
Study of an Adaptive and Multifunctional

Computational Behaviour Generation

Model for Virtual Creatures

Fang Wang

Doctor of Philosophy

Institute of Perception, Action and Behaviour

Division of Informatics

University of Edinburgh

2002

1

Abstract

High fidelity virtual environments can be inhabited by virtual living crea-
tures. A virtual creature should be able to learn by itself how to improve its old
behaviours and produce new related behaviours so as to be more adaptive and
autonomous and hence reduce human design work. This thesis presents a study
of an-adaptive and multifunctionalComputational Behaviour Generation (CBG)
model for virtual creatures with the ultimate goal of enhancing a creature's adap-
tation and multifunctionality in behaviour control by learning. Specifically, we
require that the CBG model can learn to perform variable behaviours in various
environments and situations.

The design of the CBG model is inspired by the natural behaviour control
system in the brain. It can perform the whole procedure of selection, program-
ming and execution of motor actions, and its hierarchical architecture provides
the material basis for adaptive and multifunctional learning implementation. The
concrete achievement of adaptation and multifunctionality by learning is obtained
with the help of a Multi-agent based Evolutionary artificial Neural network with
Lifetime learning (MENL), which can learn to select suitable motor actions for
varied behaviours in varied situations. MENL maintains a batch of agents in
every evolutionary generation to co-decide the actions to be executed. These
agents are subject to evolutionary learning through all of their lifetime. The fit-
ness function of MENL is designed without many specific constraints, and can be
easily extended for a variety of behaviours. In consequence the CBG with MENL
can obtain high adaptation and generalisation in behaviour.

The CBG model combined with the MENL learning algorithm enables a
virtual creature to learn several space occupying behaviours independently and
jointly in unknown environments. These behaviours are exploration, goal reach-
ing, and wandering. The virtual creature is first asked to learn exploration only
in a series of increasingly complex environments. This creature adapts to various
environments and explores them successfully. The successful exploration experi-
ment is achieved due to the competition and cooperation among multiagents and
their continuous lifetime learning. Inspired by multifunctional neural networks in
the natural behaviour control, the CBG combined with MENL is then required to
learn exploration and goal reaching jointly, and exploration, goal reaching, and
wandering jointly in some unknown environments. Experimental results have
shown that the CBG with MENL can perform multiple space occupying be-
haviours competently. Moreover, the overall performance of the multifunctional
learning is better than that of the sum of learning every behaviour independently.

The research presented in this thesis leads to the conclusion that the CBG
model and the MENL learning algorithm, which are inspired by the biological
neural mechanisms for behaviour, are useful methods for achieving adaptive and
multifunctional behaviour control for virtual creatures.

11

Acknowledgements

Many people contributed in some way or other to the work presented in this

thesis. The first acknowledgement must go to my supervisor Eric Mckenzie for

his always kind support during my study. I am indebted to my second supervisor

Gillian Hayes for her valuable suggestions and comments on the thesis. Without

her help, the thesis would not be as it is. I also would like to thank John Hallam,

Jean-Arcady Meyer and Robert Fisher for their insightful comments on my work.

I am grateful to Roland Ibbett and John Power who have helped me in many

ways on both studying and living in the UK. Thanks to Heather Maclaren, Alex

Champandard, Jonathan Meddes, Rangsipan Marukatat, and Richard Reeve, for

many enjoyable discussions and useful comments. Thanks to my other friends for

their support and great fun.

My most special thanks are to my parents and my husband for their love,

understanding and encouragement throughout this time.

This research was supported by Falconer Memorial Faculty of Science and Engi-

neering Scholarship at the University of Edinburgh and a studentship from the

British Overseas Research Scheme. Some revision work of this thesis was con-

ducted at BTexact Technologies.

111

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

Some parts of this work are based on previously published papers [166, 167,

168, 169].

(Fang Wang)

Table of Contents

1 Introduction 	 1

	

1.1 	Motivation1

	

1.2 	Aims4

	

1.3 	Methodology 5

1.4 Organisation of the Thesis6

2 	Virtual Life in Virtual Environments 9

2.1 Presentation of Virtual Life 9

2.2 Previous Work 10

2.2.1 	Virtual Plants 11

2.2.2 	Virtual Creatures 12

2.2.3 	Summary 21

2.3 Virtual 	Life 22

2.3.1 	Definition 23

2.3.2 	Construction of Virtual Life 23

2.3.3 	Virtual Life vs. 	Real Life 28

2.4 Our Work 29

2.5 Conclusion 31

3 The Computational Behaviour Generation Model 	 32

	

3.1 	Introduction33

	

3.2 	Related Work34

	

3.3 	Biological Basis37

3.3.1 Hierarchical Behaviour Control System37

iv

TABLE OF CONTENTS
	

V

3.3.2 	Body States and Environmental Information 39

3.3.3 	Learning 40

3.3.4 	Generality in Behaviour Systems 42

3.4 The Computational Behaviour Generation Model 43

3.4.1 	The Basic Structure of the CBG Model 44

3.4.2 	Formal Description of the CBGMode1 46

3.4.3 	State Transition Diagram 47

3.5 Potential Strengths 49

3.5.1 	Adaptation 50

3.5.2 	Multifunctionality 53

3.5.3 	Other Strengths 57

3.6 Space Occupying Behaviours 58

3.7 An Instantiation of the CBG Model for Space Occupying Behaviours 62

3.7.1 	Synthetic Visual Input Pattern 62

3.7.2 	Virtual Motors 64

3.7.3 	The State Module 64

3.7.4 	The Motivation Module 65

3.7.5 	The Computational Motor Control System 65

3.8 Conclusion 69

4 Learning Single Behaviours: Combining the CBG Model with

the MENL Learning Algorithm 	 71

4.1 	Related Work72

4.1.1 	Evolved Behaviours72

4.1.2 	Reinforcement Learning 75

4.2 	Multi-agent Based Evolutionary Artificial Neural Network with

Lifetime Learning (MENL) 79

4.2.1 	Strategies Used in MENL 80

4.2.2 	Work Engine of MENL 89

4.2.3 	Adaptive Learning of MENL in the CBG Model 92

4.3 	Implementation of MENL for Space Occupying Behaviours . . . 94

4.3.1 	ANN Structure 95

TABLE OF CONTENTS
	

vi

4.3.2 	Evolution Strategies 95

4.4 	Experiments 98

4.4.1 	Experimental Setup 98

4.4.2 	Exploration Learning in Various Unknown Environments . 100

4.4.3 	Hand-crafted Exploration in Unknown Environments 	. . . 126

4.4.4 	- 	Summary 131

4.5 	Emergent Behaviours 132

4.6 	Conclusion 134

5 Learning Multiple Behaviours: Combining the CBG Model with

the MENL Learning Algorithm 137

5.1 Related Work 137

5.2 Biological Multifunctional Neural Networks 141

5.3 Multifunctional Learning of the CBG Combined with MENL . . . 142

5.4 Experiments 144

5.4.1 	Multifunctional Learning and Independent Learning. . . . 144

5.4.2 	Learning Two Space Occupying Behaviours Together in the

Simple Environment El 148

5.4.3 	Learning Two Space Occupying Behaviours Together in the

More Complex Environment E2 159

5.4.4 	Learning Three Space Occupying Behaviours Together 	. . 165

5.4.5 	Interesting Trajectories 170

5.4.6 	Summary 176

5.5 Conclusion 177

6 Conclusion 	 179

6.1 	Contributions183

6.2 	Future Work185

A Statistical Techniques 	 189

B Experimental Results of Successive Exploration Learning in E3

After Fresh Exploration in E2 	 190

TABLE OF CONTENTS
	

vii

Bibliography 	 192

Chapter 1

Introduction

1.1 Motivation

Virtual environments are at the heart of virtual reality. They are computer-

generated worlds that the human user can participate in and interact with. For

enhanced fidelity virtual environments can be designed to be inhabited by virtual

living creatures. For constructing realistic virtual lives in virtual environments,

the generation of believable behaviours for these lives is a very important fac-

tor. This is because the human user recognises not only form, colour and sound,

but also changes in behaviours [9]. Additionally, manipulation of a virtual life is

only realistic if this life responds appropriately to the user's actions. Although

believable behaviours are so important to virtual lives, how to attach them to

computer-generated virtual lives in real-time is a thorny problem that has trou-

bled researchers for a long time.

Traditional approaches to creating moving virtual objects by computers are

to employ skilled artists and animators to generate an animation off-line and

then present it with existing graphics techniques. By using animation techniques

such as keyframe, kinematics, and dynamics, skilled human animators have pro-

duced very realistic characters in Disney animation and many movies like Batman

and Terminator. However, the very intensive and time-consuming labour of hu-

man animators in specifying every motion of the characters makes traditional

1

animation unsuitable to real-time virtual environments. Most importantly, the

animated characters created in traditional animation are very rigid and fixed

objects which have only the move sequences predefined by human animators.

The behaviours of these characters can only be created beforehand and replayed

afterwards. They are not flexible, re-organisable, and reusable behaviours that

are able to adjust to various changes spontaneously. It is obvious that those

completely hand-crafted animated characters are not true virtual lives that are

capable of living in continuously changing virtual environments.

Recent development in Behavioural Animation [133] is a new attempt to give

virtual lives real-time, believable behaviours. The key idea of behavioural ani-

mation is to impart to virtual lives useful knowledge about behaviours so that

the lives can decide themselves when, where, and how to move their bodies ap-

propriately according to environmental conditions. This is just what real lives

do in nature. Therefore, virtual lives in behavioural animation are actually self-

animated by simulating some of the natural mechanisms fundamental to life. To

date, a series of virtual lives have been produced in both academic and com-

mercial areas, including virtual plants, virtual animals, and even virtual humans.

Some representative examples are the "boids" of Reynolds [133], artificial fish of

Terzopoulos et al. [162], and the synthetic dog of Blumberg [20]. These virtual

lives have presented some "life" characteristics by simulating the real lives from

different directions. Some virtual lives, for example, can grow up and this growth

is somewhat affected by certain environmental changes. Some virtual creatures

can move in a virtual environment based on their perceived environmental in-

formation. In addition, they can accomplish some simple tasks when moving

around. Some creatures have enhanced believability and even friendliness when

emotional state and changes are produced. Compared with traditional animated

characters, the virtual lives created by behavioural animation have exhibited

much more flexibility and autonomy.

Nevertheless, the design of previous virtual lives suffers from several serious

limitations. One important limitation is that these virtual lives lack an efficient

learning capability to improve their behaviours continuously according to knowl-

2

edge gleaned by themselves. Although some virtual lives are endowed with certain

learning skills, the behaviours of the previous virtual lives heavily depend on hu-

man design and are not improvable once they are set or learned. It is usually

the human designer that tells the virtual lives what to do in what situations by

providing some behaviour control rules. The virtual lives can execute or learn

a few behaviours in some recommended conditions, but they may not be able

to adjust to new, complex, or even unknown environmental changes by using

their own knowledge. In consequence the behaviours of these virtual lives are

in fact confined to a scope prescribed by the human designer. Because virtual

environments are real-time environments that are dynamically changed by the

participation of the human user, and because these changes are not always pre-

dictable, it is questionable whether these virtual lives can survive the changes

in virtual environments. In particular, the virtual lives may face a "fatal" prob-

lem in some urgent, unexpected situations, if they cannot learn to improve their

behaviours so as to find a way out of their difficulties by themselves.

Another limitation in previous work on virtual lives lies in their incapacity to

reuse knowledge and mechanisms for generating more than one behaviour. Gen-

erally, those virtual lives require the human designer to carefully design necessary

executing details of every designated behaviour, even when the common knowl-

edge and shared mechanisms across some related behaviours have been given to

the lives already. It is obvious that, if the virtual lives can reuse the shared mech-

anisms and transfer the knowledge they have learned from one behaviour for the

implementation of other behaviours, the generation of new behaviours would be

much easier and more efficient in both space and time. This kind of multifunc-

tionality of performing several behaviours together is common to real lives that

can produce numerous behaviours in a limited anatomical structure, by sharing

many neural circuits in executing functionally related behaviours [43, 122]. Due

to the lack of knowledge sharing and transference, the design effort in designing

behaviours for virtual lives is usually very high. Moreover, the adaptive and au-

tonomous ability of the virtual lives is limited too. Ideally, a virtual life should

be able to learn by itself how to apply what it acquires from one behaviour to an-

3

other if there is something in common in these behaviours. For achieving powerful

adaptation and autonomy in virtual life behaviours, there is still much remaining

to be done.

1.2 Aims

This thesis presents an adaptive and multifunctional Computational Behaviour

Generation model for virtual lives, and in particular, for virtual creatures, in an

attempt to address the above limitations in recent work on virtual creatures. (We

are especially interested in the behaviours of virtual creatures because creatures

are always much more active and flexible relative to plants, and their behaviours

may demonstrate our behaviour model more easily and clearly.) By being adap-

tive, we hope that a virtual creature is able to learn to cope with new, com-

plicated, unpredictable situations encountered during its lifetime, by using the

information available in its environment without human intervention. With the

multifunctionality property, a virtual creature should learn to perform multiple

functionally related behaviours with efficiency and economy in time and space,

by taking advantage of the shared knowledge and mechanisms across these be-

haviours. With efficient adaptive and multifunctional learning ability, virtual

creatures can have enhanced adaptation and autonomy in their behaviours.

Given our objective to construct adaptive and multifunctional behaviours in

virtual creatures, is it possible to develop a behaviour generation model that

learns to improve its behaviours continuously, and learns multiple behaviours

more efficiently than sequential learning? Our answer to this question is defi-

nitely positive. We propose a hierarchical Computational Behaviour Generation

(CBG) model and a novel learning algorithm, Multi-agent based Evolutionary ar-

tificial Neural network with Lifetime learning (MENL), to achieve adaptation and

multifunctionality in virtual creatures. As the CBG model provides the neces-

sary mechanisms, the MENL learning algorithm learns correct decision-making of

motor action selection for various behaviours in various environments. The gen-

erated behaviours are adaptive and multifunctional. The principles underlying

El

the behaviour model and the learning algorithm will be introduced in Chapter

3 and Chapter 4 respectively. We will demonstrate that this behaviour model

combined with the learning algorithm works in adaptive learning in Chapter 4

and in multifunctional learning in Chapter 5.

1.3 Methodology

During the construction of the adaptive and multifunctional Computational Be-

haviour Generation model, many ideas have been drawn from biology (especially

neuroscience) and other fields of computer science, such as agents, artificial neural

networks, evolutionary algorithms, robotics, and so on.

The architecture of the Computational Behaviour Generation (CBG) model

itself is inspired by recent studies of the natural behaviour control system in the

brain [79, 29]. In particular, the hierarchical structure of the natural behaviour

control system, the input from body states and environmental information, the

adaptation by learning, and the generality in various behaviour systems are the

main sources for us to build the CBG model. The CBG model finally constructed

holds a mixture of top-down and bottom-up control information flows, which is

similar to the natural behaviour control system. In consequence the CBG model

is able to utilise the bi-directional information flows to compare its intended

actions with actual executed results, and hence learn to improve its behaviours

from both successful and unsuccessful experiences. Because the CBG model has

a similar hierarchy to the natural behaviour control system and because this

hierarchy maintains considerable generality for different behaviour systems, the

CBG model also has the capability to produce multiple behaviours in the same

structure. The architecture provides the CBG model with the potential strengths

of adaptation and multifunctionality.

We propose a Multi-agent based Evolutionary artificial Neural network with

Lifetime learning (MENL) to instantiate the latent power of adaptation and mul-

tifunctionality in the CBG model. MENL is composed of an artificial neural

network evolved by Evolutionary Strategies (ESs). It uses multi-agent system

5

technology to maintain the diversity of solutions. Meanwhile, MENL adopts a

concept of lifetime learning to achieve generalisation in solutions, and employs a

relaxed and general fitness function design to search for suitable solutions in a

broad space. When the MENL learning algorithm is introduced into the CBG

model to select suitable motor actions, the CBG model generates improved be-

haviours continuously, which are adaptive to varied situations and environments.

The implementation of multifunctionality in the CBG model combined with

MENL is also inspired by the natural behaviour control system. In nature, there

are many multifunctional neural networks sharing some or even all of their neu-

rones to perform different but functionally related behaviours. Because the fitness

function designed in the MENL learning algorithm involves both general sensory

feedback and specific behavioural objectives, MENL can easily learn several ac-

tion selection policies for implementing several related behaviours in the same

behaviour control model. These are the hierarchical architecture of the CBG

model and the common knowledge shared across related behaviours that help

new behaviours to be learned and implemented smoothly based on previously

learned behaviours.

The potential of the adaptive and multifunctional Computational Behaviour

Generation model is demonstrated by learning several space occupying behaviours'

that are common and fundamental to natural animals. Using the CBG model

combined with the MENL learning algorithm, a virtual creature has learned many

space occupying behaviours, including exploration, goal reaching and wandering,

both independently and jointly in various unknown environments.

1.4 Organisation of the Thesis

In the following chapters, we will present and demonstrate our proposed adaptive

and multifunctional Computational Behaviour Generation (CBG) model in detail.

Research work relevant to virtual lives, the CBG model, and the MENL learning

'Behaviours like exploration, navigation, wandering, etc., which involve movement from
one place to another, are called space occupying behaviours in this thesis. The corresponding
movement is space occupying movement. See Section 3.5 for more information.

191

algorithm will be introduced. Because the design of the CBG model, MENL,

and their adaptive and multifunctional learning has touched upon many different

areas in neuroscience and computer science, a review of the research work related

to these topics will be delivered in specific chapters when their design is explained.

The rest of the thesis is structured as follows. Chapter 2 contains an overview

of past work on believable behaviours of virtua[lives. It is followed by a brief

discussion on our opinions of virtual lives in virtual environments. This includes

a working definition of Virtual Life and some key issues which we think are

important to the construction of virtual lives. This chapter helps us have a basic

understanding of virtual lives. It also shows how our work fits into virtual life

research as a whole.

Chapter 3 describes the architecture of the Computational Behaviour Gener-

ation model. It first summarises the fundamental concepts in biological neural

control for behaviours, and then presents the CBG model based on these concepts.

Potential strengths of the CBG model including adaptation, multifunctionality,

and some others are discussed next. An instantiation of the CBG model for

generating space occupying behaviours is introduced too.

Chapter 4 presents the novel learning algorithm of MENL and shows how the

CBG model works with MENL to learn single behaviours adaptively. Natural

space occupying behaviours, which are fundamental to natural creatures, are

used as sample behaviours for the CBG and MENL to learn. In this chapter, a

series of experiments on learning exploration in various unknown environments

has been conducted for demonstrating the adaptive learning ability of the CBG

with MENL. There are several natural and robust behaviours emergent from these

experiments.

Empirical experiments on demonstrating the multifunctional learning ability

of the CBG and MENL are shown in Chapter 5. Several space occupying be-

haviours, such as exploration, goal reaching, and wandering, have been learned

in an integrated way in the same behaviour control model and the same MENL.

Multifunctional learning has shown better learning performance when compared

with learning every behaviour independently. Moreover, many interesting nay-

7

igation trajectories have illustrated the reliability and continuously improving

capability of multifunctional learning.

The adaptive and multifunctional CBG model presented in this thesis is finally

concluded in Chapter 6, with a reflective look at what has been accomplished and

some promising directions for future work.

Chapter 2

Virtual Life in Virtual Environments

In this chapter, we give an introduction to the study of Virtual Life. We first

point out the importance of presenting virtual lives in virtual environments, and

then present a review of previous work on virtual lives. In order to get a deeper

understanding of virtual life, we analyse the concept of Virtual Life and how to

construct believable virtual lives in virtual environments. In particular, we sug-

gest that the behaviours of a virtual life should be at least autonomous, adaptive,

and interactive. Following this discussion is a simple comparison between virtual

lives and real lives. Next, we outline our work by putting it in the context of

virtual life research.

2.1 Presentation of Virtual Life

Virtual Reality (VR) has become a conspicuous technology since its introduction

around 1985, due to its ability to provide the effect of immersion in a realistic

computer-generated world [31]. Through the use of various sensorial channels

(these channels could be visual, auditory, tactile, smell, taste, etc), the human

user can sense and interact within this world in real time, in which virtual ob-

jects have spatial presence. This computer-generated world providing realistic

computer simulation and real-time interaction is called a Virtual Environment

[30].

Virtual environments play a very important role in virtual reality. They are

the virtual place to immerse the human user and the main sphere for his activity.

Convincing immersive virtual reality requires high fidelity virtual environments

[9]. To provide high realism in virtual environments, we need to solve a series of

key issues, including the ease of interaction, the high quality of the visual, audi-

tory, and other sensorial presentation, and the realistic presence of virtual objects

in virtual environments. The virtual objects presented in virtual environments

include not only lifelike static objects, such as sky, mountains and buildings, but

also vivid and active lives, such as plants, animals and even humans. Those

simulated lives, called virtual lives, will help virtual environments to be more dy-

namic and similar to the real world. Like natural living things, virtual lives have

lifelike visual shapes and appearances, and believable behaviours. They inhabit

the virtual world subject to physical laws. They can receive information from

the outside, behave in the virtual world naturally, and interact with real people

and other virtual lives properly. They may grow, reproduce, and die. They may

even have their own beliefs, desires, and intentions. From virtual plants to vir-

tual creatures, from virtual insects to virtual humans, virtual lives with different

complexity will have different characteristics, abilities, and intelligence. A timid

virtual animal, for example, runs away when perceiving a human presence, but

a virtual pet will run to the person enthusiastically, and the virtual human will

talk to it with gestures and emotions. With realistic and dynamic virtual lives,

a virtual environment has enhanced fidelity, and helps to maintain the illusion in

the user that it is real.

2.2 Previous Work

In this section, we review the work on modelling virtual lives that have life char-

acteristics. This will enable us to carefully position our work and give the neces-

sary background information to understand the technology used in current virtual

lives. We embark on the modelling work of virtual plants, then move on to the

modelling of virtual creatures. Both achievements and drawbacks are introduced

in each work.

10

2.2.1 Virtual Plants

As plants are an indispensable part of nature, the computational simulation of

plants is also an essential topic in the study of virtual lives. The methodology

used to model living plants should take many important factors into account,

such as the growth, dynamics and ageing of plants, and external factors like soil,

water flow, fertilisers and even the damage caused by insects to the plants.

The first computer model of tree structure is thought to have been constructed

by Honda [71]. This model used parameters to define the skeleton of a tree. Aono

and Kunii then proposed a three-dimensional geometric model containing a set

of rules [7]. By utilising some nonuniform deviators (i.e., attractors and/or in-

hibitors), this model could bend the branches at particular growth levels without

affecting others. Oppenheimer formed trees following fractal theory [117]. He

presented a fractal tree model and specified parameters at each branch, including

branching angle, the size ratio between the main stem and branch, and the num-

ber of branches per stem. De Reffye et al. had impressive results on modelling

plants with a procedural model [131]. With the integration of time, their model

could grow to a certain age by using probabilities of death, pause, ramification

and reiteration. All of this research work has produced considerably realistic plant

images, however, the simulation of the dynamic characteristics of plants and their

interaction with the external world were not a focal point of these methods.

2.2.1.1 Prusinkiewicz

The pioneering work on modelling plants with "life" properties has been con-

ducted by Prusinkiewicz et al. Their work utilised extended string rewriting

systems (h-systems) to describe plants as configurations of modules in space

[127]. Therefore, the essence of plant development at the modular level could be

conveniently captured by an L-system that replaced individual parent, mother or

ancestor modules by configurations of child, daughter or descendant modules. An

L-system based virtual plant began with an initial string called the axiom, and

proceeded in a sequence of discrete derivation steps. In each step, a set of rewrite

rules defined how to substitute modules in the predecessor string by successor

11

modules. The applicability of a rewrite rule might depend on a predecessor's

context (in context-sensitive L-systems), values of parameters (in parametric L-

systems), or on random factors (in stochastic L-systems). The resultant strings

were interpreted as geometric commands that manoeuvred a LOGO-style turtle

[128] in three-dimensions. As a consequence, the development of virtual plants

could be presented geometrically from birth to death.

Recent work by Prusinkiewicz et al. has taken the effect of environments

into consideration when they modelled virtual plants [101]. In this study, plants

and environments were treated as two separate processes, communicating via a

standard interface. An open L-system embedded with communication modules

was introduced to specify plant models that could exchange information with

environments. This study has been successfully applied to capture collisions

between plant branches, the propagation of clonal plants, the development of

roots in soil, and the development of tree crowns competing for light.

An important issue in Prusinkiewicz's virtual plants is that they have only

limited developmental and interactive characteristics, most of which are generated

by prescribed modules and rewrite rules. It would be desirable to design virtual

plants that can infer themselves growth rules, response rules, and interaction rules

with the environment and other living organisms, and have them be changeable

with internal/external conditions. Another problem in the modelled virtual plants

is that an abstract mathematical formulation of L-systems is absent, which would

make their construction more powerful. However, as Prusinkiewicz has said, the

"construction of such a theory still seems remote" [128]. It is mainly because of

the "lack of a precise mathematical description of plant form".

2.2.2 Virtual Creatures

There have already been a number of impressive efforts in the area of modelling

creatures in a virtual world. Here we highlight a few of the most important

examples.

12

2.2.2.1 Boids

The fundamental work on behavioural animation has been done by Reynolds

[133], who modelled flocks of birds and schools of fish by specifying the behaviours

of the individual animals that made up the group. The aggregate motion of the

simulated flock was the result of the dense interaction of the relatively simple

behaviours of the individual simulated birds. Each individual in the flock, named

a boid, was a point mass attached with a local 3D coordinate system and aligned

with its velocity. Based on its local perception of the environment, a boid's

behavioural controller computed a steering force at each iteration step of the

simulation through arbitration among a series of possible behavioural desires:

collision avoidance with nearby boids, velocity match with nearby boids, staying

close to nearby boids, and attempting to fly towards a goal. These desires were

expressed as acceleration requests that were computed and added in a priority

order until the magnitude of the resulting acceleration exceeded the maximum

allowed acceleration. Two types of collision avoidance approaches were imple-

mented: one was based on the force field concept which postulated a field of

repulsion force emanating from the obstacle out into space; the other was called

steer-to-avoid by which the boid found the silhouette edge of the obstacles closest

to the point of the eventual impact, and aimed itself to pass by the edge with a

suitable tolerance. The former approach may work in undemanding situations,

but the latter is a better simulation of a natural bird guided by vision.

The boid animation designed by Reynolds is per se superior to the traditional

animation techniques that require detailed pose specifications. In each simulation

run of the boid flock, the animator only provided the initial parameters of the

boid model (e.g., initial position, heading, velocity, etc), and all other aspects of

the flock would be implemented automatically and deterministically. The same

algorithm of Reynolds' boid model was used to generate some behaviours of the

bats in the movie Batman II.

Generally speaking, Reynolds' work only simulated the very simplistic, iso-

lated behaviours of low complexity. His boids had simple desires to avoid colli-

sions or fly to a given point in space according to confined principles. Therefore,

13

these boids had similar behaviours almost everywhere. In addition, the behaviour

systems of the boids were specific to little birds or fish, rather than a general be-

havioural model for many virtual creatures. Sometimes very careful tuning of the

low-level parameters were required in order to generate specific behaviours. Nev-

ertheless, Reynolds' original work represents a good example of blending low-level

behaviours to arrive at an interesting aggregate motion, and opened the -minds

of researchers to generating animations by building behaviour controllers.

2.2.2.2 Artificial Fish

The impressive artificial fish created by Terzopoulos et al. [64, 162] have shared

with Reynolds' original work a skillful manual design of physical morphology and

behavioural control mechanism. Unlike Reynolds' boids, the artificial fish had a

fairly complicated physics-based model that consisted of 23 nodal point masses

and 91 springs [162]. Moreover, the artificial fish had a more complex behaviour

system than that of boids, and could conduct a number of more complex activities,

including mating, feeding, learning and predation.

The behaviour system of the artificial fish mediated between its perception

system and its motor system. Synthetic vision was adopted and focused on only

some of the most useful information for motion. Based on the incoming sens-

ing information, the fish's habit and the fish's mental states (i.e., hunger, libido

and fear), an intention generator generated dynamic goals for the fish, such as

to hunt and feed on prey. This generator also chose behaviour routines for ac-

complishing the goals according to a fixed and prioritised set of rules, and the

behaviour routines in turn drove appropriate motor controllers to control the sim-

ulated muscles of the fish. The artificial fish possessed eight behaviour routines:

avoiding-static-obstacle, avoiding-fish, eating-food, mating, leaving, wandering,

escaping and schooling. To avoid dithering, the intention generator employed a

simple memory mechanism that could "remember" one interrupted intention at

a time.

In the early design of the artificial fish, their behaviour control was carefully

crafted by using knowledge gleaned from the biomechanics literature. Later, some

14

learning techniques were introduced to train the fish to learn locomotion skills

[64]. Simulated annealing, a stochastic optimisation algorithm, was used to set

the parameters controlling muscular coordination of the artificial fish to produce

efficient swimming. By applying a short-time Fourier analysis, the learning pro-

cess then abstracted control functions that produced efficient swimming into a

compact representation. Simulated annealing was finally applied again to opti-

mise over the selection, ordering and duration of abstracted controllers so that

the artificial fish could perform some compound skills like the stunts a dolphin

performs in marine animal parks.

Terzopoulos' fish have achieved striking visual accuracy and realistic look-

ing motion. Nevertheless, the large degree of artificial design by the animator

restricted the fish's autonomy and its application to more dynamic and com-

plicated environments. The fixed rules of the intention generator, for example,

determined that avoiding obstacles always dominated avoiding predators - this

may cause "fatal" problems to the artificial fish when they are much nearer to

a predator than an obstacle. When training the fish to perform stunts, the ani-

mator needed to introduce additional "style" terms into the objective function of

the learning process so as to afford extra control of the learning. As the number

of tasks grows, the very delicate human design of such appropriate learning guid-

ance would be very difficult and the optimisation complexity of learning would

be very high. Furthermore, learning by simulated annealing is usually too time

expensive to be made to work in real time animation.

2.2.2.3 Synthetic Dog

Faced with the difficulties of designing real-time and natural interactions, sev-

eral researchers have drawn inspiration from other disciplines, such as biology.

Blumberg, one of those pioneer researchers, has developed a behavioural control

mechanism inspired by findings in ethology (the study of animal behaviours), in-

cluding behaviour hierarchies, releasers, and fatigue [20, 21]. These findings were

used to control a synthetic dog which could interact with others and with the

user in a 3D software environment.

15

The synthetic dog used synthetic vision to extract useful information (e.g.

an object, the user's gesture, etc) from an image rendered from the creature's

viewpoint. The basic structure of the creature consisted of three parts (Geometry,

Motor Skills and Behaviour System) with two layers of abstraction between these

parts (Controller and Degrees of Freedom). The abstraction layers provided a

common interface between the three basic parts. As a consequence, the layered

behaviour control architecture could be generalisable and extensible.

The purpose of the Behaviour System of the synthetic dog was to determine

the "right" set of control signals to send to the Motor Skills system, to best satisfy

the dog's goal. Groups of behaviours competed for control of the creature accord-

ing to their self-assessed values and their mutual inhibition via the "avalanche

effect" [107]. That is, the competition was conducted from behaviour groups

to subgroups and so on, until a leaf behaviour was selected. Every behaviour

was responsible for assessing its own current relevance or value based on its Re-

leasing Mechanisms (objects to filter sensory input and identify objects and/or

events relevant to the Behaviour), its Level of Interest, and the Internal Variables

(strength of motivations). The winning behaviour sent its commands directly to

the motor systems, nevertheless, those behaviours that lost out in competition

were still able to express their preferences or suggestions for actions as Secondary

commands or Meta-commands. Due to the usage of mutual inhibition and the

level of interest of behaviours, the chosen activities neither dithered among mul-

tiple activities nor persisted too long in a single activity. They were capable of

interrupting a given activity if a more pressing need or an unforeseen opportunity

arose.

In Blumberg's behaviour control mechanism, the motor system was hard-

wired and learning was not yet integrated into the motor skills generation. The

only learning happened in the Behaviour System in which temporal-difference

reinforcement learning [151] was adopted to learn instrumental conditioning and

classical conditioning action selections. Therefore, the synthetic dog was able to

learn how to apply its behaviours in different contexts so as to satisfy previously

unassociated motivational variables and how to better predict known contexts.

16

Motivational variables acted as the reinforcement variable that drove learning.

When the motivational variables underwent a significant change, the dog sought

to explain the change in terms of its recent behaviours and the recently changed

objects in the environment.

The behaviour control mechanism proposed by Blumberg has given us a good

example of how Ideas from ethology may offer valuable contributions to the con-

struction of interactive and intelligent virtual creatures. The advantages of this

mechanism brought by ethology were embodied in relevance (do the right thing),

coherence (show the right amount of persistence), and extensibility of behaviours

of virtual creatures. Nevertheless, full design of every behaviour and their com-

petition were required for generating correct actions in the synthetic dog. Since

the motor system was fixed, the dog had strict behaviours that could not be im-

proved or extended in new situations or for accomplishing new motivations. The

only learning in the Behaviour system resulted in a combination of existing be-

haviours (like the learning of artificial fish), rather than learning of the behaviours

themselves. In addition, because the behaviour model of the synthetic dog was

built upon the study of ethology, which is more concerned with an explanation

at the behaviour level (i.e., what the behaviours are and how they interact), the

inherent mechanisms behind behaviours (i.e., how behaviours are generated at

the neural level) are unclear.

2.2.2.4 Virtual Humans

In Switzerland, the Computer Graphics Lab directed by Thalmann has endeav-

oured to model and animate the most complex living system - human being

[154]. This lab has created a group of virtual humans that have impressive human

appearances and behaviours. These virtual humans used articulated structures

as the graphical and animation model. The animation was based on several inte-

grated methods and their blending: keyframe, inverse kinematics, direct/inverse

dynamics, and biomechanics-based animation. The virtual humans were aware

of an h-system based virtual environment through different kinds of simulated

sensors, including synthetic vision, virtual audition and virtual tactile sensors.

17

Guided by their perceptions, virtual humans could perform a series of human be-

haviours such as visually directed navigation, tennis playing, and communication

with other virtual humans and even the real human user.

Most of the behaviours of virtual humans were simply rule-based, but a few of

them had certain adaptive ability. In visually directed navigation, for instance,

the navigation tasks were decomposed into global navigation and local navigation

[116]. In global navigation, a dynamic octree served as global 3D visual memory

and allowed a virtual human to memorise the environment that he "saw". Based

on the octree, heuristic search algorithms were used to search possible routes to

allow the virtual human to reach global goals. The local navigation strategies

were implemented as a series of Displacement Local Automata (DLA), which

executed prescribed movements, such as follow-the-corridor, avoid-obstacle, clos-

est-to-goal, and so on. In tennis playing, a specialised "tennis play" automaton

was applied in virtual humans to control the tracking of the tennis ball by the

vision system. It estimated the future racket-ball collision position and time to

perform a hit with given force and a given resulting ball direction. In the com-

munication between virtual humans, information defining the behaviours in one

virtual human was passed directly to a second virtual human. Therefore, a virtual

human could easily know other virtual humans' postures and then decide corre-

sponding communication actions according to its attitude, character, emotional

states, relationships with the other virtual human, and its desire to communicate.

During the communication between virtual humans and real humans, a virtual

human used an image processing program to match a real human's posture to one

of the predefined postures repertoire. Recent studies of virtual humans included

the application of virtual humans in network games and group behaviours.

The virtual humans constructed by Thalmann et al. have had very realistic

visual effects. However, their behaviours were quite mechanical. Most behaviours

of the virtual humans were prescribed. Although some learning and planning were

introduced into certain behaviours, they were usually very limited and hence

could not be applied to dynamic or unknown environments. In addition, those

mechanical behaviours always resulted in the same or very similar behaviours in

different situations and even on different virtual humans. Sometimes, they could

generate the always correct behaviours (e.g., in the simulation of tennis playing),

and this is almost impossible in reality. Another problem in virtual humans is

that they are lacking an integrated, systematic behaviour control model. The

behaviours of the virtual humans were studied and implemented from various

aspects and they were relatively independent of each other. In order to simulate

the congruous, sophisticated behaviours of human beings, a virtual human needs

a comprehensive behavioural model that can generate behaviours systematically

and with powerful autonomous and adaptive abilities.

2.2.2.5 Woggles

Bates et al., studied the creation of believable agents in the Oz project that pro-

posed to construct artistically effective simulated worlds [12, 13]. Bates et al.

believed that one way to create such agents was to give them a broad set of

integrated capabilities, even if some of the capabilities were somewhat shallow.

Therefore, Bates' agents, called Woggles, had simple reactive behaviours, emo-

tions, and intentionality. The action system for generating reactive behaviours

was a rule-based, goal-directed architecture. It had no planning, learning and

almost no world modelling. Instead, it used a minimalist conception of goals to

manipulate a set of behaviours.

Woggles actually placed great emphasis on conveying their emotional states

and intentionality through movement. The goals, and the agents' appraisals of

events with respect to the goals, were key to producing a clearly defined emotional

state in the creature. Each emotion was mapped into a behavioural feature in a

personality-specific way, which in turn affected the action-generating rules of the

behaviour architecture.

Although Woggles have exhibited plenty of emotional changes, most of their

behaviours and emotional states were artificially designed and very limited. The

world that the Woggles inhabited was also constrained to a certain degree. In

order to help the user to imagine that the simulated world is real, Woggles may

need have not only broad capabilities, but also deep capability in each component.

19

2.2.2.6 Evolutionary Virtual Creatures

Worthy of mention is the study of Sims on evolutionary virtual creatures whose

morphology and behaviour were both generated by using genetic algorithms [148,

149]. This study is different from previous work in which the control system for

behaviour is generated for fixed, user-defined structures. The genotypes of the

virtual creatures were structured as directed graphs of nodes and connections.

Different fitness evaluation functions were used to rate the creatures' capabilities

for generating some specific behaviours including swimming, walking, jumping,

following, and competing with another creature for resources. As the virtual

creatures were evolved towards certain goals, their morphology and behaviour

showed conspicuous autonomy and flexibility, although these creatures were only

composed of simple cubes.

The evolutionary virtual creatures with simple shapes focused more on evo-

lutionary procedures than the simulation of real creatures. Apart from ensuring

that some constraints are fulfilled, the evolution may evolve in its own way and

result in interesting but unreasonable creatures. Therefore, the user or human

designer has virtually no control over what is going on in the evolution of the

virtual creatures. Besides, the evolution of those evolutionary creatures is also

the most time consuming process. For example, an evolution with population

size 300, run for 100 generations, may take around three hours to complete on a

parallel Connection Machine CM-5 with 32 processors. The long time evolution

and the lack of control make those virtual creatures unsuitable to live in real-time,

interactive virtual environments, at least until processors speed up more.

2.2.2.7 Commercial Products

Apart from academic research work in virtual lives, there have also been some

commercial products completed in the entertainment industry. Typical examples

are Creatures produced by Millennium Interactive Ltd [41], SiinLife and El-Fish

by Maxis [100], Dogz and Catz by PFMagic Inc. [123], Fin-Fin by Fujitsu [53],

Galapagos by Anark [3], and Black & White by [19]. These virtual animals,

acting as virtual pets, had lovely shapes and appearances, together with some

20

immediate actions and/or emotions to respond to the human user. By using

some artificial intelligence techniques, which were relatively simpler than those

proposed in the academic work, the virtual animals possessed some degree of

autonomy, intelligence and interactive ability. Dogz, one of the very appealing

commercial products, could mature into a full dog over time, be fed by the user,

play fetch and tug-of-war, and learn to do tricks in return for rewards. Black &

White, a state-of-the-art computer game, utilised a standard BDI (Belief, Desire,

and Intention) architecture [26, 129] augmented in many ways and could learn

to achieve various goals by imitation. However, like many other commercial

products, Black & White creatures usually had a precomputed plan library in

which lists of suitable actions can be chosen. It would be better if the creatures

knew how to plan dynamically to satisfy a goal. In order to achieve real-time

interaction on personal computers that are popularly used in home entertainment,

the virtual worlds and animals in many commercial products were over simplified

and looked a bit cartoonish. Creatures, for example, inhabited a "two-and-a-half

dimensional" world: a 2D platform environment with multiplane depth cueing so

that objects can appear, relative to the user, to be in front of or behind each other

[58]. Nevertheless, these virtual animals worked rather well as entertainment.

2.2.3 Summary

Modelling dynamic, lifelike behaviours of living organisms by the computer is

a recent endeavour, nevertheless, much conspicuous work has been done in this

area. In the new approach of behavioural animation, many virtual lives have

been constructed, including virtual plants, collective boids (birds), artificial fish,

synthetic dog, virtual human, and some other virtual creatures. These virtual

lives may have or may not have lifelike abstract body shapes and appearances.

But their behaviours all exhibited autonomy to a certain degree, by following

some behaviour generation strategies describing what to do in what situations.

In particular, the boids created by Reynolds have produced lifelike collective be-

haviours of small, simple organisms. These behaviours are very difficult or almost

impossible to create in the traditional animation approach. The artificial fish and

21

synthetic dog have been endowed with not only impressive visual appearances,

but also certain learning ability of organising behaviours. Some virtual lives, like

Woggles, have taken some other characteristics of living organisms, such as emo-

tions, intentionality, and interaction with the external world and/or the human

user. These characteristics helped a virtual life to be more friendly and believable.

Although previous work on virtual lives has obtained great achievements, it is

fax from perfect yet. Each work has many of its own problems, as we mentioned

in relevant sections. Generally speaking, the behaviours of those virtual lives

are still quite limited to human designed rules, and are not suited to changed

environments and applications. Most virtual lives have only repeatable, designed

behaviours to certain prescribed stimuli, as in virtual plants, boids, virtual hu-

mans, Woggles, and some commercial products. A few virtual lives have learning

ability, but this learning is quite limited and usually requires detailed knowledge

of learning every single behaviour, such as the learning shown in the artificial fish

and the synthetic dog; otherwise, the learning of behaviours is often very hard to

control, like the behaviours shown in the evolutionary virtual creatures of Sims.

These drawbacks in those virtual lives have resulted in much constrained be-

haviours. It would be much better if the study of virtual lives could be advanced

in some way so that virtual lives can learn themselves how to behave well so as

to suit new changing situations and motivations, based on their perceived exter-

nal environmental information, past experiences and obtained knowledge from

other behaviours. The virtual lives constructed in this way will relieve the hu-

man designer from delicate design work, and most importantly, enhance the lives'

autonomy and adaptation abilities. To generate believable behaviours in virtual

lives suitable to various environments and applications, further study of virtual

life and appropriate behaviour generation strategies is an immediate requirement.

2.3 Virtual Life

In this section, we state our views on Virtual Life, and especially, on the con-

struction of virtual lives in virtual environments. To date, the phrase "virtual

22

life", together with its derivatives like "virtual plants", "virtual humans", "vir-

tual creatures", and "virtual robots", have been often used to refer to simulated

objects in virtual worlds, which have life properties. However, little work has

been done to study and explain the concept of Virtual Life systematically. Inter-

estingly, there is not yet a clear definition of "virtual life". So, in this section, we

first give a working definition to "virtual life" and then analyse it from a system-

atic viewpoint. We hope this exploratory work will stimulate more investigation

and development of virtual lives.

2.3.1 Definition

Whenever a concept involves abstraction, it is hard to define it with absolute

precision. In fact, there is not yet an exact definition of "life". Many biologists

try to define "life" by stating what it looks like and what it does. So here we

would like to use the same method to define "Virtual Life".

A Virtual Life is a computational entity that simulates real lives in virtual

environments. It has a lifelike visual shape and appearance, and believable be-

havioural patterns. Inhabiting a virtual environment, a virtual life can perform

actions autonomously, adapt to environmental changes, and interact with the

outside, especially with the human user, by characteristic activities.

People may have come across some other terms that are very close to the

study of simulation of living things, including "digital actors", "synthetic agents",

"softbots", and "avatars". These terms, together with "virtual life", sometimes

are used synonymously. However, their origins can be traced back to disparate

applications that are different in terms of scope and purpose. In terms of the

simulation of real lives in virtual environments, we prefer the term, "virtual life".

2.3.2 Construction of Virtual Life

For a true feeling of presence, convincing graphics and believable actions of a vir-

tual life are both important. Realistic action can enhance the realism of graphics,

while geometric and texture fidelity can make actions more intriguing. There-

23

fore, visually realistic shape and appearance and believable behaviours are two

important components for constructing virtual lives.

Simulating lifelike visual images and motions is an essential topic in computer

graphics. With dramatically improved computation speed and control methods

to portray computer graphics, people are no longer satisfied by visually impres-

sive objects with simple or cartoonish actions. However, when a simulated object

shows complicated behaviours, it is usually very mechanical and non-interactive

and the result of a painstaking human design process [93]. This problem is es-

pecially significant in the application of virtual environments, which are highly

dynamic and interactive worlds continuously changed by the participation of vir-

tual lives and the human user. Since the user may wish to interact with the

virtual environments and their virtual lives at will, it is incredibly hard for the

human designer to predict every possible action of every user and program the

corresponding reactions into virtual lives beforehand. Ideally, it should be up

to the virtual lives themselves to observe and analyse the user's behaviours, and

then decide when, where, and how to move its body to react to the user ap-

propriately. Therefore, virtual lives should be self-controlled, self-animated by

simulating the natural mechanisms fundamental to life. To enable this, a vir-

tual life may have sensors to accept external information, and effectors to create

movement. More importantly, it needs a behaviour model to analyse and process

information, make suitable decisions based on its own intentions, and perform

varied tasks in a dynamically changing environment without human intervention.

Therefore, the design of a virtual life involves a visual model and a behaviour

model.

2.3.2.1 Visual Model

To produce lifelike living things with realistic visual effect is always a challenge

in computer graphics. Generally, it involves a number of stages:

. Generate three-dimensional models,

. Determine viewing specifications, such as skin texture and hair,

24

• Calculate colour values of visible surfaces and shadows, and

• Define animated sequences with time-varying changes.

Because of the complexity of the world, it is still impossible to achieve perfect

visual realism, especially in a real time simulation. Effective and fast methods are

still being researched. In the conflicting requirements of realism and real time,

suitable compromises must be made.

2.3.2.2 Behaviour Model

The major interest of this thesis is in the behaviour model of virtual lives. A

sound behaviour model is indispensable for a virtual life to produce appropriate

behaviours and to maintain a good life in a virtual world. In the study of real

lives, many people believe that the essence of life is in its metabolism, reproduc-

tion, autonomy, adaptation, responsiveness, etc. [147]. Compared with real lives,

we think a virtual life, and particularly its behaviour model should have at least

the following characteristics:

1. Autonomy

Autonomy is an important aspect of virtual lives. Indeed, autonomy is universal

in natural organisms but not confined to them. It is reflected in the movement

that occurs within an organism or results from internal changes [147]. A virtual

life is said to be autonomous in the sense that it senses and acts in its environ-

ment, and decides itself what actions to take so as to best achieve its goals [94].

Such kinds of behaviours represent the capacity of the life to maintain its viabil-

ity in varied, changing environments. Plants may seem motionless, but they also

experience spontaneous growth toward a position with better living conditions.

Although the growth is a slow movement, there is considerable movement within

their cells, and from cell to cell.

The need to have autonomous behaviour for virtual lives arises from two con-

siderations: the less work done by the human designer and the more faithful

25

illusion in the user that a virtual life is a real one [155]. As we mentioned before,

due to the dynamic nature of virtual environments and virtual lives, it would be

very hard and time-consuming for the human designer to design every detailed

behaviour of every virtual life beforehand. However, if a virtual life always stops

to seek help from the human designer during its running or just "paralyses" sud-

denly when it encounters problems, it would cause great disappointment to the

user. Therefore, it would be best for a virtual life to possess powerful autonomy

so that it can analyse the environment information actively, and decide how to

relate its receptor information to effector actions correctly by itself. In partic-

ular, when a virtual life is in an urgent, difficult situation, it should be able to

find a way to solve its problem promptly and spontaneously without intervention

from the designer. To date, many autonomous techniques have been presented in

the research area of autonomous agents, robotics, and some other related areas,

and resulted in very interesting autonomous behaviours. However, despite these

achievements, building full autonomy in virtual lives remains an elusive goal, es-

pecially in real-time applications.

2. Adaptation

Another indispensable characteristic of virtual lives is adaptation. Adaptation

of a virtual life is the way it is organised to improve itself over time in the en-

vironment it inhabits. There is a continuum of ways in which a virtual life can

be adaptive, like real lives [94]. In a narrow sense, adaptation is to enhance a

virtual life's ability via learning so as to make it survive in more or less unpre-

dictable and dangerous environments. This includes how to utilise environmental

resources best and how to change situations for its benefit. In a broad sense,

adaptation is to adjust a virtual species genetically to changed environmental

conditions. When a species reproduces, it is not just a simple copy, but a compli-

cated transfer of certain parts (structures) to its offspring. This reproduction with

changes is responsible for the evolution of life. Although the broad adaptation

always takes a very long time in nature, the long time evolution is not necessary

26

in a simulated world. Virtual evolution in generations may be achieved in a short

time in simulation by showing the procedures the human user is interested in

only.

With suitable adaptation ability, a virtual life or a virtual life species can

learn to improve its behaviours continuously for a better subsistence in its virtual

environments. -

3. Interaction

In real lives, responsiveness is a distinctive feature too. It occurs to some ex-

tent in all living things. Living organisms not only maintain themselves through

environmental changes, they also respond to these changes by characteristic ac-

tivities [147]. Even plants will react to changes in sunshine, nutrition, and other

environmental conditions. Responsiveness is extremely obvious in higher animals,

e.g., human beings.

Virtual lives should be able to interact with their outside (e.g., the virtual

environment, other virtual lives, and the human user), for an exchange of the best

"living resources" to maintain in the virtual environment. In particular, virtual

lives should be able to interact with the human user who is the main actor in

virtual reality. The user in VR will expect to be able to interact with virtual

plants, animals, humans, and to see what response he will get [155]. It would be

very intriguing if the user receives distinctive responses from virtual lives during

their interaction. For example, the user must be very frustrated if he continuously

looks at a fossil that has not changed for millions of years. However, the user

may be very interested and satisfied, and think that it can "understand" him if

the fossil exhibits its evolutionary procedures in a short time and with emphasis

on the user's interests. In this regard, virtual lives are not just a simulation of

real lives, even though they come from the real ones.

Here, we rename "responsiveness" to "interaction" as a characteristic of vir-

tual lives for coordination with Virtual Reality in which interaction is an essential

factor.

27

The above three characteristics are fundamental to virtual lives. They are the

basic requirements of virtual lives in virtual environments. Without any one of

them, a virtual life may not "live" well in its environment. That is, the life may

not look believable or useful from the human user's point of view. Lives at higher

levels will have more features. Virtual humans, for example, still have their own

personalities, emotions, high intelligence, and some other characteristics [155].

These extra features will make a high-level life more functional and believable,

but they are not universal or indispensable to all of the lives. Rather a virtual

life can be profitably endowed with varying levels of both fundamental and extra

features depending on the nature of the life and the nature of its environment.

2.3.3 Virtual Life vs. Real Life

As we mentioned before, virtual lives are not a simple copy of the real lives.

They derive from the real lives, but have their own features since their living

environments are simulated ones.

An essential distinction between virtual lives and real lives is that the metabolism,

growth and reproduction, the essential hallmarks of real lives, could be left out

in virtual lives. In nature, every organism goes through procedures from birth,

development, to death. Some organisms also reproduce their kinds in genera-

tions. These procedures are maintained by metabolism. There are also frequent

information flows in virtual lives, which are often thought of as the metabolism

of virtual lives. However, the life time of a virtual life may not depend on its

"metabolism", but its application roles in a virtual environment. A hero in a

game, for example, may be mature when he appears for the first time. He may

never die as the user wishes. But the virtual dinosaur species may only live for

several hours and become extinct quickly. In other words, the standard life period

of natural organisms is no longer a necessity to virtual lives.

Another difference between virtual lives and real lives is that a virtual life

may possess some abilities and features that its corresponding real life does not

have. Some virtual lives may even not exist on the earth. If a user comes into a

computer-generated fairy world, for instance, then trees speak, virtual humans fly,

and virtual robots walk around and do their job. Moreover, virtual lives may have

overstated body shapes and appearances, and exaggerated behaviours to capture

the user's interests. This is a technique commonly used in the animation world.

In Disney animation, for example, a character tends to rear back in preparation

for a rapid forward motion. Strictly speaking, this behaviour is unrealistic, but

it is essential for people to grasp the meaning in the motion. So, being lifelike or

"alive" is not the same as being realistic [12]. However, one should bear in mind

that, whatever unrealistic changes are made in virtual lives, they should help the

user to think those virtual lives are believable and motivate the user to interact

with them. It is in this sense that "believable" is used in our definition of Virtual

Life.

2.4 Our Work

The previous work on behavioural animation has made a breakthrough on giving

virtual lives believable behaviours, as we have introduced. However, compared

with natural behaviours of living organisms that are autonomous, adaptive and

interactive, the overall behaviours generated in behavioural animation still have

many deficiencies. In particular, those behaviours have a common but serious

problem in that they lack a powerful autonomous and adaptive functionality. This

is essentially reflected in that those virtual lives cannot improve their behaviours

continuously so as to deal with new complex situations, nor can they be aware

of generating new behaviours based on their own knowledge and resources so as

to serve new behavioural motivations. In consequence the human design work on

virtual life behaviours is usually very high, and the autonomy and adaptation of

virtual lives are affected as well.

In Section 2.3.2, we explained that the design of a virtual life includes two

important components: a visual model and a behaviour model. In this thesis,

we mainly focus on the construction of a reasonable behaviour model as our first

step towards the construction of a complete virtual life. The design of a vivid

visual model is one of our future goals.

29

We present a Computational Behaviour Generation (CBG) model in this the-

sis, which is a natural progression of virtual lives in an attempt to construct a

useful behaviour model and suitable behaviour generation strategies for them.

The CBG model helps virtual lives build effective adaptation and autonomy in

their behaviours based on continuous interaction with the external environments.

By using this behaviour -model, a virtual life can not only learn to generate

behaviours for achieving particular behavioural motivations, but also learn to

generate multiple behaviours without human intervention. The learning ability

of the CBG model presented in this thesis involves two aspects: learning to im-

prove its behaviours so as to deal with more and more situations (these situations

may be unknown to the virtual lives, and much more complicated than any other

situations met before), and learning to perform new related behaviours based on

pre-learned behaviours by making use of their common knowledge and resources

(i.e., multifunctional learning). This learning ability is particularly achieved by

a novel learning algorithm, a Multi-agent based Evolutionary artificial Neural

network with Lifetime learning (MENL). With this effective learning algorithm,

a virtual life is able to decide appropriate motor actions on its own, and adjust

to a wide range of situations and behaviours dynamically. As a consequence, the

virtual life can obtain certain autonomy and adaptation in its behaviours. The

human designer can therefore be relieved from very heavy and time-consuming

design work. The adaptive and multifunctional Computational Behaviour Gen-

eration model proposed in this thesis is not designed for some specific virtual

creatures. Instead, it is intended to be built as general purpose so as to suit

many virtual lives.

In addition to the work on the construction of believable behaviours for vir -

tual lives, similar work has also been done in robotics, which pursues animal-like

or human-like behaviours in robots inhabiting the real world. Due to the huge

amount of literature in this area, we won't review them here, but relevant work

will be introduced in specific chapters. In comparison with the research work on

both virtual lives and robots, our work on the adaptive and multifunctional Com-

putational Behaviour Generation model has presented many original properties,

30

which are embodied in its neuroscience inspiration, the hierarchical architecture of

the CBG model possessing many potential strengths, a Multi-agent based Evolu-

tionary artificial Neural network with Lifetime learning (MENL) that has robust

and continuously improved learning ability, and the multifunctional learning of

the CBG with MENL that can efficiently learn multiple behaviours together.

These properties will be explained in detail in the following chapters.

2.5 Conclusion

This chapter has presented a snapshot of current development of virtual lives and

our attitude towards Virtual Life. In particular, we have reviewed recent work on

constructing realistic and believable behaviours in virtual lives, and pointed out

some major problems in that work. When explaining our views on virtual lives, we

presented a working definition of Virtual Life, which is currently absent, and some

suggestions on constructing virtual lives. We believe a visual model for visually

lifelike shapes and appearances and a behaviour model for believable behaviours

are two important components of virtual lives. In addition, this behaviour model

should have at least the characteristics of autonomy, adaptation and interaction so

as to help a virtual life maintain a normal life in changing virtual environments.

Finally, we have described how our work on the CBG model and the MENL

learning algorithm fits into virtual life research.

31

Chapter 3

The Computational Behaviour

Generation Model

In this chapter, we present the architecture of the adaptive and multifunctional

Computational Behaviour Generation (CBG) model for virtual creatures, which

is capable of producing various behaviours in various environments and situa-

tions. The next section is a brief introduction to the CBG model. Section 3.2

discusses recent work on the construction of behaviour control models for virtual

creatures, which is related to the CBG model and places our work in this con-

text. Section 3.3 explains some biological results of neural control of behaviour,

which are fundamental to the design of the CBG model. Section 3.4 describes the

proposed CBG model and its formal description. Section 3.5 introduces several

potential strengths held in the CBG model. Space occupying behaviours, which

are functions fundamental to many natural animals, are introduced in Section

3.6. In this thesis, these behaviours are used as model behaviours for the CBG

and MENL to learn both individually and multifunctionally. In Section 3.7, we

give an instantiation of the CBG model, which shows how the CBG model can be

implemented to generate space occupying behaviours. The last section concludes

with a summary of the chapter.

32

3.1 Introduction

As a behaviour generation model, a basic requirement of the CBG model is that

it should be able to implement the whole procedure from planning to execution

of motor actions for a designated behaviour, by initiating and coordinating suit-

able motors of virtual creatures A -major objective for the CBG model- is that

its architecture should allow and encourage adaptive and multifunctional imple-

mentation of behaviours. In addition, this architecture should be as general as

possible so as to serve a variety of virtual creatures.

The construction of the CBG model is mainly derived from an understanding

of the hierarchical behaviour control system in the brain. Similar to the natu-

ral behaviour system, the CBG model has sensors and motors to interact with

the outside world, a body State module to report body activities of a virtual

creature, and a behavioural Motivation module to generate behavioural motiva-

tions based on body needs. In addition, the CBG model contains within it a

Computational Motor Control (CMC) system that it utilises to perform decision,

programming and execution of motor actions for achieving various behavioural

motivations. The CMC system is hierarchically composed of a Strategy module,

a Program module and a Movement module. The Strategy module is responsible

for designing a general strategy for achieving a particular behavioural motivation.

It also selects the appropriate motor actions to execute in the current situation.

The motor actions are decomposed into detailed motor programs in the Program

module. The actual initiation of motors for executing every motor program is

engaged in the Movement module. Based on this hierarchical control, the higher

levels (e.g., the Strategy and Program modules) of the CMC system only make

general design of motor plans and programs concerning a designated behaviour.

It is the lower level (e.g., the Movement module) that implements this design by

encoding each element of movement in detail. During behavioural execution, the

CBG model monitors body states and environmental information at every step,

so every level of motor control can adapt according to both internal and external

changes of the body. The architecture of the CBG model designed in this way

has provided many potential strengths like adaptation and multifunctionality, as

33

we will see in Section 3.5.

3.2 Related Work

To design a reasonable behaviour control model is very important to the construc-

tion of virtual creatures. This model is directly responsible for generating proper

behaviours, and hence maintaining a normal life of virtual creatures in virtual

environments. A sensible behaviour control model for virtual creatures should be

complete so as to include the whole procedure of selection and execution of motor

actions for generating behaviours. It should also be general so as to implement

various behaviours on a variety of virtual creatures.

In previous work on virtual creatures, as we reviewed in Section 2.2, several

behaviour control models have been proposed for controlling virtual creatures' be-

haviours. Those models have provided the behaviour control of virtual creatures

of many different types and complexities. Some behaviour control models, such as

the model of Woggles created by Bates et al. [12, 13] designed certain behaviours

composed of a set of unchanging action plans and the implementation of those

actions was a direct manipulation of the graphical elements of virtual creatures.

The behaviours designed in this manner were heavily combined with the graphi-

cal models of virtual creatures. If the graphical models or part of the behaviours

were changed, the generation of the entire behaviours had to be redesigned. The

incapability of these behaviour control models to respond to changes restricted

them to only a few virtual creatures that have prescribed behaviours.

Some research work on virtual creatures has concentrated on designing elab-

orated motor movements. The resulting virtual creatures, such as the virtual hu-

mans created by Thalmann et al. [154] had delicate body shapes and structures,

and involved lots of body joints. In order to produce an effect of natural-looking

motions, biomechanical data and control techniques were often used to coordi-

nate the sophisticated joint and muscular activities of those virtual creatures.

However, in these virtual creatures with visually lifelike motions, the information

about when and what motions to produce was often a priori built into them,

34

rather than arising from the autonomous decisions made by the creatures them-

selves. In contrast with their realistic movements, these virtual creatures lacked

the powerful strategies that could decide actions autonomously and adaptively.

The behaviour control model of artificial fish constructed by Terzopoulos et

al. [64, 162] was an integration of both selection and execution of motor actions.

This model organised these two abilities as two layered individual modules. As

the top-level module of decision-making chose suitable motor actions and cal-

culated necessary movement parameters, the low-level module transferred the

parameters into exact graphical values and initiated corresponding graphical el-

ements (motors) to move. Behaviour control models organised in this manner

separated motor action selection from real graphical models of virtual creatures.

As a consequence, they could be used to produce more complicated, compound

actions that are composed of a series of motor movements. However, in artificial

fish, the movement parameters generated by the high-level module of motor ac-

tion selection were embedded with much information specific to fish movement,

the behaviour control model was therefore limited to a particular species (fish)

that had particular motors (fish-like muscles).

Blumberg [20, 21] has applied another kind of hierarchical behaviour control

model in his virtual creatures, which had two modules named Controller and

Degree of Freedom (DOF) working as abstract barriers between behaviours and

motor skills and between compound motor skills and the geometry of virtual crea-

tures. The Controller mapped generic commands of behaviours into motor skills•

and relevant parameters. The DOF then mapped abstract movement parame-

ters (often numbers between 0 and 1) into the graphical space of the creatures

via interpolators and inverse kinematics. Due to these two abstract barriers, the

input commands sent from the higher levels were relatively independent of the

concrete virtual creature and its graphical model. The behaviour control was

hence general to a series of virtual creatures with different motors.

Along with behaviour control models constructed for virtual creatures, a large

number of behaviour models with partial or complete behaviour generation pro-

cedures have also been presented in the robotics area [1, 2, 27, 34, 67, 135, 161].

35

In particular, [1, 2, 135] proposed robot control models sharing similarities with

the layered architecture of the vertebrate brain. Our proposed Computational

Behaviour Generation (CBG) model is similar to these models and the one of

Blumberg's, in the sense that it is also a general and complete behaviour control

model. The CBG model generates control information not only for selection of

motor actions (in the Strategy module), but also for programming and execution

of these motor actions (in the Program and Movement modules respectively). The

selection of motor actions can therefore be based on abstract and general motor

actions, since the interpretation of motor actions into detailed motor programs

and then real movement signals is implemented in the Program and Movement

modules respectively.

Compared with other behaviour models in both virtual creature and robot

studies, our CBG model has also been designed with important information and

mechanisms for adaptive and multifunctional implementation of behaviours. In

particular, the bidirectional feedforward and feedback information flows in the

natural behaviour control have been revealed and implemented in the CBG model.

Due to the bidirectional information flows, the CBG model is able to obtain infor-

mation of both top-down control and bottom-up sensory feedback so continuous

adjustment of behaviours can be made according to both useful and harmful ex-

perience. The resulting behaviours can therefore have improved functionality in

a wide range of situations. The adaptive learning algorithm adopted in the CBG

model, MENL, has also shown its originality and advantages, when compared

with other adaptive learning technologies, such as evolutionary robotics and re-

inforcement learning. This will be introduced in detail in the following chapter.

Another conspicuous property held in the CBG model is its multifunctionality.

The multifunctionality suggests that the CBG model may be able to use the

same mechanisms to generate a series of functionally related behaviours by tak-

ing advantage of the shared resources and knowledge across these behaviours.

Because the CBG model is constructed in a hierarchical and general way, many

components at different levels are reusable for different behaviours. To imple-

ment multifunctionality in the same behaviour control mechanisms is a concept

36

broadly overlooked in previous behaviour control models for virtual creatures and

robots. Those models usually cannot use what they have obtained for one be-

haviour to generate other relevant behaviours in the same control mechanisms.

Having strong adaptation and multifunctionality, the CBG model can produce

multiple behaviours with varied motivations in varied conditions. In consequence

the CBG model can reduce the laborious and difficult work of artificial design.

The experimental results in the following chapters have supported this.

In the next section, we will briefly introduce the recent studies on the neural

control of behaviour, which provide the fundamental basis of the CBG design.

3.3 Biological Basis

The gross features of the natural behaviour control system in the brain (espe-

cially the vertebrate's brain) provides a good example when we design an arti-

ficial behaviour controller for virtual creatures. In particular, the hierarchical

structure of the natural behaviour control system, the input from body states

and environmental information, the adaptation by learning, and the generality

in various behaviour systems gave us direct and useful ideas when we designed

the architecture and functions of the CBG model. In this section, we introduce

the characteristics of the natural behaviour control system briefly. For detailed

explanation of the natural behaviour control system, see [79, 29].

3.3.1 Hierarchical Behaviour Control System

The pathways between sensory input and motor output are a complex system

in both anatomical and functional aspects [6]. There are a number of different

structures intervening between sensors and motors, and there is a great deal of

interaction between these structures. However, a voluntary decision regarding

which action to perform is usually controlled by roughly hierarchical levels in the

brain [29, 79, 122, 142]. This hierarchy is illustrated in Figure 3.1, a diagram of

major components involved in voluntary movements.

In the hierarchy shown in Figure 3.1, the limbic system governs basic bio-

37

LIMBIC SYSTEM 	 SENSORIMOTOR SYSTEM

LIMBIC SYSTEM 	 NON-LIMBIC CORTEX

BASAL

- 	 GANGUA 	
THALAMUS

BRAIN 	 CEREBELLIM
THALAMUS

• 	 STEM

SPINAL CORD

EVOLVING MOVEMENT

Figure 3.1: Diagram of major components involved in voluntary movements (after

[29])_

logical drives of the body, including feeding, drinking, reproduction, and other

life-preserving activities. These drives are regulated by the hypothalamus. After

the limbic system makes decisions on the relevant information about the perceived

needs of the body, the sensorimotor system is then enabled to convert needs into

actions.

The sensorimotor system deals with (nonlimbic) sensations, their perceptions

and sensorimotor functions. The highest level of the sensorimotor system, the

nonlimbic cerebral cortex, is responsible for elaborating perceptions and forming

overall motor plans (strategies) for the body needs. The strategies are converted

into detailed motor programs (tactics) at the middle level of the sensorimotor

system, which consists of the brain stem, the thalamus, the cerebellum, and part

of the basal ganglia. Motor programs at this level determine and correlate move

programs and hold programs, such as body equilibrium, movement directions,

force, speed, and mechanical stiffness of the joints. The tactical instructions from

the middle level are then carried by descending paths to the spinal cord, the

lowest level of the sensorimotor system. In the spinal cord, those instructions are

finally coordinated and translated into exact joint and muscular activities that

are regulated through stretch reflexes.

Through the above description of the hierarchical behaviour control system,

we see that the - higher levels of the control system are responsible for collecting

all the information relating to a behaviour to implemented, and making general

action plans for carrying it out. Instead of controlling each basic element at the

lower levels directly, those action plans are only general commands that are sent

to relatively autonomous lower level systems. The lower level systems then anal-

yse those general action plans, produce basic spatiotemporal patterns underlying

movements, and eventually drive concrete motors to move. This kind of hierar-

chical control information flow from general to specific relieves higher levels from

having to consider every exact property of lower levels, and simplifies the control

of one level by another.

3.3.2 Body States and Environmental Information

The hierarchical control system of behaviours correlates and adjusts its actions

by means of two types of signal: internal body states and external world informa-

tion. A body state is the spatial distribution of body activities at a given moment

in time [56]. It may involve the configuration of the body (such as joint angles,

angular velocities, and muscle positions and load), the interaction of the body

with the world (such as contact with an object), and even the neuron activities

in a microscopic view (such as neuron membrane potential, firing frequency, the

onset and termination of bursts, the integrated activity across a population, and

the like). When the body is situated in an environment, environmental informa-

tion, such as the location of the object to be manipulated, the available places

and obstacles in the environment, etc., is another essential factor to affect mo-

tor actions. Body state variables and environmental knowledge can be collected

from sensory signals and information sent from related regions in the brain, or

estimated when exact information about them cannot be acquired directly. The

39

Disturbance
Feedforward

Regulated ___________

	Controlled 	variables

I Sensors 	Controller
system

Feedback 	- -

Figure 3.2: Feedforward and feedback configurations for regulation of a controlled

system (after [721). The system is feedforward (open-loop) when the regulation

by the controller is only based on sensors that detect potential disturbances. The

system is feedback (closed-loop) when effects of disturbances on regulated variables

are considered.

information about the body states and the environment provides the behaviour

control system with fundamental knowledge about the body itself, both internally

and externally. This information can contribute to the preparation of movement,

and more often, it can help the adjustment and execution of the overall plan

for generating a behaviour, by informing the behaviour control system of in-

stant changes of the body and environment after every action execution. The

responses of the body and environment to executed actions constitute the impor-

tant feedback to the behaviour control system (Figure 3.2) for adaptive learning,

as explained in the next section. In a purely feedback-controlled system, the only

information that needs to be stored in the behaviour control system is the body

state variables or behaviour objectives since it is the environment that holds the

information necessary to control movement. Taken together, body needs, body

states, and environmental information are sufficient for the behaviour control

system to determine future movement of the body.

3.3.3 Learning

Behaviours are adaptive with learning [29]. Learning can help behaviours to

adjust to a wide range of situations and applications.

Ell

Learning happens when behaviours are not executed as expected. Once a

behaviour is launched, the behaviour control system monitors its progress via

continuous sensory feedback including changed body states and environmental

responses to executed movements as described above. In this closed-loop system

(Figure 3.2), the sensory feedback reflecting the movement progress is sent back

to all levels of the sensorimotor system for a comparison with the commands

previously issued for intended movement. Any difference between intended and

actually executed movement will be found out, and the proposed action plan can

be adjusted accordingly. Inappropriate commands should be removed from or

revised in the plan, as correct commands are kept for the next use. When the

behaviour has been repeated many times, the behaviour control system can learn

a proper action plan and a correct execution of these actions. The behaviour can

therefore be produced smoothly and successfully thereafter. Sometimes, when

speed is the critical requirement or when immediate sensory feedback is unavail-

able, behaviours may be carried out straightforwardly without instant feedback,

but the proposed action plans can still be corrected at the end of behaviour exe-

cution, if the final behaviour results are not correct. The complete ignorance of

feedback may apply to very well learned behaviours [29]. In this case, a mode of

"open loop" control (Figure 3.2) is formed (i.e. feedforward only).

Behaviours can also be learned from past experience when they are successfully

produced. When success has been achieved for a behaviour, it will be recognised

at the higher levels of the behaviour control system, and sent back to lower levels

successively. Both neural and muscular activities associated with the behaviour

are committed to memory as programs. Repeated use of the same programs

increases the accuracy of the memory, and hence that of the behaviour generation.

Thereafter, the successful behaviour can be executed more automatically to a

greater or lesser degree. This kind of learning from success is representative of

many animals [29].

By learning from both harmful and useful experience, behaviours are contin-

uously improved in performance.

3.3.4 Generality in Behaviour Systems

A behaviour system describes the assembly of elements that is most actively in-

volved in a particular behaviour at any given time [29]. Although different be-

haviours may differ in their nature, their drives, the experience of the subject,

and some other conditions, they have similar overall information flows in their

execution. For example, a general scheme concerning how to perform a behaviour

usually comes first at the highest level of the control system, which is then de-

composed into motor programs and motor commands suitable for concrete mo-

tors to execute at lower levels. At the same time, all levels of the system are

informed about successful or unsuccessful execution of the behaviour for learning

and adjustment. The whole control system is a mixture of the top-down control

information and bottom-up sensory feedback.

By making general decisions first and leaving implementation details to be

decided later, the natural behaviour control system also provides many shared

components at various levels in different but functionally related behaviour sys-

tems [29]. If we have learned how to use a pen to write on paper, for instance,

we will very probably know how to use a brush to write on a big board. The

written letters in those two approaches are usually very similar. In this case, the

same general writing scheme is implemented on different muscles. The same set

of motors can also be used for different behaviours in some other cases. Knowing

that we use the same arms to perform different behaviours such as swimming and

writing, it is clear that sometimes we have to use our limited motors to execute

numerous behaviours although the general strategies of these behaviours are dif-

ferent. Because the high level strategies do not manipulate the detailed motor

execution directly, it is the lower level systems that determine what motors to

use from a limited set of motors.

As the natural behaviour control system produces varied behaviours, it is im-

portant that the common components involved should be able to make the right

decisions for those behaviours at the right time. Many neural networks in the nat-

ural behaviour control system can be reconfigured to provide different behaviour

outputs. These neural networks are called multifunctional neural networks [55].

42

In the nudibranch mollusc Tritonia, one set of premotor interneurons has been

found to be able to generate the pattern for swimming at one time and the pattern

for withdrawal at another time [55]. Since then, many multifunctional neural net-

works have been found in many animals. Due to the hierarchical structure of the

behaviour control system and multifunctional neural networks, varied behaviour

systems share their generality in not only the mixed information flows, but also

many common units across them.

3.4 The Computational Behaviour Generation Model

From the above description of the biological behaviour control system, we know

that:

• The formation of a behaviour is initialised in the motivational limbic system,

and designed, programmed and executed in the hierarchical sensorimotor

system, with the assistance of body states and world information;

• Behaviours can learn from their successful or unsuccessful experience with

the help of sensory feedback;

• Different behaviour systems have similar feedforward and feedback infor-

mation flows during behaviour implementation, and functionally related

behaviour systems may have the same functional units to share.

Inspired by these biological concepts, we present a Computational Behaviour

Generation (CBG) model that can produce complete behaviour control for virtual

creatures, with concurrent adaptive and multifunctional strengths. In addition,

the CBG is designed with the consideration of easy and effective implementation

on a wide range of virtual creatures. Nevertheless, it should be noted that, rather

than mimicking the natural behaviour control and learning system exactly, the

CBG model and the following MENL learning algorithm proposed in this thesis

only take the spirit of the natural system for reference. The real natural behaviour

control system is indeed a much more complicated mechanism involving numerous

interrelated structures.

43

CBG Model

	

I 	Motivation 	I

	

gy 	F-i
CMC System

Outiut copy

ram

Mov

I State 	I

	

I Sensor I
	

I Motor I

Environment

Figure 3.3: The basic structure of the Computational Behaviour Generation (CBG)

Model

3.4.1 The Basic Structure of the CBG Model

The basic structure of the Computational Behaviour Generation model is shown

in Figure 3.3. Similar to the natural behaviour control system, the CBG model

consists of a Motivation module, a hierarchical Computational Motor Control

(CMC) system, a State module, and Sensor and Motor systems. All parts of the

CBG model cooperate and coordinate with each other to generate behaviours.

CBG sensors and motors are the interface of the CBG to its external world.

The former (sensors) are responsible for collecting external environmental infor -

mation for the CBG, including perceived environmental knowledge and environ-

mental responses to body movements of a virtual creature. The latter (motors)

are the concrete mechanism to perform motor actions commanded by the Compu-

tational Motor Control system. Because virtual creatures are actually graphical

models in virtual environments, their sensors and motors are also simulated ones.

44

Particularly, CBG motors are procedures that attempt to modify graphical en-

tities embedded in the graphical model of a virtual creature for producing a

sequence of animated motions.

The State module in the CBG model records the current and previous body

state information (e.g., motor positions, activities of all levels of the CMC system,

etc.). This information provides the fundamental basis for selecting, programming -

and executing motor actions. The State module is monitored by all levels of the

CBG, so the exact movement required for carrying out a behaviour is dependent

on the states of the body.

The Motivation module is the command system of the CBG model. It collects

desires or needs of a virtual creature and generates corresponding behavioural

motivations for the Computational Motor Control system to achieve. If there

is no obvious body desire presented or if the Motivation module falls "asleep"

after initiating the CMC system, the CBG model may still work well, but in a

less purposeful manner. A typical behaviour example of this type is wandering, a

kind of movement from place to place without any special purpose or destination.

The Computational Motor Control (CMC) system is the core of the CBG

model. It is responsible for recognising, selecting and analysing behavioural mo-

tivations, and implementing them based on relevant sensory information. The

CMC system of the CBG model is hierarchically constructed by three separate

but interrelated modules: Strategy, Program and Movement. The demands ex-

pressed by the Motivation system are first analysed by the Strategy module, and

in there, general strategies for fulfilling these demands are formed. The Strategy

module also makes decisions about what motor actions to take in the current situ-

ation, and the decisions are passed to the Program module. The Program module

then converts abstract decisions into more detailed motor programs that are ap-

propriate for motors to execute. Because body movements, which always involve

several joints, can be composed of simple movements that affect only one joint

[29], it is in the Movement module that those basic and simple motor movements

are formed. The simple movements are subprograms of the motor programs

designed in the Program module. So, when the Program module informs the

45

Movement module when and which specific motor action to take, the Movement

module will translate these commands into specific simple motor movements.

Similar to the biological behaviour control system, the hierarchical control of

the CMC system is assisted by the State module and the external world. For se-

lecting and executing appropriate motor actions, the CMC system is continuously

receiving with body information recorded by the State module and environmen-

tal information collected by the Sensor system. The concrete execution of motor

actions by the Motor system in turn updates State variables and environmen-

tal information, which are necessary for correct selection and execution of motor

actions at the next step. Body and environmental feedback on executed motor

actions are sensed by the Sensory system and sent to all levels of the CMC sys-

tem, especially to the Strategy module, the highest level of the CMC system. The

Strategy module already knows about what motor actions are to be executed via

output copies of Movement commands (see Figure 3.3). Thus, through exami-

nation of the sensory feedback, the Strategy module can have an image of how

the intended actions have been performed. By comparing the intended actions

with their completion, the Strategy module is able to adjust its proposed action

plans accordingly so that a proper generation of a designated behaviour can be

effected.

After each motor action execution, the CBG model will check whether the

desired target state for a behaviour is reached. If the target is reached, this

means the proposed motivation is satisfied. Otherwise, the distance between

the present state and the target state will continuously drive the CBG model to

completion.

3.4.2 Formal Description of the CBG Model

The Computational Behaviour Generation model and its behaviours can be de-

scribed as a tuple E = (S,.6, 9, A, ,7r,), where

• S is a nonempty set of body states,

• E is a set of environmental information, including environmental knowledge

46

perceived by the virtual creature and environmental responses to executed

motor actions,

• g is a set of motivational goals (it can be null in some cases),

. A is a nonempty set of motor actions,

• 7r E,) -* A, is the action function mapping each input triplet (S, E, g)

into an action in A, and

• O(S, A, E) -p 8, is the state transition function.

A virtual creature may have finite motor actions A, body states 8, and mo-

tivational goals g. However the environments it encounters may be endless, so

the environmental information E can be infinite. The state transition function

can be either deterministic or non-deterministic, depending on the nature of the

performed behaviours and related actions.

Assume at time t, the body is in state s, at situation et, and driven by

motivation g. Then the action a t e A selected for execution at time t is

at = '/r(et ,st ,g) 	 (3.1)

After the execution of a t , the body state is consequently changed to 	at

time t + 1. According to the state transition function, it is known that

= (St, at , et)
	

(3.2)

3.4.3 State Transition Diagram

A virtual creature usually has many body states. These states result from various

motor actions taken by the creature. According to actions performed and their

contributions to a designated behaviour, body states of a virtual creature can

be functionally mapped into several categories. The relationship between motor

actions and changed body states constitutes a kind of state transition diagram

that can explain how behaviours are executed.

47

In the case of space occupying movement in environments for certain motiva-

tions, for instance, the body states of a virtual creature can be simply classified

into five major state categories: No-action, Turn, Movement, Collision and Tar -

get. These states are caused by different kinds of motor actions, i.e., standing

still, turning, successful movement, wrong movement causing collisions, and par -

ticular actions achieving behavioural motivations at a particular time. Figure 3.4

shows these states and their transitions driven by those kinds of motor actions.

The No-action state indicates that a virtual creature intends to do nothing at

present and hence its body is in a static state. The Turn state means the crea-

ture changes its direction by turning. When the body of the creature moves and

executes a correct movement, it is in the Movement state. Otherwise, if the body

moves but causes a collision, it is in the Collision state. The body arrives at the

Target state if its current behavioural motivation is achieved after a particular

action. This particular action can be a forward movement that moves the virtual

creature into a goal destination, or an action that is the last one executed in

a permitted time. The four states of No-action, Turn, Movement and Collision

and their transitions compose an action set in practice. When the behavioural

motivation is achieved, no matter which action state the body is in, the Target

state is entered and the given behaviour has been carried out. All states in the

action set can transit to the Target state, and all transits to the Target state are

unidirectional and irreversible.

From the state diagram (Figure 3.4), we can see that, for a good performance,

the CMC system needs to select an appropriate motor action at = 7r (et , s,, g) at

each time t so as to obtain the highest probability of reaching the Target state

and the least probability of reaching the Collision state, that is,

Prob{st+i = Tar get} -* 1 	 (3.3)

and

Prob{st+i = Collision} - 0 	 (3.4)

Therefore, the principal obligation of the CMC system is to employ a rational

action selection policy 7r to each behaviour so as to implement this behaviour

no action 	 turning Action Set

State
turning 	

t ' tate2:
o-action 	 Turn

no action

	

El 	I

	

E' 	\

	

I 	• I 	actions achieving State 5:
Target the goal

I 	•I

	

E 	EJ t 	°l

	

ot 	i at CI

State 3: 	
vwrOng movemeflt,,-' 	

State 4:

right movement 	 wrong movement

Figure 3.4: State transition diagram for space occupying behaviours

quickly and successfully. At the same time, the function ir should comply with

some constraints defined by the behaviour, such as the obstacle avoidance con-

straint (equation 3.4) in space occupying behaviours.

It is worth mentioning that it is possible for the action set of the state tran-

sition to have been already launched but for the behavioural motivation to be

absent if the Target state is not defined. In this case, the body state transition will

loop within the action set endlessly and the Target state will never be reached.

This inner cycle in the action set results in restless locomotion in space occupying

behaviours. However, even in this endless movement, a unique purpose of obsta-

cle avoidance is still retained, i.e., to satisfy equation 3.4. An example of this

kind of movement procedure is endless wandering in space occupying behaviours.

In order to terminate endless wandering, a "stop" signal should be initiated from

the Motivation module and sent to the CMC system so as to force a direct body

state transition to the Target state.

3.5 Potential Strengths

In the last section, we introduced the basic structure and principles of the Com-

putational Behaviour Generation model. The proposed architecture of the CBG

model has many potential strengths. For instance, the CBG model can become

49

adaptive by learning if it exploits its sensory feedback and past experience prop-

erly. It can also be multifunctional and perform several functionally related or

similar behaviours together. In addition, the CBG model may possess some other

strengths, such as autonomy, generalisability, and modularity.

3.5.1 Adaptation

A behaviour control system can possess varied adaptive abilities through several

different but complementary approaches (see [102, 103, 65] for a comprehensive

review of adaptive behaviours, and the Proceedings of the International Confer-

ences on the Simulation of Adaptive Behaviour for recent results). High-quality

sensory mechanisms are one way to enhance adaptation, by gathering useful infor-

mation for a designated behaviour [37, 39, 86, 119], and by predicting perceptual

consequences of a given action in a given sensory context [52]. Flexible selection

schemes that choose the behaviour most suitable to the current situation from

several possible behaviour reactions are another approach to endow a behaviour

control system with adaptation capabilities [20, 27, 92, 161]. Providing adaptive

behaviour control in this manner can reflect the changes in motivations [102]. A

behaviour control system can have considerable adaptation when it learns from

previous action selections that have been shown to be useful or harmful in the

past [73, 77, 95, 152, 175]. A behaviour control system would also be able to

move on varied terrain and produce various complex postures if it knows how

to coordinate and program its motor apparatus appropriately [42, 81, 99]. How-

ever, it is obvious that it is not easy to achieve adaptation in these aspects all

at once, especially when these aspects are closely related to each other. Indeed,

it is not even easy to achieve complete adaptation in just one aspect. In this

thesis, we would like to study the adaptive learning ability of decision-making on

correct motor action selection in the Strategy module as our first step towards

full adaptation in the CBG model.

The main purpose of the Strategy module in the CBG model is to design an

appropriate strategy for executing particular behaviours successfully. For differ-

ent behaviours, the concrete strategies would be different. Nevertheless, generally

50

speaking, these strategies have the same objective of selecting correct motor ac-

tions at every step so as to achieve behavioural motivations quickly and efficiently.

This procedure can be simply summarised as a loop between decision-making of

action selection and performance evaluation of action execution. This simple

strategy, as shown in Figure 3.5, analyses the information input to it first, in-

cluding perceived environmental information, body states, and commands sent

from the higher level, i.e., the Motivation module. The strategy then selects

between actions, which are to be elaborated and executed by the lower levels

of the CMC system. After action execution, the Strategy module checks to see

if the designated behavioural motivation has been achieved successfully. If so,

the strategy finishes at a "Success" state. However, in most cases, more than

one decision of motor actions would be required for carrying out a particular be-

haviour. Therefore, the question, "Are the failure conditions satisfied?" (that is,

"Are the resources, such as time, energy, etc., running out?") will be asked if the

particular behavioural motivation is not yet achieved. If the limited resources are

used up, the strategy ends at a "Failure" state, since the behavioural motivation

cannot be achieved. Otherwise, the Strategy module makes its next selection of

actions toward the behavioural motivation based on the new current input in-

formation. This loop continues until the behaviour is carried out successfully or

failure constraints are reached.

The above strategy is clearly very simple: the control goes straightforward and

does not take any past experience on selecting and executing motor actions into

consideration. The Strategy module can become adaptive if it is aware of how

to learn from its sensory feedback and past experience. Because the hierarchical

architecture of the CBG model is similar to that of the natural behaviour control

system, and has mixed information flows of top-down control commands and

bottom-up sensory feedback, it has already been implied that the CBG model

ought to be able to possess the adaptive learning ability in the same way as the

natural system does. In particular, the Strategy module of the CBG should be

able to utilise the correct decisions of actions and the mismatch between intended

actions and executed results to improve its decision-making ability.

51

input J Analyse input

I information

1
M- Execute Goal 	n

ac

hieved? decisions decisions
conditions
reached?

Success Failure

Figure 3.5: A simple strategy

input Analyse input 	 Make 	 Execute 	 Expected 	' 	Goal
decisi

Success

Failu
conditions
reached? Y

Failure

Figure 3.6: An improved strategy with adaptive learning

An improved strategy with additional procedures of adaptive learning is shown

in Figure 3.6. This strategy can learn from both successful and unsuccessful

experience. The dotted lines in Figure 3.6 illustrate the first kind of adaptive

learning, that is, to learn from successful experience. In this case, the Strategy

module has made correct decisions of motor action selection, which are just right

for a designated behaviour. The knowledge gained about the successful decisions

is then kept in memory for future use. This kind of learning is positive, since it

derives from the useful information on carrying out a behaviour.

The improved strategy can be even more adaptive if it adjusts its ability

through negative feedback from failed execution of an intended action or a be-

haviour. This kind of learning is marked as solid lines to the learning procedure

in Figure 3.6. By comparing intended actions with their actual execution results,

the Strategy module can figure out any mismatch between them, and generate a

new reasonable policy to correct the errors. If the errors are corrected in a timely

52

fashion, the improved Strategy can not only save the behaviour control from cur-

rent difficult situations, but also keep it from the same errors in the future. This

kind of immediate adjustment to the strategy during ongoing activity is essential

to the execution of the present behaviour.

By taking past experience and sensory feedback into account, the CBG model

and the Strategy module hold the potential of adaptive learning to improve gener-

ated behaviours continuously. A key point for achieving adaptation by learning is

then to design a reasonable learning algorithm that can learn to make suitable de-

cisions of motor actions from both useful and harmful experience. The algorithm

we adopt in this thesis is a Multi-agent based Evolutionary artificial Neural net-

work with Lifetime learning (MENL). Detailed information of the work engine of

MENL and its adaptive learning ability will be presented in the following chapter.

3.5.2 Multifunctionality

From the Computational Behaviour Generation model described above, we can

easily show that it may possess multifunctional ability. With presence and ab-

sence of behavioural motivations and the variety of such motivations, the CBG

model may be expected to perform a number of different behaviours. The mul-

tifunctional ability of the CBG model benefits from shared hardware resources

and software knowledge across multiple behaviours.

3.5.2.1 Shared Resources

The hierarchical architecture of the CBG model has provided the material base

for the generation of multiple behaviours together. A series of functionally related

or similar behaviours can share many hardware resources of the CBG, ranging

from sensors and motors, motor invocation procedures (in the Movement module),

compound motor programs (in the Program module), and even general strate-

gies (in the Strategy module) for carrying out those behaviours. The hierarchical

architecture of the CBG model gives similar behaviours a high probability of

resource sharing. When performing a particular behaviour, a general strategy

is first generated in the Strategy module. Rather than designing and execut-

53

ing every action by itself, the Strategy module calls lower levels to carry out its

"thoughts". The Program module organises executable motor programs for those

"thoughts", and the concrete execution of the programs by motors is initiated

in the Movement module. Therefore, once the diagram of strategy generation,

motor programming, and motor execution are settled for one behaviour, other

similar behaviours that have the same motors, the Same motor programs, or the

same strategies, can summon corresponding parts of the CBG directly without

the need to repeat the exact design work over and over again. To divide the

behaviour control into several layered modules according to their functionality

makes the multifunctional implementation not only feasible but also economical

in both time and resources. In the following chapters, we will see that the gen-

eration of several space occupying behaviours shares most resources of the CBG,

including sensors, motors, the Movement module, the Program module, and part

of the Strategy module. The only difference between these behaviours is in their

different action selection policies. The resultant multifunctional implementation

of these behaviours is quite efficient and effective.

3.5.2.2 Shared Knowledge

While the CBG model provides the material resources for producing multiple

behaviours together, the knowledge shared between these behaviours makes their

multifunctional implementation possible. Although shared knowledge is an ab-

stract concept and varies with behaviours of different kinds, we try to explain

this concept in this section by using the formal description of the CBG model

and examples of space occupying behaviours.

The behaviours in a creature which are generated by a particular CBG can

share their generality in many ways. They may have the same motor actions A,

the same body states S, or potentially the same environmental information S.

Moreover, these behaviours may have much in common in their body states and

state transition activities. At least, the intention to choose the correct motor

actions at each step so as to reach the Target state quickly is common to every

behaviour. Usually there is still much more shared in related behaviours, such as

54

the common purpose to avoid the Collision state shared in all space occupying be-

haviours like exploration and goal reaching. For functionally related behaviours,

most motor actions may have similar effects on body states. For example, the

action set shown in the state transition diagram (Figure 3.4) is common to varied

space occupying behaviours. The most obvious difference in multiple functions

may lie in their different action functions ir, which are caused by different mo-

tivations . The actual decisions on which motor actions to select and execute

are dependent on the particular behavioural motivations at that time. Even so,

there are still inevitable similarities in the decision-making procedures for related

behaviours.

Suppose there are two kinds of space occupying behaviours, 81 and 82, which

the CBG model can perform. Both functions have the same motor actions (e.g.,

to move forward, turn, etc.), the same general knowledge of environments, and

the same categories of body states and most of the state transition activities

as shown in Figure 3.4. Also, at each movement, both behaviours 81 and 82

are required to execute the best motor actions so as to achieve the Target state

quickly and avoid the Collision state simultaneously, that is, to satisfy equations

3.3 and 3.4. However, because these two behaviours have differing motivational

signals sent from the Motivation module, the concrete motor actions selected by

the CMC system each time may be different, even if all the other conditions

of these two behaviours are the same. For example, if the body of the virtual

creature sits at place xl in an environment shown in Figure 3.7, it will easily

move forward without collisions if its current motivation is only to explore the

environment. But if the motivation is to arrive at a destination Cl quickly, the

body of the creature should turn to the right first and then move forward. The

different selection of motor actions is caused by different behavioural objectives.

However, if the body is at xl but its goal destination is changed to G2 , then the

CMC system should assert a "Move Forward" signal so as to reach the destination

G2 quickly. This command is just the same as that in exploration. In this case,

the knowledge about motor action selection (i.e. Move Forward) for two kinds of

space occupying behaviours overlaps despite their differing motivations. Another

55

Figure 3.7: Same and different action selection procedures for varied behavioural

motivations (see context for the full detail).

example of knowledge sharing between those two space occupying behaviours

is when the body sits at a place x2 and faces to the southeast. Here, if the

body moves forward, it will definitely crash into the obstacle. In this emergent

situation, obstacle avoidance takes precedence over accomplishing any other task.

So, whatever the behavioural motivation is at that moment, the CMC system

should initiate a "Turn" command first to force a release of the body from the

predicament. This kind of emergent skill of obstacle avoidance is fundamental to

all space occupying behaviours, and is in fact shared by all of them.

In addition to the above examples, there is much other knowledge shared in

various kinds of space occupying behaviours. Due to the resources and knowl-

edge shared by functionally related behaviours, the CBG model ought to be able

to perform these behaviours easily and efficiently if what it learns for one be-

haviour can be used for others. Similarly to potential adaptation, the concrete

implementation of multifunctionality in the CBG requires a sensible algorithm

to select appropriate actions for varied behaviours. In Chapter 5, we will present

our techniques and experiments on using the MENL learning algorithm to learn

56

suitable decision-making policies for multiple space occupying behaviours in the

same CBG model.

3.5.3 Other Strengths

In addition to adaptation and rnultifunctionality, the CBG model has some other

potential strengths, such as autonomy, generalisability, and modularity.

A certain autonomy is brought directly by the adaptive and multifunctional

abilities of the CBG. After the CBG has learned how to use its past experience and

sensory feedback to make correct selections of motor actions, the CBG can behave

in various situations without human interference. Similarly, after the CBG has

learned how to draw inferences about other behaviours from an already learned

behaviour, it can perform many related behaviours based on its own pre-learned

knowledge, so the human designer won't have to design repeated details for every

behaviour. Of course, autonomous decision-making as to the correct action at

any one time is only one type of autonomy, the tip of the "autonomy" iceberg. In

order to achieve complete autonomy, the CBG needs to introduce autonomy into

every other part, such as sensing, motivation generation, and motor programming

and execution.

Due to its hierarchical architecture, the CBG has also the strength of gener-

alisability. The multifunctional ability of the CBG is one kind of generalisability:

the CBG can be generalised to more than one behaviour by taking advantage of

the shared knowledge and resources across these behaviours. The generalisabil-

ity of the CBG is also present in its easy extension to a wide range of virtual

creatures. Although the sensory and motor apparatus may be varied from one

virtual creature to another, the general strategies and/or the motor program may

remain the same, since it is the Movement module that finally invokes specific

motors to perform. The Movement module performs as an abstraction between

the higher level for planning and the lower level for execution. Therefore, some

parts of behaviours of the CBG model can be executed in a creature-independent

way. The generalisability of the CBG to both various behaviours and virtual

creatures would save the human designer from laborious design work and enrich

57

the variety of virtual creatures and behaviours to be implemented.

Another advantage brought by the CBG's hierarchical architecture is its mod-

ularity. The modularity of the CBG is obvious since components of the archi-

tecture can be replaced with others in a relatively straightforward manner. For

instance, the action selection strategy used in the Strategy module can be di-

rectly changed from hand-crafted rules to - autonomous learning algorithms. As

long as these strategies produce the same functionality, the rest of the CBG won't

be affected at all. Similar replacement can also happen in other modules, such

as Motivation, Program, Movement, and even Sensor and Motor systems. The

modularity of the CBG is particularly useful in extending the CBG's generality

to different behaviours and virtual creatures.

The above discussions in Section 3.5.1 to 3.5.3 have shown that the CBG

model can possess many potential strengths, including adaptation, multifunction-

ality, autonomy, generalisability and modularity, provided there are appropriate

approaches to implement them. In this thesis, we concentrate on the implemen-

tation of adaptation and multifunctionality of the CBG by learning. Research on

the other potentials of the CBG is our future work.

3.6 Space Occupying Behaviours

To illustrate how the CBG model works, we will give an instantiation of the CBG

model when it is used to generate space occupying behaviours in the following

section. Before presenting the instantiation, however, we briefly introduce what

space occupying behaviours are and why we choose them as sample behaviours

for the CBG model and the following MENL learning algorithm to learn to im-

plement.

In nature, animals spend much of their time moving from here to there in

order to reach their shelters or some other destinations (i.e., navigation or goal

reaching), explore surroundings (i.e., exploration), forage for food sources (i.e.,

foraging), or sometimes just move around randomly (i.e., wandering). The be-

haviours are the process of determining and maintaining a course or trajectory

from one place to another, and hence called space occupying behaviours in this

thesis. Space occupying behaviours are functions fundamental to natural animals.

The survival of a natural animal is contingent upon the adaptive skills of quick

and safe space occupying movement.

Space occupying behaviours are also fundamental to artificial creatures. They

have received much attention in both the robotics and virtual creature literature.

(See [159] for a review on the recent work on simulating space occupying be-

haviours.) Space occupying behaviours have been well studied with the assistance

of an environmental map or landmarks in the environment. An environmental

map provides an explicit global representation of the environment, and based on

it, routes or trajectories of movement can be planned. An environmental map

can be built in a previous phase or from geometrical information gathered as the

robot or virtual creature travels [8, 116, 118, 158, 160, 164]. A variety of method-

ologies have been proposed in this context, but potential problems still remain.

Besides the prior-knowledge required in creating maps, the effort involved in re-

vising a map when any change occurs in the environment can be substantial.

Moreover, this approach does not correspond to reality where natural creatures

do not always have a map of their environment when carrying out space occupy-

ing behaviours. Some approaches used landmarks to obtain a local representation

of the environment [14, 87, 96, 114]. This representation comprises a topologi-

cal modelling of the environment. Usually a robot or virtual creature acquires a

graphical representation of landmark types as it moves in the environment. The

landmark scheme is likely to improve robustness in space occupying behaviours,

but the behaviours can only be executed in the environments that have landmarks

and when the landmarks are discernible.

In addition to the behaviours based on landmarks or a map of the environment,

space occupying behaviours can also be generated without specific environmental

knowledge. In nature, living creatures can move promptly and appropriately by

utilising the environmental information they presently perceive. For instance, vi-

sion is a popular means of collecting necessary information from the environment.

59

Sometimes only the current visual information is enough for living creatures to

decide what to do next (e.g., finding available places and avoiding obstacles).

When the environment is new, or the goal location is out of sensory field, many

living creatures including bees, birds, fish, turtles, etc., can determine their move

direction or distance or even their global position by using some other tools to as-

sist, such as a sun compass or magnetic sense [61, 89, 165]. The creatures achieve

their goals through tentative movements and their movement skills are improved

after they obtain more and more experience. Such space occupying behaviours

may be less efficient or optimal compared with planned ones, but they are ro-

bust and general to a wide range of situations. These skills are especially useful

when the creatures are out of the niches that they are familiar with or when

the environment is completely unknown. These space occupying behaviours are

complementary and coexist with map-based and landmark-based behaviours in

many different animal species [126]. The space occupying behaviours, which are

based on local environmental information and general to various situations, are

called general space occupying behaviours in this thesis.

The CBG model combined with the MENL learning algorithm has been

trained to learn general space occupying behaviours as a test of its adaptive

and multifunctional behaviour generation. In addition to the fact that general

space occupying behaviours are important skills to many animals, there were a

number of reasons to choose them as model behaviours for the CBG and MENL

to learn:

. General space occupying behaviours are adaptive

General space occupying behaviours are adjustable to different environ-

ments and situations. They can be adjusted to new circumstances and

continuously improved through practice [147]. This adaptation of general

space occupying behaviours is suitable to test whether the CBG combined

with MENL is able to learn behaviours adaptively.

. General space occupying behaviours are full of variety.

General space occupying behaviours are a general designation of behaviours

ME

that involve movement from one place to another according to current en-

vironmental information. These behaviours include exploration, foraging,

goal reaching, wandering, and some others, which are differentiated from

their different behavioural objectives. The achievement of these behaviours

by an animal involves the same motors and motor actions but different

decisions about which motor action to execute at a particular time The

commonalities and differentiations between these functionally related be-

haviours are good examples to test the multifunctionality of the CBG model

and MENL.

. General space occupying behaviours are robust

As explained above, general space occupying behaviours are not specific

to any environment or object. They are general and robust to a wide

range of situations. Therefore, virtual creatures that have general space

occupying ability should be able to decide for themselves how to achieve

their behavioural goals in various environments without help from a human

designer. Such robust behaviours can enhance virtual creatures' survival

ability in dynamically changing environments.

. General space occupying behaviours are of assistance to many other be-

haviours.

Although general space occupying behaviours differ somewhat from other

space occupying behaviours, such as those based on landmarks or a map of

the environment, the implementation of general space occupying behaviours

can assist the achievement of other behaviours. For example, when full

knowledge of the environment is absent, general exploration can collect

the necessary place information for the construction of a map. When a

landmark is too fax to sense, general navigation can help the creature to

reach the areas that have landmarks. This kind of self-sufficiency can help

virtual creatures to accomplish complex behaviours in their environments.

61

3.7 An Instantiation of the CBG Model for Space

Occupying Behaviours

In this section, we present an instantiation of the CBG model where it is used

to produce some general space occupying behaviours, such as exploration, goal

reaching, and wandering. The implementation of the space occupying behaviours

is decomposed into a sequence of procedures from general to specific for the CMC

system to execute. Meanwhile, the behaviours are implemented with assistance

of all the other parts of the CBG model. This instantiation should give us a

clear image of how the CBG model can be implemented to generate concrete

behaviours for virtual creatures. The virtual creature adopted here is an abstract

two-dimensional bot with an arrow pointing in the direction in which it is facing,

as shown in Figure 3.8. When the CBG model is applied to the virtual creature

to generate space occupying behaviours, the implementation details of every part

of the CBG model are summarised as follows.

3.7.1 Synthetic Visual Input Pattern

The Sensor system of the CBG model can be constructed with different kinds of

sensors. In this thesis, we are mainly interested in simulated vision sensing.

Simulated vision sensing is a direct and natural method to acquire environ-

mental information. This is mainly because vision is a rich source of information

concerning a creature's living world; and it can be exploited in a very wide range

of behaviours. In the study of virtual creatures, synthetic vision is the one often

used [20, 116, 132, 133, 1621. Because the computer graphics system contains all

the information about the simulated environments and objects for their rendering

and display, synthetic vision can directly use this information from the graphical

system. For instance, for each pixel in the rendered scene viewed by a creature,

synthetic vision can easily conclude its position, the distance between the eye

and the point from which it is projected, and the object which it belongs to.

However, it should be noticed that not all information can be provided to the

virtual lives directly. It is necessary to simulate not only the abilities but also the

Figure 3.8: A virtual creature and its visual input. The circle represents the virtual

creature and the arrow its view direction. The shaded area is the visual field of the

creature.

limitations of the perception systems of animals for producing natural behaviours

[153]. Therefore, sensible choices should be made on what sensory information

can be provided to the virtual creatures and what information cannot.

In the work reported here, the virtual creature is equipped with a straightfor-

ward visual sensor. Its field of vision ranges over 90 degrees and five squares in

distance, as shown in Figure 3.8. This visual sensor simulates the current visual

field of the creature and is concerned with only one kind of information, which

identifies whether a square is occupied by an obstacle or not. This is mainly

because we believe a primitive movement can be made on the information about

the availability of places in the visual field, without knowing some other specific

knowledge such as obstacle shape or size. Therefore, each point in the simulated

visual field of the virtual creature has only one of two values: 0 represents a place

occupied by obstacles, and 1 a free place. This information can be easily obtained

from the graphical system. A visual input value V, which is a real number nor-

malised in the interval [0,1], then results from a weighted sum of all the points in

visual field:

V = >(2 a(x)) a(x) = 10, 1}, Vx in the visual field 	(3.5)

where d(x) is the distance of a point x to the current position of the virtual

creature, and a(x) indicates the availability of the point x.

The points in the visual field have gradually decreasing weights from near to

far with respect to the creature. Therefore, close areas in the visual field will

have more significance than far areas. The result of combining all the places in

the visual field gives an input value V to feed the CBG.

Because the visual sense adopted in the CBG model is related to theavail-

ability of places in the visual field, it is independent of specific environments and

objects. It is therefore suitable to any situations.

3.7.2 Virtual Motors

At present, the virtual creature has two kinds of virtual motor for executing

space occupying behaviours: Motor-Move and Motor-Direction. The Motor-Move

motor is used to move the creature straight forward for one square. The Mo-

tor-Direction motor takes one parameter, a, and turns the creature's body clock-

wise to a particular angle a. When the CMC system in the CBG model sends

a motion command to a virtual motor, this motor makes the corresponding ac-

tion on the graphical model of the creature. Specifically, it is a reposition and

reshaping of the virtual creature in the graphics model.

3.7.3 The State Module

According to the body state classification introduced in Section 3.4.3, the creature

has five major state categories in space occupying movement: No-action, Turn,

Movement, Collision and Target. The State module records not only the current

body state and its transitions, but also past state activities. The latter are used to

store the related information about body states and motor actions the creature

has made when performing a particular behaviour. It serves as the "working

memory", a temporary storing of information, to guide a future action. For

example, when the CBG executes space occupying behaviours, the State module

will record the position of the accessed place, the body state of the creature,

and the result of executing the chosen motor action at each time step. Though

64

information like sensory input for places accessed in the past may be useful for

some other behaviours, it is not necessary for space occupying behaviours. The

useful information saved in the State module can be accessed by every part of

the CMC system and the Motivation module for them to decide what to do at

the next step.

3.7.4 The Motivation Module

The Motivation module is responsible for establishing behaviour goals for the

virtual creature. In this thesis, it acts primarily as an interface to a human

commander. When the human commander informs the Motivation module of

a behavioural motivation, the Motivation module generates and sends a corre-

sponding motivational signal to the Computational Motor Control (CMC) system

to achieve this motivation. In the following experiments conducted in Chapter 4

and 5, the Motivation module will be informed of three candidate values (wander-

ing, exploration and goal reaching) and their various combinations. This result in

three corresponding space occupying behaviours executed both individually and

jointly.

3.7.5 The Computational Motor Control System

3.7.5.1 The Strategy Module

The top level of the Computational Motor Control (CMC) system, the Strategy

module, analyses the motivational signal sent from the Motivation module and

constructs an overall strategy and motor plan for achieving the corresponding

motivation. The strategy adopted in the Strategy module is the adaptive strategy

explained in Section 3.5.1 and shown in Figure 3.6.

Motor Action Selection

For different behavioural motivations, the policies of choosing suitable motor

actions are usually different. Thus, the module of "Make decisions" in Figure

3.6 will be implemented differently. For example, when selecting actions for

OVI

carrying out the goal reaching behaviour, the Strategy should consider both the

possible reactions (responses) from the environment and body states, and the

distance of the place to be accessed from the goal destination. When executing

exploration, the responses from the environment and body states are the same,

but the information about whether a place to be accessed has been visited before

is another factor to consider. The Strategy needs to choose an action that - will

access an unexplored place in the environment if there is any. For the behaviour

of wandering, the action selection is relatively easy. Because there is no obvious

behavioural objective in wandering, only the responses from the environment

and body states will be considered. The different factors involved in motor action

selection result in different actions to be chosen for achieving different behavioural

motivations.

Despite the different motor action selection, the remaining parts of the adap-

tive strategy used for carrying out varied space occupying behaviours are quite

similar. This similarity again shows that functionally related behaviours have

some knowledge in common relating to their execution.

Motor Actions

The virtual creature adopted in our work is assumed to make at most one step

at each time interval in its movement. Accordingly, there are eleven motor ac-

tions designed in the CBG model. These actions are "move one square straight

forward", "move diagonally one square to the right forward", "move diagonally

one square to the left forward", "remain stationary", and turn to the other seven

different directions. A pictorial explanation of these actions is shown in Figure

3.9.

Of eleven motor actions, "move diagonally one square to the right forward"

and "move diagonally one square to the left forward" are compound movements,

which need to call more than one motor in their execution. For executing those

compound movements, the creature should first turn to the correct direction by

using the Motor-Direction motor and then move one step forward by using the

Motor-Move motor.

Figure 3.9: Eleven motor actions of the virtual creature. The creature can move one

step forward in its visual field following directions 0, 1 and 7 respectively, and turn to

the other 7 directions other than its current direction 0 by turning around. The last

action choice is to remain at its original place.

Compound motor actions are very popular in natural animals. Animals can

decide between numerous sophisticated movements and the implementation of

these movements may require the use of many individual "motors" many times.

To choose compound movements is obviously quicker and more efficient than

to choose single motor movements one by one. In the CBG model, because

the decision-making of motor actions is relatively independent of the concrete

execution of these motor actions, the Strategy module is able to decide between

compound movements and leave the implementation details of these movements

to the following modules of the CMC system.

3.7.5.2 The Program Module

The selection of motor actions made by the Strategy module is first sent to the

Program module for further elaboration. The Program module is responsible for

designing detailed motor programs in space and time for the abstract selection of

motor actions made in the Strategy module. The Program module decomposes

those decisions into detailed programs that can drive the motors. In the eleven

motor actions, the decision to move one square straight forward can be achieved

by calling the moving motor (Motorivlove), and the decisions to turn to the

67

other seven directions can be achieved with a direct invocation of the direction

changing motor (Motor-Direction). The movement pace of Motor-Move is one

abstract unit of movement each time. The turning scale of Motor-Direction is

a value between 1 and 7, which is an abstract description of the direction to be

reached, according to the direction labelling shown in Figure 3.9.

= The Program module needs to divide the decisions "move diagonally one

square to the right forward" and "move diagonally one square to the left forward"

into sequential movements of direction change and straight forward movement,

so the motors of Motor-Direction and Motor-Move will be invoked in turn. The

turning values of Motor-Direction for those two compound decisions are set to 1

and 7 respectively. The movement paces of the Motor-Move motor are still one

abstract unit of movement for both compound decisions.

The motor programs and their coefficients (e.g., the movement pace and turn-

ing values) generated by the Program module are still relatively abstract and

separated from the real execution of motors. Those motor programs are then

sent to the Movement module for a concrete execution of the virtual motors.

3.7.5.3 The Movement Module

The concrete invocation of the creature's motors is implemented in the Movement

module by setting real turning angles and movement distances. The Movement

module interprets the abstract coefficients sent from the Program module into

actual turning and movement parameters acting on the graphical model of the

creature. The movement distance of the Motor-Move motor is actually one grid

distance of the virtual environment. The turning values (1 '-- 7) of the Mo-

tor-Direction motor are translated into 45 '-' 315 clockwise degrees. After receiv-

ing invocation signals and real graphical parameters from the Movement module,

the Motor system launches the corresponding virtual motors to reposition and

reshape the graphical elements of the virtual creature. In consequence a sequence

of movements can be generated for carrying out various kinds of space occupying

behaviours.

The translation of abstract motor actions into real graphical parameters makes

M.

the decision-making of motor action selection and their decomposition to be sep-

arate from the actual graphical model of the virtual creature. As a result, the

CBG model can be applied to different kinds of virtual creatures and motors

without much redesign.

In this section, we explained how to set the CBG model concretely so as to

produce particular behaviours such as space occupying behaviours. Through this

explanation, we can see that the concrete execution of a behaviour is achieved by

the coherent collaboration of every part of the CBG model. An important part

of which motor actions to choose at a certain time for a particular behavioural

motivation is not presented here. This part is accomplished by the MENL learning

algorithm and its implementation will be introduced in the next chapter.

3.8 Conclusion

The Computational Behaviour Generation (CBG) model proposed in this chapter

provides a general and complete framework of behaviour control for virtual crea-

tures. This model has taken its inspiration from and has been designed based on

the natural behaviour control system in the brain. In particular, the CBG model

utilises a hierarchical Computational Motor Control (CMC) system to perform

the whole procedure of selection, programming and execution of motor actions.

This hierarchy provides a top-down control scheme in which higher levels produce

general commands for lower levels to implement without detailed description of

concrete implementation of lower level elements. The CBG model designed in

this manner has clear generality in its behaviour control and can therefore be

applied to a wide range of virtual creatures. In addition to the top-down control,

a bottom-up feedback is formed in the CBG model, as the sensory system contin-

uously reports to the CBG the changes in the external environment and internal

body states after every motor action execution. By means of the top-down and

bottom-up information flows, the CBG model can compare its intended actions

with actual movements and learn from its successful or unsuccessful experiences.

In consequence the behaviours generated by the CBG model can be adaptive

by learning. Due to its hierarchical structure, the CBG model supplies a great

amount of commonality in functionally related or similar behaviours, including

both hardware resources and software knowledge. The CBG model may there-

fore be multifunctional, if it takes what it learns from one behaviour to another.

In addition to adaptation and multifünctiOñality, the CBG model also possesses

some other potential strengths, such as autonomy, generality, and modularity.

In the next chapter we will present the learning algorithm of Multi-agent based

Evolutionary artificial Neural network with Lifetime learning and introduce how

this algorithm can be used in the CBG model to produce adaptive behaviours.

70

Chapter 4

Learning Single Behaviours:

Combining the CBG Model with the

MENL Learning Algorithm

In the previous chapter, we explained that the Computational Behaviour Gen-

eration (CBG) model can become adaptive, provided it has a sensible learning

algorithm that can learn to choose suitable motor actions for generating be-

haviours. The learning algorithm adopted in this thesis is MENL, a Multi-agent

based Evolutionary artificial Neural network with Lifetime learning. This chap-

ter gives a full explanation of the learning algorithm MENL and its adaptive

learning of single behaviours when it is combined with the CBG model. (The

learning of multiple behaviours by the CBG combined with MENL will be pre-

sented in the next chapter.) In particular, the next section is a review of the

recent work on evolved behaviours and reinforcement learning, which are related

to the adaptive learning of MENL. Section 4.2 outlines the main ideas behind the

multi-agent based evolutionary artificial neural network with lifetime learning.

Section 4.3 describes the implementation details of MENL when it is employed

in the Strategy module of the CBG model to learn correct motor action selection

for generating space occupying behaviours. In this chapter, the CBG combined

with MENL is required to learn exploration behaviour independently, that is, to

71

access places in an unknown environment as far as possible. The experimental

work is presented in Section 4.4. The experimental results have shown that the

CBG with MENL has successfully learned exploration in various unknown envi-

ronments. Some efficient and believable behaviours emergent in the experiments

are introduced in Section 4.5. The last section concludes this chapter.

4.1 Related Work

Evolved behaviours and reinforcement learning are two important approaches to

generating adaptive behaviours for artificial animats. Our MENL learning algo-

rithm is associated with both of them because it uses not only evolution strategies

but also sensory feedback to shape behaviours. Based on a skillful combination of

evolutionary learning and reinforcement learning, MENL also utilises the agent

technology and the lifetime learning in its design so as to achieve improved adap-

tation in behaviour generation. In this section, we review the related work on

both evolved behaviours and reinforcement learning and place our work in the

context. Instead of an exhaustive survey of a very large domain, we would like

to focus on those works closely related to our study.

4.1.1 Evolved Behaviours

The idea that an animal's behaviour is partially determined by its genome and

hence evolvable through natural selection has inspired much research work on

using evolutionary procedures to develop the mapping between environmental

situations and actions [16, 38, 45, 84, 115, 105, 134]. The large number of evolved

behaviours includes obstacle-avoidance, locomotion, wall-following, box pushing,

finding food sources, etc (see [57, 104] for a comprehensive review). The rich

variety of structures that have been put under evolution include directed graphs,

Lisp code and artificial neural networks. Directed graphs have been used to

represent the morphology and behaviours of virtual creatures, and evolved to

achieve specific behaviours such as swimming, walking, and jumping [148, 149].

The Lisp code, also called genetic programming, has been applied to recreate

72

the patterns of locomotion of a lizard [84], determine the optimal number and

orientation of the sensors for developing corridor-following behaviours [134], or

design both controllers and morphology of robots [80, 88, 911.

In order to avoid the artificial interference brought by the human designer, it

is believed that the primitives manipulated by the evolutionary process should

be at the lowest level [69]. Therefore, artificial neural networks composed of

the very basic units of neurons are frequently chosen as the building blocks for

evolutionary learning of behaviours. The genotype-phenotype mapping of evolu-

tionary algorithms can be consequently implemented in a classical neural network

[51, 50, 120, 173] or in a dynamic neural network [38, 63, 68, 178]. Cliff, Hus-

bands and Harvey, for instance, employed an extended genetic algorithm with

variable-length genotypes to evolve the number of hidden units and specific con-

nections of recurrent real-time artificial neural networks for controlling robots

to avoid obstacles or to reach a particular target [68, 69]. One of their major

claims was that artificial evolution of neural networks represented a better choice

for the development of autonomous behaviours than design by hand [38]. Cliff

also provided a theoretical background for the study of simulated organisms in

a closed environment and presented a concept of Computational Neuroethology

as an attempt to relate behaviours with the activities of artificial neural mech-

anisms [36]. In this study, Cliff concluded that connectionist models could only

be meaningful if they are embedded in a sensorimotor system.

Floreano [51] studied the evolution of a feedforward neural network which

exhibited a nest-based foraging behaviour. Since the fitness function was simply

the number of food objects eaten, the location of the nest and the ability to

periodically visit it were indirect achievements. A similar result was obtained in

the experiment of Floreano and Mondada [50], in which the periodical return to

a battery recharge station was indirectly achieved in the evolutionary learning of

a discrete-time recurrent neural network. The experimental results showed that

more complex behaviour emerged by reducing the constraints imposed by the

fitness function.

The work by Noll also concluded that the lesser power of current artificial

73

evolution models might be due to the lack of some important properties of natural

evolution, and the usage of a very specific selection criterion implied that the

evolutionary process was used in at least a partially distorted way [115]. In his

research work on a garbage collecting robot that was trained to keep an arena

clean, Nolfi carefully "canalised" the evolutionary process in the "right" direction,

by favouring the emergence of the required competencies. Through experiments,

Nolfi also found that the amount of canalisation pressure should be kept as small

as possible.

Inspired by biomimetic processes such as cell division, axonal growth, and pro-

tein synthesis regulation, evolutionary algorithms have also been used to evolve

developmental procedures of neural controllers [46, 63, 105, 106]. Michel, for

instance, applied genetic algorithms to evolve morphogenesis production rules

which were decoded into a dynamical neural network driving a mobile robot

[106]. Eggenberger designed an artificial genome composed of regulatory units

and structural genes [46]. The activities of structural genes were regulated by

regulatory units in evolution and resulted in a network of cells through cell dif-

ferentiation, cell construction, cell division and cell connection. The developed

network were successfully linked to the sensor and motors of a real robot. A

grammar tree based cellular encoding with syntactic constraints was proposed

by Gruau et al. [62, 631. Based on this encoding, a neural network was finally

generated from a single cell via various kinds of cell divisions. During the ëvolu-

tion or development of cells, the fitness of evolutionary individuals were given by

the experimenter interactively by hand. The AnimatLab at Paris has proposed

an evolutionary paradigm of SGOCE [105], which is an integration of an axonal

growth process [32, 163] and the cellular encoding of Gruau et al. A series of work

has been conducted in this lab to use SGOCE to evolve neural controllers for gen-

erating behaviours such as rolling [35], walking [47, 481, swimming [76] and flying

[44]. Some of the behaviours were produced in an incremental way by taking

advantage of the geometrical nature of the developmental controllers. In [82, 83],

for example, locomotion controllers were first generated by evolution. Neural con-

trollers for gradient-following and obstacle-avoiding were subsequently evolved,

74

whose neurons established flexible connections with neurons of the evolved loco-

motion controllers. Experimental results have shown that the controllers obtained

from the first stage were less efficient than those obtained from the subsequent

stage, and meanwhile, the evolution of evolving all the controllers simultaneously

had worse average performance or more evolution time than the incremental evo-

lution [35, 44]. By means of incremental evolution, neural controllers can become

increasingly complicated and hence control more and more complex behaviours.

While most research on evolutionary robots has employed genetic algorithms

(GAs) or their variations, Salomon studied the application of evolution strategies

(ESs) to the evolution and optimisation of different controllers for Braitenberg

vehicles [137]. The aim of the application was to make the vehicles move forward

quickly with obstacle avoidance in an arena. Compared with other research on

Braitenberg controllers that applied GAs, the experimental results have shown

that the ES-based approach was much faster and more competent than GA-based

approaches, especially when encountering epistasis problems.

Our approach of MENL learning is much influenced by the above research

work on evolved behaviours. In particular, a feedforward neural network is

evolved in MENL via evolution strategies to learn appropriate situation-action

mapping for the generation of behaviours. The objective of the behaviour to be

achieved is a factor in the fitness function guiding the evolution of the neural

network. Different from evolving behaviours in a traditional way, the MENL

learning algorithm also takes into account the sensory feedback on executed ac-

tions (including environmental and body state feedback) in its action selection

learning. The sensory feedback is used as another important factor to discover

general properties of behaviours of the same kind. The learned behaviour is

therefore also shaped by the immediate feedback from the environment and body

states. In this sense, our approach is also related to reinforcement learning.

4.1.2 Reinforcement Learning

The main purpose of reinforcement learning is to learn an action policy, or an

associative mapping from situations to actions by maximising a scalar reinforce-

75

ment of the task performance from environments. There are two main strategies

for solving reinforcement-learning problems: value function methods and policy

space methods (see [78, 112] for a comprehensive review).

The value function methods attempt to learn the optimal policy via a value

function, instead of a representation of the policy, which returns the expected

cumulative reward for the policy from any state. Q-learning, a technique for

propagating rewards temporally across sequences of actions [170, 171], is one of

the most well known value function methods. Much of the work on robot learning

is derived from it. Mahadevan and Connell used Q-learning with some clustering

techniques to train a mobile robot to push large boxes for extended periods of

time [95]. The clustering techniques were weighted Hamming Distance and statis-

tical clustering that generalised rewards spatially across similar states. Mataric

described a robotics experiment with a high dimensional state space based on

Q-learning [97]. Four mobile robots travelled within an enclosure to collect small

disks and transported them to a destination region. Pre-programmed signals

called progress estimators were used to break the monolithic task into subtasks.

State space was also quantised into a small number of discrete states according

to pre-defined boolean features of the underlying sensor. The performance of the

Q-learning policies was almost as good as a simple hand-crafted controller for

the job. In order to reuse the same sequence of situation-action pairs so as to

back-propagate delayed rewards, Sutton studied a class of reinforcement learning

architectures called DYNA, which included an internal world model in learning

[151, 152]. DYNA simultaneously used experience to modify the world model by

relaxation planning and the value function by temporal difference reinforcement

learning [150], and used the world model to adjust the value function. When

DYNA was used to navigate in a maze, it required fewer steps of experience than

Q-learning to arrive at an optimal policy, but more computational effort at the

same time.

Reinforcement learning can also be achieved via policy-space methods, which

maintain explicit representations of policies and modify them through a variety

of search operators, such as evolutionary algorithms. Grefenstette et al. pre-

76

sented the SAMUEL system that combined evolution with aspects of temporal

difference reinforcement learning [59]. They used a rule-based single chromo-

some to represent a policy, i.e., a situation-action mapping. So, each individual

of the evolutionary population was a policy represented as a rule set and each

gene was a rule that maps the states of the world to actions to be performed.

SAMUEL has been ai5lfed to learn a series of behaviours for robots and other au-

tonomous vehicles, including collision avoidance and local navigation behaviours

[138, 139, 140], and herding a second robot to a "pasture" [140]. Several other

systems used Classifier Systems to find food, avoid obstacles, or produce goal-

seeking sequences [23, 70, 1751. In classifier systems, a policy is represented by a

set of distributed if-then rules called classifiers. Each chromosome represents a

single decision rule that maps part of the sensory input to an appropriate action

and the entire population represents the agent's policy. Every classifier has a

statistic called strength that estimates the utility of the rule. Genetic Algorithms

are usually applied to highly fit classifiers to generate new rules.

In order to obtain higher generalisation over the input space, some work used

neural networks to approximate a situation-action policy [15, 174, 177]. A neural

network for a decision policy is represented as a sequence of real-valued connec-

tion weights, and these weights are continuously optimised via an evolutionary

algorithm to search out an optimal policy. This representation requires little mod-

ification of the standard evolutionary algorithms. In the SANE system [110, 111],

two separate populations were maintained and evolved: a population of neurons

and a population of network blueprints. The evolution of neurons provided eval-

uation and recombination of the individual neurons which were used to construct

dynamic neural networks. The evolution of network blueprints then searched for

effective network combinations by these neurons. SANE explicitly decomposed

the neural network search problem into several parallel searches for effective single

neurons. The SANE system has been shown to be effective in game-tree search

[109] and obstacle avoidance learning in a robot arm [1101. In evolutionary algo-

rithms for reinforcement learning, almost all the fitness functions reflected accu-

mulated rewards received during the course of interaction with the environment.

77

Fitness might also reflect effort expended, or amount of delay.

Similar to reinforcement learning, our approach of MENL learns behaviours

by maximising sensory feedback from environments. MENL is especially simi-

lar to the evolutionary algorithms for reinforcement learning because it also uses

evolutionary algorithms to learn an implicit representation of the situation-action

policy. However, MENL differs from the traditional reinforcement learning in sev-

eral fundamental ways. The rewards that MENL obtains are simple and general

responses of not only environments but also body states to executed actions. The

responses are not specific to a particular behaviour. Instead, they are general in-

formation common to behaviours of the same kind. For example, when learning

space occupying behaviours, the sensory feedback only indicates that successful

walk is better than direction change and direction change is better than no mov-

ing and collision making. This information suits all space occupying behaviours

like exploration and goal reaching, and more importantly, it is easy to design and

obtain. This is in contrast to the difficult reward calculation and credit assign-

ment in reinforcement learning [94]. The fitness function adopted in MENL is

also different from that in traditional reinforcement learning. The fitness function

of MENL consists of both sensory feedback and behaviour objectives. While the

sensory feedback provides the generic information of behaviours, the objective of

the behaviour to be learned helps the creature to learn how to perform a particu-

lar behaviour through evolutionary learning. In consequence, the MENL learning

algorithm can be used to learn more than one behaviour easily and efficiently, by

changing the behaviour objective in the fitness function. (The following chapter

will support this claim.) The characteristic of multifunctional learning in MENL

is in contrast to reinforcement learning that has difficulties to deal with varying

goals [94]. If the goals change, almost everything of reinforcement learning has

to be reset. The inflexibility in reinforcement learning is not suitable to virtual

creature applications that may have various goals and behaviours to achieve.

In order to improve the adaptation of a behaviour to be learned, and especially

to improve the robustness and generalisation of the behaviour, the MENL learn-

ing algorithm has also adopted multiagents in its evolutionary learning and this

learning is kept through the lifetime of an animat. The learned behaviours there-

fore can be continuously improved and suited to a wide range of situations, as

demonstrated by the following experiments.

In the next section, we will introduce the basic design of MENL in detail.

4.2 Multi-agent Based Evolutionary Artificial Neu-

ral Network with Lifetime Learning (MENL)

Multi-agent based Evolutionary artificial Neural network with Lifetime learning

(MENL) is an evolutionary artificial neural network that can continuously learn

how to select suitable motor actions for generating designated behaviours based

on its own knowledge and experience. This learning algorithm has a strong

ability to adapt to continuous changes in the environment. To enable this ability,

many technologies and concepts have been introduced into MENL. Particularly,

Evolution Strategies (ESs) are used to evolve the parameters of the artificial

neural network. The fitness function of MENL is a relaxed and general design

composed of both behaviour objectives and sensory feedback on executed motor

actions. Therefore, the learning of MENL is guided by not only the objective of a

behaviour but also the environment that provides the feedback. In order to take

advantage of the whole population information, a batch of agents is maintained in

evolutionary learning, each of which is an evolutionary neural network individual.

Through constant interaction with the environment, these agents cooperate and

compete with each other for correct decision-making of motor action selection.

These agents are subject to evolution via evolution strategies in the absence of

a correct decision, and this kind of evolutionary learning continues through the

lifetime of the ANN. In consequence, MENL obtains a more enhanced and general

ability as the evolutionary learning proceeds during its lifetime.

In this section, we introduce the strategies used in MENL, including artificial

neural networks, evolutionary learning, multiagents, lifetime learning, and a re-

laxed and general fitness function design. When introducing these strategies, we

79

also explain the reason we use them and the ways to implement them in MENL.

The entire work engine of MENL is then presented. At the end of this section, we

briefly explain how adaptive learning is achieved when MENL is combined with

the CBG model.

4.2.1 Strategies Used in MENL 	 -

4.2.1.1 Artificial Neural Networks

In animals that have neurons, neural networks are always involved in behaviours

[147]. These networks at least act as the conductor that sets off effector re-

sponses. Usually they are responsible for the transference and transformation of

environmental information received by the receptor to action commands for the

effector to carry out. The pathway and connection in a neural network (receptors-

neurons-effectors) determine what the action responses will be in the end. Neural

networks can be modified. By establishing alternative routes of information flow,

they can revise old responses and produce new responses so as to adapt to a new

situation. At the same time, the old responses can be recalled when they are

required. Neural networks are the cornerstone of behaviours, especially in higher

invertebrates or vertebrates.

By simulating some of the structures and characteristics of biological neural

networks (BNNs), artificial neural networks (ANNs) in computer science possess

some functions of BNNs on certain levels. ANNs can also function as an in-

ternal engine between simulated receptor and effector for producing animal-like

behaviours. Due to their outstanding ability for information abstraction, ANNs

are able to learn internal relationships between environmental information and

appropriate action responses. Knowledge of relationships is then implicitly stored

and distributed in neurons and connection weights. When encountering new sit-

uations, ANNs can also revise old knowledge and fuse new information so as to

deal with these situations competently, by adjusting the structure and parameters

of the network.

This type of implicit knowledge processing in artificial neural networks is in

contrast to the explicit symbolic knowledge processing in traditional artificial

El

intelligence. Explicit representationalism could account for only a small part

of what we call intelligence, but the rest may have nothing to do with systems

of symbols [145]. This idea is shared by both the reactive and connectionist

approaches. However, guided by Brooks [27, 28], the reactive advocators tend to

deny the need for symbolic representations within the machine as fax as possible,

and use only some form of representation if it is really necessaiy. This leads

to a subtle and difficult choice in design of the primitive reactive modules and

the necessary representations and, as a result, they suffer from the designer's

influence to some extent [145].

Unlike reactionists, the connectionists try to develop a new learning theory

of implicit representation that does not require explicit processing rules [143].

Without explicit symbols, a kind of implicit knowledge representation and pro-

cessing arise spontaneously and distributively from the artificial neural networks.

By adjusting the structure and synaptic weights appropriately, artificial neural

networks act as a powerful and general statistical pattern recogniser that can

learn any functional mapping [18]. When ANNs are applied to practical prob-

lems, some pre-processing of the input data and post-processing of the output

are usually required. However, because the learning of artificial neural networks

is based on low level primitives of the weights and neurons, it may avoid some

undesirable choices made by a human designer [38]. ANNs have been favoured

by many researchers as the controllers for producing autonomous and adaptive

behaviours for virtual creatures and robots [38, 49, 63, 64, 105, 115, 120, 173, 1781.

MENL is appointed as a decision-maker in the Strategy module of the CBG

model to choose appropriate motor actions to execute. The ANN in MENL is

therefore responsible for learning the action function 7r(S, E,) as introduced in

Section 3.4.2. In addition to the environmental information currently perceived

by the CBG sensors, the ANN can also utilise the environmental and body state

feedback on executed motor actions and the behavioural motivation to guide its

selection of motor actions. The learning of the action function ir by the ANN is

achieved with the assistance of an evolutionary learning algorithm - Evolution

Strategies.

91

4.2.1.2 Evolutionary Artificial Neural Networks

There are several ways to improve the structure and parameters of an ANN.

A common method is to train ANNs via a large set of sample data. This is

called supervised learning. However, in the case of natural behaviour learning, it

is rather difficult to employ strictly supervised learning algorithms because the

correct system output is not always available or computable [108]. In many cases,

only some simple signs which indicate the output effect are obtainable from the

environment. Therefore, a suitable way to train an ANN for learning natural

behaviours may be self-supervised learning, that is, to let the ANN learn by itself

the correct behaviours through continuous interaction with the environment.

Evolutionary algorithms are good candidates to train an ANN for this type

of self-supervised learning because they do not require a direct specification of

the desired values for network outputs at any given moment. Instead they use a

fitness function to specify a measure of overall performance. Among evolutionary

algorithms, Genetic Algorithms (GAs) are widely used to evolve neural control

structures [38, 49, 50, 69, 115, 178]. However, recent studies have disclosed that

another evolutionary algorithm, Evolution Strategies (ESs) have obtained better

results than genetic algorithms in many real valued parameter optimisation [10,

130, 136, 137, 141]. Therefore, in the study reported here, we adopt Evolution

Strategies to train the artificial neural network of MENL.

Evolution Strategies

Evolution Strategies (ESs) are especially designed for applications that involve

real-valued parameters [130, 141]. The solution vector is usually represented as

a string of n floating point values, each of which represents one of the objective

variables. Together with each value is a control parameter a that determines

the characteristic mutation size for that variable. There may also be an extra

control parameter, rotation angle a, which allows mutations to be correlated and

the axes of the problem to be rotated arbitrarily. Hence, an individual ã in a

generation of evolution strategies can be represented as d = (, O,).
Evolution strategies use search operators such as mutation and/or recombi-

nation to generate new solutions, and use a selection scheme to test which of

the newly generated solutions should survive to the next generation. Histori-

cally mutation was the primary move operator in evolution strategies, which is

effected by the addition of Gaussian noise (Gaussian mutation) to each objective

variable, with a standard deviation controlled by the relevant o. More recently,

a variety of recombination operators have been introduced to either produce one

new individual from two random parent individuals or to allow components to

be taken for one new individual from potentially all individuals available in the

parent population.

Presently, the two most widely used ES algorithms are (+ A) - ES and

A) - ES, which are distinguished by their different selection mechanisms. The

former selects the best p individuals from both the i parents and A offspring as

the parents of the next generation. The latter selects the best 1a parents only from

the A offspring. It is believed that the (, A) - ES outperforms the (IL + A) - ES

because (, A) - ES is less likely to land in local optima [10]. The numbers of

parents and offspring are recommended to be at a ratio of IL/A 1/7 [10]. (See

[10, 11] for further details.)

A key concept of ESs is that both the objective variables Y and the strategy

parameters (6, 6) are evolved during the search, exploiting an implicit link be-

tween an appropriate internal model and good fitness values. This self-adaptation

mechanism of strategy parameters allows ESs to self-adapt to different fitness

landscapes. In consequence, ESs have no other parameter that has to be tuned

by the designer apart from the population size.

In MENL, ESs are used as the main engine to evolve ANN variables (i.e.,

weights and biases). However, instead of selecting the optimal individual from

the last generation and using it as a unique solution, MENL keeps the whole

generation of evolution and treats each individual in it as an active agent to

make co-decisions.

RN

4.2.1.3 Multiagents

An agent is a system that tries to fulfil a set of goals in a complex dynamic envi-

ronment [94]. Humans and animals are at the high end of being an agent, with

numerous small agents for multiple senses, multiple actions, and complex control

structures. Each small agent has also its own specific competence [27, 107] to

make contributions to the whole agent system. In a multi-agent system, agents

coordinate their knowledge, goals, skills and plans jointly to take actions or solve

problems collectively [221. These agents may work toward separate but related

goals, or toward a single global goal. We presume even a simple behaviour may

involve a small agent society, in which many small homogeneous agents cooperate

and compete with each other to perform the same type of function. When we

walk, for example, sometimes we can walk quickly without deep consciousness,

but sometimes we may hesitate and clearly have some different ideas conflict-

ing in the brain. If one idea, controlled by an agent, is strong enough to cope

with the current situation, the movement quickly resumes. Otherwise, intensive

competition or even revision of the agents (e.g., further learning) is evoked.

When the multi-agent system is introduced into the evolution of ANNs, each

individual ANN in a generation is an agent. These agents have the same goal

but make their own decisions when environmental information is received. While

one agent makes only one decision at an instant, multiagents provide more kinds

of solutions. Even when the individual which has the highest fitness fails, others

with useful ideas can still take over the situation and the behaviour would not

be "paralysed". Since multiagents make use of all the population information

that is no less than the information held by any single individual, they have en-

hanced robustness and generalisation ability. In [179], Yao and Liu made use of

the population information in evolutionary ANNs to improve generalisation of

learned systems. They utilised linear combinations to integrate different individ-

uals in the last generation of evolution to form integrated systems. In contrast to

these artificially combined systems, a whole population of agents is maintained

in MENL and their relationship is coordinated autonomously and naturally by

themselves. (In Section 4.4.2, we will see multiagents compete and complement

01

with each other to form a coalition for implementing a designated task.) Further-

more, MENL multiagents are not fixed at the last generation of evolution. They

are flexible and subject to evolution whenever the situation is out of control. This

evolutionary learning is kept through the whole life of an evolutionary ANN.

4.2.1.4 Lifetime Learning

In evolutionary computation, most research work tends to wait for an optimal

individual or an optimal generation which satisfies all the pre-designed require-

ments. Once such a solution appears, it is used as an ideal scheme to deal with

all the other problems and won't be improved any more. The ability of the final

solution to solve problems then becomes a criterion to consider whether a learn-

ing algorithm is successful or riot. However, it may be questioned whether an

omnipotent solution can always be found, especially in a dynamically changing

world. When simulating natural behaviours, it is more important for a solution to

be general enough to provide reasonable performance in varied situations, rather

than just optimal in some special cases. Even if a solution is optimum on many

occasions, there is no guarantee that it will be suitable in other unfamiliar and

unusual situations. This solution should therefore be continuously improved so

as to suit more and more situations.

Learning is often thought to be equal to optimising an error function or max-

imising a fitness function. However, we consider learning to be in fact different

from optimisation because the learned system should have best generalisation,

while the optimised system has best specific competence [115, 179]. A general

ability may not be optimal at all, but it should be suitable and adjustable to a

wide range of situations. Such an ability is usually accumulated through constant

learning in varied situations and this learning will never cease. Those abilities

that obtain some functionality but do not update again may face a serious main-

tenance problem when the situation is not the one they are familiar with.

In the learning algorithm of MENL, a batch of evolutionary agents is main-

tained. Contrasting to traditional evolutionary computation, these agents are not

unchangeable at the last generation of evolution when the evolutionary learning

is finished. Instead, the agents in MENL are flexible and can update themselves

through another period of evolutionary learning whenever they encounter prob-

lems. This can have a natural bearing on lifetime learning. For example, when

the best decision made by the multiagents fails to make a valid action, an evolu-

tionary strategy is then immediately introduced and a new generation of agents

is evolved. New decisions are produced and the best - one Of these is executed

again. The new agents will survive the predicament and will be used to control

the next situation if a desired result is obtained. Otherwise, further evolution

proceeds until new qualified agents are evolved. As this evolutionary procedure

iterates during the whole life of MENL, multiagents will have a more enhanced

and general ability. This kind of learning is called lifetime learning in our study.

Learning continuously in changing environments is also pursued by lifelong

learning [157] and anytime Learning [24, 60, 121]. Lifelong learning studies learn-

ing in the context of a long-living robot, which faces collections of learning tasks.

An explanation-based neural network learning algorithm (EBNN) is designed to

integrates inductive neural network learning and analytical explanation-based

learning so the robot can exploit synergy between related learning tasks and

transfer knowledge from previously encountered learning tasks to other new learn-

ing tasks. This makes the robot particularly applicable to a whole collection of

learning tasks over its entire lifetime. Different from lifelong learning which learns

tasks one after another, anytime learning learns a particular task and improves

its performance continuously. In anytime learning framework, there are usually

two systems running in parallel: a learning system that learns behaviours in

simulated environments, and an execution system that uses the best controller

produced by the learning system so far to implement behaviours in real envi-

ronments. At the same time, a monitor module in the execution system checks

whether the simulated model still matches the real environments, and if not, no-

tifies the learning system to update its simulated model. The lifetime learning of

the MENL algorithm is similar to anytime learning in improving the performance

of executing a behaviour continuously. However, different from anytime learning,

MENL's lifetime learning does not require any simulated models because it learns

011

behaviours running on actual enviroments. Instead of an engine seperated from

the execution system, lifetime learning is indeed part of the execution system

and its commands are immediately executed by the execution system. The re-

sulted learning can therefore reflect instant changes in the environment quickly

and efficiently.

Due to the utilisation of multiagents and lifetime learning, MENL can attempt

to learn a great number of generalisations of behaviours for a wide range of

situations. The following exploration experiments in Section 4.4 have shown that

evolutionary agents with lifetime learning outperform non-improved multiagents,

while multiagents surpass the single agent with the highest fitness.

4.2.1.5 Relaxed and General Fitness Function Design

Usually people think the job of designing a rational fitness function is quite deli-

cate and laborious. In order to channel the evolutionary process in a desired di-

rection, many constraints are craftily imposed on the fitness function. Although

these designed fitness functions may obtain some desirable results, they restrict

the autonomy of evolution [98] and the generalisation of the solution [50, 179]

at the same time. With regard to natural evolution, we find that nature does

not enforce any particular criterion on living organisms. It discovers competen-

cies because they can enhance reproductive success. Nevertheless, this happens

without specific constraints. As a consequence, it is not surprising that complex

and general behaviours are difficult to obtain through artificial evolution confined

by many conditions. Recent study on evolutionary learning has confirmed this

viewpoint and suggested that behaviours with more complexity could emerge by

reducing the constraints imposed on the fitness function and by increasing the

affordances of the environment [50].

In order to release the designer from laborious design work, MENL adopts a

relaxed fitness function that sketches the effects of decisions made by each agent.

This fitness function takes into account the sensory feedback on motor actions

and the behavioural objectives. Unlike the previous work of fitness function

design that imposes extra constraints to achieve some specific behaviour effects,

0

such as obstacle avoidance, straight-line walk, etc., the fitness function adopted

here employs environment and body state feedback to shape certain aspects of

behaviours.

So, the fitness function 1 of an agent ak at time t is:

t) = > (Response (e(ak, 1)) + Aim (e(ak, 1))) 	 (4.1)

where e is the action selection function of agent ak.

The first term in the fitness function, Response, is the sensory feedback of

the motor action e(k, 1) decided by agent dk at time 1. The feedback includes

corresponding environmental responses and body changes. Instead of being an

exact value representing the contribution of an action to a designated behaviour,

such as those used in reinforcement learning, the sensory feedback used here is just

a simple and general indication of whether an action is good in relation to other

actions. For example, when learning space occupying behaviours, the sensory

feedback only suggests that successful movement is better than direction change,

and direction change is better than no movement which is in turn better than

the movement causing collisions. This feedback is a kind of general information

common to the behaviours of the same kind (i.e. space occupying movement). It

is also easy to observe and obtain.

The second term of the fitness function, Aim, indicates the behaviour objective

of a particular behaviour. For simplicity, it can be a negative term that indicates

how far it is to the behaviour objective at the present time. This term is mainly

used to encourage an agent to act for a designated behaviour, and not to be lost

in some other meaningless actions. As a result, when assisted by the general

sensory feedback to behaviours of the same kind, MENL can learn to perform

particular behaviours with the guidance of specific behaviour objectives.

The fitness function 4D is a sum of all the effects of actions e(ok, 1) chosen

from the initial time 1 = 0 to the present moment t. The fitness function hence

not only reflects the effect of the current decision made by an agent, but also

takes into account the decision-making history of the agent.

When selecting a decision of actions to execute, those agents that may produce

the best effect in the current situation are considered first. Past experience is

M.

the second factor to affect selection. So, if more than one agent selects the

best action(s) at an instance, the one that has the highest fitness value (i.e.,

the best experience) will take priority to control the current situation. This

design derives from an attempt to balance the relationship between generalisation

and optimisation. By only thinking of an immediate action and not making a

comprehensive consideration of past experience, it is possible to produce a local

optimum result suitable for limited occasions. On the other hand, considering

past experience too much and not focusing on the current situation may cause a

mediocre solution that implements a task at a low level of competence. Here, we

try to balance these two factors by providing a general but also capable framework

of action selection. Further study on this topic is our future work.

4.2.2 Work Engine of MENL

Through the above introduction of the essential strategies used in MENL, it

should be clear how MENL works in general. Table 4.1 gives an algorithmic

description of MENL. The concrete working procedure of MENL for achieving a

behavioural motivation can be described as follows.

When MENL starts, a population of evolutionary ANN individuals P(s) =

{(s), ..., (s)} at generation s = 0 and time t = 0, is created. The population

consists of M individuals, ak E I = RxR, Vk E 11, ..., pl. Every individual ak is

composed of an n-dimensional vector Xk that is the object variable component to

be learned, and an n-dimensional vector 6k which is the mutation size component.

For simplicity, MENL does not adopt the rotation angle o. Each individual in a

population is actually an artificial neural network, which is also a MENL agent.

The object variables in Y of each individual are therefore the weights and biases

of the neural network this individual represents.

After the population creation, MENL checks if the goal G of the behaviour

to be achieved is reached. The goal can be that the virtual creature has arrived

at a designated location in the goal reaching behaviour, or that a maximum

time is reached in the exploration behaviour. If the goal of the behaviour is

reached, the work of the MENL algorithm then stops. Otherwise, MENL should

ME

t=0; s=0;

initialise P(s) = Id, (s),..., di, (s)} E I'

where I = R x

and ak=(xk,ok), VkE{1,...,ji};

if (goal g is achieved) goto step 15;

else goto step 4;

make decisions on P(s) : { e(a 1 (s), t), ..., e(a;(s), t)}

where e(k,t) = ANN(ak, V, t), that is, the output of an ANN at time

t, whose parameters come from ak and input is V (e.g., the currently perceived

environmental information);

evaluate P(s) : {(l (s),t),...,cI(á L (s),t)}

where I(ak, t) = Et=O Ef fect(e(ak, 1))

and Ef fect(e) = Response(e) + Aim(e);

select the best decision eb€8 	e(, t) which has max(I, t)),

j E {kl max (Effect(e(ak,t)))}, k Cz {1,...,j};

execute e3

t=t+1;

if (Response(eb est) == penalty) goto step 9;

else goto step 3;

recombine: a' (s) = r'(P(s)) Vk E 11, ...,

mutate: ã(s) = rn{TT!P}(ak(s)) Vk e {1, ...,

make decisions on P" (s) : {e((s),t), ...,

evaluate P"(s) :

select: P(s + 1) = s(,,.x)(P(s));

s=s+1;

goto step 3;

stop.

Table 4.1: The algorithmic description of MENL

911

make decisions about what action to take next. Based on the input information

V at time t (e.g., the perceived environmental information about the present

situation), all of the current agents existing in MENL simultaneously make their

own decisions of action selection for achieving the behaviour. Each agent ak,

which is also a neural network individual, uses its network parameters to calculate

a decision output, 0(k, t) ANN(ãk, V, -t),- which -is a mapping from the input

information at time t to a decision on actions. All of the output solutions are

evaluated by the fitness function '1. Among those output solutions suggested

by the multiagents, the one finally chosen ebest to instruct the behaviour should

have the best effect max(Effect(e(ak, t))) in the current situation t, and the

best decision-making history (the highest fitness) if there are more than one

solution producing the best effect. All of the multiagents are kept to control the

next situation at time t +1 if a positive response is obtained after the execution of

the selected solution. However, if a penalty is received, it means that there is no

competent agent present at the moment to instruct the behaviour properly. In this

situation, evolutionary learning is immediately triggered to search for new agents.

The population at generation s is first recombined by the recombination operator

r' , and produces A offspring ä, 'v.1k E 11, ..., Al. Then, the offspring are mutated

by the mutate operator m{TTF 3}' where r, T' , and ,8 are parameters for generating

the mutation size ä. The best IL evaluated individuals in the offspring is chosen

as new i parents (multiagents) at generation s + 1. New evolved agents make

their decisions for the current situation and the best decision is executed. These

new agents are maintained if they are able to resolve the situation. Otherwise,

even further evolutionary learning is involved until a new generation of qualified

agents is obtained. The above procedure iterates until the goal of the designated

behaviour is achieved. The last multiagents surviving the behaviour achievement

should possess the basic skills for that behaviour. Nevertheless, those agents are

still subject to update whenever they cannot work in new situations and/or for

achieving new behaviours.

When MENL makes decisions on action selection for a particular behaviour,

the perceived information, such as that of the environment, is an important in-

91

put to MENL. In addition, whenever a decision made by MENL is executed,

some responses from the outside (e.g., environment) are obtained, which indicate

how good the decision is. These responses are useful for determining whether

the current multiagents are competent in the current situation. The responses

are also essential to the evolution of agents when these agents are incompetent.

Because responses are recorded by - term Response - in the fitness function and ac-

cumulated from the beginning to the current time, they actually compose part

of the decision-making history of agents. This history provides a useful guidance

to guide the evolutionary learning to move towards the successful achievement of

the behaviour, together with the behavioural objective also encoded in the fit-

ness function. In this sense, MENL is much more than a reactive controller that

purely reacts to the environment. Indeed, MENL can be goal-oriented because it

can select actions according to behavioural objectives, and this selection can be

continuously improved based on the sensory feedback and past experience. As

the perceived environmental information constitutes the direct input to MENL,

the information about the sensory feedback and past experience is the implicit

knowledge stored in the artificial neural network and evolutionary learning of

MENL. Based on the perceived and collected information, MENL can learn to

make correct decisions of action selection for achieving single and multiple be-

haviours.

4.2.3 Adaptive Learning of MENL in the CBG Model

When the MENL learning algorithm is introduced into the CBG model, we mainly

use it in the Strategy module of the CBG model to learn the correct motor action

selection policies. Therefore, MENL is responsible for the implementation of the

module "Make decisions" in the adaptive strategy shown in Figure 3.6. The

CBG module provides MENL with the necessary information (e.g., perceived

environmental information, body states of the virtual creature, and collected

sensory feedback), and executes the motor actions that MENL selects. In turn,

MENL should learn the correct action function 74S, E,) mapping each input

triplet (S,.6,) into a selection of candidate actions in A (see Section 3.4.2).

The learning of the action function ir is achieved by the multiagents in MENL.

From the above description of the MENL work engine, we see that every agent

in MENL has an output function e that translates its input information into a

motor action selection output. In terms of both the explicit and implicit input

information involved in the translation, this output function is actually the action

function irk of MENL agent, as the goal of the behaviour to be achieved is g E c,
and the body states st E S and the environmental information et E £ at time t

provide the explicit information about the environment and the body states and

the implicit information about sensory feedback on executed motor actions. The

decision of action selection made by agent ak at time t is therefore:

e(ok,t) = 'lrk(st, et, g)
	

(4.2)

Among the decisions made by multiagents, the actual action chosen by MENL

and then executed by the CBG model is the result produced after two extra

selection procedures. The first selection procedure fi chooses the decisions that

have the best effects in the current situation for achieving the behaviour g. The

second selection procedure f2 then selects the one that has the highest fitness

from those decisions preferred by the first selection. So, the actual action decided

by MENL at time t is:

lr(st, et, g) = f2(fl(7rk(st, et, g))) 	Vk e {1,...jt} 	 (4.3)

where 7r is the action function of MENL and Irk is the action function of agent dk

in MENL.

As multiagents make their own decisions on action selection, the real action

determined is a sensible selection on these decisions. Therefore, the action func-

tion of the MENL learning algorithm is a result selected from the multiple choices

provided by the multiagents in MENL. Because the individual action function of

every agent is continuously evolved through evolutionary learning, the resulting

action function of MENL is constantly improved as well.

In Chapter 3, we introduced the notion that the CBG model provides the

Strategy module with the basis for adaptive learning, allowing the Strategy mod-

ule to learn from past useful or harmful experience. How then, does the MENL

93

learning algorithm utilise this mechanism to adjust its action selection policies

when it is embedded in the Strategy module of the CBG model?

The adaptive learning of MENL in the CBG model is achieved by the self-

adjustment of multiagents (ANN individuals) via evolutionary learning. The

exploitation of lessons from unsuccessful experience is obvious: when the CBG

model detects from its sensory feedback that an unexpected result is generated,

MENL will be informed of such information immediately. Evolutionary learning is

then triggered in MENL to correct the mistake by evolving new qualified multia-

gents. The memorisation and utilisation of successful experience is automatically

achieved in MENL. Once a correct decision of action selection has been made and

successfully executed, the current multiagents are kept to deal with subsequent

situations. The useful decision-making skills held by these multiagents are there-

fore maintained and can be reused in the future. Even if the agents are evolved

when they fail to generate correct decisions in some other occasions, the valuable

experience obtained by these agents can still be retained for the following genera-

tions through evolution. The new generated multiagents therefore have not only

new learned skills from their own practice, but also useful knowledge inherited

from their parents. Due to the continuous self-adjustment, the CBG combined

with MENL can have more and more enhanced action selection ability and can

cope with more and more situations during its life. The following experiments

on exploration learning of the CBG combined with MENL have supported this

claim.

4.3 Implementation of MENL for Space Occupying

Behaviours

In Section 3.7, we introduced how to set up the Computational Behaviour Gener-

ation model for achieving space occupying behaviours. When the MENL learning

algorithm is applied in the Strategy module of the CBG model to learn the suit-

able action selection policies for space occupying behaviours, the implementation

details of MENL are as follows.

Figure 4.1: The feedforward artificial neural network in MENL

4.3.1 ANN Structure

The artificial neural network adopted in MENL is a simple feedforward neural

network with one hidden layer (Figure 4.1). Ten hidden neurons are used to

connect one visual input and one action output.

The input to MENL is the visual information of the current situation which is

collected by the synthetic visual sensor of the CBG model as described in Section

3.7.1. The output of the network consists of a single component that selects one

of the eleven motor actions of the virtual creature (see Section 3.7.5.1 for the

explanation of motor actions).

In addition to the visual information input, the information such as the be-

havioural objective and sensory feedback on executed motor actions is also used

to guide the decisions of motor action selection of the ANN. This information,

as explained above, is introduced into the fitness function of the evolutionary

artificial neural network to evolve the action selection policies.

4.3.2 Evolution Strategies

Evolution strategies, as introduced in Section 4.2.1.2, are the main engine to

evolve the ANN in MENL. As recommended in [141], (15,100)-ESs are adopted

here. That is, at each step of evolution, 15 parents survive from 100 offspring and

act as the current multiagents. For simplicity, only standard deviation a is used

RN

and no rotation angle a is presented. The initial strategy parameter (standard

deviation) is set to 0.5. The initial objective parameters (weights and biases of

the ANN) are small random numbers in the interval [-1,1]. In evolution, strategy

parameters are operated on by discrete recombination and objective parameters

by panmictic intermediate recombination.

The fitness function of an evolutionary individual, also a MENL agent d k , con-

sists of the sensory feedback Response and the behavioural objective Aim (see

Section 4.2.1.5). Because the eleven motor actions (moving forward in three dif-

ferent directions, turning to the other seven directions other than the current one,

and doing nothing) produce four types of results in an environment: successful

walk, direction change, no movement and collision, four kinds of environmental

responses to motor actions are accordingly designed. These environmental re-

sponses are reward to successful movement (reward-move), reward to direction

change only (reward_dir), reward to no action (reward-fix), and penalty to move-

ment causing collisions (penalty-collision). In addition, when the body states in-

dicate that the creature is detained at a place for a long time by several direction

changes or no movement, the State module of the CBG model will report an-

other two penalty responses: penalty to unuseful direction changes (penalty_dir)

and penalty to no actions (penalty-fix). Therefore, the sensory response function

Response((9(ak, t)) to an action 9 decided by agent ak at time t has six pos-

sible values: rewardmove, rewarddir, reward-fix, penaltydir, penaltyflx, and

penalty-collision. As the reward responses generate an appraisal on the decision

of actions, the penalties indicate a harmful decision that should be corrected via

evolutionary learning. All the responses may have arbitrary values 1, but satisfy

the following condition:

reward-move > rewardilir> reward-fix >

penaltydir > penalty.j ix > penalty-collision 	(4.4)

The behavioural objective Aim in the fitness function indicates the behavioural

motivation of the virtual creature, which the CBG model should achieve. When

'The response values can be positive or negative, as long as they satisfy the condition 4.4.

Me

simulating space occupying behaviours, the behavioural objective is always rep-

resented by a negative item. In exploration, it is the accessing variable Access

of an environmental place to be accessed by agent k, which implies how many

times the creature has been in this place before 2 The accessing variable for a

location is incremented by one each time it is visited. So, combining the sensory

responses Response and the behavioural objective Access together, the fitness

function 1 for exploration is expressed as:

	

1(ãk, t) = 	(Response (e(ak, 1)) - Access(e(ak, 1))) 	 (4.5)

In the behaviour of goal reaching, the sensory feedback to motor action de-

cisions is the same as that in exploration. However, the behavioural objective

of goal reaching is different. This objective is represented by a negative item,

Dis(e, Goal) in the fitness function, which is the distance of the place about to

be accessed by an agent from the goal destination. Guided by this item, an agent

can move towards a place nearer to the goal destination. The fitness function for

the goal reaching behaviour is therefore:

	

(ak, t) = 	> (Response (ê(ak, 1)) - Dis(e(ak, 1), Goal)) 	 (4.6)

In the behaviour of wandering, a clear motivation is absent. The potential

purpose is only to move around in an environment without causing collisions. This

is mainly controlled by the sensory feedback. So there is only sensory feedback

present in the fitness function for wandering, shown by the following equation:

	

= 	(Response (e(ak,l))) 	 (4.7)

2Recent study on magnetic sense has suggested that some animals may use the magnetic
field of the earth as not only a possible cue for move orientation and/or distance, but also a
potential source of world-wide positional information [89, 90, 165]. Here, we assume the virtual
creature has a similar simulated magnetic sense to determine its position and the distance to
a goal. Because the State module records the position information when executing a space
occupying behaviour, the virtual creature can easily use the State module to find out the access
times of a place. The information (place position and distance between two places) can actually
be obtained from the graphical system of the virtual environment.

97

In Section 3.7.5.1, we mentioned that both common and different factors are

involved in the action selection for generating various space occupying behaviours.

These factors are considered in the fitness functions of multiagents. As the term

Response is the common feedback obtained from the environment and body states

after action execution, the term Aim takes different factors into account to reflect

different behavioural motivations. Guided by the common and different fãctois,

multiagents in MENL are evolved to learn the correct action selection policies for

implementing different but functionally related behaviours.

4.4 Experiments

We have introduced the basic ideas of the CBG model and the MENL learning

algorithm, and the implementation details of the CBG combined with MENL for

achieving space occupying behaviours. In this section, we report some experi-

ments to test the adaptive learning ability of the CBG combined with MENL.

Specifically, a virtual creature is equipped with the CBG with MENL to learn

the exploration behaviour. The creature should access places in an unknown en-

vironment as much as possible within a limited period. In addition, the creature

should carry out obstacle avoidance during its exploration. The main purpose of

the experiments is to examine whether the creature equipped with the CBG with

MENL can learn exploration in various unknown environments and how adaptive

its learning ability is. Some hand-crafted exploration experiments are also de-

signed separately for an evaluation of the learning performance of the CBG with

MENL.

4.4.1 Experimental Setup

In the exploration learning experiments, the virtual creature is put into various

unknown environments to learn the exploration behaviour. Every exploration

experiment is repeated for fifty runs. In each run, the virtual creature needs to

explore a test environment many times so as to learn the proper exploration in

this environment. Every exploration results in an exploration trajectory in the

environment. Each trajectory, starting from an arbitrary position, only lasts for

a certain period, which is a count of the number of actions executed by the crea-

ture. An exploration trajectory is said to be "successful" if there is no collision

or evolutionary learning involved. Otherwise, a trajectory is said to be "unsuc-

cessful" or "failed". One run of learning of exploration within an environment

is finished only when the virtual creature conducts one hundred successful tra-

jectories successively. In this case, we think the creature has grasped the basic

exploration skills in this environment. The learning performance averaged over

fifty runs of each experiment is shown in the following figures.

Three kinds of performance indices are recorded in every exploration trajec-

tory for a test of the learning performance. The indices adopted here are an

external performance metric, instead of an internal performance metric such as

the fitness function. Internal measures of performance do not always coincide

with external measures of performance: sometimes the internal metric indicates

that a controller's performance is improving, while the external metric denotes

it is decreasing [176]. In order to evaluate the CBG and MENL's actual per-

formance, we utilise the external measure in this thesis, which comes from an

external observer's estimate of performance.

For the three performance indices, the first one records the number of places

accessed by the virtual creature in an exploration trajectory as a percentage of

the number of free places in the environment. This index is called exploration

efficiency. The second index, collision times, is the number of collisions the

creature makes in a trajectory. The third index records learning times, that

is, how many times the multiagents have been evolved in a trajectory. The

evolutionary learning is due to the wrong actions selected and executed which

cause unexpected penalties. As the virtual creature explores an environment more

and more times, we expect that the creature gradually learns how to select correct

motor actions to execute. In consequence both the learning times and collision

times spent in each exploration trajectory should decrease and the exploration

efficiency of each trajectory should increase.

Figure 4.2: Environment El and an exploration starting from the bottom left corner

4.4.2 Exploration Learning in Various Unknown Environments

In the experiments, the virtual creature equipped with a randomly initialised

CBG and MENL is first put into a simple environment to learn basic exploration

skills. It is then introduced into other more complicated environments to test

its adaptation ability further. During the experiments, the creature is also put

back into simpler environments after learning in more complicated environments

to investigate whether the creature still remembers how to explore in an ear-

her environment and whether learning in more complex environments implies

knowledge of simpler environments. All the environments used in the test are

completely unknown to the creature.

4.4.2.1 Fresh Learning in a Simple Environment El

A simple environment El (Figure 4.2) is chosen as the first testing ground for ex-

ploration. There are three big obstacles present in this environment, represented

as black boxes in Figure 4.2. A fresh virtual creature that is furnished with an

initialised CBG and MENL is used to conduct fresh learning of exploration in

El. In each run of fresh learning, the creature is trained in the environment

El via trajectories starting from various initial positions that are all randomly

selected. In order to give the virtual creature plenty chances to explore the envi-

100

ronment, every trajectory of exploration consists of two hundred and forty steps,

i.e., two hundred and forty actions executed by the virtual creature. This number

is about twenty percent more than the number of spare places in the environment

El, which is one hundred and ninety five. The creature executes exploration tra-

jectories one after another until one hundred successive trajectories have been

executed successfully. The recorded learning results are shown in Figure 4.3 ,

which are averaged over fifty runs of this experiment.

In Figure 4.3, Figure 4.3 (a) shows the exploration efficiency of each explo-

ration trajectory, which indicates how many places are visited in this trajectory.

Figure 4.3 (b) shows the number of evolutionary learning procedures and col-

lisions made by the creature in each trajectory. Figure 4.3 (c) lists the total

learning times and collision times of all trajectories, which are required in the

fresh exploration learning, and the exploration efficiency the creature achieves at

the end of the learning.

As expected, the virtual creature has gradually grasped the exploration skills

in El through adaptive learning. The learning has taken a maximum of 173

trajectories to reach success in fifty runs. The exploration efficiency obtained in

each trajectory obviously increases as the creature explores the environment El

(see Figure 4.3 (a)). When learning starts, the fresh creature cannot explore the

environment very well: it accesses 85 squares on average in the first trajectory,

which are only 43.6 percent of all the free squares in El. However, the virtual

creature visits more and more squares in each trajectory thereafter, by using new

learned policies of motor action selection. As a result, the exploration efficiency of

each trajectory gradually improves. When learning finishes, the virtual creature

can produce exploration so smoothly that there is no longer any collision or

evolutionary learning generated. The exploration efficiency finally achieved by

the creature is 75.7%, about 32.1 percentage points higher than the efficiency

obtained at the beginning of the learning.

Along with the increasing exploration efficiency, the learning procedures and

31n this thesis, the experimental data shown in the result graphs are the means of the
fifty runs. The error bars show the 95% confidence intervals. See Appendix A for detailed
calculations.

101

0.9

0.8

0.7

0.6

03

0.4

0.3

0.2

0.1

0
20 	40 	60 	80 	100 	120 	140 	160

Number of Trajectories
(a)

Total learning Total collision Final

times limes efficiency

726.8 56.7 75.7%

(523.1-930.5) (34.5-79.0) (75.5%-75.9%)

(c)

Figure 4.3: Fresh exploration learning in environment El (averaged over fifty runs). In each

run, a fresh virtual creature furnished with a randomly initialised CBG and MENL conducts

exploration trajectories in the environment continuously, until one hundred successive and

successful exploration trajectories have been executed. Every exploration trajectory starts

at different positions and lasts two hundred and forty steps. The exploration efficiency

reached by each trajectory is shown in Figure (a). The learning times and collision times

made in each trajectory are shown in Figure (b). Both figures show results averaged over

fifty runs and do not include the last 100 successive and successful trajectories. Figure (c)

is a summary of the total learning times and collision times spent in fresh learning and the

exploration efficiency finally achieved by the fresh learning, averaged over fifty runs. The

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs.

102

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
20 	40 	60 	80 	100 	120 	140 	160

Number of Trajectories
(a)

20 	 f 	 I I
learn finum

	

.. 	coilisson Umes - -.

1 6
H

0
20 	40 	(4) 	 ..!) 	140 	160

Nuniherol . rJe..Irie.

(6)

Total learning Total collision Final
times Limes efficiency

726.8 56.7 75.7%

(523.1-930.5) (34.5-79.0) (75.5%-75.9%)

(C)

Figure 4.3: Fresh exploration learning in environment El (averaged over fifty runs). In each

run, a fresh virtual creature furnished with a randomly initialised CBG and MENL conducts

exploration trajectories in the environment continuously, until one hundred successive and

successful exploration trajectories have been executed. Every exploration trajectory starts

at different positions and lasts two hundred and forty steps. The exploration efficiency

reached by each trajectory is shown in Figure (a). The learning times and collision times

made in each trajectory are shown in Figure (b). Both figures show results averaged over

fifty runs and do not include the last 100 successive and successful trajectories. Figure (c)

is a summary of the total learning times and collision times spent in fresh learning and the

exploration efficiency finally achieved by the fresh learning, averaged over fifty runs. The

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs.

102

No. of

46p.

Croon.ro

poilioo

Son,o,

input

Acliom

ohom,

Updno

1 (0.14.2) 0.331 10 no

2 (1.14,2) 0.221 10 yc

3 (1.14.2) 0.221 6 no

4 (1.14,7) 0.11 11 00

5 (0.14,6) 0 8 no

6 (0,14,5) 0.214 7 no

7 (0.14.3) 0.655 3 yo

8 (0.14,5) - 0.214 11 - 	 no

9 (0,13,4) 0.469 11 no

10 (1. 12.3) 0.503 5 no

11 (1.12.7) 1 0.441 11 no

12 (0.12.6) 0 11

13 (0,12.5) 0.214 11 no

14 (0,11,4) 0.552 11 no

IS (1,10.3) 0.669 5 no

16 (1.10.7) 0.524 11 no

17 (0.10.6) 0 11 yc

18 (0.10.5) 0.214 11 no

19 (0.9.4) 0.607 11 no

20 (1.8.3) 1 10 no

21 (2.7.3) 0.986 10 no

22 (3.6.3) 0.979 10 no

Figure 4.4: An example of the CBG combined with MENL at work. The virtual creature

starts to explore El from the bottom left corner and faces to the east, as shown in Figure

4.2. Creature position (x, y, d) indicates the current square location the creature occupies

along the horizontal (from left to right) and vertical (from top to bottom) axis, and the

current view direction of the creature (see Figure 3.9 for the meaning of direction labelling).

Actions 1 "-i 8 correspond to no movement and direction changes to the other 7 directions.

Actions 9, 10 and 11 refer to movements to the left forward, straight forward, and right

forward.

collisions required in each trajectory are decreasing (see Figure 4.3 (b)). When

the virtual creature starts to learn exploration, there are a few collisions and many

learning procedures involved in each trajectory. Nevertheless, the average number

of learning procedures rises and falls and is kept below one after 131 trajectories.

At the same time, the average number of collisions is approaching null. When the

experiment finishes, there are no evolutionary learning or collisions present at all.

The total numbers of learning times and collision times spent in fresh exploration

learning are 726.8 and 56.7 respectively, averaged over fifty runs.

Figure 4.2 shows a small part of the exploration trajectory where the virtual

103

creature starts from the bottom left corner. Figure 4.4 illustrates how the CBG

combined with MENL works in this trajectory. This figure shows the sensory

information and the motor actions chosen at each time step. It also indicates

whether the multiagents should be evolved after the execution of the motor ac-

tions.

At the first step, the virtual creature is placed at the bottom left corner

(labelled as (0,14) with the original set at the top left corner), and faces to the

east (i.e., direction 2 according to the direction labelling shown in Figure 3.9).

Accordingly the sensors of the creature feed an input value 0.331 to the CBG

model, and the multiagents of MENL make their own decisions of what action to

execute based on this input. Of 15 decisions, 11 of them is to change to a different

direction. Three other decisions are to move to the right forward, which cause

the creature to crash into the wall. There is only one agent that chooses motor

action 10, which is to move straight forward. Since this action will safely move

the creature to a new spare square in the environment, it becomes the winner

of the agent decisions. This action is then executed by the CBG model and the

creature is now moved into a new place (1,14).

In the new situation, the creature directly faces a big obstacle. The sensory

input value is therefore changed to 0.221. Based on the new input, the multiagents

make decisions to move either straight forward, left forward or right forward for

the next movement. Because the last agent which correctly moved the creature

into the new place obtains a high reward in the fitness, its current decision is

chosen to execute again, which is also to move straight forward. However, while

the creature tries to move one step forward, it actually bumps against the big

obstacle. This collision reflects a penalty from the environment, indicating the

failure of the multiagent decisions. In consequence evolution strategies are used to

evolve the multiagents in order to seek new competent agents to solve the current

problem. After evolutionary learning, another generation of the multiagents is

generated and these new agents make new deicisions on motor action selection

based on the input value 0.221. This time, a direction change motor action is

selected which changes the view direction of the creature to the southwest, i.e.,

104

oT

9 uotpanp 'i 	(t'0) aaeld MOU Otfl OUT SAOUI 1I&OU iflaio alqj, S1oOtJi OT

Aq painoaxa pue s4ua2,epjnTu aqq Aq ppip si pieuoj 4q2p ailq oq 1umAOm e

OS 'pJj Jefls!A otç Ui soejd a9.lj MU suuq uoipanp MOU OIJ4 snos alqq o

pOUtJO 91OJOJT 5! ain4vaio alq4 JO uOi3np R2tA OqJJ uerp uOp1!p jo uope

ioom e asooTlo su einui oq 'uosqoo e aSnVO PInOtA pxeuoj Jq2T.1 pue 'pieuoJ

qeIS 'pJeAUOJ 4jal aq4 o4 SUOmOAOUI aqq Jo Tie aliqm •O•O sui000q 4ndui

Aiosuos aq4 pue uree aloelsqo 2iq 9,q4 sm ainpaia otç 'Yeid M3U ailq uj

(T'T) 03e1d si rpiqJ& 'T3 quaTuuoiiAua jo ooed ioqoue

oq qlnsai sy VIUIOAOU1 pieuoj qi aiqq

UOISIp Injssaoons itq 3flUUO0 SUOJflUI aTp iUOWAOU1 siiqq 2uilAoTloq •f7

uo!ponp lqqltA (i'o) ooe1d mau e oui sdos oineaio alp Ajupi000e pue '1011100

qjal mooq aq4 uioi; pleAuoJ llq2ij OAOW o4 osooqo suoenux pajei9ua2 MOU

'UOflflJOAO 1014V SU0!flUI aqq JO UO10U0 MOU E? OAJOAO 01 uee poAoduio

si 2uiuieal A18UOqnJOAO oouonbosuoo uj uOWUOJ!AU0 aqq Ui socvejd ooij J0O

oiorn ss000e ueo oineoio alqq Ivip os poepdn oq pjnoqs suoejnux aqj pue

'sdos Auem ooq IOJ ('o) ooe1d oures aiq4 Ui sAes oineoio alq4 Ivip spoop

oitieoio aqq jo siosuos aqj 4uaTu@AoT-u 0iJ 2upnp OpeUl u0!S!TJO0 OU 5! OIOTp. 1JflOtj

UOA 	juoe OUIeS ailq Aq uosoqo suotpe ioow aqq uo poseq 9 uoipolip pue

UOiponp ol pauinq Si 01fl130fl oq qxaN ç uOrponp oq pa=4 UOq1 5! °'°'°

oqj1 ssouJ 1oqn sil oq onp uo!odu1oo oq SU!M C)TUTq 4Seluosioop 400n00

aiqq open! qOHAt 4ua2la Ot[JJUoioonp MOTA O!fl 0UeTJ0 o4 Optoop SUOn! 	!f JflUI O

Os 'Hem aq4 Aq pojooq Xllnj si o.rneoio °1 Jo PI°H IeflS!A 9,qq MON

9 UOi001!p

mau ol sooej wq (FT'o) iouioo mooq aip o4 3peq SOAOUI oineoio aqq oiojo1Oqj

U0TXI0AOU1 soineoio ailq jo ioiv1o3 sa~jvq opqjoo qou soop llaiqtA preuo; 4q2ll

oq ol jUaUlaAOUI 'UO!S!IIO0 5 UT 41nsai TT!M pleMIOJ 4q2rei4s alp o4 juau.IaAOTU

osneoo pieuOJ 4q2p aip o4 OAOUI o4 SOp!OOp OUO ioqoue pus pxutAioj qq2ivi4s

OAOUI o4 sosooqo jua2v ouo 4daoxa 'ousqo uoilaaiip JO SUO5 1OOW osooqo TI!

suoe Isom 'Indui MOU oqq uo pose 110 Jo OnjeA 4ndui Mou t, SOA!0301 0Jfl

9tJ 'AIIriJSs000fls poriooxo Si UOtpe 1OOUI oueqo UO!4O01!P oqI. 1oJy

L UO1oJp

In the new location the multiagents insist on a move to the right forward, and

as a result, the creature changes to direction 5 but hits the wall. The hit results

in a penalty from the environment and accordingly a new evolution is made of the

multiagents. Located at place (0,12) and facing northwest, new agents choose to

move to the only free square (0,11) in the current visual field. The right forward

movement is carried out again so the creature moves to the square (1,10) with

view direction 3. Faced with the big obstacle, motor action 5 is again chosen

by the multiagents so as to change the view direction of the creature. After the

direction change, the multiagents still decide to move right forward, and therefore,

the creature moves to a new location (0,10) with direction 6.

In the new location, the multiagents choose the movement to the right for-

ward again. Therefore the creature turns direction to its right but cannot move

forward anymore. Since the attempt to move forward results in a collision with

the wall, the multiagents are updated by evolutionary learning for a correct de-

cision in the new situation. After evolution, the multiagents decide to move to

the free places (0,9) first and (1,8) next. Now with an open visual field full of

free squares, multiagents make several easy decisions of moving straight forward.

These decisions finally help the creature move away from the big obstacle.

From Figure 4.2 and Figure 4.4, we can see that, even though the creature is

initially "puzzled" by the walls and obstacles and is almost lost in the bottom

left corner, it at last steps out of the impasse after many sessions of evolutionary

learning. The creature then moves smoothly thereafter.

Multiagents vs. the Best Agent

As we introduced in Section 4.2.1, multiagents in MENL co-decide decisions on

motor action selection for the creature to carry out. After the creature has learned

how to explore the unknown environment El in fresh exploration learning, we

are eager to know what contributions the multiagents make to exploration, and

whether the best agent alone is competent in successful exploration. Bearing these

questions in mind, we command the virtual creature with the learned multiagents

and a creature with the best of the multiagents, i.e., that which has the highest

106

Efficiency
achieved

Collision
times

Learning
times

Multiagents 743% 	77.8% 0 0

Best agent 0.51-35.6% 0-240 0

Table 4.2: Comparison of multiagents and the best agent in their decision-making

ability of suitable motor action selection (averaged over fifty runs). Both the group

of learned multiagents after fresh exploration learning in El and the best agent of

the group are used to explore El for an extra ten times but with no more learning.

This table lists the exploration efficiencies and the numbers of collisions of those ten

trajectories, averaged over fifty runs.

fitness, to execute an extra ten exploration trajectories starting from random

squares. Neither the multiagents nor the best agent are learning via evolutionary

strategies any more. This experiment is repeated 50 times, and the average results

are shown in Table 4.2.

In ten exploration trajectories, the multiagents perform quite well compared

with the best agent. The multiagents do not hit any obstacles, and access 145 to

152 squares, which are 74.3% to 77.8% of the free squares in El. It appears that

the multiagents have acquired a good exploration ability. Contrasting with the

good performance of the multiagents, the best agent alone is not able to explore

the environment El competently. The best agent can only traverse 69 squares at

most in one trajectory, resulting in a low exploration efficiency of 35.6%. In the

worst case, the best agent cannot move around since it starts the exploration by

insisting on moving forward when facing a big obstacle. Therefore, the original

square where it is put is the only place that it visits, and the number of collisions

can be up to 240. The best agent is often unable to free itself when encountering

a difficulty.

In multi-agent exploration, there is usually more than one agent contributing

to the action selection, rather than only the best one. Figure 4.5 shows an example

of the contribution times of each agent in one experimental run, averaged over

107

240
220
200
180
160
140

1120
100
80
60
40
20

I

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 II 12 13 14 15
Multiagents

Figure 4.5: Contribution times of multiagents in one experimental run (averaged over ten

trajectories). Multiagents compete and cooperate with each other to conduct ten random

exploration trajectories successfully. The contribution times indicate how many times the

decisions of action selection made by one agent are finally chosen to be executed by the

virtual creature.

A e n b2I:A 11

01 91

__

_

13 2.3

15 37.5

Table 4.3: Selection times of each motor action by contributing agents in one experimental

run (averaged over ten trajectories). Blank cells in this table indicate zero selections have

been made. Actions 1 - 8 correspond to no movement and direction changes to the other

7 directions. Actions 9, 10 and 11 refer to movements to the left forward, straight forward,

and right forward. Actions and agents not listed have no contribution in this run.

IM

ten trajectories. The contribution times indicate how many times the decisions

of action selection made by one agent are finally chosen to be executed by the

virtual creature. Table 4.3 shows the corresponding motor actions chosen by those

contributing agents to explore the environment. Of the fifteen agents, there are

mainly six agents contributing to exploration. The fourth agent is the best agent

and controls the most situations in one trajectory (in average 167 situations in

240 steps). However, there are still some situations that the best agent cannot

deal with. Once the best agent fails, it cannot escape from its difficulties by

itself. Fortunately, some other agents can still have different but useful decisions

to take charge of these difficult situations. These agents include the 3rd, 6th,

7th, 13th and 15th agents. Although these agents cannot generally supersede

the best one, they may save the virtual creature on some occasions. Because

different agents with different structures are good in varied situations, actions

co-decided by multiple agents are more robust than those decided by only the

best one. A successful exploration is indeed accomplished by the cooperation of

a whole generation of agents.

It is interesting to see that, of the choice of eleven possible motor actions, sev-

eral different actions are favoured by different agents (see Table 4.3). Agent No.4,

for instance, prefers to move straight forward and left forward in most cases, or

to turn to two other different directions occasionally. The third agent, neverthe-

less, can also decide to move left forward and change to a third direction when

agent No.4 fails to make a correct action selection in some situations. Agents 6,

7 and 13, share the straight forward movement with the fourth agent in minor

situations. Agent 15 then undertakes the entire responsibility of the right for -

ward movement. As a result, the whole exploration is implemented by not only

the competition but also the cooperation in the multiagents. This cooperation

naturally arises from the autonomous, adaptive learning of multiagents, instead

of being designed by a human designer beforehand. Although some agents (those

not listed in Table 4.3) have no contribution in this experimental run, they are

maintained with contributing agents. The population information held in all of

the fifteen multiagents can therefore be used or transferred to their offspring as

109

a whole for implementing future tasks.

Figure 4.6 and Table 4.4 present another experimental run in which multia-

gents exhibit varied contributions to exploration. This time, seven agents con-

tribute to the finally selected motor actions. Similarly to the first example, the

movement of going forward is the most favoured by several agents, whilst the left

forward movement, right forward movement, and direction changes are used to

assist the exploration. Due to the presence of multiple agents, the exploration is

executed smoothly and successfully.

4.4.2.2 Successive Learning in a More Complicated Environment E2

The creature that learned successfully in El is put into another unknown environ-

ment E2 (Figure 4.7) to test if it can explore in a more complicated environment.

Environment E2 is a larger environment than El and possesses several obstacles

which have different sizes and shapes. The exploration is therefore more difficult

than that in El because the situations the virtual creature would meet are more

varied and the creature has to execute correction actions in response to various

visual input. In E2, a trajectory of exploration starts from an arbitrary position

and consists of 650 steps which is about 20% more than the number (552) of the

spare squares. The creature should conduct exploration trajectories continuously

until one hundred consecutive and successful trajectories are executed. Every

creature of the previous fifty runs of fresh exploration in El is used to continue

the exploration in E2. The average results over the fifty runs in E2 are shown in

Figure 4.8. Similar to the previous experiment, these results record the average

exploration efficiency, collision times and learning times of every trajectory.

Because the environment E2 is a new environment different from the previ-

ously traversed environment El, the creature encounters many new difficulties

that it has not met before. The creature inevitably makes collisions when it uses

the old exploration skills to deal with new situations. However, due to the life-

time learning maintained in multiagents, the creature learns to overcome these

difficulties through continuous evolutionary learning. As Figure 4.8 (b) shows,

there are some collisions in early trajectories of the successive learning, but the

110

240

220

200

180

160

140

• 120

100

80

60

40

20

...........

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15
Multiagents

Figure 4.6: Contribution times of multiagents in another experimental run (averaged over

ten trajectories). Multiagents compete and cooperate with each other to conduct ten

random exploration trajectories. The contribution times indicate how many times the deci-

sions of action selection made by one agent are finally chosen to be executed by the virtual

creature.

IV 2 5 9 iO 11

1 13

2 4.8 54.9 104.7

3 4.9 5.9 17.3

8 1.4

9 21.1 4.1

11 5.9

12 2

Table 4.4: Selection times of each motor action by contributing agents in another experi-

mental run (averaged over ten trajectories). Blank cells in this table indicate zero selections

have been made. Actions 1 8 correspond to no movement and direction changes to the

other 7 directions. Actions 9, 10 and 11 refer to movements to the left forward, straight

forward, and right forward. Actions and agents not listed have no contribution in this run.

111

Figure 4.7: Environment E2 and an exploration starting from a random place S

number of collisions is eventually reduced to zero after 103 trajectories. The total

number of collisions the creature makes for learning successful exploration in E2

is about 56.7, averaged over fifty runs. In order to overcome collisions and learn

to explore E2, there are also some evolutionary learning procedures involved in

the experiment. However, all the creatures in fifty runs have learned exploration

successfully in a maximum of 121 trajectories. They execute smooth exploration

without collision or learning after successful learning. In total, 348.7 sessions of

evolutionary learning are required for learning exploration in E2, averaged over

fifty runs. As the creature learns exploration further, it accesses more and more

places in each trajectory. The exploration efficiency is therefore continuously im-

proved. The efficiency is about 65.7% at the beginning of the experiment, but

increases to 73.3% when the learning finishes. The virtual creature has adapted to

the new environment E2 through its continuous interaction with the environment.

112

70

60

50

40

30

20

10

0

times
collision times - -

• 	 1.

20 	40 	60 	80 	tOO 	120
Number of Trajectories

(b)

Total learning Total collision Final
times times efficiency

348.7 56.7 73.2%

(128.5-569.0) (0-116.9) (73.0%-73.4%)

(c)

Figure 4.8: Successive exploration learning in environment E2 (averaged over fifty runs). Every

creature which has learned from the previous fifty runs of fresh exploration in El is asked to explore

a new unknown environment E2. The creature should conduct continuous exploration trajectories in

E2 until one hundred successive and successful trajectories are executed. An exploration trajectory in

E2 starts from an arbitrary position and lasts 650 steps. Figure (a) records the exploration efficiency

achieved by each trajectory in the successive learning in E2, and Figure (b) shows the learning times

and collision times made in each trajectory. Both figures show results averaged over fifty runs and

do not include the last 100 successive and successful trajectories. Figure (c) lists the total learning

times and collision times, and the exploration efficiency finally achieved in the successive learning,

averaged over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges

over fifty runs.

113

Accumulated Exploration Skills

By comparing the successive learning in E2 with fresh learning in El, we have

found that learning in E2 is even faster and easier than that in El: not only are

fewer learning procedures required in E2 than in El, but the exploration efficiency

also starts at a higher rate in E2. This fact is somewhat surprising because

environment E2 is actually more complicated and bigger than environment El.

In order to test if the previous learned exploration ability in El has any effect

on the successive exploration in E2, a fresh virtual creature equipped with a

randomly initialised CBG with MENL is asked to conduct exploration learning in

E2 separately. This new creature is commanded to execute arbitrary exploration

trajectories in E2 until it conducts successful trajectories for 100 successive times.

Fresh learning in E2 is executed for fifty runs and the average results are shown

in Figure 4.9.

Through the experimental results of fresh learning in E2, we see that the fresh

virtual creature has also learned the exploration ability in E2 successfully. The

creature requires a maximum of 220 trajectories to learn the exploration in fifty

runs. For fresh learning in E2, the creature has tried to access more and more

places whilst avoiding obstacles. Both learning and collision times gradually de-

crease via evolutionary learning. Meanwhile, the exploration efficiency increases

from 39% to 67.1%.

However, the fresh creature's overall performance in E2 is worse than that

of the creature with successive learning. Compared with successive exploration,

fresh learning in E2 involves many more collisions and learning procedures, which

are on average 131.6 and 964.3 respectively. In addition, while the successive ex-

ploration learning starts from a high exploration efficiency (65.7%), fresh explo-

ration learning in E2 only starts from 39%. Even when fresh learning finishes, the

traversed places are still about 6 percentage points less than those traversed in

the successive learning. Contrasted with learning from scratch, successive learn-

ing in E2 is much enhanced and accelerated through the accumulated experience

obtained from early exploration learning in El. The exploration skills transferred

from El to E2 have helped the learning in E2 to be much easier and more efficient.

114

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.

0

Number of Trajectories

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 P

learning Limes -
collision Limes 7 -

Number of Trajectories

Total learning Total collision Final
times times efficiency

964.3 131.6 67.1%

(818.2-1110.3) (86.2-177.1) (66.9%-67.3%)

Figure 4.9: Fresh exploration learning in environment E2 (averaged over fifty runs). In

each run, a fresh creature equipped with an initialised CBG and MENL is used to explore

environment E2. Every exploration trajectory in E2 starts at an arbitrary position and lasts

650 steps. The exploration efficiency reached by each trajectory is shown in Figure (a). The

learning times and collision times made in each trajectory are shown in Figure (b). Both

figures show results averaged over fifty runs and do not include the last 100 successive and

successful trajectories. Figure (c) lists the total learning times, the total collision times, and

the exploration efficiency finally achieved in fresh learning, averaged over fifty runs. The

numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs.

70

60

50

40

30

20

0

115

Evolutionary Multiagents vs. Non-improving Multiagents

In Section 4.4.2.1, multiagents have demonstrated correct action selection ability

and successful exploration in El. However, these multiagents have had to learn

further so as to adapt to new situations in E2. What then, would the exploration

be if the multiagents explore the environment E2 without learning? Are they still

able to cope with the new environment through their coordination?

In order to test the exploration ability of non-improving multiagents, a virtual

creature with the learned multiagents from environment El is put into E2 to

conduct ten random exploration trajectories. This time, there is no lifetime

learning kept in those multiagents so the multiagents cannot be improved by

learning even when they encounter difficulties. The experimental results averaged

over fifty runs are shown in Table 4.5.

In ten exploration trajectories, the places explored by non-improving multia-

gents range from 0.6 to 37.7 percent of the free places in environment E2. Those

agents cannot always avoid collisions properly and the collision times could be

up to 504 in a 650-step trajectory. Indeed, non-improving multiagents are not

able to execute smooth exploration in E2. A common case in the experiment is

that non-improving multiagents usually can move around for some steps based

on their co-operation, but they will find themselves stuck in a predicament once

they fail to make a suitable movement to avoid a big obstacle or move out from

a corner. Without lifetime learning, non-improving multiagents cannot improve

themselves to cope with new difficulties.

In contrast to non-improving multiagents, evolutionary multiagents have shown

much more flexibility and adaptation in their exploration in E2, as shown in the

results above (Figure 4.8). Although multiagents with lifetime learning also meet

difficulties in their exploration, they are able to learn to generate new solutions

to overcome these difficulties.

Figure 4.7 shows a typical exploration trajectory in which the creature is

initially placed at a random place S. This trajectory is a good example to illus-

trate how evolutionary multiagents use their lifetime learning to handle difficult

situations. In this trajectory, the virtual creature starts its exploration from a lo-

116

I Efficiency I 	Collision Learning
I 	achieved times times

Non-improving I I
I 	0.6-37.7% 0-504 I 	0 	I

Multiagents I 	I

Table 4.5: Exploration of non-improving multiagents in E2 (averaged over fifty runs).

The multiagents learned from environment El are used to explore the new environ-

ment E2 with no more learning. These agents conduct ten random trajectories in E2

and this experiment repeats for fifty runs. This figure lists exploration efficiencies and

collision times made by non-improving multiagents in ten trajectories, averaged over

fifty runs.

cation S. It walks forward and soon gets into the corner of the F-shaped obstacle.

The multiagents with limited exploration ability acquired from fresh learning in

El always attempt to move straight forward but all crash into the obstacle. If

the multiagents are not improved, the exploration can only end with 7 squares

accessed in environment E2.

When multiagents learn through evolutionary learning during their lifetime,

they continuously improve their abilities through trial and error. After 7 move-

ments, the virtual creature walks into the F-shaped corner and hits the obstacle

for the first time. In this situation, an evolutionary strategy is immediately trig-

gered to evolve the multiagents. After a short period of self-adjustment, new

agents decide to turn to the right and hence move out from the corner success-

fully. When the virtual creature with new agents executes the traverse from the

original place S again, it stops at the F-shaped corner. Instead of moving forward,

the creature turns to the right first and then moves forward. This time, there is

no collision made at all. Evolved multiagents have not only learned how to deal

with difficult situations, but also remember the learned skills so as to process

these difficulties properly in the future. Due to their continuous updating ability,

evolutionary agents with lifetime learning have presented much better exploration

performance than non-improving agents.

117

Re-exploration in Environment El

The successive training in E2 after fresh exploration in El has shown that the

virtual creature can be trained to explore both environments El and E2 compe-

tently. However, it is not clear whether the creature can still perform well in the

earlier environment El after the sequential training in E2. For the purpose of

test, we put the creature into environment El again to investigate whether it still

remembers the earlier learned exploration skills in El. Therefore every creature

of the previous fifty runs of successive exploration in E2 is used to explore envi-

ronment El for a second time. Similar to the fresh learning in El, each trajectory

in re-exploration includes 240 steps and starts from an arbitrary place. This ex-

ploration continues until one hundred consecutive and successful trajectories are

executed. The average results over fifty runs in the second exploration of El are

shown in Figure 4.10.

The experimental results show that the virtual creature after sequential learn-

ing can still explore environment El quite well. There are only very occasional

evolutionary learning and collisions made in some exploration trajectories. In fifty

runs, thirty six experimental runs have no learning or collisions present at all.

That is, the virtual creatures in these runs move in environment El freely with

no problem. All of the creatures in the remaining fourteen runs have collected

their previously learned exploration skills in El in a maximum of 20 trajecto-

ries. The total numbers of evolutionary learning and collisions involved in the

re-exploration are in average about 5.1 and 0.7 respectively.

When the creature explores environment El for a second time, it is worth not-

ing that the exploration efficiency is clearly improved. During the re-exploration

of El, the exploration efficiency is kept around 78.7%, which is 3 percentage

points more than that achieved in the fresh exploration. After learning a new

environment E2, the creature can still explore the previously learned environment

El competently.

efficiency -
0.9

	

0.8
	

:r"

0.7

0.6

0.5

0.4

0.3

0.2

0.1

	

0 	
5 	 10 	 15 	 20

Number of Trajectories

5 	 10 	 15 	 20
Number of Trajectories

Total learning Total collision Final

times times efficiency

5.1 0.7 78.7%

(1.1-9.1) (0-2.1) (77.3%-80.1%)

Figure 4.10: Re-exploration in El (averaged over fifty runs). Every creature which has been

trained in El and E2 sequentially in the previous fifty runs is asked to explore the environment El

again. The creature conducts continuous exploration trajectories in El until one hundred successive

and successful trajectories are executed. An exploration trajectory in El starts from an arbitrary

position and lasts 240 steps. Figure (a) records the exploration efficiency achieved by each trajectory

in the second exploration in El, and Figure (b) shows the learning times and collision times made in

each trajectory. Both figures show results averaged over fifty runs and do not include the last 100

successive and successful trajectories. Figure (c) lists the total learning times and collision times,

and the exploration efficiency finally achieved in the successive learning, averaged over fifty runs.

The numbers in brackets in Figure (c) are the corresponding result ranges over fifty runs.

20

18

16

14

12

10

8

6

4

2

0

119

Figure 4.11: Environment E3 and an exploration trajectory starting from a random

place S

4.4.2.3 Successive Learning in a Maze E3

The third testing ground for the exploration test is a maze E3, shown in Figure

4.11. All the obstacles in the maze are randomly generated. This new envi-

ronment E3 is much more complicated than the previous two environments El

and E2. Even worse, the obstacles and their arrangement in E3 are not regular

and have no clear rules to follow. The virtual creature faces a great challenge of

adapting to its new environment, after exploring in El and E2.

When exploring E3, the virtual creature starts from arbitrary places and ori-

entations and explores E3 for 780 steps in each trajectory. This number is again

about 20% more than the number (630) of free places in the environment. The

experiment is finished when the creature has successfully explored the maze for

one hundred consecutive trajectories. The creatures resulting from previous fifty

runs of successive exploration in E2 (also from the fresh exploration in El) are ap-

120

cffceocy
0.9

08

07

06

0.5

0.4

0.3

0.2

0.)

0
40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Number of Trajectoties
(a)

Total learning

times

Total collision

times

Final

efficiency

2877.9

(2150.4-3605.2)

758.2

(667.9-948.5)

67.9%

(67.8%-68.0%)

(c)

Figure 4.12: Successive exploration learning in maze E3 (averaged over fifty runs). The

creature having learned from El and E2 is asked to learn exploration in E3. Each creature

resulting from the previous fifty runs of successive exploration in E2 (also from fresh explo-

ration in El) continuously conducts exploration trajectories starting from random positions

in E3 until it explores the environment successfully for one hundred successive times. Each

exploration trajectory in E3 consists of 780 steps. Figure (a) shows the exploration effi-

ciency achieved in each trajectory, and Figure (b) shows the learning times and collision

times made in each trajectory, all averaged over fifty runs. The last 100 successive and

successful trajectories are not shown in Figure (a) and (b). Figure (c) lists the total learning

times, the total collision times, and the exploration efficiency finally achieved in successive

learning in E3, averaged over fifty runs. The numbers in brackets in Figure (c) are the

corresponding result ranges over fifty runs.

121

plied to conduct another fifty runs of successive learning in E3. The experimental

results averaged over those fifty runs are shown in Figure 4.12.

As expected, the virtual creature suffers from great difficulties during its ex-

ploration in E3. It has made many collisions and much evolutionary learning

accordingly. The average number of collisions is around 6 in each trajectory at

the beginning of the experiment, and the average number of learning procedures

is around 18. However, both learning and collision times decrease when learn-

ing progresses. At the same time, the exploration efficiency gradually increases.

When the creature explores the environment E3 for a maximum of 638 trajecto-

ries in fifty runs, it has learned how to explore E3 successfully. The average total

number of evolutionary learning procedures used in the experiment is 2877.9, and

the average total number of collisions made is 758.2. When successive learning

in E3 finishes, the creature can accesses 67.9% percent of the free squares in E3.

Accumulated Exploration Skills

A fresh creature with an initialised CBG and MENL is asked to conduct ex-

ploration learning in E3. Figure 4.13 shows the experimental results over fifty

runs. Similar to the successive learning in E3, the fresh creature experiences an

intensive learning procedure and a gradually increased exploration ability. How-

ever, compared with the creature which has accumulated exploration experience

from the previous exploration in El and E2, the fresh creature exhibits a poorer

learning ability. At the early stages of the experiment, the fresh creature requires

almost twice the learning procedures to complete an exploration trajectory of 780

steps. The exploration efficiency is only about 44.1% when the experiment starts,

which is ten percentage points lower than that of successive learning. The total

number of collisions made by the fresh creature is as high as 883.9 on average over

fifty runs and the total number of learning procedures on average reaches 3546.4

when fresh learning finishes. After conducting 651 trajectories, the fresh crea-

ture "grasps" the regulation of exploration in E3. The final exploration efficiency

comes up to 67.5% at last, which is similar to that of successive learning.

Due to the inherent complexity of the maze E3, both creatures with accumu-

122

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
4080 120 160200240280320360400440480520560600640

Number of Trajectories

(a)

bC 	u 	I 	 I 	 I 	 I
learning times

90 .. tunes -

80

70

40

T

10

I 0 I(,) 2(6) 2.60 2) 120 360 400 440 480 520 560 6(5) 640
.4 Trajectories

(6)

Total learning Total collision Final
times times efficiency

3546.4 883.9 67.5%

(2696.1.4396.8) (637.5-1130.4) (67.4%-67.6%)

(C)

Figure 4.13: Fresh exploration learning in maze E3 (averaged over fifty runs). In each run,

a fresh creature with initialised CBG and MENL is used to conduct exploration learning in

E3 independently. Each exploration trajectory in E3 starts at an arbitrary position and lasts

780 steps. The exploration efficiency reached by each trajectory is shown in Figure (a).

The learning times and collision times made in each trajectory is shown in Figure (b). Both

figures show results averaged over fifty runs and do not include the last 100 successive and

successful trajectories. Figure (c) lists the total learning times, the total collision times,

and the learned exploration efficiency of fresh learning in E3. The numbers in brackets in

Figure (c) are the corresponding result ranges over fifty runs.

123

lated exploration experience and with no experience at all encounter great diffi-

culties in their exploration. However, in both cases, the creatures have adapted

to the new complicated environment through adaptive learning. Compared with

fresh learning, the successive learning in E3 has once again demonstrated that the

exploration experience accumulated in simple environments can help the learning

of exploration in a complicated environment to be carried out more smoothly

and competently, even though the final performance (final efficiency) of the two

creatures might be similar.

4.4.2.4 Exploration Learning from Complex to Simple Environments

In the above sections, we have tested the exploration learning ability of a virtual

creature equipped with CBG and MENL from simple to complex unknown en-

vironments. The experiments have shown that the creature can learn to explore

these environments successfully, and the learning in simpler environments can

help the following exploration in more complex environments. In this section,

we conduct another experiment to investigate the learning performance of CBG

and MENL from complex to simple environments. In particular, we use what the

virtual creature learned from fresh exploration in the most complex environment

E3 to explore the less complex environment E2. Therefore, every virtual creature

in the fifty runs of fresh exploration in E3 should explore environment E2 con-

tinuously until one hundred successive trajectories have been successfully made.

Each trajectory in E2 lasts 650 steps and starts from an arbitrary square. The

average results over fifty runs are illustrated in Figure 4.14.

From the experimental results, we can see that the creature after fresh ex-

ploration learning in E3 can learn to explore the simpler environment E2 quite

well. Due to the different environment layout, the virtual creature has spent

some evolutionary learning to learn to explore environment E2. However, the

learning performance is much better than any other kind of learning in E2 exe-

cuted before, including fresh learning and successive learning in E2 after the fresh

learning in El. Having obtained exploration skills in the complex environment

E3, the learning in a less complicated environment is clearly easier. When the

124

efficency

20 	 40 	 60 	 80

Number of Trajectories

(a)

learn times-
collision times - -

20 	 40 	 60 	 80
Number of Trajectories

(b

Total learning Total collision Final

times times efficiency

69.24 18.1 76.1%

(36.5-101.9) (4.9-31.3) (75.9%-76.3%)

(c)

Figure 4.14: Successive exploration learning in E2 after fresh learning in E3 (averaged over

fifty runs). The creature learned from complex environment E3 is asked to learn a simpler

environment E2. Each creature resulting from the previous fifty runs of fresh exploration

in E3 continuously explores E2 from random positions until it explores the environment

successfully for one hundred successive times. Each exploration trajectory in E2 consists of

650 steps. Figure (a) shows the exploration efficiency achieved in each trajectory, and Figure

(b) shows the learning times and collision times made in each trajectory, all averaged over

fifty runs. The last 100 successive and successful trajectories are not shown in Figure (a) and

(b). Figure (c) lists the total learning times, the total collision times, and the exploration

efficiency finally achieved in this learning, averaged over fifty runs. The numbers in brackets

in Figure (c) are the corresponding result ranges over fifty runs.

0.

0.

0,

0

0

0

0.

0

0

70

60

50

40

30

20

tO

0

125

creature starts to explore the environment E2, it immediately accesses 72% of

the free squares in the environment. The exploration efficiency is improved to

76.1% when the learning finishes, which is 9 percentage points higher than the

efficiency achieved in fresh learning in E2 and 2.9 percentage points higher than

in the sequential learning of El and E2. At the same time, the creature has spent

much fewer evolutionary learning times and collisions during its successive explo-

ration in E2 after fresh exploration in E3. Over fifty runs, the average number

of evolutionary learning procedures spent is only 69.2 and the average number of

collisions is only 18.1. This is in constrast with the 964.3 evolutionary learning

procedures and 131.6 collisions spent in fresh exploration in E2, and the 348.7

evolutionary learning procedures and 56.7 collisions in the successive learning of

E2 after fresh learning in El. If we take cumulative cost into account, learning

E3 then E2 has in total 3615.6 evolutionary procedures and 902 collisions. The

number of evolutionary procedures is much lower than that of learning E2 then

E3, which is 3925.3. The number of collisions made in learning E3 then E2 is

similar to that in learning E2 then E3, which is 897.3. (Due to limited space, we

don't introduce the sequential learning of E3 after fresh exploration in E2 here.

Interested readers can refer to Appendix B for the relevant experimental results.)

When the virtual creature uses CBG combined with MENL to learn a be-

haviour continuously, the learned skills of executing this behaviour can be accu-

mulated from environment to environment, both from simple to complex, or from

complex to simple environments.

4.4.3 Hand-crafted Exploration in Unknown Environments

For a better understanding of the performance level of the adaptive learning of the

CBG with MENL, a controller is hand-crafted to take full responsibility for the

decision-making of motor action selection for exploration. Because each time a

virtual creature moves it can only move one step, this controller takes advantage

of the places in front of the creature in its visual field, by carefully selecting

a suitable place to move to. In this thesis, the creature can only detect three

places next to it, that is, places 0, 1, and 7 as illustrated in Figure 3.9. So the

126

availability of these three places is considered when the controller decides which

place to move to. The place chosen should be free of obstacle and should have

been so far accessed least among the three places in front of the virtual creature.

If all the places in front of the creature are full of obstacles, the controller then

decides to turn around so as to find an available place to explore. The hand-

crafted controller can help us to determine how good an exploration ability a

reasonably successful exploration might achieve, and how the adaptively learned

exploration ability of the CBG with MENL compares relative to the hard-wired

controller.

A new virtual creature starting off with the hand-made controller has executed

exploration experiments in environments El, E2 and E3 respectively. In each

environment, the creature conducts one hundred trajectories continuously, and

each trajectory starts at a randomly selected position. The trajectories in each

environment consist of the same numbers of steps as those in adaptive learning.

That is, an exploration trajectory is 240 steps in environment El, 650 steps in E2

and 780 steps in E3. The experiment in every environment is repeated for fifty

runs and the average exploration efficiencies obtained are shown in Figure 4.15.

With the hand designed exploration policy, the virtual creature always selects

the best place in front of it to move to so as to avoid obstacles and explore

the environments successfully. In consequence the creature accesses on average

about 74.9% of the free squares in El through 240 steps. In environment E2, the

average exploration efficiency reaches about 75.6% in a trajectory. In maze E3,

it is 70.5%.

Figure 4.16 is a list of performances achieved by hand-crafted experiments,

fresh learning experiments, and successive learning experiments in the three test-

ing grounds El, E2 and E3. The performances include the final exploration

efficiencies achieved in all experiments, and the learning times and collision times

required in adaptive learning experiments. From this figure, we can see that, the

adaptive learning of the CBG model combined with MENL, especially successive

learning, has reached similar exploration efficiencies to those of the hand-crafted

controller that is based on the information about the places in front of the virtual

127

10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Number of Trajectories

(0)

10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Number of Trajectories

r!.rJIirrir: iIziI1I1mTIIzrJ

Number of Trajectories

Figure 4.15: Hand-crafted exploration in unknown environments El, E2 and E3 (averaged

over fifty runs). A hand-crafted controller is designed to choose the best motor actions

according to the availability information of the places in front of the virtual creature in

the visual field. The creature uses such a controller to explore unknown environments El,

E2 and E3 respectively, each for one hundred trajectories. Every exploration trajectory

starts at an arbitrary position and consists of the same number of steps as that in adaptive

learning, that is, 240 steps in El, 650 steps in E2, and 780 steps in E3. Figure (a) shows

the exploration efficiency of each trajectory in El, and Figure (b) in E2 and Figure (c) in

E3. The results shown in the figures are averaged over fifty runs.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

128

El E2 E3

Hand 74.9% 75.6% 70.5%

emited (74.8%-75.0%) (75.5%-75.7%) (70.4%-70.6%)

Fresh 75.7% 67.1% 67.5%

learning (75.5%-75.9%) (66.9%-67.3%) (67.4%-67.6%)
Final

73.2% 67.9%

efficiency X (73.0%-73.4%) (67.8%-68.0%)
Successive

(El -eEl) (El-cE2-cE3)

78.7% 76.1% learning

(77.3%-80.1%) (75.9%-76.3%) X

(El -e El -c El) (El -c El)

Fresh 726.8 964.3 3546.4

learning (523.1-930.5) (818.2-1110.3) (2696.1-4396.8)
Learning

348.7 2877.9

times X (128.5-569.0) (2150.4-3605.2)
Successive (El -c El) (El -c El -c E3)

5.12 69.2 learning

(1.1-9.1) (36.5-101.9) X

(El.eEl-eEl) (E3-cE2)

Fresh 56.7 131.6 883.9
learning (34.5-79.0) (86.2-177.1) (637.5-1130.4)

Collision
56.7 758.2

times X (0-116.9) (667.9-948.5)
Successive (El -c El) (El -c El -c El)

0.7 18.1 leamrng

(0-2.1) (4.9-31.3) X

(El-eEl-eEl) (E3-cE2)

Figure 4.16: List of performances achieved by hand-crafted experiments, fresh learning

experiments, and successive learning experiments in three environments El, E2 and

E3. The numbers in brackets are corresponding result ranges over fifty runs.

creature. When the CBG and MENL learn exploration in the simplest environ-

ment El, and especially when they re-explore environment El after successive

learning of El and E2, the exploration efficiency achieved is even better than

that of the hand-crafted exploration.

Compared with fresh learning in E2, both successive learning in E2 after fresh

learning in El and in E3 has shown clearly better performance. The final ex-

ploration efficiencies obtained by both successive learning are about 5 percentage

points and 9 percentage points higher than that obtained by fresh learning. More-

over, successive learning has generated much fewer collisions and required much

less evolutionary learning to learn successful exploration in E2 than fresh learn-

ing. The better performance of successive learning benefits from the knowledge

transferred from the previously learned environments. Even when the creature

129

successively learned exploration in El and E2 explores the earlier environment

El again, it can still conduct the exploration competently with only a few ad-

justments.

When the CBG and MENL learn exploration in the maze E3, the fresh learn-

ing and the successive learning after learning in El first and E2 next have achieved

similar exploration efficiencies. Because the maze E3 is much more complicated

than environment El and E2, both successive learning and fresh learning have

encountered much difficulty in their exploration of E3. However, compared with

fresh learning, successive learning in E3 has still exhibited a better overall learn-

ing performance since the average learning procedures and the average collisions

required in total are fewer in successive learning. In addition, due to the explo-

ration skills transferred from previous exploration learning, successive learning in

E3 can start at a better exploration ability with higher exploration efficiency and

lower learning and collision times.

When the CBG combined MENL learns behaviours continuously, the skills

learned for executing the behaviours can be transferred not ony from simple to

complex environments, but also from complex to simple environments. After

the creature equipped with the CBG and MENL has learned exploration in the

most complex environment E3, it can easily learn to explore the less complex

environment E2 very well. With the exploration skills obtained from E3, the

creature starts to explore E2 with an efficiency as high as 72%, which is similar to

that achieved by the successive learning of El then E2. The successive learning

from complex to simple environments has also exhibited both obviously fewer

learning procedures and collisions, compared with other exploration learning in

E2, such as fresh exploration and successive exploration from simple to complex

environments. The cumulative learning cost of learning E3 then E2 is similar to

that of learning E2 then E3.

Though the above experimental results have demonstrated that the CBG

model combined with MENL can learn to adapt to a series of unknown environ-

ments, we also find that incremental learning in consecutive environments is often

more expensive than direct learning of an environment. For instance, it costs more

130

to learn El then E2 then E3 than to learn just E3. Also, having learned in E3

alone it is then cheaper to learn E2 than to do E2 first. This suggests that it

would be better for a virtual creature to learn the hard environment first if it

knows which is the hard environment beforehand. However, because a virtual

creature can move around continuously during its lifetime, it is always difficult

to know what kind of environments it is going to meet. Actually the creatures

can run across any unknown environments and situations with varied complexity

at any time. If a creature learns each environment from scratch every time, it

is obvious that it would take the creature a hugh amount of time and effort to

suit all of the environments. But with the control of the CBG model, a virtual

creature can have behaviours and abilities accumulated from environment to envi-

ronment. The creature would be able to execute behaviours in new environments

at a certain level, by using the knowedge learned from other environments. At

the same time, the creature can learn to improve its behaviours continuously in

new environments. Due to the knowledge transferred from other environments,

incremental learning is usually much easier and more efficient than learning from

scratch in a new environment alone. As learning is retained through its whole

lifetime, a virtual creature can have accumulated and improved behaviours to suit

a wide range of environments and situations. The property that learning of one

environment implies knowledge of another environment helps the CBG model to

be an adaptive and general behaviour control model suitable to virtual creatures.

4.4.4 Summary

In this section, we have conducted several exploration experiments in various

unknown environments to test the adaptive learning ability of the CBG model

combined with MENL. A virtual creature equipped with the CBG and MENL has

been required to explore three unknown environments El, E2 and E3 successively.

The experimental results have shown that this creature has adaptively improved

its exploration ability through evolutionary learning of multiagents, and learned

how to explore all these environments successfully. Some comparison results have

also demonstrated that the co-decision of multiagents is more robust and flexible

131

than the solo decisions made by the best agent; and multiagents with continuous

evolutionary learning through their lifetime are more competent and adaptive

than non-improving multiagents.

With the increasing complexity of the environments, the exploration learning

of the virtual creature has experienced increased difficulty. However, compared

with fresh learning in a complicated environment, successive learning that is

achieved after learning in simple environments is always relatively easier and

involves much fewer collisions and shorter learning time. In some cases (e.g. in

E2), the learned exploration efficiency of successive learning is also better than

that of fresh learning. It is obvious that the accumulated exploration experience

learned from simple environments has helped the virtual creature to learn the

exploration in successive complicated environments more easily and competently.

Hand-crafted exploration experiments have also been conducted in three un-

known environments. In these experiments, a hand designed controller takes

responsibility for choosing the best motor actions according to the information

about the places in front of the creature. In each environment, the resulting ex-

ploration has traversed similar numbers of places to the exploration adaptively

learned by the CBG with MENL. These results indicate that the adaptive learning

of the CBG combined with MENL is almost as good as a hand-crafted controller

for exploration.

4.5 Emergent Behaviours

In the above experiments, the virtual creature has exhibited many emergent be-

haviours. These behaviours are not imposed by pre-programmed mechanisms nor

are they directly enforced by the fitness function. The behaviours are lifelike, ef-

ficient and robust. In this section, we use somewhat anthropomorphic language

to describe the behaviours of the virtual creature, as Braitenberg does in [251.

1. Moving in a straight line

One of the impressive emergent behaviours is the virtual creature's decision

132

to move in a straight line. As the above figures show, despite many possible

choices, the creature prefers to go ahead. Moving straightforward is a common

characteristic of walking animals. However, in many other works, this feature has

been achieved by special design of the fitness function in which an extra term is

used to favour straight movement by penalising turns [50, 137]. In contrast to

these, the straight movement reported here has emerged out of our design.

Avoiding stagnation

When surrounded by obstacles, the moving behaviour may become incom-

patible with the avoidance behaviours. This problem is referred to as stagnation

[5]. A variety of strategies have been suggested for overcoming this weakness,

mainly using additional constraints to force the creature to move [4, 85]. How-

ever, through evolutionary learning under a relaxed fitness function with fewer

constraints, our creature can autonomously learn to find available paths to free

itself from the predicament. Figure 4.7 shows an example of avoiding stagnation,

in which the virtual creature learns to avoid the IF-shaped obstacle via evolution

strategies.

Active direction selection

Sometimes the creature may not step out from an impasse immediately, espe-

cially when the visual field is almost full of obstacles. The exploration trajectory

shown in Figure 4.7 is a good example. When the creature starts from the bottom

left corner, it is surrounded by walls and obstacles. In this situation, the simu-

lated creature attempts to adjust its visual direction actively, instead of moving

impetuously. A final decision is made after viewing more situation details from

varied directions. It seems that this creature collects more environmental infor -

mation and considers it carefully. Such a careful decision is often a unique or

better choice in such a situation.

The above behaviours have emerged out of the design. By walking in a straight

line and selecting actions after careful "consideration", the creature can move

133

more efficiently. By avoiding stagnation actively, the creature's behaviours are

more robust to its environments. Moreover, the emergent behaviours look quite

natural and believable. They can often be found when living animals move in

their environments. These behaviours can help a virtual creature look more like

a real living creature and hence enhance its believability to the human user.

The emergent behaviours are not independent of each other. They can happen

in parallel and result in more sophisticated motions, such as walking in a nar-

row aisle without collision, following a wall, stepping out from a corner, moving

around a big obstacle to avoid it, and so on. These advantages may benefit from

the multi-agent engine which is evolved under a relaxed fitness function. While

a high-ranked agent obtains an initiative to control the movement, it is quite

possible that this agent will win again in the next competition due to its success-

ful experience. Therefore, a good movement can be repeated and some natural

behaviours (e.g., moving ahead) can be generated. When the virtual creature

encounters problems and current agents cannot take positive roles, new candi-

dates are sought with the assistance of evolutionary learning. Unconstrained by

many specific requirements, the evolutionary search proceeds in a broad space so

that there is a high possibility of finding feasible solutions to avoid a series of

predicaments.

4.6 Conclusion

This chapter presents a learning algorithm, Multi-agent based Evolutionary ar-

tificial Neural network with Lifetime learning (MENL), which can learn to make

correct decisions of motor action selection based on sensory feedback and past

experience. The MENL has a number of notable merits:

• There are a batch of multiagents maintained in MENL, which cooperate

and compete with each other for the decisions of action selection. This co-

decision mechanism enhances the adaptation and robustness of behaviours.

• The evolutionary learning of the multiagents is kept through the lifetime of

134

MENL. In consequence MENL can learn to improve its ability continuously,

and is able to cope with more and more situations in its lifetime.

. The fitness function of MENL is a relaxed design, so the evolutionary search

may proceed in a broad space with few constraints. The fitness function

is also designed for more than one behaviour, since it takes account of

both general sensory feedback on executed actions and specific behavioural

objectives.

When MENL is embedded in the Strategy module of the CBG model to

choose motor actions, its learning and decision-making become meaningful: the

CBG model carries out motor actions chosen by MENL in practice and reports

execution results of these actions through continuous sensory feedback. Any

mismatch of intended actions and actual action execution results will urge MENL

to use evolution strategies to revise unqualified agents that have generated results

unexpected and/or harmful to the achievement of a behaviour. On the other

hand, the successful execution of intended actions will be memorised implicitly

in multiagents (i.e., ANN individuals) for future use. By getting rid of the unfit

agents and retaining the essential, MENL can improve its ability continuously in

response to changing situations.

A virtual creature is equipped with a CBG model combined with MENL

to execute exploration in several unknown environments. Experimental results

have shown that the virtual creature has adapted to various unknown environ-

ments and explored them successfully. The exploration ability of the creature

is obviously increased through trial and error and this ability is accumulative

from environment to environment. Because the creature learns behaviours from

scratch and based on the information about the currently perceived environment,

the learned exploration ability is general and robust, and not specific to any par -

ticular environment or object. During exploration, there is always more than one

agent that contributes different but useful ideas to the exploration in various situ-

ations. The whole exploration is implemented by the competition and cooperation

of multiagents. In experiments, evolutionary multiagents with lifetime learning

have also exhibited much more robust and adaptive ability than non-improving

135

multiagents. It is the lifetime learning that helps the creature to enrich its explo-

ration experience constantly. As a result, the creature has achieved exploration

at a performance level similar to that of hand-crafted exploration which is based

on information about the places immediately next to the creature.

Through the combination with Multi-agent based Evolutionary Artificial Neu-

ral Network with Lifetime Learning (MENL), the CBG model has produced adap-

tive exploration in many environments. The resulting exploration is flexible to

various situations, able to improve from mistakes, and proactive for a specific

behavioural motivation. This kind of exploration, one of the space occupying

behaviours, is fundamental to many living creatures.

In the next chapter we will introduce the multifunctional learning of the CBG

combined with MENL and show how they are used to learn several space occu-

pying behaviours together.

136

Chapter 5

Learning Multiple Behaviours:

Combining the CBG Model with the

MENL Learning Algorithm

In this chapter, we present multifunctional learning of the CBG model combined

with the MENL learning algorithm. In the next section, we give a brief review of

recent work on knowledge transfer in artificial neural networks and relate our work

to this. Some biological findings on multifunctional neural networks for natural

behaviour control are explained in Section 5.2, which provide the main inspiration

and basis for our work. In Section 5.3, we introduce the multifunctional learning

of the CBG and MENL for producing multiple behaviours. Section 5.4 describes

the experiments we have conducted when the CBG with MENL is applied to

learn multiple space occupying behaviours. The last section concludes with a

summary of this chapter.

5.1 Related Work

Recently there has been increasing interest in transferring knowledge learned by

artificial neural networks across related tasks. This is initiated by the realisation

that complex environments will require learning to perform multiple tasks [146]

137

and the learning can be greatly saved or simplified if the tasks to be learned can

share what they learn [33, 1251. In this section, we review some typical work in

this area and put our work in the context.

Pratt et al. have studied the sequential transfer of learned knowledge between

artificial neural nets [124, 125]. In their previous study, Pratt et al. presented

somewhat surprisingly better effects of pre-setting neural network weights on

subsequent learning, compared with untrained weights [124]. They demonstrated

that the relative magnitudes of the preset weights were important for retaining

the locations of pre-trained hyperplanes. Pratt also proposed a Discriminability-

Based Transfer (DBT) algorithm to estimate the utility of hyperplanes defined by

source weights in the target network and to rescale transferred weight magnitudes

accordingly [125]. The DBT algorithm used the target training data and weights

from the source network, along with two coefficients to calculate a modified set

of weights for initialising training on the target task. Several empirical results

on speech recognition, disease diagnosis, pattern recognition, and chess problems

proved that target networks initialised via DBT learned significantly faster than

networks initialised randomly. Similar results have also been reported by Sharkey

and Sharkey, which have shown that what was learned for one task could be used

as a good bias for other tasks [144].

In addition to speeding up learning, improved generalisation on sequences of

learned tasks has been studied as well [33, 156, 157]. Thrun et al. suggested study

of robot learning problems not in isolation, but in the context of the multitude

of learning problems that a robot would face over its entire lifetime [156, 1571.

They proposed an Explanation-Based Neural Network (EBNN) to generate tar -

get values by explaining and analysing each observed training example of the

target function in terms of the domain theory acquired in previous learning tasks

[157]. Action models that captured important domain knowledge independently

of the particular control learning problem at hand were used to bias learning of

the control function of the current problem. In an experiment concerned with

grabbing a cup, for instance, EBNN learned the evaluation function based on

pretrained action models, and discovered the correlation of the distance of the

138

cup and the success of the grab action [157). Even when the observed training

examples were very few, the evaluation function learned by EBNN still had a

more correct shape than plain learning with no transferred knowledge from ac-

tion models. As a consequence, EBNN was able to replace real-world experiments

efficiently and support accurate learning by previously learned bias.

Caruana [33] has proposed multitask learning (MTL), an inductive transfer

mechanism that improves task generalisation by taking advantage of domain in-

formation contained in the training signals of related tasks. Specifically, multitask

learning could be achieved by learning several related tasks in parallel while using

a shared representation (e.g., a shared hidden layer in a backpropagat ion ANN).

Therefore, what was learned for each task may help other tasks to be learned

better. Sometimes, better performances of main tasks were obtained by learning

extra features of other tasks. Caruana has implemented multitask learning in sev-

eral different mechanisms, such as backpropagation ANNs, K-nearest neighbour

and decision trees [33]. The ability to achieve multitask learning with different

inductive methods pointed to the generality of its basic idea. Nevertheless, the

principal goal of MTL was to improve the performance of learning on main tasks

by using extra outputs of related tasks. For better performance on the main

tasks, the learner allowed performance on the extra tasks to degrade or could

even ignore the extra tasks.

Ijspeert, Hallam, and Wilishaw have studied how neural swimming controllers

for a lamprey could be adapted for controlling both the swimming and the walk-

ing of a salamander-like animat [74]. Initially, they used genetic algorithms to

evolve over several stages the swimming controllers of a simulated lamprey, which

had similar neural configurations to a biological connectionist model of the Cen-

tral Pattern Generators (CPGs) controlling the swimming of a real lamprey [75].

The evolved controllers produced neural connections and control efficiency close

to those observed in the real lamprey. Ijspeert et al. then extended the swim-

ming controllers of the simulated lamprey to control the swimming and walking

of a simulated salamander. As little was known about the neuronal circuits un-

derlying the locomotion of salamanders, the walking controllers of the simulated

IsMi

salamander were evolved based on the structure of two interconnected oscillatory

networks of the swimming controllers. All neurones of the swimming and walk-

ing controllers received simple excitatory signals from the "brain stem" through

different pathways. Therefore, swimming or walking patterns were generated

depending on which controllers were excited, and the speed of locomotion was

proportional to the level of excitation. The successful development of the walking

controllers based on the mechanisms transferred from the swimming controllers

suggest a reasonable conjecture that the oscillators for the limbs have followed a

corresponding specialisation from the trunk segmental networks through natural

evolution.

These studies on knowledge transfer in artificial neural networks have demon-

strated that learning of a new task can be achieved based on previous learning of

other tasks, and the subsequent learning of new tasks may have accelerated the

learning speed or improved the generalisation ability. However, the knowledge

transfer usually happened between two different mechanisms in these studies,

and the transfer was only from one task to another rather than mutual knowl-

edge transfer between different tasks. Also, it is not clear whether the mechanisms

(ANNs) using transferred knowledge to learn new tasks can integrate knowledge

of different tasks and implement both previous and new tasks well. Although

Caruana used the same neural network to learn multitasks, the purpose of the

multitask learning was to improve the performance of the main tasks, not all

of the multiple tasks. In addition, there is more than one output of the neural

network, each of which is for a particular task. Differing from the above work of

knowledge transfer, our study on multifunctional learning uses the same mech-

anisms (MENL and its ANNs) to learn varied action selection policies equally

well for more than one behaviour. The artificial neural networks of MENL are

evolved as a whole to learn for multiple behaviours. In consequence the com-

mon knowledge shared in executing these behaviours is transferred from one to

another, and the different properties of these behaviours are naturally integrated

together via evolutionary learning. The resultant MENL can therefore execute

140

multiple action selection policies and the total time spending on learning these

policies together is much lesser than that on learning these policies individually.

During its multifunctional learning, MENL works just like those biological multi-

functional neural networks producing different output for implementing different

behaviours. The multifunctional neural networks in biological behaviour control

are introduced in the next section.

5.2 Biological Multifunctional Neural Networks

It is well known that the brain can perform numerous functions although its

anatomical structure and size are finite. This powerful feature of the brain may

be contributed to shared knowledge and resources across related behaviours and

multifunctional neural circuits that can be modulated for the purpose of perform-

ing more than one specific function [43, 56, 122, 142]. The multifunctionality of

these neural circuits doesn't mean that an olfactory system can be used as an au-

ditory system. But, within the confines of the anatomical substrate (the anatom-

ical organisation), the functional organisation of multifunctional neural networks

appears to be under dynamic control, changing in accordance with the expression

and modulation of the constituent cellular, synaptic, and network building blocks

[56].

The concept of multifunctional neural networks was proposed and elaborated

by Getting and Dekin [551 to explain the control of swimming and defensive with-

drawal in the nudibranch mollusc Tritonia. In their study, Getting and Dekin

found that afferent depolarisation of one set of premotor interneurons reconfig-

ures a pattern-generating circuit from a state in which it generates a pattern for

withdrawal to a state in which it generated the pattern for swimming [55]. There-

after, numerous recordings from neurones have noted that many biological neural

networks participate in a series of different but functionally related behaviours,

including walking, scratching and posture in cats [54]; pyloric and gastric mill

rhythms in the stomatogastric system of crabs [172]; jumping and kicking in the

locust [66]; rhythmic hatching and stepping movements of legs of chicks [17]; dif-

141

ferent forms of scratching in the turtle [113]; and so on. The neural networks

controlling one behaviour may share a portion or even all of their neurones with

networks controlling other behaviours.

At present, the actual mechanism for configuring multifunctional neural cir-

cuits is not yet clear. However, it is known that, at least in the case of central

pattern generators (CPGs) (neural networks underlying rhythmic movements),

the nature of afferent, central, and neuromodulatory signals are the main sources

of input that could act to build varied neural circuits [122, 142]. While the brain

adjusts these inputs intentionally, CPGs can change or even discontinue their

behaviour patterns accordingly, and elicit interactions with other functionally di-

verse circuits in many different ways. As a consequence, the neural networks

responsible for basic rhythmic movements are not fixed, but flexible and multi-

functional systems capable of producing different motor output patterns.

5.3 Multifunctional Learning of the CBG Combined

with MENL

After giving the virtual creature exploration ability, we want the virtual crea-

ture to also be able to produce some other space occupying behaviours, such as

reaching goal locations, wandering randomly, and so on. Hence, the CBG model

combined with MENL needs to select suitable motor actions and execute these ac-

tions for carrying out different space occupying behaviours. All these behaviours,

including exploration, goal reaching, and wandering, share the same sensors and

motors, motor programs, motor actions, and even part of the motor action se-

lection policies, as we introduced in Section 3.5.2. The only difference among

these behaviours is that, guided by different behavioural motivations, the exact

motor action selected at a particular time may be different for each behaviour. If

we use every single MENL learning algorithm to learn the correct motor action

selection policy for every behaviour, we would have a collection of MENLs in the

CBG model. While the number of behaviours to be implemented increases, it is

questionable if it is economical and practical for the CBG model to hold many

142

MENLs and corresponding multiagents (artificial neural networks) with similar

functionality within a limited structure and space. In order to sensibly implement

multiple behaviours in the same behaviour control model, we hope MENL and its

ANNs can learn multiple motor action selection policies for multiple behaviours,

by taking advantage of common properties shared in these behaviours.

= In the last section, we introduced the biological multifunctional neural net-

works in the brain, which can participate in or generate more than one behaviour

[43, 56, 122, 142]. The generated behaviours usually involve either the same

muscle groups or functionally related muscle groups, but are driven for diverse

objectives. Inspired by biological multifunctional neural networks, we consider

constructing multifunctional artificial neural networks in MENL and the CBG

model. As the CBG model provides basic mechanisms (many shared resources

at various layers) for potential multifunctionality, we hope the MENL learning

algorithm can implement this potential, by choosing correct motor actions for

multiple behaviours in the same artificial neural networks and by utilising the

common knowledge shared between these behaviours. If the CBG model with

MENL can adaptively learn to implement functionally related behaviours accord-

ing to different behavioural objectives, not only would the required mechanisms

(e.g., neural networks) be much reduced, but the common knowledge and re-

sources across these behaviours would also have the opportunity of being used

efficiently.

In Chapter 4, we presented the adaptive learning of exploration achieved by

the CBG and MENL. The multiagents maintained in MENL were driven by the

behavioural objective in the fitness function to learn the proper action selection

policy for exploration in various unknown environments. In this chapter, we will

change the behavioural objective in the fitness function so that MENL and its

multiagents can learn to carry out some other behaviours. Moreover, we hope

MENL agents can appropriately integrate the knowledge learned for different

behaviours so MENL can be multifunctional and implement different behaviours

in the same ANNs. In addition to the behavioural objectives, the item of sensory

feedback in the fitness function provides the learning of MENL with some general

143

knowledge common to behaviours of the same kind. The common knowledge

across functionally related behaviours ought to help MENL to learn multiple

behaviours more competently and effectively.

In the following section, we will test the potential multifunctionality held in

the CBG and MENL by doing some experiments. In particular, we will command

the CBG combined with MENL to learn to produce several space occupying

behaviours together in some unknown environments, including exploration, goal

reaching, and wandering. The downstreaming central signals from the Motivation

module of the CBG model are the main impetus to drive the artificial neural

networks of MENL to work for different behaviours. The experiments will test

whether the CBG with MENL can learn to perform more than one behaviour

together, and if it can, how good its multifunctional learning performance is.

5.4 Experiments

In this section, the abstract bot virtual creature embedded with a CBG and

MENL is again used but this time to carry out multifunctional learning. Several

experiments on learning multiple space occupying behaviours have been designed,

with differently complex environments and different numbers of behaviours to

learn. In the first experiment, the virtual creature is required to learn two kinds

of space occupying behaviours (exploration and goal reaching) jointly in a simple

environment El. The creature is also used to learn these two space occupying

behaviours together in a more complicated environment E2. In the last experi-

ment, the creature tries to learn three kinds of space occupying behaviours (i.e.,

exploration, goal reaching, and wandering) together in E2. Some interesting tra-

jectories generated in the experiments are also presented, which show the robust

and continuously improved behaviours of the virtual creature.

5.4.1 Multifunctional Learning and Independent Learning

When more than one different behaviour is learned in a common CBG model,

especially in the same artificial neural networks, the successful learning of one

144

behaviour usually cannot guarantee the integrity of other behaviours learned be-

fore. In fact, due to the disparity between these behaviours, learning of an extra

behaviour may bring some negative effects to the other learned behaviours. In

Section 3.5.2, we exemplified that the actual motor actions selected may be dif-

ferent for generating different space occupying behaviours in some cases even

when all the other conditions are the same. So, if artificial neural networks that

have learned the successful action selection policy for exploration are trained to

learn a new action selection policy for goal reaching, it is possible that the neural

networks are re-stored with new learned knowledge for goal reaching and the col-

lection of the previously learned knowledge for exploration is diminished. In order

to execute both exploration and goal reaching behaviours successfully, the artifi-

cial neural networks need to re-learn exploration and maybe goal reaching many

times so as to remember and integrate different knowledge for different behaviours

correctly. Therefore, in multifunctional learning of the CBG and MENL, learning

of multiple behaviours will be conducted alternately until every behavioural learn-

ing is executed smoothly. Figure 5.1 examplifies the experimental procedures of

learning three behaviours in multifunctional learning.

Although the learning of different behaviours may adversely affect each other,

the learning processes may have mutual benefits too because functionally related

behaviours have much shared common knowledge, as explained in Section 3.5.2.

If the common knowledge is obtained by learning of one behaviour and is applied

to learning of other behaviours properly, the learning of other behaviours will

become easier and more efficient. To test this claim, independent learning of

three space occupying behaviours has been conducted. In independent learning,

every space occupying behaviour is learned on a randomly initialised CBG model

and MENL, and a behaviour is considered to have been learned after one hundred

consecutive trajectories are conducted successfully. Learning cost and learning

results of independent learning will be compared with those of multifunctional

learning.

In both multifunctional and independent learning, learning of wandering re-

quires the virtual creature to move from a random starting point and keep mov-

145

t StartJ

Learning behaviour B

until B! is successfully executed

for one hundred successive times

Learning behaviour B2

until B2 is successfully executed

for one hundred successive times

Learning behaviour B3

until B3 is successfully executed

for one hundred successive times

Any learning

present in the above

-7

Figure 5.1: Experimental procedures of learning multiple behaviours in multifunctional

learning

ing for a limited number of steps in each trajectory. (The limitation is 240 steps

in environment El and 650 steps in E2.) Whenever the creature makes a colli-

sion, evolutionary strategies will be immediately triggered to evolve new qualified

agents in MENL. The learning of wandering is completed (or temporarily finished

in multifunctional learning) if the creature conducts one hundred successive tra-

jectories successfully. Evolutionary learning times and collision times taken for

the learning are performance indices to evaluate wandering learning ability.

In exploration learning, the creature needs to explore the environment as far

as possible in the same limited number of steps as in wandering learning. All

the starting points of exploration are randomly chosen. The exploration learn-

ing is finished when the creature executes one hundred successive trajectories

successfully. When independent exploration or an episode of exploration in mul-

tifunctional learning has been learned, in addition to learning times and collision

times, another performance index used to test the learning ability is the final

exploration efficiency achieved by successful exploration learning.

146

In goal reaching learning, the creature, starting from arbitrary initial places

and orientations, is required to reach randomly selected goal destinations. The

creature should find an available route to the goal in the limited number of steps,

the same as that of wandering and exploration learning. Likewise, goal reach-

ing learning finishes when one hundred successive goal destinations are reached

successfully. A goal reaching trajectory is deemed as a "success" if the goal is

achieved within the limited number of steps; otherwise the conduction of goal

reaching is a "failure". In addition to evolutionary learning times and collision

times, another two indices are adopted to estimate the performance of goal reach-

ing learning. One index is goal reaching efficiency, that is, the steps involving

movement as a percentage of all the steps the creature makes. Those steps causing

collisions or fixation at a place are thought to impair the navigation. The other

performance index is the success rate of goal reaching, which indicates whether

the creature has reached the goal destination in each trajectory. Because every

goal reaching experiment is conducted for fifty runs, the success rate is actually

the probability of conducting a successful trajectory in fifty runs. One experi-

mental run of goal reaching learning is finished when the creature conducts one

hundred successful goal reaching trajectories successively.

The settings of the CBG and MENL are those described in Section 3.7 and

4.3 for both multifunctional and independent learning. The fitness functions

adopted for exploration, goal reaching, and wandering are equations 4.5, 4.6, and

4.7 respectively.

It may be worth reminding the reader that the key idea of the MENL learning

algorithm is to find a general solution that can be applied to a wide range of

situations. Sometimes, this solution may not be optimal at all. Similarly, in

multifunctional learning, the main contribution of MENL is to seek a general

solution that can be applied to multiple behaviours in a wide range of situations,

rather than to optimise every behaviour in some specific situations. However, the

investigation of a better compromise between generalisation and optimisation is

part of our future work.

147

5.4.2 Learning Two Space Occupying Behaviours Together in

the Simple Environment El

In this experiment, the virtual creature with an initialised CBG and MENL at-

tempts to learn exploration and goal reaching together in a simple environment

El. The main purpose of this- experiment is to check if the CBG with MENL

can learn more than one behaviour, and how the learning of one behaviour af-

fects another. The virtual creature that has already obtained exploration skills

through fresh exploration learning (i.e., independent exploration learning) in El

is firstly trained to learn a second behaviour of goal reaching. Further exploration

is then executed for an estimation of the influence of the extra learning of goal

reaching on the previously learned exploration ability. Even more goal reaching

and exploration learning are executed one after another so the creature can learn

both behaviours appropriately. Finally, a comparison between the performance

of multifunctional learning and independent learning is presented.

5.4.2.1 Subsequent Learning of Goal Reaching After Fresh Exploration

The first part of the experiment is the additional learning of goal reaching in

environment El. The virtual creature has just learned exploration in El and

hence possesses certain exploration and obstacle avoidance skills (experimental

information of fresh exploration learning in El is presented in Section 4.4.2.1,

so we won't repeat it here). In subsequent goal reaching learning, we want the

creature to reach arbitrary goal destinations from random initial positions and

orientations in 240 steps until it executes successful goal reaching one hundred

successive times. Every creature generated from the fifty runs of fresh exploration

learning in El is used to conduct subsequent goal reaching learning. The goal

reaching efficiency and success rate of reaching a goal destination in each trajec-

tory averaged over fifty runs are shown in Figure 5.2 (a). Figure 5.2 (b) shows

the number of evolutionary learning procedures and the number of collisions the

creature makes in each trajectory, also averaged over fifty runs. Figure 5.2 (c)

lists the average total learning times and collision times spent in fifty runs of the

subsequent goal reaching learning, and the average goal reaching efficiency and

148

• efficiency -
success rate - -

20 	40 	60 	80 	100 	120 	140
Number of Trajectories

20

18

16

14

12

10

8

6

4

2

0
20 	40 	60 	80 	100 	120 	140

Number of Trajectories

Total learning Total collision Final Final

times times efficiency success rate

31.9 2.2 82.5% 100%

(0.68.9) (0-5.0) (81.6%-83.4%) (100%-100%)

Figure 5.2: Subsequent goal reaching learning after fresh exploration in El (averaged over fifty

runs). Each creature of the fifty runs of fresh exploration in El is applied to reach various randomly

selected goal destinations in no more than 240 steps until the creature has reached one hundred

successive goal destinations successfully. The goal reaching efficiency and success rate of each

trajectory averaged over fifty runs are recorded in Figure (a). The average learning times and

collision times spent in each trajectory over fifty runs are shown in Figure (b). The last 100

successive and successful trajectories are not shown in Figure (a) and Figure (b). Figure (c) lists

the total numbers of learning procedures and collisions required for the subsequent goal reaching

learning, and the goal reaching efficiency and success rate obtained at the end of the learning, all

averaged over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges

over fifty runs.

149

success rate achieved when the learning finishes.

The results in Figure 5.2 have shown that the virtual creature has learned the

new behaviour of goal reaching successfully in subsequent goal reaching learning.

In addition, the creature implemented this learning with ease. There are very few

collisions made in the whole experiment: the average number of total collisions is

only 2.2 in fifty runs. The learning times are also kept very small. The number

of learning procedures is no more than 2 in each trajectory, and it gradually

decreases to be lower than 0.1 in the last twenty trajectories. The average number

of total learning procedures is 31.9 in fifty runs.

The goal reaching efficiency of subsequent goal reaching learning starts from

a very good point of 77%. It is slowly raised to 82.5% when the learning finishes.

This improvement indicates the virtual creature spends more time on sensible

movement towards the goal destination, and there is only 17.5 percent of its

movements wasted on hesitation, direction changing, etc, which have no direct

contribution to the navigation. The last noticeable result presented in the sub-

sequent learning is the virtual creature's very high success rate in reaching goal

destinations. Even at the beginning of the experiment, the probability of reaching

a random goal destination in fifty runs is as high as 92%. When the experiment

finishes, the creature has learned how to locate various goal destinations in un-

known environment El, and reached all destinations in the limited number of

steps without problem. The success rate of goal reaching is therefore 100% at the

end of the subsequent goal reaching learning.

Through deliberated adjustment of its ANN structures that were first set for

exploration, the virtual creature has learned a second behaviour of goal reaching

successfully.

Independent Goal Reaching Learning

From the good performance of the subsequent goal reaching learning after fresh

exploration, we conjecture that the previously learned exploration may have some

good effects on the later learned goal reaching. For a demonstration of this con-

jecture, we use a fresh virtual creature with an initialised CBG and MENL to

150

conduct independent goal reaching learning in environment El. Similarly, the

creature should manage to reach its goal destinations starting from arbitrary

places and orientations in 240 steps while keeping its obstacle avoidance compe-

tence. This learning is repeated fifty times, by using different initialisation of the

creature in each learning episode. The averaged learning results over fifty runs

are shown in Figure 5.3. --

As expected, the fresh creature has acquired goal reaching ability through

adaptive learning of the CBG and MENL. However, compared with the sub-

sequent learning, the independent goal reaching learning has presented worse

learning performance. There is intensive evolutionary learning involved in the

independent learning. The total learning sessions are as many as 364.2, an av-

erage over fifty runs. This number is almost 11 times more than that required

by the subsequent learning of goal reaching. The initial goal reaching ability the

fresh creature displays at the beginning of the independent learning is also poor.

The initial efficiency is only 35.5% and the initial success rate is 80%. They

are 35 points and 12 points lower than those of the subsequent goal reaching

learning respectively. Both subsequent and independent goal reaching learning

have achieved similar navigation efficiency (82.5% and 82.9% respectively) and

the same success rate (100%) in the end.

Because the subsequent goal reaching learning starts from the point which is

defined by the previous exploration learning, the learning of the subsequent goal

reaching is much easier and smoother than the independent learning starting

from random. This result suggests that some useful knowledge contained in

exploration learning has been utilised or transferred to goal reaching learning.

The good performance of the subsequent goal reaching learning also supports

Pratt's inference that an appropriate pre-setting for neural network weights plays

a positive role on its subsequent learning [124].

5.4.2.2 Further Exploration

After extra training in goal reaching, the creature needs to explore El again, for a

test of whether it still remembers the previously learned exploration ability. The

151

0) -j

08

07

efficiency

20 	40 	60 	80 	100 	120
Number of Trajectories

(a)

Total learning Total collision Final Final

times times efficiency success rate

364.2 23.4 82.9% 100%

(291.8-436.6) (13.6-33.2) (82.2%-83.6%) (100%-100%)

(c)

Figure 5.3: Independent goal reaching learning in El (averaged over fifty runs). In each run, a

fresh virtual creature equipped with a randomly initialised CBG and MENL is asked to reach various

random goal destinations from arbitrary places and orientations in no more than 240 steps. The

learning is finished when one hundred successive goal destinations are reached successfully. The

goal reaching efficiency and success rate of each trajectory averaged over fifty runs are recorded

in Figure (a). The average learning times and collision times spent in each trajectory over fifty

runs are shown in Figure (b). The last 100 successive and successful trajectories are not shown in

Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures and collisions

required for independent goal reaching learning, and the final goal reaching efficiency and success

rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure (c)

are the corresponding result ranges over fifty runs.

152

creature should continuously explore environment El starting from various ran-

dom points in 240 steps, until one hundred successive and successful exploration

trajectories have been executed. Every virtual creature of the fifty runs of sub-

sequent goal reaching learning conducts further exploration learning. Figure 5.4

shows the results of the second exploration learning in environment El, averaged

overfiftyriins. - -- -- --

The experimental results have shown that there are some collisions and evolu-

tionary learning during further exploration, however, both collisions and learning

procedures are very few. For instance, the total collisions made in the whole

exploration are only 1.7, and the total learning times are only 16.9 (averaged

over fifty runs). At the same time, the exploration efficiency of each trajectory

is maintained at a relatively stable state of 76.7%. This efficiency is similar to

that obtained by fresh exploration learning, which is 75.7%. After exploring the

environment El even further (a maximum of ninety one trajectories in fifty runs),

the virtual creature has properly recollected its early learned exploration ability.

5.4.2.3 Further Goal Reaching

After the successful learning of further exploration, the creature is put in environ-

ment El again but to execute further goal reaching. This is for an inspection of

the further exploration's influence upon goal reaching. The creature starts from

random places and orientations and tries to reach various goal destinations in no

more than 240 steps. Further goal reaching continues until the creature reaches

one hundred successive goal destinations successfully. Similarly, every creature

of the previous fifty runs of further exploration is used to conduct a further goal

reaching experiment. The experimental results averaged over fifty runs are shown

in Figure 5.5.

From the experimental results, we can see that there are only very occasional

collisions and unreached goal destinations involved in further goal reaching ex-

periments. The average number of total collisions made over fifty runs is less

than one, and the average number of total learning procedures is only 3.8. Mean-

while, the virtual creature can reach most goal destinations in fifty runs. It is

153

I 	I 	 I 	 I 	 I 	 I
efficien' -

10 	20 	30 	40 	50 	60 	70 	80 	90
Number of Trajectories

2

10 	20 	iO 	40)LI 	00 	10 	50 	1U

Number of Trajectories

Total learning Total collision Final

times times efficiency

16.9 1.7 76.7%

(0-38) (0-3.8) (74.9%-78.5%)

Figure 5.4: Further exploration learning in El (averaged over fifty runs). The virtual creature

which learned subsequent goal reaching ability is asked to conduct another exploration experiment

to recollect its previously learned exploration ability. Every virtual creature resulting from the fifty

runs of subsequent goal reaching learning conducts continuous exploration trajectories, until one

hundred successive and successful exploration trajectories have been executed. The exploration

efficiency reached by each trajectory is shown in Figure (a). The learning times and collision times

made in each trajectory are shown in Figure (b). Both figures show results averaged over fifty runs

and do not include the last 100 successive and successful trajectories. Figure (c) is a summary of

the total learning times and collision times spent in further exploration learning and the exploration

efficiency finally achieved by the learning, averaged over fifty runs. The numbers in brackets in

Figure (c) are the corresponding result ranges over fifty runs.

154

efficiency - -

successrate

10 	 20 	30 	40 	50
Number of Trajectories

3

3

2

2

learning times -
collision limes - -

10 	 W iv 	 au 	 IV

Number of Trajectories

Total learning Total collision Final Final

times times efficiency success rate

3.8 0.2 84.0% 100%

(0-11.3) (0-0.6) (83.2%-84.8%) (100%-100%)

Figure 5.5: Further goal reaching learning in El (averaged over fifty runs). Every creature of the

previous fifty runs of further exploration in El is applied to reach various randomly selected goal

destinations in no more than 240 steps until the creature has reached one hundred successive goal

destinations successfully. The goal reaching efficiency and success rate of each trajectory averaged

over fifty runs are recorded in Figure (a). The average learning times and collision times spent in each

trajectory over fifty runs are shown in Figure (b). The last 100 successive and successful trajectories

are not shown in Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures

and collisions required for further goal reaching learning, and the final goal reaching efficiency and

success rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure

(c) are the corresponding result ranges over fifty runs.

0.9 Li
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

155

only in a few cases that the creature could not find the goals. The efficiency

of the goal reaching is also quite stable: it is about 84% throughout the experi-

ment. Despite the further exploration conducted beforehand, the virtual creature

maintains most of its learned goal reaching ability.

5.4.2.4 Last Exploration and Goal Reaching

In the above further exploration and goal reaching, there is still some evolutionary

learning occurring in both experiments. For real multifunctionality, the creature

should be able to switch from one behaviour to another smoothly without learn-

ing. In order to test if the creature has already learned two space occupying

behaviours completely, or if it still needs even further learning, a third set of ex-

ploration and goal reaching experiments are conducted in environment El. The

fifty creatures of the second goal reaching learning should first conduct continu-

ous exploration trajectories until one hundred successive trajectories are executed

without collision and learning, and then continuously locate various goal destina-

tions from arbitrary places until one hundred successive destinations are reached

without problem.

On the third repetition, all the creatures in fifty runs have successfully ex-

ecuted both exploration and goal reaching experiments successfully with no in-

volvement of any collision or evolutionary learning. These creatures can now

conduct either exploration or goal reaching well. Meanwhile, the average explo-

ration efficiency is about 77.1%, and the average goal reaching efficiency is about

84.1%, while the creature reaches all goal destinations successfully.

After three sessions of multifunctional learning procedures, the virtual crea-

ture at last has the multifunctionality of both exploration and goal reaching.

While the multifunctional learning proceeded, the creature switched between

these two behaviours more and more smoothly. The successful learning of ex-

ploration and goal reaching together shows that the CBG model combined with

the MENL learning algorithm has the capability of learning more than one be-

haviour.

156

5.4.2.5 Comparison of Multifunctional Learning with Independent Learning

Figure 5.6 presents the comparison of multifunctional learning of exploration and

goal reaching in environment El and the corresponding independent learning of

exploration and goal reaching. As shown in Figure 5.6 (a), multifunctional learn-

ing and independent learning have achieved similar efficiencies in both exploration

and goal reaching. But the total collision numbers made in the multifunctional

learning is on average 20 less than the sum of the collisions made in every single

behaviour learning, shown by Figure 5.6 (b). The clear superiority of multifunc-

tional learning over independent learning is reflected in much obviously saved

learning. Where independent exploration learning has spent 726.8 learning proce-

dures learning single exploration ability and independent goal reaching has spent

364.2 learning procedures learning single goal reaching ability, multifunctional

learning of exploration and goal reaching has only required 779.4 evolutionary

learning procedures to learn both behaviours properly. After learning explo-

ration independently, the same artificial neural networks used for multifunctional

learning have only used 52.6 evolutionary learning procedures to adjust its func-

tionality to comprise a new behaviour of goal reaching and to mediate different

knowledge learned for different behaviours. Therefore, about 312 sessions of evo-

lutionary learning have been saved in total in multifunctional learning, which is

almost one third of the sum of the total learning times spent in independent ex-

ploration and goal reaching learning. As independent behaviour learning utilises

two copies of multiagents (artificial neural networks) to learn action selection

policies for two different behaviours, multifunctional learning uses just one batch

of multiagents to learn different behaviours together. The resulting multifunc-

tional learning has not only saved the materials for behaviour conduction, but

also significantly accelerated learning.

157

- Independent goal reaching

Independent exploration

IffluiMtIcLbOi
ii .

. ...aching

iI
-

Exploration 	Goal reaching

efficiency 	efficiency

(a)

Independent goalreachiirg........ -

......................... hidependentexploration -

- ffflTfl
Lilhill

Multifunctional

. _i
...... eAp1Otatiofl+gohireaChing

-
......

Total Learning
	

Total collision

Times
	

Times

(b)

Figure 5.6: Comparison of multifunctional learning and independent learning: learning

exploration and goal reaching in the simple environment El (averaged over fifty runs).

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

158

5.4.3 Learning Two Space Occupying Behaviours Together in

the More Complex Environment E2

In this experiment, a fresh virtual creature which has a randomly initialised CBG

and MENL is asked to learn two kinds of space occupying behaviours (exploration

and goal reaching) together, but in a more complicated environment E2. Sim-

ilarly to the last experiment, the virtual creature starts from fresh exploration

learning in E2 and then learns a new behaviour of goal reaching by using the

same behaviour model and artificial neural networks. The creature should repeat

multifunctional learning of exploration and goal reaching one after the other until

it is competent in both behaviours. The results of multifunctional learning will

be compared with those of independent learning of exploration and goal reaching.

5.4.3.1 Subsequent Learning of Goal Reaching After Fresh Exploration

Section 4.4.2.2 has shown the independent exploration learning of a fresh virtual

creature in environment E2. In this section, such a creature that has learned

exploration in E2 is used to learn an additional behaviour of goal reaching. The

creature should learn to find a way to various goal destinations from arbitrary

starting points in E2, until it successfully reaches one hundred successive desti-

nations. Every goal reaching trajectory should not go beyond 650 steps. In this

experiment, each creature of the fifty previous runs of fresh exploration in E2 is

used for subsequent goal reaching learning. The average results over fifty runs

are shown in Figure 5.7.

The virtual creature takes a maximum of 117 trajectories to complete its

subsequent goal reaching learning in fifty runs. Most of the learning is aggregated

in the first 20 trajectories, in which the average learning times range from 1 to

11 in each trajectory. During the remaining 97 trajectories, the virtual creature

endeavours to correct minor movement errors. In addition to a little learning

on overcoming collisions (an average of 3.2 learning procedures in total), most

learning is on avoiding useless turning or fixation at a place so that the creature

can move towards goal destinations more directly and quickly. Even so, there are

only on average 61.7 evolutionary learning procedures present in total.

159

efficieniy -

success---.

20 40 60 80 100
Number of Trajectories

learning times -

-. .TT...coll
	...

..... H : i : ; :

20 	40 	60 	80 	100
Number of Trajectories

Total learning Total collision Final Final

times times efficiency success rate

61.7 3.2 88.8% 100%

(0-125.3) (0.8-5.6) (87.9%-89.7%) (I00%-100%)

Figure 5.7: Subsequent goal reaching learning after fresh exploration in E2 (averaged over fifty

runs). Each creature after fifty runs of fresh exploration in E2 is applied to reach various randomly

selected goal destinations in no more than 650 steps until the creature has reached one hundred

successive goal destinations successfully. The goal reaching efficiency and success rate of each

trajectory averaged over fifty runs are recorded in Figure (a). The average learning times and

collision times spent in each trajectory over fifty runs are shown in Figure (b). The last 100

successive and successful trajectories are not shown in Figure (a) and Figure (b). Figure (c) lists the

total numbers of learning procedures and collisions required for subsequent goal reaching learning,

and the goal reaching efficiency and success rate obtained at the final of the learning, all averaged

over fifty runs. The numbers in brackets in Figure (c) are the corresponding result ranges over fifty

runs.

0.

0.

0.

0.

0.

0.

0.

0.

0.

35

30

25

20

15

lO

5

0

LUM 11

Due to the intensive learning in the early stage of the experiment, both goal

reaching efficiency and success rate have exhibited an obvious increasing tendency.

In the first 20 trajectories, the goal reaching efficiency is improved from 76%

to 85% and the success rate is improved from 90% to 98%. In the remaining

trajectories, the goal reaching efficiency is maintained around 88.6% and the

success rates are kept at 100%. Through continuous adaptive learning, the virtual

creature that has already learned exploration ability adjusts its functionality to

goal reaching successfully.

Independent Goal Reaching Learning

For an estimation of the performance of goal reaching learning following fresh

exploration learning, an independent goal reaching experiment in environment

E2 is conducted. A fresh creature equipped with a random CBG and MENL

conducted goal reaching continuously until it reached one hundred successive

goal destinations successfully. The average learning results over fifty runs are

shown in Figure 5.8.

The fresh goal reaching learning in environment E2 is conducted quite well,

however, its learning results are not so good as those of the subsequent learning.

While the subsequent goal reaching learning after fresh exploration soon reaches a

relatively stable learning stage with only minor errors, the independent learning

suffers from intensive collisions and evolutionary adjustment for quite a long

time. As a result, the goal reaching efficiency and success rate of fresh goal

reaching learning oscillate back and forth continually. The total collisions and

evolutionary learning procedures involved in the independent learning are almost

10 and 7 times more than those of subsequent learning. In addition, the initial

goal reaching ability of independent learning is very low (e.g., 47% efficiency and

72% success rate). This contrasts to the very high starting point of subsequent

goal reaching learning, whose efficiency and success rates are as high as 76% and

90% respectively.

The much better learning performance of the subsequent goal reaching learn-

ing in a more complicated environment E2 again suggests that the common space

161

I 	 I 	 I

I 	 . 	. 	 learning times -
collision times 	-

30 I-

H

25 [...............

20 	40 	60 	80 	100 	120 	140 	160
Number of Trajectories

(b)

Total learning Total collision Final Final

times times efficiency success rate

458.2 33.1 88.6% 100%

(372.2-544.2) (21.1-45.1) (87.2%-90.0%) (100%-100%)

(C)

Figure 5.8: Independent goal reaching learning in E2 (averaged over fifty runs). In each run, a

fresh virtual creature equipped with a randomly initialised CBG and MENL is asked to reach various

random goal destinations from arbitrary places and orientations in no more than 650 steps. The

learning is finished when one hundred successive goal destinations are reached successfully. The

goal reaching efficiency and success rate of each trajectory averaged over fifty runs are recorded

in Figure (a). The average learning times and collision times spent in each trajectory over fifty

runs are shown in Figure (b). The last 100 successive and successful trajectories are not shown in

Figure (a) and Figure (b). Figure (c) lists the total numbers of learning procedures and collisions

required for independent goal reaching learning, and the final goal reaching efficiency and success

rate obtained by the learning, all averaged over fifty runs. The numbers in brackets in Figure (c)

are the corresponding result ranges over fifty runs.

162

occupying knowledge contained in the previously learned fresh exploration has en-

dowed the virtual creature with a fairly good goal reaching ability and helped the

following goal reaching learning to be much quicker and more efficient.

5.4.3.2 Comparison of Multifunctional Learning with Independent Learning

After learning a new behaviour in the same behaviour model CBG and MENL, the

previously learned exploration is inevitably affected to some extent. This is the

same as what happened in the multifunctional learning in El, as we introduced

in the last experiment. In order to learn both exploration and goal reaching well,

the virtual creature has had to repeat learning these two behaviours one after

another four times. The final efficiency obtained for exploration is 76.1% and the

final efficiency obtained for goal reaching is 89.6%. The total learning times and

collision times required are 1056 and 139.7, averaged over fifty runs.

Together with the multifunctional learning results, Figure 5.9 shows the out-

come of the independent exploration and goal reaching learning in environment

E2. Compared with these two independent learning procedures, the overall

performance of learning exploration and goal reaching multifunctionally again

exhibits its superiority. The average exploration and goal reaching efficiencies

achieved by multifunctional learning are about 9 points and 1 point higher than

those achieved by the corresponding single behaviour learning. Even during the

learning, the collisions made in the multifunctional learning are 25 fewer than the

sum of the collisions made in single behaviour learning. Most conspicuously, the

total learning procedures in multifunctional learning have been much improved.

While independent learning uses a sum of 1422.5 evolutionary learning procedures

to learn exploration and goal reaching individually, multifunctional learning only

uses 1056 learning procedures to learn both behaviours together. There are 366

learning procedures saved in total in multifunction learning. The much better

overall performance of learning exploration and goal reaching together in envi-

ronment E2 has shown the feasibility and efficiency of multifunctional learning,

just as it did in the simple environment El.

163

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

• !ppcçnt..g9alrcachin

•

!oratcn

Jffflfl Multifunctional
UJIW exploration + goal reaching

Exploration 	Goal reaching

efficiency 	efficiency

(a)

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0
Total Learning
	

Total collision

Times
	

Times

(b)

Figure 5.9: Comparison of multifunctional learning and independent learning: learning

exploration and goal reaching in the complex environment E2 (averaged over fifty

runs).

164

5.4.4 Learning Three Space Occupying Behaviours Together

In the last two experiments, the virtual creature has demonstrated its ability to

learn two different but related space occupying behaviours in the same behaviour

model. In this section, the virtual creature is challenged by learning three space

occupying behaviours together (wandering, exploration and goal reaching) in the

complicated environment E2. The creature should learn these behaviours one

after another and repeat this learning periodically until the learning of every

behaviour is executed free of error.

Three kinds of multifunctional learning procedures composed of different be-

haviour learning orders are selected, for an investigation of learning order's effect

on multifunctional learning. These multifunctional learning procedures start with

learning of different behaviours, which are repeated learning of Exploration+ Goal

reaching+Wandering (noted as EGW multifunctional learning), Goal reaching+

Wandering+Exploration (GWE), and Wandering+Exploration+Goal reaching

(WEG). Every multifunctional learning procedure starts from a fresh creature

with initialised CBG and MENL, and is conducted for fifty runs. The exper-

imental results have confirmed that the virtual creature learns all three space

occupying behaviours successfully in every multifunctional learning procedure.

In particular, EGW repeats its learning of behaviours for at most four times in

fifty runs to learn all three behaviours together. GWE repeats at most twice

and WEG repeats at most five times to finish their learning in fifty runs. The

total learning and collision times taken for each multifunctional learning and the

resulting exploration and goal reaching efficiencies are compared with the results

of three corresponding independent behaviour learning procedures, i.e., the sum

of the learning and collision times required for learning three behaviours individ-

ually and the efficiencies achieved by independent exploration and goal reaching

learning. Figure 5.10 shows the comparison results, averaged over fifty runs.

HOW

Independent goal reaching

IM Independent exploration

02 Multifunctional EGW

EJ Multifunctional OWE

- Multifunctional WEG

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

*

"C

Exploration 	Goal reaching
efficiency 	efficiency

2200

2000

1800

10

1400

1200

1000

800

600

400

200

0

Total Learning 	 Total collision

Times 	 Times

Figure 5.10: Comparison of multifunctional learning and independent learning: learn-

ing exploration, goal reaching, and wandering in environment E2 (averaged over fifty

runs).

IE

5.4.4.1 The Overall Performance of Multifunctional Learning is Better

Than that of Independent Learning

Similarly to the multifunctional learning of two space occupying behaviours, all

three multifunctional learning procedures on three space occupying behaviours

present better overall performances than the summation of independent learn-

ing. The average learning procedures required by every multifunctional learning

over fifty runs is clearly much less than the average total learning procedures re-

quired by three independent behaviour learning procedures (see Figure 5.10 (b)).

Although the independent learning of wandering and goal reaching is relatively

easier (446.2 and 458.2 learning steps required respectively), the learning of ex-

ploration is quite hard: nearly 964.3 steps of evolutionary learning are required.

Therefore, a total of 1868.7 learning steps are presented when these three space

occupying behaviours are learned independently. On the other hand, the multi-

functional learning procedures of EGW, GWE and WEG take only 1143.8, 1076.4

and 1200.9 times of evolutionary learning respectively, when they have learned

all three space occupying behaviours in an integrated way. Corresponding to

the fewer learning procedures, the collisions made in multifunctional learning

are also much fewer than those in all independent behaviour learning. Of the

three kinds of multifunctional learning procedures, EGW and GWE in particular

are good: their collision times are less than one third of the sum of the total

collisions made in single behaviour learning. The relatively greater number of

collisions made in WEG may be because of the different learning order of be-

haviours, as explained below. As every independent behaviour learning spends

its own energy on learning collision avoidance and specific space occupying skills,

multifunctional learning procedures easily learn all space occupying behaviours

due to their mutual benefit.

Apart from much lower learning cost, multifunctional learning achieves similar

or slightly higher exploration and goal reaching efficiencies. In both independent

and multifunctional learning, WEG learning exhibits the best exploration learning

ability (75.8% of the exploration efficiency), and GWE has the best goal reaching

ability (92% of the goal reaching efficiency). In contrast, independent exploration

ITIYA

learning has the worst efficiency of 67.1% and single goal reaching learning has

the lowest efficiency of 88.6%.

5.4.4.2 The Savings in Learning of Multifunctional Learning May Be Due

to Mutual Optimisation Among Functional Learning Procedures

The above comparison results have shown that, when three kinds of space oc-

cupying behaviours are learned together, they have much less learning cost than

learning each behaviour independently. This seems to conflict with our custom-

ary views of knowledge learning and integration, which suggest that more cost

would be required on knowledge integration for different tasks. Through our

experimental results, we have found that it is true that extra effort is required

to integrate varied knowledge about varied behaviours (e.g., repeated learning

of multiple space occupying behaviours), however, there is even greater mutual

optimisation across the learning of related behaviours. It may be the mutual

optimisation that saves learning time in multifunctional learning.

Figure 5.11 lists the gain/loss rates of learning a behaviour in multifunctional

learning relative to independent learning of this behaviour. The positive values

in the figure are gain rates, which indicate how much learning is saved when

a behaviour is learned completely within a multifunctional learning procedure,

compared with its corresponding independent learning; the negative values are

loss rates, which show how much more learning is required to learn a behaviour

within a multifunctional learning procedure. In EGW multifunctional learning,

exploration learning has lost (spent) 10.2% more learning than independent ex-

ploration learning. However, the learning of goal reaching and wandering is opti-

mised so much that about 84.4% and 97.8% learning is gained (saved), compared

with their independent learning. In GWE learning, goal reaching took 13.9%

more learning time, but the learning of exploration and wandering took 47.1%

and 90.1% less respectively. In WEG, learning of wandering is 1.3% more than

independent wandering learning. But both exploration and goal reaching learning

have gained 30.2% and 81.6% learning time.

From Figure 5.11, we can see that the loss values always take place in the

Exploration Goal reaching Wandering

EGW -10.2% +84.4% +97.8%

GWE +47.1% -13.9% +90.1%

WEG +30% +81.6% -1.3%

Figure 5.11: Gain/loss rates of learning a behaviour in multifunctional learning rela-

tive to independent learning. The positive values in the figure are gain rates, which

indicates how much learning is saved when a behaviour is learned completely in a multi-

functional learning procedure, compared with its corresponding independent learning.

The negative values are loss rates, which present how much more learning is required

in learning a behaviour in a multifunctional learning procedure.

first learned behaviour in multifunctional learning. This may be because the

first behaviour usually requires more learning in removing negative effects caused

by learning of other behaviours. However, the subsequent learning of other be-

haviours is always much easier and faster: it always obtains a positive gain value

to a certain degree. The gains in learning of the later learned behaviours may

benefit from the earlier learned behaviours that have learned the common knowl-

edge across them. Due to those gains, the total learning cost in multifunctional

learning is much smaller than in independent learning procedures.

Another phenomenon we find in the gain/loss rate table is that, for the three

different space occupying behaviours, their gain/loss rates within the three mul-

tifunctional learning procedures are quite different. The reason may be their

different learning orders in the multifunctional learning procedures. If wandering

is learned later in a multifunctional learning procedure, for instance, it can al-

ways achieve high gains from the earlier learned exploration or goal reaching (e.g.,

+97.8% in EGW and +90.1% in OWE). However, later learning of exploration

benefits much less from the learning of the other two behaviours (e.g., +30.2%

in WEG and +47.1% in GEW). These results indicate that although these three

I Me

space occupying behaviours are similar and related, their mutual effects are dif-

ferent. This may also explain the greater number of learning procedures and col-

lisions made in WEG learning relative to the other two multifunctional learning

procedures (see Figure 5.10). The less purposeful behaviour of wandering seems

to contribute little to the subsequent learning of exploration and goal reaching

which have specific goals to achieve. Mutual effects between different behaviours

is one of the subjects of our ongoing research.

5.4.5 Interesting Trajectories

The above multifunctional learning experiments have exhibited many interesting

trajectories which may prove the creature's robust and continuously improved

space occupying ability. In this section, we briefly introduce some typical exam-

ples of these trajectories. Because these trajectories are in particular plentiful in

goal reaching experiments, and because goal reaching is a broadly studied topic

in the robot and virtual creature research area, interesting trajectories shown

in goal reaching experiments are presented. Specifically, some trajectories dis-

play the virtual creature's ability to overcome classical canyon problems (e.g.,

box canyon and quasibox canyon) through its own endeavour. These trajecto-

ries have all happened when the creature has learned successful goal reaching

ability. Some other interesting trajectories indicate the creature's improved goal

reaching ability after further learning of exploration. Somewhat anthropomorphic

language is again used in the following description, to explain the impression a

human user may get from the virtual creature's behaviour.

Box Canyon

Figure 5.12 shows a goal reaching trajectory when the creature meets a trap

(marked by the big circle), known as a "box canyon". The situation is similar

to that described in general exploration learning in Section 4.4.2.2 and shown

in Figure 4.7. But this time, the problem the creature encounters is even more

difficult: in addition to finding a way out of the trap the creature should consider

how to reach the goal destination in the top left corner of the environment at the

170

Figure 5.12: A box canyon problem. The creature, which has already learned the goal

reaching ability, encounters a box canyon marked by the big circle. It turns around

several times at the canyon and then moves down. The creature successfully avoids

the canyon without collision and finally reaches the goal destination at the top left

corner.

same time. The latter is actually conflicting with its escape behaviour. According

to the experiment, the creature adjusts its direction at the corner several times,

and finally goes straight down. As a result, the creature steps out of the trap,

and moves towards the goal destination directly. There is neither collision nor

evolutionary learning involved in this trajectory.

To make things more complicated, we extend the obstacle A (see Figure 5.12)

towards the left until it is connected to the I'-shaped obstacle (see Figure 5.13).

Now, the creature is not able to move down to escape the canyon. There is only

one way out of the canyon, which is to move to the right, but the creature is still

commanded to reach the top left corner of the environment. In this situation,

the creature adjusts its direction first and then decides to move straight down,

171

Figure 5.13: A more complicated box canyon problem. The creature, which has

already learned the goal reaching ability, encounters a more complicated box canyon

marked by the big circle. The creature firstly moves down and faces a big obstacle.

It then moves up into the canyon again. Next, the creature turns to its right and

steps out of the canyon. The creature finally reaches its goal destination at the top

left corner without any problem.

as it did last time. Unfortunately, there is a big obstacle ahead. It is interesting

that faced with this difficulty, the creature turns round, moves forward, and gets

back to the previous corner again. In the old trap, the creature "subtly" turns

to the right first and then "forges ahead without hesitation". Once the creature

bypasses the obstacle, it adjusts its direction to the goal destination and moves

towards it "unswervingly". In this trajectory, there is no collision or evolutionary

learning present either.

172

Quasibox Canyon

In the trajectory presented here, the creature encounters a quasibox canyon (e.g.,

a box canyon with an exit). This quasibox canyon is marked by the big circle

in Figure 5.14. This time, the creature starts from a random place S and tries

to reach the goal location at the top right corner of the environment. During

this trajectory, the creature moves towards the goal destination directly when

it starts. However, it encounters a big obstacle hindering its route to the goal.

The creature changes its direction to its right and moves along the obstacle in an

attempt to avoid this obstacle. After a while, it steps into the quasibox canyon.

Without much consideration, the creature quickly "figures out" that there is an

exit at the left of the canyon and this way can get it nearer to the goal location.

The creature follows this way, steps out of the canyon, and hence avoids the big

obstacle successfully. Almost at the same time, the creature "finds" that its goal

is just overhead and moves towards it without any hesitation.

Improved Goal Reaching Ability After Further Learning of Exploration

In multifunctional learning experiments, we found many goal reaching trajectories

improved after further learning of exploration. Sometimes when the creature has

finished the learning of goal reaching in multifunctional learning, it can reach goals

eventually in some complicated situations but the resulting navigation trajectories

are poor and unnecessarily tortuous. The solid line in Figure 5.15 shows a typical

example of such tortuous trajectories. This trajectory happens when the creature

has learned goal reaching for the first time after fresh exploration in E2 (see

Section 5.4.3). In this example, the creature starts at the top right corner of

environment E2 and eventually arrives at a destination Gi. Because there is no

learning during this travel, the weak goal reaching ability could not be improved

this time and has to be retained in the following further exploration.

After the immediate learning of further exploration, a notable improvement

on the previous goal reaching trajectory has appeared. When it starts from the

top right corner of E2 and moves to G1 again, the virtual creature does not re-

peat the last poor and long-winded trajectory but goes towards the destination

173

Figure 5.14: A quasibox canyon problem. When the creature learned goal reaching

ability moves into the quasibox canyon marked by the big circle, it immediately turns

to its right and walks along the exit to step out of the canyon. It then moves in a

direct manner towards the goal at the top right corner.

directly (shown by the dashed line in Figure 5.15). The creature in fact selects

the shortest route for this goal reaching navigation. Such trajectory improvement

has been found in many runs of the multifunctional learning of exploration and

goal reaching in environment E2. Because this goal reaching trajectory is made

immediately after further exploration, we have reason to believe that the im-

proved goal reaching ability arose from the knowledge learned from exploration.

Due to the common knowledge shared between exploration and goal reaching,

the creature is able to improve one space occupying ability by learning another.

The above interesting trajectories and their similarities have also been no-

ticed in the other exploration and wandering experiments, and in environments

other than E2. The creature has shown its robust problem solving ability and

174

Goal navigation before further exploration

Goal navigation after further exploration

Figure 5.15: The improved goal reaching trajectory after further learning of explo-

ration. In the multifunctional learning of exploration and goal reaching in environment

E2 (see Section 5.4.3), the creature has exhibited improved goal navigation ability af-

ter further exploration learning. The solid line shows a goal reaching trajectory when

the creature has finished the first learning of goal reaching after fresh exploration

in E2. This trajectory starts from the right top corner and ends at a place of Cl.

Although the goal Cl is reached, this trajectory is unnecessarily tortuous. After it

conducts the immediate second exploration learning in E2, the creature reaches the

goal Cl directly. Such improved goal trajectories have been found in many runs of

the multifunctional learning experiment in E2.

175

continuously improved space occupying ability throughout the experiments.

5.4.6 Summary

In this section, we have conducted a body of experiments to demonstrate that

the MENL learning algorithm can achieve multifunctional learning in artificial

neural networks, and when multifunctional MENL is used in the Strategy module

to choose suitable motor actions for varied behaviours, the CBG model becomes

multifunctional as well.

Specifically, we have utilised the CBG model combined with the MENL learn-

ing algorithm to control a virtual creature to learn multiple space occupying

behaviours jointly in some unknown environments. Different behavioural moti-

vations initiated in the Motivation module of the CBG model are embodied in

different fitness functions guiding MENL to learn different action selection poli-

cies. The CBG combined with MENL has been used to learn exploration and

goal reaching together in a simple unknown environment El and a more complex

environment E2. In both environments, the subsequent learning of goal reach-

ing based on the first learned exploration is obviously easier than learning goal

reaching independently. Due to the extra learning of a new behaviour in the same

behaviour model and the same artificial neural networks, the previously learned

exploration is inevitably affected to some extent. However, the exploration abil-

ity is soon recovered after a few more evolutionary learning procedures. After

several repetitive learning episodes of exploration and goal reaching, the CBG

with MENL eventually conducts both space occupying behaviours quite well.

The total cost of learning these two behaviours together is much less than the

sum of learning each behaviour independently. The learned exploration and goal

reaching efficiencies are similar to or even slightly better than those achieved by

independent learning.

The CBG model combined with MENL has also learned three space occupying

behaviours (exploration, goal reaching, and wandering) together in environment

E2. Three multifunctional learning procedures with different function learning

orders are conducted in this experiment. The experimental results have shown

176

that the overall performance of all multifunctional learning procedures have again

surpassed independent behaviour learning. Because the later learned behaviours

can usually benefit from the common knowledge learned by earlier behaviours, the

total learning cost has been greatly reduced in multifunctional learning. Never-

theless, the reduced cost varies when multiple behaviours are learned in different

orders. This suggests that multiple behaviours may have different mutual effects

on each other.

During the experiments, we have found many interesting trajectories executed

by the virtual creature, including the overcoming of several classical canyon prob-

lems in goal reaching and improved goal reaching trajectories after further ex-

ploration. These trajectories have shown the creature's robust and continuously

improved behaviours.

5.5 Conclusion

This chapter has shown that it is possible to endow the Computational Behaviour

Generation (CBG) model with multifunctional learning ability. Inspired by bio-

logical multifunctional neural networks in the brain, a multifunctional MENL is

constructed, which can be dictated to by varied behavioural motivation signals

to select correct motor actions for varied behaviours. These behaviours share

all of the materials in the CBG model, including sensors and motors, and three

modules (Movement, Programming, and Strategy) in the Computational Motor

Control (CMC) system. The MENL learning algorithm is used to learn multiple

action select policies in the same artificial neural networks in the Strategy mod-

ule, by taking advantage of the shared common knowledge across functionally

related behaviours.

The multifunctional learning ability of the CBG and MENL has been tested

by several experiments. A virtual creature equipped with a CBG and MENL has

been trained to learn several space occupying behaviours together. This includes

learning of exploration and goal reaching together in unknown environments El

and E2, and learning of exploration, goal reaching, and wandering together in

177

environment E2. Satisfactory experimental results support the claim that MENL

can adaptively learn different action selection policies for multiple behaviours

in the same artificial neural networks and in the same CBG model. Moreover,

the overall performance of multifunctional learning is better than that of the

sum of learning every behaviour independently. Compared with independent

behaviour learning, mu1tfuñctiona1 learning that learns new behriöfrsbased on

pre-learned related behaviours has not only saved material resources (artificial

neural networks), but also accelerated learning speed and achieved sometimes

slightly better performance when implementing behaviours.

178

Chapter 6

Conclusion

High fidelity virtual environments can be inhabited by virtual lives. A virtual life

is a computational entity that has a lifelike visual shape and appearance and be-

lievable behavioural patterns. In order to "inhabit" its environments successfully,

a competent virtual life should possess at least several important properties in

behaviours. That is, the life should be autonomous to decide what to do in what

circumstances based entirely on its own decisions, adaptive to adjust to changing

conditions and environments and improve its behaviours accordingly, and inter-

active to obtain the information and resources necessary for its subsistence from

the environments, other virtual lives, and even the human user.

Previous work of behavioural animation has made a breakthrough on giving

virtual lives autonomy and adaptation properties to a certain degree, and releas-

ing the lives from the very rigid, man-made behaviours. By designing several be-

haviour generation rules, behavioural animation has produced lifelike behaviours,

which are almost impossible to create in the traditional animation approach.

However, although great efforts have been made in behavioural animation, the

virtual lives created so far have two serious limitations in their behaviours. First,

these virtual lives cannot learn efficiently to improve their behaviours adaptively

according to continuously changing situations and environments. Second, the

lives do not know how to produce new behaviours by taking advantage of exist-

ing resources and pre-learned knowledge for related behaviours. These limitations

inevitably restrict the autonomy and adaptation ability of virtual lives.

179

This thesis is concerned with the generation of believable behaviour for virtual

lives. It has addressed the above two limitations in behaviour control of virtual

lives by constructing an adaptive and multifunctional Computational Behaviour

Generation (CBG) model and an efficient learning algorithm, a Multi-agent based

Evolutionary artificial Neural network with Lifetime learning (MENL). Both CBG

and MENL have taken their inspiration from the natural behaviour control mech-

anisms in the brain. Moreover, the design of the MENL learning algorithm

has drawn on the experience of some other technologies, including evolutionary

robotics, reinforcement learning, multi-agent systems, and knowledge transfer be-

tween artificial neural networks. As the CBG model provides the fundamental

resources and information for adaptive and multifunctional learning, MENL ob-

tains an increasingly improved learning ability with less human supervision and

fewer constraints, and implements multifunctional learning of related behaviours

in the same artificial neural networks with economy and efficiency in both space

and time.

The CBG model is designed as a general and complete system. It consists

of sensors and motors to collect information from and act on the virtual en-

vironments respectively. It has a Motivation module to generate behavioural

motivations. It also contains a Computational Motor Control (CMC) system hi-

erarchically composed of Strategy, Program and Movement modules to perform

the whole procedure of selection, programming, and execution of motor actions

for achieving behavioural motivations. The CBG model possesses the poten-

tial adaptation and multifunctionality due to its bi-directional information flows

(top-down control information and bottom-up sensory feedback) and hierarchical

architecture.

MENL is an evolutionary artificial neural network that can learn varied motor

action selection policies for varied behaviours in the Strategy module of the CBG

model. MENL utilises a batch of agents, each of which is an evolutionary artificial

neural network, to cooperate and compete with each other for deciding actions to

be executed. Based on the instant input of the perceived environmental informa-

tion, MENL agents co-decide motor actions in various situations. These decisions

•1

are guided by top-down commands of behavioural motivations sent from the Mo-

tivation module of the CBG system. The top-down commands are embedded in

the fitness functions of agents. In addition to behavioural motivations, the gen-

eral sensory feedback on executed motor actions obtained from the environment

and body states is another important factor contributing to the fitness functions.

As a consequence MENL agents can learn to choose suitable motor actions ac-

cording to both successful and unsuccessful experience. The learning of MENL

agents is continued through all of their lifetime, so the agents have continually

improved decision-making ability which is adaptive and robust to varied situa-

tions and environments. By adjusting the behavioural motivations in the fitness

functions, MENL agents can also be multifunctional to learn to produce multiple

behaviours together. These behaviours have different objectives but share the

same artificial neural networks in MENL for motor action selection and most

other parts of the CBG model for action execution. Due to the general fitness

function design, MENL can learn the common knowledge shared across these be-

haviours and transfer the common knowledge from learning of one behaviour to

another. By executing motor actions selected by MENL, the CBG can generate

sequences of movement to carry out single and multiple behaviours.

Successful experiments on a virtual creature have verified the adaptation and

multifunctionality by learning of the CBG model combined with the MENL learn-

ing algorithm. Specifically, this virtual creature is equipped with the CBG model

and MENL and required to learn several space occupying behaviours that are

common and fundamental to many natural animals. The virtual creature is first

asked to learn exploration in a series of unknown environments with increasing

complexity. Starting from scratch, the creature should learn to explore these

environments as far as possible in a limited number of steps and with atten-

tion to obstacle avoidance. Experimental results have shown that this creature

has learned successful exploration in these environments without collision. Its

exploration ability is similar to and sometimes slightly better than that of the

hand-crafted exploration based on the availability of the places (squares) adjacent

to the virtual creature. During the experiment, the creature's exploration abil-

1131

ity is shown to be increased via MENL learning and this ability is accumulated

from environment to environment. The whole successful exploration experiment

is achieved by the competition and emergent cooperation among multiagents and

their continuous lifetime learning.

The virtual creature commanded by the CBG model and the MENL is asked

to learn multiple space occupying behaviours jointly. In particular, this crea-

ture is required to learn exploration and goal reaching together, and exploration,

goal reaching and wandering together in some unknown environments. By goal

reaching, we mean that the creature should reach arbitrary goal destinations in

a limited number of steps without any collision. By wandering, we mean that

the creature moves randomly in the environment as long as it does not hit any

obstacle. In all multifunctional learning experiments, the virtual creature has suc-

cessfully learned to perform multiple behaviours in the same behaviour model,

and it can switch from one behaviour to another smoothly. Since new behaviours

are obtained from previously learned related behaviours, the learning of subse-

quent behaviours is easy, economic, and computationally efficient. In addition,

the overall performance of learning multiple behaviours together is better than

that of the sum of learning each behaviour independently.

By means of the CBG model combined with the MENL learning algorithm,

a virtual creature can possess the fundamental properties of virtual lives (i.e.,

autonomy, adaptation and interaction) to some extent. The virtual creature can

interact with its outside (e.g., environment) to obtain necessary information and

to execute its behaviours via CBG sensors and motors. Based on the interaction,

the virtual creature can execute various behaviours according to its own decisions.

Moreover, the creature can learn to improve its behaviours adaptively in various

situations and environments, and learn to generate new related behaviours by

taking advantage of the knowledge learned from previous behaviours. In conse-

quence the virtual creature has enhanced autonomy and adaptation in behaviours.

The human design on designing every detail of every behaviour can therefore be

greatly reduced as well.

In the rest of the chapter, we will draw conclusions on the contributions of the

182

research work described in this thesis, and then discuss directions for extending

this research.

6.1 Contributions

The work described here has made a number of contributions to the study of

virtual lives, especially to the implementation of adaptation and multifunctional-

ity in their behaviours by learning. These contributions are mainly embodied in

the CBG model, the MENL learning algorithm, and the adaptive and multifunc-

tional learning of the CBG model combined with MENL. These contributions are

summarised below.

The Computational Behaviour Generation Model

Inspired by the natural behaviour control in the brain, the CBG model is designed

with procedures of not only abstract selection, but also concrete programming

and execution of motor actions. These procedures are hierarchically organised in

the CBG model, so the higher levels of the CBG model can work without much

consideration of elaborate implementation details of lower levels.

Not surprisingly, the CBG model is somewhat similar and related to some

other behaviour models in virtual life and robot studies. However, the CBG

model distinguishes itself from others by providing the fundamental support in

its architecture for adaptive and multifunctional learning. The adaptation and

multifunctionality of the CBG model have been proved by its successful learning

of various space occupying behaviours, as shown in the above experiments.

Multi-agent based Evolutionary Artificial Neural Network with Lifetime Learn-

ing

The particular evolutionary multiagents and lifetime learning proposed in MENL

are new. Multiagents hold the whole population information of every evolu-

tionary generation, and hence increase the probability and reliability of solving

problems. While learning continuously during their lifetime, multiagents have

183

increased adaptation to more and more situations and problems. The learning

of exploration in experiments confirms that multiagents outperform the single

agent with the best fitness, and multiagents with lifetime learning surpass non-

improving multiagents.

The fitness function designed in MENL is not just for solving one specific

problem. It contains also the information about general sensory feedback which

is common to problems of the same kind. This kind of design helps choose general

solutions suitable for a wide range of situations, and preserves useful common

knowledge across functionally related behaviours, which is useful for learning

multiple behaviours together in the same MENL. The CBG combined with MENL

therefore is able to learn single and multiple space occupying behaviours in various

unknown environments, as shown in the experiments.

Adaptive Learning of the CBG Combined with MENL

The adaptive learning of the CBG with MENL is achieved on-line with little

human supervision and few constraints. As the CBG collects the feedback on

executed actions from the environment and body states, MENL discovers useful

information in this feedback and improves its decision-making ability accordingly.

These processes are implemented autonomously. The resulting behaviours can

therefore be adaptively improved to overcome new complicated situations with-

out seeking help from the human designer. In addition, the learned behaviours

are accumulative during its lifetime and applicable to a series of virtual envi-

ronments. When the CBG model combined with MENL is used to learn space

occupying behaviours, we see that the learned behaviours are adaptive to various

unknown environments and the behaviours are transferred from environment to

environment. Some emergent behaviours that are robust, efficient and lifelike are

also found in the experiments.

Multifunctional Learning of the CBG Combined with MENL

To the author's knowledge, the CBG model combined with MENL is the first

to implement multifunctional learning in the same behaviour control model, and

101

especially in the same artificial neural networks. With a general fitness function,

MENL easily learns how to make multifunctional action selection decisions for

varied behaviours, by extending the fitness function to include varied behavioural

objectives. The multifunctional learning of the CBG with MENL works quite well

in empirical tests, often resulting in conspicuously accelerated learning as well as

improved learning results. -

6.2 Future Work

Our work on the CBG model and the MENL learning algorithm is just a start.

There are a number of improvements and extensions that could be done to the

work described in this thesis. Some of the major issues we would like to pursue

in the future are:

Improvement of the CBG Model

Although the CBG model proposed in this thesis involves a complete procedure

of behaviour generation, this model only simply simulates a very small part of

the natural behaviour control system. As we explained in Section 3.3, the real

natural behaviour control system is a very comprehensive model involving much

more complicated structures and mechanisms and numerous functions. In order

to simulate complex, varied behaviours of natural creatures, the CBG model

should be improved and enriched in every part and in many ways. To enable

this, further study of neuroscience, ethology, psychology and some other related

disciplines will be needed.

One particular improvement of our interest is to implement adaptation and

multifunctionality in the CBG model at various levels. At present, we have only

studied how to make the CBG model adaptive and multifunctional at the motor

action selection level in the Strategy module. The concrete implementation of

the Motivation, Program and Movement modules are pre-designed. In future, we

will study correct and autonomous function generation in these three modules

as well. Also, the function generation should be adaptive to new situations and

IRN

multifunctional to new behaviours. One possible way to do this is to use MENL,

which has been proved to be adaptive and multifunctional, to learn suitable

functions at different levels. In addition to study the biological mechanisms in the

natural behaviour control systems further, we may need to extend and improve

the MENL algorithm when necessary so that it suits new learning tasks.

Improvement of the MENL Learning Algorithm

In the learning experiments of space occupying behaviours, the space occupying

abilities eventually learned are not the best. For instance, the efficiency obtained

in exploration experiments is no more than 80% and the efficiency achieved in goal

reaching is lower than 93%. The exploration performance is only similar to that

of the hand-crafted controller which takes consideration of the information about

the immediate positions of the virtual creature. However, since MENL has also

shown slightly better exploration performance than the hand-crafted controller

in fresh learning in environment El and in multifunctional learning in El and E2,

we are confident that an improvement in the MENL learning algorithm could be

made to surpass the hand-crafted design. This may be achieved by giving MENL

• more efficient artificial neural network structure, a good memory mechanism,

• better balance between generalisation and optimisation, and a more sensible

coalition of multiagents.

Another possible improvement of the MENL learning algorithm is to extend

MENL's capability in changing environments. In the experiments presented in

this thesis, an environment is static once it is set up and a virtual creature is the

only active entity in the environment. In future work, an environment may be

dynamically changing and the human user and more than one virtual creature

may move in the environment at the same time. We believe that MENL is able

to deal with changing environments, because its output decisions are based on

the local environmental information perceived at the current moment. Further

work on this study will be conducted.

IM

Further Theoretical and Empirical Study of Multifunctional Learning

We have empirically demonstrated that the CBG with MENL possesses multi-

functional learning ability and this learning is better than independent behaviour

learning. Nevertheless, a more sophisticated study of multifunctional learning is

still required. In particular, although we have mentioned some possible common

knowledge shared between space occupying behaviours in Chapter 3, what knowl-

edge is exactly transferred is uncertain. We hope to study this issue in future and

propose some appropriate knowledge acquisition and utilisation techniques for a

better sharing of common knowledge between similar behaviours. We also expect

to study the actual functions of multiagents and the mutual effects of different

behaviour learning procedures in MENL's multifunctional learning. Thus work

may be conducted theoretically by using automata theory to analyse the states

and their activity changes of the CBG model, or empirically by executing more

experiments to test agent functions and multifunctional learning functionality.

Further Study of Optimisation and Generalisation in Behaviours

In both chapters 4 and 5, we mentioned the difference and relationship between

optimisation and generalisation. Generally speaking, in behaviour learning, a

behaviour is expected from being general so as to suit a wide range of situations,

rather than being optimal only in a limited number of situations. However, the

generality of a behaviour should not prevent this behaviour being optimal when

required on occasions. When a behaviour is trained to work best in some cases,

its applicability to other cases should still be maintained and should not be af-

fected. We hope to study the important issues of optimisation and generalisation

in behaviour learning in future. We wish to start the study with the MENL

learning algorithm that possesses a generation of homogeneous agents and a gen-

eral fitness function design with particular behavioural objectives. By designing

the fitness function sensibly and training MENL agents appropriately, a fitting

balance between optimisation and generalisation may be achieved in behaviour

generation.

187

Construction of a Three-dimensional Virtual Creature

The virtual creature used in this thesis is a very simple two-dimensional abstract.

We wish to construct a three-dimensional graphical virtual creature in the near

future. The visually lifelike body shape and appearance for the virtual creature

can be designed by using popular graphical or non-graphical programming lan-

guages, such as OpenGL, C++-, Visual Basic, etc. We can even create a new

visual model for this virtual creature when necessary. The believable behaviours

of the creature would be generated by the CBG model we proposed. The main-

tenance of a normal life for a virtual creature in 3D environments is generally

more complicated than in 2D environments, because the creature may encounter

many practical problems it cannot perceive in 2D environments, such as stereo

visual information processing and more degrees of freedom in the body joints.

The construction of a 3D virtual creature inhabiting 3D environments will make

our research on virtual creatures more practical and nearer to real lives.

IM

Appendix A

Statistical Techniques

The statistical techniques used in this thesis to analyse experimental data are

normal statistical methods [40]. Suppose that there are N sample data

{ x 1 , x 2 , ..., XN }, then their mean M is:

N

>xi
i=1

N I xE[1,N] 	 (A.1)

and the standard deviation a of the sample mean (or "standard error") is:

J N - i=1

- N(N-1)
(A.2)

Thus, the 95 percent confidence interval about the mean is u ± 1.96a.

Appendix B

Experimental Results of Successive

Exploration Learning in E3 After

Fresh Exploration in E2

190

efficiency — .

40 80 120 160 200 240 280 320 360 400 440 480 520
Number of Trajectories

(a)

Total learning Total collision Final

times times efficiency

2961.0 765.7 67.6%

(2257.3-3664.7) (575.8-955.6) (67.4%-67.8%)

(c)

Figure B.1: Successive exploration learning in E3 after fresh learning in E2 (averaged over fifty

runs). The creature learned from fresh exploration in E2 is asked to learn exploration in E3. Each

creature resulting from the previous fifty runs of fresh exploration in E2 continuously explores E3 from

random positions until it explores the environment successfully for one hundred successive times.

Each exploration trajectory in E3 consists of 780 steps. Figure (a) shows the exploration efficiency

achieved in each trajectory, and Figure (b) shows the learning times and collision times made in each

trajectory, all averaged over fifty runs. The last 100 successive and successful trajectories are not

shown in Figure (a) and (b). Figure (c) lists the total learning times, the total collision times, and

the exploration efficiency finally achieved in this learning, averaged over fifty runs. The numbers in

brackets in Figure (c) are the corresponding result ranges over fifty runs.

191

Bibliography

Albus, J.S. (1991). Outline for a theory of intelligence. IEEE Transactions

on System, Man and Cybernetics, 21(3):473-509.

Arbib, M.A. and Liaw, J.S. (1995). Sensorimotor transformations in the

worlds of frogs and robots. Artificial Intelligence, 72:53-79.

http://www.anark.com/index.html

Anderson, T.L. and Donath, M. (1990). Animal behaviour as a paradigm

for developing robot autonomy. In Maes, P., editor, Designing Autonomous

Agents, pages 145-168. Cambridge, MA. MIT Press.

Andrews, J.R. (1983). Impedance Control as a Framework for Implementing

Obstacle Avoidance in a Manipulator. S.M. Thesis, Department of Mechan-

ical Engineering, Massachusetts Institute of Technology.

Annett, J. (1995). Motor skills. In Machintosh, N.J. and Colman, A.M.,

editors, Learning and Skills. Longman, London and New York.

Aono, M. and Kunii, T. (1984). Botanical tree image generation. IEEE Com-

puter Graphics and Applications, 4(5):10-34.

Asada, M. (1990). Map building for a mobile robot from sensory data. IEEE

Transactions on System, Man and Cybernetics, 20(6):1326-1336.

Astheimer, P., Dai F., Gobel, M., Kruse R., Muller, S., and Zachmann, G.

(1994). Realism in virtual reality. In Thalmann N.M. and Thalmann D.,

192

editors, Artificial Life and Virtual Reality, pages 189-210. John Wiley &

Sons.

Back, T. and Schwefel, H.P. (1993). An overview of evolutionary algorithms

for parameter optimisation. Evolutionary Computation, 1(1):1-23.

Back, T. (1996). Evoiüiónary Algorithms in Theory and Practice. Oxford

University Press.

Bates, J. (1994). The role of emotion in believable agents. Communications

of the ACM, 37(7):122- 125.

Bates, J., Loyall, A.B. and Reilly, W.S. (1994). An architecture for action,

emotion, and social behaviour. In Proceedings of the Fourth European Work-

shop on Modelling Autonomous Agents in a Multi-agent World, pages 55-68.

Springer-Verlag.

Becker, C., Salas, J., Tokusei, K., and Latombe, J.C. (1995). Reliable naviga-

tion using landmarks. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 401-406. IEEE Computer Society Press.

Belew, R.K., McInerney, J. and Schraudolph, N.N. (1991). Evolving net-

works: using the genetic algorithm with connectionist learning. In Langton,

C.G., Taylor, C., Farmer, J.D. and Rasmussen, S., editors, Artificial Life II,

pages 487-509. Workingham: Addison-Wesley.

Beer, R.D. and Gallagher, J.C. (1990). Evolving dynamical neural networks

for adaptive behaviour. Adaptive Behaviour, 1:91-122.

Bekoff, A., Nussbaum, M.P., Sabichi, A.L. and Clifford, M. (1987). Neural

control of limb coordination. I. Comparison of hatching and walking motor

output patterns in normal and deafferented chicks. Journal of Neuroscience,

7:2320-2330.

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford Press.

http://www.bwgame.com/

193

Blumberg, B.M. and Galyean, T.A. (1995). Multi-level direction of au-

tonomous creatures for real-time virtual environments. In Proceedings of

SIGGRAPH'95, pages 47-54. ACM Inc.

Blumberg, B.M., Todd, P.M. and Maes, P. (1996). No bad dogs: ethological

lessons for learning in Hamsterdam. In Maes, P,, Mtic, M., Meyer, J.,

Pollack, J. and Wilson, S., editors, From Animals to Animats 4: Proceed-

ings of the Fourth International Conference on the Simulation of Adaptive

Behaviour, pages 295-304. Cambridge, MA. MIT Press.

Bond, A.H. and Gasser, L. (1988). An analysis of problems and research in

DAI. In Bond, A.H. and Gasser, L., editors, Readings in Distributed Artificial

Intelligence, pages 3-35. Morgan Kaufmann.

Booker, L. (1988). Classifier systems that learn internal world models. Ma-

chine Learning Journal, 3(3):161-192.

Bonarini, A. (1997). Anytime learning and adaptation of structured fuzzy

behaviours. Adaptive Behaviour, 5(3-4):281-315.

Braitenberg, V. (1984). Vehicles, Experiments in Synthetic Psychology. Cam-

bridge, MA. MIT Press.

Bratman, M., Israel, D. and Pollack, M. (1988). Plans and resource-bounded

practical reasoning. Computational Intelligence, 4(4) :349-355.

Brooks, R.A. (1986). A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, VRA-2(1):14-23.

Brooks, R.A. (1991). Intelligence without representation. Artificial Intelli-

gence, 47:139-159.

Brooks, V.B. (1986). The Neural Basis of Motor Control. Oxford University

Press.

194

Bryson, S. (1995). Approaches to the successful design and implementation

of virtual reality applications. In Earnshaw, R.A., Vince, J.A., and Jones,

H., editors, Virtual Reality Applications, pages 3-15. Academic Press.

Burdea, G. and Coiffet, P. (1993). Virtual Reality Technology. Wiley-

Interscience Publication.

Cangelosi, A., Parisi, D. and Nolfi, S. (1994). Cell division and migration in

a genotype for neural networks. Network, 5:497-515.

Caruana, R. (1997). Multitask learning. Machine Learning, 28:41-75.

Chao, G., Panangadan, A. and Dyer, M.G. (2000). Learning to integrate

reactive and planning behaviors for construction. In Meyer, J.A., Berthoz,

A., Floreano, D., Roitblat, H.L. and Wilson. S.W., Editors, From Animals

to Animats 6: Proceedings of the Sixth International Conference on the Sim-

ulation of Adaptive Behaviour. Cambridge, MA. MIT Press.

Chavas, J., Come, C., Horvai, P., Kodjabachian, J. and Meyer, J.A. (1998).

Incremental evolution of neural controllers for robust obstacle-avoidance in

Khepera. In Proceedings of the First European Workshop on Evolutionary

Robotics, pages 224-244. Springer-Verlag.

Cliff, D. (1991). Computation neuroethology: a provisional manifesto. In

Meyer, J.A. and Wilson, S.W., editors, From Animals to Animats 1: Pro-

ceedings of the First International Conference on the Simulation of Adaptive

Behaviour, pages 29-40. Cambridge, MA. MIT Press.

Cliff, D. (1991). The computational hoverfly: a study in computational neu-

roethology. In Meyer, J.A. and Wilson, S.W., editors, From Animals to Ani-

mats 1: Proceedings of the First International Conference on the Simulation

of Adaptive Behaviour, pages 87-96. Cambridge, MA. MIT Press.

Cliff, D., Harvey, I. and Husbands, P. (1993). Explorations in evolutionary

robotics. Adaptive Behaviour, 2(l):73-110.

195

Cohen, P.R., Atkin, M. and Hansen, E.A. (1994). The interval reduction

strategy for monitoring cupcake problems. In Cliff, D., Husbands, P., Meyer,

J.A. and Wilson, S., editors, From Animals to Animats 3: Proceedings of the

Third International Conference on the Simulation of Adaptive Behaviour,

pages 82-90. Cambridge, MA. MIT Press.

Cohen, P.R. (1994). Empirical Methods for Artificial Intelligence. Cam-

bridge, MA. MIT Press.

http://www.cyberlife.co.uk .

Dean, J., Kindermann, T., Schmitz, J., Schumm, M. and Cruse, H. (1999).

Control of walking in the stick insect: from behaviour and physiology to

modeling. Autonomous Robots, 7:271-288.

Dickinson, P.S. (1995). Interactions among neural networks for behaviour.

Current Opinion in Neurobiology, 5:792-798.

Doncieux, S. (2001). Evolution d'Architectures de Contrôle pour Animats

Volants. Mémoire de stage de DEA IARFA. Université Pierre et Marie Curie.

Dorigo, M. and Schnepf, U. (1993). Genetic-based machine learning and

behaviour based robotics: a new synthesis. IEEE Transactions on System,

Man and Cybernetics, 23:141-154.

Eggenberger, P. (1996). Cell interactions as a control tool of developmental

processes for evolutionary robotics. In Maes P., Mataric M., Meyer J., Pollack

J. and Wilson S., editors, From Animals to Animats 4: Proceedings of the

Fourth International Conference on the Simulation of Adaptive Behaviour,

pages 440-448. Cambridge, MA. MIT Press.

Filliat, D., Kodjabachian, J. and Meyer, J.A. (1999). Evolution of neural

controllers for locomotion and obstacle-avoidance in a 6-legged robot. Con-

nection Science, 11:223-240.

10191

Filliat, D., Kodjabachian, J. and Meyer, J.A. (1999). Incremental evolution

of neural controllers for navigation in a 6-legged robot. In Proceedings of

the Fourth International Symposium on Artificial Life and Robotics, pages

753-760. Oita University Press.

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous

agent: genetic evolution of a neural-network driven robot. In Cliff, D., Hus-

bands, P., Meyer, J.A. and Wilson, S., editors, From Animals to Animats

3: Proceedings of the Third International Conference on the Simulation of

Adaptive Behaviour, pages 421-430. Cambridge, MA. MIT Press.

Floreano, D. and Mondada, F.(1996). Evolution of homing navigation in

a real mobile robot. IEEE Transactions on System, Man and Cybernetics,

26(3) :396-407.

Floreano, D. (1993). Emergence of nest-based foraging strategies in ecosys-

tems of neural networks. In Meyer, J.A., Roitbalt, H.L. and Wilson, S.W.,

editors, From Animals to Animats 2: Proceedings of the Second Interna-

tional Conference on the Simulation of Adaptive Behaviour, pages 410-416.

Cambridge, MA. MIT Press.

Foner, L.N. and Maes, P. (1994). Paying attention to what's important:

using focus of attention to improve unsupervised learning. In Cliff, D., Hus-

bands, P., Meyer, J.A. and Wilson, S., editors, From Animals to Animats

3: Proceedings of the Third International Conference on the Simulation of

Adaptive Behaviour, pages 256-265. Cambridge, MA. MIT Press.

http://www.fujitsu.co.jp .

Gelfand, I.M., Orlovsky, G.N., and Shik, M.L. (1988). Locomotion and

scratching in tetrapods. In Cohen, A.H., Rossignol, S. and Grillner, S., edi-

tors, Neural Control of Rhythmic Movements in Vertebrates, pages 167-169.

New York. Wiley.

197

Getting, P.A. and Dekin, M.S. (1985). Mechanisms of pattern generation

underlying swimming in Tritonia. IV. Gating of central pattern generator.

Journal of Neurophysiology, 53:466-480.

Getting, P.A. (1989). Emerging principles governing the operation of neural

networks. Annual Review of Neuroscience, 12:185-204.

Gomi, T. and Griffith, A. (1996). Evolutionary robotics - an overview. In

Proceedings of the IEEE Third International Conference on Evolutionary

Computation, pages 40-49. IEEE Computer Society Press.

Grand, S., Cliff D. and Maihotra, A. (1997). Creatures: Artificial life au-

tonomous software agents for home entertainment. In Proceedings of the First

International Conference on Autonomous Agents, pages 22-29. ACM Press.

Grefenstette, J.J., Ramsey, C.L. and Schultz, A.C. (1990). Learning sequen-

tial decision rules using simulation models and competition. Machine Learn-

ing, 5:355-381.

Grefenstette, J.J. and Connie, L.R. (1992). An approach to anytime learning.

Proceedings of Ninth International Machine Learning Workshop, pages 189-

195.

Grier, J.W. and Burk, T. (1992). Biology of Animal Behaviour. Mosby-Year

Books.

Gruau, F. (1994). Neural network synthesis using cellular encoding and the

genetic algorithm. PhD Thesis, Ecole Normale Superieure de Lyon.

Gruau, F. and Quatramaran, K. (1997). Cellular encoding for interactive

evolutionary robotics. In Proceedings of the Fourth European Conference on

Artificial Life, pages 368-377. Cambridge, MA. MIT Press.

Grzeszczuk, R. and Terzopoulos, D. (1995). Automated learning of muscle-

actuated locomotion through control abstraction. In Proceedings of SIC-

GRAPH'95, pages 63-70. ACM Inc.

IBM

Guillot, A. and Meyer, J.A. (2000). From SAB94 to SAB2000: what's new,

animat? In Meyer, J.A., Berthoz, A., Floreano, D., Roitbiat, H.L. and

Wilson. S.W., Editors, From Animals to Animats 6: Proceedings of the Sixth

International Conference on the Simulation of Adaptive Behaviour, pages

364-374. Cambridge, MA. MIT Press.

Gynther, I.C. and Pearson, K.G. (1989). An evaluation of the role of iden-

tified interneurons in triggering kicks and jumps in the locust. Journal of

Neurophysiology, 61:45-57.

Hallam, B.E., Halperin, J.R.P. and Hallam, J.C.T. (1995). An ethological

model for implementation on mobile robots. Adaptive Behaviour, 3:51-80.

Harvey, I., Husbands, P. and Cliff, D. (1993). Issues in evolutionary robotics.

In Meyer, J.A., Roitbalt, H.L. and Wilson, S.W., editors, From Animals

to Animats 2: Proceedings of the Second International Conference on the

Simulation of Adaptive Behaviour, pages 364-374. Cambridge, MA. MIT

Press.

Harvey, I., Husbands, P. and Cliff, C., Thompson, A. and Jakobi, N. (1997).

Evolutionary robotics: the Sussex approach. Robotics and Autonomous Sys-

tems, 20(2-4):205-224.

Holland, J.H. (1986). Escaping brittleness: the possibilities of general-

purpose learning algorithms applied to parallel rule-based systems. In

Michalski, R.S., Carbonell, J.G. and Mitchell, T.M., editors, Machine Learn-

ing, an Artificial Intelligence Approach VII, pages 593-624. Morgan Kauf-

mann.

Honda, H. (1971). Description of the form of trees by the parameters of the

tree-like body: effects of the branching angle and the branch length on the

shape of the tree-like body. Journal of Theoretical Biology, 31:331-338.

Houk, J.C. (1980). Homeostasis and control principles. In Mountcastle, V.B.,

editor, Medical Physiology. St. Louis. Mosby Co.

199

Humphrys., M. (1996). Action selection methods using reinforcement learn-

ing. In Maes P., Mataric M., Meyer J., Pollack J. and Wilson S., editors,

From Animals to Animats 4: Proceedings of the Fourth International Con-

ference on the Simulation of Adaptive Behaviour, pages 135-144. Cambridge,

MA. MIT Press.

Ijspeert, A.J., Hallam, J., and Wilishaw, D. (1998). From lampreys to sala-

manders: evolving neural controllers for swimming and walking. In Pfeifer,

R., Blumberg, B., Meyer, J.A., and Wilson, S.W., editors, From Animals to

Animats 5: Proceedings of the Fifth International Conference on the Simu-

lation of Adaptive Behaviour, pages 390-399. Cambridge, MA. MIT Press.

Ijspeert, A.J., Hallam, J. and Wilishaw, D. (1998). Evolving swimming con-

trollers for a simulated lamprey with inspiration from neurobiology. Depart-

ment of Artificial Intelligence Research Paper 876, University of Edinburgh.

Ijspeert, A.J. and Kodjabachian, J. (1999). Evolution and development of

a central pattern generator for the swimming of a lamprey. Artificial Life,

5(3):247-269.

Kaelbling, L.P. (1990). Learning in Embedded Systems. PhD thesis, Stanford

University.

Kaelbling, L.P. and Moore, A.W. (1996). Reinforcement learning: a survey.

Journal of Artificial Intelligence Research, 4:237-285.

Kandel, E.R., Schwartz, J.H. and Jessell, T.M. (1995). Essentials of Neural

Science and Behaviour. Prentice Hall Inter. Inc.

Kikuchi, K. and Hara, F. (1998). Evolutionary design of morphology and

intelligence in robotic system using genetic programming. In Pfeifer, R.,

Blumberg, B., Meyer, J.A., and Wilson, S.W., editors, From Animals to An-

imats 5: Proceedings of the Fifth International Conference on the Simulation

of Adaptive Behaviour, pages 540-545. Cambridge, MA. MIT Press.

200

Kimura, H., Akiyama, S. and Sakurama, K. (1999). Realization of dynamic

walking and running of the quadruped using neural oscillator. Autonomous

Robots, 7:247-258.

Kodjabachian, J. and Meyer, J.A. (1998). Evolution and development of

modular control architectures for 1-D locomotion in six-legged animats. Con-

nection Science, 10:211-237.

Kodjabachian, J. and Meyer, J.A. (1998). Evolution and development of

neural controllers for locomotion, gradient-following, and obstacle-avoidance

in artificial insects. IEEE Transactions on Neural Networks, 9(5):796-812.

Koza, J.R. (1992). Genetic Programming: On the Programming of Comput-

ers by Means of Natural Selection. Cambridge, MA. MIT Press.

Krogh, B.H. and Thorpe, C.E. (1986). Integrated path planning and dy-

namic steering control for autonomous vehicles. In IEEE International Con-

ference on Robotics and Automation, pages 1664-1669. IEEE Computer So-

ciety Press.

Kurtz, C. (1991). The evolution of information gathering: operational con-

straints. In Meyer, J.A. and Wilson, S.W., editors, From Animals to Ani-

mats 1: Proceedings of the First International Conference on the Simulation

of Adaptive Behaviour, pages 376-381. Cambridge, MA. MIT Press.

Lazanas, A. and Latombe, J.C. (1992). Landmark-based robot navigation.

In Proceedings of the Tenth National Conference on Artificial Intelligence,

pages 816-822. Cambridge, MA. MIT Press.

Lee, W.P., Hallam, J. and Lund, H.H. (1997). Applying genetic program-

ming to evolve behaviour primitives and arbitrators for mobile robots. In

Proceedings of the IEEE Fourth International Conference on Evolutionary

Computation, pages 501-506. IEEE Computer Society Press.

Lohmann, K.J. and Lohmann, C.M.F. (1996). Detection of magnetic field

intensity by sea turtles. Nature, 380:59-61.

201

Lohmann, K.J. and Lohmann, C.M.F. (1994). Detection of magnetic incli-

nation angle by sea turtles: a possible mechanism for determining latitude.

Journal of Experimental Biology, 194:23-32.

Lund, H.H., Hallam, J. and Lee, W.P. (1997). Evolving robot morphology.

In Proceedings of the IEEE Fourth International conference on Evolutionary

Computation, Invited paper. IEEE Computer Society Press.

Maes, P. (1990). Situated agents can have goals. In Maes, P., editor, Design-

ing Autonomous Agents: Theory and Practice from Biology to Engineering

and Back, pages 49-70. Cambridge, MA. MIT Press.

Maes, P. (1995). Artificial life meets entertainment: lifelike autonomous

agents. Communications of the ACM, 38(11):108-114.

Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life, 1(1-

2): 135-162.

Mahadevan, S. and Connell, J. (1992). Automatic programming of

behaviour-based robots using reinforcement learning. Artificial Intelligence,

55(2-3):311-365.

Mataric, M. (1992). Integration of representation into goal-driven behaviour-

based robot. IEEE Transactions on Robotics and Automation, 8(3):304-312.

Mataric, M.J. (1994). Reward functions for accelerated learning. In Proceed-

ings of the Eleventh International Conference on Machine Learning, pages

181-189. Morgan Kaufmann.

Mataric, M.J. and Cliff, D. (1996). Challenges in evolving controllers for

physical robots. Robotics and Autonomous Systems, 19(1):108-114.

Mataric, M.J., Zordan, V.B. and Williamson, M.M. (1999). Making com-

plex articulated agents dance, an analysis of control methods drawn from

robotics, animation, and biology. Autonomous Agents and Multi-agent Sys-

tems, 2(1):23-44.

202

http://www.maxis.com .

Mëch, R. and Prusinkiewicz, P. (1996). Visual models of plants interacting

with their environment. Proceedings of SIGGRAPH'96, pages 397-410. ACM

Inc.

Meyer, J.A. and Guillot, A. (1991). Simulation of adaptive behaviour in

animats: review and prospect. In Meyer, J.A. and Wilson, S.W., editors,

From Animals to Animats 1: Proceedings of the First International Confer-

ence on the Simulation of Adaptive Behaviour, pages 2-14. Cambridge, MA.

MIT Press.

Meyer, J.A. and Guillot, A. (1994). From SAB90 to SAB94: Four years

of animat research. In Cliff, D., Husbands, P., Meyer, J.A. and Wilson, S.,

editors, From Animals to Animats 3: Proceedings of the Third International

Conference on the Simulation of Adaptive Behaviour, pages 3-11. Cambridge,

MA. MIT Press.

Meyer, J.A. (1998). Evolutionary approaches to neural control in mobile

robots. In Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, pages 35-40. IEEE Computer Society Press.

Meyer, J.A., Doncieux, S., Filliat, D. and Guillot, A. (to appear) Evo-

lutionary approaches to neural control of rolling, walking, swimming and

flying animats or robots. In Duro, R.J., Santos, J. and Graa, M., editors,

Biologically Inspired Robot Behaviour Engineering. Springer-Verlag.

Michel, 0. (1995). An artificial life approach for the synthesis of autonomous

agents. In Proceedings of the European Conference on Artificial Evolution,

pages 220-231. Springer-Verlag.

Minsky, M. (1988). The Society of Mind. Simon & Schuster, New York.

Mondada, F. and Floreano, D. (1995). Evolution of neural control struc-

tures: some experiments on mobile robots. Robotics and Autonomous Sys-

tems, 16:183-195.

203

[1091 Moriarty, D.E. and Miikkulainen, R. (1994). Evolving neural networks to

focus minimax search. In Proceedings of the Twelfth National Conference on

Artificial Intelligence, pages 1371-1377. Cambridge, MA. MIT Press.

Moriarty, D.E. and Miikkulainen, R. (1996). Evolving obstacle avoidance

behaviour in a robot arm. Machine Learning, 22:11-32.

Moriarty, D.E. and Miikkulainen, R. (1998). Forming neural networks

through efficient and adaptive co-evolution. Evolutionary Computation,

5(4) :373-399.

Moriarty, D.E., Schultz, A.0 and Grefenstette, J.J. (1999). Evolutionary

algorithms for reinforcement learning. Journal of Artificial Intelligence Re-

search, 11:199-229.

Mortin, L.I. and Stein, P.S.G. (1989). Spinal cord segments containing key

elements of the central pattern generators for three forms of scratch reflex

in the turtle. Journal of Neuroscience, 9:2285-2296.

Miler, R., Mans, M. and Lambrinos, D. (1999). A neural model of landmark

navigation in insects . Neurocomputing, 26-27:801-808.

Nolfi, S. (1997). Evolving non-trivial behaviours on real robots: a garbage

collecting robot. Robotics and Autonomous Systems, 22(3-4):187-198.

Noser, H., Renault, 0., Thalmann D. and Thalmann, N.M. (1995). Nav-

igation for digital actors based on synthetic vision, memory and learning.

Computers and Graphics, 19(1):7-19.

Oppenheimer, P. (1986). Real time design and animation of fractal plants

and trees. Proceedings of SIGGRAPH'86, pages 55-64. ACM Inc.

Orido, G., Ulivi, G. and Vendittelli, M. (1998). Real-time map building and

navigation for autonomous robot in unknown environments. IEEE Transac-

tions on System, Man and Cybernetics, 28(3):316-333.

204

Panerai, F., Metta, G. and Sandini., G. (2000). Adaptive image stabiliza-

tion: a need for vision-based active robotics agents. In Meyer, J.A., Berthoz,

A., Floreano, D., Roitbiat, H.L. and Wilson. S.W., Editors, From Animals

to Animats 6: Proceedings of the Sixth International Conference on the Sim-

ulation of Adaptive Behaviour. Cambridge, MA. MIT Press.

Paredis, J. (1991). The evolution of behaviour: some experiments. In Meyer,

J.A. and Wilson, S.W., editors, From Animals to Animats 1: Proceedings of

the First International Conference on the Simulation of Adaptive Behaviour,

pages 419-426. Cambridge, MA. MIT Press.

Parker, G.B. and Karen J.L. (2000). Punctuated anytime learning for evo-

lutionary robotics. World Automation Congress Proceedings, pages 268-273.

Pearson, K.G. (1993) Common principles of motor control in vertebrates

and invertebrates. Annual Review of Neuroscience, 16:265-297.

http://www.pfmagic.com .

Pratt, L.Y., Mostow, J. and Kamm, C.A. (1991). Direct transfer of learned

information among neural networks. In Proceedings of the Ninth National

Conference on Artificial Intelligence, pages 584-589. AAAI Press.

Pratt, L.Y. (1993). Discriminability-based transfer between neural net-

works. In Moody J.E., Hanson S.J. and Lippmann R.P., editors, Advances

in Neural Information Processing Systems V, pages 204-211. Morgan Kauf-

mann.

Prescott, T.J. (1996). Robot spatial learning: insights from animal and

human behaviour. In lEE Workshop on Self Learning Robots.

Prusinkiewicz, P., Hammel, M., Mëch R. and Hanan J. (1995). The artificial

life of plants. SIGGRAPH'95 course notes on Artificial Life, pages 1-38.

ACM Inc.

205

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of

Plants, Springer-Verlag, New York.

Rao, A. and Georgeff, M. (1992). An abstract architecture for rational

agents. In Proceedings of the Third International Conference on Principles

of Knowledge Representation and Reasoning, pages 439-449. Morgan Kauf-

mann.

Rechenberg, I. (1973). Evolution Strategies. Frommann-Holzboog,

Stuttgart.

de Reffye, P., Edelin, C., Francon, J., Jaeger, M., and Puech, C. (1988).

Plant models faithful to botanical structure and development. Proceedings

of SIGGRAPH'88, pages 151-158. ACM Inc.

Renault, 0., Thalmann, N.M., and Thalmann, D. (1990). A vision-based

approach to behavioural animation. The Journal of Visualisation and Com-

puter Animation, 1(1):18-21.

Reynolds, C. (1987). Flocks, herds and schools: a distributed behavioural

model. Computer Graphics, 21(4):25-34.

Reynolds, C. (1994). Evolution of corridor following behaviour in a noisy

world. In Cliff, D., Husbands, P., Meyer, J.A. and Wilson, S., editors, From

Animals to Animats 3: Proceedings of the Third International Conference

on the Simulation of Adaptive Behaviour, pages 401-410. Cambridge, MA.

MIT Press.

Roitblat, H.L. (1991). Cognitive action theory as a control architecture. In

Meyer, J.A. and Wilson, S.W., editors, From Animals to Animats 1: Pro-

ceedings of the First International Conference on the Simulation of Adaptive

Behaviour, pages 444-450. Cambridge, MA. MIT Press.

Salomon, R. (1996). Reevaluating genetic algorithm performance under co-

ordinate rotation of benchmark functions: a survey of some theoretical and

practical aspects of genetic algorithms. BioSystems, 39(3):263-278.

206

Salomon, R. (1997). The evolution of different neuronal control structures

for autonomous agents. Robotics and Autonomous Systems, 22(3-4):199-213.

Schultz, A.C. and Grefenstette J.J. (1992). Using a genetic algorithm to

learn behaviours for autonomous vehicles. In Proceedings of the AIAA Guid-

ance, Navigation, and Control Conference, pages 739-749. American Insti-

tute of Aeronautics & Astronautics.

Schultz, A.C. (1994). Learning robot behaviours using genetic algorithms.

Intelligent Automation and Soft Computing: Trends in Research, Develop-

ment, and Applications, pages 607-612. TSI Press, Albuquerque.

Schultz, A.C. and Grefenstette, J.J. (1996). Robo-shepherd: Learning com-

plex robotic behaviours. Robotics and Manufacturing: Recent Trends in Re-

search and Applications, 6:763-768.

Schwefel, H.P. (1995). Evolution and Optimum Seeking. Wiley, New York.

Selverston, A.I., Panchin, Y.V., Arshavsky, Y.I. and Orlovsky, G.N. (1997)

Shared features of invertebrate central pattern generators. In Stein P.S.G.,

Grillner S., Selverston A.I. and Stuart D.C., editors, Neurons, Network and

Motor Behaviour, pages 105-107. MIT Press.

[143} Sharkey, N.E. (1991). Connectionist representation techniques. Artificial

Intelligence Review V, 5:143-167

Sharkey, N.E. and Sharkey, A.J.C. (1992). Adaptive Generalisation and the

Transfer of Knowledge. Working report R257, Center for Connection Science,

University of Exeter, UK.

Sharkey, N.E. (1997). Artificial neural networks for coordination and

control: the portability of experiential representations. Robotics and Au-

tonomous Systems, 22(3-4):345-360.

Singh, S.F. (1992). Transfer of learning by composing solutions of elemental

sequential tasks. Machine Learning, 8:323-339.

207

Simpson, G.G., Pittendrigh C.S. and Tiffany L.H. (1959). Life: An Intro-

duction to Biology. Routledge and Kegan Paul Ltd.

Sims, K. (1994). Evolving virtual creatures. In Proceedings of SIC-

GRAPH'94, pages 15-22. ACM Inc.

Sims, K. (1994). Evolving 3D morphology and behaviour by competition:

In Proceedings of Artificial life IV, pages 28-39. Cambridge, MA: MIT Press.

Sutton, R. (1988). Learning to predict by the methods of temporal differ-

ences. Machine Learning, 3:216-224.

Sutton, R. (1990). Integrated architectures for learning, planning and re-

acting based on approximating dynamic programming. In Proceedings of the

Seventh International Conference on Machine Learning, pages 216-224. Mor-

gan Kaufmann.

Sutton, R. (1991). Planning by incremental dynamic programming. In Pro-

ceedings of the Eighth International Workshop on Machine Learning, pages

353-357. Morgan Kaufmann.

Terzopoulos, D. (1998). Vision and action in artificial animals. In Harris

L.R. and Jenkin M., editors, Vision and Action, pages 250-276. Cambridge

University Press.

Thalmann, D. (1998). Artificial life of virtual humans, In SIGGRAPH'98

course 22, Session 5. ACM Inc.

Thalmann, D. (1995). Applications of virtual humans in virtual reality. In

Earnshaw, R.A., Vince, J.A. and Jones, H., editors, Virtual Reality Applica-

tions, pages 271-282. Academic Press.

Thrun, S. and Mitchell, T.M. (1996). Lifelong robot learning. Robotics and

Autonomous Systems, 15:25-46.

Thrun, S. (1996). Explanation-Based Neural Network Learning: A Lifelong

Learning Approach. Kluwer Academic Publisher.

Thrun, S. (1998). Learning maps for indoor mobile robot navigation. Arti-

ficial Intelligence, 99(1):21-71.

Tu1lier, 0., Wiener, S.I., Berthoz, A. and Meyer, J.A. (1997). Biologi-

cally based artificial navigation systems: review and prospects. Progress in

Neurobiology, 51:483-544.

Trullier, 0. and Meyer, J.A. (2000). Animat navigation using a cognitive

graph. Biological Cybernetics, 83(3) :271-285.

Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD.

Thesis, Centre for Cognitive Science, University of Edinburgh, UK.

Tu, X. and Terzopoulos, D. (1994). Artificial fishes: physics, locomotion,

perception, behaviour. In Proceedings of SIGGRAPH'94, pages 43-50. ACM

Inc.

Vaario, J., Onisuka, A. and Shimohara, K. (1997). Formation of neural

structures. In Proceedings of the Fourth European Conference on Artificial

Life, pages 214-223. Cambridge, MA. MIT Press.

Walker, A., Hallam, J. and Willshaw, D. (1993). Bee-havior in a mobile

robot: The construction of a self-organizing cognitive map and its use in

robot navigation within a complex, natural environment. In Proceedings of

the IEEE International Conference on Neural Networks, pages 1451-1456.

IEEE Computer Society Press.

Walker, M.M. (1999). Magnetic position determination by homing pigeons.

Journal of Theoretical Biology, 197:271-276.

Wang, F. and Mckenzie, E. (1998). Virtual life in virtual environments.

Technical report ECS-CSG-44-98, Department of Computer Science, The

University of Edinburgh.

Wang, F. and Mckenzie, E. (1998). General navigation in unknown environ-

ments. Technical report ECS-CSG-45-98, Department of Computer Science,

The University of Edinburgh.

kill]

Wang, F. and Mckenzie, E. (1999). A multi-agent based evolutionary ar-

tificial neural network for general navigation in unknown environments. In

Proceedings of the Third International Conference on Autonomous Agents,

pages 154-159. ACM Inc.

Wang, F. and Mckenzie, E. (1999). Multifunctional learning of a multi-

agent based evolutionary artificial neural network with lifetime learning. In

Proceedings of IEEE International Symposium on Computational Intelligence

in Robotics and Automation, pages 332-337. IEEE Computer Society Press.

Watkins, C.J.C.H. (1989). Learning from Delayed Rewards. Ph.D. thesis,

University of Cambridge, England.

Watkins, C.J.C.H. and Dayan, P. (1992). Q-learning. Machine Learning,

8(3) :279-292.

Wimann, J.M., Meyrand, P., and Marder, E. (1991). Neurons that form

multiple pattern generators: identification and multiple activity patterns of

gastric/pyloric neurons in the crab stomatogastric system. Journal Neuro-

physiology, 65:111-122.

Werner, G.M. (1994). Using second order neural connections for motivation

of behavioural choices. In Cliff, D., Husbands, P., Meyer, J.A. and Wilson,

S., editors, From Animals to Animats 3: Proceedings of the Third Interna-

tional Conference on the Simulation of Adaptive Behaviour, pages 154-163.

Cambridge, MA. MIT Press.

Whitley, D., Dominic, S., Das, R. and Anderson, C.W. (1993). Genetic

reinforcement learning for neurocontrol problems. Machine Learning, 13:259-

284.

Wilson, S.W. (1994). ZCS: a zeroth level classifier system. Evolutionary

Computation, 2(1):1-18.

Wyatt, J., Hoar, J. and Hayes, G. (1998). Design, analysis and comparison

of robot learners. Robotics and Autonomous Systems, 24(1-2):17-32.

210

Yamauchi, B. and Beer, R. (1993). Sequential behaviour and learning in

evolved dynamical neural networks. Adaptive Behaviour, 2(219-246).

Yamauchi, B. and Beer, R. (1994). Integrating reactive, sequential and

learning behaviour using dynamical neural networks. In Cliff, D., Husbands,

P., Meyer, J.A. and Wilson, S., editors, From Animals to Animats 3: Pro-

ceedings of the Third International Conference on the Simulation of Adaptive

Behaviour, pages 382-391. Cambridge, MA. MIT Press.

Yao, X. and Liu, Y. (1998). Making use of population information in evolu-

tionary artificial neural networks. IEEE Transactions on System, Man and

Cybernetics, 28(3):417-425.

211

