prevent this behaviour being optimal when 

required on occasions. When a behaviour is trained to work best in some cases, 

its applicability to other cases should still be maintained and should not be af-

fected. We hope to study the important issues of optimisation and generalisation 

in behaviour learning in future. We wish to start the study with the MENL 

learning algorithm that possesses a generation of homogeneous agents and a gen-

eral fitness function design with particular behavioural objectives. By designing 

the fitness function sensibly and training MENL agents appropriately, a fitting 

balance between optimisation and generalisation may be achieved in behaviour 

generation. 
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Construction of a Three-dimensional Virtual Creature 

The virtual creature used in this thesis is a very simple two-dimensional abstract. 

We wish to construct a three-dimensional graphical virtual creature in the near 

future. The visually lifelike body shape and appearance for the virtual creature 

can be designed by using popular graphical or non-graphical programming lan-

guages, such as OpenGL, C++-, Visual Basic, etc. We can even create a new 

visual model for this virtual creature when necessary. The believable behaviours 

of the creature would be generated by the CBG model we proposed. The main-

tenance of a normal life for a virtual creature in 3D environments is generally 

more complicated than in 2D environments, because the creature may encounter 

many practical problems it cannot perceive in 2D environments, such as stereo 

visual information processing and more degrees of freedom in the body joints. 

The construction of a 3D virtual creature inhabiting 3D environments will make 

our research on virtual creatures more practical and nearer to real lives. 

IM 



Appendix A 

Statistical Techniques 

The statistical techniques used in this thesis to analyse experimental data are 

normal statistical methods [40]. Suppose that there are N sample data 

{ x 1 , x 2 , ..., XN }, then their mean M is: 

N 

>xi  
i=1 

N I xE[1,N] 	 (A.1) 

and the standard deviation a of the sample mean (or "standard error") is: 

J N  - i=1 

- N(N-1) 
(A.2) 

Thus, the 95 percent confidence interval about the mean is u ± 1.96a. 



Appendix B 

Experimental Results of Successive 

Exploration Learning in E3 After 

Fresh Exploration in E2 
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efficiency — . 

40 80 120 160 200 240 280 320 360 400 440 480 520 
Number of Trajectories 

(a) 

Total learning Total collision Final 

times times efficiency 

2961.0 765.7 67.6% 

(2257.3-3664.7) (575.8-955.6) (67.4%-67.8%) 

(c) 

Figure B.1: Successive exploration learning in E3 after fresh learning in E2 (averaged over fifty 

runs). The creature learned from fresh exploration in E2 is asked to learn exploration in E3. Each 

creature resulting from the previous fifty runs of fresh exploration in E2 continuously explores E3 from 

random positions until it explores the environment successfully for one hundred successive times. 

Each exploration trajectory in E3 consists of 780 steps. Figure (a) shows the exploration efficiency 

achieved in each trajectory, and Figure (b) shows the learning times and collision times made in each 

trajectory, all averaged over fifty runs. The last 100 successive and successful trajectories are not 

shown in Figure (a) and (b). Figure (c) lists the total learning times, the total collision times, and 

the exploration efficiency finally achieved in this learning, averaged over fifty runs. The numbers in 

brackets in Figure (c) are the corresponding result ranges over fifty runs. 
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