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Abstract

To make sense of our unpredictable world, humans use sensory information streaming

through billions of peripheral neurons. Uncertainty and ambiguity plague each sens-

ory stream, yet remarkably our perception of the world is seamless, robust and often

�optimal� in the sense of minimising perceptual variability. Moreover, humans have

a remarkable capacity for dexterous manipulation. Initiation of precise motor actions

under uncertainty requires awareness of not only the statistics of our environment but

also the reliability of our sensory and motor apparatus.

What happens when our sensory and motor systems are disrupted? Upper-limb am-

putees �tted with a state-of-the-art prostheses must learn to both control and make

sense of their robotic replacement limb. Tactile feedback is not a standard feature of

these open-loop limbs, fundamentally limiting the degree of rehabilitation. This thesis

introduces a modular closed-loop upper-limb prosthesis, a modi�ed Touch Bionics ilimb

hand with a custom-built linear vibrotactile feedback array. To understand the utility of

the feedback system in the presence of multisensory and sensorimotor in�uences, three

fundamental open questions were addressed: (i) What are the mechanisms by which

subjects compute sensory uncertainty? (ii) Do subjects integrate an arti�cial modality

with visual feedback as a function of sensory uncertainty? (iii) What are the in�uences

of open-loop and closed-loop uncertainty on prosthesis control?

To optimally handle uncertainty in the environment people must acquire estimates of

the mean and uncertainty of sensory cues over time. A novel visual tracking experiment

was developed in order to explore the processes by which people acquire these statistical

estimators. Subjects were required to simultaneously report their evolving estimate of

the mean and uncertainty of visual stimuli over time. This revealed that subjects could

accumulate noisy evidence over the course of a trial to form an optimal continuous es-

timate of the mean, hindered only by natural kinematic constraints. Although subjects

had explicit access to a measure of their continuous objective uncertainty, acquired from

sensory information available within a trial, this was limited by a conservative margin

for error.

In the Bayesian framework, sensory evidence (from multiple sensory cues) and prior

beliefs (knowledge of the statistics of sensory cues) are combined to form a posterior

estimate of the state of the world. Multiple studies have revealed that humans behave as

optimal Bayesian observers when making binary decisions in forced-choice tasks. In this

thesis these results were extended to a continuous spatial localisation task. Subjects

could rapidly accumulate evidence presented via vibrotactile feedback (an �arti�cial

modality�), and integrate it with visual feedback. The weight attributed to each sens-

ory modality was chosen so as to minimise the overall objective uncertainty.
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Since subjects were able to combine multiple sources of sensory information with respect

to their sensory uncertainties, it was hypothesised that vibrotactile feedback would be-

ne�t prosthesis wearers in the presence of either sensory or motor uncertainty. The

closed-loop prosthesis served as a novel manipulandum to examine the role of feed-

forward and feed-back mechanisms for prosthesis control, known to be required for

successful object manipulation in healthy humans. Subjects formed economical grasps

in idealised (noise-free) conditions and this was maintained even when visual, tactile

and both sources of feedback were removed. However, when uncertainty was introduced

into the hand controller, performance degraded signi�cantly in the absence of visual or

tactile feedback. These results reveal the complementary nature of feed-forward and

feed-back processes in simulated prosthesis wearers, and highlight the importance of

tactile feedback for control of a prosthesis.
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2 Chapter 1. Introduction

1.1 Motivation

The state-of-the-art in prosthetic hands for transradial amputees is an underactuated

open-loop robotic device with few degrees of control (e.g. Cipriani et al., 2008, Otr

et al., 2010). For many decades researchers have considered the possibility of `closing

the loop' for upper-limb prosthesis wearers by incorporating an arti�cial channel of

feedback to restore the missing sense of touch, dating as far back as Beeker et al.

(1967). Feedback has been shown to improve prosthesis acceptance (Shannon, 1979b)

and reduce the demand on visual feedback (Pylatiuk et al., 2004), but this success is

not universal (Chatterjee et al., 2008) and the state-of-the-art have been described as

clumsy (see Zhou et al., 2007). Commercially available prostheses remain open-loop,

but as robotic devices become cheaper and information processing capabilities continue

to advance it is more important than ever that we �nd e�ective ways of delivering

feedback to amputees. In this thesis I hypothesise that a fundamentally limiting aspect

of prosthesis control is the lack of sensory feedback.

The incorporation of an arti�cial sense relies on the development of a feedback sys-

tem that can become an integral part of our healthy sensory system. This may rely on

technological breakthroughs in sensor technology (e.g. Edin et al., 2006), neural control

(e.g. Dhillon and Horch, 2005) and surgical procedures (e.g. Kuiken et al., 2004), as well

as a deeper understanding of the cognitive phenomena underlying sensorimotor control

(e.g. Körding and Wolpert, 2004a). In this thesis I focus speci�cally on the role of un-

certain sensory feedback and uncertain feed-forward control in the context of closed-loop

sensorimotor tasks. By developing novel psychophysical and experimental approaches I

address fundamental questions regarding the integration of sensory feedback with visual

feedback and with feedforward control.

In developing closed-loop tasks and a closed-loop prosthesis I am able to create

an arti�cial sensorimotor circuit. This system can be seen as a novel manipulandum

in which the plant control and the arrival of sensory feedback can be experimentally

manipulated. This provides a window into human sensorimotor control that would

be impossible with healthy individuals, useful for understanding current theories of

sensorimotor control. This may help to bridge the gap from the state-of-the-art in

prostheses to the gold standard of the healthy human hand.

1.2 Aims

This thesis has two primary aims:

• Aim 1: To quantify the bene�ts of sensory feedback for the control of closed-

loop sensorimotor systems, such as a prosthetic hand, in the presence of di�erent
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sources of uncertainty.

• Aim 2: To further understand the mechanisms by which sensory uncertainty

in�uences perception and in�uences control of closed-loop sensorimotor systems.

To achieve these aims I address the following questions:

• 1: Sensory Communication: Can I establish a high-bandwidth sensory feed-

back channel that people are able to detect and decode?

• 2: Sensory Augmentation: If I can establish a sensory feedback channel with

su�cient bandwidth, will a person be able to use it to do a task, such as estimating

forces, or positions? Can it adequately augment or substitute for information

presented in another modality, such as vision?

• 3: Sensory Integration: If I can establish a sensory feedback channel with

su�cient bandwidth, and the person can use it, will a person also integrate this

information with their existing senses? Will it complement existing modalities,

and add additional bene�ts?

• 4: Optimal Sensory Integration: Will a successfully integrated arti�cial mod-

ality be combined with existing senses in a manner which is optimal with respect

to the reliability of the sensory information it provides? Are optimal weights

learned or innate?

• 5: Sensory Uncertainty Acquisition: Optimal sensory integration assumes an

ability of subjects to acquire statistical information from the world. How is such

information (such as the mean and uncertainty of sensory evidence) computed?

To what extent can this explain multisensory perception?

• 6: Sensorimotor Integration: If I can establish an optimally integrated sensory

feedback channel, does this scale to real world sensorimotor tasks such as grasping

and lifting objects? To what extent is present prosthesis-control suboptimality

governed by sensory uncertainty versus motor uncertainty?

1.3 Overview of this Thesis

In this thesis I focus on the integration of multiple sensory signals for sensorimotor

control in the presence of uncertainty or noise. The thesis is split into chapters span-

ning engineering, psychophysical experiments, practical deployment and evaluation of

a closed-loop prosthetic hand.
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InChapter 2: Background I present a review of models of probabilistic perception

and sensory processing; a summary of the state-of-the-art in closed-loop prosthetics;

and a survey of the mechanics of the healthy human hand and grasping behaviour.

This chapter provides a comprehensive summary of the literature relevant to the topics

addressed in this thesis, and introduces the key ideas that have motivated the present

research questions.

InChapter 3: System Design I present the practical considerations and engineer-

ing accomplishments that were necessary to design and build a prototype closed-loop

system, addressing Question 1 of section 1.2. This chapter is largely based on a

technical report and conference paper. Much of this technical work was done in col-

laboration with Touch Bionics, a leading prosthetics company, which has resulted in a

product license and patent application.

• Ian Saunders, Sethu Vijayakumar. (2009). A Closed-Loop Prosthetic Hand:

The Development of a Novel Manipulandum for Understanding Sen-

sorimotor Learning. Technical Report EDI-INF-RR-1321.

� Introduces the major components of of the closed-loop prosthetic hand, and

motivates the utility of a closed-loop prosthesis as a manipulandum;

� Provides a number of potential experiment designs, ranging from cursor

tracking to real-world grasping tasks, outlining their theoretical motivation;

� Presents technical details (in appendix) of electrotactile and vibrotactile feed-

back hardware;

• Ian Saunders, Sethu Vijayakumar (2009a). A Closed-Loop Prosthetic Hand.

Proc. Key Issues in Sensory Augmentation.

� Presents a cursor navigation task for quantitative evaluation of the bene�ts

of a vibrotactile feedback system, asking �Do humans optimally integrate

sensory information, regardless of the modality it is presented in?�;

� Presents a simulation of human grasp-aperture control using the optimal

feedback control framework, asking �Is human motor control `optimal' with

respect to available sensory feedback?�.

• Ian Saunders, Sethu Vijayakumar, Hugh Gill. (2011b) The University Court of the

University of Edinburgh/Touch Emas Ltd., Improvements in or relating to

Prosthetics and Orthotics, GB Patent Application - Category P120168.GB.01.

� Details a novel approach for control and receiving feedback from a prosthesis.

Further information can not be disclosed due to licensing restrictions.
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Chapter 4: Estimating Sensory Uncertainty Over Time is the �rst of three

experimental results chapters. I focus on Question 5 of section 1.2, to address the

fundamental question of how are the statistics of uncertain sensory information acquired.

I have developed a continuous target localisation task to evaluate the mechanisms of

mean and uncertainty estimation over time. This chapter is based on a conference

paper, a journal paper under peer review an unpublished work.

• Ian Saunders, Sethu Vijayakumar, (2011c) Continuous Estimation of Mean

and Uncertainty, Proc. The 21st Annual Conference of the Japanese Neural

Network Society.

� Introduces a novel experiment design (the butter�y catching task) for simul-

taneous measurement of subjective mean and uncertainty estimates;

� Presents experimental �ndings, revealing that subjects assign equal weight to

each cue presented over time when estimating the mean. Con�dence-estimate

trajectories increase as a function of cue-uncertainty and in the presence of

cue-perturbations, but overestimate the true uncertainty.

• Ian Saunders, Sethu Vijayakumar. (2011a). Continuous Evolution of Stat-

istical Estimators for Optimal Decision-Making. PLoS ONE (Under Peer

Review)

� Presents the butter�y catching task in greater detail, motivating the key

experimental manipulations that were required to observe the results above;

� Compares experimental �ndings in the butter�y catching task to those of a

simulated ideal observer parametrised with sensorimotor delays, speed and

acceleration constraints. Empirical and model cue-weights are computed over

time.

� Subjective estimation of the mean has striking similarity to the model: (i)

equal weights are assigned to all observed cues (prior to a sensorimotor delay);

(ii) cue weighting adapts as further cues arrive; and (iii) average trajectories

and endpoint errors are quantitatively indistinguishable from the model. It

is concluded that mean estimation performance is optimal with respect to

the sensory cues and natural kinematic constraints.

� Subjective estimation of the uncertainty is similar to the model in that:

(i) increasing the cue-variance causes increases in the average uncertainty

estimate; (ii) cue-perturbations result in predictable uncertainty-trajectory

increases (in onset and magnitude); (iii) the magnitude of average endpoint
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con�dence estimates are predictable when a conservative margin for error is

allowed. It is concluded that either uncertainty estimation or gain maximisa-

tion is less than ideal and although subjects are able to reliably discriminate

di�erent levels of sensory uncertainty they do so with a suboptimal overes-

timate.

In Chapter 5: Optimal Multisensory Integration I develop a tracking paradigm

to understand the processes of continuous integration of multiple uncertain sensory cues.

This allows me to quantify the degree of integration of the arti�cial sensory channel, as

well as address the mechanisms by which multiple sensory signals are integrated in the

presence of uncertain sensory feedback, addressing Questions 3 and 4 of section 1.2.

This chapter is based on a conference paper and unpublished work.

• Ian Saunders, Sethu Vijayakumar. (2009b). A Closed-Loop Prosthetic Hand

as a Model Sensorimotor Circuit. Proc. International Workshop on Compu-

tational Principles of Sensorimotor Learning.

� Introduces a continuous multimodal tracking experiment whereby subjects

are required to navigate a cursor (presented in both tactile and visual mod-

alities) towards a target location.

� Behaviour of subjects is compared to a Bayes-optimal ideal-observer model,

as well as a range of alternative suboptimal hypotheses. The alternative

hypotheses are inconsistent with empirical observations and so are rejected.

� On average, subjects are found to favour the more reliable modality on a

given trial, and moreover allocate weight in a manner which is quantitatively

indistinguishable from a Bayes-optimal observer.

InChapter 6: Feedforward and Feedback processes during Closed-Loop Pros-

thesis Control I present results of three behavioural experiments in which the de-

veloped closed-loop prosthesis was tested for the task of grasping and lifting objects.

These experiments examined the role of feedback in the presence of feedback and feed-

forward uncertainty, addressing Question 6 of section 1.2. This chapter is based on a

journal paper (in press) and unpublished work.

• Ian Saunders, Sethu Vijayakumar. (2011). The Role of Feed-forward and

Feedback Processes for Closed-Loop Prosthesis Control. Journal of Neur-

oengineering and Rehabilitation (In Press)

� This paper introduces the grasp and lift paradigm for evaluating performance

of prosthesis functionality. Healthy individuals are known to grasp econom-
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ically (assigning greater grip force to heavier objects), and this phenomenon

is explored using the prosthesis as a sensorimotor manipulandum.

� Three manipulations are applied to the task: increasing tactile uncertainty,

visual uncertainty and feedforward uncertainty.

� In �ideal� feedforward conditions subjects show preservation of economical

grasping even in the complete absence of tactile and visual feedback. How-

ever, as feedforward uncertainty is increased the bene�ts of tactile and visual

feedback on task performance are observed.

Finally Chapter 7: General Discussion summarises and discusses the main achieve-

ments of the thesis as highlighted above, and presents potential directions for future

research.

Appendix A: Uncertainty in Sample Standard Deviation, provides a sum-

mary of mathematical derivations relevant to uncertainty estimation in Chapter 4.





Chapter 2

Background

In this chapter I review the literature surrounding closed-loop sensorimotor behaviour.

Firstly, I address probabilistic theories of sensory perception, providing a theoretical

framework with which to describe the role of sensory uncertainty in behaviour. Secondly,

I review the temporal aspects of perception, motivating the need for continuous-time

sensorimotor tasks in understanding the role of uncertainty in the real world. Thirdly,

I examine current theories about human hand control and tactile sensation, providing

a gold standard which a closed-loop system may aim to replicate. Finally, I review the

state of the art in closed-loop prostheses.

9
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2.1 Probabilistic Models in Human Sensorimotor Control

2.1.1 Introduction

Every decision we make involves some degree of uncertainty. The human brain has

a remarkable capacity to combine the masses of information that continually stream

through our multiple sensory organs, tunnelling down tactile �ngertip �bres, retinal

receptors and auditory a�erents. Nevertheless, our perception of the world is generally

robust, stable and free from ambiguity. How the brain achieves this is a primary focus

of much research in neuroscience and neuroinformatics.

Much of the inspiration behind this research stems from perceptual illusions. Alais

and Burr (2004) discuss the �ancient art of making one's voice appear to come from

elsewhere�. The so-called Ventriloquist E�ect (Jack and Thurlow, 1973, Thurlow and

Rosenthal, 1976) essentially describes the phenomenon of visual stimuli (the movement

of a puppets mouth) �capturing� auditory stimuli (the sounds emerging from the pup-

peteers mouth). The brain chooses to resolve the correlated sensory information into a

uni�ed percept, which favours the spatially-reliable visual stimulus and so the sounds

appear to originate from the puppet. Intriguingly, this phenomenon is reversed when

audition is the more reliable modality (for example, in temporal judgements) and aud-

itory stimuli can �capture� visual stimuli (Burr et al., 2009).

Many other illusions rely on the ability of the brain to seamlessly integrate multiple

sensory cues. In the McGurk E�ect (McGurk and MacDonald, 1976) it was shown

that spoken phoneme perception is governed by both auditory and visual cues: The

syllable �Ba� when dubbed on to lip movements for �Ga�, is perceived as �Da�. In the

Parchment-Skin Illusion a sound that is played synchronous to us rubbing our hands

together strongly modi�es the perception of dryness and friction (Jousmäki and Hari,

1998). These illusions touch on the fundamental issue of the roles and interdependencies

of di�erent sensory systems on our seamless perception of the world.

One key hypothesis is that the brain employs probabilistic models to achieve ro-

bust perception. This hypothesis is observed electrophysilogically at the single-neuron

level, described computationally through population-code neural networks and meas-

ured behaviourally with psychophysical studies. In this section I will brie�y review this

evidence and discuss some key questions that remain to be answered.

A central principle of probabilistic theories of perception is Bayesian Decision The-

ory (see Yuille and Bultho�, 1996). Bayesian Decision Theory is a statistical approach

in which the costs of decisions are quanti�ed and combined with their probabilities to

enable statistically-optimal decisions. Evidence for Bayesian mechanisms in the brain

are based on a great number of key psychophysical results. In the phenomenon of �multi-
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sensory integration� (also known as bimodal, multimodal and cross-modal integration),

subjects are shown to merge information from multiple sensory modalities according to

an optimal Bayesian approach. In the following sections I will review these studies.

2.1.2 Multisensory Integration

Rock and Victor (1964) conducted a classic experiment in which subjects were asked to

grasp a visually-distorted object, then draw it. Unaware of the distortion, vision dom-

inated perception, and so the phenomenon was dubbed �visual capture�. Subsequently,

Welch et al. (1979) found that visual capture over proprioception was compromised dur-

ing active movement, but not during passive movement, arguing that visual dominance

was due to its reliability. According to their �Modality Appropriateness� hypothesis,

discrepancies were resolved in favour of the more precise or more appropriate modal-

ity. For a temporal estimation task in which audition was more reliable Welch et al.

(1986) showed that vision does not always dominate. Young et al. (1993), among oth-

ers, showed that the respective weighting of a sensory cue changes as signal reliability is

manipulated. This has led to statistical models of cue integration, which I will review

here.

2.1.2.1 Ideal Observer Behaviour

Bayesian Statistics Consider the task of localising a stimulus x. Suppose that a

number of sensory estimates, xi, arise from the stimulus, indexed by i. Each estimate

may be from a di�erent sensory modality, such as vision or audition, or perhaps from a

number of cues within a modality.

Under the Bayesian framework one aims to compute the probability distribution of

the true location x, given sensory evidence xi for i = 1, . . . , n.

posterior︷ ︸︸ ︷
Pr ( x | x1, . . . , xn ) =

likelihood︷ ︸︸ ︷
Pr ( x1, . . . , xn | x ) ·

prior︷ ︸︸ ︷
Pr ( x )

Pr ( x, . . . , xn )︸ ︷︷ ︸
marginal likelihood

(2.1)

Equation 2.1 is an example of Bayes' rule. It explains how to optimally update our

beliefs under multiple sources of sensory information. Pr (x) re�ects our prior belief

in x, i.e. our belief in a particular state of the world before sensory input is received.

In the presence of multiple sources of sensory information one can compute the overall

likelihood of the evidence, i.e. the probability of observing this evidence given all possible

x. From the normalised product of the likelihood and prior one can then estimate the

evidence-based probability distribution of the state, termed the posterior.
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It is often assumed that the variability or the noise in the di�erent sensory streams is

independent. Therefore, under the condition that the sensory estimates are conditionally

independent given the true stimulus we see that

Pr (x|x1, . . . , xn) ∝ Pr (x1|x) · Pr (x2|x) · · ·Pr (xn|x) · Pr (x) (2.2)

Maximum Likelihood (ML) If the prior term in equation 2.2 is ignored, we can com-

pute the maximum likelihood estimator of x. This is the value of x that maximises

L =
∏
i

Pr (xi|x)

Assuming that the noise a�ecting each modality i is Normal with mean xi and

variance is σ2i , i.e.

Pr (xi|x) =
1√

2π σi
exp

(
−(x− xi)2

2σ2i

)
then the minimum variance estimator of the stimulus location is easily computed

by taking the logarithm of the likelihood and di�erentiating with respect to x.

∂

∂x
logL =

∑
i

∂

∂x
log Pr (xi|x) = 0

In doing this we �nd that:

xML =
∑
i

(
xi ·

σ−2i∑
j σ
−2
j

)
(2.3)

Thus, the maximum likelihood multimodal estimate is simply the average of the

unimodal sensory estimates each weighted by its relative inverse variance, i.e. its relative

reliability (see Ernst and Bültho�, 2004).

Maximum A Posteriori (MAP) The maximum a posteriori approach is identical to

the above, except that it also accounts for the prior term in equation 2.2. If the prior

is treated as uniform (each location equiprobable) then the MAP estimate is identical

to the ML estimate.

Alternatively if the prior is considered to be Normally distributed with mean xprior

and variance σ2prior, the MAP estimate is identical to the ML estimate where the prior

becomes an additional piece of weighted sensory evidence.

Of course, it is not necessary to make assumptions about the nature of the prior. As

shall soon be revealed, a number of studies have chosen prior distributions that allow

the properties of probability distribution perception to be inferred.
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Suboptimal Models There is no reason to expect perception to be statistically op-

timal. According to the visual capture hypothesis (Rock and Victor, 1964), one modality

or cue solely determines our observations.

xUNI = xk

An alternative equal-weighting hypothesis may average all available sensory cues,

regardless of their reliability.

xAV G =
1

N

∑
i

xi

However, these uncertainty-independent strategies seem unlikely, not least because

they are inconsistent with empirical observations (see later). Alternative uncertainty-

dependent models of integration seem more plausible.

The winner-takes-all approach(Gahahramani et al., 1997) is an extension of the

modality appropriateness hypothesis to cues rather than modalities (see Welch et al.,

1979), in which a sensory signal dominates if it is the most reliable:

xWTA = xi ⇐⇒ ∀j.σ2i ≤ σ2j

A stochastic integration model has also been proposed (Gahahramani et al., 1997),

in which the observer adopts a single cue with a given probability. i.e.

xSTO =


x1 with probability p1
...

xn with probability pn

If pi is a function of the reliability of the cue, this approach would result in average

behaviour (over many trials) identical to the ML model. Furthermore, this behaviour

may arise passively. For example, a low contrast stimulus may be observed less often

than a high contrast stimulus, with probability inversely proportional to its uncertainty.

Alternatively, subjects could perform cue switching rapidly throughout a trial (Ernst

and Bültho�, 2004). If the switch was determined by the cue reliability, this would also

result in behaviour identical to ML.

A multitude of alternative possible models exist, and it has been a primary focus of

research into multimodal integration to determine the model deployed by the nervous

system (e.g. Ernst and Banks, 2002). In Chapter 5 I introduce a multisensory integra-

tion task which allows me to compare human behaviour to the predictions of the above

models.
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2.1.2.2 A-Priori Integration

No one sensory signal can provide reliable information about the world in all circum-

stances. One could attempt to resolve this by collecting more sensory information but

this would result in intolerable delays for most tasks. It is argued that a central func-

tion served by the perceptual system is to make decisions needed to interact with the

environment by relying on the anticipated consequences of actions (Ernst and Bültho�,

2004). These are captured by prior beliefs in the Bayesian framework.

Körding and Wolpert (2004a) present evidence for the in�uence of prior distribu-

tions in a reaching task. Subjects received momentary visual feedback of hand position

midway through a reach and made online corrections based on this sensory information.

The visual feedback comprised clouds of blobs, which were made more or less reliable by

adjusting their distribution. Also, the feedback location was distorted laterally by noise

from trial to trial according to a probability distribution which de�ned a prior, which

subjects learned to estimate over 1,000 training trials. As predicted quantitatively by

the Bayesian framework, movements with reliable feedback rejected the prior, but when

feedback was degraded the estimate was biased towards the prior as a function of its

reliability. This phenomenon also applied to a bimodal prior. It is argued that this

shows that the brain internally represents both the prior statistics of the environment

and the uncertainty in its sensors, combining these sources of information optimally

(Bays and Wolpert, 2007) .

To explain their �ndings, Körding and Wolpert (2004a) discuss three potential mod-

els of integration: (i) Subjects obey the prior distribution and disregard the visual evid-

ence; (ii) Subjects disregard the prior and compensate fully for the visual feedback;

and (iii) subjects combine prior and evidence in a Bayesian manner. Their results are

incompatible with suboptimal models (i) and (ii). They also discuss the possibility of

an additional model in which subjects learn a mapping from visual feedback to lateral

shift, which would result in the same outcome as (iii) without subjects explicitly rep-

resenting the prior or uncertainty. In order for subjects to learn this mapping they

would need knowledge of the error at the end of each trial, which they are not given.

From this it is concluded that subjects must explicitly represent prior and sensory un-

certainty. However, it is also possible that visual uncertainty is implicitly encoded in

perceptual signals, which may result in the same empirical observations. Although the

precise mechanisms are debatable, it is clear that subjects are capable of combining

prior information and sensory evidence.

Important questions still remain to be answered. In a review Körding and Wolpert

(2006) ask �How is prior information encoded in the central nervous system? How is it

combined with new evidence to generate estimates?� More generally, it is not known
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how sensory evidence is acquired by the nervous system, how it is encoded, nor how

it is combined. In this thesis I examine these questions in more detail from novel

experimental perspectives.

2.1.2.3 Maximum Likelihood

Numerous studies have provided evidence for maximum likelihood multisensory integ-

ration. These studies typically involve two noisy sensory cues to a stimulus property

(often in di�erent modalities), presumed to arise from the same underlying source. Sub-

jects are required to report the stimulus property based on either a single cue or both

cues. The maximum likelihood multisensory estimate of the stimulus property is pro-

portional to the weighted sum of unimodal estimates with the weights determined by

the cue reliabilities (see equation 2.3).

Jacobs (1999) provided the �rst psychophysical evidence of this phenomenon. Sub-

jects were required to use depth cues to estimate the curvature of cylinders. This could

be achieved using texture cues (the shape of circles projected onto a simulated cyl-

indrical surface), from motion cues (the position of �xed-size circles moving over the

simulated surface), or from both cues together (the position and shape of circles moving

over the simulated surface). In the combined task, subjects were shown to integrate

the cues according to a Bayesian model, based on the reliabilities as determined from

the unimodal tasks. However, it should be noted that in unimodal trials the model

accommodated a bias parameter that made the assumption that the ellipse was per-

ceived as �more circular� than it actually was. Also, although motion cues actually

contain curvature information in the density of the blobs it was argued that this third

cue is weak due to the spacing between blobs. However, under these assumptions they

demonstrated a very good �t of human behaviour to the model.

Ernst and Banks (2002) showed that the maximum likelihood principle applies to

humans integrating information from multiple modalities. They asked subjects to judge

the relative height of a bar, presented unimodally (haptically or visually) and multimod-

ally. Visual cues were distorted by di�ering degrees of noise. In the unimodal trials

subjects were presented with two stimuli, one of standard height and one of unknown

height, in random order, and asked to choose which was taller. Discrimination thresholds

were used to compute the reliability of the unimodal cues, which in turn were used to

compute the maximum likelihood weights which should be allocated to each cue in the

multimodal task. In the multimodal task the standard stimulus had constant haptic

height but had a range of visual heights discrepant to the haptic height, which allowed

measurement of the empirical weights. For increasing visual uncertainty they observed

increasing dominance to the haptic cue, in accordance with maximum likelihood integ-
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ration. This �nding also holds for alternative sources of visual uncertainty (e.g. viewing

angle, Gepshtein and Banks, 2003; and blur Helbig and Ernst, 2007).

In a similar study for audio-visual integration, Alais and Burr (2004) asked sub-

jects to localise �blobs� (low-contrast Gaussians of varying widths) or �clicks� (location

determined by inter-aural time di�erences). Again, psychometric curves were used to

measure subject's decision as a function of audio-visual con�ict. When visual local-

ization is good, vision dominates sound, as per the ventriloquism e�ect. For blurred

visual stimuli the reverse holds: sound dominates vision. For di�erent degrees of blur a

continuum exists in which perceptual weight follows the maximum likelihood integral.

A key further observation is that bimodal performance exceeds unimodal performance,

indicative of utilising both sources of information together to maximise reliability (and

minimise uncertainty). These results therefore argue against the �visual capture� and

�auditory capture� hypotheses in favour of optimal integration.

Furthermore, humans have been shown to combine proprioceptive information about

the location of our hand with visual information of the hand itself (van Beers et al.,

1999), and from the con�guration of our joints (Sober and Sabes, 2005). The phe-

nomenon of multisensory integration applies not only to per-modality weightings but

also within-modality directional sensitivity (van Beers et al., 1999). Further, within-

modality studies have shown that people combine visual texture, motion and stereo

cues into a single depth estimate (Jacobs, 1999, Knill and Saunders, 2003, Hillis et al.,

2004), and visual cues of relative contrast, frequency and orientation of textures allow

us to discriminate edges (Landy and Kojima, 2001).

However, Helbig and Ernst (2007) argue that the above results may be measuring

indirect behaviour. Firstly, the above approaches use two-interval and two-alternative

forced-choice (2-IFC and 2-AFC) designs above rely on memory, and this may be af-

fected indirectly by uncertainty. They choose to use a 1-IFC approach (subjects make

a decision based on simultaneous stimuli). Secondly, they tested whether statistical

optimality holds for real (rather than simulated) visual and haptic shape information,

since multimodal integration may depend on spatial alignment of sensory cues (Gep-

shtein et al., 2005). Helbig and Ernst (2007) used mirrors to separate visual and haptic

information for oriented ellipses, asking subjects to feel the ellipse while observing it

in a (blurry) aperture. Nevertheless, despite these modi�cations they observed optimal

behaviour consistent with Ernst and Banks (2002).

Over a wide range of phenomena and with di�erent experimental approaches, it is

clear from these studies that we can combine multiple sensory signals in a manner quant-

itatively consistent with statistically-optimal integration (Wolpert, 2007). Moreover, it

has been argued that Bayesian processes may be a fundamental element of sensory
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processing in the nervous system (Körding and Wolpert, 2006).

2.1.2.4 Maximum A-Posteriori and Bayes

The ML framework maximises the probability of observing some state of the world given

the parameters of a probabilistic model describing the consequences of our actions. We

have seen that much behaviour is quantitatively accounted for by this model in which

precision is naturally maximised by minimising variability. However, evidence is not

unanimous, and a number of studies have found suboptimal biases (e.g. Burr et al.,

2009, Knill and Saunders, 2003) which we will discuss later. An obvious weakness of

the ML model is that it does not account for a priori in�uences on behaviour.

If we have knowledge about the parameters of the world � a prior � then the

Bayesian approach allows us to estimate the posterior, the most probable explanation

of our observations given the evidence available.

Previously I discussed a study by Körding and Wolpert (2004a), in which subjects

were trained to learn a prior probability distribution. In this study subjects were biased

towards the prior as predicted quantitatively by the maximum a-posteriori (MAP) es-

timation model. Subjects optimally combined the available evidence with respect to the

uncertainty of the visual cues and the uncertainty of the prior. Similar MAP-optimal

behaviour was also seen in a force estimation task (Körding et al., 2004) and a pointing

task (Tassinari et al., 2006). These results together suggest that when people learn new

tasks they learn not only the underlying statistics of the task but also the underlying

statistics of their own sensory apparatus � and combine the two in a Bayesian manner

(Wolpert, 2007).

2.1.2.5 Criticisms

Despite the evidence reported above, a number of studies have demonstrated discrep-

ancies in optimality of integration. Battaglia et al. (2003) provided evidence for both

visual capture and maximum likelihood theories, since the relative reliability of cues

a�ected spatial localisation but these judgements included an overall visual bias. Simil-

arly, Burr et al. (2009) showed that audition dominated vision for perception of interval,

but quantitatively the weights were �less than optimal�. Likewise, Knill and Saunders

(2003) computed slant discrimination thresholds based on stereo and texture cues and

found that texture information was under-weighted. What could be the explanation for

this suboptimality?

Inaccurate Sensory Estimates Rosas et al. (2005) studied visual-haptic cue combina-

tion for slant-discrimination. Visual cue (texture) reliability was varied and performance
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measured in comparison to the maximum likelihood prediction. They found that sub-

jects performed worse in the multimodal condition than in the texture-only condition

for all but one of the subjects in one condition. More than 80% of their data were

inconsistent with maximum likelihood. They conclude that, while the visual system is

sensitive to the cue reliabilities, integration weights are not statistically optimal. Oruç

et al. (2003) studied slant estimation from the combination of linear perspective cues

and texture gradient cues. For three out of eight subjects they found evidence in favour

of optimal cue combination, for three they observed data consistent with optimal com-

bination with the assumption that internal cue estimates were correlated, and for two

the cue combination strategy was sub-optimal. Clearly ��exible mechanisms� (Sober

and Sabes, 2005) underlie multisensory integration. Rosas et al. (2005) concede that

subjects may have attempted to combine cues optimally but �did not have an accurate

estimate of the variance of the individual cues�.

It is not clear how reliability is perceived by the nervous system, nor is it clear what

reliability signal is used. Sober and Sabes (2005) argue that objective uncertainty, the

empirical variability in the task, does not necessarily de�ne integration weights. They

showed that sensory integration weights are not solely statistically-determined, but also

that the nature of use of the multimodal estimate resulted in a �diversity of weightings�.

Subjects' inaccurate estimates (Rosas et al., 2005) de�ne their subjective uncertainty,

which ought also be considered when evaluating the mechanisms of integration.

Implicit Encoding and Recall As discussed previously, Helbig and Ernst (2007) argue

that forced-choice paradigms may induce apprehension, especially with increased un-

certainty. This apprehension may indirectly provide a measure of stimulus uncertainty

that does not require an explicit conscious representation. Experimental manipulations

to increase uncertainty, such as decreasing stimulus contrast or adding uncorrelated

noise, may increase the latency with which subjects can react to stimuli. In this way,

much research on statistical optimality includes situations in which the mechanisms

of perception may implicitly encode uncertainty, and so optimal integration may be a

by-product of these phenomena.

Cue Con�icts To capture explicit, active decision-making, Boulinguez and Rouhana

(2008) used a �delayed recall task�. This (i) avoided the use of multisensory con�icts;

and (ii) required subjects to make active decisions. They argue that the incongruency

of sensory cues in typical integration studies may bias behaviour. They instead used a

novel task in which subjects were asked to memorise a trajectory applied propriocept-

ively (moving the right hand with pulleys), visually (a dot on a screen) or both together.

They then asked subjects to reproduce the trajectory using proprioception (moving the
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right hand), vision (controlling the dot with the left-hand) or both (controlling the dot

with their right-hand motion). By randomising encoding and recall con�gurations this

arrangement allowed them to examine how the trajectory was recalled under expected

visual and proprioceptive dominance. They found that the weighting of each mod-

ality was based on its relative precision at encoding but the integrated response was

inconsistent with optimal integration.

Wallace et al. (2004) also raised concerns that discordant stimuli may indirectly alter

perception and integration. Subjects were asked whether they believed auditory and

visual stimuli to be uni�ed in an auditory localisation task. When stimuli were perceived

as uni�ed their perception was biased towards the visual stimulus but when not uni-

�ed it was biased against. They describe this perceptual phenomenon as multisensory

�attraction� and �repulsion�. However, it is not possible to rule our the possibility that

the nature of the task biased subjects towards making binary decisions, causing the at-

traction and repulsion observation. Nevertheless, their results demonstrate that people

can judge unity and discrepancy well, a factor which is often overlooked in multisensory

studies.

The Bayesian approach and the weak fusion model require that subjects are able to

determine cue reliabilities which they can then combine linearly. However, Maximum

Likelihood models break down when it is not clear whether two observations are derived

from the same underling cause (Hospedales and Vijayakumar, 2009), and so one must

consider the possibility that subjects discount a discrepant stimulus when performing

multisensory integration. For example, Johnston et al. (1994) presented subjects with

con�icting stereo and motion depth-cues and found that a linear combination rule was

insu�cient to describe the data. However, this may be because discrepancies induce

nonlinearities (Körding et al., 2007). Nonlinearities are still integrated in a way that

can be reliably predicted by Bayesian Model Selection (Körding et al., 2007).

Mechanisms of Integration As discussed previously, Ernst and Bültho� (2004) argue

that cue weighting studies do not rule out the possibility of a `cue switching' strategy in

which an observer uses one cue at a time but switches between cues in proportion to the

cue reliability. This may appear optimal on average. Within-trial analyses may help to

resolve this. For example, the per-trial perception of discrepancy reported above argues

for the presence of active, conscious multisensory decision-making processes (Wallace

et al., 2004).

In an attempt to resolve issues of integration mechanism, Landy et al. (1995) dis-

tinguish strong and weak integration, capturing cue-agnostic behaviour versus linear

integration in a common reference frame. The Bayesian approach is neither strong nor
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weak, and says nothing about the mechanisms available to the nervous system. Strong

and weak models may provide one useful distinction. In general, in order to understand

the mechanisms of cue combination it is important to distinguish the processing steps

in dynamic integration.

Attention Helbig and Ernst (2008) examined visual-haptic integration in the pres-

ence of a distractor. It was hypothesised that, since the distraction should increase

the uncertainty of a reliable stimulus more than an unreliable stimulus (the principle

of inverse e�ectiveness, see Meredith and Stein, 1983, Anastasio et al., 2000), then the

resultant modality weighting would indicate whether or not the distraction was integ-

rated early or late into the integration process. It was found that subjects integrated

the cues prior to the e�ects of the distraction, suggesting the presence of an automatic

(attention-independent) integration mechanism.

An alternative explanation of this result is that the cue weights are learned under

conditions of low attentional load and that the weights are applied under conditions

of high attentional load. However, if the weights were learned, how would the system

decide which set of weights to apply in which situation? This argues against the growing

body of evidence in favour of an online estimation of the weights from the variances of

the current stimuli (e.g. Alais and Burr (2004), Ernst and Banks (2002), Hillis et al.

(2002)). However, such a possibility can not be ruled out without directly addressing

the mechanisms of uncertainty estimation.

It is also important to note that Helbig and Ernst (2008) measure an increase in

task-level performance by the Just Noticeable Di�erence (JND) in perception. This is

a measure of the objective reliability, and is not the same as the true reliability of the

stimulus, or indeed subject's perception of the true reliability.

In summary, Helbig and Ernst (2008) expose a number of fundamental questions:

(i) can subjects distinguish di�erent sources of uncertainty? (ii) to what extent are

subjects consciously aware of this uncertainty? (iii) by what mechanisms is this in-

formation acquired? and (iv) is the consciously acquired information used to determine

multisensory integration weights, or is this mediated by a separate, innate process?

It is not obvious how these questions can addressed through the classical forced-

choice approach.

2.1.3 Bayes in the Brain

2.1.3.1 Neural Implementation

The case for Bayesian mechanisms in the brain is evidenced by both neurophysiology

and computational models.
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Morgan et al. (2008) measured neural activity in macaque visual cortex as the animal

was passively moved, with visual and vestibular cues indicating the motion while the

animal was required to �xate on a dot. They found that when the reliability of the

visual cue was degraded its in�uence on the bimodal neural response reduced while

the in�uence of the vestibular cue increased. The fact that single neurons adjust the

weighting of their inputs to re�ect the relative reliabilities of stimuli suggests an innate

capacity of the brain to handle probabilistic information.

The superior colliculi are the mammalian midbrain areas which receive visual, aud-

itory and somatosensory information, controlling orienting behaviour and head and eye

movements in the presence of multisensory stimuli. Meredith and Stein (1983) showed

that superior colliculus neurons respond more vigorously to multimodal rather than

unimodal stimuli. Cells in the upper layers of the superior colliculi are primarily visual,

while deeper layers respond to combinations of visual, tactile and auditory stimuli (re-

viewed in Holmes and Spence, 2005). The main properties of these multisensory cells

are:

1. Multisensory enhancement: By the spatial rule, stimuli in di�erent senses that

arrive from the same location (i.e. have the same receptive �eld) are enhanced.

According to the temporal rule, stimuli in di�erent senses that arrive at the same

time are enhanced;

2. Inverse e�ectiveness: According to the inverse e�ectiveness rule, when en-

hanced, weak responses increase by a greater proportion than strong responses;

3. Within- and cross-modality suppression: Neural responses are suppressed

when within- or cross-modal stimuli are discrepant (i.e. they occur simultaneously

in the separate receptive �elds; or in the same receptive �eld at di�erent times).

These phenomena can, in fact, be modelled by Bayes rule. Anastasio et al. (2000)

demonstrate how the principles of inverse e�ectiveness and cross-modality suppression

emerge naturally as a consequence of combining probability distributions. Further,

Barber et al. (2003) present a mathematical formulation of how neurons might perform

Bayesian computations. Hoyer and Hyvärinen (2002) demonstrate that Poisson noise

empirically observed in neural recordings may, in fact, be a bi-product of an implement-

ation of Bayes in the brain.

2.1.3.2 Population Codes

Kepecs et al. (2008) showed that �ring rates of neurons in rat orbitofrontal cortex

respond to stimulus uncertainty. In an olfactory discrimination task rats were trained
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to choose one of two odours when cued with a mixture. The odour with the higher

proportion de�ned the �correct� choice, and the animal was rewarded. After training,

the response of cortical neural populations could predict both the chosen decision as well

at the amount of time the animal would wait for a reward, suggesting that con�dence

information is encoded in population code activity.

Deneve et al. (1999) asked how neural networks might implement maximum likeli-

hood. This can be achieved with a biologically plausible recurrent network of non-linear

neurons with Poisson-distributed noise. Deneve et al. (2001) generalise the model and

show how it remains optimal when the reliability of cues changes from trial to trial.

While most studies of multisensory integration assume that modalities are remapped

into a common reference frame, Deneve and Pouget (2004) argue that multisensory

integration occurs via a �cross-modal dialogue�, not a supra-modal common reference

frame. In their model, uncertainty is encoded in the gain of the neural responses, not

in the distribution of population activity. The latter theory would be unable to capture

contrast-induced reliability and does not easily handle the presence of di�erent reference

frames. Of course, it would also be possible to describe a model which included addi-

tional layers to perform these coordinate transformations prior to multisensory layers,

which would result in conceptually the same model.

Crucially, for populations of neurons encoding stimuli with Poisson-like neural re-

sponses, with gains tuned to the reciprocal variance, Bayesian inference reduces to a

linear combination of the unimodal neural responses (Deneve et al., 2001). In such

a system, cortical neural variability allows neurons to automatically encode probabil-

ity distributions. However, this does not explain how prior information may be en-

coded. If one assumes a topological arrangement of input layers (Magosso et al., 2008)

a population-distribution model can encode priors by potentiating network connections

with the arrival of sensory inputs. It is not immediately obvious how gain-encoded

uncertainty allows for this. It is possible that the presence of neural noise can enhance

weak signals by �stochastic resonance� to transform gains into distributions (Goodwin

and Wheat, 2004).

An important di�erence between alternative population code models of multisensory

integration is whether or not subjects learn to explicitly represent the statistical inform-

ation about stimuli across a population of neurons, or if subjects sample from random

variables that represent the statistical information about the stimuli (an implicit encod-

ing). In forced-choice psychophysical experiments, these two methods are di�cult to

reliably distinguish, since the experimenter is sampling behavioural responses. Indirect

measures such as measuring response variability can be of some use, but to directly tease

apart these di�erent approaches we stress the importance of continuous decision-making
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tasks and within-trial analyses.



24 Chapter 2. Background

2.2 Decision-Making over Time

2.2.1 Introduction

In the previous section I have reviewed evidence that the brain employs Bayes-optimal

multisensory integration for a range of binary decision tasks (e.g. Ernst and Banks,

2002). This growing empirical consensus is based on psychophysical studies, computa-

tional models, and neurophysiological recordings.

A key assumption of the Bayesian approach is that people are somehow capable

of acquiring sensory evidence and using it to form probability distributions. Neural

recordings reveal the presence of statistical signals in the brain (Kepecs et al., 2008)

and population code models can explain many behavioural results (Deneve and Pouget,

2004), but in order to understand how sensory information is used to establish cue

reliabilities it is necessary to look at within-trial behaviour.

It is not known what measure of �con�dence� people use to make optimal decisions.

In numerous studies cue weighting is shown to be optimally based on objective uncer-

tainty, but in other cases this may be inadequate (Sober and Sabes, 2005), perhaps

because subjects may not be able to estimate this quantity accurately (Rosas et al.,

2005). To understand the mechanisms of con�dence estimation a direct approach may

be more suitable.

Forced-choice binary decisions may not reliably discriminate optimality from the

passive e�ects of uncertainty (Helbig and Ernst, 2007). We can ask subjects to make

active decisions (e.g. Boulinguez and Rouhana, 2008), but the best way to distinguish

active cue integration from emergent optimality in average behaviour (e.g. for a cue-

switching approach, Ernst and Bültho�, 2004) is, again, to record within-trial decisions.

A number of studies have shown that optimal integration occasionally fails (e.g.

Knill and Saunders, 2003, Burr et al., 2009), motivating the need for a better under-

standing of the underlying processes. Further insight about the underlying processes

could be gained by examining the evolution of decision-making process and by observing

cue integration on a �ner temporal granularity.

In this section I review continuous sensorimotor tasks. These could provide a valu-

able tool for identifying the underlying processes of multisensory integration.

2.2.2 Continuous Tracking and Pointing Tasks

2.2.2.1 Traditional Tracking Tasks

A classic paradigm for assessing motor control is that of tracking a target on a screen.

The task has several variants:
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• pursuit tracking requires the subject to follow a randomly displaced target dot

with a cursor.

• compensatory tracking requires the subject to maintain a cursor in a �xed position

while it is randomly perturbed.

• preview tracking provides the subject with a preview of where the target will be

in the future, adding the element of planning to the task.

• step tracking is a pursuit tracking task in which the target may be randomly

displaced for a brief interval. This step is spatially unpredictable, but the return

step is not. Temporal unpredictability can also be added by randomising the step

onset time and duration.

• predictable target tracking involves a predictable target pattern that is temporarily

occluded.

Within these tracking categories, the nature of the visual feedback can be varied (i.e.

delays added, noise added, occlusions etc.) to examine di�erent elements of the subjects

sensorimotor behaviour.

The paradigm has proven useful for quantifying impairment in a number of neur-

ological disorders. Fore example, it has been shown that patients with Parkinson's

Disease have di�culty in initiating rather than executing pre-programmed movements

(Day et al., 1984, Bloxham et al., 1984), and that patients with cerebellar ataxia show

irregular modulation of pursuit velocity when tracking a predictable constant-velocity

target (Beppu et al., 1987). The visuomotor tacking paradigm is related to many real-

world sensorimotor tasks as it involves feedback, prediction, planning, reacting, motor

initiation and motor execution. Sensitive to quanti�able subtleties of behaviour such

as latency, magnitude and frequency of motor responses under di�erent experimental

conditions, it is unsurprising that such a paradigm has been used to pick apart the

relative contributions of di�erent aspects if sensorimotor control. Fig. 2.1 illustrates a

range of variants to the tracking task for understanding aspects of human sensorimotor

function.

Responding to Perturbations Jones and Donaldson (1986) designed three tasks to

allow quantitative assessment of di�erent aspects of sensorimotor function. As has

already been seen (i) preview tracking measures ability at planning and execution; and

(ii) step tracking measures ability at reaction and anticipation (by including both pre-

dictable and unpredictable target `jumps'); Jones and Donaldson (1986) also introduce

(iii) a combined task (Fig. 2.1B). Since their conception, these basic tracking tasks



26 Chapter 2. Background

pursuit

step

B

E

H

DC

s1

s2

target

cursor

F
break

slip

A

cursor
Low High

target
jump

target cursor

G

Target
Cursor

BCI

Figure 2.1: Tracking Tasks. (A) Tracking a 1-D cursor (e..g using steering wheel Davidson

et al. (2002)). (B) Pursuit tracking and step tracking to distinguish predictive and reactive

behaviour (e.g Jones and Donaldson (1986)). (C) 2-D cursor tracking (with target jumps,

Foulkes and Miall, 2000; with time-delayed cursor Miall and Jackson, 2006). (D)Multimodal

tracking, with electrotactile representation of 2-D position (Szeto and Chung, 1986). (E)

Controlling the grip force of a neuroprosthesis (ampli�cation of muscle signals in quadriplegic

patients), e.g. shoulder-position-controlled(Hines et al., 1992). (F) Robotic prosthesis

control of grip force (e.g. Zafar and Doren, 2000). (G) Joint-controlled cursor tracking (e.g.

Beppu et al., 1984, 1987 ). (H) Brain-controlled (EEG) cursor tracking (e.g. Chatterjee

et al., 2008)
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have proven very useful due to their low cost and high value in assessing motor func-

tion. Fore example, Allen et al. (2007) demonstrate their use for discriminating between

patients with di�erent levels of bradykinesia. Their �ndings demonstrate the value of

tracking tasks for separating predictive and reactive aspects of control. On this theme,

Davidson et al. (2000) and Davidson et al. (2002) present subjects with a `driving' task,

requiring subjects to learn a �novel visuomotor relationship� when preview tracking.

Subjects track a moving sinusoidal target using a steering wheel (Davidson et al., 2002)

or joystick (Davidson et al., 2000) with unusual dynamics (Fig. 2.1A).

On alternating trials the cursor is periodically hidden, requiring subjects to rely on

open-loop control. Over a sequence of many trials there is a progressive transfer of

learning from closed- to open-loop control, which is attributed to feed-forward learning.

Interestingly, once performance has reached a peak, it appears the feedforward controller

continues to learn and adapt to feedback even though it can not further reduce errors

in the with-feedback condition. The e�ects of this learning are immediately obvious

when feedback is removed. Davidson et al. (2000) argue that this indicates the presence

of a combined feed-forward and feedback controller. The results are explained by a

model featuring an adaptive feed-forward process, feedback-driven error-correction and

feedback-driven feedforward adaptation (Davidson et al., 2002).

Tactile Tracking With vibrotactile and electrotactile stimulation (see later sections

2.4.2.3 and 2.4.2.4), one can create a tactile sensations using vibratory or electrical

stimuli on the skin. This can be used to create a tactile analogue to the visuomotor

tracking paradigm.

Szeto et al. (1979) compared ten electrotactile feedback stimuli in an electrotactile

tracking task. Subjects were trained to use the feedback, then they used a joystick to

track a target presented in the tactile modality and visually on an oscilloscope screen

(Fig. 2.1D). It was found that spatial modulation codes were signi�cantly superior to

single-electrode codes modulating frequency modulation, since single-electrode codes

were prone to sensory adaptation. Further codes were explored by Szeto (1982), who

found that frequency modulation had the fastest learning-rate, but a linear array of sim-

ulators resulted in greatest performance. Monophasic stimulation proved more e�ective

than biphasic stimulation, and the ventral forearm was shown to be more sensitive

than the dorsal. Szeto and Farrenkopf (1992) examined the perceptual response to

frequency-modulated electrocutaneous signals and Szeto and Saunders (1982) reviewed

stimulus parameters and coding formats to recommend procedures for implementing

safe, reliable, high-bandwidth, low-adaptation electrotactile displays.

A more complex paradigm relevant to prosthesis feedback requires subjects to in-
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terpret data presented in two dimensions simultaneously. Szeto and Chung (1986)

introduced a dual-channel 2-dimensional (2D) electrocutanous tracking task. Previous

attempts at a similar task resulted in high inter-subject variability and low inter-group

variability (Szeto and Lyman, 1977), making it di�cult to reliably discriminate perform-

ance di�erences due to di�erent tactile codes. Using an elaborate and time-consuming

training protocol to achieve the necessary level of performance (9 daily training sessions,

each lasting 2-3 hours), they were able to train subjects at the task, though they re-

ported that the task required signi�cant mental e�ort. Such a lengthy training process

suggests that multidimensional tracking is cognitively demanding.

Sensorimotor Delays When sensory information is made unreliable by a delay, how do

we deal with it in tracking tasks? In the Smith predictor hypothesis (Miall et al., 1993)

it is supposed that prediction and control are combined into a common framework that

parametrically accounts for these delays. To test this, Foulkes and Miall (2000) required

subjects to track unpredictable, continuously moving 2D targets using a hand-held joy-

stick (Fig. 2.1C) while visual feedback of the joystick position was delayed (by 0 ms,

200 ms or 300 ms). Subjects adapted to the delay, with a signi�cant drop in tracking

error. Foulkes and Miall (2000) argue that subjects learn an adaptive delay that is

added to the forward model to compensate for delays in external feedback, consistent

with the Smith predictor hypothesis. Likewise, Miall and Jackson (2006) showed that

introduction of visual feedback delays disrupt tracking performance, with an increase in

errors and a reduction in the magnitude of corrective movements. However, in the pres-

ence of delays subjects should increase the frequency of corrective movements. Instead

they improved the feed-forward control of their corrective movements so that they were

more accurate. This indicates that prediction and control are separate processes, and

argues against the Smith predictor hypothesis.

Force Tracking We have seen that the tracking paradigm can be used to study both

visual and electrotactile perception. It also extends naturally to force perception and

control. Hines et al. (1992) evaluated the force-control ability of a functional stimulation

neuroprosthesis. Shoulder-position signals were used to electrically stimulate the arm-

muscles of patients with spinal cord injury to initiate grasps. Hines et al. (1992) used

a visual pursuit tracking task analogous to control of grasp force or grasp aperture

(Fig. 2.1E). Using this same setup, Adamczyk and Crago (1996) assessed the e�ect of

non-linearities and time delays on performance. They reported that, for force control,

neuroprostheses with with linear, low latency controllers are preferred.

On the theme of force estimation in prostheses, Zafar and Doren (2000) used a

video-based simulated prosthesis to determine whether grasp-force feedback can improve
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control in the presence of realistic visual information. Subjects had to achieve and

maintain the (simulated) grasp force within a target window. It was found that force

feedback improved force control as well as error detection.

However, the same was not found in a study by Chatterjee et al. (2008) using a force-

matching grasping task for EMG prosthesis wearers (Fig. 2.1F). Vibrotactile grip-force

feedback improved performance for experienced subjects in only one out three force

conditions. Naive subjects performed worse in the presence of feedback. These unex-

pected results suggest either that: (i) subjects can not utilise feedback until they have

learned feed-forward control the hand. This may be due to the noisy EMG interface; (ii)

learning to use feedback can take considerable time, owing to its �unfamiliar nature�; or

(iii) Feedback o�ers limited utility (and potentially hindrance) in the presence of other

factors suitable for learning (such as vision, audition, tactile sensation at the stump/arm

and feed-forward prediction).

Tracking tasks are relevant to prosthesis control because they provide a systematic,

controlled and rapidly executed sensorimotor assay.

More Elaborate Control Finally we consider that tracking tasks can be extended to

the assessment of controlling more elaborate signals. Beppu et al. (1984) and Beppu

et al. (1987) used a visuomotor task controlled by elbow movements. Amongst other

�ndings they showed that cerebellar disorders increased action initiation latency, im-

paired velocity control and a higher frequency of corrective moments (Fig. 2.1G).

Recently, Chatterjee et al. (2007) �tted subjects with an electroencephalogram

(EEG) brain-computer interface. Mu-rhythms were used to control a virtual cursor,

presented visually and via vibrotactile feedback. After training, subjects could control

the cursor with either feedback modality (Fig. 2.1H).

In summary, tracking tasks show versatility, �exibility and discriminatory power for

(i) understanding a range of sensory disorders; (ii) developing control interfaces relev-

ant to prosthesis design; and (iii) developing feedback interfaces relevant to prosthesis

design.

2.2.2.2 Pointing and Reaching Tasks

Response to Perturbations We have previously discussed a study by Körding and

Wolpert (2004a), where subjects made online corrections to momentary visual feedback

of hand position during a reach (Fig. 2.2A). This approach lends itself readily to static

manipulations, such as cue variance and prior cue distributions.

In contrast, Saunders and Knill (2004) present continuous feedback of the �ngertip

location. This allows for testing of dynamic manipulations, e.g. to decouple the role
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Figure 2.2: Pointing and Reaching Tasks. (A) Subjects reach for a target with a hand

hidden by an opaque mirror. Instantaneous feedback (noisy and perturbed) is given mid-way

through movement (Körding and Wolpert, 2004a). (B) Feedback is continuous except for

an occluded region in which a perturbation may occur (Saunders and Knill, 2004). (C)

Subjects control a �pea-shooter� to align the average of a distribution to a target (Körding

and Wolpert, 2004b). (D) Subjects estimate the emergent position of randomly-walking

visual feedback that passes behind an occluder (Graf et al., 2005). (E) Subjects estimate

the �nal position of a falling ball. On movement initiation the ball is occluded (Faisal and

Wolpert, 2009).
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of motion information and position information in reaching. As subjects move past

an occluder, �ngertip position feedback may be randomly perturbed (Fig. 2.2B). By

varying the relative position and/or direction of the perturbation, they discovered that

subjects are able to correct their internal model based on both sources of information.

Together, these studies provide evidence that subjects update their decision as in-

formation arrives, relying on instantaneous evidence (Körding and Wolpert, 2004a)

or motion evidence (Saunders and Knill, 2004). By what mechanisms may this be

achieved?

Izawa and Shadmehr (2008) changed the properties of a target stimulus during a

trial: its location and/or its uncertainty (blur). They found that the response to the

changing stimulus was a weighted combination of the old and new stimulus, and the

speed of adjustment depended on the relative uncertainties, accurately modelled by a

Kalman �lter. Hence it appears that continuous con�dence estimation and multisensory

integration are fundamental features of human sensorimotor function � and not limited

to the perceptual examples discussed previously.

The above studies focus on per-trial optimal behaviour. Burge et al. (2008) show

that learning and adaptation behaviour over many trials is also in accordance with

optimality principles. In three sequential blocks of reaching trials subjects were (i)

given correct �ngertip feedback; (ii) given feedback displaced by a constant amount

in a �xed direction; and (iii) given correct �ngertip feedback again. Subjects' rate of

adaptation to the step between phases (i)→(ii) and (ii)→(iii), was a function of feedback

uncertainty, as modelled precisely by an optimal Kalman �lter model.

In the above examples, uncertainty can be added to visual stimuli by adjusting the

distribution of clouds of dots (Körding and Wolpert, 2004a), through periodic occlusion

(Saunders and Knill, 2004), or by adjusting the blurriness or relative contrast of the

stimulus (Izawa and Shadmehr, 2008). All of these methods increase the probability of

task errors, but do not provide us with insight of the mechanisms by which this prob-

ability of error is perceived (and hence used for optimal decision making). To address

this, Körding and Wolpert (2004b) provide skewed feedback information. In a �pea-

shooter� task, subjects received samples from an asymmetrical bimodal distribution

centred relative to the direction of their �ngertip. They received frequent samples from

the distribution, allowing them to adjust their �ngertip to ensure that the peas were �on

average as close to the target as possible�. It was assumed that subjects were optimising

a loss function (i.e. minimising some internal measure of task-error). By adjusting the

spread and skewness of the distribution it was possible to infer from their decisions the

form of the loss function, revealing that small deviations were penalised with squared

error but larger deviations were between squared error and absolute error (Fig. 2.2C).
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This study is an important step in understanding how people utilise sensory evidence

for decision making.

Estimation over Time The tasks of reaching and grasping are fundamental to human

behaviour, and lend themselves readily to understanding the mechanisms of sensorimo-

tor control. A particularly interesting problem is in understanding how sensorimotor

decision-making evolves over time.

In a novel reaching task, Graf et al. (2005) presented subjects with a stimulus that

travels across a screen, changing direction randomly at brief regular intervals (�random

walk�). For di�erent levels of directional variability subjects were asked to estimate the

location of the stimulus as it emerged from behind an occluder. They do this in two

ways: (i) they report the most likely location estimate with a �xed marker; and (ii)

they report a �capture region� in which they are certain the stimulus lies (Fig. 2.2D).

Interestingly, they found that the capture region chosen was a function of the stimulus

variability and occluder width. In asking subjects to explicitly report this capture region

they make the important observation that subjects must be explicitly aware of stimulus

variability. However, they do not provide a model to explain their �ndings.

In a second experiment, Graf et al. (2005) changed the reliability of the stimulus at

random points in the trial. They observed symmetrical capture regions for low→high

and high→low reliability transitions. This suggests that subjects may be able to accu-

mulate visual evidence over the full range of the trial.

Recently, Faisal and Wolpert (2009) examined the trade-o� between allocating time

to perception and time to action. Subjects reached with a paddle under a table when

anticipating the trajectory of a falling ball (2.2E). However, on movement initiation, the

ball was occluded. Hence, subjects were required to allocate time to forming a reliable

estimate and time for executing reliable movement. In preliminary experiments it was

found that later-onset and larger-distance movements increased movement variability,

whilst earlier movements increased sensory variability. In the main experiment each sub-

ject timed their decisions in an optimal fashion so as to minimise the overall variability,

apparently accommodating knowledge of their own sensorimotor uncertainty.

Multisensory and Sensorimotor Behaviour We have seen that reaching and pointing

tasks can inform us about spatio-temporal aspects of perception. I argue that, just

as tracking tasks can provide us with a window into sensorimotor behaviour, pointing

tasks can provide similar insights speci�c to the dynamical system of a healthy limb.

For example, Bhushan and Shadmehr (1999) examined reaching movements in novel

force-�elds to understand the role of internal models in arm control.
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Sober and Sabes (2005) studied the role of vision and proprioception for reaching

behaviour. Subjects placed their right hand on a table under a mirror so that visual

feedback could be presented in the location of the hand, and they placed their left

hand under the table so that a proprioceptive `alignment' signal could also be utilised.

They were asked to reach for visual and/or proprioceptive targets with displaced visual

feedback of their �ngertip or whole-arm, �nding that the modality of the target and the

nature of the feedback both a�ected errors in reach planning.

The above reaching tasks expose the fact that the planning, execution and main-

tenance of reaching movements relies on diverse and �exible internal mechanisms. In

designing an arti�cial sensorimotor circuit we must consider the nature and availabil-

ity of multiple sensory signals and the degree to which these signals can be integrated

seamlessly and continuously to achieve successful sensorimotor behaviour.

2.2.3 Temporally-Evolving Decisions

2.2.3.1 Continuous Optimal Decisions

We have seen that Bayesian Decision Theory provides a coherent way of describing

discrete sensorimotor decisions (Körding and Wolpert, 2006) but in general a continuous

trajectory of movement arises in response to a stream of sensory input. This can be

modelled with a Kalman �lter (Kalman, 1960), a Bayesian estimator for time varying

systems (Wolpert, 2007). The Kalman �lter is an e�cient (minimum mean-square error)

algorithm to estimate the state of discretised linear dynamic system.

We assume that, at each time step, the system is linearly derived from the current

state and a motor action. Let us assume at time t a stimulus is located at position xt. In

general we describe xt as the state of the system. The Kalman �lter addresses the general

problem of trying to estimate an evolving state given noisy observations, comparable to

Hidden Markov Model (HMM) inference. The Kalman algorithm provides an estimate,

x̂t, of the true state, xt, by combining a feedforward prediction with feedback-based

evidence, according to the schematic in Fig. 2.3.

The power of the model comes fro the choice of a gain term, which controls the

relative weighting allocated to feedforward and feedback information. In the classic

Kalman algorithm (Kalman, 1960) this is modulated so as to achieve an optimal es-

timate of the system state, that is, it minimises the covariance of the error between

the current estimate and the true state of the system. This is essentially achieved by

using the observation error covariance (i.e. the observation noise) and the feedforward

error covariance (i.e. the prediction noise), to appropriately weight each stream. For a

mathematical review see Brown and Hwang (1992).

The Kalman �lter model provides a mathematically principled continuous extension
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Figure 2.3: Schematic illustration of Kalman Filter estimation (adapted from Wolpert et al.

(1995)). To obtain an up-to-date sensory estimate xt+1, feedforward and feedback processes

are combined weighted by a gain term. The feedforward prediction is based on the current

estimate xt and the current action ut; The feedback correction is based on a feedback

estimate and the actual feedback observed.

of Bayesian estimation. The key features of this optimal model are the presence of

complementary (and appropriately weighted) feedforward and feedback processes, and

again the assumption that the statistical properties of the system being estimated are

known to the observer. This model has been supported by empirical studies examining

estimation of hand position (Wolpert et al., 1995), posture (Kuo, 1995) and head orient-

ation(Merfeld et al., 1999), describing adaptation within trials (Izawa and Shadmehr,

2008) and learning across trials (Burge et al., 2008).

Reaching and pointing tasks provide valuable insights into the underlying mechan-

isms of continuous estimation in humans. Baddeley et al. (2003) applied random walk

perturbations to visual feedback of hand position during a pointing task. It was found

that subjects achieved e�cient performance by �exponentially weighting recent errors�

as a function of the random walk variability. Though the model lacked a proprioceptive

component it is apparent that subjects were able to accumulate the statistics of the

randomly walking trajectory over time, a key assumption of the Kalman model.

As discussed earlier, Izawa and Shadmehr (2008) changed the properties of a target

stimulus during a trial: its location and/or its uncertainty. According to the Kalman

model, the rate of reach-adaptation for transitions between each of these conditions de-

pends on the uncertainty of the previous state estimate and the updated state estimate.

Indeed, empirical data supported this �nding.

Over a longer time scale, Burge et al. (2008) provided evidence for cognitive Kal-

man processes in adaptation across trials. Firstly, they demonstrated that the rate of

adaptation to changing stimuli depends on feedback uncertainty. This is likened to the

modulation of the Kalman gain to favour the more reliable stream, as discussed above.

Secondly, they showed that if measurement uncertainty is greater in one dimension over
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another (using anisotropic visual stimuli) the Kalman observer adapts more slowly in

the uncertain direction, again con�rmed empirically. Thirdly, they had subjects follow

random-walking trajectories. When random walk variability was increased, adaptation

rate increased, simply because subjects became more certain about the stimulus uncer-

tainty. However, they found that subjects were not Kalman-like in response to random

perturbations. They did not adapt optimally to perturbations, attributed to a lower

rate of learning environmental statistics than was expected.

The results of Izawa and Shadmehr (2008) and Burge et al. (2008) provide convincing

evidence that the key components of Kalman estimation govern perception, adaptation

and learning, in particular for the magnitude of adaptation rate under uncertainty and

the relative weighting of feedforward and feedback signals. These continuous-time com-

putations must be formed rapidly, and �exibly updated over time as evidence arrives.

However, it seems that some aspects of continuous decision-making are not optimal. It is

di�cult to reconcile the observed discrepancies as the mechanisms underlying statistical

estimation are largely unknown (Burge et al., 2008).

2.2.3.2 Changing one's Mind

When do we decide to make a decision? Gold and Shadlen (2007) review a possible

neural mechanism that may underlie decision-making processes. Using sequential es-

timation based on noisy evidence, they show how evidence in favour of a hypothesis

accumulates in the form of a random walk. This model, closely linked to neural �ring

rate, can explain the onset and timing of discrete decisions. However, in making these

decisions, subjects must also make a trade-o� between allocating time to perception,

and time to action (see Faisal and Wolpert, 2009, discussed previously). Since there is a

considerable time delay between sensing the world and initiating motor actions, subjects

often make decisions while sensory information is arriving, and it has been shown that

certain decisions made under these conditions, in particular changes of mind, re�ect

the properties of this processing pipeline. In a vision-based reaching task Resulaj et al.

(2009) are able to predict these discrete events based on the time-delayed accumulation

of evidence.

Previously I described a �pea-shooter� task (Körding and Wolpert, 2004b), in which

subjects accumulated information from samples (�peas�) to estimate the mean. Con-

tinuous tasks in which evidence accumulates have potential to tell us about how sensory

estimates are formed and utilised.
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2.2.4 Continuous-Time Decision Mechanisms

Continuous-time tasks may prove valuable in understanding multisensory integration

phenomena. Such tasks have the potential to explain the cognitive processes underlying

integration over time, but due to the added attentional and motor demands may also

prove di�cult to interpret.

2.2.4.1 Attention and Cognitive Phenomena

To further understand the cognitive functions discussed thus far one must be aware

of con�icting processes which may confound or provide alternative interpretations to

empirical observations.

Jack and Thurlow (1973) showed that the ventriloquism e�ect is only successful

in the presence of spatial and temporal constraints. Although the illusion is robust to

some degree of spatial misalignment (Kennedy et al., 2009), temporal alignment between

sound and lip movement is crucial for the success of the illusion (Jack and Thurlow,

1973). This could be due to the accuracy of visual and auditory temporal judgement, but

the reduced accuracy of auditory localisation judgement. In cue integration experiments

the e�ect of discrepancies between sensory modalities may create unwanted attentional

modulations that could otherwise explain the e�ect of sensory uncertainty on decisions

(Helbig and Ernst, 2007).

Gepshtein et al. (2005) found that size-estimation uncertainty increased by changing

the spatial o�set between visual and haptic stimuli. This con�rms the importance of

visual-haptic congruence for integration. Spence et al. (2004) showed that vibrotactile

targets presented to the thumb or the index �nger of either hand with visual distractors

resulted in slower and less accurate performance during incongruent stimuli. However,

when using mirrors to create spatial o�set, Helbig and Ernst (2007) showed optimal

integration, perhaps indicating that while uncertainty may change with spatial incon-

gruence, the integration mechanism remains robust. However, it should be noted that

although mirror-adjusted stimuli were spatially discrepant from their tactile counter-

parts they arose from the same true source. Therefore it seems that to preserve integ-

ration the stimuli should at least be attributed to the same source if not perceived in

the same location.

Sensory con�icts provide a useful means to calculate per-modality weighting. Warren

et al. (1983) show that moderate degrees of inter-cue discrepancy (between vision and

audition for spatial localisation) does not modify sensory integration, and it is argued

that adaptation to sensory con�ict is separate to sensory integration processes (Welch

et al., 1979). However, considerable cue con�icts may result in sensory �ssion (see

previously), where one modality is rejected. Also, incongruence of noise in stimuli
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can cause a visual �distraction� that indirectly in�uences performance. This has been

shown for vibrotactile perception at the �ngertip (Spence et al., 2004), as well as for

electrocutaneous stimulation of the earlobes (Tajadura-Jiménez et al., 2009). Reaction

times may be improved with congruent stimuli, and perceptual errors reduced. To

avoid these confounding possibilities in multisensory integration studies con�icts must

be counterbalanced in direction and magnitude as well as go unnoticed by the subject.

2.2.4.2 Maximising Expected Gain

What motivates people to form optimal decisions? Recall again the �pea shooter� ex-

periment (Körding and Wolpert, 2004b) which was was used to infer the loss function

for combining samples over time. It was shown that samples are fused according to loss

function that lies somewhere between square error and absolute error. One could argue

that people are acting to maximise some mathematically de�ned reward.

Indeed, this hypothesis was addressed by Trommershäuser et al. (2003), who asked

subjects to point to a target where certain locations near to the target were marked

with a numerical penalty. This revealed that subjects are able to choose an average

pointing location so as to maximise the expected gain with respect to the variability of

their own pointing movements.

Rewards and point-scoring provides a valuable method of encouraging certain be-

haviour from subjects. By designing a task with a simple reward function subjects

may be more likely to behave predictably and consistently. With an accurate model of

the reward function, behaviour can be compared to an �ideal� observer, optimised to

maximise the speci�ed reward.

2.2.4.3 Acquisition of Sensory Integration

Previously it was described how Helbig and Ernst (2008) examined early- versus late-

integration of visual-haptic information, which posed some interesting questions sur-

rounding learning of multisensory integration uncertainties.

Gori et al. (2008) showed that optimal multisensory integration only develops in

middle childhood. Children less than 8 years of age did not integrate visual and haptic

stimuli for judging orientation or size, instead relying on a single modality. For size

discrimination, haptic information dominated, whereas for orientation discrimination,

vision dominated. However, for children aged between 8 and 10 years the integration

was statistically optimal, consistent with Ernst and Banks (2002). Ernst (2008) raise the

issue of a correspondence problem between modalities: during early-childhood sensory

organs are constantly growing and reorganising. It is also likely that one sense is used

to calibrate the other during development, and so multisensory integration must come
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later (Gori et al., 2008). These results indicate that there is a trade-o� between sensory

integration and plasticity.

Is our ability to fuse stimuli learned? Or is our ability to estimate sensory uncertainty

learned? This can be tested in a number of ways: (i) by introducing a novel modality

(i.e. one in which we the relationship between cues and their objective reliability are

unknown); or (ii) examine within-trial behaviour, and examine if subjects can acquire

sensory evidence over the time course of a single trial. Sensory evidence could include

evidence pertaining to an estimate of the mean of the visual stimuli, or indeed evidence

pertaining to an estimate of the uncertainty of visual stimuli.

2.2.4.4 Acquisition of Sensory Uncertainty

Earlier I presented a large number of psychophysical experiments that support the

proposition that perception is statistically-optimal. The theory of statistical optimality

in the brain relies crucially on the fact that humans must somehow accumulate statistical

information from unpredictable stimuli.

Humans are not only able to predict the position of objects moving along random or

noisy trajectories, but they are also able to report a level of con�dence in this prediction

(Graf et al., 2005). This is not a uniquely human capacity: rats are also capable of

uncertainty-based decisions (Kepecs et al., 2008), and in monkeys it was shown that

the degree of decision-con�dence is encoded in parietal cortex neurons (Mulliken et al.,

2008). Perhaps, then, sensory uncertainty is naturally encoded by the visual system,

perhaps even independently of perceptual awareness.

Jacobs (2002) reviews evidence for two hypotheses relating to how visual cue reli-

ability is formed: (i) the estimated reliability of a cue is related to the ambiguity of

the cue, i.e. the Bayesian and Kalman approaches discussed previously; and (ii) cue

correlations are used to estimate cue reliabilities, i.e. a cue that is correlated with other

cues in the environment is regarded as reliable. Resolution of these hypotheses may be

achieved by further understanding the mechanism(s) for estimating cue reliabilities.

Graf et al. (2005) showed that subjects estimate the emergent position of randomly-

walking visual feedback that passes behind an occluder. Subjects' report a capture

region, which requires them to explicitly acknowledge the uncertainty in the stimuli.

As the capture region size is altered in proportion with the random walk variability,

subjects are clearly aware of the stimulus uncertainty.

There are a number of possible �reliability signals� that people could use to form

such uncertainty estimates in order to make uncertainty-based decisions (Jacobs, 2002).

For example, we distinguish true uncertainty from objective uncertainty and, moreover,

from subjective perception of this uncertainty. Barthelmé and Mamassian (2009) asked
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if people are aware of the uncertainty in their own actions. Subjects were asked: (i) to

choose the less uncertain stimulus of two noisy oriented ellipses; then (ii) distinguish

the orientation of the chosen stimulus. These two tasks allowed the experimenter to

separate perception (subjective uncertainty) from behaviour (objective uncertainty).

Barthelmé and Mamassian (2010) present reservations regarding a Bayesian ap-

proach to understand uncertainty estimation, such as the presence of suboptimal un-

dercon�dence and overcon�dence reported in the literature, and known suboptimal

risk-aversion behaviour (versus loss-function optimisation). Nonetheless, their results

remain consistent, at least qualitatively, with this approach (Barthelmé and Mamassian,

2009, 2010).

It is possible that unconscious neural mechanisms indirectly account for uncertainty

judgements in a wide range of optimal integration studies presented here (Helbig and

Ernst, 2007), but this is resolved by asking subjects to directly report a capture region

(Graf et al., 2005), and explicitly provide a judgement of uncertainty (Barthelmé and

Mamassian, 2009). By combining explicit con�dence judgement with a cue integration

task it may be easier to understand the mechanisms of statistical estimation for optimal

decision-making.
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2.3 Human Grasping

2.3.1 Introduction

Dexterous manipulation of objects is a skill which take many years to re�ne. A typical

daily task which healthy individuals take for granted is that of reaching, grasping and

lifting an object. Each of these phases requires careful modulation of muscle forces, a

di�cult task for an open-loop control policy.

The healthy human hand is a closed-loop system, exploiting a vast array of sensory

receptors to readily detect an object slipping from our grasp, react to the sudden sensa-

tion of heat, and dexterously control our �ngers to tie a shoelace. These actions are all

impaired in the absence of tactile sensibility. Visual feedback may be too slow and inac-

curate for these purposes and would require us to deploy considerable conscious e�ort to

achieve the same level of dexterity. This presumably contributes to the slow, sequential

and unnatural hand control observed in amputees �tted with open-loop prostheses.

Aside from the sense of touch, another important sensory signal arises from muscles

and joints. This proprioceptive feedback gives us knowledge of the position of our body

in space. How does the nervous system integrate these percepts to provide dexterous,

adaptive and dynamic interactions with the world?

This section reviews the sensory, motor and cognitive aspects of healthy human

grasping that de�nes the gold standard for prosthesis design.

2.3.2 Motor Control and Somatosensation

2.3.2.1 Physiology

The Sense of Touch The tactile sense is capable of discriminating grip force (Johans-

son and Westling, 1984a), object roughness (Johansson and Westling, 1984a), surface

patterns (Chapman et al., 2002), curvature and force direction (Johansson, 2002), object

taper (Jenmalm et al., 2000), torque loads and mass distributions (Johansson, 2002),

softness (Srinivasan and LaMotte, 1995), shape (Wheat and Goodwin, 2001) and ori-

entation (Hsiao et al., 2002). While it is known that we can interpret these properties,

it is not known which items of information are exploited by the nervous system to aid

manipulating objects. This is made even more challenging due to the predominantly

unconscious processing of the tactile modality. Understanding the role and function of

di�erent feedback sources is thus still an open question.

Each �ngertip contains around 2000 tactile sensors, with di�erent temporal and

spatial characteristics. At the skin surface, rapidly-adapting RA-I (Merkel) neurons

are suspected to inform the brain of `goal completion', spiking on object contact, lift-

o� and slip (Johansson, 2002), with large receptive �elds, while slowly-adapting SA-I
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Figure 2.4: Skin. Schematic cross-section of human skin, illustrating the structure and

location of numerous sensory receptors (adapted from Witney et al., 2004).

(Meissner) neurons are more responsive to perception of shape and edges (Wheat and

Goodwin, 2001), and responsible for detection of the magnitude of forces at high spatial

resolution. Deeper into the skin, rapidly-adapting RA-II (Pacinian) receptors have low

spatial resolution but are sensitive to transient (high frequency) or vibratory stimuli,

immune to low frequency activity due to their laminar structure. Slowly-adapting SA-II

(Ru�ni) receptors detect skin stretch and deformations. Fig. 2.4 illustrates these key

sensory receptors in human skin, which are summarised in Johnson (2001).

Muscles Muscle control related to grasping is complex, involving temporal parsimony

and co-contractile synergy between di�erent muscles in complementary roles as motors,

moderators, restrainers, and antagonists (reviewed in Flatt (2000)). For the purposes

of this this thesis I take the simpli�ed view that muscles are elastic, and induce torques

around joints. Joints are equipped with antagonistic muscle pairs, and it is the combined

contribution of these muscles that determines the �nal joint torque generated. Under

no external load there is an approximate one-to-one mapping between a muscle activity

and �nger position.

Long (1968) used electromyographic recordings of hand and forearm muscles to

classify �nger control. Three major muscles were identi�ed as critical for basic move-

ments, namely the �exor digitorum profundus (FDP), extensor digitorum (ED) and the

lumbricalis (LB). FDP and ED are located in the forearm, and LB in the palm. The

�ngers are at rest in a slightly curled posture under the elastic in�uence of FDP. When
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ED is contracted alone the �ngers `claw', bending at only the distal joints. Simultan-

eous contraction of FDP with ED is su�cient to fully �ex (close) the �nger joints. LB

extends the knuckle joint and simultaneously relaxes the elastic e�ect of FDP. In this

con�guration the ED serves to extend the �ngers.

Proprioception Another important aspect of the somatosensory system is proprio-

ception. Without vision monkeys can accurately point to targets, but proprioceptive

dea�erentation impairs this capacity (Taub et al., 1975).

There are two primary sensors which accomplish this proprioception: muscle spindles

and Golgi tendon organs. The muscle spindle is composed of �bres within skeletal

muscle which contract in parallel to the muscle. These sensors enable the detection of

muscle length to establish the position of our limbs. Golgi tendon organs are located

in the tendons of skeletal muscles. These sensors are activated in series to the muscle,

indicating the force or strain exerted by the muscle.

Proprioception is a readily adapting sense (relying on visual feedback to maintain its

calibration). In modulating grip aperture, for example, one can use a virtual reality set

up to shift proprioceptive feedback. It is found that while we adapt readily to changes

in o�sets in aperture size we are less adaptive to changes in the slope Säfström and Edin

(2005). In equipping amputees with prostheses we must be aware of the limitations of

proprioceptive adaptation.

2.3.2.2 Sensory Perception

In a landmark result, Rock and Victor (1964) demonstrated the dominance of vision

over tactile information for perception of shape. As we have previously seen, however,

the visual capture hypothesis has been since replaced by more elaborate models of

multisensory integration.

How does perception arise from sensory signals? Goodwin and Wheat (2004) review

models of neural populations for tactile encoding. They conclude that interpreting

neural responses to explain perception is inherently di�cult owing to: (i) the fact that

the whole �nger deforms when contacting a simple object; (ii) the role of receptors with

di�erent spatial and temporal characteristics; (iii) the presence of high levels of noise.

However, Dostmohamed and Hayward (2005) showed how the perception of smooth

and continuous shape can be convincingly simulated simply using a �at surface that

changes orientation to supply the appropriate tangential force. Using a similar setup,

Robles-De-La-Torre and Hayward (2001) showed that, regardless of the geometry of the

surface (i.e. the position of the �nger), force cues were su�cient for subjects to locate

shape features.
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These studies reveal a remarkable redundancy within tactile and proprioceptive sen-

sation. The nature of the feedback required to elicit convincing sensations indicates that

shape and curvature perception may be mediated by higher-level processes, centrally

rather than peripherally. The redundancy and multidimensional complexity of neural

information may serve simply to allow a reduction to much simpler internal represent-

ations to provide us with robust tactile perception. Srinivasan and LaMotte (1995)

compared the di�erential role of tactile and proprioceptive information for discrimin-

ating the softness (compliance) of objects. Tactile, but not proprioceptive information

was su�cient for softness discrimination of objects with a compliant surface (where

�nger deformations would provide softness cues), but both tactile and proprioceptive

feedback were needed for discriminating rigid-surfaced objects. This again reveals the

level of redundancy between sensory systems.

Sensory perception is hugely complex and the role of di�erent sensory signals in cre-

ating this perception is largely unknown, making the design of an arti�cial sensorimo-

tor system especially challenging. Fortunately, however, perception is inherently plastic.

For example, In the size-weight illusion, a subject comparing two objects of equal weight

but di�erent size typically perceive the smaller object as heavier. Flanagan et al. (2008)

showed that this relationship can be reversed with practice. Later I will discuss further

examples of perceptual plasticity that may provide some hope for prosthesis wearers.

2.3.2.3 Ownership of the Hand

In this thesis I focus on the functional bene�ts of feedback for prosthesis control. How-

ever, as well as being of functional importance, proprioceptive and tactile feedback are

linked to the feeling of body ownership and therefore prosthesis acceptance. Marasco

et al. (2011) indicate that tactile sensation may help amputees regain an �intact self-

image�, accepting the prosthesis as part of their own body.

Botvinick and Cohen (1998) discovered the �rubber hand illusion�, in which sub-

ject's hands were hidden but then stroked synchronously with a fake (rubber) hand.

This created the bizarre illusion that the rubber hand belonged to the subject. A

sense of ownership arose due to the correlation between visual and tactile stimulation,

and consequently the proprioceptively perceived location of the subjects hand adapted

(Costantini and Haggard, 2007). The illusion requires the stimulation to be consistent

in hand coordinates (stimulation location), but not body coordinates (arm posture),

owing perhaps to the strength of tactile priors over proprioceptive priors (Costantini

and Haggard, 2007). The neural mechanisms underlying the rubber hand illusion de-

pend on three brain areas: multisensory integration in the cerebellum, proprioceptive

recalibration in motor cortex, and �self-attribution� in premotor cortex (Ehrsson et al.,
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2008).

This fascinating illusion exploits the latent plasticity in the nervous system. Re-

markably, Ehrsson et al. (2004) showed that the illusion can also be used to induce

the perception of a rubber hand in amputees. They provide a simple method to trans-

fer tactile perception from the stump to a prosthesis. Further, Rosén et al. (2009)

demonstrated that sensation transfer is not limited to a rubber hand but also a robotic

prosthesis. For practical reasons Mulvey et al. (2009) showed that this illusion can be

achieved using electrical nerve stimulation to the stump as a surrogate for true tact-

ile sensations. The illusion requires good temporal asynchrony between visually and

haptically evoked sensations (Shimada et al., 2009), but spatial asynchrony may be tol-

erable to some degree (White et al., 2010). It seems that the nervous system may be

su�ciently plastic to defer taction to alternative body regions.

2.3.3 Experimental Perspectives

2.3.3.1 Healthy Human Grasping

A large body of evidence has been accumulated over the past two decades pertaining

to the precision grip. Healthy individuals adjust grip force to an amount just greater

than is su�cient to avoid object slip, setting a �safety margin� that is a function of

friction at the skin-object interface and object weight (Westling and Johansson, 1984).

Fig. 2.5 illustrates these observations. Rarely do healthy subjects over-grip objects, a

mechanism which serves to avoid muscle fatigue and object breakage. This is impaired

by digital anaesthesia (reviewed in Johansson, 2002) and also observed in amputees.

Figure 2.5: Grip force control. Anticipatory scaling of grip force in parallel with load force

for objects of di�erent surface properties (from Johansson and Westling, 1984a)

When lifting an object healthy people predictively increase the grip force in parallel

with the lifting (or load) force (Fig. 2.5). The slope of the increase depends on the
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frictional properties of the surface; a higher �grip-to-load-ratio� (Johansson and West-

ling, 1984). By ramping the grip in parallel with the load one needs only to accurately

predict the grip-to-load ratio in order to lift the object, not the �nal mass. Amputees

do not appear to gauge these forces, and tend to over-grip (e.g. Weeks et al., 2000).

Not only do predictably economical grip forces accommodate loads of varying weight

and friction, load changes during acceleration of objects are also anticipated (Herms-

dörfer et al., 2004). For example, for cyclic movements grip forces are continuously

increased and decreased with the upward and downward deceleration components of

the motion respectively, even though it is simpler to maintain our grip force at the

maximum expected. Interestingly, while digital anaesthesia impairs modulation of grip

force magnitude, it does not impair the timing of these anticipatory grip force increases

and decreases. The peak of grip force aligns temporally with the peak of load force in

both healthy and anaesthetised subjects (Augurelle et al., 2003). In a study of stroke

patients with severe sensory (but not motor) loss it was noted again that anticipation of

grip increases was present, even in a patient with 23 years of peripheral sensory neuro-

pathy (Hermsdörfer et al., 2004). Grip force magnitude scaling, on the other hand, is

not preserved under anaesthesia. Under anaesthesia people tend to over-grip objects,

presumably as a strategy to avoid slip under the added uncertainty. It is also di�cult

to maintain grip forces at a steady value (Augurelle et al., 2003). This suggests that

cutaneous cues are required to allow people to maintain a forward model of grip force.

In a study comparing the ability of patients with ALS versus stroke patients (corres-

ponding to motor versus sensory de�cits respectively), it was suggested that neither the

sensory nor the motor component could be held solely responsible for these observed

impairments (Hermsdörfer et al., 2004).

Visual feedback contributes to the perception of object properties and therefore

modulates grasping behaviour. Jenmalm et al. (2000) examined subjects ability to

maintain the position of a torsional load and their ability to twist the load. The grip

surface was a curved sphere. Under anaesthesia, blindfolding and both, it was found that

prior visual feedback of the sphere was su�cient to allow the scaling of grip force, and

visual feedback of the object during motion was su�cient to allow scaling of force for the

twist. It was also found that tactile feedback was alone su�cient for both aspects, but

in the absence of both vision and tactile feedback, performance was severely impaired.

It appears that feedback allows for the parametrisation of grasping behaviour, but this

relies heavily on memory for objects. Flanagan et al. (2001) showed that subjects

retained memory of the size-weight relationship of novel objects, accurately recalling

the appropriate �ngertip forces even 24 hours after training.

However, these observations may have been biased by the absence of vision. Buck-
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ingham et al. (2011) showed that anaesthetised individuals are unable to skilfully scale

their grip and load force rates over repeated lifts without vision, but remarkably, even

if the visual information provided is task-irrelevant (by occluding the object) successful

grip scaling is still achieved. It appears that the availability of vision �triggers a shift

into a more skilful, feedback-based mode of control�.

2.3.3.2 Sensory Deprivation

The role of sensory information for healthy grasping is clearly demonstrated in studies

involving sensory loss.

Anaesthesia Anaesthesia impairs adaptation to di�erent frictional conditions (Johans-

son and Westling, 1984), and impairs the scaling of the magnitude of grip forces, ap-

plying an excessive safety margin in the absence of tactile sensibility (Westling and

Johansson, 1984). Monzée et al. (2003) showed that subjects signi�cantly increased

grip force after digital anaesthesia and found that tactile feedback was necessary to pre-

cisely align the �nger and thumb, even with vision available. The increased torque due

to misalignment could, in part, explain the increased forces observed for anaesthetised

subjects.

However, some aspects of grip force control are not impaired. Nowak et al. (2001)

examined the task of lifting an object up and down repeatedly. In anticipation of

acceleration and deceleration when changing the movement direction a healthy subject

anticipated the change with an appropriately scaled and timed grip force increase. An

anaesthetised patient over-gripped at a level higher than the overall minimum necessary,

but still maintained the precise timing of anticipatory grip changes. This provides

evidence for separate feed-forward and feedback driven mechanisms.

Similarly, Augurelle et al. (2003) asked subjects to grasp, lift, hold and oscillate ob-

jects, testing multiple aspects of prediction, reaction and maintenance of forces. They

found that, under anaesthesia, loss of cutaneous sensation produced a signi�cant in-

crease in force, but this declined over the hold period, and again over the oscillation

period, resulting in drops. They argue that tactile feedback is required to maintain the

internal model of grip force.

Disorders Sensory disorders can give us some insight into the role of sensory and mo-

tor processes. Iyengar et al. (2009) found that both anticipatory temporal-judgement

and force magnitude scaling were impaired in multiple sclerosis (MS) patients. In a

load-oscillation task, Hermsdörfer et al. (2004) observed increased grip forces and se-

lective impairments to feedforward control task for di�erent degrees of sensorimotor
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impairment. All patients had intact cerebellar function, purported to subserve internal

model formation. Nevertheless, feedforward control was severely disrupted in a deaf-

ferented patient, moderately impaired in amyotrophic lateral sclerosis (ALS) patients,

and preserved in stroke patients. From these results it seems that sensory feedback has

a crucial role in modulating and maintaining various key aspects of motor control.

Nowak and Hermsdörfer (2003) examined grip force control for patients with demy-

elinating polyneuropathy, sensory axonal polyneuropathy and chronic median nerve

compression. These impairments resulted in preserved anticipatory temporal coupling

but impaired grip scaling during oscillatory movements, consistent with the e�ects of

anaesthesia (Nowak et al., 2001). However, for two patients with complete chronic

dea�erentation of the trunk and limbs (Hermsdörfer et al., 2008), despite overall grip

force increases, it was found that the grip force level was adjusted to accommodate the

load magnitude. It was hypothesised that patients utilised �visual and vestibular cues

and/or an e�erent copy� of the motor command to achieve economical grip force scal-

ing. Though tactile sensory information appear important for precise internal model

maintenance, compensatory mechanisms may also exist.

Cole and Sedgwick (1992) discussed a patient lacking tactile and proprioceptive

feedback below the neck. Remarkably, he was able to maintain a posture and repeat

rhythmic motion in the absence of vision. Furthermore, the subject could use visual

feedback to judge object weight (by observing the passive displacement of his own arm).

Evidently, at the expense of additional e�ort, tactile and proprioceptive feedback can

be compensated for. In another study it was found that observers could discriminate

object weight simply by observing a similar patient (Fleury et al., 1995).

There is considerable evidence to suggest that feedback is essential for the acquisition

of internal models and might also be necessary for its maintenance, but can not be fully

understood in the absence of other sensory signals and feedforward contributions. To

further understand grip force control, Witney et al. (2004) raise the question of how

contributions from proprioception and vision are integrated with cutaneous feedback

during object manipulation, and how feedback is integrated with prior predictions in

grip force control. Multisensory cue integration studies and the probabilistic framework

discussed previously (Ernst and Banks, 2002, Körding and Wolpert, 2004a) could help

explain these aspects of grip force control.

2.3.3.3 Robotic Manipulandum

Healthy Control Restoration A primary aim of this thesis is to explore a robotic

alternative to healthy human hand function. Thus far I have discussed healthy hand

physiology and behavioural observations deriving from anaesthesia and disorders. Rep-
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licating healthy human capabilities must accommodate these �ndings.

I previously discussed the role of antagonistic muscle pairs to achieve proportional

position and force control. This could be replicated in a servo motor with a position-

control policy. When the hand is in contact with an rigid load such as an object being

grasped, there is an approximate one-to-one mapping between muscle activity and the

force applied. This could be termed a force-control policy. These are both absolute

control policies. Contrastingly, the ilimb, a state-of-the art robotic prosthetic hand,

adopts a relative control policy, meaning that muscle activity sets the movement speed

of the �ngers (control signals determine the torque on per-digit worm gear motors, which

is equivalent to a speed-control policy under no external load, or a yank-control policy

for a rigid load). To set �ngers to a desired position or force in a relative control policy

one would need to integrate the control signal over time (a potentially challenging task),

which may explain the demand for visual attention for users of similar state-of-the-art

prostheses.

Doubler and Childress (1984) revealed the importance of proprioception and its

role in control in 1-D and 2-D pursuit tracking tasks � analogous to limb control. It

is evident that direct proprioceptive feedback of limb state results in superior control

ability. One may therefore hypothesise that a position-controlled prosthesis controller

would provide superior control to a speed-controlled prosthesis controller.

To replicate healthy control we must consider the importance of rehabilitating

proprioceptive and feed-forward aspects of healthy human physiology.

Healthy Feedback Restoration Jiang et al. (2009) found that grip force control de�cits

in multiple sclerosis patients (e.g. Iyengar et al., 2009) can be partially resolved with

arti�cial force feedback. Error-corrective and force magnitude feedback had selective

bene�ts for di�erent degrees of sensory loss. Likewise, Riso et al. (1991) found that a

quadriplegic patient bene�ted from tactile feedback. Consistency of grasps, and grasp

economy were both improved in the presence of each of the two tactile feedback methods.

Weeks et al. (2000) measured grip force adjustments during predictable and un-

predictable load changes. Subjects held an object aloft with one hand, and then: (i)

added the weight with their other hand; or (ii) an experimenter added the weight.

Healthy subjects showed anticipatory increases in both conditions, while a subject with

a prosthesis anticipated the load only in condition (i). Thus, it was concluded that

the absence of tactile feedback in the prosthesis wearer impaired reaction to, but not

anticipation of load changes, a similar conclusion to the e�ects of digital anaesthesia of

healthy grasping.

In this thesis I experiment with an arti�cial tactile channel with an aim to restore
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healthy grasping (functional) capabilities. Stepp and Matsuoka (2010) showed that vi-

brotactile feedback could improve performance in a virtual reality object dragging task.

Indeed, subjects found the task much easier in the presence of feedback. However, the

task duration was massively increased, owing to subjects taking a long time to inter-

pret the feedback. In untrained patients tactile feedback may actually hinder control

(Chatterjee et al., 2007) and vibrotactile proprioceptive feedback systems might not be

exploited in the presence of vision (Cipriani et al., 2008). The bene�ts and limitations

of tactile feedback for upper limb prosthetics is discussed later.

Summary As we have seen, the healthy human hand is remarkably dexterous, seem-

ingly e�ortless to control and equipped with a vast sensory system. Replicating these

features in a prosthetic hand is a central goal for rehabilitation research, yet the state of

the art falls far from this target. In this thesis I describe the development of a modular

prosthesis which serves as a manipulandum with which to address the limiting factors

of present technology.

2.3.4 The Role of Internal Models

Internal Models Prediction turns motor commands into expected sensory consequences,

while control turns desired consequences into motor commands (Flanagan et al., 2003).

The neural processes underlying prediction and control are termed `forward' and `in-

verse' models respectively. The presence of these models allows us to both predict and

act, re�ning our predictions and mapping them to re�ned actions. We are able to gather

information and act simultaneously (avoiding delayed action). In order to understand

human motor control, computational architectures that combine both forward and in-

verse models have been developed (Wolpert and Kawato, 1998, Bhushan and Shadmehr,

1999).

Sensorimotor processes can be broadly described as feedback loops for separate mod-

ules of prediction, observation and correction. With the aim of selecting the best action

at a particular juncture to achieve higher goals one requires feedforward (predictive)

and feedback (corrective) actions. Fig. 2.6 summarises this framework for the present

application, showing both the high-level optimal controller and the low-level sensory

and motor components.

The `optimality' of motor control is de�ned with respect to a cost function, assigning

a measure of value or reward to di�erent actions. In the presence of delayed feedback

from the world, motor output is optimised (i.e. the cost of action is minimised) based

on an estimate of the current system state and the predicted sensory consequences

of actions. This internal model is corrected when feedback eventually arrives from



50 Chapter 2. Background

Figure 2.6: Closed-Loop Control Schematic. A schematic model for generating goal

directed movements in a task involving visual and tactile processing. Unavoidable delays

in feedback (indicated by the large sensory feedback loops) highlights the importance of an

internal forward model, while feedback is necessary for correcting unavoidable errors in the

forward model for state estimation and prediction (adapted from Fig. 2.3 and Shadmehr

and Krakauer, 2008).

the world. This is a more elaborate formulation of the Kalman framework previously

discussed (Fig. 2.3).

Take the example of picking up a cup. The cost function might be to minimise

energy expended. Primarily one would wish to avoid dropping the cup, as this would

cost the most e�ort. Secondarily one might avoid over-grip as this wastes muscle energy.

An emergent consequence of minimising a global cost function is the behaviour observed

in healthy individuals, predictively applying a minimal necessary force with su�cient

margin for error.

Evidence for Internal Models Flanagan et al. (2003) attached subjects to a manip-

ulandum with novel dynamics and asked them to move the hand along a straight line
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trajectory. In learning to control elbow position and grip force, subjects showed rapid

learning of grip force (in around ten trials) but slower learning of arm control (around 70

trials), suggesting that there are separate internal models for grip force and arm position

and a transfer from reactive (feedback) to predictive (feedforward) control. Flanagan

et al. (2003) argue that this is evidence for separate complimentary forward and inverse

processes, with prediction (grip) aiding the learning of control (arm movement).

Bhushan and Shadmehr (1999) examined reaching movements in novel force-�elds:

(i) a null �eld, i.e. with no force acting on the hand; and (ii) a viscous curl force �eld,

i.e. proportional in strength to the instantaneous hand velocity and directed orthogonal

to the instantaneous hand velocity. The resultant trajectory adaptation to a sudden

change in the direction of the curl force �eld could only be explained by a model with

both forward and inverse components. It is argued that both components are needed

for successful control.

Flanagan and Wing (1997) argue that the nervous system is able to maintain various

dynamic and kinematic models of objects being manipulated. Using a grasp manipu-

landum simulating a variety of dynamic load conditions (inertial, viscous, elastic and

composite loads) it was shown that changes in the load due to arm movements were

anticipated by the subject, who scaled their grip force by the appropriate magnitude.

The presence of multiple complementary forward and inverse models for dexterous con-

trol is obviously computationally advantageous (Jordan and Wolpert, 1999) but makes

distinguishing their contributions rather complex.

The above behavioural results are supported by brain lesion studies which suggest

that state estimation, prediction, cost-estimation and action selection occur in pari-

etal cortex, cerebellum, basal ganglia and motor cortex respectively (Shadmehr and

Krakauer, 2008).
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2.4 Prosthetic Systems

2.4.1 Introduction

We have seen above that healthy human control requires simultaneous feedforward and

feedback processes. People act in a feed-forward manner when anticipating appropriate

grip forces for object lifting or object movement. These forward mechanisms enable

precise timing of control signals, even in the absence of feedback. However, feedback is

needed for maintenance of forces (Augurelle et al., 2003), and possibly also for mainten-

ance of forward models (see Hermsdörfer et al., 2008). Visual, tactile and proprioceptive

feedback can each be utilised for determining object size, weight and shape, allowing

selection of appropriate anticipatory grip forces. Tactile feedback is necessary for de-

tecting object properties such as roughness, softness and curvature, as well for detecting

unusual object dynamics. Feedback also allows people to re�ne their control policy when

they receive evidence contrary to expectation. Evidently, in healthy individuals these

processes are tightly coupled, supporting each other to enable successful control. How

does this compare to an arti�cially-restored system, in which control is the responsibil-

ity of a robotic device, where feedback arises through arti�cial sensors and is fed back

via novel sensory channels?

In this thesis we introduce an elementary closed-loop prosthetic hand, illustrated

in Fig. 2.7. The key components of this system are control, actuation, sensation and

feedback.

2.4.2 Feedback

2.4.2.1 Sensory Augmentation

Tactile Vision Substitution (TVS) y Rita et al. (1969) made an astonishing �nding

regarding the latent plasticity of the adult brain. Pioneering the �rst tactile vision

substitution (TVS) system, he described a replacement for the visual system which

provided video camera images to patient's lower back (Fig. 2.8A). Sighted and blind

participants were presented with processed video information via a grid of 400 vibrating

solenoid simulators. They reported near-immediate acquisition of basic skills such as

orientation to light sources, tracking target objects and discriminating orientations.

After this extensive training with with dots and oriented lines, subjects began learning to

discriminate shapes, objects, multiple objects and even faces (Fig. 2.8B). Remarkably,

after considerable training blind subjects could perform complex scene classi�cations

(y Rita et al., 1969, y Rita and Kercel, 2003, y Rita, 2004).

Since this landmark work, portable systems have been developed using electrotactile

tongue electrodes. Vision has been restored to the blind (Sampaio et al., 2001) and
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Figure 2.7: Closed-Loop Prosthesis. A closed-loop prosthetic hand for amputees, replacing

four basic functions of the healthy human (1) Control. In healthy humans control signals

arise from muscular activity. In amputees these can be recorded from residual muscles to

provide a simpli�ed control interface (2) Actuation. muscle activity drives tendons around

joints, resulting in skeletal recon�guration. This can be achieved with mechanical actuators

based on the control signal. (3) Sensation. Healthy human somatosensation features

vast and redundant arrays of sensory receptors. Lower-dimensional sensory information can

be recorded with arti�cial sensors for forces and torques (4) Feedback. Post-amputation,

many sensory nerves are no longer intact. Low-dimensional sensory information can be fed

back to residual nerves, requiring sensory substitution to regain adequate sensibility.

balance to the vestibularly impaired (Tyler et al., 2003).

Limitations of Sensory Plasticity The amazing capacity of the nervous system to

learn to control novel dynamical systems (see previously, e.g. Davidson et al., 2002)

and make sense of arti�cial sensory data (e.g. y Rita et al., 1969) seems very promising

from the perspective of restoring control to amputees. However, as we shall soon see,

exploiting the sensory substitution phenomenon for practical use with prostheses has

proven di�cult, despite many attempts over the decades.

In the early days, sensory substitution systems may have been considered uncom-

fortable, or the devices impractical (Kaczmarek et al., 1991). However, despite im-

provements in these areas it is still not known how to most e�ciently transfer useful

information to the tactile sense. Some very basic questions are still to be answered.



54 Chapter 2. Background

A B

Figure 2.8: Tactile Vision Substitution (TVS). The original TVS system (y Rita et al.,

1969). (A) A digital video camera connected to 20x20 matrix of simulators mounted into

a chair. (B) A typical stimulus which trained subjects are able to identify.

• (i) For restoration of hand sensibility we need to know what items of information

are required as well as how to best communicate them to the subject.

• (ii) The potential bandwidth of the tactile channel is phenomenal (Kaczmarek

et al., 1991), but to harness its full potential we must �rst understand how humans

acquire and integrate sensory information to form robust perception of the world.

• (iii) To rehabilitate a complete sensorimotor system we must understand the com-

plementary role of both sensory and motor components. It is interesting to note

that in the TVS systems discussed above, learning is poor unless the subject is

allowed to manipulate the camera themselves. This highlights the importance of

a closed-loop for learning.

There may be fundamental limits on tactile plasticity. Säfström and Edin (2005)

asked subjects to grasp objects where a �xed discrepancy was imposed between the

observed and actual size of the object. Grip apertures adapted to these stimuli, and

in addition generalised to new stimuli, demonstrating short-term plasticity of the sen-

sorimotor system, but when the discrepancy was not �at but sloped, subjects were not

able to generalise correctly.

Patterson and Katz (1992) argue that the nature of the feedback is important demon-

strating the superiority of a pressure feedback signal to a substitution interface for re-

producing pressure signals (Patterson and Katz, 1992). Likewise, force transducers can

communicate force feedback (Meek et al., 1989). These interfaces exploit Extended

Physiological Taction (EPT), the use of feedback stimuli which directly relate to the

form of the actual stimuli. Natural and intuitive EPT schemes are potentially more
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patient-friendly, but it is technologically more challenging to provide realistic feedback

transduction, and arguably unnecessary on account of the brain's inherent plasticity

as shown for TVS systems. Nevertheless, the limits of tactile plasticity may impose a

fundamental constraint on success with sensory substitution interfaces.

Neural Plasticity Amputees often describe the sensation of having a phantom limb,

the perception of a missing limb being still part of the body. Post-amputation the brain

areas dedicated to limb control and sensation are still intact, resulting in this peculiar

phenomenon and often painful sensations. Ramachandran et al. (1992) stimulated the

stump of amputees in regions external to amputation and found that some stimuli were

perceived as arising on the phantom limb. This is attributed to cortical reorganisation

in the absence of sensory input from the amputated limb (Flor et al., 1995), indicative

of the �exibility and plasticity of the nervous system. However, it is important to note

that there are limits to cortical reorganisation. As well as being a slow processs, some

cortical areas adapt more readily than others (Jain et al., 2008), and it is not known why

this is the case. This may be problematic for designing e�ective sensory substitution

systems.

Poirier et al. (2007) review the neural processes during training to use a TVS system.

One might expect (from the term sensory substitution) a successful TVS system for the

blind would replace the dormant visual system in the brain, but instead arti�cial stimuli

are associated with existing healthy senses as a form of �mental imagery� � which is in

the auditory and haptic modalities for blind patients. This may seem worrying since we

are aiming to achieve sensory restoration. However, though it is particularly di�cult

to elicit the perceptual nature of arti�cial visual perception in blind patients it should

be noted that the nature of substitution perception may be entirely independent of the

location in which it is processed. Therefore, one might instead aim to measure the degree

of sensory integration as a more robust indicator of successful sensory rehabilitation. To

date there are no examples of multisensory cue integration studies involving an arti�cial

tactile channel.

2.4.2.2 Sensors

Feedback systems can encode any variety of sensory information. Rossi (1991) discuss

the possibility of arti�cial haptic systems capable of surface texture discrimination,

stable object grasping, �ne-form detection, hardness evaluation and thermal sensing.

Howe and Cutkosky (1993) present an electronic tactile sensor for high frequency tactile

sensing for slip and texture detection. Recently, Edin et al. (2006) introduced a three-

axis force sensor, capable of providing feedback of forces, force directions and sudden
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force changes in the range of biological systems. The system can detect force �uctuations

and reliably react to slips within 10ms (Edin et al., 2008). A low-cost alternative is to

use computer optical mouse sensors to detect object slip (Romano et al., 2009).

In this thesis we focus mainly on position and force feedback, but clearly more

elaborate signals and hardware exist.

2.4.2.3 Vibrotactile Feedback

Introduction Vibrotactile interfaces can be embedded into shoulder pads (Toney et al.,

2003), or even applied to the toes (Panarese et al., 2009), making them discreet, non-

invasive and appealing for feedback provision.

In this section we will discuss sensory-substitution based feedback systems. Firstly,

note that Patterson and Katz (1992) provide an concise historical introduction to the

key concepts for developing sensory feedback systems, including: signal bandwidth;

logistics of integration; physiological-compatibility; stimulus generation; feedback mod-

ality; signal hardware and encoding; interference and cross-talk; extended physiology;

adaptation; and learning rate.

Low-level feedback parameters To design an e�cient vibrotactile display device there

are a wide range of parameters to consider, ranging from amplitude, frequency, quant-

ity and spacing of tactors (Yoon and Yu, 2008); the e�ects of place, space and age

(Cholewiak and Collins, 2003); the e�ects of body site, space and time (Cholewiak,

1999); spatial patterns (Yoon and Yu, 2006); and pulse burst stimulus parameters (Perez

et al., 2000) .

Approximately 5 distinguishable levels can be achieved for a single vibrotactile chan-

nel (Pongrac, 2006) and multiple channels should be spaced by at least 2 to 3 cm (van

Erp, 2005). These parameters depend on location and body site (Cholewiak et al.,

2004).

Feedback Encoding Using 48 vibrating motors in a 2-D array encoding sway and tilt,

Sienko et al. (2008) showed signi�cant improvements in all areas of postural perform-

ance in vestibular impaired patients. Asseman et al. (2008) used a similar topographic

encoding (spatial encoding) to present vibrotactile stimuli to subjects' trunks in a gaze

direction task. Subjects were presented with vibratory cues while saccade latencies and

accuracies in the stimulus direction were measured. However, there was little improve-

ment in latency and high variability in saccades, even after prolonged training, and the

authors conclude that this vibrotactile representation was unintuitive for this task.

In contrast, Kadkade et al. (2003) found that a spatial encoding was superior to a
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frequency-modulated code. In a task to stabilise a cursor presented in both visual and

tactile modalities, with increasing amounts of cursor `instability', they compared three

di�erent position con�gurations (for increasing numbers of tactors) and reported that

the positional encoding was most e�ective at reducing errors. Kadkade et al. (2003)

also compared di�erent modes of delivering error signals (absolute and di�erential error

feedback), and reported that a di�erential code was superior for their task.

An amplitude encoding can be implemented on a single tactor (Bark et al., 2008)

by varying the amplitude of a sine wave sent to the tactor at a constant frequency. In

doing this it was found that a logarithmic amplitude mapping was more e�ective than

a linear one.

In a virtual aiming task with both visual and tactile feedback, a comparison of

vibrotactile feedback and skin-stretch feedback showed that both resulted in improve-

ments compared to a vision-only case (Bark et al., 2008). Skin-stretch, however, proved

a more e�ective modality, perhaps owing to the depth and therefore lower spatial res-

olution of FA-II versus SA-II receptors mediating vibration and stretch perception re-

spectively (see previously).

Jiang et al. (2009) report a technique for giving vibrotactile feedback to multiple

sclerosis patients. This involves simultaneously varying the pulse-with and inter-pulse

interval (period) of a vibrotactile stimulator. The simulators used are vibrating motors,

and by varying the duty cycle of current to the motors (by increasing the pulse-width

or reducing the inter-pulse interval) the intensity of the perceived sensation can be

modi�ed. Jiang et al. (2009) co-vary pulse width and period so that a larger range

of sensations can be created. One could potentially pick a range of pulse-widths and

periods which maximise the sensitive range of the subject and therefore increase the

bandwidth of a single vibrotactile channel.

To achieve the perception of continuous movement of a tactile stimulus one can

temporally vary the intensities of adjacent tactors (Rahal et al., 2009, Cha et al., 2008).

Two vibrating motors can be combined to create the perception of continuous sensation.

This sensation is a function of relative location, relative amplitude and temporal order.

For such moving stimuli, Kohli et al. (2006) found that subjects were good at recognising

and distinguishing patterns of motion (a relative task), but were less good at speed

recognition. Hence, the encoding of `absolute' signals remains a challenge.

In summary, a wide range of feedback encodings have previously been considered

and explored. A spatial (topographic) encoding appears to have been the most e�ective

for maximising bandwidth and reducing adaptation, and is favourable as bandwidth is

limited by the number of tactors.
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2.4.2.4 Electrotactile Feedback

The merits of vibrotactile and electrotactile techniques have been reviewed in Saunders

and Vijayakumar (2009). Electrotactile stimulator may require less power, deliver more

�punctate� sensations (greater spatial resolution) and have reduced response latency.

In Saunders and Vijayakumar (2009) I discuss the major safety considerations for

developing an electrotactile interface (see also Kaczmarek et al., 1991). a summary of

the key safety concerns of electrotactile stimulation are:

• Variable skin resistance: The literature reports a wide range of skin resistances,
(e.g. from 200kΩ when dry down to 5kΩ when vasodilated, see Szeto and Riso,

1990), and as a function of location, temperature, humidity, sweat, hair follicle

location etc. It is di�cult to deliver constant safe supply of current when the

resistance is unpredictable and variable.

• Charge Density: The density of charge on the electrode increases with decreas-

ing electrode size. With a 10mm2 contact, the charge density could be around

0.14µC/mm2 in a typical stimulator (Szeto and Riso, 1990). An upper bound on

safe charge density is reported as 0.4µC/mm2 (Szeto and Riso, 1990, shown to be

safe for a coiled wire electrode). However, if an electrode is tilted up onto its edge,

as may occur during movement of the subject, stings may occur due to sudden

increase in charge density Szeto (1982).

• Electrode Geometry: While larger electrodes are desirable (lower charge dens-

ity, less overall voltage required) delivered sensations will be harder to localise

and may risk sudden stings if charge is not evenly distributed across the electrode

Kaczmarek et al. (1991). Low-resistance conducting pathways under the skin are

associated with hair follicles, sweat glands and breaks in the epithelial surface,

and occur at a density of 1 per square mm (Szeto, 1982). The path of lowest

resistance will receive the most current in a positive feedback manner (since skin

resistance decreases with increasing intensity).

• Direct Current Buildup: Monophasic stimulation has a net direct current

(DC) component, building up charge on the skin. One can use an output coupling

capacitor to limit charge �owing into an electrode Kaczmarek et al. (1991a), and

couple the output with a long time constant capacitor to prevent net accumulation

of charge Szeto and Chung (1986). Use of Biphasic current stimulators (with no

net DC component) can also avoid this problem.

• Stimulation Waveform: A number of parameters can be varied (such as pulse

frequency, amplitude and duty cycle) each a�ecting the perceived sensation is a
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variety of ways. See Saunders and Vijayakumar (2009) and also Szeto (1982),

Buma et al. (2007), Arieta et al. (2005, 2006), Kim et al. (2005), Okada et al.

(2007), Poletto and Doren (1999), Zafar and Doren (2000), Kaczmarek et al.

(1991a), Solomonow and Lyman (1977), Szeto and Chung (1986), Szeto and Far-

renkopf (1992).

• Irreversible damage: Fig. 2.9 illustrates some typical skin disorders that may

arise from excessive electrical stimulation of the skin. To avoid damage, techniques

used in the literature are optical isolation of di�erent parts of the circuit (Poletto

and Doren, 1999), capacitative coupling (to limit net charge transfer) (Szeto and

Riso, 1990), and careful circuit design with redundancy (Poletto and Doren, 1999).

Figure 2.9: Electrically-induced skin disorders. (Dermatology.co.uk, Gomersall, 2008a,b).

In Saunders and Vijayakumar (2009) we present a biphasic constant-current stimulator

based on modi�ed TENS electrodes, which satis�es the above considerations. The

design of the stimulator requires low currents and voltages, and limits these to speci�ed

maxima. However, the present thesis focuses entirely on a vibrotactile interface, which

was preferred in the interest of safety, low cost and simple construction.

2.4.3 Control

2.4.3.1 Target Muscle Reinnervation (TMR)

Kuiken et al. (2004) surgically attached four nerve groups to chest muscle tissue in a

bilateral amputee. The nerves innervated the muscle over a 5 month period, enabling

voluntary contraction of chest muscle after this time. EMG signals on the chest muscle

were used to control a robotic prosthetic arm in a technique that has become known as

targeted muscle reinnervation (TMR).

Several years later the patient was �tted with a 6 degree of freedom prosthesis.

Miller et al. (2008) showed that the patient could independently control shoulder �ex-

ion/extension, humeral rotation, elbow �exion/extension, wrist rotation, wrist �ex-

ion/extension, and digit �exion/extension. The authors claim he could operate up to

four simultaneous control signals, although they acknowledge that this was rarely done
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due to the �high cognitive demand� of the system owing to the lack of proprioceptive

information.

This remarkable technique provides a great possibility for future amputees, but

alleviating the cognitive demand will probably rely heavily on the ability to provide

integrative feedback. Indeed, this may also be achieved by innervating chest tissue with

sensory neurons.

However, one major criticism with this approach is that it relies on the residual

neural capabilities of the amputee. This will often limit the degree of motor and sensory

restoration, especially for severely injured patients. The technique is only really feasible

in new amputees, and the invasiveness of the approach and the need for surgery may

make the operation unappealing.

2.4.3.2 EMG control

Typical modern-day prostheses are controlled using surface electromyography (sEMG).

The role of muscles in hand control is complex, involving temporal parsimony and syn-

ergistic co-contraction between di�erent muscle groups (see section 2.3.2.1). Prosthetic

systems may be controlled by EMG activity recorded at the Extensor Digitorum and

Flexor Digitorum Profundus (Shannon and Agnew, 1979), but the activity of alternative

muscles or even groups of muscles may be recorded to deal with wide variation in the

nature and severity of the amputation. Moreover, the muscle(s) recorded do not operate

as simple switches (Long, 1968, Flatt, 2000). Hence, most prosthetic systems require

a considerable degree of re-learning to control the hand. Attempts to record ensemble

activity have proven promising (Bitzer and van der Smagt, 2006), but nonetheless do

not yet feature in state-of-the-art commercially available prostheses.

Since EMG signals used to initiate and control prosthesis movement �uctuate as

a function of sweat, movement, muscle fatigue and skin-conductivity (Duchêne and

Goubel, 1993) the most reliable EMG classi�ers require 250-300ms of sampling time

before accurate classi�cation can be made (Lorrain et al., 2010). In the interest of

responsiveness, controllability and expense, many commercially available prostheses use

di�erential (�open/close�) controllers to defer the problem of EMG signal reliability to

the temporal domain.

2.4.3.3 Direct Neural Control

A promising new possibility is for direct neural control. Dhillon and Horch (2005)

demonstrated how intrafascicular electrodes could be used to record grip force and limb

position signals from motor neurons, and provide feedback of grip force and position to

sensory neurons. With strain gauge sensory feedback prosthesis users could discriminate
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�ngertip forces and with joint-angle sensory feedback prosthesis users could discriminate

limb positions. With neural control of forces and angles, users could reliably attain tar-

get forces angles, in the absence of any feedback. The reliability with which users could

control motor neuron activity and interpret sensory neuron stimulation provides prom-

ising possibilities for future neurally-controlled prostheses. Unfortunately the study did

not explore the combination of control and feedback, which would o�er valuable insight

for closed-loop systems.

As well as intrafascicular recordings, animal studies have revealed the potential

for cortical control. Mulliken et al. (2008) trained monkeys to control a visual cursor

with a joystick. The experimenters were able to accurately predict the observed cursor

trajectory in real-time from cortical recordings. Moreover, when using these predictions

in place of the joystick, monkeys rapidly learned to control the cursor in its absence.

Gage et al. (2005) trained rats to control an auditory cursor without any prior

training using a �co-adpating� controller connected to motor cortex: the rat brain and

the Kalman-�lter controller were learned in tandem. After training, the rats were able

to reliably control the cursor to reach a target tone, and with further training learned

to match the tone to one of several targets.

Invasive procedures are still under clinical testing since long term e�ects are unknown

(Tenore et al., 2007). Non-invasive alternatives, such as electroencephalogram (EEG)

mu-band readings from cortex violate the desire for a self-contained neuroprosthesis.

2.4.3.4 Actuation Strategies

Hines et al. (1992) �tted quadriplegic patients with shoulder-position controlled neuro-

prostheses, controlling a �cursor� for both force and position. This presents a natural

and intuitive scheme based on healthy hand control. Under unloaded conditions the

task reduces to position-control and under loaded conditions it reduces to force-control.

The advantage of these strategies are that they adopt the concept of Extended

Physiological Proprioception (EPP), the ability to use proprioceptive feedback to infer

the state of the external �tool�. Shoulder-powered prostheses use the shoulder position

to set the arm position, and grasp closure, and as such provide a direct mapping from

signal to action that is superior to speed-controlled prostheses (Doubler and Childress,

1984).

In contrast, Otr et al. (2010) discuss the merits of the speed-controlled ilimb hand

against the DMC (dynamic mode control) hand. Though the speed-controlled hand

o�ered reduced functionality, it provided more reliable grasps and was overall preferred

by patients. In comparing the merits and limitations of prosthesis control methods

Cipriani et al. (2008) show that to minimise e�ort, subjects prefer less interactive, more
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automatic control of the prosthesis.

clearly the choice of actuation strategy is still open to debate, owing to the wide

range of performance criteria to which one can assess prosthesis performance (see later).

2.4.4 A Closed-Loop Prosthetic Hand

2.4.4.1 Historical Attempts to Close the Loop

Shannon (1976) motivated the possibility of feedback systems for amputees with arti-

�cial limbs, reviewing attempts at closed-loop design (dating from as early as Beeker

et al., 1967), arguing that electrical and mechanical skin stimulation could provide

psychologically acceptable, physically feasible and functionally viable feedback. Follow-

ing from this, Shannon (1979b) developed a closed-loop system in which �nger strain

was fed back to patients by electrotactile stimulation, reporting improved con�dence

in wearers. Almström et al. (1981) addressed the problem of interference control and

feedback. Since these landmark results, many aspects of feedback provision have been

discussed.

However, Scott et al. (1980) expressed reservations with performance evaluation,

doubting the reliability of subjective opinion and the generalisability of task measures.

Many prosthesis design criteria have since been discussed including functionality, dex-

terity, control and acceptance (Carrozza et al., 2006).

2.4.4.2 Measuring Success

In developing a prosthetic hand several crucial characteristics must be considered:

• Functionality. The hand should allow the user to perform vocational operations

and activities of daily living (ADLs, Carrozza et al., 2006);

• Control. The amputee should feel like he/she is in control of the hand at all

times (Carrozza et al., 2006);

• Sensation. The amputee should be able to sense the hand interacting with the

world (see Dhillon and Horch, 2005);

• E�ort. The amputee should not feel as though the hand is too much e�ort to

control, both physically and mentally (Doubler and Childress, 1984);

• Dexterity. The hand should o�er su�cient degrees of freedom, responsiveness

and accuracy (Carrozza et al., 2006);
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• Cosmetics. The prosthesis should have the size, shape and appearance of a

human hand (see Carrozza et al., 2006, Wright et al., 2003) to maximise the

illusion of ownership (Ehrsson et al., 2008);

• Acceptance. If all of the above criteria are satis�ed the hand will not be a

hindrance to the amputee, who should accept the prosthetic as though it were

a real hand, both psychosocially and functionally (Wright et al., 2003). The

alternative is rejection of the prosthesis and failed rehabilitation.

Performance Measures In line with these success criteria a range of assessment pro-

tocols have been developed. It is widely accepted that prosthesis functionality should

be tested against the benchmark of Activities of Daily Living (ADLs). These include

picking up coins, unfastening buttons, cutting food, turning pages in a book, removing

lids from jars, pouring water from jug or carton, and moving tins, jars and cans from

di�erent locations (Light et al., 2002). However, these criteria are di�cult to assess

quantitatively.

The ABILHAND questionnaire assesses subjective perception of grip strength or

dexterity, mental e�ort, fatigue and risk of breaking objects (Penta et al., 1998), provid-

ing a formalised subjective measure of success. To analyse objective functionality, the

Southampton Hand Assessment Procedure (SHAP) protocol assigns scores depending

on task-durations to complete a number of tasks equivalent to ADLs, each requiring use

of di�erent grasps (see Light et al., 2002). A similar Prosthetic Upper Extremity Func-

tional Index (PUFI) considers a wider range of tasks relevant to children (Wright et al.,

2003), and the Unilateral Below Elbow Test (UBET) provides an alternative objective

assessment with good inter- and intra-observer consistency Bagley et al. (2006).

While the above protocols are valuable clinical assessment tools for assessing the

whole range of prosthesis performance measures, I feel that for basic prosthesis eval-

uation the task of grasping and lifting objects su�ciently captures the key aspects of

sensorimotor function (planning, acting, sensing and reacting). As discussed previously,

the value of the grasp and lift task is that it is well characterised for both healthy and

anaesthetised subjects, can be measured easily and consistently, and provides a robust

objective benchmark for functional prosthesis control comparison.

Acceptance and Integration Acceptance of modern arti�cial limbs by amputees would

be signi�cantly enhanced by a system that provided sensations of touch and joint move-

ment (Dhillon and Horch, 2005). The feeling of ownership (see section 2.3.2.3) is a

requirement for successful prosthesis integration. A possible method to measure the

acceptance of a new feedback system is by measuring the degree of integration with
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other sensory modalities.

As discussed previously, cue integration studies provide a valuable method for meas-

uring multisensory perception. In this thesis I develop a sensorimotor cue integration

task which requires subjects to control a cursor in a manner analogous to prosthesis con-

trol. The degree of sensory integration provides a quantitative assessment of functional

restoration.

2.4.4.3 21st Century Closed-Loop Prostheses

Cipriani et al. (2008) show that �reach, pick and lift� trials are improved in amputees

with a single element of force feedback, and they report increased acceptance and us-

ability. Similarly, amputees respond positively and rely less on visual control when

picking up a soft ball (Pylatiuk et al., 2004). These subjective results highlight the

importance of sensory feedback, motivating an objective quanti�cation of performance,

learning rates and degree of integration.

Cipriani et al. (2008) consider three rather elaborate hierarchical prosthesis control

feedback schemes with di�ering amounts of feedback. Task accuracy increases with

interactivity (more control and feedback). When vision is available for the tasks there

is no quanti�able performance increase, though the presence of feedback is preferred by

subjects nonetheless.

Vibrotactile feedback has been shown to be bene�cial for brain-computer interface

control, particularly when vision is compromised by distraction (Cincotti et al., 2007,a).

As discussed previously, using a video-based simulated prosthesis, Zafar and Doren

(2000) found that tactile feedback improved qualitative reports and objective task per-

formance in a grasp and hold task, even in the presence of vision. Pylatiuk et al.

(2004) also integrated a force feedback tactor into a prosthesis, making the prosthesis

controllable without visual attention.

It is di�cult to compare the studies above as they use di�erent plants and feed-

back systems, but it appears that prosthesis control improvements due to feedback are

inconclusive. To address this directly, Chatterjee et al. (2008) quanti�ed prosthesis con-

trol improvements in the presence of vibrotactile force feedback in an EMG-controlled

grasp-force matching task. This follows on from previous work in which a virtual cursor

could be controlled (using a mouse) with performance aided by vibrotactile feedback,

and reasonable performance in the complete absence of vision (Chatterjee et al., 2007).

However, to their surprise, Chatterjee et al. (2008) found that feedback worsened overall

performance for naive subjects, and only improved performance for experienced sub-

jects in a subset of trials. They acknowledge that this could be due to (i) the di�culty

of controlling EMG signals to drive the hand, which is �less intuitive� than healthy
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hand control; (ii) increased muscular fatigue; and (iii) mechanical unreliability of the

prosthesis. Such factors are, at present, unavoidable in state-of-the art prostheses. How-

ever, I would expect that such control di�culties would serve to exemplify the utility

of arti�cial feedback, not reduce it.





Chapter 3

System Design

In this chapter I introduce an idealised experimental methodology with which I propose

to address fundamental open questions facing the �eld of rehabilitation robotics. This

methodology places healthy human performance as a gold standard. I present a closed-

loop prosthetic hand as a novel sensorimotor manipulandum which, unlike in healthy

individuals, can be readily manipulated and can therefore be used to decouple the

respective roles of feedback, sensation and control. In this chapter I introduce the

components of this system, and focus on the technological developments required to

produce this novel plant. This system will be the focus of the experimental work

documented in subsequent chapters and ultimately the target platform on which the

research will be deployed.
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 Sensing 
What information should we 
communicate to the patient? 

 

 Encoding and 
Communication 

How will we represent 
and convey this 

information? 

 

 

 Use 

How will this 
information be used? 

 

 Control 

Different Strategies for control 
and actuation of the hand. 

 

Figure 3.1: Design of a Closed-Loop Prosthesis. A closed loop prosthesis comprises

design decisions in control, actuation, sensing, encoding, communication and use. These

multiple dimensions make the task of prosthesis design a considerable challenge.

3.1 Motivation

3.1.1 Introduction

In this section I discuss the motivation for the system designed in this thesis. I also

motivate the general methodology underpinning Chapters 4, 5 and 6.

3.1.2 Debugging the closed-loop

3.1.2.1 Combinatorial Explosion

Fig. 3.1 presents a sca�old for the general problem of closed-loop prosthesis design,

summarising the many technological insights discussed in Chapter 2. Within each di-

mension one can imagine a path progressing from the practical and state-of-the-art, to

the gold standard of healthy human performance. Researchers have addressed many
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of the above dimensions in isolation (multiple channel EMG classi�cation (Castellini

et al., 2009); neural interfaces for control or feedback (Sachs and Loeb, 2007); tactile

perception as a function of location, waveform and modality (Kaczmarek et al., 1991,

Cholewiak and Collins, 2003; etc.). However, in order to engineer a complete solution

we must understand the individual contributions of each design dimension to the com-

plete system, including the role of the human user, under di�erent task demands and

constraints.

A feasible approach to systematically evaluate and compare the di�erent design

dimensions of Fig. 3.1 is to decouple them experimentally, then recombine them in a

controlled manner.

3.1.2.2 Idealised Manipulandum

In this this chapter I will introduce a closed-loop prosthetic hand, combining the ilimb,

a state-of-the-art prosthetic hand, with a custom built vibrotactile feedback interface.

In this thesis I aim to address the limiting factors of the closed-loop model by address-

ing the underlying sensorimotor processes from both neuroscienti�c and rehabilitative

perspectives. Rather than attempting to engineer an entirely new closed-loop system

(an approach which has achieved much technological success but has demonstrated lim-

ited rehabilitative bene�t), I propose to use a state-of-the-art device and address more

general questions regarding the nature of its use.

If one takes the healthy hand as the gold standard and strips it gradually of its tactile

feedback components by means of anaesthesia, one will observe that certain aspects of

control are lost while others are maintained, owing to the complementary in�uences of

audition and vision, audition and feedforward control. Decoupling the multisensory and

sensorimotor in�uences on control is a primary theme of this thesis.

I will present here a simulated amputation, allowing the attachment of a prosthesis

to healthy individuals. This serves two purposes: (i) It is experimentally convenient to

use healthy subjects; and (ii) Healthy individuals have intact end-e�ectors, allowing for

a controlled comparison between healthy and amputee control. The present approach

idealises the control of the closed-loop hand so that objective results can be obtained

regarding the bene�ts of sensory feedback for amputees (independently of the di�culties

inherent in prosthesis control).

This experimental platform provides a window into current theories about (i) sensory

substitution; (ii) multisensory integration; and (iii) feedforward and feedback cognitive

processes. The present chapter summarises the technological developments required to

develop this novel manipulandum.
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3.1.2.3 Modularity

Modularity it is a particularly important feature of the design, in the interest of gen-

erality, scalability and deployment. The modules considered are control, actuation,

sensation and feedback (see Chapter 2). In this thesis a range of end-e�ectors or plants

are considered. These are the environments in which the role of feedback is evaluated.

The most obvious end-e�ector is the robotic manipulandum discussed above.

Having established a collaboration with the Edinburgh-based prosthetics company

Touch Bionics, who in 2007 released the ilimb, the world's �rst fully articulating com-

mercially available bionic hand, I have investigated the current capabilities of users

equipped with this device. Further, we have modi�ed the hand to enable closed-loop

control. An idealised implementation of this device allows control by healthy individu-

als.

In this thesis I also consider abstract end-e�ectors. I have developed a number

of cursor-based tasks, where the subject controls a cursor and receives vibrotactile

feedback relating to the cursor. In contrast to most tracking tasks discussed in Chapter

2 I replace the standard computer mouse or joystick with di�erential- and proportional-

control interfaces. These can be considered analogous to modern prosthesis controllers,

simulating the same dynamics in the absence of the physical plant.

The reason for making these abstractions is so that I can prototype suitable control

and feedback methodologies in controlled conditions. before testing the scalability of

the solution to the real world plant.

3.1.2.4 The Gold Standard

Healthy individuals provide a perfect example of how a closed-loop system should op-

erate. For example, we have seen in Chapter 2 that in order to perceive and act in

a robust fashion healthy individuals can combine multiple modalities in a way that is

predictable and often statistically principled. If a sensory modality is removed (e.g.

by amputation) or if a sensory modality is restored (e.g. by arti�cial means), we can

begin to understand the learning mechanisms underlying these phenomena. The multi-

sensory integration paradigm may provide a valuable experimental tool to evaluate the

mechanisms of arti�cial cue integration and allow us to quantify the degree of sensory

restoration.

Another crucial task of everyday living is that of reaching, grasping and lifting

objects. This is an ideal task to study for three reasons: (i) it characterises the key

aspects of sensorimotor control: sensing, planning, predicting and acting; (ii) it is well

researched and understood in healthy and sensory-impaired individuals; and (iii) it is

well known that humans behave in a `stereotypical' or `optimal' way in these simple
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Figure 3.2: Experimental Manipulations. Five experimental conditions to elucidate the

limiting factors in prosthesis functionality. Condition A, Those using their healthy hand

have full control and full feedback. Condition C, Full anaesthesia of the �ngertips eliminates

tactile and force feedback. Condition B, Force feedback can be arti�cially restored to the

natural control system using vibrotactile stimulation. Condition E, Full control can be

removed by using a robotic hand (or an abstract end-e�ector such as an on-screen cursor).

Condition D, Force feedback can be arti�cially restored to the arti�cial control system using

vibrotactile stimulation.

tasks, allowing the quanti�cation of prosthesis suboptimality. It is important to ask

whether or not this suboptimality, either as measured by impaired performance in some

task, or by comparison to statistical or computational models, can be explained by

the lack of sensory feedback, or whether some other aspect of the closed-loop design is

limiting performance.

The components of the closed-loop system can be decoupled, allowing one to es-

tablish which aspect is presently suboptimal. This can be visualised as starting with

healthy human hand and gradually stripping it of its natural sensory components, to be

replaced by an arti�cial (vibrotactile) sense. Likewise, replacing the healthy hand with

a robotic or computer-based end-e�ector removes the natural control system. Together,

this provides �ve experimental conditions, shown in Fig. 3.2.

The �ve exemplary conditions in Fig. 3.2 illustrate how control and feedback can

be decoupled. Performance in Condition C demonstrates the e�ect of digital anaes-
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thesia. Adding a source of arti�cial sensation to condition C results in Condition B,

allowing the degree of sensory restoration provided by a particular feedback method to

be quanti�ed, independent of control of the hand. The ideal feedback method should be

comparable to healthy performance, Condition A. Likewise, performance in Condi-

tion E demonstrates the e�ects of both sensory and motor de�cits for amputees �tted

with state-of-the-art prostheses. Comparing condition E to condition C allows for the

degree of control restoration provided by a particular controller in the absence of feed-

back to be quanti�ed. Finally, Condition D is the modi�ed closed-loop prosthetic

hand proposed here, providing simultaneously sensory and motor restoration. Com-

paring condition D to condition B allows the degree of control restoration for di�erent

feedback methods to be quanti�ed. The holy grail in rehabilitation is to design condition

D such that is it comparable to condition A.

This schematic de�nes the bigger picture of the present research, but in this thesis

we use this framework to focus speci�cally on two key areas. Firstly, healthy individu-

als (condition A) combine sensory cues in a manner which is often statistically optimal.

I ask if this phenomenon extends to the integration of an arti�cial feedback channel

(condition B). In Chapter 5 I will show this is indeed the case. Secondly, in review-

ing healthy human grasping tasks, I have described how certain aspects of economical

grip-force scaling are impaired by digital anaesthesia (conditions A and C). Using the

robotic hand as a model system, I compare grasping and lifting behaviour in a robotic

system (conditions D and E) to quantify the e�ects of arti�cial digital anaesthesia, and

modify the control system so as to minimise feedforward uncertainty (condition D) to

quantify the e�ects of arti�cial control. In Chapter 6 I will show how impairments to

economical grasping are minimised if the control system is designed in this way, implic-

ating complimentary feedforward and feedback processes as is also observed in healthy

individuals (condition A).
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3.2 Methods and Results

3.2.1 Introduction

In this section I detail the hardware developed for this thesis. Owing to the modular

approach discussed above (Fig. 3.1) and in Chapter 2 (Fig. 2.7), the main components

of the system are control, actuation, sensation, feedback and task. Below I discuss the

developments and design decisions in each of these areas, and present the results that

have informed these decisions.

3.2.2 Robotic Hand Actuation

3.2.2.1 Introduction

Figure 3.3: The Touch Bionics ilimb

The ilimb (Fig. 3.3) is a state-of-the-art prosthetic hand with two degrees of EMG

control (for open and close). Using a miniature worm gear motor system, each �nger

of the ilimb is individually powered, and �stalls� when the grip reaches a set threshold,

enabling object-speci�c grasp shapes without user intervention. The ilimb has scored

highly in terms of patient satisfaction and reliability (Otr et al., 2010).

Di�erent actuation strategies exist for prosthesis control. This translates to deciding

how the control signal (typically EMG or FSRs) maps onto (for example) the end e�ector
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positions, forces or velocities. The ilimb presently deploys a di�erential (velocity)

control strategy. However, the healthy human hand works on an proportional control

method, whereby hand position and forces are governed by the relative viscoelastic

contributions of opposing muscles (see Chapter 2). I have therefore implemented a

di�erential force-control system and a proportional force control system for the ilimb.

In this section I describe the existing ilimb control algorithm. In its basic form,

users can not easily control the force output of the hand. I highlight a number of al-

ternative approaches I have developed to achieve signal-proportional force control and

di�erential force control. Further details of the practical deployment of the above de-

veloped technology can not be divulged due to the terms of a license agreement between

the University of Edinburgh and Touch Bionics and aspects of these methods form part

of a patent application (Saunders et al., 2011a). Background intellectual property is

documented in a published technical report (Saunders and Vijayakumar, 2009). Know-

ledge of the licensed technology is not necessary to reproduce the experiments in this

thesis.

3.2.2.2 Di�erential Control

The ilimb hand uses a di�erential control protocol. A simpli�ed version of the algorithm

is roughly described by the �owchart in Fig. 3.4.

The algorithm prescribes three main parameters per digit:

• Activation threshold: the threshold at which control inputs will begin to ac-

tivate the hand

• Speed: a pulse-width-modulated speed parameter (PWM), proportional to the

di�erential control signal input

• Stall threshold: the magnitude of current drawn by the motor at which the the

motor will be turned o�, or `stalled'.

By adjusting these parameters di�erent types of grasp can be achieved. Users of the

hand presently have control of the speed. I have considered a number of di�erent control

methods in this thesis.

3.2.2.3 Responsive Stall Control

The basic ilimb control method expends more energy than necessary, due to high motor

currents and long (100ms) delays after contact before the motors stall. By reducing this

delay (by smoothing spikes from the current signal, and taking a briefer stall delay of

just 5ms) a more responsive stall control routine is achieved. This allows grasps ranging
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Figure 3.4: The basic ilimb control algorithm. When the di�erence between the �exor

(F ) and extensor (E) signals reaches a threshold the prosthesis begins to open or close.

The motor speed is set proportional to the signal. If during closing the �exor current (IF )

exceeds a threshold the hand stalls until extension is initiated, and vice versa a for the

extensor current (IE).
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Figure 3.5: Grasp force, current and duration. Grasping with the ilimb can be con�gures

by adjusting the stall current and grip force. By gathering a large quantity of grasp data we

can optimise these parameters to achieve e�cient grasps and graded force control.

from 100g of load up to 1kg of load by adjusting the PWM (not the stall threshold).

Data were collected from the hand for di�erent values of PWM and stall threshold to

measure the grip force attained, the current used, and the time taken for the hand to

close.

The main �ndings of this were:

1. Stall threshold has very little e�ect on the �nal force output

2. PWM has a very strong e�ect of the �nal force output

3. High stalls can have the disadvantage that the hand fails to stall (consuming time

and power)

4. Di�erent values of PWM have only a marginal e�ect on the current consumed

when the hand is unloaded

Therefore with responsive stall control as highlighted above, patients can use the pro-

portional PWM controller to modulate their force output.

3.2.2.4 Pulsing Linear Force Control

I developed a method to control the hand that provides approximately linear force

output over time. This is a signi�cant development, as presently users do not have the

facility to di�erentially-control the force output of the hand. This may be bene�cial for

�ne control of grasps, avoidance of damage to delicate objects, and ultimately patient

acceptance. The control algorithm for the �exor signal comprises two phases: (i) A

`light touch' grasp; and (ii) Linear force increase by a sequence of pulses of the thumb.

The light touch phase proceeds with a small �boost� (the motor is switched on for

a duration of 50ms) to overcome `stiction' (an intertial property of the motors). Each

�nger is then driven according to the standard algorithm (Fig. 3.4) with a low speed
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(pulse-width modulated (PWM) at typically 150/700 when not using a cosmetic glove),

with a high stall threshold. The thumb is driven at a low speed (PWM 200/700) and

a low stall threshold. Resultantly the thumb stalls as soon as it is loaded. At this

instant all other �ngers are given a similarly low stall threshold and close until they

make contact with an object or are closed. Consequently, the hand completes a very

light grasp on the object (equivalent to approximately 300g). This ensures that: (i) a

low overall squeezing force (opposing the thumb) is achieved; (ii) the �ngers continue

to move until the thumb is in opposition with them to wrap around the object; and (iii)

�ngers that do not contribute to the grasp are allowed to close completely, important

for forming stable grasps.

The hand then instantly switches to thumb pulse mode. As all grasps are in opposi-

tion to the thumb it is both practical and economical to achieve the desired force range

via only the thumb. In this mode the thumb is controlled by short pulses of current, of

increasing PWM duty cycle. The magnitude is chosen so as to allow near-linear force

increases with each successive pulse. This can allow for grasps ranging from very light

(equivalent to 100g) to heavy (2kg), with the magnitude and duration of pulses tuned

to achieve the desired rate of change of force.

3.2.3 Control Signal

3.2.3.1 Surface Electromyography

TMR- and EEG-controlled prostheses (Chapter 2) rely on existing neural activation

and may therefore provide more `natural' control. However these approaches may be

presently impractical for the majority of prosthesis wearers, due respectively to the

amputee's desire to avoid further surgery and the need for cosmetic integration.

Most present-day prosthetic hands are controlled by Surface Electromyography (sEMG),

the recording of electrical currents in contractile muscle tissue using surface-mounted

(non-invasive) electrodes. EMG electrodes (an example shown Fig. 3.6) amplify these

signals to control the so-called myoelectric prosthesis. Typical muscles exploited by

prosthetists are the wrist �exor and extensor, and �nger �exors and extensors (see

Chapter 2). Typically just two electrodes are used to control open and close signals on

the prosthesis. Alternatively a single electrode could be used to control closing of the

hand (with the hand programmed to automatically reopen in the absence of a signal).

In more elaborate systems a third electrode may be used to control thumb abduction,

thumb rotation or wrist rotation. However, increasing the degrees of control increases

the di�culty of learning to use the hand. In this thesis I focus only on 2-channel control.
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Figure 3.6: Otto Bock EMG electrodes

3.2.3.2 Simulating an Amputation

For purposes of experimentation, healthy subjects can be given a simulated amputation,

by anaesthetising and rigidly splinting the hand (see Fig. 3.7). Following amputation,

partially amputated muscle heals onto remaining bone and tissue in the stump, which

is simulated by locking the hand in pace. The purpose of the anaesthetic is to avoid

tactile cues from providing additional tactile or force feedback from the hand. EMG

sensors can be applied to the simulated amputee in the normal way.

3.2.3.3 Noise-Free Simulated Amputation

Controlling the hand by recording EMG signals from the residual muscles of the am-

putee or simulated amputee has its limitations. A low signal to noise ratio means that

considerable signal smoothing is needed, limiting the responsiveness and accuracy of

the EMG signal. Learning to reliably decode EMG signals challenging, and it is likely

that this limits e�ective prosthesis control. This can be avoided by replacing EMG

electrodes on the muscle with force sensors on the end-e�ector. By recording muscle

signals at the end e�ector of the muscle rather than at the muscle itself a much higher

signal-to-noise ratio is achieved.

Rather than splinting a whole hand only single joint is necessary, such as the middle

interphalangeal of the fore�nger (Fig. 3.7). A prosthesis may be controlled by the FDP

and ED muscles in the forearm, which are (essentially) an antagonistic muscle pair

which control �exion and extension of the �nger. This is simpler than rigid splinting of

the whole hand, and in the same way is a noise-reduced alternative to EMG.
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Figure 3.7: Simulated Amputation. For experimental convenience an amputation can be

simulated by rigidly splinting an anaesthetised �nger. Either EMG or force sensors can be

used as control signals for an attached prosthetic device.

3.2.3.4 Idealised Control and Cursor Control

In the above design it may be unnecessary to anaesthetise or even bind the �nger.

In Chapter 2 it was noted that muscle-contraction proprioceptors and muscle length

proprioceptors could provide suitable signals to allow reliable control of muscle activity.

FSR force feedback at the �ngertip may be considered an equivalent feedback signal

(though it may be more reliable). An idealised control system is created by simply

allowing the subject to press two force-sensitive buttons.

Such a system could be used to control a cursor on a screen. Conceptually equi-

valent to prosthesis control but practically simpler to implement, this idealised control

scenario allows us to identify and isolate the obstacles facing successful rehabilitation

independently of the limitations of control. This approach allows us to tackle funda-

mental questions the �eld of rehabilitation prosthetics outwith the capabilities of current

technology.

3.2.4 Sensation and Sensors

Numerous tactile signals are available to healthy individuals, but may be of selective

bene�t depending on the task. In this thesis I focus on two elementary signals: position

feedback and force feedback. The feedback modality may have an in�uence on the

degree of perceptual rehabilitation (Patterson and Katz, 1992). However, the success of
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TVS systems (y Rita et al., 1969) indicates that the information in an arti�cial feedback

channel can be exploited regardless of its location or encoding.

3.2.5 Vibrotactile Feedback System

3.2.5.1 Introduction

The main considerations for developing a vibrotactile feedback system are discussed

in Chapter 2. The system presented here is intended to achieve sensory substitution

(y Rita et al., 1969) for the tactile sense.

Previous studies considering the most suitable design of a feedback system have

found that, to maximise stimulus discriminability and bandwidth, one must take into

account amplitude Bark et al. (2008), frequency Kadkade et al. (2003) quantity (Yoon

and Yu, 2008) and spacing of tactors (van Erp, 2005) the e�ects of age (Cholewiak and

Collins, 2003), body site (Cholewiak, 1999), separation of spatial patterns (Yoon and

Yu, 2006) and pulse burst waveforms (Perez et al., 2000).

Based on these results I have developed an array of vibrotactile stimulation elec-

trodes, or vibrotactors. This section describes the developed technology.

As mentioned in the previous section, the system is designed to provide position

and force feedback. These signals were considered most relevant to the functional tasks

considered in this thesis (Chapters 5 and 6).

3.2.5.2 Hardware

Figure 3.8: Vibrotactile Feedback System

Construction To satisfy the considerations of Chapter 2, I have developed and built

a 32-channel vibrotactile feedback system. 32 vibrating motors (tactors) are controlled

via a programmable microcontroller (PIC18F4550, Microchip, US, hereafter PIC ) us-

ing a set of multiplexors (MUX ) to independently adjust the vibration frequency and

amplitude of each motor to deliver a wide range of sensations. The system connects to

a personal computer (PC ) by universal serial bus (USB) to allow simultaneous software
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control of tactors and sensor data logging. Fig. 3.8 shows the main components of the

system.

Circuit Diagram The vibrating motors are split into four groups of 8, and each motor is

addressed by a combination of multiplexors and latches as shown in Fig. 3.9. Typically

just 8 motors are used at any one time, stitched in an elasticated bandage and fastened

with a fabric hook-and-loop fastener to make a wearable �cu��.

Custom hardware also allows force and position sensors to be simultaneously sampled.

This data is sent via a PC for purposes of temporal calibration and data logging, and

can be used to update the vibratory stimulation at a rate of >200Hz with latency <1ms.

The lag time for the motor accelerating and decelerating to a given voltage is less than

40ms. Custom PC software can also be used to directly control the stimulation patterns,

allowing �exibility of experimental design.

Motor Pro�le Each motor is a Precision Microdrives 310-101 10mm shaftless vibration

motor. Its response function is shown in Fig. 3.10. Each motor is connected to a PNP

transistor driven by 4V and gated by the output of a standard digital latch (Microchip,

US) to allow persistent on and o� signals to be sent to each motor.

Improved E�cacy I developed prototypes to improve the e�cacy of the feedback by

increasing the range of perceptual levels delivered by each vibrotactor.

The two methods devised were relatively simple: mounting the tactors on sponges

(Fig. 3.11A), or mounting them on springs (Fig. 3.11B) embedded in a sponge casing

(Fig. 3.11C). The latter method was e�ective at:

• (i) removing unwanted audibility of the tactors

• (ii) increasing the pressure of the tactor on the patient

• (iii) increasing the e�ciency of the motors (so that the load of the motor is pre-

dominantly the patient, and not expended on the mounting surface or the spring)

3.2.5.3 Firmware

Hardware Communication interface The motors are controlled by a 9 wire connection

from the PIC microcontroller (7 data bits plus power and ground lines). Data bits are

multiplexor address bits (2), latch address bits (3), latch enable (1). and data (1).

The algorithm for hardware communication is as follows: (i) Disable the latch (so

that it holds its current values on all outputs); (ii) Set the multiplexor address of the

current array; (iii) Set the latch address of the current tactor; (iv) Set the data bit to
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A

B

PIC MUX

Figure 3.9: Vibrotactile Feedback System Hardware Interface. (A) Overview. (B)

Connectivity Diagram.

1 or 0 according to its desired value; (v) Wait until the minimum data-ready time; (vi)

Latch enable; (vii) Wait until the minimum latch time; and (viii) Latch disable.

In this thesis I use two di�erent algorithms to control the motors. The �rst is a duty

cycle encoding, the second is an combined pulse-with/frequency encoding.

Duty Cycle encoding The motors are updated by an on-chip algorithm cycling at

200Hz. Each cycle is discretised into 32 steps, each of duration 150µs. Each motor is

assigned a number m between 0 and 31 and is turned on for (m) time steps and o� for

the remaining (31−m) steps. This allows discretised control of the duty cycle assigned

to each motor.

Fig. 3.12 illustrates the microcontroller assembly language program to control the

motors. The outer loop repeats at 200Hz making the system responsive to USB in-
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Figure 3.10: Vibration Motor Performance. [from data sheet for part 310-101 (Precision

Microdrives, UK)]

Figure 3.11: Motor Mounting (A) Sponge-mounted vibrotactors. A photograph of

8 vibrating motors mounted to the interior of the socket to provide tactile feedback to

the subject. (B) A `simulated amputation' subject is �tted with the robotic prosthesis

via a custom made socket attached to the arm. (C) A �nished socket with drilled sponge

padding for comfort. (D) Spring-mounted vibrotactors. Photograph of 8 vibrating motors

mounted on springs (E) The spring-mounted motors were housed in a drilled sponge casing

to provide a surface su�ciently rigid on which to rest an arm, but soft enough that the

spring-mounted motors could press �rmly against the skin.
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structions to change the motor amplitude. Fig. 3.13 shows the timing diagram for the

microcontroller software.

PIC Software
Duty Cycle Encoding

FOR i = 0 to 31

Figure 3.12: Duty Cycle Encoding: Program. The software services USB data transfer

requests to update on-chip memory for each of the tactor channels. m(v) is updated for

each tactor v to sets its duty cycle and therefore vibration intensity.

Combined Frequency / Amplitude Encoding Jiang et al. (2009) recently showed that

Multiple Sclerosis patients with di�erent degrees of sensory loss were able to more ac-

curately gauge grip forces with vibrotactile feedback. Their tactile code simultaneously

modulated period and pulse width to increase the bandwidth of the channel. Based

on this I implemented a system whereby pulse width and period can be independently

modulated at a high temporal resolution, allowing for generation of a wide range of

possible codes.
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Figure 3.13: Duty Cycle Encoding: Timing Diagram. At a frequency of 200Hz the

software reads analogue sensors, communicates with a PC via USB, and controls the vibration

intensity of up to 32 tactors

Cycling at a frequency of 2kHz, sensor values are streamed to the PC via USB and

the motors are updated by USB requests. In the combined algorithm two values are set:

the period, T , ranging from 0 to 255 (8 bits) and the pulse width, PW , ranging from

0 to 127 (7 bits). These values correspond to stimulation pulses occurring at a periods

of 0ms to 1275ms in steps of 5ms, and lasting for 0ms to 63.5ms in steps of 500µs. An

additional bit is used to switch the multiplexor between di�erent arrays to allow up to

16 channels, although in practice only 8 were used.

Fig. 3.12 illustrates the microcontroller assembly language program to control the

motors.

A broader range of tactile stimuli can be encoded by this system in comparison to

the duty cycle encoding. Indeed, the duty cycle method can be encoded by this system.

Fig. 3.15 illustrates the modulation of pulse width, frequency and both simultaneously.

By modulating both simultaneously it may be possible to exploit the skin's sensitivity

to changes in amplitude at high frequency and changes in frequency at lower amplitude,

providing a greater bandwidth of tactile information.
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Read Analogue Sensors

FOR tactor = 1 to 8

D=0

count(i) > T(i) count(i) = 0

D=1

NEXT
tactor

END FOR

T(1)...T(8)
count(1)...
count(8)

USB request for
 data transfer

address = tactor
data = D

count(i) > PW(i)

Serivce
USB
Requests

NEXT

PW(1)...PW(8)

YES

NO
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NO

PIC Software
Combined Pulse Width / Period Encoding

Figure 3.14: Combined Encoding: Program. The software services USB data transfer

requests to update on-chip memory for each of the tactor channels. The number in memory

location m(v), sets to the duration to turn on the vibrating motor on output channel v,

setting its duty cycle and therefore vibration intensity.

Feedback Encoding Reviewed in Chapter 2, Cholewiak and Collins (2003) investig-

ated a number of parameters a�ecting vibrotactile localisation and perception. Body

locus and tactor spacing are both signi�cant factors in the successful interpretation of

vibrotactile stimuli. I have explored a number of alternative encodings based on these

�ndings.

Fig. 3.16 illustrates three typical encodings: (i) an intensity code, in which a single

tactor may express a range of `intensities' which de�nes a range of tactile percepts;

(ii) a spatial code, in which the location of stimulation encodes the range of percepts;

and (iii) an interpolated code, in which neighbouring tactors are co-simulated to create

perceptual sensations localised between the tactors. It has been shown previously that
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Figure 3.15: Combined Encoding: Typical Waveforms. An illustration of typical vi-

brotactile waveforms that can be produced with the hardware presented in this thesis; (top)

Pulse Width Modulation (PWM): for the same period we can modulate the pulse width

and thus the perception of changing intensity; (middle) Frequency Modulation (FM): for a

�xed pulse width we can modulate the period of pulses and thus the perception of changing

frequency; (bottom) Amplitude Based Feedback (ABF): based on the method employed by

Jiang et al. (2009), pulse width and frequency are modulated together, providing a greater

range of perceivable intensities.
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A B C DIntensity Spatial Interpolated

Figure 3.16: Vibrotactile feedback encodings. (A) Encoded signal (B) Intensity coding.

Size of red blob indicates magnitude of stimulus `intensity', for example duty cycle, frequency

or amplitude. (C) Spatial encoding. The location of the activated tactor encodes the signal.

(D) Between-tactor sensations are created through co-stimulation of neighbouring tactors.

spatial codes are particularly e�ective as they allow reliable encoding of signal magnitude

(Kadkade et al., 2003), and may be less prone to adaptation compared to single tactor

codes.

Encoding Methods `Intensity' can itself be encoded in a number of ways. One

could modify the duty cycle of stimulation, the frequency of stimulation, or the amp-

litude of stimulation.

Let us assume that we wish to encode a given signal x, ranging in intensity from 0

to 7a (for mathematical convenience). In the present hardware setup, a given tactor n

is turned on with a pulse-width PWn indexing into the range [0ms,0.5ms,. . . ,63.5ms],

and a period Tn indexing into the range [0ms, 5ms, . . . , 1275ms].

Three vibrotactile encodings are compared:

1. Spatial Code (equation 3.1, Fig. 3.17A)

2. Duty-Cycle Code (equation 3.2, Fig. 3.17B)

3. Combined Pulse-Width / Period Code (equation 3.3, Fig. 3.17C)

Tn = 40, PWn =


0 if x < (n− 1)a

0 if x > (n+ 1)a

40 ∗ (1− |xa − n|) otherwise

(3.1)

PWn = 40 ∗ (x/7a), Tn = 80 (3.2)
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Figure 3.17: Feedback parameters for di�erent encodings. (A) Spatial Code, (B)

Duty-Cycle Code, (C) Combined Pulse-Width / Period Code.

PWn = 10 + 30 ∗ (x/7a), Tn = 40 ∗ [1/(1.1− (x/7a))] (3.3)

Note: equation 3.3 can be written in a parametric form, with parameters trained on

subjective perception scores:

PWn = b+ c ∗ (x/7a), Tn = d ∗ [1/(e− (x/7a))] (3.4)

3.2.5.4 Software

A feedback encoding tool was developed to enable testing of di�erent tactile encodings.

This comprised a novel graphical user interface featuring a 2-D plot of pulse width

and period. Users can `drag' a stimulus through this space using the mouse whilst

experiencing tactile stimuli on the arm. Fig. 3.18 provides a demonstration of this

software tool.

The above software streams 16 bytes to the PIC microcontroller via a USB serial

interface, corresponding to the period and pulse width of the 8 channels.

3.2.5.5 Alternative Feedback Systems

I also developed an electrotactile interface, which passes small safe levels of biphasic

electric currents into the skin. The general principle involves passing small currents

(∼10mA) for brief intervals (∼100µs) to the free nerve endings which reside in the dermis

of the skin using surface-mounted electrodes. I have developed a low-cost electrode

and a biphasic stimulator for this purpose, described in a separate report (Saunders
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Figure 3.18: Vibrotactile feedback encoding software. Each motor can be assigned a

di�erent pulse width (PW) and period (T), creating a tactile waveforms modulated by these

parameters (top right). This is represented by graphical interface in which stimuli can be

dragged along these two dimensions (top left). A range of stimuli can be concatenated to

form a feedback encoding. Multiple-tactor encodings, such as a spatial encoding (bottom

left), allows for a greater perceptual range. An optimal single-tactor encoding can be created

by simultaneously modulating the pulse-width and period (bottom right) to achieve greater

bandwidth. Additional features such as `fade' prevents the tactors from remaining on for

too long � which can result in adaptation and decreased sensitivity.
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and Vijayakumar, 2009). However, this thesis focuses on the vibrotactile stimulator

described above.

3.2.6 Task: Vibrotactile Discrimination

3.2.6.1 Motivation

To choose the most appropriate tactile feedback code, a useful quantitative measure of

the information content of di�erent tactile codes is the channel bandwidth. The band-

width of a perceptual property is often computed by measuring a subject's discrimina-

tion ability when given two distinct stimuli. Reducing the distance between the stimuli

decreases the perceptual discriminability, and the �75% just noticeable di�erence� (JND)

threshold between two tactile stimuli measures the point perceptual discriminability at

which stimuli are accurately distinguished 75% of the time. Such a measurement is

made by asking subjects to choose one of two stimuli as satisfying some comparative

perceptual property (such as which stimulus is more intense). JND thresholds vary as

a function of tactile encoding (e.g. frequency, duty cycle, amplitude) as well as location

and spacing of tactors (see Pongrac, 2006, Kohli et al., 2006, Kaczmarek et al., 1991,

Szeto, 1982 reviewed in Chapter 2).

The results in this section are important for later experiments as they establish a

baseline `quality' of the tactile information, which may play a role in the degree to which

subjects can utilise and integrate the information in the vibrotactile channel.

3.2.6.2 Methods

Overview I use a two-interval forced-choice (2-IFC) design to measure subjects dis-

criminability of two stimuli. We use a �3 down, 1 up� adaptive staircase design to

establish the 75% just-noticeable-di�erence (as recommended in García-Pérez, 1998).

Subjects were presented with two successive vibrotactile stimuli (10ms duration, 3ms

separation) and asked to report if the second stimulus was (a) located to the right or

to the left of the �rst; or (b) more or less intense than the �rst, as appropriate.

Experiment 1 (N=1) In Pilot Experiment 1 I compared 3 tactile codes introduced

previously: Pulse Width Modulation (PWM), Amplitude Based Feedback (ABF) and

an interpolated spatial code (SM). One (trained) subject completed this pilot. A number

of stimulus reference points were chosen for each encoding (5, 4 and 6 respectively), and

3 blocks of 20 comparisons were conducted for each reference stimulus, chosen according

to the adaptive-staircase design. Further subjects were tested in an MSc project under

my supervision (see Moraud, 2009).
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Figure 3.19: JND performance for three encoding methods Results of the vibrotactile

descrimination experiment for three encoding methods. (left) duty cycle encoding, (middle)

combined period/pulse-width, (right) spatial encoding

Experiment 2 (N=6) In Pilot Experiment 2 I tested the interpolated spatial code

(SM) in 6 naive subjects. This was done at 6 reference locations along the forearm.

Probe locations were chosen, as per the adaptive-staircase design, to converge on the

75% just-noticeable-di�erence (JND) threshold. This is the threshold at which subjects

correctly determine the location on 75% of the trials, where chance is at 50%. Subjects

received 20 pairs of stimuli for each location, which was su�cient to establish a per-

subject psychometric curve and a per-location psychometric curve (across subjects).

3.2.6.3 Results

Experiment 1: spatial encoding provides greatest detectable range 75% JND thresholds

is measured for three tactile encodings across a range of stimuli (see methods). These

JND thresholds (indicated by dark blue bars in Fig. 3.19) are plotted across the space

of possible stimulus values. From these curves I compute the number of perceptual

levels attainable by drawing a steps from the lowest stimulus to the highest stimulus

bounded by an interpolated region of indiscriminability. This de�nes the bandwidth of

the encoding.

The three di�erent feedback encodings have di�erent perceptual qualities. The spa-

tial encoding and the combined duty-cycle / frequency encoding were more uniform

across stimulus space. The greatest bandwidth is achieved from the spatial and duty-

cycle encodings. Consequently I chose to focus on the spatial encoding for the exper-

imental work in later chapters of this thesis. Further investigation was the subject of

Moraud (2009).
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Figure 3.20: Just Noticeable Di�erence (JND) experiment. (A) Psychometric curves

at three separate locations along the arm, starting from the wrist (location 0) to the elbow

(location 255). The coloured circles correspond to average data when binned into groups

of 10 data points. The psychometric curves are Cumulative Gaussians �t to the raw data

over all subjects (N=6). (B) Sensitivity along the forearm can be plotted as a function of

the success at distinguishing any two given tactors. The 75% JND thresholds (blue bars)

suggest a region of stimulus indistinguishability (red shaded region). From this region we

calculate the number of just-distinguishable steps we can make. We plot a red blob at each

step, showing that 12 just-distinguishable stimuli can be perceived along the forearm.

Experiment 2: spatial encoding is e�ective for naive subjects A cumulative Gaus-

sian function was �t to the proportion of correct responses as a function of stimulus

separation. Fig. 3.20A, shows curve �ts at three locations along the arm. As the ad-

aptive staircase method does not give evenly distributed points, I do not �t the curve to

binned data (though it is shown for comparison). In Fig. 3.20B I plot the across-subject

JND threshold as a function of location. The results indicate that at least 12 discrimin-

able levels are attainable over the length of the forearm, and sensitivity increases near

the wrist and elbow. These results are consistent with those previously reported in the

literature (Cholewiak and Collins, 2003, Cholewiak et al., 2004). I was satis�ed that

this bandwidth of information was satisfactory for tasks in the present thesis.

3.2.7 Advanced Tasks

To extend the vibrotactile discrimination task discussed above, a battery of further ex-

perimental tasks to explore vibrotactile perception are covered in the following chapters

of this thesis.

3.2.7.1 Vibrotactile Localisation

As a closed-loop alternative to passive vibrotactile discrimination, subjects can be asked

to use feedback to perform a task (e.g. Szeto and Chung, 1986). In a simple arrangement
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Figure 3.21: Grasp, Lift and Move Task.

a vibrotactile stimulus can be presented on the array and subjects are required to

actively point to it. It may be moving continuously, requiring subjects to track it over

time. In an alternative arrangement the vibrotactile stimulus is itself a cursor which

subjects must move to a target location. Learning may be easier in this arrangement as

subjects are in control of the cursor. These task variants are interactive and potentially

more engaging and enjoyable for subjects to perform. Moreover, use of closed-loop tasks

may facilitate greater learning (see Chapter 2), and are more relevant for understanding

the role of feedback for sensorimotor control.

3.2.7.2 Vibrotactile Integration

The degree of sensory rehabilitation provided by a feedback system can be quanti�ed by

the level of integration with our existing healthy senses. Using the above discrimination

and localisation tasks it is possible to measure vibrotactile localisation performance

in the presence of a redundant modality. This task could be a cue integration task,

requiring subjects to use both visual and tactile cues to localise a target. This has been

well documented for healthy senses (e.g. Ernst and Banks, 2002, Alais and Burr, 2004)

but for an arti�cial modality this has not been explored.

3.2.7.3 Grasp, Lift, Move and Hold

These tasks capture aspects of many ADLs, including planning, feedforward control

and feedback control. These processes are well characterised in healthy and sensory-

impaired individuals (e.g. Johansson andWestling, 1984, Nowak and Hermsdörfer, 2003,

Hermsdörfer et al., 2008, discussed in Chapter 2). The task is illustrated in Fig. 3.21.

Notably, healthy people scale grip and load force in parallel, grip economically (applying

just enough force to avoid slip), and combine feedforward and feedback in�uences to

coordinate such grasps. In the present thesis I extend the �ndings of this task to subjects

�tted with a robotic prosthesis and arti�cial feedback of grip force.
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3.2.7.4 Activities of Daily Living

Advanced ADLs are not covered in this thesis. Most of these tasks are particularly

challenging for present day general purpose robotic prostheses, such as tying a shoelace;

fastening a shirt button; writing with a pen; striking a match; and catching and throw-

ing.
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3.3 Discussion

In this chapter I have presented a number of key engineering developments necessary

for the research which follows in Chapters 4, 5 and 6.

I have developed a responsive, 32-channel vibrotactile feedback system, incorporat-

ing original encoding methods: (i) an interpolated spatial code; and (ii) independent

pulse-width/period encoding. I have evaluated these techniques using JND experiments

and proven reasonable bandwidth with minimal training.

Further, I have written �rmware for the ilimb hand which has enabled: (i) di�eren-

tial force control; and (ii) proportional force control. This has involved novel engineering

developments which are under license and patent application (Saunders et al., 2011a).

The control and feedback systems were incorporated into a modular design which

may be seen as an experimental manipulandum for a range of tasks from basic tactile

localisation through to ADLs. This has required the development of a `simulated am-

putation' scenario. This is a novel approach to allow the decoupling of each component

of the system to enable systematic evaluation and reduce the combinatorial complexity.

The focus of the remainder of the the thesis is experimental tasks involving the

system described above. It is worthwhile to discuss the validity of the present approach

and the potential limitations.

It should be noted that the spatially-encoded vibrotactile system o�ers reasonable

bandwidth with minimal training. This is consistent with previous �ndings of the ad-

vantages of spatial codes. Kadkade et al. (2003) found that a spatial encoding was

superior to a frequency-modulated code, and the above JND results reveal the superior-

ity of a spatial encoding over a duty cycle encoding. Spatial codes are arguably better

than single-tactor codes for absolute judgement. However for detection of motion, Kohli

et al. (2006) argue that spatial encodings are better suited to relative discrimination

rather than absolute judgement of signal magnitude.

However, there are a number of limitations worth noting. There is a measurable

40ms lag time of motor accelerating to di�erent speeds. This is same order of magnitude

as healthy peripheral neural latency, and so may be tolerable. However, this is less

responsive than (say) an electrotactile stimulator. For practical and safety reasons I

argue that it is su�cient for the present purposes.

The use of JND experiments is suitable for measuring channel bandwidth but is less

suited to measuring response latency or mental e�ort. These are parameters which may

be tested by speci�c experimental investigation. However, tracking tasks (motivated by

Kadkade et al., 2003, see Chapter 2), allows for high-level performance parameters such

as sensory augmentation, integration and functional utility to be measured. The present

system has su�cient bandwidth and is adequately responsive to study the questions of
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sensorimotor and multisensory integration posed in Chapter 1.





Chapter 4

Estimating Sensory Uncertainty

Over Time

Much research has exposed statistical-optimality in human perception and decision-

making, suggesting indirectly that humans have explicit access to the uncertainty of

both their senses and their decisions. In this chapter I introduce a novel visual tracking

experiment that requires subjects to continuously report their evolving uncertainty over

time. I show that subjects form an optimal continuous estimate of the mean, hindered

only by natural kinematic constraints. Furthermore, I show that subjects have explicit

access to a measure of their continuous objective uncertainty, rapidly acquired from

sensory information available within a trial. However, this measure is limited by a

conservative margin for error, suggesting that their reporting of uncertainty was less

than optimal to achieve the goals of the task.

Relevant Publications

• Ian Saunders, Sethu Vijayakumar. (2012). Continuous Evolution of Statist-

ical Estimators for Optimal Decision-Making. PLoS ONE

• Ian Saunders, Sethu Vijayakumar, (2011b) Continuous Estimation of Mean

and Uncertainty, Proc. The 21st Annual Conference of the Japanese Neural

Network Society.
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4.1 Motivation

Uncertainty is present in every human action, and decisions are routinely made with

incomplete knowledge of the world (Barthelmé and Mamassian, 2009). To handle un-

certainty people make decisions based on previous experience as well as statistical in-

formation acquired directly from stimuli. The statistics of the environment govern our

perceptions and our decision making processes when we reach for targets (Körding and

Wolpert, 2004b, Tassinari et al., 2006, Faisal and Wolpert, 2009), interpret visual scenes

(Jacobs, 1999, Hillis et al., 2004, Knill and Saunders, 2003) and combine multiple sens-

ory modalities (Heron et al., 2004, Wallace et al., 2004, Ernst and Banks, 2002, Helbig

and Ernst, 2008). This growing body of psychophysical experiments all support the pro-

position that many aspects of perception are statistically-optimal (Ernst, 2006, Ernst

and Banks, 2002). That the human brain is optimised for statistical computations is

perhaps unsurprising from an evolutionary viewpoint, but if true provides an elegant,

mathematically principled model of perception. However, despite general agreement

that it is of fundamental importance to the theory, the question of how humans gather

the relevant statistical information to make their optimal decisions remains largely un-

explored (Barthelmé and Mamassian, 2009).

The theory of statistical optimality in the brain relies crucially on the fact that

humans must somehow accumulate statistical information from unpredictable stimuli.

For example they may need to estimate not only the mean, but the expected variab-

ility in this estimate of the mean (or their con�dence). Recently it was shown that

humans are not only able to predict the position of objects moving along random or

noisy trajectories, but also that they are able to report a level of con�dence in this pre-

diction (Graf et al., 2005). This is not a uniquely human capacity: rats are also capable

of uncertainty-based decisions (Kepecs et al., 2008). Recently it was shown that sub-

jective estimation of con�dence is related to the objective uncertainty (Barthelmé and

Mamassian, 2009), indicating that subjects may be acutely aware of the uncertainty in

their decisions.

The forced-choice paradigm is classically used to compare decisions under uncer-

tainty (e.g. Alais and Burr, 2004, Ernst and Banks, 2002). However, this method

may be prone to bias (Helbig and Ernst, 2007), and does not directly capture the

decision-making process (Graf et al., 2005). In this chapter I focus on a continuous

decision-making task. In each trial, sensory evidence accumulates in the form of visual

cues, with the mean and variance of these cues evolving as their number increases. With

a continuous task we have the opportunity to look at the process of decision making,

not just the outcome. By adding sensory uncertainty in the temporal domain I aim to

characterise the role of evolving sensory evidence for continuous decision-making.
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In this chapter I present a novel experimental paradigm that requires subjects to

explicitly track the statistical properties of noise-perturbed visual cues over time. Two

variants of the `butter�y catching' task are devised to assess whether subjects can (i)

track the mean of visual cues (viz. localising the butter�y); and (ii) indicate the range

in which they believe the mean of the cues to lie (viz. choosing an appropriate size

of net). From trial-to-trial the underlying spatiotemporal distribution of the cues is

modulated, allowing observation of the evolution of mean and con�dence estimates.

This is coupled with a very simple model of sensorimotor latency to show the extent to

which the observed trajectories are statistically-optimal with respect to the kinematic

limitations of human motion. In addition, the evolving weights allocated to each cue

over time are computed, to provide the �rst glimpse of the mechanisms underlying

processes of continuous statistical estimation.
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1A Mean 3 3 15 3 3 7 7 0 135

1B Mean 7 3 15 3 3 7 7 0 135

2A Conf. 3 4 15 3 3 7 7 0 180

2B Conf 7 1 15 3 3 3 3 135 540

Table 4.1: Experiment Structure.

4.2 Methods

4.2.1 The Butter�y-Catching Paradigm

4.2.1.1 Overview

In this chapter I introduce the �butter�y catching� paradigm, illustrated in Fig. 4.1A.

Visual stimuli are projected onto the line of subjects' left forearm using a rear-projection

screen and mirror as indicated. Subjects localise the stimuli with a variable sized �net�,

indicated by lines projected from the fore�nger and thumb of their right hand. They are

successful in a given trial if the mean of the stimuli lies within the aperture of their net,

and are awarded points for success. The stimuli are a sequence of blurry dot-clouds,

which jitter (change location) randomly over the course of the trial. The trial duration

is 3.75 seconds, in which time 15 visual cues are presented in locations x1 . . . x15 along

the arm. Each cue xi is selected from an approximate Normal distribution with mean

µ and variance σ2 (see Visual Stimuli).

I consider two task variants. In theMean Estimation task I examine subjects' ability

to estimate the mean, µ, of the visual stimuli. In this variant the cursor has a �xed

aperture (Fig. 4.1C, left), so that the separation of the subject's �nger and thumb does

not change the size of the net. The maximum score is attained when subjects navigate

to the true mean of the stimuli.
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Figure 4.1: Experiment Setup. Illustration of the butter�y catching experiment setup.

(A) Projection Rig. Subjects placed their left forearm under a mirror, and used their

right hand to localise visual stimuli that appeared at random target locations along their

arm. (B) Cursor Control. A 3D magnetic position tracking system is used to localise

the arm and �ngers, and an opaque mirror aligned with a rear-projection screen is used to

presented visual feedback in the plane of the arm so that visual feedback of their arm and

�nger locations aligned veridically with the true �nger and arm locations. (C) Mean and

Uncertainty Estimation. Subjects performed two tasks: (i) In the mean estimation task

they were asked to estimate the mean of the stimuli; (ii) in the con�dence estimation task

they were asked to indicate a range in which they believed the mean to lie. These two

variants allowed us to establish (i) the objective uncertainty and (ii) subjective perception

of the objective uncertainty. For the mean estimation task the aperture of the cursor was

�xed for all trials, so that only the average position of the thumb and fore�nger would

determine the outcome. For the uncertainty estimation task subjects were able to control a

con�dence window using their thumb and fore�nger. To penalise larger apertures, subjects

were awarded a higher score for a narrower range. (D) Task and Manipulations. A total

of 15 visual cues were presented in each trial. Each cue, lasting 250ms, was chosen from an

underlying distribution with mean µ and variance σ2. On each trial σ was chosen at random

to manipulate the uncertainty of the cue distribution. The sequence of cues was divided into

the three blocks, and on catch trials one of these blocks was randomly perturbed in a given

direction. The direction of the perturbation was either negative, zero, or positive, and the

magnitude of perturbation was 0.3 · σ, a small fraction of the cue distribution. In the �gure

a negative perturbation of the second block is shown. (E) Example. Over the course of

a trial, subjects should navigate the cursor towards the target, µ, which they can estimate

from the cues. In the uncertainty estimation task they should decrease the aperture of the

cursor as their con�dence increases.
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In the Con�dence Estimation task subjects must instead indicate the range of values

in which they believe the mean to lie, using a cursor with variable aperture (Fig. 4.1C,

right), with width determined by the spacing between the thumb and fore�nger. They

are awarded more points for picking a narrower range, encouraging a trade-o� between

probability of success and point-scoring. The score function is designed such that the

expected score is maximised when subjects choose a con�dence range that spans 1

standard deviation of their objective performance distribution on either side of the

mean. Hence, the maximum score is attained when subjects correctly compute the

uncertainty in their estimate of the mean of the stimuli.

4.2.1.2 Task Manipulations

The purpose of this study is to understand the sensory processes involved in forming

estimates of mean and uncertainty. By distributing the sensory evidence into a sequence

of cues over time we can observe sensorimotor processes in action. In order that our

data can inform us on the decision-making process the distributions of the stimuli are

manipulated from trial-to-trial in two ways: (i) by modulating the variance of the visual

cues; and (ii) by adding perturbations to subsets of the cues.

By manipulating the cue variance, σ2, randomly from trial to trial we can observe

subjects' ability to localise the mean and report their uncertainty on a per-trial basis.

Based on Barthelmé and Mamassian (2009) I hypothesised that subjects would be able

to report the objective variability in their performance, and therefore an increase in

cue variance should be re�ected in both an increased distribution of errors in localising

the mean and decreased con�dence. σ is chosen from the range {50, 120, 200} pixels,
hereafter low, medium and high uncertainty.

The sequence of cues on a given trial is divided into three subsets (early, middle

and late). Perturbations are induced in a negative (leftward), positive (rightward) or

neutral (no perturbation) direction to a chosen subset, randomly from trial-to-trial. For

example, in 4.1C a negative perturbation of the middle subset is shown. By enumerating

all nine possible combinations of perturbation onset and direction we can assess the role

of cues at all stages of the trial. Note that there is no di�erence between trials with

neutral perturbations, so these data are pooled in our analyses. The magnitude of

non-zero perturbations is 0.3 · σ , a fraction of the spread of the cues.

In order to interpret the subtle e�ects of these manipulations robustly I designed

a pseudo-random cue sequence that appears Normally distributed (see Visual Stimuli).

Subjects completed 15 trials for each manipulation, and completed several sessions each

with di�erent sets of cue sequences. All trials and sessions were randomly intermixed.

On every trial the target location µ was randomised.
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Finally, trials of shorter duration were added into the sequence (of lengths 5, 10 and

15 cues). One-sixth of the trials were of this nature, but these trials did not contribute

to the analysis. They were included to encourage continuous behaviour as subjects

would not know when each trial was going to end. See Fig. 4.1 for further details on

which manipulations were used for each part of the experiment.

4.2.2 Experimental Methodology

4.2.2.1 Subjects

Fourteen volunteers participated in this experimental study. All subjects were healthy,

right-handed and aged between 21 and 30. All subjects had normal, or corrected-to-

normal eyesight. All of the subjects were naive to the experimental manipulations and

the experimental rig. Subjects gave written informed consent before participation in

the study and received �nancial compensation for their time (approximately 90 minutes

per subject).

4.2.2.2 Structure

Table 4.1 describes the structure of the experiment. Each subject performed 990 trials

in total across four experimental phases. The �rst part of the experiment examined

subjects' ability to estimate the mean of a jittering visual cursor, split into a training

phase (1A) and a test phase (1B). The second part examined the subject's ability

to report their con�dence in this estimate, again with a training phase (2A) and a

test phase (2B). Subjects performed several sessions in each phase to imporve data

integrity. On each trial stimulus uncertainty σ was varied (low, medium and high),

to allow measurement of subjective perception of uncertainty. In the �nal phase (2B)

a small random perturbation (0.3σ) was added to one third of the cues, varying the

perturbed block b (early, middle and late) and direction of perturbation p (negative,

zero and positive) from trial-to-trial. This would allow the e�ect of each cue in the

decision making process to be measured. Occasional trials of random duration were

included to encourage subjects to estimate continuously. All sessions and trials were

randomly shu�ed within a phase. There were 27 experimental con�gurations for phase

2B, for each combination of σ × p× b. and 3 con�gurations for 1A, 1B and 2A.

4.2.2.3 Mean Estimation Task

In the mean estimation phases the cursor had a small �xed-aperture, as shown in Fig.

4.1C, left. Subjects were instructed to place their left forearm under an opaque mirror

onto an array of tactile markers (Fig. 4.1A and B). The markers served as a tactile ref-
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erence frame, consistent and veridical with the visual display. Using the rear-projection

mirror setup as illustrated in Fig. 4.1A, visual feedback was given in the plane of the

arm so that feedback of the arm and �nger locations aligned veridically with the true

�nger and arm locations, to ensure no confounding e�ects of visuo-spatial mismatch (as

discussed in Gepshtein et al. (2005)).

Each subjects underwent an initial training period so that they could familiarise

themselves with the task (phase 1A), followed by a large block of trials to assess their

mean estimation performance, varying visual uncertainty, σ, from trial-to-trial (phase

1B).

4.2.2.4 Con�dence Estimation Task

In the con�dence estimation phases the role of visual cues for the estimation of mean

and uncertainty were examined simultanously. To succeed at the task subjects were

required to accumulate sensory evidence over time to establish an estimate of these

statistical properties.

Subjects were instructed to indicate the range in which they believed the mean to

lie, using the variable aperture cursor controlled by their thumb and fore�nger as shown

in Fig. 4.1C, right, corresponding to the con�dence in their mean estimate. In order to

assess the ability of subjects to discriminate uncertainty the width of the distribution of

jittering stimuli, σ, was varied from trial-to-trial (Fig. 4.1D). In order to assess the role

of individual cues for decision making, blocks of trials were perturbed by small amounts

(±0.3σ) in random directions from trial-to-trial (see Task Manipulations).

Each subjects underwent an initial training period so that they could familiarise

themselves with the task (phase 2A). Following this, each subject performed a large

block of trials to assess their uncertainty estimation performance as visual uncertainty,

perturbation block, perturbation magnitude and trial duration were varied from trial-

to-trial (phase 2B).

Subjects were awarded a higher score for a narrower con�dence interval (see Per-

formance Feedback). It was intended that this would encourage subjects to aim for the

interval that corresponded to the expected objective variability.

4.2.2.5 Performance Feedback

To motivate subjects in the con�dence estimation task they were assigned a score on

each trial. On completion of a trial it is assumed that subjects have positioned their

right hand to indicate a con�dence window of width d around their estimate of the

mean, µ̂. The score function, S(µ̂, d), assigns a per-trial score according to:
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S(µ̂, d) =

{
R(d) if |µ̂− µ| ≤ d

2

0 if |µ̂− µ| > d
2

(4.1)

R(d) =

{
10 if d ≤ σtarget

10 ·
(σtarget

d

)2
if d > σtarget

(4.2)

Equation 4.1 captures success or failure to locate the true mean within the con-

�dence window. If successful, equation 4.2 assigns a reward. The reward function

penalises apertures larger than dtarget. In our experiment, dtarget is calculated for each

subject based on the mean variability empirically observed in experiment phase 1B. For

convenience, this is computed as the objective error, Eσ, the mean absolute endpoint

deviation (error) for each σ in the mean estimation task:

Eσ =
1

N

∑
n

|xn(T )− µn| (4.3)

In the con�dence estimation task, dtarget is set to to twice the objective error, de-

�ning the target objective error range.

dtarget = 2 · Eσ (4.4)

If subjects pick an aperture smaller than dtarget this decreases the probability of

success, while an aperture larger than dtarget decreases the score. The reward function in

equation 4.2 ensures that the overall maximum expected reward is achieved by choosing

an aperture of exactly dtarget. This method, therefore, encourages subjects to estimate

their own objective error range. For more detail, see Appendix A.

In our task, if subjects are to maximise their expected gain (as in Trommershäuser

et al., 2003) then they need explicit knowledge of their objective error. Subjects are

adequately prepared to learn such a property (having performed 450 trials prior to the

con�dence estimation task). It has been recently shown that subjects have access to

their objective uncertainty in a binary decision task of slant estimation (Barthelmé and

Mamassian, 2009, 2010). The objective uncertainty in the task can only be estimated

based on the stimuli observed within a trial, and therefore this task should expose the

cue-driven mechanisms of acquiring this estimate.

4.2.2.6 Apparatus and Data Collection

Accurate three dimensional tracking of the arm and �ngertips was achieved using a Pol-

hemus Liberty 240Hz 8-sensor motion tracking system (POLHEMUS, USA). Arm and

�ngertip positions were sampled at a frequency of 20Hz (50ms) and logged data using

custom personal computer (PC) software. The same PC software was responsible for
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displaying and logging the stimuli, ensuring that our data and stimuli were temporally

calibrated.

4.2.2.7 Visual Stimuli

15 Visual Cues are presented in each trial. For mathematical convenience let us describe

the visual cues as a sequence de�ned by the locations x1, ..., x15, where each xi is drawn

from an underlying pseudo-Normal distribution with mean µ and variance ∝ σ2. Each

visual cue is presented for 250ms, described as �jittering� over time.

Each visual cue xi comprises 5 frames. Each frame comprises a cloud of ten random

blobs distributed with a standard deviation of 10 pixels in each direction, centred on the

cue location xi. Each of the blobs is a low-contrast 2-dimensional Gaussian of radius 8

pixels (see (Alais and Burr, 2004)). Using clouds of blobs adds uncertainty to a subject's

ability to localise a single cue and provides a way to modulate the underlying di�culty

of the task. In this experiment the cloud parameters were not modulated.

Each visual cue xi is chosen according to a pseudo-random sequence, using the

algorithm illustrated in Fig. 4.2. The algorithm generates a block of 15 trials, where

each trial contains a sequence of 15 cues. A matrix of cue indices C, with columns

for trials and rows for cues for dictates the order cues on a trial, with each entry

ci,j ∈ {1, . . . 15}. The algorithm is designed to maximise the unpredictability of each

trial while maintaining the following constraints:

(i) each cue index appears once and only once in each trial,

∀i, n, j . i 6= j =⇒ ci,n 6= cj,n (4.5)

(ii) each cue appears at each time t once and only once across trials within the block,

∀i, n,m . n 6= m =⇒ ci,n 6= ci,m (4.6)

(iii) The mean of each third of the trials, averaged over all trials, is exactly zero,

∑
n

2∑
b=0

5(b+1)∑
i=5b+1

ci,n = 0 (4.7)

(iv) the variance of each third of the trials, averaged over all trials, is constant,

1

15

∑
n

1

3

2∑
b=0

1

5

5(b+1)∑
i=5b+1

ci,n − 5(b+1)∑
j=5b+1

(cj,n)

2

= 1 (4.8)

These constraints were designed to enable e�ective data analysis without imposing

uncontrolled sources of uncertainty. By using this method each cue has equal weight and

should contribute equally (on average) to subject's decisions. Controlled uncertainty

could then to the sequences as described below.
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Figure 4.2: Pseudo-Random Cue Sequence Generation. This �gure illustrates the

Saundoku Algorithm for generating pseudo-random cue sequences. The purpose of this

method is to ensure that cues are counterbalanced across trials so as to minimise systematic

biases to the data, while at the same time presenting no additional information to subjects

to aid their success at the task. (A) Cue generation. The sequence of cues to be used

for a trial are generated from a pseudo-Normal distribution, created by sampling the Inverse

cumulative Normal distribution function at equally spaced intervals (red blobs). The output

(black blobs) is distributed pseudo-Normally, i.e. as the number of samples increases the

histogram of the samples converges on the Normal probability density function. These

samples are shu�ed (blue blobs) to provide a cue sequence. The method of shu�ing is

illustrated in sub-plots B-E. (B) Initial Cues. A square shu�e matrix is created with rows

for cue number (in time) and columns for trial number. Each matrix entry corresponds to a

cue generated in sub-plot A. The matrix is initialised with diagonals to ensure that each cue

appears only once in each trial, and once in every trial. In the �gure for clarity I show 60 cues

per trial and therefore 60 trials per condition, but in practice only 15 cues per trial and 15

trials per condition were presented. (C) Trial Shu�e. The order of trials was randomised

to reduce the correlation between neighbouring trials. This does not violate the constraint

that each cue appears only once in each sequence, and in every trial. (D) Partial Cue

shu�e. The order of cues within each trial are randomised, but limited the �rst, second

and �nal third of the sequence. This maintains the constraint that each cue appears only

once in each sequence, and in every trial, and adds the additional constraint that each third

contains all cues an equal number of times. (E) Random Seed. Finally, each entry of the

matrix indexes into the shu�ed pseudo-Normal sequence in sub-plot A. The resulting plot

appears completely random, but the correlations between trials and the average mean and

variance for the �rst, second and �nal third of trials are known across all trials.
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To generate each xi on a given trial j, ci,j is used as an index into a randomly shu�ed

pseudo-Normal sequence N = n1, . . . n15 (generated by taking uniformly-spaced samples

from the inverse cumulative Normal distribution, then shu�ed randomly). Spatial

uncertainty is added by multiplying by σ , and perturbations are added by shifting

the mean of one third of the cues by p · 0.3σ, where the direction of the perturbation

p ∈ {−1, 0, 1} and the block to perturb is b ∈ {0, 1, 2}. Each trial is also assigned a

random target location, µ. Hence,

xi = µ+ σ ·Nci,j +

p · 0.3σ if 5n+ 1 ≤ i ≤ 5(n+ 1)

0 otherwise
(4.9)

This was repeated using the same C and N for all experimental con�gurations.

Subjects completed multiple sessions for each phase of the experiment (see Fig. 4.1)

using some or all of the above manipulations. Each session used di�erent instantiations

of C and N , and all sessions within each phase of the experiment were shu�ed randomly

together. Each subject had di�erent instantiations of C and N .

4.2.3 Data Analysis

4.2.3.1 The Ideal Observer

During a trial, as samples accumulate an ideal observer would accurately estimate

the sample mean and sample variance of the cues thus far seen and make statistically-

optimal decisions based on this available evidence. Given k cues x1, ..., xk the maximum-

likelihood unbiased estimates of the mean and variance are given by:

µ̂k =
1

k

k∑
i=1

xi (4.10)

σ̂2k =
1

k − 1

k∑
i=1

(xi − µ̂)2 (4.11)

In the mean estimation task the observer's ideal strategy is to select µ̂k at time k.

Subjects can optimally estimate the uncertainty of clusters of noisy visual samples

as a function of k (Tassinari et al., 2006), although in this study the noisy clusters are

distributed in time rather than space. One can show that the variance of the sample

mean estimator is given by

V[µ̂k] = E[(µ̂k − µ)2] =
σ2k
k

(4.12)

Thus, in the con�dence estimation task the ideal observer strategy at time k is to

select a con�dence interval equal to 2 ·
√

2
πk · σk, which is equal to the objective error
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Figure 4.3: Model of Sensorimotor Kinematics. In order to explain subject's evolving

trajectories over time, the inevitable kinematic constraints on movement are modelled. In the

model it is assumed that, other than these limitations, subjects will behave as ideal observers.

At time t, let an observer be in position xt. To reach a target y they make a displacement

of ∆t. This �gure illustrates the components of the model. (A) Bias and Delay. The

model assumes that there is some delay, δ, before subjects initiate their movement. This

captures sensory, processing and motor delays. Subjects may have some inherent bias in one

direction or another, due to the con�guration of the experiment or otherwise, captured by an

(optional) bias parameter y0 (B) Speed Constraint. A maximum speed, β, limits the speed

at which the hand or �ngers can move. (C) Momentum Constraint. On the assumption

that subjects can not accelerate instantaneously, a smoothing parameter α constrains ∆t.

range. This is because the score is maximised when a subject reports the objective

uncertainty (as described in Performance Feedback). For more detail, see Appendix A.

Maximum likelihood provides a principled description of optimal behaviour that has

been observed in a number of studies.

4.2.3.2 Sensorimotor Delay Model

The ideal observer can perform instantaneous computations and act on sensory inform-

ation immediately. Human beings, on the other hand, can not. In the presence of

inevitable sensory, processing and motor delays and noise how would the ideal observer

now perform? Let us de�ne an ideal-observer model constrained by the three global

parameters, δ, α and β, capturing natural kinematic constraints on hand motion.

Suppose the observer has witnessed k cues by time t + δ. Modi�ed estimates of

mean and variance are derived from equations 4.10 and 4.11:
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µ̂t+δ =
1

k

k∑
i=1

xi (4.13)

σ̂2t+δ =
1

k − 1

k∑
i=1

(xi − µ̂t+δ)2 (4.14)

In the mean estimation task subjects can compute µ̂t from equation 4.13 to form

their time-delayed internal estimate of the mean.

In the con�dence estimation task subjects are expected to estimate their objective

uncertainty. From equation 4.14 the observer can calculate the time-delayed variance

estimate σ̂2t , but they need to have learned how to relate this to the objective error range

dtarget (equation 4.4) to achieve optimal performance in the task. This is accomplished

by performing a linear regression (using data from the mean estimation task) to compute

mσ and cσ in the relationship

dtarget = mσ · σ̂t + cσ (4.15)

allowing the observer to choose the optimal con�dence window from stimuli observed

within a trial.

In addition to sensory delays I introduce two motion constraints. At time t let the

reported estimate (i.e. the position of the cursor) be xt, and the perceived estimate (i.e.

our time-delayed internal estimate of the mean) be yt. Let the observer make discrete

steps of size ∆t so that the reported estimate smoothly converges on the perceived estim-

ate. The model constrains motion using two parameters: a maximum speed parameter,

β, constrains the maximum displacement made by the observer in a given time-step;

and a momentum parameter, α, prevents sudden speed changes by smoothing these

displacements over time. i.e.

xt = xt−1 + ∆t (4.16)

∆t = (1− α) · f(yt − xt−1) + α ·∆t−1 (4.17)

f(z) =


z if |z| < β

+β if z≥ β
−β if z≤ β

(4.18)

Note that the model applies to both mean and con�dence judgements: For the mean

estimation task, I set yt = µ̂t, and for the con�dence estimation task I replace xt with

wt (the width of the cursor at time t) and set yt =
√

15
k · dtarget.
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One additional parameter was added to the con�dence estimation model: a bias

term, y0. In equation 4.17 this replaces the term yt with yt+y0. This can be thought of as

a safety margin or constant systematic error. This is considered a suboptimal component

of the model, while the other parameters capture natural kinematic limitations.

Fig. 4.3 illustrates the e�ect of each of these parameters on model trajectories.

4.2.3.3 Weight Regression

To compute the contribution of each cue in the temporal sequence to the empirical

trajectories observed, a multiple linear regression is performed at each time-step.

For the mean estimation task the non-negative weight least-squares algorithm de-

scribed in Lawson and Hanson (1974) is used at each time-step to regress all of the cues

for a trial (including those not yet seen), plus an additional constant, to the position

of the cursor at that time. On trial n let the sequence of cues xn1 , . . . x
n
15 result in the

trajectory Yn = [yn1 , . . . , y
n
T ]† taken by the subject. To compute the weights assigned to

the cues over all such trajectories a matrix, C, is formed, which contains columns for

each of the N trials. Each column contains a constant term and the K visual cues for

the corresponding trial:

C =


1, . . . 1

c11, . . . cN1
...

. . .
...

c1K , . . . cNK


A trajectory matrix Y , is also formed, containing columns for each of the N trials. Each

column contains the recorded trajectory for the corresponding trial:

Y = [Y1, . . . , YN ] =


y1(1), . . . yN (1)

...
. . .

...

y1(T ), . . . yN (T )


The purpose of the regression is to compute a weight matrixW that minimises the error

in the mapping Y = WC, where

W =


s1, w1(1), . . . wK(1)
...

...
. . .

...

sT , w1(T ), . . . xK(T )


The regression method described in Lawson and Hanson (1974) is applied in a row-

wise manner, i.e. for each time-step t. The resulting weight matrix W can be decom-

posed into a systematic trajectory s1:T which captures systematic bias not explained by
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the cues, and a time-series of cue weights indicating the contribution of each cue over

time to the trajectory.

For the mean estimation task the cue matrix C is initialised with pixel value of the

cue relative to the target location, i.e.

cnk = xnk −
1

K

K∑
i=1

xni (4.19)

Similarly Y is initialised with the pixel value of the subject's estimate of the mean

centred on the target location.

For the uncertainty estimation task C is initialised with the absolute deviation of

the cue from the mean of the cues seen so far, i.e.

cnk =

∣∣∣∣∣xnk − 1

k

k∑
i=1

xni

∣∣∣∣∣ (4.20)

and Y is initialised with the pixel value of the width of the subject's con�dence

window.

In performing the regression the systematic component is allowed to take any value,

but the cue weights are restricted to be strictly greater than zero. Since weighting a cue

is equivalent to negatively weighting all other cues (due to correlations between cues),

this makes the algorithm more stable.

4.2.3.4 Model Parameter Learning

Our model (see section Sensorimotor Delay Model) has relatively few parameters. The

parameters are optimised to achieve the best �t to the data, but note that this process

does not confound the validity of our approach. The global model does not modify the

magnitude of weights assigned to each cue, it merely constrains the trajectory through

which the decision manifests itself.

To optimise the parameters the regression method discussed previously (section

Weight Regression) is used to generate weights for the parametrised model trajectory:

Ŵ (δ, α, β, y0) =


s1, w1(1), . . . wK(1)
...

...
. . .

...

sT , w1(T ), . . . xK(T )


The square of the di�erence between Ŵ and the empirical W is minimised with

respect to the model parameters using the constrained interior-re�ective Newton min-

imisation method (described in Coleman and Li, 1994, 1996), implemented in Matlab
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(Mathworks Inc., USA). To improve the rate of convergence we normalise the system-

atic weight terms st prior to minimisation, to compensate for their excessive magnitude

relative to the cue weights.

For the mean estimation model we set y0 = 0 and do not allow for its optimisation.

This sub-optimal term is not necessary to explain the gross features of the data.
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4.3 Results

4.3.1 Mean estimation performance

In this experiment I demonstrate the stereotypical trajectories and time-evolving cue

weights that characterise subject's ability in the butter�y catching paradigm (see Meth-

ods). Visual uncertainty is introduced in the form of spatio-temporally distributed

stimuli, and subjects are asked to continuously report (i) their estimate of the cue mean

over time; and (ii) their con�dence window around this estimate, in two separate phases

of the experiment.

It was found that subjects were equally good at mean estimation in both the mean

estimation task (phase 1B) and the con�dence estimation task (phase 2B), shown in

Fig. 4.4. To compare the two tasks (excluding trials with perturbations) I conducted

a within-subjects analysis of variance (ANOVA) on the endpoint error (the absolute

deviation from the target), with a two-level factor of task (1B and 2B) and three-

level factor of σ (low, medium, high). This revealed a signi�cant main e�ect of σ

(F (2, 12) = 270, p < 0.001) but no e�ect of task (F (2, 12) = 0.022, p = .86) and

no interaction (F (4, 12) = 0.11, p = .90). The signi�cant e�ect of σ indicates that

the uncertainty manipulation increases the task di�culty as expected. I posit that

the con�dence estimation data reliably captures mean estimation ability, and that the

con�dence estimation process adds no signi�cant di�culties. Thus, phase 2B captures

both mean estimation and con�dence estimation, so in all subsequent analyses I present

data from phase 2B unless otherwise stated.
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Figure 4.4: Overall Task Performance. This �gure show the absolute deviation from

the target location for di�erent levels of uncertainty in the two tasks of the experiment.

Trials with perturbations are excluded. Note that the mean estimation task (Task 1) and

con�dence estimation task (Task 2) give indistinguishable mean-estimation performance,

indicating that ability at Task 2 is not compromised by the additional demands of the task.

This argument justi�es the use of Task 2 data to explain mean estimation ability.

Given the results of the ANOVA it is clear that the endpoint error is a reliable

measure of objective performance. From the mean-estimation data (phase 1B) a linear

mapping from σ to endpoint error was established (equation 4.15) . This mapping was

devised to enable a mapping from σ to the objective performance for the provision of

performance feedback that encourages subjects to report their objective uncertainty

(see Performance Feedback). This mapping also allows the optimal performance for the

con�dence estimation model to be computed (as the ideal observer should also also aim

to represent the objective error).

4.3.2 The e�ect of perturbations on mean estimation trajectories

In the con�dence estimation task the timing and direction of perturbations were mod-

ulated from trial-to-trial. During these perturbations a subset of the cues we shifted

(in the early, middle or late third) by a fraction of σ (see Methods). In Fig. 4.5 the

resulting trajectories for a single subject are shown. Fig. 4.5A shows four example tra-

jectories which illustrate the consequence of early, middle and late-onset perturbations

on decisions. Fig. 4.5B combines these individual trajectories to show the global e�ect

of perturbations across cues. As expected, early-onset perturbations cause a greater

deviation from the target, but these deviations are soon corrected as more evidence
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Figure 4.5: Data for a single subject. (A) Typical trajectories for four experimental

conditions, showing typical trajectory deviations as a results of perturbations (shaded region

and dark arrows). From left to right the no perturbation, early, middle and late-onset

perturbation conditions are plotted. (B) Average trajectories for one subject. A plot

of the average trajectories for one subject over all experimental conditions. Leftward and

rightward perturbations are plotted in blue and red respectively. Note that the average

trajectories for the subjects behave as described in A. (C) Endpoint Variability. Note that

although there is a high level of variability in the trajectories in B, much of this variability

is explained by the uncertainty, σ, and the onset and direction of the perturbation added to

the cues. I plot the mean (solid line) ± the variance (dotted line) of the endpoint of the

trajectory for each experimental condition.
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arrives. Middle-onset perturbations result in a meandering trajectory, and late-onset

perturbations are similar to early-onset albeit of lesser magnitude and for a sustained

duration. This is also expected, since a rightward perturbation of the �nal third is

equivalent to a leftward perturbation of the �rst and second thirds. In addition to

plotting the trajectories, in Fig. 4.5C the mean and variance of the endpoint of the tra-

jectory are shown. Leftward perturbations (red) typically result in means that are left

of the target, especially for larger σ or late-onset perturbation. Likewise for rightward

perturbations (blue). Larger values of σ result in correspondingly larger endpoint vari-

ability.The observed increase in objective variability as a function of σ was previously

discussed.

Late-onset rightward perturbations increased the probability of rightward errors

and late-onset leftward perturbations increased the probability of leftward errors. From

the trajectories it is clear that for this subject there is a latency of almost 1 second

between the onset of a perturbation and a resulting change of decision. This of course

is due to the gradual accumulation of evidence as well as sensory and motor delays, and

consequently results in the observed errors for late-onset perturbations which were not

corrected for in time for the trial's completion.

There is a high level of variability in trajectories, shown in Fig. 4.5B. Target loca-

tions are randomised, and hence one would expect much variability at the beginning of

the trajectories. The later variability might be explained by the uncertainty, σ, and the

onset and direction of the perturbations added to the cues. However, it is also possible

that this variability re�ects sub-optimality.

4.3.3 Mean estimation performance across subjects

Trajectories are averaged over all subjects. This reveals that the anecdotal observations

for a single subject in Fig. 4.5 are consistent across subjects. Fig. 4.6A presents the

average across-subject trajectories as the standard error of the mean (SEM). In all

conditions, including the zero perturbation condition, there is initial variability (arrow

a). This is due to the random target locations on each trial. After about 1 second

this variability subsides, indicating that subjects have navigated to the target by this

time. In all other conditions one can observe in�exions shortly after the onset of the

perturbation (arrows b, d and g). These represent the decision to change the current

estimate based on the arrival of new evidence. The trajectories are smooth, indicating

that the decisions re�ect the gradual accumulation of sensory information, but may

also be explained by smoothness constraints on motion. A secondary observed e�ect is

changes of mind (arrows c and e). These, too, are gradual and continuous unlike discrete

processes previous reported in the literature Resulaj et al. (2009). These magnitude of
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deviations induced by these two e�ects vary with σ and perturbation onset. It seems

highly likely that the cues within a trial directly contribute to the �nal decision.

4.3.4 Optimal mean estimation model

We devised a model of motor behaviour to account for the latencies observed in decisions

(see Methods and Fig. 4.3). For mean estimation performance we introduce three para-

meters, namely motor latency, δ, maximum speed, β and momentum α. Subject only

to these kinematic constraints the modelled observer integrates cues in a statistically

optimal fashion. This a model accounts both qualitatively and quantitatively for key

features of the empirical data, such as the magnitude and timing of in�exions, and the

magnitude of endpoint deviation and endpoint error (Fig. 4.6C and 4.6D). The model

parameters were �ne-tuned to ensure the best possible �t to the data (see Methods),

but nevertheless have no capacity to explain the e�ects of cues perturbations or the

e�ect of sensory variance σ � the e�ect of these manipulations depends solely on how

the speci�c cues observed within a trial are combined to form the decision. Given that

in the model the cues are computed in a statistically optimal fashion we conclude that

subjects also combine the cues in a statistically optimal fashion.

From the interval of the standard error around each trajectory it is apparent that

this phenomenon is robust across subjects. It is interesting that even though subjects

show deviations from the target (�gures 4.6B, 4.6C and 4.6D) the model also makes

similar errors, in both direction and magnitude. We conclude that this does not re�ect

sub-optimality but is in fact just a consequence of sensory and motor limitations. The

qualitative and quantitative nature of the �t is clear from the �gures, although there is

one notable asymmetry. In Fig. 4.6C we see that the empirical data is slightly biased in

the positive direction. This is clearest for the unperturbed condition (purple) where the

model predicts an average deviation of zero, but the empirical data shows a +6 pixel

deviation. We feel it unlikely that the deviations are due to an alignment issue between

the visual stimuli and the hand as the apparatus was calibrated. Anyway, visual-spatial

mismatch should have minimal impact on task performance Helbig and Ernst (2007).

It is possible that subjects were less good at localising more distal stimuli, presumably

as they were further away, which may be an explanation for this small systematic error.

Another possible explanation comes from observing the trajectories in Fig. 4.6A. The

rightward bias is evident throughout the trajectory, in particular for large leftward

deviations, suggesting that perhaps certain limb con�gurations may be unpreferable

for subjects. Nevertheless, we consider such deviations minor in comparison to the

predictable gross features of the trajectory.
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Figure 4.6: Mean estimation data grouped across subjects. This �gure illustrates the

close quantitative match between the model and the data. (A) Average Trajectories.

In this �gure the average empirical trajectories across subjects are compared to model pre-

dictions. Trajectories are computed for each subject by averaging over the trials for each

condition. From left to right are plotted the no perturbation, early, middle and late-onset

perturbation conditions (indicated by shaded region). Negative (blue), Zero (purple) and

Positive (red) perturbations are shown. Each trajectory shows the mean across subjects ±
the standard error of the mean (SEM). The across subjects data re�ect the trends observed

for the per-subject trajectories in Fig. 4.5, in particular the cue-induced in�exions (arrows b,

d and g) and subsequent corrections as further evidence arrives (arrows c and e). Note the

qualitative and quantitative nature of the model �t to the data (dashed line). (B) Endpoint

mean and variability. At the end of each trial (after 3.75s) the �nal decision of the subject

determines whether they succeeded or failed. For each of the experimental conditions the

�gure shows (from left to right) the left con�dence bound, the mean decision and the right

con�dence bound, comparable to Fig. 4.5C. Subjects show increasing con�dence windows

for larger values of σ, and show deviations from the target as a result of the perturbations.

(C) Endpoint Error. For each of the experiment conditions the endpoint deviation is a

predictable function of σ, perturbation onset and direction. The model makes a reasonable

quantitative �t for all conditions, though note that it does not capture the asymmetry in

the empirical data (which is slightly positively biased) (D) Absolute Endpoint Error. The

absolute deviation from the target captures the average error in the task. This increases

with σ and with perturbations, the magnitude of which are well explained by the model
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4.3.5 Optimal weight evolution for mean estimation

The observed trajectories align closely with the optimal model, warranting further ana-

lysis. The close match between the magnitude of in�exions, deviations and errors (�g-

ures 4.6A, 4.6C and 4.6D respectively) can not be explained by the model parameters,

suggesting that subjects are, in fact, optimally integrating cues over time to form their

decision. To verify this we computed the evolving weights assigned to the visual cues

over time. This involved performing a linear regression from the cues locations to the

decision at each time-step (for full details see Methods).

Figure 4.7 shows the resultant cue weights for the empirical trajectories (�gures

4.7A-4.7D) and the model trajectories (4.7E-4.7H). Our regression method assigns a

weight to each cue (including cues that have not yet been observed), quantifying its

contribution to the decision at each time step. The weight assigned to future cues

provides useful validation that the regression method is successfully discriminating the

contributions of each cue and not �tting noise. During the initial 0.5s of the trajectory

we see that causality can not be reliably discerned, and therefore all cues (including

future ones) are equally weighted (�gure 4.7C). However, after this brief initial stage we

see that the weight assigned to future cues declines, indicating that empirical decisions

are correctly attributed to only the observed cues.

In �gure 4.7A we plot the �integration window� at di�erent times within the trial -

this illustrates theweights assigned to all of the the observed cues at each time-step. We

notice that each line is approximately horizontal, indicating that each cue contributes

equal weight to the decision at each time step. . In �gure 4.7B we plot a curve for each

cue to show how each cue's weight rises after it has been seen, then gradually decays

as more evidence arrives to share equal weight with the other cues. This phenomenon

is more obvious in the video included on the CD.

Finally I consider the systematic component of the weight matrix, shown in Fig.

4.7D. Initially there is a systematic error of +20 pixels, but this soon subsides after

around 1 second. This error could simply be due to the randomised target locations,

which subjects quickly navigate towards. A slight positive systematic component of

around +6 pixels remains for the entire trajectory. This was previously observed in the

average trajectories (see Fig. 4.3), and the weight regression con�rms that this is not a

cue-driven error but indeed a systematic bias.

The same regression method is used to plot the weight matrix Ŵ for an ideal-observer

model subject to kinematic constraints (see Methods). W and Ŵ are qualitatively

similar (Fig. 4.7C and 4.7G), and a quantitative match is con�rmed between �gures

4.7A and 4.7E, and between �gures 4.7B and 4.7F. The model does not reveal an overall

systematic bias, but there is an initial systematic error that subsides after around 1
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Figure 4.7: Mean-Estimation Model Weights. To measure the evolution of cue weights

I perform a linear regression of the position of each cue in the sequence to the current

trajectory position, using data over all trajectories (see Methods). This �gure illustrates

the very close match between the empirically observed weights and the model predictions.

(A) Empirical Data `Moving Average'. At di�erent time-steps in the trial (indicated

by coloured arrows) the weights allocated to all cues in the sequence (coloured curves) ±
the SEM across subjects are plotted. The weights assigned to future cues are not shown.

This plot reveals that the decision at each time step is due to a weighted average of the

cues seen up until that point. In fact, at all time steps we can see that all cues have

approximately equal weight, with the exception of a 0.5s window immediately preceding

the time step, presumably due to sensorimotor latency. This weight equality is indicative of

optimal integration (as shown in E) (B) Empirical Data Cue Evolution. An alternative

visualisation of cue weight evolution shows how the weight allocated to the cue at each of the

time steps indicated in A, evolves over the time-course of a trial. We do not show the weight

allocated to the cue prior to it being seen. This plot reveals that shortly after being seen,

each cue's weight suddenly increases as it contributes to the estimate, settling at a weight

that is the same across all cues. These weight pro�les are indicative of optimal integration

(as shown in F). (C) Empirical Weights. The weight matrix W , excluding the systematic

component, captures the evolution of cue weights over time (seeMethods). When visualised

in this way, using colour to represent cue weight, we can see the initial response delay and the

evolution of cue combination, as summarised in A and B. This weight matrix is indicative of

optimal integration (as shown for the optimal matrix Ŵ in G) (D) Empirical Systematic

Bias. The regression of cue to decision allows for a systematic component to capture the

variability in the trajectory that is not explained by the cue weights. We observe empirically a

non-zero systematic bias in the positive direction, especially for early time steps. Our optimal

model predicts an initial bias (as shown in H), but the overall bias is sub-optimal. I believe

this to be an unavoidable consequence of the con�guration of the experiment (see text)

(E-F) Model Predictions for comparison, with three parameters (α, β and δ) optimised

to minimise the di�erence between W and Ŵ (plots C and G).
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second, con�rming that the distribution of the randomised target locations could be

the cause of initial positive errors observed empirically.

4.3.6 Uncertainty estimation performance

The above analyses were repeated for con�dence estimation to establish whether or not

subjects were optimally estimating con�dence just as they were optimally estimating

the mean. Firstly, it was established statistically that subjects were able to distinguish

the sensory uncertainty present in the stimuli. Fig. 4.8 shows these results.

Fig. 4.8A shows the mean error range, equal to twice the mean absolute error

(equation 4.3). This is equal to the optimal con�dence window, since maximum expected

reward is achieved when subjects report a con�dence window of one standard deviation

of the objective uncertainty either side of the sample mean (see Methods). Fig. 4.8B

shows the reported (subjective) con�dence window, the width in pixels of the con�dence

decision on the �nal time-step of the trial, averaged within conditions and then across

subjects. In each plot the slope of the objective and subjective con�dence window

is shown for each subject. The perturbed trials and unperturbed trials are plotted

separately to show the e�ect of perturbations on objective and subjective uncertainty.

Note the distinct clusters of lines in the objective uncertainty plot, indicating that inter-

subject variability was low, in contrast to the overlapping lines for subjective uncertainty

indicating widely di�ering perceptions of con�dence across subjects.

An ANOVA was conducted on the mean error range, with within-subject factors of

perturbation (unperturbed vs perturbed, grouping over the perturbation conditions) and

σ (low, medium and high). This revealed a signi�cant main e�ect of σ (F (2, 12) = 261,

p < .001), a signi�cant main e�ect of perturbation (F (2, 12) = 110, p < .001), as well as

a signi�cant interaction between σ and perturbation (F (4, 12) = 30.7, p < .001). The

interaction was expected since the perturbation magnitude is a fraction of σ.

An ANOVA was also conducted on the con�dence window range, with within-subject

factors of perturbation (unperturbed vs perturbed, grouping over the perturbation con-

ditions) and σ (low, medium and high). This revealed a signi�cant main e�ect of σ

(F (2, 12) = 29.5, p < .001), a signi�cant main e�ect of perturbation (F (2, 12) = 37.6,

p < .001), as well as an interaction between σ and perturbation (F (4, 12) = 3.26,

p = .074). The magnitude of the interaction was less than expected.

The ANOVA results indicate that the task manipulations has signi�cant behavioural

consequences. Firstly, they signi�cantly modulated the objective uncertainty. Secondly,

they signi�cantly modulated perception of this uncertainty, i.e. the subjective uncer-

tainty. For the mean error range I conducted t-tests to compute the di�erences between

conditions, and found that unperturbed trials were signi�cantly easier than perturbed
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Figure 4.8: Uncertainty Estimation Performance. Subjects are able to discern di�erent

levels of uncertainty added to the cues. Individual subject errors are plotted for unperturbed

(red) and perturbed (blue) trials, shown by the lines. In addition the average and standard

error across subjects are plotted, indicated by the error bars. (A) Objective Uncertainty.

The mean error range (twice the mean absolute error) ± SEM, for di�erent levels of σ (solid

blobs and error bars) are plotted for perturbed (red) and unperturbed (blue) trials. Overlaid

are the average results for each subject (faded lines). Subjects show statistically signi�c-

antly increased errors as a result of both cue uncertainty and the presence of perturbations.

Between-subject variability is low, as indicated by the distinct separation between red and

blue lines and the consistency of the gradient. (B) Subjective Uncertainty. The average

width of subject's con�dence window at the end of the trial for each σ and perturbation

is plotted, similar to A. Subjects show a statistically signi�cantly increased con�dence win-

dow as a result of both cue uncertainty and the presence of perturbations, mimicking the

objective uncertainty. However, between-subject variability is high, indicating that di�erent

subjects have widely di�ering abilities at estimating uncertainty. (C) Subjective-Objective

Mapping. Per-subject data from A and B are combined, plotting the mean error for each

condition versus the con�dence reported. The ideal mapping is shown with a dotted line.

Subjects consistently over-estimate the objective uncertainty. (D) Grouped Subjective-

Objective Mapping. The average mapping across subjects ± the SEM in each direction.

Although between-subject variability appears high in (C) it is clear that subjects consistently

over-estimate their objective uncertainty.
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trials (measure: mean error range, p < .001 for all σ). They were also perceived as easier

(measure: con�dence window, p < .001 for all σ). Likewise, the increase in di�culty

between low, medium and high σ was signi�cant for each comparison (measure: mean

error range, p < .001 for both perturbation conditions), and were also perceived as such

(measure: con�dence window, p < .001 for both perturbation conditions). Figures 4.8A

and 4.8B provide a graphical representation of these �ndings.

I am interested in the question of how subjects represent objective uncertainty,

so �gures 4.8A and 4.8B were combined to examine their relationship. In Fig. 4.8C

these results are shown per-subject by plotting the mean error range for each condition

versus the con�dence reported for each condition, separated into unperturbed (red)

and perturbed (blue) trials. The positive slope of each line indicates that all subjects

were able to discriminate uncertainty, though there is some variability in the slopes

indicating di�erent levels of ability at discriminating uncertainty. 96% of the data

lies above the line y = x, indicating that although subjects are able to discriminate

uncertainty they consistently over-estimate it. In Fig. 4.8D the combined data across

subjects are shown. Each point in the �gure shows the relationship between mean error

range and the reported con�dence, with error bars to show the standard error across

subjects in either direction, revealing a consistent e�ect of over-estimation of con�dence

across subjects. However, it is noted that the points fall on a straight line parallel to

the line y = x, indicating that subjective uncertainty is linearly related to the objective

uncertainty. Most subjects were capable of estimating the uncertainty of stimuli in

all of the experimental conditions, but this uncertainty was uniformly over-estimated

by a constant amount. The variability between subjects could indicate di�erences in

subjective perception of of uncertainty, or simply that some subjects found it di�cult

to accurately report this quantity. We return to this in the discussion.

4.3.7 Near-optimal model for uncertainty estimation

In this �nal analysis I consider the evolution of con�dence estimates over the course

of a trial. Previously it was shown that endpoint con�dence (subjective uncertainty)

reliably discriminates perturbation-induced and σ-induced objective uncertainty. Here

I show that this behaviour not only holds for binary decisions but also for continuous

con�dence estimation. In Fig. 4.9A I plot the average trajectories across subjects.

subjects can di�erentiate levels of σ by reporting di�erent levels of con�dence � after

about 1 second the trajectories diverge to re�ect the added uncertainty. It should also

be noted that there are changes in perceived uncertainty as a result of the perturbations.

These e�ects are more subtle but one can see a delayed in�exion as a result of early-

onset perturbation (arrow b), and in�exions as a direct result of middle- and late-onset
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Figure 4.9: Uncertainty estimation data grouped across subjects. This �gure illustrates

the close quantitative match between the model and the data. (A) Average Trajector-

ies. In this �gure the average empirical trajectories across subjects are compared to model

predictions. Trajectories are computed for each subject by averaging over the trials for

each condition. From top-to-bottom are the no perturbation, early, middle and late-onset

perturbation conditions (indicated by shaded region), and from left-to-right I plot negative

(blue), zero (purple) and positive (red) perturbation directions. Each trajectory shows the

mean across subjects ± the standard error of the mean (SEM). The model �t to the data is

shown using a dashed line. Note that the model does not explain the initial part of the tra-

jectory (arrow a), but does reasonably well at explaining in�exions in uncertainty that arise

as a consequence of perturbations (arrows b, c and d) (B and C) Con�dence Reported.

For each of the experiment conditions the �nal reported uncertainty is a predictable function

of σ, perturbation onset and direction. Plots B and C present the same results grouped in

di�erent ways. The model makes a good quantitative �t for all conditions, but note that the

model contains a systematic `safety margin' parameter y0 which may explain some aspects

of the data �t (see text)

perturbations (arrows c and d).

Similar to the analysis for mean estimation, I devised a kinematic model to capture

inevitable sensory and motor latencies on task performance (see Methods and Fig. 4.3).

For con�dence estimation performance the models maintain the three parameters of

motor latency, δ, maximum speed, β and momentum α, and has an additional parameter

of safety margin y0. Subject only to these constraints the modelled observer integrates

the deviations of cues from the current mean estimate so as to maximise the expected

reward (which is achieved when the con�dence window equals one standard deviation

of the objective uncertainty either side of the sample mean, see Methods).

This a model accounts both qualitatively and quantitatively for some key features

of the empirical data, such as the magnitude and shape of σ-induced di�erences, the
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magnitude and timing of perturbation-induced in�exions, and the magnitude of the �nal

decision (Fig. 4.9B and 4.9C). The model parameters were �ne-tuned to ensure the best

possible �t to the data, but nevertheless have no capacity to explain the e�ects of cue

perturbations or the e�ect of sensory variance σ � the e�ect of these manipulations

depends solely on how the speci�c cues observed within a trial are combined to form the

decision. While the safety margin parameter y0 does have the capacity to explain the

overall magnitude of decisions, it is simply a per-subject constant and can not explain

the di�erences between the trajectories. Given that in the model the cues are computed

in a statistically optimal fashion it is concluded that subjects also combine cues in a

near-optimal fashion, with the exception of a safety-margin.

The model fails to capture one key aspect of the data: the initial slope and delay (Fig.

4.9A, arrow a). This re�ects an inadequacy of the model which we attempt to explain

here. The mean estimation and uncertainty estimation tasks are coupled, yet our models

treat mean estimation and uncertainty estimation as separate tasks. For example, cue

perturbations result in an increase in perceived uncertainty (Fig. 4.9A, arrows b, c and

d), which occur at the same time as mean estimation `changes of mind' (Fig. 4.6A

arrows c, d and g). An alternative model may consider coupled mean estimation and

con�dence estimation processes operating simultaneously, where subjects may perhaps

choose to �rst estimate the mean before correcting the con�dence window. Therefore,

the initial variability for the �rst second of the mean estimation trajectories (Fig. 4.6A

arrow a) is due to subjects localising the randomly located target, and may be the

cause of our inability to explain the �rst second of the con�dence trajectory. Apart

from this one discrepancy, the model does appear to �t the remainder of the trajectory

both qualitatively and quantitatively.

Finally, the weight matrix W is computed to explain the evolution of cue weights

(see Fig. 4.10). This was only roughly in agreement with the model. Empirically it

is observed that each cue deviation does not contribute equally to the �nal decision

as one would expect, indicating that subjects are, in fact, sub-optimal at estimating

uncertainty from time-evolving visual cues. However, this may not be conclusive as

the experiment involves mean perturbations rather than variance perturbations, and so

the contribution of individual cues is harder to discern. There is also a much higher

level of noise in the con�dence estimation weight matrices for each subject, leaving the

possibility that the parameters chosen re�ect local minima. Finally there was a high

level of variability between subjects, and so average performance may not re�ect the true

nature of decision-making. It can not conclusively be claimed that subjects were sub-

optimal at computing the uncertainty, but the presence of a conservative safety margin

and an inability to �t the model weights indicates that uncertainty estimation is a
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complex task that can not be explained with a straightforward model of cue integration.
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Figure 4.10: Con�dence-Estimation Model Weights. To measure the evolution of cue

weights a linear regression is computed of the deviation of each cue in the sequence from the

current mean estimate to the con�dence window width, using data over all trajectories (see

Methods). This �gure illustrates the poor match between the empirically observed weights

and the model predictions. (A) Empirical Data Integration Windows. At di�erent

time-steps in the trial (indicated by coloured arrows) the weight allocated to all cues in the

sequence (coloured curves) ± the SEM across subjects is computed. The weights assigned

to future cues are not shown. This plot reveals that the decision at each time step is due to

a weighted average of the cues deviations observed until that point. These weight pro�les do

not match the model (as shown in E) (B) Empirical Data Cue Evolution. An alternative

visualisation of cue weight evolution shows how the weight allocated to the cues at each of

the time steps indicated in A, evolves over the time-course of a trial. The weight allocated

to the cue prior to it being seen is not shown. This plot reveals that shortly after being seen,

each cue's weight increases as it contributes to the estimate, then gradually decays. These

weight pro�les do not match the model (as shown in F). (C) Empirical Weights. The

weight matrixW , excluding the systematic component, captures the evolution of cue weights

over time (see Methods). When visualised in this way, using colour to represent cue weight,

one can see an initial response delay and the evolution of cue combination, as summarised in

A and B. This weight matrix roughly matches the model (as shown in the plot of Ŵ in G),

but is very noisy, making it unsuitable to draw any conclusive conclusions. (D) Empirical

Systematic Bias. In computing the regression of cue to decision a systematic component

captures the variability in the trajectory that is not explained by the cue weights. The

model roughly predicts the shape of the systematic component (E-F) Model Predictions

for comparison, with four parameters (α, β, δ and y0) optimised to minimise the di�erence

between W and Ŵ (plots C and G).
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4.4 Discussion

4.4.1 Overview

In this chapter I have shown that subjects estimate the mean of time-varying stimuli in

a predictable manner. By manipulating the variance as well as the onset and direction

of perturbations I have shown that this estimate is computed in a statistically-principled

way that assigns equal weight to all observed cues to form a �nal estimate. Our model

constrains only kinematic parameters, and is otherwise statistically-optimal. A very

close match between empirical data and the model is observed, suggesting that subjects

can accumulate evidence over time to form optimal continuous estimates of the mean

of noisy visual stimuli.

By manipulating the variance of the underlying stimuli I examined the relation-

ship between objective uncertainty and subjective uncertainty, showing that the two

are closely, but not directly coupled. By manipulating subsets of the cues through

perturbations I also evaluated the respective weighting given to each cue for con�d-

ence estimation, and showed that with the addition of a conservative safety-margin,

the responses to cue variance and perturbations can be reliably predicted. While the

evolution of cue weights was not well explained by the model, possibly indicative of sub-

optimal integration, subjects were clearly capable of accumulating evidence over time

to continuously discriminate the objective uncertainty present in noisy visual stimuli.

4.4.2 Implications

4.4.2.1 Objective Uncertainty Acquisition

In making decisions, subjects must make a trade-o� between allocating time to percep-

tion, and time to action Faisal and Wolpert (2009). Since there is a considerable time

delay between sensing the world and initiating motor actions, subjects often make de-

cisions while sensory information is arriving, and it has been shown that certain decisions

made under these conditions, in particular changes of mind, re�ect the properties of this

processing pipeline (Resulaj et al., 2009). In a vision-based reaching task Resulaj et al.

(2009) are able to predict discrete events (subjects changing their mind) based on the

time-delayed accumulation of evidence. In this chapter I have shown how subjects form

decisions based on visual cues and correct their estimate when their estimate changes,

as indicated by the trajectories under di�erent levels of perturbation. In our continuous

task these `changes of mind' are not discrete events but in fact evolving decisions related

to our perception of uncertainty. There exists a large temporal window for estimating

uncertainty (Graf et al., 2005), and our results con�rm that subjects can accumulate

and integrate evidence over this time to report continuous statistical estimates.
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Our use of a continuous time-varying task provides the �rst direct explanation of the

process of objective-uncertainty acquisition. It was recently argued that forced-choice

paradigms may induce apprehension, especially with increased uncertainty (Helbig and

Ernst, 2007), and this apprehension may indirectly provide a measure of stimulus un-

certainty that does not require an explicit conscious representation (Helbig and Ernst,

2007). Experimental manipulations to increase uncertainty, such as decreasing stimulus

contrast or adding uncorrelated noise, may increase the latency with which subjects can

react to stimuli, further confounding the interpretation of explicit awareness of uncer-

tainty. Even our method of time-varying jittering cues may trigger unconscious neural

mechanisms that could indirectly account for uncertainty judgements. Much research

on statistical optimality includes situations in which an implicit internal representa-

tion of uncertainty may explain task performance (e.g. Alais and Burr, 2004, Ernst and

Banks, 2002, Gepshtein and Banks, 2003, Gepshtein et al., 2005, Hillis et al., 2004, Knill

and Saunders, 2003 and more). By asking subjects to report their sensory uncertainty

I directly tackle the question of whether subjects can explicitly acquire representations

of sensory uncertainty in order to make optimal decisions (Barthelmé and Mamassian,

2009).

4.4.2.2 Optimal Perception

To what extent are the observed continuous trajectories optimal? The global paramet-

ers of the model are optimised to achieve the best �t for each subject, but as these

parameters are �xed across all trials they can not explain the di�erences in the traject-

ories observed for each condition - these can only be explained by the contribution of

individual cues to the decisions (although the parameters can explain the general shape

of the trajectories and the latency after which cues contribute to the trajectories). In

the mean estimation model the cue contributions are chosen optimally (i.e. according

to the ML estimate of the mean). The resultant close match between the empirical

and observed trajectories for each of the conditions indicates optimal cue weighting. In

contrast, in the con�dence estimation model a suboptimal �safety margin� is used to

explain the magnitude of the estimate and thus a match between empirical and model

trajectories does not indicate optimality. This safety margin causes subjects to sig-

ni�cantly over-estimate uncertainty, resulting in less than optimal performance in the

task.

Could the �nding of optimal mean estimation and suboptimal con�dence estima-

tion be explained by subjects relying on a simpler heuristic? For example, subjects

may position their thumb and fore�nger on the extremes of the cues seen so far, or

choose an aperture size proportional to this range. This was our primary motivation
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for computing the weights assigned to each cue in the sequence, which revealed that

each cue was approximately equally weighted for the mean-estimation task. This would

not be the case for subjects relying on subsets of the cues: as the mean of the cues

is not equal to the median due to perturbations, the suboptimal heuristic strategies

would result in di�erent endpoint decisions, di�erent trajectories and di�erent weight

pro�les. We therefore posit that mean estimation trajectories are indeed based on op-

timal cue weighting. In contrast, uncertainty estimation empirical weights do not match

the optimal model weights. The presence of a consistent overestimation of uncertainty

indicates that subjects may be relying on a subset of the observed cues to form their

estimate. Nonetheless, subjects still increase their aperture in response to uncertainty

increases and perturbations, indicating that subjects do have access to some measure

of their objective uncertainty.

It is certainly a possibility that subjects are, rather than expressing a measure of

their internal belief about the uncertainty of the stimuli, reporting a learned quantity.

However, I do not believe this poses a confounding factor in the conclusions drawn.

Whether or not subjects are (a) expressing a quantity which is represented internally,

(b) an arbitrary quantity which correlates with an internal measure, or even (c) an

arbitrary quantity which they learn to represent over the time-course of the experiment,

it should be noted that that they are able to do this in a manner that: (i) re�ects the

uncertainty, σ2, imposed on a given trial; (ii) captures increases in uncertainty which

arise as a result of cue perturbations; and (iii) evolves over time in a way that appears

to re�ect the accumulation of information over the course of the trial. Regardless of

the quantity subjects are expressing, the fact that they are able to do this indicates

that they are able to compute and express a measure of cue uncertainty, based on the

information acquired within a single trial. Nonetheless, the reported quantity is far

from that required to maximise the expected score.

Our �nding that subjective perception of uncertainty over-estimates objective un-

certainty is consistent with the experimental �nding of undercon�dence in forced-choice

tasks (e.g. see Barthelmé and Mamassian (2009)). From the present results it appears

that subjects are relying on a (suboptimal) uncertainty estimate rather than the max-

imum likelihood estimate, though there are a number of alternative potential causes of

over-estimated uncertainty: (i) It is not known if subjects �xate on the jittering stimuli

or on the cursor, which may e�ect their ability to accurately judge (or anticipate) the

stimulus location; (ii) Subjects may not have been able to maximise their expected gain

(in contrast to Trommershäuser et al. (2003)), due to di�erences in experimental design;

(iii) The kinematic model �t to the data may be insu�cient to describe behaviour; (iv)

The data collected may have been too noisy for reliable model �tting. To address points
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(i) and (ii) further research is needed to decouple the factors that determine objective

variability and performance maximisation. For example, subjects were not aware of

the exact functional form of the score function (in contrast to Trommershäuser et al.

(2003)), and were required to report a quantity which may have di�ered from their true

internal measure of uncertainty, adding additional learning demands. Whilst the e�ects

of learning were not observed in the data these potential limitations of the scoring sys-

tem should be noted. To address points (iii) and (iv) we must evaluate the viability

of our kinematic model (See Materials and Methods, and �gure 4.3). In our model the

delay parameter captures the combined e�ect of sensory and motor latency and motor

kinematic limitations are captured by speed and momentum parameters, which a�ect

the overall shape of the trajectories. It was found that these three parameters were suf-

�cient to explain the average empirical data for mean estimation. Alternative models

may introduce additional parameters to explain di�erent aspects of the data, such as

the addition of sensory and motor noise or separate sensory and motor delays. Further

experiments would be required to test such models.

Our experiment design utilised a grasping task within a �xed plane. As the task does

not abstract the cursor or targets to a computer screen, it maintains many aspects of

ordinary grasping (visual feedback, proprioceptive feedback, feedforward control etc.),

keeping the task as natural as possible. As detailed in the methods, feedback of the

�ngers was aligned with the true �nger locations (see Gepshtein and Banks (2003)).

The design relied on the fact that subjects could independently control their grasp

aperture and hand position, which we felt was likely (although see Schot et al. (2011);

independent �nger and thumb control has not been conclusively demonstrated). Target

stimuli were presented along the line of the left forearm, though it could also have been

achieved by presenting stimuli along any �xed line in the plane. We chose to use the arm

as a reference because (i) this design lends itself to a number of follow-up experiments in

which the cues may be tactile rather than visual; and (ii) it allows subjects to position

both the target line (with their left arm) and the cursor (with their right arm) in any

comfortable con�guration of their choosing.

Our results are consistent with a number of studies that report optimal multisensory

integration, (e.g. audio-visual Alais and Burr (2004), Heron et al. (2004), visuo-haptic

Ernst and Banks (2002), Gepshtein and Banks (2003), Helbig and Ernst (2007) visuo-

proprioceptive van Beers et al. (1999) and visual Jacobs (1999), Oruç et al. (2003)

integration). However, these results provide indirect evidence of subjective representa-

tion of objective uncertainty Barthelmé and Mamassian (2009). In the present study we

�nd that subjects are able to form an optimal estimate of the mean and an overestim-

ate of the uncertainty, providing direct evidence of continuous mean- and con�dence-
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estimation mechanisms that may underlie the observation of optimal integration. In

contrast, there are a number of studies in which optimal behaviour was not observed.

Multisensory integration studies have demonstrated a signi�cant under-weighting of

sensory uncertainty for texture information Knill and Saunders (2003) and auditory

information Burr et al. (2009) and in a third study it was found that visuo-haptic integ-

ration performance was inconsistent with maximum likelihood estimation in more than

80% of the data Rosas et al. (2005). However, the authors conceded that subjects may

have attempted to combine cues optimally but did not have an accurate estimate of the

variance of the individual cues. Consistent with this �nding, in the present study we

have observed a suboptimal safety-margin in subjects estimating their uncertainty. By

extending our experimental paradigm to multiple sensory modalities we would predict

di�erent integration weights for subjects using either subjective or objective uncertainty

to form multimodal estimates. By allowing for simultaneous measurement of mean

and con�dence our experimental paradigm readily lends itself to the testing of such

hypotheses.

4.4.2.3 Cognitive Mechanisms

There is a growing body of research which aims to understand the neural substrate of

uncertainty representation. For example, neural �ring activity in orbitofrontal cortex

in rats is an accurate predictor of olfactory discrimination uncertainty (Kepecs et al.,

2008), and neurons in parietal cortex encode information about the degree of decision-

making uncertainty in monkeys (Kiani and Shadlen, 2009). The presence of con�dence-

estimation mechanisms in the brain is supported by biologically plausible computational

models (such as reviewed in Pouget et al., 2000) in which neural populations readily

encode sensory uncertainty and allow networks to compute posterior probability distri-

butions. The results presented in this paper provide direct evidence that humans have

rapid and reliable access to some measure of this statistical information, which could

presumably be attained from such neural representations.

While it is certainty possible that uncertainty may be represented neurally, the

present results of suboptimal acquisition indicate that to understand these processes one

needs to examine the processes on an even �ner temporal granularity than presented

here. This could possibly be achieved in the present paradigm by slowing down the

arrival of sensory evidence, reducing the e�ects of motor noise and allowing responses

to each cue to be measured.
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4.4.3 Conclusion

My quantitative paradigm allows for the simultaneous measurement of both mean and

con�dence estimation. It allows this process to be observed over time as the arrival

of evidence is controlled. From this I am are able to make qualitative and quantitat-

ive predictions of the performance of subjects based on a statistically optimal model

constrained only by elementary kinematic limitations, exposing the fundamental mech-

anisms of mean and uncertainty estimation over time. The paradigm naturally lends

itself to a wide variety of future experimental manipulations, for example in under-

standing the methods deployed when integrating cues from multiple modalities, for

understanding the time-courses of decisions, and for decoupling the roles of objective

and subjective uncertainty perception for decision-making.



Chapter 5

Optimal Multisensory Integration

The degree of integration of an arti�cial feedback system with existing sensory channels

is potentially a good indicator of perceptual rehabilitation. If this is achieved in the

context of a sensorimotor task this may be also be a valuable indicator of sensorimotor

rehabilitation. In this chapter I test the vibrotactile feedback channel developed in

chapter 3 in a novel multisensory cursor tracking task. Subjects are able to perform the

task using either visual or vibrotactile feedback, suggesting that sensory substitution

has been achieved. It is also found that subjects make active use of the arti�cial sense

when they have a choice between vision and vibrotactile feedback. Performance in a

multimodal condition is greater than that for each modality presented alone, suggesting

sensory integration. When vision and vibrotactile feedback are corrupted by uncertainty,

objective uncertainty increases. Subjects choose to integrate the two percepts as a

function of the objective uncertainty, resulting in a performance stereotypical of Bayes-

optimal multisensory integration.

Relevant Publications

• Ian Saunders, Sethu Vijayakumar. (2009b). A Closed-Loop Prosthetic Hand

as a Model Sensorimotor Circuit. Proc. International Workshop on Compu-

tational Principles of Sensorimotor Learning.
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5.1 Motivation

In developing an arti�cial sensory channel, it is an important question to ask whether

or not it will integrate with our existing senses so that it can complement and, where

necessary, substitute for our existing senses. This chapter attempts to quantify the

degree to which the arti�cial vibrotactile feedback channel developed in Chapter 3

integrates with visual feedback. This is achieved by means of continuous cursor-tracking

tasks, motivated in Chapter 2 as valuable for evaluating sensorimotor function and by

analogy to prosthesis control.

A number of multisensory integration studies in the literature have reported that the

weight attributed to di�erent sensory modalities is a function of their respective sensory

uncertainty. This has been shown for vision and proprioception (van Beers et al., 1999)

for audio-visual integration (Battaglia et al., 2003) and visual and haptic integration

(Ernst and Banks, 2002) and is often consistent with an owith whichptimal �Bayesian�

weighting strategy (but see Chapter 2 for further detail).

These results suggest the presence of statistically-principled mechanisms in the

brain. However, Ernst and Banks (2002) acknowledge that �although explicit calcu-

lation or learning may occur, there are plausible schemes in which explicit calculation

of variances or weights is unnecessary�. To further understand the mechanisms of in-

tegration it is desirable to distinguish explicit and implicit integration schemes (see

Chapter 2).

Further, it is not yet known whether statistically optimal multisensory integration

extends to a �new� (arti�cial) sense. When the amputee uses the sensorised prosthetic

hand introduced in Chapter 3, although exploiting residual nerves and latent plasticity,

feedback from sensors will be issued at a di�erent location (e.g. the arm), in a di�erent

modality (e.g. vibration), and with a di�erent encoding (e.g. a spatial code) to that

of natural sensation of this information. To this extent we have created an arti�cial

sensory channel.

Ernst and Banks (2002) raise the question �Does the nervous system need to cal-

culate or learn the variances associated with the visual and haptic estimators for each

property and situation to implement MLE integration?� The experiments presented in

this chapter use an arti�cial modality allow us to answer the question: is this weighting

learned or calculated? An arti�cial modality has no pre-learned component and so can

be used to test this hypothesis.
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5.1.1 Pilot Experiment

In understanding the limitations of present prostheses it is important to understand both

the sensory and motor components of rehabilitation. Much research in the literature

has examined a variety of feedback codes. However, a less explored question is the

choice of prosthesis kinematic controller. In the pilot experiment I chose to compare

a di�erential (velocity-control) prosthesis controller to an absolute (position-control)

prosthesis controller, in the presence of visual and tactile feedback. The experiment

aims to provide a quantitative comparison of the bene�ts of (uncertain) sensory feedback

under each of these control methods.

To achieve these aims, I have developed a multimodal pursuit tracking task. This

task was developed with the following considerations in mind:

• (i) the task should be considered analogous to prosthesis control (insofar as the

dynamics of the cursor correspond to the output of a prosthesis); and

• (ii) the visual and tactile modalities may be identically manipulated to induce

uncertainty.

The ilimb hand deploys a di�erential controller, as discussed in Chapter 3. In such

a controller, hand velocity is directly proportional to muscle activity and therefore the

e�erent copy of motor commands and muscle proprioception provide feedback of grasp

speed. To estimate grasp position from this quantity one would need to integrate the

signal over time. Under this additional di�culty I hypothesised that an arti�cial channel

would have a bene�cial e�ect on grasp position estimation. An alternative prosthesis

controller could adopt an absolute control strategy. In this con�guration grasp size

is directly proportional to muscle activity and therefore the motor e�erent copy and

muscle proprioception provide direct feedback of grasp size. I therefore hypothesised

that the bene�ts of tactile feedback may be less pronounced in the presence of these

extra sensory signals.

5.1.2 Main Experiment

To determine the strategy deployed by subjects to perform multisensory integration I

conducted an experiment to quantify the degree of multisensory integration. Similar to

the paradigm developed for the pilot experiment I examined target acquisition ability

under uncertain visual and tactile feedback. Extending the paradigm I added two

additional considerations:

• (iii) The task should impose minimal bias to either modality.
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• (iv) The visual and tactile modalities should be matched in terms of utility, to

allow their integration to be measured;

To address point (iii), task bias was reduced by limiting the number of �target

locations� to 1. The advantage of having a single �xed target is that neither the visual

nor tactile modality are inherently favoured.

In the main experiment it was decided that a di�erential controller would be more

relevant for generalisability of results to control of the ilimb hand and to prosthesis

control in general.with which

To address point (iv), the major di�erence between the main experiment and the

pilot was that that tactile and visual performance were adjusted so that the magnitude of

error in each condition overlapped. Running a larger cohort of subjects, with increased

tactile training and an improved vibrotactile feedback code it was hoped that su�cient

data could be attained in which the utility of visual and tactile feedback were comparable

in terms of the objective performance of subjects using each modality alone.

The feedback system was improved by increasing the number of tactors and using an

interpolated duty-cycle code (see Chapter 3). This meant that a spatially-continuous

tactile display could be simulated by co-activating neighbouring tactors. This increased

the number of distinct perceptual sensations achievable from the tactile display. In

addition, the visual feedback uncertainty was adjusted on a per-subject basis to ensure

that overlap was achieved.

Finally, to distinguish explicit (active) uncertainty perception from implicit (passive)

perception, a con�ict (or o�set) was added between the modalities (see methods).
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Figure 5.1: Pilot Target Localisation Task 2. (A), Schematic of the tracking task.

Subjects are required to move a cursor to a target position using visual and/or tactile

feedback of cursor position, presented on screen and/or to the forearm respectively (B), In

previous multisensory integration studies, spatial uncertainty has been be applied to visual

feedback resulting in a cloud of blobs (e.g. Tassinari et al. 2006, Körding and Wolpert

2004a). This could be presented as pictured, distributed with variance σv (C), In the

present experiment uncertain cues are presented as a sequence, resulting in a cursor which

`jitters' over time. This manipulation is applied to feedback in both the visual and tactile

modalities, to modulate the uncertainty of each.

5.2 Methods

5.2.1 Pilot Experiment

5.2.1.1 Overview

Subjects were required to move a cursor to a target location. On each trial the tar-

get location was presented in the visual modality and appeared in one of 8 locations

corresponding to the eight vibrating motors on the arm. Fig. 5.1 illustrates the task.

5.2.1.2 Stimuli

On each trial, subjects were presented with a stream of feedback of the current cursor

position in both visual and tactile modalities. The feedback was perturbed by inde-

pendent sequences of samples from a Normal distribution with mean 0 and variance σ2v

and σ2t in the visual and tactile modalities respectively. On each trial 20 samples were

presented in each modality, spaced by 200ms.

In blocks of 5 trials, each of σv and σt were chosen randomly in the range {0, 0.5,

1, 1.5,∞} tactors. This quantity is given in `tactor space' de�ned as ranging from from
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Figure 5.2: Matrix of Stimulus Uncertainty To examine the interaction between �ve

values of stimulus uncertainty in each modality, 25 trial con�gurations are required. This

�gure illustrates the conditions considered, and highlights the �rst row and �nal column to

indicate unimodal trials (σ =∞ conditions).

0 to 7, corresponding to each of the 8 vibrating tactors. In trials with in�nite variance,

no feedback signal is given. Fig. 5.2 illustrates the 25 conditions enumerated by the

combinations of σv × σt.
Stimuli were recorded and presented in `pixel space', corresponding to the width of

the visual display which spanned 1024 pixels. Tactors were spaced by 114 pixels, so

that tactor i ∈ {0, ..., 7} appeared at pixel location 114 + 114i. The ranges of each

of σv and σt is equivalently given by {0, 57, 114, 171,∞} pixels. Visual stimuli were

presented horizontally, as shown in Fig. 5.1A, and projected onto a large visual display

at eye-level. Tactile stimuli are presented via a custom built vibrotactile array, featuring

8 tactors spaced by 4cm in a linear array along the arm. Feedback was encoded using

the duty-cycle method (as discussed in Chapter 3), and between-tactor interpolation

was not used in the pilot experiment.

The visual and tactile cues were presented as a �jittering� sequence (as introduced

in Chapter 4). Fig. 5.3 illustrates the e�ect of this jitter applied to the tactile modality

(discretised in each motor). Unlike other methods such as blur (e.g. Helbig and Ernst

2007) and spatial scattering (e.g. Körding and Wolpert, 2004a), this method can be

applied to both visual and tactile channels, allowing modulation of the uncertainty of

both.

Each trial lasted approximately 5 seconds. On completion of the trial, subjects were

alerted of success or failure by the target turning green (success) or red (failure). Each

subject completed 125 trials in a 10-minute run, with randomly located targets presented

on each trial, drawn Uniformly over all tactor locations {0,. . . ,7}, i.e. pixel locations

{114,. . . ,910}. The jitter in the visual and tactile channels, σv and σt respectively, was

varied at random every 5 trials throughout the run. Subjects performed three such
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A B

Figure 5.3: Spatio-temporal Jitter. This illustration shows how spatio-temporal jitter

is applied to a discretised modality, i.e. in the tactile channel. (A) A nearest-neighbour

approach was used to choose the appropriate tactor to stimulate in the no-noise condition

(σt = 0). The �gure shows a trajectory over time (black line) and twith whichhe correspond-

ing stimulated tactor (red dot). (B) Under a moderate amount of tactile noise (σt = 1) the

trajectory at each time step is perturbed by a sample from a Gaussian distribution before

the nearest neighbour method is applied.

runs, separated by brief rests.

5.2.1.3 Control

The cursor was controlled in one of two ways for two separate groups of subjects.

In the position control group the cursor was controlled by a single FSR. The

position of the cursor was set to 0 pixels for a force of ≤0.2N to a maximum 1024 pixels

for 2N of force. These values were chosen due to the linear range available from the force

sensors used, which were low-cost force-sensing resistors (FSR). As the FSR was linear

in this range this control algorithm produced a cursor position directly proportional to

force.

In the velocity control group the cursor was controlled by two FSRs, one to control

leftward motion and the other to control rightward motion of the cursor. The initial

position of the cursor was randomised on each trial. The magnitude of the cursor's

displacement per time frame (200ms) was set to 0 pixels for a force of ≤0.2N to a

maximum of 200 pixels for 2N of force. As the FSR was linear in this range this control

algorithm produced a cursor velocity directly proportional to force.

5.2.1.4 Analysis

The following quantities were measured for each trial:
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• Success / failure;

• The distance of the cursor from the target at the end of the run;

• The trajectory taken to reach the target;

5.2.1.5 Training

Prior to experimentation, subjects were trained in four conditions: (i) Perfect visual

and tactile f/b; (ii) Just tactile f/b; (iii) Just visual f/b; and (iv) Perfect visual and

tactile f/b.

The order of (ii) and (iii) were counterbalanced across subjects so that if the order

of training imposed biases these biases should be eliminated in the average overall

behaviour.

5.2.1.6 Hypotheses

In the pilot experiment four hypotheses were considered. Fig. 5.4 highlights these

strategies.

• (A) Multimodal Integration: Modalities are combined in proportion to their

reliabilities (see Chapter 2); The mean distance of the cursor from the target

(mean error) with two modalities will be less than (or equal to) the mean error

for each modality alone.

• (B) Unimodal: One modality is rejected irrespective of its reliability.

• (C) Winner takes all: The more reliable modality is used and the other mod-

ality is rejected. (This is not the same as (A) which may exploit the redundancy

between the modalities).

• (D) Interference: It is possible that the presence of an additional modality

causes confusion, especially if the noise in the modalities causes a noticeable dis-

crepancy between the cues (see Gepshtein and Banks, 2003, Spence et al., 2004,

Gepshtein et al., 2005, but also see Welch et al., 1979, Warren et al., 1983 and

discussion in Chapter 2). Subjects may show reduced mean error in the unimodal

condition than in a multimodal condition where one modality is particularly noisy.

5.2.2 Main Experiment

5.2.2.1 Task

A variant of the cursor navigation task from the pilot experiment was developed (Fig.

5.5). Similar to the pilot experiment, feedback of the cursor was presented in two
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Figure 5.4: Integration Hypotheses. Predicted performance under four integration

conditions are plotted. Darker tones indicate worse performance. (A) Multimodal (B)

Unimodal; (C) Winner takes all. (D) Cross-modal Interference. See text for description of

these hypotheses.
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Figure 5.5: Cursor Navigation Task. (A), Schematic of the task. Subjects are required to

track a cursor to a �xed target position using visual and tactile feedback of cursor position.

The target is �xed to the centre of the screen (visual target) and a single tactor (tactile

target). On-screen feedback is given at the end of each trial. (B) Spatial uncertainty of

variance σv (noise) is applied to the visual modality to create spatiotemporally modulated

cue sequence (jitter).



146 Chapter 5. Optimal Multisensory Integration

modalities, with �jitter� added to each modality to vary the underlying uncertainty of

each. In contrast to the pilot experiment, subjects were required to navigate a cursor

to a �xed multimodal target location. Each trial duration was 4.5-seconds, and visual

and tactile uncertainty were varied randomly from trial-to-trial.

5.2.2.2 Experiment Structure

Instructions Prior to the experiment, subjects were told that the cursor would be

presented both on-screen as a blob and on their arm as a vibratory sensation. The

experimenter pointed at a particular vibrating motor and a particular location on the

screen so that subjects were aware of the target location in both modalities. Subjects

were then informed that the task would be made more di�cult by adding noise to

either the visual information, the tactile information, or both sources of information.

The noise would be random from trial to trial.

Unimodal Training Phases Following these instructions, the experiment comprised

four phases. In the �rst training phase, V, subjects were told that visual feedback

would be the dominant modality, and to rely on visual cues to complete the task. In

the second training phase, T, subjects were told that tactile feedback would be the

dominant modality, and to rely on tactile cues to complete the task. The order these

two training phases was counterbalanced across subjects. The training required subjects

to navigate the cursor to the target for three di�erent values of jitter in the dominant

modality (with jitter ranging from ±20 to ±200 pixels). The non-dominant modality

was given a much larger range of jitter (±400 pixels). There were no biases imposed on

either modality in the training. 4 blocks of trials were performed. Within each block,

each value of jitter was tested 5 times (but not in sequence) so that in each training

phase 60 trials were performed. This resulted in approximately 4 minutes of training

for each condition.

Multimodal Training Phase In the third training phase, subjects were exposed to a

sample of the full task, with two values of tactile jitter (the ranges ±20 and ±100 pixels)

and two of visual jitter (the ranges were chosen based on the earlier training trials, T

and V, such that the mean error for each of the visual conditions would match the

mean error for the corresponding tactile conditions). On each trial the amount of jitter

in each modality was chosen in a randomised full factorial design to avoid any biases

being induced at this stage. After 20 training trials it was assumed that subjects were

familiar with the idea of having to choose to use vision or tactile feedback on each trial.

Following training, subjects were asked to comment on their performance. If they
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reported that they struggled to use a given modality they were given the opportunity

to repeat the training. If necessary, the range of variances was modi�ed by the experi-

menter so that the range of errors in the tactile training would continue to overlap with

those in the visual training.

Test Phase After training, subjects performed 4 blocks of a full factorial test phase,

whereby three values of visual and tactile jitter were combined to create 9 conditions

in total. with which

In the test phase a deliberate discrepancy (or o�set) was imposed between the

modalities. The magnitude of the o�set was varied from trial to trial, but was at

most half of the standard deviation of the jitter in each modality, ensuring that the

discrepancy was not noticed by subjects. Each experimental condition was tested for 5

di�erent values of modality o�set so that in total 180 trials were run. The test phase

lasted approximately 15 minutes.

5.2.2.3 Cursor Control

The true cursor at time t (denoted xt) was controlled by two FSRs, one to control

leftward motion and the other to control rightward motion. The initial position of the

cursor, x0, was randomised on each trial. The magnitude of the cursor's displacement

per time frame (125ms) was set to 0 pixels for a force of ≤0.2N to a maximum of 200

pixels for 2N of force. As the FSR was roughly linear in this range this control algorithm

produced a cursor velocity proportional to force.

5.2.2.4 Success/Failure Feedback

Subjects received feedback at the end of each trial in the form of a number on screen,

with a negative number to indicate that the �nal cursor location was left of the tar-

get, and positive for right of the target. The magnitude of the error was a decimal

value representing the number of vibrotactors between the target and the subject's �-

nal estimate, given to 1 decimal place. If the magnitude of this value was less than

0.5 vibrotactors (32 pixels) a `success' sound e�ect was played, and if unsuccessful a

di�erent `disappointment' sound e�ect was played. Furthermore, at the end of the trial

the true location of the underlying cursor was presented to both the visual and tactile

modalities for a duration of 300ms.

5.2.2.5 Subjects

The task was performed by 12 subjects. One subject's data was discarded as their

mean error in the visual and tactile training phases did not overlap for the range of
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uncertainties available.

Subjects were recruited and tested by Eduardo Moraud, an M.Sc. student under

my supervision. However, all aspects of the experiment were designed by myself, and

all analyses presented here were conducted independently of Moraud (2009).

5.2.2.6 Stimuli

Manipulations Across trials two factors were modulated: (i) the amount of `jitter' in

each modality; and (ii) the `o�set' between modalities. At a particular time t, let the

underlying cursor be at position xt. The visual vt and tactile (haptic) ht cues at time t

were samples from uniform distributions, given by:

ht ∼ Uniform (xt − (1 + b)ah, xt + (1− b)ah) (5.1)

vt ∼ Uniform (xt − (1− b)av, xt + (1 + b)av) (5.2)

where ±ah and ±av de�ne the range of the tactile and visual distributions, and the

o�set term b separates the distributions by a fraction of their width.

The magnitude of b ∈ {-0.5, 0, 0.5} was varied randomly from trial to trial, so

that the visual and tactile distributions still overlapped but their means were slightly

di�erent.

ah and av were initially chosen ∈ {20, 100, 200}. After training these values were

adjusted (per subject) to achieve overlap between visual and tactile unimodal perform-

ance.

Feedback was temporally quantised so that visual feedback samples were received

every 250ms and tactile feedback samples every 125ms. Since visual feedback has a

better spatial resolution this allowed it to be penalised temporally. Thus, in a com-

plete trial, subjects received 36 samples of tactile information and 18 samples of visual

information.

Over the course of a single trial, subjects perceived quantised visual and vibrotactile

cues. Feedback was spatially quantised into the range (0, 1024] in pixel space, with the

target location at position 512 (the centre of the screen and tactor 8). Tactors were

spaced by 64 pixels. Tactor 1 appeared at pixel location 64, and tactor 16 at pixel

location 1024.

5.2.2.7 Analysis

Quantities are expressed in pixel coordinates. Let vt and ht be noisy cues in the visual

and tactile modalities respectively, at a particular time t. The cues are centred around

xt, the underlying cursor trajectory, as de�ned in equations 5.1 and 5.2. Visual samples
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are spaced by δv = 250ms, and tactile samples are spaced by δh = 125ms. The total

trial duration T = 4500ms. The target location on each trial is 512 pixels.

On each trial I calculate the absolute endpoint error, the absolute distance between

the target location and the value of the underlying cursor at the end of the trial, de�ned

in equation 5.3:

Error = |xT − 512| (5.3)

At each time-step in the trial, t, we measure (i) the location of the visual and tactile

cues relative to the true cursor; and (ii) the variance of the cues around the true cursor.

These quantities may relate to the decision made by subjects at each time step.

[µv]t =
δv
t

∑
s∈{δv :δv :t}

(vs − xs) (5.4)

[σ2v ]t =
δv
t− 1

∑
s∈{δv :δv :t}

(vs − xs − [µv]s)
2 (5.5)

Similar calculations are made for [µh]t and [σ2h]t for the tactile modality.

As previously discussed, a random o�set, b, between visual and tactile distributions

is introduced so that the modalities are slightly (but not detectably) discrepant. For

positive o�sets, [µv]T < [µh]T and for negative o�sets [µv]T > [µh]T . In these cases, if

the subject was relying on just vision, or just tactile feedback, one should see an e�ect

of this in their decision, xT . This allows for per-trial visual and tactile weights to be

computed:

wh =
[µv]T − xT

[µv]T − [µh]T
(5.6)

wv =
[µh]T − xT

[µh]T − [µv]T
(5.7)

Note that these values are scaled with respect to the separation of the means. Each

weight will range from 0 to 1 if xT lies between [µv]T and [µh]T . Also, note that

wh = 1−wv. To quantify the bias towards one modality or the other we use a measure

in which -1 represents a tactile bias, and +1 represents a visual bias:

Bias = wv − wh (5.8)

This Bias quantity disproportionately ampli�es decisions when the visual and tact-

ile means are close or indistinguishable. To avoid noisy terms dominating statistical

computations Tukey's range test, (also Tukey's HSD equation 5.9) allows trials to be

discarded where the means are indistinguishable (in which case we can assume that

the data o�ers little discriminative power). In practice this corresponds mainly to data
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from the condition where the o�set is 0, though also arises by chance in the other o�set

conditions. Equation 5.10 allows such trials to be removed from the Bias measure.

Q =
|µ1 − µ2|√

1
NMSE

(5.9)

=
|[µv]T − [µh]T |√
1
2

(
[σ2v ]T + [σ2h]T

) (5.10)

Using the two measures, Error and Bias, the �hallmarks� of multisensory integration

(see Angelaki et al., 2009 and others) can be evaluated by comparing the metrics for

di�erent experimental conditions:

• (i) Sensory Substitution. In both of the dominant-modality conditions, i.e.

(ah = low, av = high) and (ah = high, av = low), if the Error measure is lower

than in the high uncertainty condition (ah = high, av = high), then either mod-

ality can be used to complete the task. Hence, the modalities can substitute for

one another.

• (ii)Multisensory Integration. A larger Error measure in the dominant-modality

condition (σx = low, σy = high) compared to the multi-modal condition (σx =

low, σy = low) indicates that both modalities have been used to complete the

task. Hence, the modalities have been integrated. A Bias measure of zero would

reinforce this.

• (iv)Optimal Multisensory Integration. The Bias measure indicates the relat-

ive weight allocated to each modality. If each modality is weighted by its objective

reliability, this is indicative of optimal integration.

5.2.2.8 Simulation

To aid interpretation of results, �ve hypotheses were simulated, termed unimodal visual,

even weights, random weights, winner-takes-all and Bayes-optimal (see Chapter 2),

de�ned below.

Integration Hypotheses The present task requires subjects to navigate a noisy cursor

to a target location. To achieve this successfully an ideal observer would estimate

the mean and uncertainty of the cues in each modality to reliably compute the cursor

location (as a weighted sum of the unimodal estimates, see 2). Let us de�ne the true

cursor location as µ. The simulated observer needs to form an estimate of the cursor

location (denoted µ̂) to succeed at the task. We can ignore (for now) how the cursor is

moved by the subject.
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Now, consider a random variable V as the source of evidence in the visual modality.

Let us assume that each sample of V , denoted vt, is drawn from an underlying distribu-

tion with unknown mean µ, and unknown variance. At time t we can form an estimate,

µv, of the underlying mean, based on the samples seen so far, and likewise an estimate,

σ2v , of the underlying variance (given previously by equations 5.4 and 5.5, but with the

time indices removed for convenience). Now, consider a second random variable H as

the source of tactile evidence. Again, samples are drawn from an underlying distribu-

tion with unknown mean µ and unknown variance. Likewise we may choose to compute

µh and σ2h.

If one uses only µv and µh to compute an uncertainty-independent estimate of the

mean of the underlying distribution the following three integration hypotheses may be

considered:

Unimodal Visual µ̂ = µv

Even Weights µ̂ = 1
2(µv + µh)

Random Weights µ̂ = qµv + (1− q)µh

(5.11)

Where q is a random number generated from trial-to-trial, drawn from Uniform(0, 1).

If one uses µv, µh, σ
2
v and σ2h to compute an uncertainty-weighted estimate of the

mean of the underlying distribution, the following two hypotheses may also be con-

sidered:

Winner Takes All µ̂ =

{
µv if σ2v < σ2h

µh otherwise

Bayes Optimal µ̂ =
µhσ

2
v + µvσ

2
h

σ2v + σ2h

(5.12)

These hypotheses were introduced in Chapter 2.

Kinematic Constraints The above de�nitions allow for the cursor position to be cal-

culated, but another important aspect of the task is that the cursor can be moved. In

simulation, time is discretised into steps of size 125ms. At each time step the underlying

cursor, x1:T , is updated according to the following di�erence equation:

xt+1 = (1− α) · xt + α · (µ̂− xt + ε) (5.13)
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Where ε is a Gaussian-distributed noise term and α is a smoothing parameter set

to 0.1. Hence the trajectory eventually converges on the estimate (µ̂), constrained

by motion smoothing (α) and perturbed by motor noise (ε). As the purpose of the

simulation is simply for comparison with endpoint Error and Bias measures it was not

necessary to use the more detailed kinematic model introduced in Chapter 4.

Uncertain Uncertainty The ideal observer requires an accurate measure of their ob-

jective variability (viz. the reliability of the sensory information in each modality) to

determine the optimal integration weights. This is not the same as simply the variance

of the cues, as there are also uncontrolled sources of uncertainty ranging from low-level

noise (e.g. sensory, neural, processing and motor uncertainty) as well as high-level vari-

ability (e.g. distraction, inattention, forgetting). To compare empirical to simulated

behaviour, the unimodal objective variability can be determined during the unimodal

training phases. this is then used to predict the multimodal objective variability in the

test phase. We de�ne the objective variability during the training phase as the variance

of the endpoint decision across training trials, i.e.

τ2 =
1

K

∑
k

(x
(k)
T − 512)2 (5.14)

Where x
(k)
t denotes the position of the cursor at time t on trial k. Therefore let τ2v

denote the variability of the endpoint decision across all K trials for each subject in the

visual training phase, and similarly let τ2h denote the variability in the tactile training

phase. τ2v and τ2h replace σ2v and σ
2
h in equation 5.12. Each of the strategies is simulated

using the data for each subject, then averaged across all subjects to enable quantitative

comparison of empirical and simulation results.
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5.3 Results

5.3.1 Notation

In the test phase of the pilot experiment, and in the unimodal training phases of the

main experiment, three baseline experimental conditions are discriminated:

• Vision-only. V = (σv = low, σt =∞)

• Tactile-only. T = (σv =∞, σt = low)

• No feedback. X = (σv =∞, σt =∞).

In the multimodal test phase of each experiment, four experimental conditions are

discriminated:

• Vision-dominant. VT = (σv = low, σt = high)

• Tactile-dominant. VT = (σv = high, σt = low)

• Multimodal. VT = (σv = low, σt = low)

• No dominant feedback. VT = (σv = high, σt = high).

These conditions allow for the discrimination of the di�erent integration hypotheses (see

methods).

5.3.2 Pilot Results

In the pilot experiment I examined multisensory target localisation performance in

subjects controlling either a position-controlled or velocity-controlled noisy cursor (see

methods).

5.3.2.1 Position Control Group

Within-trial performance can be visualised via the trajectories observed in achieving

di�erent target locations. Fig. 5.6 illustrates the within-trial trajectories for a single

subject controlling the cursor with position (proportional) control. For this subject

the smoothest and most reliable trajectories occur with either reliable visual feedback

(bottom panels) and tactile feedback (left panels), but noise and errors increase for

increasing uncertainty. The subject in Fig. 5.6 was also moderately accurate in the

presence of no feedback (top right panel).

Fig. 5.7 illustrates these trajectories normalised into the range [0,1], with 0 corres-

ponding to the start location and 1 corresponding to the target location, for the same

subject as above. For this subject the fastest convergence occurs with reliable visual
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Figure 5.6: Position Control Trajectories. Sub-plots show cursor trajectories over time

for all 25 conditions of visual (v) and tactile (t) jitter, for a single subject in the proportional

control condition. The x-axis of each plot represents time (from left to right) for the 5s

duration of the trial. The y-axis corresponds to the horizontal position of the cursor recorded

over the time course of the trial. Trajectories are colour coded with respect to the target

location (coloured blobs).
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Figure 5.7: Normalised Position Control Trajectories. Normalised cursor trajectories

over time for all 25 conditions for a single subject in the proportional control condition. The

x-axis of each plot represents time (from left to right) for the 5s duration of the trial. The

y -axis corresponds to the normalised horizontal position of the cursor ranging from the start

position (0) to the target location (1). For each condition the normalised trajectories (faded

lines) are plotted with the overall mean (solid line) and standard error across trajectories

(shaded region).

feedback (bottom panels), less erratic trajectories occur with reliable tactile feedback

(left panels) and performance worsens for higher levels of uncertainty (top right panel).

Fig. 5.8 illustrates the use of mean endpoint error to characterise performance,

for the same subject as above. For this subject the best performance is observed for

low visual and tactile uncertainty (towards the bottom left) and worst performance is

observed for high visual and tactile uncertainty (towards the top right), as expected.

The grouped data across 5 subjects using the position control strategy is illustrated

in a normalised surface plot (Fig. 5.9, see caption for details). Note that the surface

slope varies as a function of visual jitter, but not as a function of tactile jitter, except

in the absence of visual feedback (VT and VT conditions). This suggests (qualitat-

ively) that sensory substitution was achieved but not necessarily sensory integration

(see methods).



156 Chapter 5. Optimal Multisensory Integration

in
f

inf

Figure 5.8: Position Control Endpoint Errors. Mean endpoint error (pixels) for all 25

conditions for a single subject in the proportional control condition. The x-axis of each

plot represents the trial number (from left to right), revealing no obvious e�ect of learning

or fatigue across trials. The y -axis corresponds to the mean endpoint error between the

cursor position and the target. Coloured blobs represent the result of each trajectory, and

are colour coded according to the target locations in 5.6. Horizontal lines capture the mean

endpoint error for each condition.
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Figure 5.9: Position Control normalised endpoint error (N=5). Mean endpoint errors

for all 25 conditions (emboldened grid) ± standard error across subjects (transparent grid).

Before averaging across subjects, error data are scaled for each subject so that the no-

feedback trial (σv =∞, σt =∞) has an error of 1. This reduces between-subject variability

when averaging across subjects.
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Figure 5.10: Position Control comparison (N=5). (See text for description of short-

hand notation used) (A) Comparison of low uncertainty to high uncertainty: There was no

observed di�erence due to tactile feedback uncertainty in the presence of vision (VT ≈ V

and T ≈ VT). In contrast, a more pronounced e�ect of visual feedback uncertainty was

observed in presence of tactile feedback (VT > T, and V > VT). These di�erences may

or may not be signi�cant, as statistical tests were not performed. (B) Comparison between

conditions with presence/absence of feedback: Multimodal performance was worse than un-

imodal visual performance (VT < VT) but multimodal performance appeared better than

unimodal tactile performance. Performance was worse with neither source of feedback (VT

> VT, VT > VT and VT > VT). These di�erences may or may not be signi�cant, as

statistical tests were not performed.

Fig. 5.10A illustrates the role of uncertainty on performance (endpoint error) by

comparing the low uncertainty conditions to the high uncertainty conditions. Low

visual uncertainty (VT and VT) produces lowest errors, and high visual uncertainty

(VT and VT) produces highest errors. A bene�t of low tactile uncertainty is not

observed. Owing to the small number of subjects, statistical tests were not performed,

and so these conclusions may not be signi�cant.

Fig. 5.10B illustrates the role of the presence of feedback on performance (endpoint

error). VT results in slightly greater error compared to V, indicating that tactile

feedback may add an additional burden to the task. However, VT results in reduced

error compared to VT. Performance is worst in the absence of both sources of feedback.

5.11 illustrates the interaction between the modalities. In unimodal trials there was

no observed e�ect of tactile feedback uncertainty on Error (Fig. 5.11A, zero slope),

but increasing visual feedback uncertainty increased Error (Fig. 5.11B, non-zero slope).

However, the magnitude of error between the two modalities does not overlap and

therefore (consistent with the prediction of a Bayesian model of integration) there is
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Figure 5.11: Position Control Integration (N=5). Mean endpoint errors are shown

for unimodal and multimodal conditions. (A) unimodal tactile condition (σv = ∞) (B)

Unimodal visual condition (σt = ∞) (C) Multimodal conditions. Each line corresponds to

di�erent σv. x-axis corresponds to σt (D) Multimodal conditions. Each line corresponds to

di�erent σt. x-axis corresponds to σv. Key is shared between C and D.

no observed e�ect of tactile feedback uncertainty in the multimodal conditions (Fig.

5.11C, zero slope). These di�erences may or may not be signi�cant, as statistical tests

were not performed.

5.3.2.2 Velocity Control Group

The grouped data across 5 subjects using the velocity control strategy are illustrated

in a normalised surface plot in Fig. 5.12. Note that the surface slope varies as a

function of both visual jitter and tactile jitter. In contrast to the position control group

this suggests that sensory substitution was achieved as well as some degree of sensory

integration (see methods).

Fig. 5.13A illustrates the role of uncertainty on performance by comparing the low

uncertainty conditions to the high uncertainty conditions. Low visual uncertainty (VT

and VT) produces lowest errors, and high visual uncertainty (VT and VT) produces

highest errors. Under high visual uncertainty, tactile feedback reduces errors (VT shows

reduced errors compared to VT). Owing to the small number of subjects, statistical

tests were not performed, and so these conclusions may not be signi�cant.

Fig. 5.13B illustrates the role of the presence of feedback on performance. Error in

VT is again greater than V, suggesting that tactile feedback may add an additional

burden to the task. In contrast, VT shows reduced errors compared to T. In the no-
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Figure 5.12: Velocity Control normalised endpoint error (N=5). Mean endpoint errors

for all 25 conditions (emboldened grid) ± standard error across subjects (transparent grid).

Before averaging across subjects, error data are scaled for each subject so that the no-

feedback trial (σv =∞, σt =∞) has an error of 1. This reduces between-subject variability.
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Figure 5.13: Velocity Control comparison (N=5). (See text for description of short-

hand notation used) (A) Comparison of low uncertainty to high uncertainty: Weak e�ect

of tactile feedback uncertainty in presence of vision (VT ≈ V) but in absence of vision

the e�ect is observed (T > VT). There is an e�ect of visual feedback uncertainty in the

presence of tactile feedback (VT > T, and V > VT). These di�erences may or may not

be signi�cant, as statistical tests were not performed. (B) Comparison between conditions

with presence/absence of feedback. Multimodal visual worse than unimodal visual (VT <

VT), Multimodal tactile better than unimodal tactile (VT < VT), performance much worse

with neither (VT > VT, VT > VT and VT > VT). These di�erences may or may not be

signi�cant, as statistical tests were not performed.

feedback condition performance is considerably worse than for position control (see Fig.

5.10). These di�erences may or may not be signi�cant, as statistical tests were not

performed.

5.14 illustrates the interaction between the modalities. In contrast to position control

the range of Error in the unimodal tactile trials overlaps the range of Error in the

unimodal visual trials. Moreover, both tactile and visual uncertainty appear to a�ect

the Error (Fig. 5.14A and 5.14B, non-zero slope). Consequently, in the multimodal

conditions a slight positive slope due to tactile uncertainty is seen as visual uncertainty

is degraded past σv = 0.5. A positive slope is also seen due to visual uncertainty for all

multimodal conditions. However, these di�erences may not be signi�cant, as statistical

tests were not performed.

5.3.3 Main Experiment Results

5.3.3.1 Sensory Substitution

Unimodal performance was compared for the vision-alone condition (V) and vibrotactile-

alone condition (T). Of the 12 subjects, 3 performed considerably better with visual
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Figure 5.14: Velocity Control Integration (N=5). Mean endpoint errors are shown

for unimodal and multimodal conditions. (A) unimodal tactile condition (σv = ∞) (B)

Unimodal visual condition (σt = ∞) (C) Multimodal conditions. Each line corresponds to

di�erent σv. x-axis corresponds to σt (D) Multimodal conditions. Each line corresponds to

di�erent σt. x-axis corresponds to σv

feedback alone than with tactile feedback alone, to the extent that their Error in the

high visual uncertainty condition was greater than in the low tactile uncertainty con-

dition in training. These subjects were retrained with compromised vision (as detailed

in methods), and two showed su�cient overlap in the ranges of Errors for each modal-

ity, whereas one did not. This subject was discarded from further analyses. Fig. 5.15

presents these �ndings.

5.3.3.2 Sensory Integration

I introduce a shorthand notation for describing relative performance in di�erent condi-

tions. The default measure of performance is endpoint error. For example, VT <VT,

indicates that the VT trials have a smaller endpoint error than the VT trials. Using

this notation:

• Sensory substitution is achieved if both VT <VT and VT <VT, i.e. each of

tactile and visual feedback improve task performance over no feedback at all (see

methods).

• Multisensory integration is achieved if both VT <VT and VT <VT, i.e. two

modalities together improves task performance over each alone (see methods).
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Figure 5.15: Unimodal Performance. (A) Mean endpoint error ± SEM across trials for a

single subject in the unimodal training trials (visual feedback only, red, and tactile feedback

only, green). The x-axis marks three levels of jitter (from low to high uncertainty, left to

right). This subject was discarded from further analysis as it was expected that they would

show no interaction between visual and tactile feedback in the multimodal trials. (B) Mean

endpoint error ± SEM across trials for a typical subject. This subject showed comparable

performance with both visual and tactile feedback. (C) Mean endpoint error ± SEM across

11 subjects (for the �nal training trial in each modality). Note that the magnitude of errors

in the two conditions overlap.

Fig. 5.16 presents the resulting trajectories for a typical subject. Note that the ability

to quickly and accurately navigate the cursor to the target increases with jitter in both

modalities. Fig. 5.17 presents the endpoint error for the same subject to support this

observation.

Simulation results Endpoint error can distinguish between di�erent multisensory in-

tegration hypotheses discussed previously. Figures 5.18 and 5.19 show simulated plots

for these di�erent hypotheses (using a kinematically constrained model, see methods).

Empirical results Plotting the empirical data in a similar way (Fig. 5.20) shows

that VT <VT, VT <VT, and VT <VT and VT <VT (t-test, p < 0.001 for all

conditions), and therefore the suboptimal strategies of unimodal visual, unimodal tactile,

even weights and winner takes all (see above) can be discounted.

An ANOVA was conducted on the measure of mean endpoint error with between-

subjects factors of tactile feedback uncertainty ∈{low,med,high} and visual feedback

uncertainty ∈{low,med,high}. This revealed a signi�cant main e�ect of tactile feedback

uncertainty F (2, 10) = 18.0, p < .001, a signi�cant e�ect of visual feedback uncertainty

F (2, 10) = 49.495, p < .001 and a signi�cant interaction F (4, 10) = 3.041, p = .016.

The interaction was expected as the uncertainties were not predicted to combine ad-

ditively. Post-hoc two-tailed t-tests were used to compare individual conditions. The

results are summarised in Fig. 5.21.
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Figure 5.16: Typical Trajectories (N=1). Plot of trajectories for a single subject,

for di�erent values of visual and tactile jitter. Each plot presents time on the x-axis and

horizontal cursor position on the y axis.
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Figure 5.17: Endpoint Error (N=1). Plot of endpoint errors for a single subject, for

di�erent values of visual and tactile jitter. Each plot shows the endpoint error for each trial

(blobs), from left to right in the order that they were completed. The mean absolute error

is on the y axis. The mean and standard error across trials are also shown (line and shaded

region respectively).
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Figure 5.18: Integration Hypotheses 1. (left) Simulated data for a subject relying on a

single modality (unimodal visual). Note that VT <VT and VT <VT but VT =VT and

VT =VT ; (right) Simulated data for a subject integrating vision and tactile information,

but not based on sensory uncertainty (even weights). Note that while VT <VT and VT

<VT, VT >VT and VT >VT

Figure 5.19: Integration Hypotheses 2. (left) Simulated data for a subject using a

multimodal strategy (winner takes all). Note that VT <VT, VT <VT, but VT =VT and

VT =VT ; (right) Simulated data for a subject optimally integrating vision and tactile

information (bayes-optimal). Note that VT <VT, VT <VT, and VT <VT and VT <VT
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Figure 5.20: Sensory Integration (N=12). Empirical results, suggesting that subjects

perform multimodal integration. VT <VT, VT <VT, and VT <VT and VT <VT (t-test,

p < 0.00001 for all conditions). Error bars denote standard error. There is a signi�cant

e�ect of visual jitter (ANOVA, p < 0.001) and tactile jitter (ANOVA, p < 0.001)

Figure 5.21: Endpoint error comparison. (A) Endpoint error ± SEM as a function of

visual jitter and tactile jitter; (B) The same data from (A) plotted with the visual and tactile

groups swapped for convenience; Conditions are compared by two-tailed t-tests, with stars

to denote signi�cance level (∗ = p < 0.05,∗∗ = p < 0.001 and ∗ ∗ ∗ = p < 0.00001)
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Figure 5.22: Integration Hypotheses 3. (left) Simulated data for a subject ignoring visual

and tactile uncertainty, but randomly weighting either modality (random weights). While the

magnitude of errors are greater in this suboptimal condition, note that VT <VT, VT <VT,

and VT <VT and VT <VT ; (right) The optimal performance plot, for comparison. Apart

from the magnitude of the errors, it is not obvious how one could distinguish the surfaces.

[Note that the convexity and concavity of these plots depends on the range of variances used,

and is not a reliable comparator, especially given the magnitude of noise in the empirical

data].

It was observed that VT <VT, VT <VT (sensory substitution) and VT <VT,

VT <VT (sensory integration). This suggests that a multimodal integration strategy

is being used. Moreover, error in the unimodal training phase conditions (Fig. 5.15)

reveals that VT <V and VT <T. This decrease in error is characteristic of optimal

behaviour.

However, an alternative multimodal strategy may also explain the above �ndings.

If a subject picks an arbitrary (random) weighting of the modalities on each trial, when

data is averaged across trials the resulting plot demonstrates that the random-weights

hypothesis also satis�es the conditions of optimality discussed above (Fig. 5.22).

The random weights hypothesis captures the uncertainty of the sensory modalit-

ies passively, or implicitly. To distinguish actively optimal behaviour from a passive

interpretation requires the Bias measure (see methods).
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Figure 5.23: Bias Measurement (N=1). Biases of a single subject for the di�erent tactile

and visual jitter conditions. In the VT condition, the bias is towards vision, whereas in the

VT condition the bias is towards the vibrotactile modality. Blobs represent trials and lines

represent mean across trials. Trials are sorted from negative to positive bias to illustrate the

clustering of behavioural patterns.

5.3.3.3 Optimal multisensory integration

The passive policy (random weights) and active policy (bayes optimal) are qualitatively

indistinguishable using the mean endpoint error metric. Even if it is argued that the

magnitude of errors discriminates the two cases, this does not control for the possibility

of subjects combining multiple passive strategies, e.g. random weights and mean weight,

to reduce errors. However, active decisions may be distinguished from passive e�ects

by computing a decision `bias' (see methods).

Biases for a single subject, for di�erent values of tactile and visual jitter, are shown

in Fig. 5.23. In the VT condition, the bias is towards vision, whereas in the VT

condition the bias is towards the vibrotactile modality. In this framework, the hallmark

of optimal integration is when VT bias > 0, VT bias <0, as the subject makes an active

decision to choose one modality over the other.

The average results across all subjects are summarised in Fig. 5.24.

An ANOVA on the measure of mean endpoint error with between-subjects factors of

tactile feedback uncertainty ∈{low,med,high} and visual feedback uncertainty ∈{low,med,high}

revealed a signi�cant main e�ect of tactile feedback uncertainty (F (2, 10) = 18.0, p <

.001) a signi�cant e�ect of visual feedback uncertainty (F (2, 10) = 14.8, p < .001) and

no signi�cant interaction (F (4, 10) = 0.57, p = .684). Post-hoc two-tailed t-tests were

used to compare individual conditions. Visual feedback incurred a visual bias (t-test:
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Figure 5.24: Bias Measure Comparison. (A) Modality Bias ± SEM as a function of

visual jitter and tactile jitter; (B) The data from (A) plotted with the visual and tactile

groups swapped for convenience; SConditions are compared by two-tailed t-tests, with stars

to denote signi�cance level (∗ = p < 0.05 and∗∗ = p < 0.001)

VT bias> 0, p < 0.05) and tactile feedback incurred a tactile bias (t-test: VT bias<0,

p < 0.001).

It is interesting to note that when both vision and tactile are reliable there is a

tactile bias. This apparent preference is not signi�cant. (t-test: VT <0, p > 0.1),

however subjective reports suggested that subjects did prefer to rely on the vibrotactile

feedback whenever possible.

Quantitative match between Empirical data and Simulation To illustrate the quant-

itative match between the empirical and optimal simulated data, Fig. 5.25 plots the

Bias measure for the empirical data alongside the simulated Bayes-optimal (active)

strategy and the Random-Weights (passive) strategy. In the Bayes-optimal simulation

the objective variability for each subject in the training trials is used to compute the

modality weighting in the multimodal simulation for each subject (see methods). Note

that the active strategy results in a non-zero slope of the Bias measure, whilst the

passive strategy results in a slope of approximately zero. There is a close quantitative

match between empirical data and the Bayes-optimal observer.
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Figure 5.25: Weighting Indistinguishable from Optimal. We plot the bias for �ve of

the experimental conditions spanning tactile-dominant (VT), no feedback (VT), and vision-

dominant (VT) cases. Empirical data are shown in black, with the bayes-optimal (active)

strategy in red and the random weights (passive) strategy shown in blue. As can be seen,

the empirical data are indistinguishable from the ideal-observer data.

5.4 Discussion

5.4.1 Pilot Experiment

The pilot experiment aimed to provide a comparison of the bene�ts of (uncertain)

sensory feedback two di�erent control methods, position-control and velocity-control,

using a multimodal pursuit tracking task. I hypothesised that tactile feedback would

show more pronounced bene�ts in the velocity-control condition.

Owing to the small number of subjects and the absence of statistical tests it is di�-

cult to draw strong conclusions. However, the qualitative �ndings hinted at di�erences

due to the control method. For example, for subjects using the absolute or position-

controlled cursor, tactile feedback reduced task errors compared to no feedback at all.

However, there was limited interaction between visual and tactile feedback and in the

presence of visual feedback the arti�cial modality did not improve performance. It

was found that across subjects there was no overlap in performance between the sens-

ory modalities, i.e. performance with unreliable visual feedback alone was superior to

performance with reliable tactile feedback alone.

A possible explanation for not observing a bene�t of tactile feedback in the pres-

ence of visual feedback is that tactile feedback was not needed for success at the task.
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Together, the �ngertip force feedback, proprioceptive cues of the force applied, and the

e�erent copy of the feedforward control command may have been su�ciently reliable

internal signals which could be combined with visual feedback (and even unreliable

visual feedback) in order to compute the cursor position.

For subjects using the relative or velocity-controlled cursor the bene�ts of feedback

were more evident. Although there was no reduction in error for reduced tactile feed-

back uncertainty when visual feedback was reliable, there was a reduction in error for

reduced tactile feedback uncertainty when vision was unreliable. Task performance in

the absence of all feedback indicated that feedforward control ability was poorer for the

velocity-control group, presumably owing to the absence of internal feedback signals (as

provided by force feedback, proprioceptive feedback and e�erent copy feedback in the

position control group).

It seems, then, that under conditions of feedforward uncertainty the bene�ts of

feedback become more apparent. Feedforward uncertainty will naturally arise in many

ADLs for amputees, such as (i) situations of unpredictable hand motion, such as with

noisy EMG control; (ii) under visual or attentional distraction, such as during more

complex tasks; and (iii) when grasping unknown objects, such as of di�erent size, shape

and softness. I return to test this hypothesis in Chapter 6. The state-of-the-art open-

loop ilimb hand deploys a velocity control strategy, and would presumably also bene�t

from the presence of tactile feedback.

5.4.2 Main Experiment

It was an intention of the pilot experiment design that both modalities had the same

range of noise variation, to ensure that there was minimal bias towards either modality.

In the main experiment, to more directly assess the degree of multimodal interaction,

the modalities were adjusted so that both had the same range of objective variability.

Tactile spatial uncertainty may arise due to: (i) cross-talk between vibrating motors,

owing to vibration of the cu� and of the whole arm (Kaczmarek et al., 1991); and (ii)

di�culty in precisely localising tactile stimuli due to the large receptive �elds of the

deep SA-II and RA-II nerves which likely mediate vibration perception (reviewed in

Johnson, 2001). The per-subject adjustment of visual uncertainty ensured that these

subjective di�erences were accounted for.

In the main experiment it was found that multisensory localisation performance

improves in the presence of redundant sensory information: subjects showed reduced

error in the multimodal condition compared to unimodal conditions. Ernst and Bültho�

(2004) argue that this reduction variance is a good indicator of multisensory integration

that rules out suboptimal 'cue switching' hypotheses.
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To more reliably distinguish passive (uncertainty-independent) integration hypo-

theses from active (uncertainty-dependent) hypotheses, a random o�set between sens-

ory modalities allowed measurement of decision bias on each trial (i.e. the weight

attributed to each modality, see methods). These results were compared to simulations

(based on unimodal empirical behaviour), revealing that the empirical bias (a measure

of the weight attributed to each modality) was indiscriminable from an optimal integra-

tion strategy (with added kinematic constraints), but clearly discriminated from passive

integration hypotheses.

These results suggest that subjects have access to a measure of their objective un-

certainty in both visual and tactile modalities. In Chapter 4 it was found that, although

subjects could discriminate di�erent levels of sensory uncertainty, they over-estimated

the overall level of sensory uncertainty in visual stimuli. However, this apparent sub-

optimality (if consistent across modalities) may not a�ect a subject's ability to assign

a weight to each modality in accordance with its objective uncertainty in a manner

indistinguishable from the ideal-observer: the results presented here require only that

subjects have access to a reliable measure of the relative uncertainty of the two modal-

ities.

Empirical data were compared to simulation results. The simulation was constrained

by two kinematic parameters, a smoothing parameter, α, and a noise parameter, ε,

which were chosen arbitrarily. Further simulations revealed that the e�ects of these

parameters had limited e�ect on the gross aspects of the data: whilst modulating the

magnitude and variance of endpoint errors, they had no e�ect on the qualitative trends

of the trajectories under both the mean endpoint error and bias metrics, and no overall

quantitative e�ect on the endpoint error and bias measures when averaged over all tri-

als (data not shown). Importantly, the parameters are global constants, and therefore

have the same in�uence on the trajectory for di�erent values of uncertainty and o�set.

The parameters therefore have no power to explain or in�uence the di�erences found

between the experimental conditions (for a more detailed discussion, see Chapter 4).

However, a more complex model would be needed to explain the distinguishing features

of the empirical trajectories, such as reaction-time, sensory and motor noise and realistic

smoothing parameter, such at that presented in Chapter 4; such a model could be �t to

empirical trajectories to provide quantitative evaluation of trajectories and behaviour.

The present data set was not suitable for �tting such a model (as within-trial perturba-

tions would be needed to establish cue weighting, as per Chapter 4). Nevertheless, the

simpler model presented here is su�cient to support the observations made.

In this chapter subjects were given the abstract task of cursor navigation, but this

may be considered analogous to di�erential position control of a prosthesis. Feedback
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was issued at a di�erent location (the arm), in a di�erent modality (vibration) and en-

coded di�erently (spatial code) to that of natural proprioceptive sensation. Moreover,

the uncertainty of the tactile modality was modulated in a way that has no natural

analogue: spatio-temporal jitter. Nevertheless, multisensory integration was observed

despite the unnatural nature of the feedback and feedback uncertainty. It seems im-

probable that the relationship between the jittering tactile cursor and the objective

uncertainty of the modality was known by subjects prior to the experiment, yet 11

of the 12 subjects were able to acquire this mapping over the 20 minute duration of

the experiment to form a multisensory estimate of stimulus location that weighted each

modality in proportion to its objective uncertainty. Ernst and Banks (2002) ask whether

optimal multisensory weighting is learned or if it is an intrinsic feature of the central

nervous system. The results presented here show that subjects are able to quickly

learn the novel relationship between arti�cial sensory information and their objective

uncertainty, suggesting that learning plays a crucial role in multisensory phenomena.

Overall, it appears that people exhibit optimal decision-making processes in this

continuous estimation task, consistent with binary decision tasks (e.g. Ernst and Banks,

2002, Hillis et al., 2004). The paradigm is useful for understanding the mechanisms of

multisensory integration and as a sensorimotor task it is more directly relevant to the

design and evaluation of prosthesis feedback systems.

5.4.3 Conclusion

In this chapter I have explored the phenomenon of multisensory integration in a sensor-

imotor tracking paradigm. This was motivated by a need to understand the fundamental

mechanisms of sensory integration: (i) in a closed-loop context relevant to prosthesis

control; and (ii) using an arti�cial sensory modality.

In a pilot experiment the selective bene�ts of feedback as a function of control

strategy were observed. In particular, for a velocity-controlled cursor (in which feedfor-

ward control performance was lower) tactile feedback was bene�cial when visual feed-

back uncertainty was increased, whereas for a position-controlled cursor tactile feedback

was only bene�cial in the complete absence of visual feedback. In the following chapter

I will explore this �nding further by examining the role of feedforward in�uences in a

real-world sensorimotor task.

In the main experiment the tracking task from the pilot experiment was modi�ed

to allow quantitative evaluation of the the degree of multisensory integration. It was

found that subjects were indeed capable of integrating multiple modalities, measured

both by performance (mean endpoint error) and by modality bias (the weight allocated

to each modality), consistent with an active optimal integration strategy.



174 Chapter 5. Optimal Multisensory Integration

The paradigm of visuomotor tracking is useful for quantifying sensorimotor impair-

ment in numerous neurological disorders, and the novel experiments presented here

demonstrate its utility for explaining multisensory integration in a sensorimotor con-

text.



Chapter 6

Feedforward and Feedback

processes during Closed-Loop

Prosthesis Control

Using the closed-loop prosthetic hand as a manipulandum, this chapter addresses the

interplay between feed-forward and feed-back mechanisms for grasping and lifting. It is

found that subjects form economical grasps in controlled conditions, and this ability is

preserved even when visual, tactile and both sources of feedback are removed. However,

when uncertainty is introduced into the hand controller performance degrades signi�c-

antly in the absence of visual or tactile feedback. Greatest performance is achieved

when both sources of feedback are present, supporting the idea of complementary roles

for feed-forward and feed-back mechanisms. I show quantitatively that tactile feedback

can signi�cantly improve performance in the presence of feed-forward uncertainty, and

conclude that in designing closed-loop prostheses we should deploy feedback systems

that enable users to correct for the inevitable uncertainty in feed-forward control.

Relevant Publications

• Ian Saunders, Sethu Vijayakumar. (2011). The Role of Feed-forward and

Feedback Processes for Closed-Loop Prosthesis Control. Journal of Neur-

oengineering and Rehabilitation
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6.1 Motivation

For many decades researchers have considered the possibility of `closing the loop' for

upper-limb prosthesis wearers. Historically, feedback has been added to increase patient

con�dence (Shannon, 1979b) and to improve object grasping and lifting (Scott et al.,

1980, Riso et al., 1991). In the future we may see prosthetic hands that integrate directly

with the amputee's nervous sytem, utilising state-of-the-art sensor technology (Edin

et al., 2008, Ascari et al., 2009) and relying on pioneering medical procedures (Kuiken

et al., 2004, Dhillon and Horch, 2005, Miller et al., 2008). Nevertheless, state-of-the-

art upper limb prostheses are still open-loop devices with limited degrees of control,

described as �clumsy� (see Zhou et al., 2007) and requiring considerable mental e�ort

(Carrozza et al., 2006). As technology continues to advance it is more important than

ever that we �nd e�ective ways of delivering feedback to amputees.

Arti�cial feedback systems can exploit the idea of sensory substitution: feedback

delivered in a di�erent modality or to a di�erent location on the body in an attempt

to exploit the latent plasticity of the nervous system. For example, Multiple Sclerosis

patients signi�cantly over-grip objects (Iyengar et al., 2009), but when su�erers receive

vibratory feedback of their grip force (displaced to their less-a�ected hand) these forces

reduce (Jiang et al., 2009). In a similar way, prosthesis �ngertip forces have been

transferred to the stump (Cipriani et al., 2009) or even the toes of amputees (Panarese

et al., 2009) to create appropriate and useful sensations. Successful substitution is

achieved when subjects no longer perceive the stimulation as an abstract signal but

instead as an extension of their sense of touch. Achieving `embodiment' in this sense

depends critically on the presence of feedback (Marasco et al., 2011).

Despite these promising results, few studies have attempted to objectively quantify

the bene�ts of arti�cial tactile feedback, and feedback has not yet made it into com-

mercially available prostheses. It is important to ask why this is the case. One must

not only question the e�cacy of the feedback method (e.g. its resolution and latency)

but also identify what feedback information should be provided, and observe how well

it integrates with our existing senses (i.e. whether their presence obviates its utility,

Zafar and Doren, 2000).

In this chapter I use the behavioural phenomenon of economical grasping and lifting

to understand the role of feedback for prosthesis wearers. Economical grasping, the

stereotypical human behaviour in which grip forces scale appropriately with objects of

di�erent loads (minimising e�ort yet avoiding slip), is well-characterised for both healthy

(Johansson and Westling, 1984) and sensory-impaired subjects (Augurelle et al., 2003,

Hermsdörfer et al., 2004). In this chapter, healthy subjects are augmented with an

arti�cial extension to their nervous system (Fig. 6.1) and the e�ects of arti�cial sensory
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Figure 6.1: The `Grasp and Lift' paradigm with our Closed-Loop prosthetic hand.

Healthy subjects are �tted with a modi�ed ilimb Pulse prosthetic hand, and force feedback

is delivered to their arm using a vibrotactile feedback array. They are instructed to grasp,

lift and replace a low-friction object using a di�erential force-ramp controller (inset 1-5). A

typical trajectory (showing grip force, object and thumb elevation, and grasp aperture) is

also shown.

impairments on grasp and lift performance are observed. The attached closed-loop

prosthetic hand serves as a model system in which one can readily manipulate the

control interface, the robotic controller, on-board sensors, and feedback transduction.

Di�erent instantiations of the hardware allow us to decouple the role of sensory and

motor processes in grasping and lifting objects.

I conduct three experiments designed to examine the interaction between feed-

forward and feed-back uncertainty. In the �rst experiment I create an idealised scenario

in which sensory and motor uncertainty are minimised. In the second experiment I

deprive subjects of visual, tactile and all sources of feedback in order to quantify the

resulting performance de�cit. In the third experiment I induce random variability to

the controller in order to manipulate feed-forward uncertainty, and again quantify the

utility of di�erent sources of feedback. Together these experiments provide a window

into the role of feed-forward and feed-back processes for prosthesis control.

Research in intact and dea�erented humans has suggested that both feed-back and

feed-forward mechanisms are required for successful object manipulation, with a marked

disassociation between these aspects of control (Hermsdörfer et al., 2008). The di�er-

ence between feed-forward and feed-back processes is of fundamental importance to our

understanding of human sensori-motor behaviour (Flanagan and Wing, 1997), and like-

wise should be considered crucial in designing a prosthesis to improve the quality of life

for amputees. Feed-forward anticipatory grip forces precede load changes due to accel-
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eration, a phenomenon not impaired by digital anaesthesia (Augurelle et al., 2003) nor

long-term peripheral sensory neuropathy (Hermsdörfer et al., 2004). In contrast, the

scaling of grip force magnitude is not preserved under anaesthesia, resulting in over-grip

and unstable forces (Augurelle et al., 2003), suggesting that cutaneous cues are required

to allow us to maintain our forward model of grip force. These studies indicate a vital

role of tactile feedback for both learning and maintenance of internal models.

In this chapter I aim to explore a well characterised behavioural phenomenon using a

novel sensori-motor platform, open to arbitrary manipluation. The results con�rm dif-

ferential roles for feed-forward and feed-back processes, and reveals their complementary

nature.



6.2. Methods 179

6.2 Methods

6.2.1 Subjects

Subjects were healthy males and females, aged between 21 and 30 years old, sampled

from the academic institute. They had both upper limbs intact, and had normal or

corrected-to-normal eyesight. None of the subjects had previous experience controlling

a prosthesis.

6.2.2 Hardware Setup

6.2.2.1 Closed Loop Hand

Healthy subjects were �tted with a modi�ed Touch Bionics ilimb Pulse prosthetic hand,

using a custom-built `socket' (Fig. 6.1). This state-of-the-art, commercially available

prosthesis has a di�erential controller, driven by two surface electromyography (EMG)

electrodes. The hand has 5 individually-powered digits, and a bluetooth interface to

allow real-time streaming of data to a PC for data logging. It has scored highly in terms

of patient satisfaction (Otr et al., 2010) and is an open-loop hand, making it an ideal

candidate for developing a feedback system. See Chapter 3 for more details.

The �rmware of the hand was modi�ed to enable di�erential force control, and used

an object-mounted force sensing resistor (FSR) to signal force feedback to subjects.

6.2.2.2 Vibrotactile Feedback Array

The feedback system was a `vibrotactile feedback array' comprising eight vibration

motors, as described in Chapter 3, controlled by a PIC18F4550 microcontroller. The

microcontroller was running custom �rmware, including a universal serial bus (USB)

module that enabled a personal computer (PC) to control the vibrotactile stimulation.

The hardware was running a spatial tactile encoding, with between-tactor sensations

achieved by co-stimulation of neighbouring motors (see Chapter 3).

Subjects were �tted with a socket containing the vibrating motors (shown in Fig.

6.1). The eight motors spanned the full length of the palmar-side of the forearm. The

grip force on the object was translated into a stimulation location: light forces were

perceived near the wrist and heavy forces near the elbow.

6.2.2.3 Di�erential Force Control

A variety of di�erent control algorithms can be found across commercially available

prostheses, trading-o� low power consumption, stable grasp formation, or bio-inspired

strategies that feel more `natural' to the user. Traditional shoulder-position controlled
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prostheses have the advantage of `extended physiological proprioception' (Doubler and

Childress, 1984), whereby the shoulder position itself is a source of feedback to the

patient. All `proportional' controllers have this advantage. Di�erential controllers,

however, are often more practical, especially given the noisy and unreliable nature of

EMG signals used to control the hands.

In this study I used a `gated ramp' controller, for two-channel di�erential position

and force control (Humbert et al., 2002). This controller was chosen because it was

comparable to state-of-the-art hands such as the ilimb and because I have previously

found bene�ts of feedback for di�erential controllers (see Chapter 5). Subjects controlled

the hand using extensor and �exor signals detected at the �ngertip. For simplicity of

operation, the signals operated as binary switches. The �exor signal closed the hand

at a constant speed of 0.12m/s, and when contact was made the force ramped up

at approximately 5N/s. The extensor signal opened the hand at a constant speed of

0.12m/s. This simple controller allowed subjects to control the force they exerted, in

the range 0-15N, by modulating the duration of the signal. This method was chosen as

it is similar to the existing controller on the ilimb pulse hand.

6.2.2.4 Sensor Recording Equipment

A large FSR (5cm square) was attached to the object being lifted. This was done for

practical reasons as embedding a sensor into the digits of the prosthesis would have

posed additional technological challenges outwith the scope of the study. A number of

studies in the literature have focused on embedded tactile sensors apparatus (see Edin

et al. 2006, 2008). Given that the task involved grasping the object in the same location

each time we achieved an entirely equivalent result by mounting the sensor on the object.

I do not believe that this caused any confounding e�ects. The sensor was calibrated

using high precision digital scales, so that the force output could be accurately recorded

at 1kHz in the range 0N to 10N, using a 10-bit analogue-to-digital converter (ADC) on

the the microcontroller. Data were logged by PC software to ensure accurate temporal

calibration of sensor data, then streamed back to the microcontroller for provision of

vibrotactile feedback. Position sensors were attached to the thumb and fore�nger, the

wrist and the base of the object, to enable accurate three dimensional tracking using

a Polhemus Liberty 240Hz 8-sensor motion tracking system (POLHEMUS, USA), and

logged by PC software. The ilimb hand was con�gured to stream state information,

such as control signals from the EMG inputs to the hand, via bluetooth to the PC

software.

Figures 6.2 and 6.3 illustrate two typical trajectories recorded from a subject in-

structed to grasp, lift and translate an object.
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Figure 6.2: A Successful Translation. Force and position trajectories are recorded in

real time from subjects �tted with the manipulandum. The plots above show a sample

of �ngertip trajectories recorded when grasping and moving object. A typical recorded

trajectory showing the motion of the thumb (blue), fore�nger (red) and wrist (green). 3D

marker trails reduce in size over time. Object contact is indicated by a yellow bar. Note, the

motion sensors are on the volar �nger surface and thus not exactly aligned with the object

surface (cylinder).

Figure 6.3: An Unsuccessful Translation. Force and position trajectories are recorded

in real time from subjects �tted with the manipulandum. The plots above show a typical

recorded trajectory showing the motion of the thumb (blue), fore�nger (red) and wrist

(green). Object contact is indicated by a yellow bar. In this example the object is lifted

with insu�cient force and so the �nger and thumb slip from the objects. The subject then

returns to re-initiate a lift.
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6.2.3 Experiments

6.2.3.1 Preliminary Experiment: `Just noticeable di�erence' measurement

To establish the e�cacy of the feedback system, I ran an adaptive-staircase design

two-interval-forced-choice (2-IFC) just-noticeable-di�erence (JND) protocol. Subjects

(N=6) participated in this study. Detailed methods and results have been presented

already in Chapter 3.

6.2.3.2 Overview: Economical Grasping Paradigm

Healthy individuals exhibit stereotypical and repeatable grasping pro�les (Johansson

and Westling, 1984, Westling and Johansson, 1984) and the term `economical grasp'

describes this ability to minimise grip force while avoiding slip. This phenomenon

has proven useful for studying both closed- and open-loop human behaviour, compar-

ing healthy patients to dea�erented (Hermsdörfer et al., 2004, 2008) or anaesthetised

(Augurelle et al., 2003) subjects. Healthy people predictively accommodate arbitrary

loads with just enough force to avoid slip, taking into account size, shape and frictional

properties of objects and it is believed that this behaviour relies on both feed-forward

and feed-back mechansisms (see Chapter 2). Economical grasping provides an ideal

paradigm for studying human sensorimotor processes.

In our experiments, subjects were given on-screen instructions to grasp and lift

objects with su�cient force, and to avoid dropping or over-gripping the object. Two

objects were used, one `heavy', (300g) and one `lightweight' (150g). The objects were

upward-tapered identical rigid beakers, 55mm diameter at the point of contact, covered

with a low-friction cellulose �lm. Since I was primarily interested in establishing whether

or not subjects were able to di�erentially control their grip force, an economical grasp is

de�ned as occurring when subjects are able to appropriately assign di�erent grip forces

to the two objects. Note that this is a su�ciently di�cult task when the properties of

the object are unknown such as is the case in the absence of sensory feedback. In the

third experiment, just the heavy object is used to reduce the experiment complexity, and

so ability at this task is judged by the di�erence in measured performance magnitude

between the feedback conditions.

6.2.3.3 Experiment 1: Grasp, lift and move task

In the �rst experiment idealised conditions were created. The ilimb hand was controlled

using force-sensing resistors, so that it would respond immediately and predictably to

control signals. Subjects were allowed to use visual feedback throughout, and performed

repeated trials with each object weight. Subjects also received vibrotactile feedback on
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Figure 6.4: Experiment Overview. Three behavioural experiments were conducted to

examine the role of feedback. (A) In Experiment 1 subjects were allowed to use visual

feedback throughout, and alternated the presence of vibrotactile feedback and object weights

(Heavy and Lightweight) from trial to trial as shown. The order of presentation of feedback

was counterbalanced (indicated by the double-headed arrow). (B) In Experiment 2 two

groups of subjects were used, one with vibrotactile feedback and one without. Subjects

performed two blocks in the light, and a third in the dark, with di�erent object weights. (C)

In Experiment 3 subjects had an initial training phase, then had two phases of trials in all

four feedback con�gurations (visual, tactile, neither and both), counterbalanced as shown.
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half of the trials. For healthy individuals, digital anaesthesia does not impair anti-

cipatory behaviour but does impair maintenance of forces (Augurelle et al., 2003). I

therefore hypothesised that, under `simulated anaesthesia', subjects would be able to

grip economically, albeit with larger variability.

Subjects (N=6) were �tted with the ilimb socket with vibrotactile motors along the

palmar forearm. On a given trial subjects were instructed to grasp, lift and transfer

an object between two locations, spaced 20cm apart. Subjects performed four blocks

of trials, each of which included 20 trials with the heavy object and 20 trials with the

lightweight object.

In a given block, each subject was exposed to one of two counterbalanced experi-

mental conditions: either with or without vibrotactile feedback of grasp force (see Fig.

6.4).

The e�ects of tactile feedback condition and object weight on performance were ana-

lysed.

6.2.3.4 Experiment 2: Grasp and lift task with feed-back deprivation

In the second experiment I examined performance when subjects were deprived of all

useful sources of feedback as much as was possible: visual, auditory and additional

tactile cues were eliminated or masked. Two groups were compared in these sensory

deprivation conditions so as to observe the sole bene�ts of tactile feedback on per-

formance. A study comparing the e�ects of dea�erentation on anticipatory grip force

(Hermsdörfer et al., 2008) suggests that intermittent sensory feedback is necessary to

update and maintain internal models of object dynamics. In addition, tactile feedback

has been shown to be bene�cial under partial sensory deprivation (Zafar and Doren,

2000). I therefore hypothesised that under complete sensory deprivation economical

grasping ability would decline, but in the presence of vibrotactile feedback it would not.

Twelve subjects were split into two groups for vibrotactile feedback condition. One

group (N=6) had vibrotactile feedback for the duration of the experiment, and the other

group (N=6) received random (uncorrelated) tactile stimuli.

On a given trial, subjects were instructed to grasp and lift an object in a �xed

location, then return it to the same location. Subjects experienced three blocks of

trials, two in the light, and one in the dark. Each block included 12 trials with a heavy

object, and 12 trials with a lightweight object.

Visual feedback was removed by immersing subjects in darkness. The robotic hand

and the object were covered in dark materials so that the hand and its movements were

not visible at any time. Subjects were also instructed to look at a screen throughout

each the trial, though they were able to see if the object had been successfully lifted
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by observing the movement of a phosphorescent strip attached to the top of the object.

Auditory feedback was removed by playing white noise through earphones, and separ-

ately through a speaker. Additional sources of tactile feedback, such as vibrations when

contact is made or during force ramping, were removed by the use of random (uncor-

related) vibrotactile stimuli. These stimuli appeared at random locations on the arm,

vibrating with randomised frequencies and for unpredictable durations. All subjects

in the control group reported that they were unable to see, hear or feel when contact

was made with the object, although they were able to detect a successful grasp from

movement of the object observed in their peripheral vision and through the additional

torque experienced in their arm. Although these subjective reports do not rule out

unconscious perception, a pilot experiment (see results) indicated that untrained sub-

jects had signi�cant di�culty learning to lift the object, suggesting that these feedback

deprivation conditions were su�cient for the purpose of the task.

The e�ects of tactile feedback condition, visual feedback condition (block 2 versus 3)

and object weight on task performance were analysed.

6.2.3.5 Experiment 3: Grasp and lift task with feed-back deprivation and feed-

forward deprivation

In the third main experiment I introduced feed-forward uncertainty, by inducing random

unpredictable delays to the hand controller. In contrast to experiments 1 and 2, where

the control of the hand was repeatable and predictable, this experiment was designed

to examine the role of feedback under motor uncertainty, such as is more typical in

real-world situations. Random delays were added to the hand motion before the onset

of movement and before the onset of the force ramp. Delays were drawn uniformly from

the interval 0s to 1.5s, the duration to fully close the hand, simulating the grasping

of an unknown-size object (see discussion for a detailed justi�cation). By adding this

temporal unpredictability to the hand, I hypothesised that subjects would experience

reduced utility of feed-forward control, which should increase their dependency on vi-

brotactile feedback. I was interested in characterising the selective bene�ts of visual

and tactile feedback on grasp economy under this added uncertainty.

Each subject (N=12) was exposed to four di�erent feedback conditions, by varying

visual feedback condition (light versus dark) and tactile feedback condition (vibrotactile

feedback versus no feedback). For each condition subjects performed a block of 12 trials.

In a given trial, subjects were instructed to grasp and lift an object in a �xed location,

then return it to the same location, as per experiment 2.

A within-subjects design was used to reduce inter-subject variability. Since using a

within-subjects design it was important to minimise interaction between the order of
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blocks and subjects' ability to control the hand. Therefore subjects were mixed into four

between-subject groups. Each group had a di�erent con�guration of the visual feedback

order and the tactile feedback order, to ensure any learning e�ects were counterbalanced.

This enabled for the control of carry-over e�ects within-subjects. Furthermore, subjects

were trained brie�y before the start of the �rst trial, with full feedback sensibility, so

that they could get used to the control mechanism of the hand.

Subjects performed the four blocks of the experiment over two separate phases to

detect any e�ects of learning. The same (heavy) object was used for all trials.

The e�ects of tactile feedback condition, visual feedback condition and the phase of

the experiment were analysed. It was also ensured that there were no e�ects of visual

feedback order or tactile feedback order which might confound the results. One subject

was discarded from these analyses as he admitted to `cheating' when deprived of all

sensory feedback.

6.2.4 Performance measures and statistical analysis

6.2.4.1 Automatic Segmentation

Data from each trial were automatically segmented into phases based on the con�gura-

tion of the hand and object. Data were annotated to mark occasions where the object

slipped or was dropped (see Fig. 6.5) The start and end of the force ramp were located,

and the period for which the object was elevated. Fig. 6.1 shows a typical recorded

trajectory, and illustrates segmentation features. Phases 3 and 4, highlighted, are the

`force ramp' and `lifting phase' respectively This temporal segmentation allows one to

automatically compute the duration of the motion, count the number of errors made,

and compute the grasp force during object lift.

6.2.4.2 Grasp Force

A key indicator of economical grasping is avoidance of over-grip. Lightweight objects

should be gripped with less force than heavier objects. For a given trial i the grasp

force, fi, is de�ned as the average grip force (in Newtons) applied the object for the

duration of its elevation.

6.2.4.3 Ramp Duration

The duration of the control signal is directly related to the subjects intended grasp

force. This is a more reliable indicator of force than the FSR reading, as subjects might

make imperfect contact with the sensor. For a given trial i the ramp duration, ri, is



6.2. Methods 187

fo
rc

e 
/ N

0

2

4

6

el
ev

at
io

n 
/ c

m

0

1

2 object

thumb

ap
er

tu
re

 / 
cm

time / s

0 1 2 3 4 5 6

6

7

8

9

force ramp lifterror

Figure 6.5: Trajectory segmentation. During the force ramp phase (shaded region 1) the

force exerted on the object slowly ramps up. Once a suitable force is attained, the subject

lifts the object (shaded region 2). If the subject attempts to lift too early, the thumb moves

but the object does not, resulting in a failed attempt (dotted lines).

de�ned as the duration in milliseconds of the force ramp phase, excluding any random

delays induced in experiment 3.

6.2.4.4 Trial Duration

For a given trial i the the trial duration, di, is de�ned as the duration in milliseconds

of the entire trial, excluding any random delays induced in experiment 3.

6.2.4.5 Number of errors

For a given trial i the number of errors, ei, is de�ned as the sum of `drops', `slips' and

`failed lifts'. A drop occurs when the object is in a stable grasp (between the thumb

and fore�nger with grip force> 1N), and the downward acceleration of the object is

5m/s2 greater than the downward acceleration of the thumb. A slip occurs when the

object is in a stable grasp, and the upward velocity measured at the tip of the thumb

is greater than the upward velocity measured at the base of the object by more than

0.1m/s. A failed lift occurs when the object is not in a stable grasp (grip force< 1N)

and the upward velocity measured at the tip of the thumb is greater than the upward

velocity measured at the base of the object by 0.1m/s. If two errors are detected in a

given 60ms period this is counted as just one error. These thresholds were chosen as a
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result of pilot experiments (data not shown), prior to the experiments detailed in this

chapter.

6.2.4.6 Grasp Score

In pilot studies it was found that di�erent subjects prioritised di�erent aspects of the

task � some aimed to reduce errors while others focused on speed and others used

lower grip forces. A compound metric was devised to handle inter-subject variability:

a per-trial grasp score si, rates each trajectory, i, in terms of both speed and accuracy.

A higher grasp score indicates worse performance. This metric is comprised of four

terms, to capture the grasp force, f , the ramp duration, r, the trial duration d, and the

number of errors, e, de�ned as follows:

si = norm(f, i) + norm(r, i) + norm(d, i) + ei (6.1)

norm(x, i) =
xi − target(x )

peak(x )− target(x )
(6.2)

target(x ) = minj (xj | ej = 0) (6.3)

peak(x ) = maxj (xj) (6.4)

target computes the best performance from a given subject's successful trials (i.e.

only using trials in which there were no errors, denoted by the conditional term). This

is therefore a measure of the subjects target performance. peak, is a measure of the

subject's worst performance over all trials. norm uses the target and peak functions

to normalise each trajectory into a per-subject range, where si = 0 indicates good

performance on trial i, and si ≥ 1 indicates bad performance on trial i.

6.2.4.7 Analyses

In the subsequent data analyses the grasp force, duration of ramp and the grasp score

measures are used to compare performance unless otherwise stated. We consider these

to be the most relevant measures of a successful grasp. I correct for the use of repeated

measures when reporting statistics (except where univariate results are explicitly repor-

ted).
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6.3 Results

6.3.1 Preliminary Experiment: Grasp forces are e�ectively communicated

to patients using arti�cial feedback

The e�cacy of the tactile feedback interface was established prior to experimentation.

The just-noticeable-di�erence (JND) threshold of the stimuli were computed for each

subject (see Chapter 3), revealing a satisfactory communication bandwidth for the pro-

vision of feedback. Moreover, the feedback interface has previously been shown to be

e�ective in the presence of a di�erential controller, achieving optimal sensory integration

when combined with visual feedback.

6.3.2 Experiment 1: In ideal conditions, `simulated amputees' perform

economical grasps regardless of feedback

Economical grasping is achieved when subjects appropriately assign di�erent grip forces

to objects of di�erent weight. This indicator of grasp economy is known to depend on

feed-back and feed-forward predictions (see introduction), making it a highly applicable

method to measure performance.

In this experiment the robotic prosthesis was controlled in `ideal conditions'. The

robot hand, attached to healthy individuals, was controlled with a noise-free, predictable

and responsive di�erential force-control algorithm. Spatial trajectories, force pro�les

and control signals were logged during object grasping, lifting and moving to measure

control performance as a function of di�erent levels of feedback (see methods).

The force trajectories for one subject are shown in Fig. 6.6A. The data indicates

that, for this subject, while there is more variability when feedback is not available,

economical grasps are formed regardless of feedback condition: the lightweight object

is grasped with less force, and the heavier object with greater force. A compound

metric of grasp score was devised to reduce inter-subject variability by scoring various

features of the observed trajectories (see methods). In order to evaluate this observation

statistically, the recorded data were analysed in terms of three measures of performance:

grasp force, duration of force ramp and grasp score (see methods). Fig. 6.6B shows the

data grouped across subjects..

A within-subjects ANOVA, with factors of object weight (heavy / lightweight) and

tactile feedback condition (with vibrotactile feedback / without vibrotactile feedback)

revealed a signi�cant main e�ect of object weight (F (3, 3) = 659, p < .001), but no

signi�cant e�ect of tactile feedback condition (F (3, 3) = 2.61, p = .226), and no inter-

action (F (3, 3) = 1.42, p = .390) The main e�ect of object weight was signi�cant on all

measures (F (1, 5) ≥ 92.9, p ≤ .001). However, no signi�cant e�ect of tactile feedback
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Figure 6.6: (A) Sample grasp-force trajectories from Experiment 1, from a single

subject. In each plot the x-axis denotes time in seconds, and the y-axis the force in Newtons.

The plots show four di�erent experimental conditions: lifting a heavy object without (top

left), and with vibrotactile feedback (top right); lifting a lightweight object without (bottom

left), and with vibrotactile feedback (bottom right). For this subject, tactile feedback o�ers

little utility in reducing grasp force, only in reducing variability. Object weight, on the

other hand, has a clear e�ect on grasp forces. (B) Data from Experiment 1, grouped by

factor, using three metrics to compare performance. Error bars denote standard error. N=6.

Comparison of within-subject factors of tactile feedback condition (green bars) and object

weight (blue bars). Weight is split into lightweight (`L') and heavy (`H'). ANOVA results

revealed a signi�cant main e�ect of object weight, but not of tactile feedback condition,

denoted by the stars. (C) Data from Experiment 1, grouped by feedback condition,

using three metrics. Error bars denote standard error. N=6. Comparison of subjects' ability

to discriminate object weight as a function of feedback condition. Feedback conditions

were (left to right): no feedback; vibrotactile feedback only; visual feedback only; and both

sources of feedback. The two bars per condition indicate performance with the lightweight

object (left) and heavy object (right). Successful discrimination is indicated by a positive

slope. Subjects were able to discriminate equally is well in either feedback condition.
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Figure 6.7: Visual Training on Task Performance. Typical trajectories for a subject in

the dark. (top) Without training. (bottom) Following vision-assisted training.

condition was found for any of the three measures (F (1, 5) ≤ 2.74, p ≥ .159).

Though there were no performance bene�ts as a result of the feedback in the �rst

experiment, all subjects reported that they found the task easier with feedback. To-

gether with the preliminary experiment which established the e�cacy of the feedback,

this suggests not that the feedback system was poor but instead that abundant sensory

cues from other sources were su�cient to succeed at the task.

6.3.3 Experiment 2: When deprived of additional sensory cues, trained

subjects still show no signi�cant de�cit in grasp economy

With all additional sensory cues removed (visual, tactile and auditory, see methods), it

was hypothesised that subjects would show marked de�cits in grip force control in the

absence of vibrotactile feedback.

As a preliminary experiment a single naive subject was observed for ten trials in

the dark. It was found that performance was very poor in the initial dark block, and

over all trials the subject failed to supply enough force to lift the object. However,

the same subject completed the task with ease in a second dark block after 10 trials of

vision-assisted training. Fig. 6.7 illustrates typical trajectories for this subject.
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Figure 6.8: Grouped data from Experiment 2, using three metrics to compare perform-

ance. Error bars denote standard error. Data are from two groups of subjects, one with

vibrotactile feedback (N=6), one without vibrotactile feedback (N=6). (A) Comparison

of within-subject factors of visual feedback condition (red bars), tactile feedback condition

(green bars), and object weight (blue bars). There was a signi�cant within-subjects e�ect

of both object weight and visual feedback condition, but not tactile feedback condition.

Post-hoc results con�rmed these di�erences (denoted by stars, signi�cance at the p = .05

level.) (B) Comparison of subject's ability to discriminate object weight as a function of

feedback condition. Feedback conditions were (left to right): no feedback; vibrotactile feed-

back only; visual feedback only; and both visual and tactile feedback. The two bars per

condition indicate performance with the lightweight object (left) and heavy object (right).

Successful discrimination is indicated by a positive slope. Subjects discriminated well in all

feedback conditions, including in the absence of any feedback.

In the second experiment the performance with and without tactile feedback was

compared between two distinct groups. To assess if feedback aided maintenance of

anticipatory grip force, as has been suggested in the literature (Hermsdörfer et al.,

2008), subjects were exposed to three blocks of trials, the �rst two in the light and the

third in the dark. The grouped data are shown in Fig. 6.8.

A between-subjects ANOVA, with factors of object weight (heavy object / light-

weight object), visual feedback condition (light block / dark block) and tactile feedback

condition (with vibrotactile feedback / without vibrotactile feedback) revealed a sig-

ni�cant main e�ect of visual feedback condition (F (3, 8) = 4.68, p = .036). While no

signi�cant main e�ect was found for object weight (F (3, 8) = 2.1, p = .179), univariate

tests did reveal a signi�cant e�ect of object weight, on all three measures: grasp force

(F (1, 10) = 7.84, p = .019), ramp duration (F (1, 10) = 5.01, p = .049) and grasp score
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Figure 6.9: Adding Controller Delays to increase Uncertainty.

(F (1, 10) = 6.58, p = .028). Univariate tests also con�rmed the main e�ect of visual

feedback condition (F (1, 10) ≥ 7.62, p ≤ .020, all measures). There was no signi�cant

between-groups main e�ect of tactile feedback condition (F (3, 8) = 0.218, p = .881)

and univariate tests also revealed no signi�cant e�ect on any measure of performance

of tactile feedback condition (F (1, 10) ≤ 0.764, p ≥ .402).

These comparisons imply that subjects were able to grasp economically in the dark,

albeit with an increase in the base level of force. Interestingly, as observed for an

individual subject, vibrotactile feedback had no e�ect on the grip force. The e�ect

of object weight, and no interaction with tactile feedback condition or visual feedback

condition, implies that that grip force control is indeed maintained when in the dark

with no feedback. This argues that feed-forward control mechanisms can be formed in

the absence of tactile feedback, and maintained (across multiple trials) in the absence

of all feedback.

6.3.4 Experiment 3: When feed-forward uncertainty is increased, trained

subjects show signi�cant performance de�cits when deprived of

either visual or tactile feedback

Experiments 1 and 2 indicate that tactile feedback may o�er limited practical utility for

grasp force control if the hand controller is predictable. To test this, uncertainty to the

hand controller in Experiment 3, in the form of brief randomised delays (see methods

and discussion). This unpredictability was used to reduce subjects' ability to form an

accurate feed-forward prediction. Fig. 6.9 illustrates the e�ect of controller delay on

the force pro�le and movement trajectory.

When controller delays were added, subjects found the task more di�cult (indicated
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Figure 6.10: Grouped results from Experiment 3, using two metrics to compare perform-

ance. Error bars denote standard error. Data are from one cohort of subjects (N=11). (A)

Comparison of within-subject factors of visual feedback condition (red bars), tactile feed-

back condition (green bars), and trial phase (grey bars). Within-subjects ANOVA revealed

signi�cant main e�ects of visual feedback condition and tactile feedback condition, but not

phase, indicated by stars. For detailed statistics see text. (B) Comparison of subjects'

performance as a function of feedback condition: (left to right) no feedback; vibrotactile

feedback only; visual feedback only; both visual and tactile feedback. The two bars per con-

dition indicate performance in the �rst (left) and second (right) phases of training. Subjects

performed signi�cantly worse in the absence of either source of feedback.

by a higher grasp score compared to experiment 2). Under this increased di�culty,

subjects' grasp forces were much higher (and outside the anticipated linear range of our

force sensor). For consistency this measure was retained in our analyses. Nevertheless,

the remaining metrics were su�cient to show a signi�cant main e�ect of tactile feedback.

The grouped data are shown in Fig. 6.10.

A within-subjects ANOVA, with factors of visual feedback condition (light block /

dark block), tactile feedback condition (with vibrotactile feedback / without vibrotactile

feedback) and phase (phase one / phase two) revealed a signi�cant main e�ect of visual

feedback condition (F (3, 8) = 6.91, p = .013) and a signi�cant main e�ect of tactile

feedback condition (F (3, 8) = 7.51, p = .010). There was no signi�cant main e�ect of

phase (F (3, 8) = 1.56, p = .274), and there were no signi�cant interactions (F (3, 8) ≤
2.17, p ≥ .169).

Post-hoc comparisons revealed that the cause of the e�ects was best explained with

the grasp score measure (see Fig. 6.10) As an additional analysis, I compared the grasp
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score measure for the various feedback conditions in the second phase of trials. In trials

without visual feedback a signi�cant e�ect of tactile feedback was found (F (1, 11) =

6.4, p = .028), but with visual feedback there was no signi�cant e�ect of tactile feedback

(F (1, 11) = 0.405, p = .538). It was also found that without tactile feedback there was a

signi�cant e�ect of visual feedback (F (1, 11) = 9.27, p = .011), but with tactile feedback

there was no signi�cant e�ect of visual feedback (F (1, 11) = 0.231, p = .640). This

suggests that, after training, either modality was su�cient to enable task performance

(see discussion).
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6.4 Discussion

6.4.1 Overview

The purpose of the �rst experiment was to quantify the bene�ts of tactile feedback in

an idealised grasping and lifting task. Grasp economy was chosen as our measure of

performance, a phenomenon known to depend on feedback and feedforward predictions.

It has previously been shown that two chronically dea�erented patients were not signi-

�cantly di�erent from healthy matched controls at scaling grip force to di�erent object

weights (Hermsdörfer et al., 2008). A study to quantify the bene�ts of arti�cial feedback

for force control also found no signi�cant di�erence between feedback and no-feedback

groups (Chatterjee et al., 2008). Consistent with these studies, there was no e�ect of

tactile feedback condition, yet there was a highly signi�cant e�ect of object weight,

indicating economical grasps regardless of tactile feedback. Previous results have con-

�rmed that our feedback system o�ers adequate bandwidth to subjects. It was therefore

suspected that, under the ideal conditions of experiment 1, subjects' ability to grasp

economically was due to abundant sensory cues (from visual and auditory modalities).

Contrary to our hypothesis, in the second experiment subjects were still capable of

di�erentiating object weights and applying appropriately economical grip forces when

deprived of all sources of sensory feedback. No signi�cant di�erence was found in grasp

economy between two groups, one with vibrotactile feedback and one without, nor

was there a signi�cant di�erence between the light and dark conditions. It has been

previously shown in healthy humans that cutaneous feedback enables maintenance of the

anticipatory components of grasping (Hermsdörfer et al., 2008), but our results suggest

that, under the idealised control conditions, force feedback was not necessary for this

purpose. However, there was a higher overall grip force in the absence of visual feedback,

consistent with an increased safety-margin observed in feedback-deprived individuals

(Augurelle et al., 2003). Nevertheless, subjects still di�erentiated the two objects, which

requires precise signal timing in order to set appropriate grasp forces. Since the objects

were lifted multiple times, it was concluded that subjects were able to learn an internal

model in the absence of within-trial feedback. It is likely that a feedforward process was

playing a crucial role in the observed behaviour.

The results of the third experiment showed that when feedforward predictability

was degraded, performance degraded too. However, with the addition of either visual

or tactile feedback, performance was restored, providing evidence that feedback is re-

quired in the presence of feedforward uncertainty. Best performance was achieved in

the presence of both sources of feedback, suggesting that visual and tactile cues play

complementary roles in facilitating successful grasps in the presence of uncertainty.
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6.4.2 Justi�cation of Methods

6.4.2.1 Feedback Choice

In this study I used a vibrotactile feedback interface. Direct pressure-feedback devices

(Patterson and Katz, 1992) may o�er a more natural sensation, and electrotactile feed-

back might provide greater spatial resolution (Kaczmarek et al., 1991) at the expense

of safety. However, vibrotactile feedback systems are given credit for their low cost, size

and weight and the simplicity and �exibility with which they can be used in sensory sub-

stitution applications (Alahakone and Senanayake, 2009). For these practical reasons it

was felt that the spatially-encoded vibrotactile feedback interface (similar to Cholewiak

and Collins, 2000) discussed in Chapters 2 and 3 was more than suitable for the present

experiments. In pilot studies it was found that this method a�ords greater stimulus

bandwidth than a single tactor providing frequency- or amplitude-encoded feedback,

as well as the observation of reduced adaptation. In previous experiments it has been

shown that subjects are immediately able to discriminate tactile stimuli, rapidly learning

to use the arti�cial modality in a sensory integration task. JND experiments demon-

strated that the vibrotactile channel o�ered a su�cient perceptual range. Furthermore,

in the present study subjects were clearly able to utilise vibrotactile feedback to their

advantage (in the third experiment). For these reasons I argue that the feedback inter-

face was at least su�cient to enable successful performance. I concede that it is possible

that with considerably more training there may have been a measurable di�erence in

performance between the vibrotactile group and non-vibrotactile group in experiment

2. However, this does not invalidate the �nding that subjects could form economical

grasps regardless of feedback under ideal experimental conditions.

6.4.2.2 �Ideal� Conditions

Zafar and Doren (2000) found that using a video-based simulated amputation, feedback

o�ered quanti�able improvements in grasping performance. It would be interesting to

know how subjects would perform in their task completely in the dark (i.e. with the

screen turned o�), as this would indicate their ability to perform repeatable shoulder

control movements (i.e. the e�cacy of subjects' feed-forward strategy). One might

argue that the 2D (on-screen) cues presented to subjects o�ered insu�cient feedback,

or the observed bene�ts were due to lack of other sources of feedback - auditory and

tactile for example. However, since subjects were deprived of all feedback sources, it

seems more likely that that the limb controller used by Zafar and Doren (2000) was

insu�ciently predictable to control.

It is likely that our observations were a result of the ideal control conditions created.
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Since blocks of trials were in a predictable order and subjects performed multiple re-

peated trials per object, subjects could learn by trial-and-error. Furthermore, subjects

were aware of a successful lift via feedback from their arm muscles as well as on-screen

feedback at the end of each trial, allowing them to re�ne their judgements. Our work

assumes that, by these processes, subjects can establish a feedforward prediction. This

is de�ned as the ability to anticipate the forces they are exerting in the absence of

externally-arising cues to that fact (see introduction). It is important to note that

proprioceptive and tactile cues of the control signal are considered to be internal cues

� they provide no feedback of how the robotic hand is interacting with the environment.

However, it should also be noted that, in contrast to our ideal controller, commercially

available prostheses are typically controlled by noisy EMG signals and that prosthesis

control methods often do not provide predictable force control. Our results indicate

that predictable control can obviate the practical bene�ts of feedback. However, in the

presence of unavoidable feedforward uncertainty the bene�ts of feedback are apparent.

6.4.2.3 Temporal Delays

In this study I induced random temporal delays when simulating feedforward uncer-

tainty in experiment 3. Temporal uncertainty and temporal judgement impact many

dexterous tasks, in both healthy humans and prosthesis wears. At the task-level one

can expect unpredictable sensory and motor delays (Kennedy et al., 2009), such as

when grasping objects of unknown size or shape, or when not paying full visual at-

tention. Every motor action is undertaken in the presence of uncertainty (Bays and

Wolpert, 2007), resulting in some degree of temporal error. Temporal uncertainty is

also a considerable concern for prosthesis designers. Since EMG signals used to initiate

and control prosthesis movement �uctuate as a function of sweat, movement, muscle

fatigue and skin-conductivity (Duchêne and Goubel, 1993) the most reliable EMG clas-

si�ers require 250-300ms of sampling time before accurate classi�cation can be made

(Lorrain et al., 2010). In the interest of responsiveness, controllability and expense,

many commercially available prostheses use di�erential (�open/close�) controllers to de-

fer the problem of EMG signal reliability to the temporal domain. Our results reveal

that temporal uncertainty can signi�cantly impair performance, but these e�ects are

reduced with appropriate feedback.

To our knowledge this research provides �rst demonstration of the existence of feed-

forward and feedback processes for an arti�cial limb. Our results support, and perhaps

provide an explanation for, similar studies in the literature. A study that showed no

signi�cant prosthesis control improvements with vibrotactile feedback (Chatterjee et al.,

2008) could be explained by our �nding of a strong feedforward contribution. The be-
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ne�t of feedback in the presence of partial sensory deprivation (Zafar and Doren, 2000)

or with visual distractions (Cincotti et al., 2007) is supported by the present �nding of

the role of feedback in the presence of uncertainty.

6.4.2.4 Task and performance measurement

The task was designed to be simple for subjects to perform, and success was character-

ised by measuring performance di�erences for subjects lifting objects of di�erent weights

in di�erent feedback conditions. In an abstract view of the task we could describe it

simply as that of choosing an appropriate grasp duration to match the object weight,

which could be learned by subjects over repeated lifts and over the course of the trial.

It was, of course, our intention to make it as easy as possible for subjects to learn their

feedforward model (to create idealised conditions, as discussed in section 6.4.2.2). Such

conditions helped to show that feedforward uncertainty is an important aspect of con-

trol. Further research is necessary to quantify the degree of feedforward uncertainty in

non-ideal (real-world) conditions. Minimising this uncertainty remains a challenge for

future research.

In pilot studies it was observed that di�erent subjects prioritised di�erent aspects

of the task. For example, one subject attempted to complete the task as quickly as

possible, while another was more cautious and aimed to minimise errors. Consequently,

no single basic measure of performance was suitable to quantify the relative merits of

feedback across all subject. A score measure was used in all analyses in this chapter to

provide a single, uni�ed numerical quantity for the purpose of statistical comparison.

This does not diminish the statistical power of the ANOVA which was completed with

all available measures. It may have been preferable to provide stricter task demands,

or provide further training to subjects, so as to constrain the inter-subject variability.

However, this would have been at the expense of increased fatigue for subjects as the

attached prosthesis was found to be heavy.

6.4.3 Implications

6.4.3.1 Recommendations

I have shown quantitatively that tactile feedback can signi�cantly improve performance

in the presence of feedforward uncertainty. These results have important implications

for the prosthetics �eld, and consequently three recommendations can be made: (i)

Prostheses should be designed to make control as predictable and repeatable as possible,

to minimise feedforward uncertainty; (ii) Feedback should be provided to handle the

inevitable uncertainty that will arise, and should be chosen to enable better feedforward
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learning (such as error-corrective feedback, or force-derivative feedback, described in

Engeberg and Meek (2008)); and (iii) We should aim to exploit the di�erent sources

of noise between robotic and human systems: trade-o�s in design, for example, allow

temporal uncertainty to be transformed into spatial uncertainty. If we can minimise

uncertainty in task-speci�c domains we may increase control reliability and considerably

improve hand functionality.

6.4.3.2 Reactive behaviour

How may feedback be utilised in reactive and even re�exive ways? During our experi-

ments it was observed that some subjects could react to insu�cient grip force feedback

to avoid slip. Of course, considerable training would be needed to establish re�exive

behaviour. However, re�exes could easily be programmed into hardware, alleviating

the user of these demands, and by handling the uncertainty in this way the uncertainty

exposed to the human user is decreased.

6.4.3.3 Control Strategy

In this study we have only considered a di�erential controller. Based on the present

�ndings, in designing a prosthesis we may consider a proportional controller in which

force output is proportional to the control signal. This would reduce the demand for

accurate timing, and would be a useful method of delivering feedback. This would

require further research in order to improve both control (more reliable EMG recording)

and actuation (to reduce power consumption), but may see more direct bene�ts.

6.4.3.4 Generalisability

This study raises a number of interesting possibilities for future work. I have presented

here a robotic system that replaces the healthy sensorimotor system for the elementary

task of object lifting, but what are the limits of this analogy? Amputees �tted with

prostheses such as the one presented in this paper will not have the bene�t of `idealised

control': real-world prostheses are controlled by EMG electrodes which, as previously

discussed, add control uncertainty. Our results suggest that EMG control will result

in diminished grasp economy that can be remedied either by improving the reliability

of EMG measurement (reducing feedforward uncertainty) or through provision of a

reliable limb-state feedback. Our robotic manipulandum also provides a viable platform

to test this hypothesis. Multifunction prostheses of the future o�er increased dexterity

and functionality at the expense of additional feedforward and feedback demands (as

discussed in Dosen et al. (2010)). Tasks involving dynamic or unstable loads, such

as handwriting, or tying shoelaces, require the learning of much more complex internal
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models. It is not obvious how these models are acquired, nor how they depend on motor

control or available feedback, yet they are key to the design of a system that needs to

mimic human behaviour. I argue that this novel manipulandum is an ideal platform

to study human sensorimotor processes as it allows the experimenter to access sensory

and motor components that, in intact individuals, is either unethical or practically

impossible.

6.4.3.5 Closing Remarks

The results in this chapter suggest that feedback should be chosen to complement the

uncertainty in the control system. This does not mean, however, that by removing all

uncertainty from the controller removes the necessity for feedback: a device which acts

automatically and intelligently will surely reduce the number of grasping errors, but

may not be accepted by the amputee as a natural extension of their nervous system.

Vivid sensations of embodiment and prosthesis ownership can only be achieved through

physiologically appropriate cutaneous feedback (Marasco et al., 2011).
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7.1 Summary of Results

The scienti�c and technological achievements chronicled in this thesis are, in part, due

to considerable hardware, �rmware and software engineering (Chapter 3). After cre-

ating numerous designs I developed and re�ned a vibrotactile feedback system to

communicate feedback to the amputee. My design comprised low-cost components and

was optimised to maximise bandwidth, minimise latency and avoid adaptation hypo-

sensitivity. Working alongside Touch Bionics, an award-winning prosthetics company,

I also developed several prosthesis control algorithms. My hardware, �rmware and

software have been licensed to the company and I am the primary inventor on a patent

application (Saunders et al., 2011a)

At the time of writing, feedback is not a standard feature of state-of-the-art pros-

theses. A key aim of this thesis was to characterise the role of feedback to under-

stand the limitations of sensory plasticity and sensorimotor rehabilitation. I aimed

not only to satisfy indirect functionality measures with my feedback system (band-

width, latency, etc.) but also to maximise the end-goal of increased functionality of the

complete closed-loop system. However, unlike studies which designed a speci�c plant

and aimed to quantify the bene�ts of feedback on performance, an approach which

I felt lacked generality, I aimed instead to characterise the role of feedback in ideal-

ised, generalisable and controlled conditions. Such experimental scenarios ranged from

(i) Healthy Hand Scenarios: A cue-tracking experiment using the healthy hand to

localise noisy visual stimuli (Chapter 4); (ii) Simulation Scenarios: navigating a

computer-controlled cursor (analogous to prosthesis control) with feedback presented

in both visual and tactile modalities (Chapter 5); and (iii) Real-World Scenarios:

grasping objects with a robotic hand (Chapter 6). Each of these required the develop-

ment of original experimental methods, building on existing tracking protocols in the

scienti�c literature combined with new insights. It was intended that experimentation

at multiple levels of abstraction would inform the transition from theoretical concept to

practical application, as well as providing �ndings of signi�cant scienti�c merit at each

stage.

In Chapter 4 I presented a novel visual tracking task, developed to ask the funda-

mental question of how estimates of statistical information (mean and uncertainty) are

acquired and utilised by subjects. I showed that subjects estimate the mean of time-

varying stimuli in a predictable manner: this estimate is computed in a statistically-

principled way that assigns equal weight to cues observed over time to form an accur-

ate �nal estimate. Using an optimal model with kinematic constraints I showed that

subjects can accumulate evidence over time to form an optimal continuous estimate

of the mean of noisy visual stimuli.
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Moreover, using a novel variant of the paradigm, where subjects indicate the range

in which they believe the target to lie (a direct measure of their con�dence), I showed

that subjects' perception of the variability of noise-perturbed time-varying stimuli ( subjective

uncertainty) is closely, but not directly, coupled with the underlying variability in per-

formance of the task (objective uncertainty). By manipulating subsets of the cues

through perturbations I evaluated the respective weighting given to each cue over time,

suggesting that cue weighting was suboptimal due to a conservative safety-margin.

I conclude that subjects are capable of accumulating evidence over time to continu-

ously discriminate (albeit overestimate) the objective uncertainty present in noisy

visual stimuli.

In Chapter 5 I presented the task of tracking a target with a multimodal cursor,

under a variety of di�erent control and feedback con�gurations. It was found that

vibrotactile feedback could serve as a viable method of conveying task information,

serving a similar function to the visual modality (a phenomenon termed sensory aug-

mentation or substitution). Moreover, it was found that vibrotactile feedback was

used in conjunction with visual information (termed sensory integration, Chapter 5,

Pilot), but this e�ect depended on the in�uence of feed-forward control method as well

as the quality of feedback.

In a modi�ed task where the quality of visual and tactile feedback were equally

matched, subjects were asked to localise a �xed target with a di�erentially-controlled

noisy cursor. Vibrotactile feedback was combined with visual feedback in a near-

statistically optimal manner (termed optimal multisensory integration, Chapter

5, Main Experiment). This process is based entirely on sensory evidence gained

within a 5-second trial, and each modality is optimally weighted according to its

objectively-determined variability. This result is consistent with discrete forced-

choice studies, and provides the �rst evidence of the phenomenon for a continuous

decision-making task.

These above results indicate the presence of optimal sensory processes extending

to an �arti�cial modality�. This is of relevance to prosthesis wearers who could

directly bene�t from an arti�cial sense of touch. I tested this hypothesis using an

idealised �simulated amputation� scenario in Chapter 6. I completed three behavioural

experiments to quantify the role of grip force feedback on economical grasping with

a prosthesis. Feedback (visual or tactile) resulted in signi�cant performance bene�ts

in the presence of feed-forward uncertainty (control noise), but when �ideal� feed-

forward control was enabled subjects could operate the limb and grasp economically in

the absence of all feedback (both visual and tactile).

These results paint a picture of decision-making under uncertainty, showing the
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transition of statistically-principled processes from the theoretical level to practical ap-

plication. These results can inform our choices in designing state-of-the-art prostheses

optimised to the residual capabilities of the amputee (in particular by exploit-

ing residual feed-forward control ability, and/or through the provision of appropriate

task-level feedback).

7.2 Critical Evaluation

7.2.1 High Dimensionality

In Chapter 3 I discussed a large number of di�erent dimensions relevant to prosthesis

design (see Fig. 3.1). These many dimensions result in a combinatorial explosion

of possible closed-loop con�gurations. As such, it is impossible to consider all of these

dimensions together, and instead the present approach has been to evaluate their contri-

butions independently of one another. This approach has obvious practical advantages,

but it overlooks the possibility of an interaction between design dimensions.

In this thesis it was assumed that a modular system design was appropriate and

that the respective roles of control, actuation, sensation and feedback could be de-

coupled. This approach is shared by studies focusing on each of these speci�c areas,

such as studies into vibrotactile hardware (Mortimer et al., 2007), vibrotactile per-

ception (Cholewiak and Collins, 2003, Soto-Faraco and Deco, 2009), prosthesis control

(Cipriani et al., 2008, Dosen et al., 2010) and sensor research (Edin et al., 2006).

However, an important di�erence in the approach taken this thesis is that the main

experiments require subjects to perform closed-loop tasks. Continuous uncertainty es-

timation is reported in a novel visuomotor paradigm, multisensory integration is re-

ported in a novel multisensory sensorimotor paradigm, and feedforward and feedback

processes are decoupled in a real-world `grasp and lift' sensorimotor paradigm. Hence,

although a limited number of system con�gurations are considered here, these tasks are

in the relevant context for understanding closed-loop behaviour and thus the present

approach lends itself readily to the full dimensionality of the problem.

7.2.2 Feedback Encoding

In this thesis I have presented several results speci�cally related to a spatial encoding

of vibrotactile feedback. For practical reasons I have not explored the wide range of

possible encoding strategies (see Chapter 3 and Fig. 3.1). For example, Kadkade et al.

(2003) demonstrate the utility of di�erential error signals over absolute error feedback,

Engeberg and Meek (2008) demonstrate the utility of force-derivative feedback to aid a

prosthesis controller, and Kohli et al. (2006) use stimulus motion to convey information.
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It is possible that such alternative feedback encodings may provide improved utility or

alternative integration e�ects.

In this thesis I have presented a feedback system that provides an immediate and

intuitive signal (reasonable JND-thresholds were computed in a task of ∼4 minutes

duration and multisensory integration measured in a task of ∼20 minutes duration, in

contrast to the intensive electrotactile training protocol devised by Szeto and Chung,

1986). It has previously been argued that having control of the feedback signal (such

as control of the camera in TVS studies y Rita et al., 1969) is crucial for task success.

The optimal multisensory integration result in this thesis may re�ect the utility of

the sensorimotor paradigm for the assessment of feedback integration in a closed-loop

context.

It was found that with spatial feedback it was easy to discriminate di�erent stimuli

but precise localisation was more di�cult (see JND experiments, Chapter 3). Perhaps

localisation ability would improve with training (learning to associate stimuli with loc-

ations), but it also seems likely that discrimination and localisation are fundamentally

di�erent tasks, not least because the former relies on short-term tactile memory and

the latter on long-term tactile memory. Hence, it may be a preferable approach to ask

subjects to perform an absolute recall task over a discrimination task in calculating

the `quality' of sensory feedback, as alternative to classical JND threshold calculation.

However, even this may be insu�cient to capture the full range of desirable feedback

properties. For example, some encodings may have greater bandwidth at the expense of

increased mental e�ort, latency to decode, or rate of desensitisation. These individual

parameters may be investigated by speci�c experimental study, but testing them in a

sensorimotor task such as the tracking paradigm developed in this thesis may provide

a more valuable means of assessing the overall utility of the feedback system.

7.2.3 Sensorimotor Task Design

In this thesis I have presented a range of variants of the classic tracking paradigm. In

developing the tasks used in Chapter 5, multiple variants were considered. In the main

experiment it was found that subjects optimally integrated information from multiple

sensory modalities. It is important to ask why this e�ect was less evident in the pilot

experiment and earlier experiments (data not shown).

One obvious reason is that the main experiment was designed to ensure that visual

and tactile performance overlap across the range of uncertainties tested. This was

achieved by adjusting the baseline visual feedback reliability to cover the same range as

the tactile feedback reliability, to ensure that the e�ects of interaction were measurable.

Moreover, the main experiment removed visual biases by having a �xed multimodal
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target, simplifying the task demands. It should be acknowledged that the scalability

of multisensory optimality to more complex sensorimotor tasks and modality-biased

sensorimotor tasks is not yet known.

Finally, it is worth considering that, owing to the observed dominance of the visual

modality on performance, visual feedback appears to be a signi�cantly more reliable

source of sensory feedback than arti�cial tactile feedback. However, it should be noted

that it is impractical and undesirable to rely heavily on a single modality, especially

for more complex tasks involving visual distraction (Cincotti et al., 2007), occlusion

Zafar and Doren (2000), and attention modulation (Spence et al., 2004). Tactile feed-

back provides a valuable channel, although admittedly its full exploitation may require

further development of more reliable tactile interfaces.

7.2.4 The Bene�ts of Feedback

In Chapter 6, three experiments were presented to quantify the bene�ts of feedback on

grasping performance. Under ideal conditions it was found that feedback had no e�ect

on economical grasping, even in the complete absence of visual and auditory feedback.

This is in contrast to Zafar and Doren (2000), Pylatiuk et al. (2004).

The key di�erence between these studies was our use of an `idealised' controller. Such

a controller had predictable feed-forward nature which presumably obviated the need for

feedback once the control was learned. These ideal control conditions may not presently

be available to amputees (owing to the unreliability of real-world tasks as well as the high

level of variability in sEMG recordings and the use of di�erential-control algorithms.

See Chapter 6 for further discussion). A natural follow-up to the experiments presented

in this thesis would be to quantify the level of feedforward control for a range of typical

EMG classi�cation algorithms, and quantify the bene�ts of feedback in these realistic

cases.

The study presented in Chapter 6 only considers the task of grasping and lifting. I

have previously discussed the relevance and applicability of this task but it is obviously

limited in its ability to explain the full range of human hand dexterity. Even within the

task of grasping, a number of important variables were omitted. In particular, all objects

were the same size and shape and has the same smooth surfaces. It would be interesting

to investigate the role of feedback in handling these properties, as feedforward control

may become increasingly unreliable in the presence of more complex task demands.

7.2.5 Uncertain Uncertainty

In Chapter 4 it was found that uncertainty estimation trajectories could be reliably

modelled by an optimal estimator with kinematic constraints � with the addition of
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conservative error margin. When evaluating the weights allocated to individual cues

the model and empirical data did not match. It is important to address the question

of whether this re�ects: (i) a failure of the model to capture the factors in�uencing

movement; (ii) inadequacy of the model �tting procedure; or (iii) suboptimality of

human uncertainty estimation. All three are plausible explanations for the observation.

The present work can not fully resolve this debate, but there are a number of po-

tential methods to distinguish the causes of uncertainty overestimation. Firstly, it is

possible that cues were arriving far quicker than they could be processed. One could

slow down the arrival of cues so that the contributions of each cue could be more re-

liably distinguished behaviourally. Secondly, perturbations were added to the mean of

the stimulus but not to the uncertainty. A more direct approach would be to adjust

the uncertainty and observe the impulse response to this change. Thirdly it is acknow-

ledged that the high levels of noise in the uncertainty estimation data made it di�cult

to reliably �t the model parameters to the data using the least-squares approach. Either

a more robust �tting procedure could be used, or further data collected to reduce the

e�ect of noise. Only when these aspects are corrected should the model be revised to

explain the empirical observations.

7.2.6 Healthy grasping

In Chapter 6 it was shown that an overall increase in grip force occurred in the absence

of visual feedback. This could be interpreted as evidence that vision is required to

modulate or maintain the absolute level of grip force of the prosthesis in the absence of

feedback. This has been shown in healthy individuals with digital anaesthesia (Jenmalm

and Johansson, 1997, Jenmalm et al., 2000). However, an alternative interpretation is

that vision provides a context switch (see Chapter 2 section 2.3.3.1, and Buckingham

et al., 2011) which modulates the background level of force used by subjects. The use

of vision for activation of internal models has also been demonstrated for object shape

(Jenmalm and Johansson, 1997) and prediction of object weight based on object size

(Gordon et al., 1991). Augurelle et al. (2003) provided evidence that the background

level of force is also modulated by digital anaesthesia in healthy individuals, but this

was not shown for prosthesis wearers in the present study.

Therefore it seems that the manipulandum developed here captures only a subset of

healthy human phenomena. This could be attributed to a number of possibilities, such

as: (i) the degree of sensorimotor restoration (limited degrees of control and feedback);

(ii) due to fundamental di�erences in the way the device is controlled compared to a

healthy hand; (iii) due to the fundamental di�erences in the way the feedback is provided

compared to a healthy hand (i.e. its source, location and encoding); or (iv) the fact that
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the prosthesis has not been connected to the wearer's nervous system for much longer

than 30 minutes in any of the experiments presented in this thesis. Of these possibilities,

(i) and (iv) could be addressed by training the subject with the limb for a longer period,

or by using existing amputees. Points (ii) and (iii) are more di�cult to address directly

due to the limitations of prosthesis hardware. As posited in Chapter 3, these variables

could be explored by starting with the healthy human hand and gradually stripping it

of di�erent control and feedback capabilities. Obviously this is impractical with healthy

individuals, which was a primary motivation of the manipulandum developed in this

thesis. Another potential approach may be to revert to virtual-reality, wherein the

control of the hand could be achieved using any range of control algorithms based on

natural hand control.

7.2.7 Achievement of Aims

With respect to the aims reported in section 1.2, the present thesis addressed all themes

under consideration. In this section I discuss the degree to which the aims were achieved.

• 1: Sensory Communication: Can I establish a high-bandwidth sensory feed-

back channel that people are able to detect and decode?

In Chapter 3 I present a vibrotactile sensory communication interface. As previously

discussed, direct pressure-feedback devices may o�er a more natural sensation (Patter-

son and Katz, 1992), and electrotactile feedback might provide greater spatial resolution

(Kaczmarek et al., 1991). A more thorough evaluation of alternative feedback systems

in a closed-loop context is needed to decide the most appropriate feedback system for

amputees. The feedback system presented here can be learned quickly and has a good

bandwidth (Chapter 3), but spatial localisation accuracy is particularly poor and greater

bandwidth may be achieved by other encoding methods. Nevertheless, I argue that the

system presented here provides a su�cient communication channel for the purposes of

this research, and is useful at least for providing a single dimension of feedback.

• 2: Sensory Augmentation: If I can establish a sensory feedback channel with

su�cient bandwidth, will a person be able to use it to do a task, such as estimating

forces, or positions? Can it adequately augment or substitute for information

presented in another modality, such as vision?

In Chapter 5 it was found that the vibrotactile feedback system designed allowed for

sensory substitution. In the absence of (or under degraded) visual feedback, the feedback

system could be used for navigating a cursor to a target in a number of tracking tasks,

though the tactile feedback baseline performance was poorer than visual feedback. In
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Chapter 6 it was found that vibrotactile feedback could substitute for visual feedback

in the presence of feedforward uncertainty, enabling economical grasps albeit with a

higher overall level of grip force.

• 3: Sensory Integration: If I can establish a sensory feedback channel with

su�cient bandwidth, and the person can use it, will a person also integrate this

information with their existing senses? Will it complement existing modalities,

and add additional bene�ts?

In Chapter 5, sensory integration was observed. This was de�ned as the selective use

of both visual and vibrotactile feedback in relation to their respective reliability. It was

found that, when visual and tactile feedback were equally reliable (in terms of objective

variability) there was a reduction in variability (improvement in performance) compared

to when each modality was presented alone. In contrast, this reduction in variance was

not observed for absolute cursor control (Pilot experiment). This may be partly due

to the limited degree of overlap in objective variability of each of the modalities in the

pilot experiment, but also implies that multisensory integration does not depend on just

the reliability of the cues but also the reliability of the e�erent copy for control.

• 4: Optimal Sensory Integration: Will a successfully integrated arti�cial mod-

ality be combined with existing senses in a manner which is optimal with respect

to the reliability of the sensory information it provides? Are optimal weights

learned or innate?

In Chapter 5, cue weighting was governed by the objective uncertainty (the empiric-

ally observed variability of localisation performance), indicative of Optimal Sensory

Integration. This was measured both by observing a reduction in variance in the mul-

timodal condition as well as by computing the weight attributed to each modality. The

per-modality weightings were indistinguishable from a simulated Bayes-optimal ideal-

observer. Subjects are able to learn to discriminate di�erent levels of uncertainty of

visual stimuli over the time-course of an experiment (Chapter 4). As the vibrotactile

feedback system is, in many regards, an arti�cial sense (issued at a di�erent location, in

a di�erent modality, and with a di�erent encoding to that of natural sensation), it may

also be argued that the mapping between sensory signals and the task-level uncertainty

required for optimal integration is also learned over the time-course of the experiment

(Chapter 5).

• 5: Sensory Uncertainty Acquisition: Optimal sensory integration assumes an

ability of subjects to acquire statistical information from the world. How is such

information (such as the mean and uncertainty of sensory evidence) computed?

To what extent can this explain multisensory perception?
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Chapter 4 revealed that subjects have access to a measure of the mean and uncertainty

of sensory cues, which evolves continuously as evidence arrives. The results provide a

strong indication that cues throughout the trial are combined optimally to form reliable

estimate of the mean, but uncertainty estimation appears less than optimal, involving

overestimation of the uncertainty required to achieve the maximum score. The mechan-

isms of sensory uncertainty acquisition remain elusive, though I feel that the paradigm

I have developed o�ers a valuable tool to further instigate this problem. Multisensory

perception of uncertainty is still an open question which can also be addressed using

this paradigm.

• 6: Sensorimotor Integration: If I can establish an optimally integrated sensory

feedback channel, does this scale to real world sensorimotor tasks such as grasping

and lifting objects? To what extent is present prosthesis-control suboptimality

governed by sensory uncertainty versus motor uncertainty?

In Chapter 6 I investigated sensorimotor integration for the real-world task of grasping

and lifting objects. Using an idealised prosthesis control system I found that, compar-

able to healthy human studies, prosthesis-control depended on both feedforward and

feedback in�uences. It is important to also consider the generalisability of the idealised

system to EMG control and more complex task demands. These aspects were not tested

in this thesis and further work is required to fully appreciate the full dimensionality of

closed-loop prosthesis design.

Overall the work presented in this thesis satis�es the aims in section 1.2. However,

the greater goal and underlying motivation of the research is a more complex problem

of high dimensionality. To restore a replacement sense of touch to amputees will require

advances in robotic technology, sensor design and new and improved interfaces with the

nervous system. By further understanding the limits of sensory plasticity it may be

possible to exploit the residual capabilities of the amputee.

7.3 Future Perspectives

7.3.1 Multisensory Con�dence Estimation

In Chapter 4 I presented a con�dence estimation task for visual uncertainty estimation.

The task naturally lends itself to multimodal con�dence estimation as illustrated in Fig.

7.1. I hypothesised that, given subjects integrate sensory information in a statistically

optimal fashion (weighting each modality in accordance with its objective reliability,

Chapter5) and subjects can form a subjective estimate of their objective uncertainty

(although suboptimally, Chapter4) then their multimodal con�dence should be a func-

tion of their unimodal con�dence. Combining Chapters 4 and 5 into a new multimodal
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Figure 7.1: Multisensory Con�dence Estimation Task. (A) Consider a variant of

uncertainty estimation paradigm in which subjects are presented with both visual and tactile

jittering stimuli. (B) Subjects are required to localise the mean of the multisensory stimuli

using the grasping technique previously described .

con�dence estiamtion paradigm I conducted a preliminary investigation with subjects

reaching for multimodal targets. The modalities were o�set on some trials to enable

discrimination of weights.

The preliminary results are presented in Fig. 7.2. Unfortunately, in this experi-

ment there was insu�cient interaction between visual and tactile feedback due to their

non-overlapping nature (7.2A). However, interesting observations can be made nonethe-

less. In the absence of modality o�set, performance followed the qualitative predictions

of optimal multimodal integration, with multimodal variance smaller than unimodal

variances (Fig. 7.2B). However, con�dence estimation did not appear to follow these

same trends. While the multimodal con�dence window is generally smaller than the

unimodal visual con�dence window, it is strangely larger than the unimodal tactile con-

�dence window in some cases (Fig. 7.2C and 7.2D). This peculiar behaviour suggests

that subjective perception of multisensory con�dence is not optimal, and that subject-

ive perception does not govern optimal integration as observed in Fig. 7.2B. Plausible

explanations may be: (i) the presence of visual and tactile feedback provide a context

switch that additionally modulates perception of uncertainty (Chapter 6); (ii) inherent

biases towards one modality may result in a mismatch between perception of uncer-

tainty and objective uncertainty; and (iii) the contrasting suboptimality of uncertainty

perception (Chapter 4) and optimality of multisensory integration (Chapter 5) may in-

dicate that two separate processes mediate these phenomena. These theories warrant

further investigation.
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Figure 7.2: Multisensory Con�dence Estimation Preliminary Results (N=8). Vision-

only trials (V, blue), Tactile-only trials (T, green) and Multimodal trials (VT, red) are

distinguished. Results for low, medium and high visual uncertainty are plotted. Data for 8

subjects are shown, with 3 further subjects discarded from analysis due to inadequate per-

formance. (A) Mean absolute error ± SEM for trials without an o�set between modalities.

Owing to the superiority of visual feedback there is little interaction between vision and

tactile. (B) Mean absolute error ± SEM for trials with an o�set between modalities. Mul-

timodal performance is superior to unimodal performance. (C) Mean con�dence estimate

± SEM for trials without an o�set between modalities. The multimodal con�dence window

is generally smaller than the unimodal visual con�dence window, but strangely larger than

the unimodal tactile con�dence window in some cases. (D) Mean con�dence estimate ±
SEM for trials without an o�set between modalities. Similar results to C.
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7.3.2 Remaining Dimensions

In this thesis I have aimed to tackled a subset design dimensions in order to understand

the limitations of sensory feedback for restoring healthy performance to prosthesis wear-

ers. The same general approach could enable further sensory dimensions to be intro-

duced, such as additional sources of sensory feedback, additional control methods and

additional tasks. One may consider: (i) human discrimination of object softness; (ii) as-

sessment of surface frictional properties; and (iii) detection (and reaction to) object slip.

These can presumably not adequately be restored through grip force feedback alone.

Advances in these directions will be limited by sensor technology though simulation

may allow for these aspects of prosthesis design to be evaluated prior to an investment

in this direction. Open questions such as the number of sensory �channels� that can

maximally be restored, and the degree of improvement restored by the additional sens-

ory burden, are yet to be answered. However, they may both be addressed by building

on the methods presented in this thesis.

At the time of writing the mobile phone industry is driving miniaturisation of port-

able batteries and electronic components, whilst the computer gaming industry is ex-

ploring novel sensory devices. Due to reducing component costs it seems highly likely

that the next generation of prostheses will be �tted with sensor arrays and and powerful

microprocessors. It will be exciting to see improvements to state-of-the art prostheses

incorporating the capabilities of these technologies. However, before this can be fully

exploited it is imperative that we continue to address the basic research question of how

best to communicate with the user via the peripheral nervous system.





Appendix A

Uncertainty in Sample Standard

Deviation

In chapter 4 I introduced a novel visual tracking experiment which required subjects

to maximise their expected reward in order to achieve optimum uncertainty-estimation

performance. In this appendix I provide further detail to support this approach, includ-

ing a derivation of ideal-observer behaviour and the choice score function which rewards

success in the task.

Relevant Publications

• Ian Saunders, Sethu Vijayakumar. (2012). Continuous Evolution of Statist-

ical Estimators for Optimal Decision-Making. PLoS ONE

• Ian Saunders, Sethu Vijayakumar, (2011b) Continuous Estimation of Mean

and Uncertainty, Proc. The 21st Annual Conference of the Japanese Neural

Network Society.
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time

n temporal samples

σ

μ

E

Figure A.1: The butter�y-catching paradigm presents subjects with a sequence of jittering

samples.

A.0.3 Computing the uncertainty in our estimate of the mean

A.0.3.1 Butter�y Catching

In the butter�y catching paradigm (chapter 4), subjects witness a sequence of n samples,

X1, ..., Xn, each assumed to be drawn from an underlying Normal distribution with

unknown mean µ and variance σ2. Figure A.1 illustrates this.

In any given trial, their task is to demonstrate their estimate of the true mean by

indicating a con�dence window around this estimate. Subjects are awarded more points

for smaller con�dence windows, and so must trade-o� the probability of being correct

versus the reward attained i.e. they must maximise the expected reward. To do this they

need to acquire and utilise the statistical information present in the samples. To de�ne

ideal observer or optimal behaviour we must characterise the probability distributions

with which these statistical inferences can be made.

From the samples one can easily state the maximum-likelihood unbiased estimates

of the mean and variance:

µ̂ =
1

n

∑
i

Xi (A.1)

σ̂2 =
1

n− 1

∑
i

(Xi − µ̂)2 (A.2)

We will show that the ideal observer can use these estimators to compute the prob-

ability of success at the task, and complete the task with a given accuracy, allowing the
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ideal observer to maximise expected reward. In this section we derive these quantities

from basic probability theory.

A.0.3.2 Cochran's Theorem

Cochran's Theorem states that:

For U1, . . . , Un, where each Ui ∼ N (0, 1) we can rearrange the sum of squares of Ui

into a linear sum of random variables,
∑n

i=1 U
2
i = Q1 + · · ·+Qk.

If r1 + · · ·+ rk = n , where ri is the rank of Qi, then it follows that:

(a) the Qi are independent, and

(b) each Qi has a Chi-square distribution with ri degrees of freedom: Qi ∼
χ2(ri).

A.0.3.3 Derivation of deviate distributions

Given our Xi described above, then let

Ui =
Xi − µ
σ

∼ N (0, 1)

Rearranging the sum of squares we �nd that

∑
i

U2
i =

∑
i

(
Xi − µ
σ

)2

=
1

σ2

∑
i

(
X2
i − 2µXi + µ2

)
=

1

σ2

∑
i

(
X2
i − 2µXi + µ2 − 2µ̂2 + 2µ̂2

)
=

1

σ2
(∑

iX
2
i − 2µ

∑
iXi +

∑
iµ

2 − 2µ̂
∑

iµ̂+
∑

iµ̂
2 +

∑
iµ̂

2
)

=
1

σ2
(∑

iX
2
i − 2µ

∑
iXi +

∑
iµ

2 − 2µ̂
∑

iXi +
∑

iµ̂
2 +

∑
iµ̂

2
)

=
1

σ2
(∑

iX
2
i − 2µ̂

∑
iXi +

∑
iµ̂

2 +
∑

iµ̂
2 − 2µ

∑
iXi +

∑
iµ

2
)

=
1

σ2

(∑
i

(
X2
i − 2µ̂Xi + µ̂2

)
+
(
nµ̂2 − 2nµµ̂+ nµ2

))

=
∑
i

(
Xi − µ̂
σ

)2

+ n

(
µ̂− µ
σ

)2

= Q1 +Q2

Thus, we can express it as the sum of two terms, which we call Q1 and Q2:
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∑
i

(
Xi − µ
σ

)2

=
∑
i

(
Xi − µ̂
σ

)2

︸ ︷︷ ︸
Q1

+ n

(
µ̂− µ
σ

)2

︸ ︷︷ ︸
Q2

(A.3)

The rank of Q2 is clearly 1 (it is the square of just one linear combination of Normal

random variables). The rank of Q1 is n−1 (it is sum of squares of n linear combinations

of Normal random variables, but they are not independent; µ̂ removes a degree of

freedom).

Therefore, by Cochran's theorem,

Q1 and Q2 are independent (A.4)

∑
i

(
Xi − µ̂
σ

)2

∼ χ2(n− 1) , and (A.5)

n

(
µ̂− µ
σ

)2

∼ χ2(1). (A.6)

Substituting equation A.2 in equation A.3, we �nd that:

∑
i

(
Xi − µ
σ

)2

= (n− 1)
σ̂2

σ2︸ ︷︷ ︸
V

+

(
(µ̂− µ)

√
n

σ

)2

︸ ︷︷ ︸
Z2

For later convenience we have labeled label the terms V and Z2. Thus, it follows

that

V and Z are independent (A.7)

Q1 = V ∼ χ2(n− 1) (A.8)

Q2 = Z2 ∼ χ2(1) (A.9)

And from the de�nition of the Chi-square distribution

Z ∼ N (0, 1) (A.10)

A.0.3.4 The distribution of mean estimator

Since

Z = (µ̂− µ)

√
n

σ
∼ N (0, 1)
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We can compute the probability that an observer is successful for a chosen con�dence

interval

Pr (−α ≤ Z ≤ α) =

∫ +α

−α
N ( x ; 0, 1 )dx

Pr

(
−α ≤ (µ̂− µ)

√
n

σ
≤ α

)
=

∫ +α

−α
N ( x ; 0, 1 )dx

Pr

(
µ− ασ√

n
≤ µ̂ ≤ µ+

ασ√
n

)
=

∫ +α

−α
N ( x ; 0, 1 )dx

Letting

α =
d
√
n

2σ

We see that

Pr

(
µ− d

2
≤ µ̂ ≤ µ+

d

2

)
=

∫ + d
√
n

2σ

− d
√
n

2σ

N ( x ; 0, 1 )dx

=

∫ + d
2

− d
2

N ( x ; 0,
σ√
n

)dx (A.11)

That is, we can compute the probability of the sample mean falling in a con�dence

interval of width d around the true mean (equation A.11).

A.0.3.5 Student's t distribution

The butter�y cating paradigm requires not only that we estimate the mean, but also

that we report a con�dence interval around it. Unfortunately the ideal observer can not

utilise equation A.11 as this would require knoweldge of the true variance σ2. In order to

substitute the sample varianceσ̂2 we reply on the de�nition of Student's t distribution.
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For independent Z and V , where Z ∼ N (0, 1) and V ∼ χ2(ν),

We can form the ratio:

Y =
Z√
V/ν

(A.12)

Y ∼ T (ν), i.e. the probability distribution of the ratio is Student's t-distribution

with ν degrees of freedom Johnson et al. (1995)

Where we use the standard de�nitions:

T ( t ; ν ) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

t2

ν

)− ν+1
2

, and

Γ( t ; z ) =

∫ ∞
0

tz−1e−t dt .

A.0.3.6 Estimating the distribution of the mean estimator

We previously introduced V and Z (equations A.8 and A.10), to derive the distribution

of the sample mean (equation A.1).

By appropriately setting ν = (n − 1) in A.12, it follows from the de�nition of

Student's t distribution that

Y =
Z√

V/(n− 1)

∼ T (n− 1)

Substituting equations A.8 and A.10 we see that

Y =
Z√

V/(n− 1)

=
(µ̂− µ)

√
n
σ√

(n−1)
(n−1)

σ̂2

σ2

=
√
n

(
µ̂− µ
σ̂

)
Compare this to our de�nition of Z

Z =
√
n

(
µ̂− µ
σ

)
Note that Y di�ers from Z in that the exact standard deviation σ2 is replaced by

the sample standard deviation σ̂2.
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In an identical manner as before, we can therefore compute probabilities over a given

con�dence interval

Pr (−α ≤ Y ≤ α) =

∫ +α

−α
T ( x ; n− 1 )dx

Pr

(
−α ≤ (µ̂− µ)

√
n

σ̂
≤ α

)
=

∫ +α

−α
T ( x ; n− 1 )dx

Pr

(
µ− ασ̂√

n
≤ µ̂ ≤ µ+

ασ̂√
n

)
=

∫ +α

−α
T ( x ; n− 1 )dx (A.13)

Again, letting

α =
d
√
n

2σ̂

We see that

Pr

(
µ− d

2
≤ µ̂ ≤ µ+

d

2

)
=

∫ + d
√
n

2σ̂

− d
√
n

2σ̂

T ( x ; n− 1 )dx

= 2

∫ d
√
n

2σ̂

0
T ( x ; n− 1 )dx− 1 (A.14)

A.0.3.7 Application

Based on equation A.14, the ideal observer can determine the optimal con�dence interval

d, such that for a given probability p,

Pr

(
µ− d

2
≤ µ̂ ≤ µ+

d

2

)
= p

Utilising the cumulative t-distribution C , where

C( a ; n ) =

∫ a

0
T ( x ; n )dx

We can rewrite equation A.14 as

p = 2C
(
d
√
n

2σ̂
; n− 1

)
− 1

Denoting the inverse cumulative t distribution C−1, we see that

d =
2σ̂2C−1

(
p+1
2 ; n− 1

)
√
n

(A.15)

For any given n, µ and σ, we can vary p and visualise the optimal d graphically (see

�gure A.2).
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Figure A.2: Optimal Con�dence Window. The con�dence window required to achieve a

given target probability, for a number of samples n and underlying variance σ2.

A.0.3.8 Conclusion

Equipped with evidence available from a sequence of samples, in particular the sample

mean and variance, the ideal observer can calculate the con�dence interval around

their estimate of the mean. This con�dence interval can be chosen to achieve a given

probability of success at the task. Since the expected reward in the butter�y-catching

task requires the trade-o� of between the probability of success and the score obtained

for a given con�dence interval (see chapter 4 and below), the ideal observer can maximise

their expected reward.

A.0.4 Score functions

A.0.4.1 Motivation

In the butter�y-catching paradigm, subjects are rewarded for accuracy in each trial.

The purpose of this is to motivate them and maintain their full attention throughout.

As we are interested not only in success at the task but also accurate estimation of

the uncertainty of the stimuli, we reward this aspect of the task too. We consider two

plausible score functions, designed to encourage subjects to represent their perceived

uncertainty in the stimuli.

A.0.4.2 Score Functions

On a given trial subjects position their �ngers to indicate their estimate of the mean,

x, and a con�dence interval around the mean of width w. We reward them with a score

S(x,w, µ, σ), that depends on the true mean of the cues, µ, and the uncertainty variable

σ.
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S (x,w, µ, σ) =

{
f(w, σ) if µ− w

2 ≤ x ≤ µ+ w
2

0 otherwise

where f is the score function.

Note that the uncertainty variable σ is intended to describe the uncertainty in the

distribution of the cues.

We consider 2 possibilities for the functional form of the score function f , illustrated

in �gure A.3. These are:

• Uncertainty-invariant score function (UI);

• Bounded reciprocal square score function (BR);

The expected score can be computed by multiplying the probability of success for a

given width w, by the score attained for that width S(w), i.e.

E(S|w, σ) =

∫ +∞

−∞
Pr(µ̂ = x|w, σ) · S (x,w, µ, σ) dx

= Pr
(
µ− w

2
≤ µ̂ ≤ µ+

w

2

)
· f(w, d)

= f(w, σ) ·
∫ + d

2

− d
2

N ( x ; 0,
σ√
n

)dx

The two score functions can be expressed in their functional form:

SUI : f(w, σ) = w−0.709

SBR : f(w, σ) =

{
10 if w ≤ σ

10 · ( σw )2 otherwise

In both cases, the peak of the expected reward is achieved when w = σ. This is

achieved by the index -0.709 in the UI method, and by the discontinuity in the BR

method. This is illustrated in �gure A.3. The advantage of the UI method is that it

uses a score function that does not depend on the ideal-observer uncertainty (and so

the subject's choice is unbiased by the magnitude of the score. The advantage of the

BR method is that the aim of the task is much clearer to subjects - they are to aim to

maximise reward, which amounts to estimating σ.

A.0.4.3 Levels of Uncertainty

In using the BR method we must choose an appropriate quantity σ to capture the

uncertainty. This can actually describe a number of properties of the system in question:
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Figure A.3: Choice of score function. We consider, from top to bottom, Uncertainty-

invariant (UI); and Bounded reciprocal square (BR); score functions (left). Note that the

UI score function is the same for all values of σ, whereas BR is di�erent (show by separate

curves for σ = 1, 2 and 3.) Both score functions are designed to result in an expected score,

E(S|w, σ), that peaks when w = σ, (right) indicated by the dashed lines. The probability

of success for a given width is the same regardless of score function (middle).

1. The distribution of the deviation of the sample mean of the cues from the true

mean (which we will call the stimulus uncertainty)

2. The uncertainty of the cues as they are perceived by the subjects (which we will

call the subjective uncertainty)

3. The distribution of behavioural responses that are exhibited by the subject (which

we will call the objective uncertainty)

Essentially these can be considered as three steps of the perceptual pipeline: the stim-

ulus, sensory perception of the stimulus and the behavioural response. As each of these

stages adds its own level of noise, we are interested to ask: which statistical inform-

ation is used by subjects to form their estimate of their con�dence in their decision?

[Obviously they do not have access to the true stimulus uncertainty ].

In the task our choice of σ determines the target towards which subjects aim. One

could argue that this should therefore be set to the stimulus uncertainty, as this captures

the best possible performance an ideal-observer might achieve. However, in practice this

level of performance is particularly di�cult to achieve - especially since this uncertainty

approaches zero as the number of cues increases. In the interest of keeping subjects

motivated, we decided that the target should be based on the objective uncertainty

(obtained during independent training trails, see chapter 4).
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