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Abstract 

A new conceptual model of fronto-striatal interaction is described. It is suggested that frontal 

cortex encodes environmental cues that are used in the preparation of sequential motor 

programs as states of a temporally changing control signal. It is proposed that the basal 

ganglia use this information to facilitate desired motor patterns selectively and to inhibit 

competing representations. Similarity relations between states of the control signal are 

assumed to cause interference amongst motor patterns. In the model, reduction of dopamine 

causes both a degradation in the quality of the control signal and a failure to resolve 

competition at output. In computer simulation studies the properties and behaviour of two 

contrasting connectionist architectures are explored as implementations of the ideas above. 

The results of damaging each model were investigated to model the reduction of dopamine 

(as occurs in Parkinson's disease) during the performance of learned movement sequences. In 

one network the sequential behaviour is driven by recurrent connections from the output of a 

'forward model'. The specific effects of damaging the forward model were investigated. A 

dynamical systems analysis of the patterns of motor interference both in the network and in 

Parkinson's disease is provided. In the other architecture that is explored, the control signal is 

composed of multiple endogenous oscillators. This model focuses on the interaction between 

the control signal and an explicit competitive action selection· process. It is shown that 

degrading either the quality of the control signal or disrupting the competitive processing can 

yield a variety of deficits that model parkinsonian impairments. An explicit computational 

account of how cortical and basal ganglia systems interact to subserve both sequencing and 

selection functions in normal behaviour is developed and it is shown how reduction of 

available dopamine gives rise to the particular pattern of deficits observed in Parkinson's 

disease. 
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I: Introduction 

CHAPTER ONE--

Introduction 

1.1 Aims and assumptions of the thesis 

The primary aim of this thesis is to develop a computational approach to understand the role 

of the basal ganglia and associated neural circuits in the control of action. A further aim is to 

increase understanding of disruption to processing mechanisms in motor disorders 

associated with basal ganglia dysfunction, in particular Parkinson's disease (PD). A 

supplementary aim is to contribute to existing theories of the control of normal movement. 

Much of the behavioural research on PD demo_nstrates that the disorder primarily 

affects the initiation and feedforward control of goal-directed movements. Additionally, 

there is substantial evidence to show that there is a particular deficit in the planning and 

control of sequential actions. These features of the disorder have led theorists to suggest that 

the processes involved in motor programming are dysfunctional in PD (see Alexander, 

Delong & Crutcher, 1992). This in turn has led to a general view that the role of the basal 

ganglia in normal action control is the selection and organisation of sequential 'motor 

programs' (e.g. Marsden, 1982; Mink & Thach, 1993). 

Although the notion of a motor program has served motor control theory as a useful 

metaphor for many years, the framework which it represents is based on a computer 

analogy of human information processing and cognitive representation that has been largely 

superceded in other areas of psychology. This analogy has failed to make contact with 

known features of biological organisation. In addition it offers few computational level 

insights into the nature of motor representations and processing mechanisms, or how they 

are disrupted when the system is damaged as it is in movement disorders. 

A different approach which has recently gained much support in the motor control 

field is the 'action systems' approach (Kugler et al., 1982; Saltzman and Kelso, 1987). 
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This more ecological approach seeks to characterise the rules governing biological 

movements in terms of the structure and organisation of the environment. In particular 

these researchers have drawn on principles from dynamical systems mathematics to suggest 

that motor patterns reflect the dynamics of interacting sets of neural oscillators that fall into 

stable cyclic patterns. Such stable patterns, or attractors, are thought to be the central 

representation of the action as it is used in cognitive approaches, and are referred to as 

coordinative structures. The precise nature of the attractor depends on the task requirements 

and the structure of the environment. 

Whilst this is an interesting and potentially fruitful approach, which avoids many of 

the problems with assuming an executive internal controller that plague standard 

information processing approaches, and can be reconciled with principles of biological 

organisation, there has been no computational modelling work to suggest how these 

dynamic representations or control structures may be affected in motor disorders. 

Despite the many differences between the two perspectives on motor control theory 

that have been outlined above, a common goal of both is to characterise the nature of 

control structures which permit the internal initiation and feedforward execution of complex 

goal-directed movements. An alternative approach lies in connectionist modelling. A 

connectionist model can be viewed as an information processing account of a system which 

is specified in enough detail to explore explicit, constrained assumptions about the nature of 

input and output representations and to impose constraints on the process of 

transformation. The internal representations in a connectionist network are developed 

autonomously by the model. This allows the observer to examine general properties of the 

system's solution to a given information processing problem. In order to develop 

connectionist networks that are relevant to modelling movement control or sequential 

behaviour, a basic requirement is that the network shoul.d be capable of generating 

behaviour that changes over time. There are two broad categories of networks which 

display this property: recurrent networks and networks with endogenous dynamics. The 

properties of both of these types of network are explored in this thesis. 
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The remainder of this chapter serves as an introduction to the key issues that provide 

the-background to the developmenfof this thesis. 

1.2 The brain in behaYiour 

The general notion that brain systems have a functional role in controlling behaviour is not 

in the least contentious, but precisely how a given neural system is involved in the control 

of a particular behavioural function is, by contrast, often highly controversial and difficult 

to determine. In general, the more peripheral structures such as the spinal cord and the 

retina, which have direct sensory and/or motor functions, are the easiest to define and 

consequently are the best studied systems. Similarly, some cortical regions which 

demonstrate consistent responses to electrical stimulation and which are closely linked with 

peripheral organs have been assigned functional roles with some confidence ( e.g. primary 

motor and visual cortical regions). But because neural systems are not independent, and 

because many central brain structures form part of more than one system, strict localisation 

of function is not possible for the majority of brain structures. 

In these cases inferential methods have to be used. In cognitive neuropsychology, 

patients suffering from localised brain damage are studied to assess the behavioural deficits 

which have been incurred. This method allows the inference to be made that the damaged 

brain structure is involved in a particular task, although it gives very little indication of how 

the structure participates in normal functioning. For example, the study of H.M. (an 

amnesia patient suffering from hippocampal damage) revealed the link between the 

hippocampus and memory, and provided clues about the nature of memory systems. But 

this type of research gives little information about how the -hippocampus does its job of 

storing or retrieving memories in the normal case (see Dudai, 1989). 

The information provided by neuropsychology can be enhanced by the development 

of animal models of human disorders in order to examine the range and nature of deficits 

produced when the site and extent of lesions are varied. Recently, more sophisticated and 

specific inferential methods have been developed. For example, regional cerebral blood 

flow studies (rCBF), using PET or MRI technology illuminate the brain regions that are 
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active when a behavioural task is being performed. Single cell recordings help to associate 

the activity of.individual cells with overt behavioural activity. 

In spite of these advances, comparatively little progress has been made in 

understanding the behavioural function of central systems of the brain. Central systems 

have been defined as "cells and circuits that mediate functions necessary for the coordinated 

behaviour of the whole organism", (Shepherd, 1988, p.488). Included in this definition are 

systems in which sensory and motor functions overlap, that have no direct connection to 

peripheral sensory or motor organs, that participate in multiple and complex behavioural 

functions or in modulating the activity of other brain areas and that are defined by the 

neurotransmitters that are employed. A typical example of such a system is the nigro-striatal 

dopamine system and associated cortical - basal ganglia circuits on which we focus here. 

1.3 Dopamine and diseases of the basal ganglia 

The basal ganglia comprise a group of nuclei that form part of the basal forebrain and 

midbrain. Basal ganglia structures are typical of a central system as described above. A 

simplified schematic overview of the anatomical connections of the basal ganglia is 

provided in figure 1.1. 

Figure 1.1. A schematic overview of the basal ganglia and connections 
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They do not receive direct input from sensory systems, nor do they project directly to 

peripheral motor systems. Rather, all of their input is derived from multiple cortical 

regions. Two such regions are the supplementary motor area (SMA) and the prefrontal 

cortex (PFC). Output is directed both to the brainstem, via the superior colliculus (SC), and 

to thalamic nuclei (TH), which in turn have diffuse connections to many cortical regions 

(e.g. SMA). 

The primary site of cortical projections to the basal ganglia is the neostriatum (NS), 

although additional input is received by the subthalamic nucleus (not shown in figure 1.1). 

These structures project in turn to the globus pallidus (GP) and substantia nigra pars 

reticulata (SN). The internal segment of the globus pallidus and the SN collectively form 

the output structures of the basal ganglia. Additional input to the striatum is provided by the 

substantia nigra pars compacta (SNc). SNc cells are dopaminergic and this is the origin of 

the nigro-striatal dopamine system. The impression, then is of a complex system which 

may be implicated in multiple behavioural functions, although it is in the control of 

movement that the effects of basal ganglia damage are most commonly observed and most 

dramatic (Kolb & Whishaw, 1990). 

There is a number of motor disorders that can arise from dysfunction of the basal 

ganglia circuitry (Mitchell 1990; Albin, Young & Penney, 1989). The most prominent 

idiopathic human disorders are Parkinson's disease (PD) and Huntingdon's chorea (HC). 

Of the two, PD is the more common, estimated to affect between 0.1 % and 1 % of the 

population, and has received more research attention. Whereas HC appears to have a 

genetic basis and primarily affects striatal neurons and the operation of the STN, PD results 

from the progressive degeneration of dopaminergic cells in the SNc and the consequent 

reduction of dopamine in the striatum. The cause of the cell death is unknown. 

The movement deficits that occur in the two disorders contrast markedly. PD can be 

broadly defined as a hypokinesia and is characterised by tremor, rigidity, slowness of 

movement and an inability to initiate voluntary actions. Huntingdon's Chorea (HC), in 

contrast, is a hyperkinetic disorder involving inappropriate and excessive movements. 

Pharmacologically as well as behaviourally hyperkinesias can be viewed as the opposite of 
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hypokinesias. Whereas hyperkinetic disorders are improved by the administration of 

dopamine D2 receptor antagonists, and aggravated by dopamine agonists, the reverse is 

true for hypokinesias such as PD (Albin, Penney & Young, 1989). 

From the above evidence it is clear that dopamine plays a crucial role both in 

maintaining the normal function of the cortico-basal ganglia circuitry and consequently in 

the normal control of movement. The current outstanding goal of basal ganglia research is 

to explain what the functional or computational role of dopamine is in the context of basal 

ganglia operation and what the computational role of the basal ganglia is in maintaining 

normal behaviour. 

1.4 Hypotheses of basal ganglia function 

The long association between the basal ganglia and motor disorders has tended to favour 

theories postulating a direct motor function for the basal ganglia (e.g. Denny-Brown, 

1962). In fact, a number of non-motor and cognitive deficits are exhibited by patients with 

basal ganglia dysfunction, but these have been more difficult to link directly with basal 

ganglia structures, as opposed to frontal cortical areas which are closely linked with the 

striatum and become damaged as the disease progresses (Kolb & Whishaw, 1990). Some 

recent models have suggested roles for the basal ganglia in procedural memory (e.g. St. 

Cyr & Taylor, 1992) and selective attention (Jackson & Houghton, 1995). 

Most of the motor hypotheses of basal ganglia function have been derived to some 

extent from the deficits exhibited in motor disorders, in particular PD. These have included 

hypotheses that the basal ganglia are preferentially involved in slow movements, in making 

postural adjustments, in the initiation and preparation of movement (see Mink & Thach, 

1991a). For the most part, such hypotheses involve the suggestion that the basal ganglia 

play some part in the process of feedforward 'motor programming'. 

Some investigators (e.g. Grace, 1983) have argued that the basal ganglia are 

involved in the "maintenance of stable posture" (cf. also Bronstein, Hood, Gresty & 

Panagi, 1990), or the integration of proprioceptive inputs (Martin, 1967). Swerdlow and 

Koob ( 1987) have argued that the cortico-striato-pallido-thalamic loop is involved in 
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"sequence switching" and in making use of appropriate contextual information. Other 

hypotheses have focused on the role of the basal ganglia in assembling actual motor 

sequences (Marsden, 1987). Precise claims vary, but the general claim that motor programs 

are, in some way, facilitated or suppressed by the basal ganglia is widespread. 

Several researchers have, in contrast, emphasised a possible predictive role for basal 

ganglia circuitry. Viallet, Trouche, Beaubaton, Legallet and Khalil (1986) argue that the 

basal ganglia are involved in the feedforward control of movement sequences. Teuber 

(1976) argued that the basal ganglia are somehow involved in assessing the possible 

consequences of movements prior to their execution. Thus, he suggests that the output of 

the basal ganglia to other regions can "preset those other regions for the consequences of 

concurrent or impending actions.... preparing sensory systems for the kind of input that 

will be produced by the execution of various efferent actions." (p. 163). Nauta (1971) 

adopts a similar approach and uses it to account for affective dysfunction seen following 

some types of basal ganglia pathology. Flowers ( 1978) found that Parkinsonian patients 

were less able than controls to use predictive information in a tracking task (following a 

sinusoidal wave form), and concluded that the basal ganglia are involved in dynamic 

internal modelling of spontaneous movements thus implementing a system for internal 

predictive control. 

Typically, hypotheses of the type reviewed above are not expressed in any more 

depth than to suggest that the basal ganglia are 'involved in' some broadly defined process 

or other. Furthermore they make different underlying assumptions about what the 

processes subsumed within motor programming are. 

A major obstacle for theories of basal function in the motor domain is that the 

computational processes governing the initiation and execution of voluntary goal-directed 

movements remain poorly understood (Alexander, Delong & Crutcher, 1992; Jeannerod, 

1988). In particular, it is far from clear that the notion of a motor program and the 

associated 'box and line' diagrams of the control flow of processes in neural systems 

constitute a fruitful way to enable theoretical development. 
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1.5 Connectionist models 

An alternative.to serial or analytic approaches to modelling motor processing in biological 

systems is provided by connectionist models, also known as parallel distributed processing 

(PDP) models or neural networks. These network models have, in recent years, been 

developed to provide a methodology for modelling computational processes in cognitive 

behaviour. The principles upon which these models rely differ in important ways from the 

symbolic approaches to cognitive modelling which characterise traditional motor 

programming theories. 

Connectionist models are composed of a number of simple computational units or 

nodes which are connected together, usually in layers, to form a network architecture. Each 

individual unit has an activation value which is computed as a function of the input it 

receives from other units and the weight on the connection from each incoming unit. The 

activation level of a unit is also known as its state, and the state of all the units in a given 

network determine its instantaneous location in a multidimensional state space. Learning in 

such networks is accomplished by altering the weights on the connections, thus changing 

the location of the network in state space. 

A variety of learning mechanisms may be used, the particular method used being 

determined largely by the task the network is required to solve. Hebbian associative 

learning is one of the simplest methods for associating a set of input patterns with a 

corresponding set of output patterns. The basic form of Hebb's rule is that whenever two 

units that are joined by a connection are concurrently active, the connection weight is altered 

to increase the strength of the connection. Another commonly used method, especially in 

self-organising networks is competitive learning in which the units in a response layer 

compete via lateral inhibitory connections to represent a particular pattern presented at the 

input layer. Competitive networks have proved especially useful in modelling feature 

detection in neural systems. 

A third class of learning rule is gradient descent learning. The best studied example 

of this is the backpropagation rule (Rumelhart, Hinton & Williams 1986a). 

Backpropagation learning is used in combination with multi-layer feedforward networks 
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composed of units with a non-linear activation function. Learning proceeds by clamping 

activation vallles on a set of units designated as input units. Activation is then propagated 

forwards through the network to a set of output units. The output pattern is then compared 

with a target output pattern to obtain an error score for each output unit. This error is then 

propagated backwards through the network to obtain an error for each unit at every layer in 

the network. This process is repeated for each input pattern in the training set and the 

resulting summed squared error scores are used to change the weights on the connections to 

each layer. The entire proced_ure is repeated until the summed squared error reduces below 

some criterion value. In effect, over a number of iterations of learning, the weights, which 

are intially set to small random values, are configured such that boundaries in state space 

can be formed between the input-output associations that are to be discriminated. The 

inclusion of a layer of nonlinear hidden units interposed between the input and output layers 

is particularly important because it allows nonlinear discrimination boundaries to be 

formed. The patterns of activity that develop over the hidden units in a trained network may 

be thought of as internal representations which are useful in performing the task. This type 

of network has been used to model a variety of cognitive processes. 

A number of general features of connectionist networks has prompted their 

widespread use as a tool for developing computational models of cognitive function, 

especially where researchers are explicitly concerned with biological constraints on 

computational processing that arise from the underlying organisation of neural systems. 

• The internal representations that are assumed to exist in theories built on the behaviour 

of connectionist models are restricted to those that can be formed by the interactive 

collaboration of a large number of relatively simple computational elements. Even if the 

analogy with processing in neural circuits is highly oversimplified, as some critics have 

suggested, it is qualitatively different from assuming symbolic representations with 

implicit or 'hidden' properties. 

• The use of parallel processing in such networks is much closer to brain-style processing 

than is achieved either by analogy with the operation of a digital computer or the 

methods used to control the flow of information in sequential computer programs. In 
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particular it avoids assumrng the existence of biologically implausible executive 

"".:'controllers .. 

• The incorporation of learning mechanisms in networks allows researchers to investigate 

the computational demands of different tasks and to discover the rules that a network 

will use to generate a solution, rather than assuming that we know what those rules are 

a priori. 

The above features of connectionist models lead to a number of properties which reflect 

characteristics of human information processing. These include: graceful degradation of 

performance in response to localised damage, the ability to generalise from exemplars to 

categories, and simultaneous satisfaction of multiple constraints (Rumelhart et al., 1986). 

1.6 Using connectionist networks to model damage to neural systems 

In view of the number of useful properties of connectionist networks in modelling 

functional or systems-level features of the operation of neural systems, they are natural 

candidates for modelling functional impairments incurred by nervous system damage or 

dysfunction. There are several ways in which the effects of damage in connectionist 

networks can be explored in a w_ay that corresponds to damage in biological systems. For 

example, noise can be added to the activations of units across the network or restricted to a 

particular layer to simulate processing disruptions in the presence of noisy or incomplete 

inputs. Noise can also be added to the weights on connections to simulate retriev~ 

impairments in memory tasks. In addition connections may be lesioned or units removed in 

order to model localised damage to the system. Qualitative changes in the behaviour of the 

model may then be examined, often with unexpected or counter-intuitive results. 

1.7 Thesis summary 

In this chapter we have set out the principal problems with which this thesis is concerned. 

In particular we have highlighted the limitations of current information processing models 

of motor control in providing an explicit computational level description of the processes 

involved in action selection and motor sequencing. We have further argued that an explicit 
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account will be necessary to account for the disordered motor behaviour in patients with 

dysfunction of the basal ganglia. The development and exploration of connectionist models 

that can account for the motor impairments in Parkinson's disease and also suggest explicit 

information processing mechanisms of the basal ganglia is the goal of this thesis. The 

remainder of the thesis is organised as follows: 

• CHAPTER 2 contains a review of motor disorders with a particular emphasis on 

parkinsonian impairments in feedforward motor control, action selection and 

sequential behaviour. A review of neural mechanisms of the basal ganglia and 

cortex tailored around the same three themes follows. 

• CHAPTER 3 reviews current psychological approaches to feedforward motor 

control and, subsequently, connectionist approaches to modelling sequential 

behaviour and motor programming. 

• CHAPTER 4 presents a conceptual model of the involvement of basal ganglia 

and prefrontal cortical circuits in ·the control of feedforward movement. Here we 

put forward an argument, motivated in part by ecological considerations, that the 

basal ganglia could have become adapted in the first instance to control action 

selection and initiation. We then argue that by interaction with cortical circuits the 

same mechanisms can provide a basis for the control of sequential action. This 

chapter embodies the hypotheses which are explored in subsequent chapters. 

• CHAPTER 5 presents an approach to modelling parkinsonian motor impairments 

using the Jordan ( 1990) recurrent forward model network. Simulations are 

reported in which a technique for simulating dopamine depletion in feedforward 

connectionist networks is employed in the recurrent network in order to examine 

how the model responds to damage and whether it can account for patterns of 

disruption in the control of sequential movement in Parkinson's disease. 

• CHAPTER 6 addresses some of the limitations of the standard Jordan approach. 

A modified version of the model is implemented which incorporates 

McClelland's (1979) cascade mechanism in an attempt to introduce a temporal 

dimension to the operation of the model. We also examine alternative methods 
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for disrupting the operation of the model which are more in keeping with the 

systems-level focus employed here. A third strand of this chapter explores the 

properties of the attractors formed by recurrent networks in modelling the 

representation of sequential actions and to investigate how they are altered when 

the system is damaged. A dynamical systems interpretation of motor 

programming and patterns of impairment in Parkinson's disease is proposed in 

this chapter. The simulations illustrate these ideas using the cascaded Jordan 

sequential network. 

• CHAPTER 7 contains further simulations with a simplified version of the Jordan 

network to examine how the model responds to damage when there are two 

effectors and illustrates the need for additional inhibitory mechanisms. Criticisms 

of the use of recurrent connections in the Jordan architecture are addressed and a 

non-recurrent version of the model is tested using . an endogenous oscillatory 

control signal. 

• CHAPTER 8. An entirely different computational architecture which is based on 

a complex oscillatory control signal is introduced. This is the oscillator based 

associative recall model - (OSCAR). We show by simulation that this architecture 

is capable of modelling sequential behaviour without the complexity inherent in 

Jordan networks and, we explore properties of the contextual control signal. 

• CHAPTER 9. In this chapter we return to the theoretical foundations 

encapsulated in the conceptual model of chapter four to examine the hypoth~ses 

using the OSCAR model. We show by simulation how the contextual control 

signal and inhibitory "action selection" m~hanisms interact to produce a variety 

of behavioural disruptions when the system is damaged. We discuss the results 

of these simulations in relation to the original hypotheses. 

• CHAPTER 10. General Discussion. 
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CHAPTER TWO 

Motor Disorders and Basal Ganglia 

Function 

13 

The purpose of this chapter is, first, to provide an account of the motor impairments which 

occur in Parkinson's disease, and second, to present an overview of relevant basal ganglia 

neurobiology. These strands are brought together in a discussion of constraints on 

computational models of basal ganglia function and dysfunction in the control of action. In 

each case the material is organised around the three linked themes outlined in chapter 1. 

These are i) feedforward control and motor planning, ii) action selection, and iii) the control 

of sequential behaviour. 

Review of motor disorders literature 

There are several motor disorders in which the primary site of dysfunction is the basal 

ganglia. The most common and best studied is Parkinson's disease which results from the 

degeneration of dopaminergic cells projecting to the striatum. In Huntingdon's disease, the 

other main idiopathic motor disorder, certain clusters of striatal cells degenerate. In 

addition, lesions to other parts of the basal ganglia in primates yield a variety of abnormal 

movements (Mitchell 1990). 

In this chapter we focus primarily on the motor deficits that occur in Parkinson's 

disease (PD). However we also introduce evidence from other disorders and lesioning 

studies where it provides useful complementary or contrasting evidence regarding basal 

ganglia motor function in normal movements. 
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2.1 Impairments of feedforward control in PD 

In this section we review evidence that is relevant to the hypothesis that the type of motor 

processing that is disrupted in PD is feedforward control. Some early studies suggested that 

the basal ganglia preferentially control slow visually guided movements (Kornhuber, 

1971). In contradiction of this view Hallet and Khoshbin (1980) found that ballistic limb 

movements were affected to a much greater degree than slow 'ramp' movements. 

Consequently they suggested that PD primarily causes a deficit in feedforward control and 

in the programming of movements. The findings of Hallet and Khoshbin have since been 

corroborated by lesioning studies involving ablation of the globus pallidus, (GP). These 

found that ballistic (feedforward) movements were affected but visually guided movements 

were not (Hore et al., 1977; Mink & Thach, 1991a). 

In the sub-sections below we discuss four main threads of evidence that have been 

used by researchers to suggest that mechanisms of feedforward motor programming are 

deficient in PD. 

2.1.l lncreased spatial errors when visual feedback is removed 

A variety of studies have reported detrimental performance in tracking and pointing tasks 

when visual feedback of either the hand or the target is temporarily removed (Flowers, 

1976; Flowers, 1978; Viallet et al., 1985; Viallet et al., 1987). In these studies the spatial 

errors committed by the patient group are typically relatively small when visual feedback is 

available but increase dramatically when it is absent. The type of errors reported in the 

above studies when the feedback was removed were that the patient groups consistently 

made movements which would 'undershoot' towards the target. Undershooting has also 

found to be characteristic of saccadic eye movements in PD (Bronstein & Kennard, 1985).1 

A variety of hypotheses have been put forward to account for the observed 

undershooting in PD patients when visual feedback is removed, however they largely fall 

into two main groups. One hypothesis is that some mechanisms crucial to the internal 

planning and programming of feedforward movements is disrupted (e.g. Cooke et al., 

I It should be noted, however, that it has also been found that parkinsonian movements are inherently more 
variable than normals (Sheridan et al., 1987; Sheridan and Flowers, 1989). 
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1978). For example it may be that internal representations of sensory or environmental 

variables affecting task performance are impaired or that the required force and amplitude 

parameters of the movement cannot be accurately estimated in advance. The second 

hypothesis is that defective proprioceptive mechanisms force the patient groups to rely more 

heavily on visual feedback to control their movements. Evidence favouring this position is 

presented by Viallet et al. (1986) and Viallet et al. (1987). Klockgether and Dichgans 

(1994) present a study in which they systematically test the effects of removing visual 

feedback of the moving limb and of the target during pointing movements. They found that 

the Parkinsonian group only exhibited profound movement slowing and undershooting 

when visual feedback of the moving hand was prevented, but not when the target location 

was occluded. These results prompt them to conclude that proprioceptive feedback 

mechanisms are impaired in PD. However, other interpretations of this data are possible. 

For example, it was suggested by Sheridan and Flowers ( 1989) that an internal predictive 

model of the subjects own movements may be disrupted. Hypotheses of this type would 

account for the same findings within a feedforward control and motor programming 

framework. 

The issues surrounding what processes properly belong to feedforward or feedback 

modes of control arc not at all as clear as is sometimes suggested in motor control theory 

(see Cruse et al. 1990). For example it is argued by Viallet et al. (1986) that feedforward 

control requires the integration of proprioceptive and visual information prior to movement 

initiation. Thus they attempt to make sense of both the over-reliance of PD patients on 

visual information and findings that open-loop or 'ballistic' movements are more affected in 

PD by suggesting that "disturbed proprioceptive information concerning the terminal hand 

position might .. lead to an underestimation of the target location." They further suggest 

that during a sequence of movements this processing deficit may account for ever 

increasing undershooting of the target as the sequence progresses. 

Single cell recordings of pallidal neurons in primates during several different 

movement conditions by Mink and Thach 1991 ( a) provide evidence that the basal ganglia 

do not contribute exclusively to a single mode of control although the activation of pallidal 
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neurons correlated much better with ballistic movements than with closed-loop ramp 

movements. Further lesioning experiments (Mink & Thach, 1991 b) demonstrated that 

pallidal inactivation primarily affected open-loop movements which depend to a much lesser 

extent on feedback processes. This data is difficult to accomodate in an account of 

parkinsonian bradykinesia based solely on non-visual feedback mechanisms. 

2.1.2 Inability to prepare movements in advance of initiation 

The hypothesis that the basal ganglia are involved in movement pre-programming has also 

been examined by assessing the extent to which patients can make use of predictive 

information from the environment to make anticipatory movements in both reaction time 

and visuomotor tracking tasks. Studies by Bloxham et al., (1984), Jahanshahi et al., 

(1992) and Viallet et al., (1987) examined simple reaction time (SRT) in PD patients. All 

found that SRT was significantly slower in the patient group than in age matched control 

subjects. In an SRT task all the information required to prepare a response fully is available 

in advance. Because SRT is slowed in PD, it is assumed that the response cannot be pre­

programmed adequately. This in tum has led to the view that PD patients' cannot make use 

of advance information to prepare their actions. Additional studies have reported an inability 

in PD to make use of advance information in predictive tracking tasks, notably Flowers, 

(1978). 

Studies by Day et al. (1984) and Stelmach et al. (1986) have, however, produced 

contradictory results and have reported that PD patients can make use of predictive 

information about task requirements to speed reaction times, although the difference is less 

marked than in normals. Jahanshahi et al., (1992) found that given sufficient time PD's 

could use full or partial precueing information on both SRT and choice reaction time 

(CRT). The authors did find that there was an extra slowness of patients in high 

compatibility uncued CRT condition suggesting that some stage of processing unique to 

this condition is disrupted. 

Whilst the question of the extent to which PD patients can or cannot make use of 

predictable information has not been resolved in behavioural research (see Jennings, 1995), 
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significant advances in relation to this question have recently been made in single cell 

recording studies using primates by Schultz and co-workers. They have found that a 

significant number of striatal neurons exhibit activity immediately prior to an expected 

environmental event which has become predictable through conditioning, (Apicella et al., 

1992). This indicates that striatal activity is associated, at least in part, with anticipatory 

preparation in the context of predictive information. 

2.1.3. The basal ganglia and the Supplementary Motor Area (SMA) 

A further line of evidence which has been used to support the 'planning deficit' view is 

based on neuroanatomical and neurophysiological evidence of the connections between 

basal ganglia structures and the SMA. It is well established that the basal ganglia receives a 

large number of input fibres from the Supplementary Motor Area (SMA), [see fig 1.1]. In 

addition a portion of pallidal output in primates is directed to the SMA, (Schell & Strick, 

1984). Goldberg, (1985) has suggested that the SMA is involved in the planning and 

preparation of movements prior to their initiation. One of his major sources of evidence is 

that electrical stimulation of SMA elicits co-ordinated sequences of miiscle contractions 

rather than isolated contractions. Another is that SMA contains a much higher proportion of 

preparatory or set-related neurons which show sustained activity long before movement 

initiation than either premotor cortex (PMC) or primary motor cortex (MI) (Tanji & Kurata, 

1985). Thus it is assumed that the SMA plays a role in storing or activating higher order 

motor representations. A further finding implicating the SMA-basal ganglia connection in 

programming of a response is that of a reduced SMA bereitsshaftpotential or 'readiness' 

potential in PD (Dick et al., 1989). In particular it is the early part of the evoked potential 

that is diminished and it is this component that correlates best with the onset of behavioural 

activity. 

However, despite the considerable attention that has been devoted to the links 

between basal ganglia processing and SMA activity, the relative importance of this cortical 

area over other premotor areas (such as the ventral premotor area, PMv) and primary motor 

cortex (MI) has been diminished by recent evidence provided by a retrograde labelling 
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study (Hoover & Strick, 1993) that pallidal output is organised into discrete channels which 

project (via thalamic nuclei) to all three of the cortical areas mentioned above. These new 

findings contribute to the growing evidence that the basal ganglia play a complex role in the 

control of movement. Hoover and Strick suggest that the pallidal channel to MI may be 

involved in the direct control of motor output, whereas the premotor channels may be 

concerned with higher order control activities such as internal guidance and movement 

sequencing. 

2.1.4. Muscular co-contraction in PD 

One of the primary clinical symptoms of PD is rigidity in the limbs. The co-activation of 

agonist and antagonist muscles about the joint appear to be responsible for this condition. 

This provides some important insights into the parkinsonian deficit in feedforward control. 

Muscular activation about a single joint during normal voluntary movement is characterised 

by a reciprocal tri-phasic sequence of activation and inhibition in the flexor and extensor 

muscles. The duration, amplitude and relative timing of the first agonist burst (AG 1) and 

the antagonist burst (ANT) are known to be independently variable and controlled by the 

central nervous system without the involvement of feedback mechanisms. This has led 

many motor theorists to view the triphasic pattern in simple movements as the simplest 

example of an adaptive motor program (Jeannerod, 1988; Schmidt, 1988). 

Various studies have compared the EMG profiles of the triphasic pattern in n01mal 

elderly subjects with those of PD subjects in simple ballistic movements, (Berardelli et al., 

1986; Hallet & Khoshbin, 1980; Teasdale, Phillips & Stelmach 1990). These studies have 

found abnormalities in both AG 1 and ANT and in the temporal relationships between the 

two. The first agonist burst was generally small and variable in the PD groups. Instead of 

increasing the duration of AG 1 to perform larger amplitude movements, PD patients exhibit 

multiple small bursts of activity. Yet, in apparent contradiction, it has also been shown that 

PD patients can modulate the amplitude and duration of AG activity when explicitly 

required to do so. Thus the failure to increase agonist activity alone cannot account for the 

undershooting and multiple step movements seen in PD. Benecke et al. (1987) and 
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Stelmach, Teasdale and Phillips (1991) have found abnormal antagonist activity either prior 

to or near the onset of force production. The co-activation of AG and ANT muscles at the 

initiation of voluntary movement may be due to a failure to inhibit antagonist activity 

(Stelmach & Castiello, 1992; Wickens, 1993). Lesion work reported in Mink and Thach, 

( 1991 b) supports the suggestion that motor deficits in PD could be caused by an inability to 

inhibit motor patterns selectively, rather than merely provide sufficient activation to the 

prime mover muscles. Cells in the globus pallidus normally fire constantly and inhibit their 

target structures in the thalamus. When this tonic inhibition was removed by pallidal 

ablation in monkeys, the animals exhibited a maintained state of co-contraction which 

interfered with the initiation of voluntary movements. 

The breakdown of the normal relationship between AG 1 and ANT in PD provides 

evidence not only of a feedforward control impairment in PD, but more specifically 

indicates diminished selective focus in neuromuscular activation and inhibition and a 

disturbance of mechanisms for maintaining normal sequential relationships. This last point 

is corroborated by evidence that the normal sequence of motor unit recruitment is 

disordered in PD (Baker et al., 1992). 

The material reviewed above provides evidence of the complex and multi-faceted 

nature of the involvement of the basal ganglia in movement control and demonstrates the 

difficulty in attempting to assign a clear functional description of the breakdown in motor 

processing that occurs in PD. However throughout the material reviewed above there is a 

thread that strongly indicates that the basal ganglia are involved in motor preparation and 

feedforward control and that a breakdown in this respect contributes to the motor 

impairments in PD. Furthermore this material suggests that there is a breakdown in more 

than one control mechanism in PD. Some of the evidence indicates that a mechanism for 

initiating components of a motor program is disrupted, whilst other evidence suggests that a 

mechanism for extracting task-related information from the environment is disrupted. 

In the following two sections we consider PD deficits in two functions which 

depend on intact feedforward control and use of internal representations. The first is action 

selection and and the second is sequential behaviour. 
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2.2 PD impairments in action selection 

The arrangement of cortico-striato-thalamo-cortical loops which were outlined in chapter 1 

show that the basal ganglia project, via thalamic nuclei, to the SMA and other cortical motor 

areas. This arrangement means that if, as is commonly supposed, these areas of motor 

cortex are responsible for storing learned motor programs and for activating representations 

of various body parts, then a key role for the basal ganglia in movement preparation could 

be to select desired actions by facilitating the appropriate programs maintained at a cortical 

level. In addition it could also be responsible for suppressing competing action tendencies. 

This hypothesis has been expressed in various forms in a number of current models of 

basal ganglia motor function (e.g. Albin, Young & Penney, 1989; Graybiel & Kimura, 

1993; Hikosaka, 1991; Mink & Thach, 1993, Wickens, 1993), and is discussed in more 

depth later in this chapter. 

In this section we examine evidence relating to an action selection deficit in PD's, 

which may arise as a result of a failure to enervate the desired cell populations in motor 

areas of cortex and to inhibit others sufficiently. Independent work investigating the role of 

attention mechanisms in action selection tasks have shown that attention serves to inhibit 

competing action representations during movement preparation, (Tipper, Lortie & Bayliss, 

1992). Work by Jackson and Houghton (1995) has linked the basal ganglia to visual 

attention and has demonstrated attentional impairments in PD. This suggests that action 

selection impairments in PD may be linked to the involvement of the basal ganglia in 

attentional mechanisms that rely on inhibition. 

Most examples of voluntary action in humans are not as simple as the motor tasks 

examined in the studies reported in the previous section. Many actions require the co­

ordinated action of multiple body parts. These have been termed motor synergies 

(Bernstein, 1967) and are examples of complex motor programs. Horstink et al. (1990), 

using bimanual simultaneous motor tasks, found that the ability to share time and shift 

attention is impaired in PD. One task was visually cued the other was not. The authors 

found impaired performance in the PD group when the task was not visually-cued. It was 

concluded that the PD subjects were more impaired when they have· to rely on internal 
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control to shift attention. Two other studies (Cools et al., 1984; Flowers & Robertson, 

1985) have reported an impairment of shifting attentional set in PD's, where set 

corresponds to attentional mechanisms predisposing a subject to consistently select a 

required action from a number of competing alternatives. 

Robertson and Flowers (1990) obtained similar results in a task where PD patients 

were required to learn two sequences of key presses. Although there was no difference in 

performance between patients and controls when tested on either sequence individually, the 

patients made more errors when required to shift between sequences. The authors 

concluded that the patients were impaired in selecting and maintaining motor set.This study 

suggests that there is a link between the processes of action selection and action 

sequencing. In the next section we review impairments in action sequencing in PD. 

2.3 PD impairments in sequential control 

In the previous section we concluded that PD's have difficulty in action selection, 

particularly when selection depends on internal cues. We have already hinted at the 

involvement of the basal ganglia in the programming of sequential movements due to their 

close involvement with the SMA. A number of studies have provided evidence of 

impairments in motor and cognitive sequencing in motor disorders. 

One of the first studies to investigate a selective impairment in sequential tasks 

explicitly was that of Benecke et al. (1987). Building on the work of a previous study 

which found that PD's exhibit an extra impairment when required to perform simultaneous 

bimanual movements, (Benecke et al., 1986), the authors set out to examine whether the 

same was true for sequential movements. In the 1987 study patients and controls were 

given two movements to perform: an elbow flexion, and a squeeze with the hand. The 

patients were slower at performing each movement individually than controls, but when 

they were subsequently asked to perform the two movements rapidly in succession, e .g. 

squeeze then flex or vice versa, the patient group showed a significant extra slowness. The 

extra impairment was attributed both to an increase in movement time for each component 

and to an increased pause before initiating the second movement. 
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In a discussion of these results, the authors suggest that fluent sequential 

performance is achieved by integrating the two motor programs into a higher-order unit of 

behaviour represented by a sequential motor plan. It is the motor plan which co-ordinates 

the switch from one program to the next and times the onset of the second sequence 

element. PD, they suggest, impairs the ability to organise a motor plan and to switch from 

one motor program to the next. Unfortunately they are unable to make explicit suggestions 

about what the process of -organising a sequential motor plan involves, how the switch 

from one element to the next is made in normal behaviour and how these processes might 

be disrupted in PD. These results would clearly provide a deeper insight into the nature of 

sequential impairments in PD if a more explicit theoretical framework were available within 

which they could be interpreted. 

An alternative approach which addresses a similar issue is presented in Flash et al. 

(1992). The aim of this study was to identify the primitive motor elements underlying 

complex sequential tasks such as handwriting or drawing. They found that a unit for a 

complex trajectory, such as a curve or loop is formed from the superposition of temporally 

overlapping simple point-to-point trajectories and that it is preplanrted in advance. 

Furthermore, they suggested that the smoothness and fluidity of a sequence of such 

movements results from the partial time overlap of the separate elements which are planned 

in parallel. The authors then tested the performance of PD and control groups on a task 

which required movement along a simple curved trajectory from an initial position to a 

target location with a specified intermediate via point. The control subjects exhibited smooth 

bell-shaped velocity profiles with only a slight slowing at the location of the via-point. In 

PD subjects, however, the velocity profiles consisted of multiple small peaks and there was 

a pause at the via point location. In view of these abnormalities the authors suggested that 

the ability to plan sequential movements in parallel and to superimpose two elemental 

movement plans is impaired in PD. This suggestion is supported by other studies (Teulings 

& Stelmach, 1992). In a target switching experiment also reported in the Flash et al. (1992) 

paper, PD's failed to modify movements in response to the switch. Instead the hand moved 

all the way to the first target, where it paused before moving to the second target. In some 
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cases "weird loops and returns were observed when responding to the target switch". This 

finding is suggestive of interference between two separately planned movements. 

Another source of information regarding decomposition of complex sequential 

movements in PD comes from the study of reaching and grasping. It has been shown (von 

Hofsten, 1990, 1993) that these two behaviours are coupled at an early stage in 

development in humans (within the first 6 months after birth). Stelmach and Castiello 

(1992) report recent findings of decoupling of the two components in PD. Decoupling is 

inferred from the finding that the onset of the manipulation component is delayed in PD 

patients. Moreover the delay was significantly reduced by the introduction of a visual 

perturbation which enforced a reactive mode of control as opposed to a predictive 

feedforward organisation of the movements. 

Two studies have examined how properties of a sequence such as length and 

complexity affect parkinsonian impairments (Stelmach, Worringham & Strand, 1986; 

Harrington & Haaland, 1991). Both studies showed that sequence length had less impact 

on RT in PD's than in normals, suggesting that the sequence is not prepared as a single 

unit. In a study by Jennings (1995) in which subjects learned two sequent:es in association 

with a unique stimulus cue. Cues were presented to subjects before presentation of the 

signal indicating which sequence was to be performed, thus allowing subjects to prepare a 

response sequence in advance. The predictive cue could, however, be neutral, valid or 

invalid thus in some circumstances causing preparation of the wrong sequence. PDs 

showed a similar cost in RT to controls when the first element of each sequence differed, 

but not when the first element was the same and the second element differed. This 

demonstrates that the PD group only prepared the first key press in advance and not the 

entire sequence. 

The studies reviewed above highlight some important points about parkinsonian 

impairment in the control of sequences. 

1 . There is considerable evidence to support the suggestion that there is a problem with 

sequencing of actions in PD over and above those which affect single movements. Yet 
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even in simple single-joint movements there is a breakdown in the normal sequential 

relationships of muscle activation leading to coactivation of opposing muscle groups. 

2. Some of the studies show that when a sequence is composed of more than one 

elementary unit of behaviour, PD impairs the ability to transfer from one sequence 

element to the next. This deficit is particularly noticeable for later components of the 

sequence where the locus of control is entirely internal and there is no external cue to 

aid selection. This deficit may be accounted for by a failure to inhibit preceding 

elements selectively and a concomitant failure to facilitate upcoming elements. Evidence 

in favour of this hypothesis is gained from the fact that errors can be attributed to 

intrusions from other learned motor patterns (Robertson & Flowers, 1990; Flash et al., 

1992). 

3 . Other studies show that much of the fluency and speed of normal sequential control is 

achieved by the parallel activation of two or more basic units of behaviour. This ability 

appears to breakdown in PD and the individual components are decoupled and 

separately executed. 

4. Whereas normal subjects in some conditions seem to construe( a higher order 

representation controlling execution of the entire sequence, this representation is either 

destroyed or fails to be used in PD's. The relevant studies revjewed here suggest that in 

PD only the first element appears to be prepared in advance of movement initiation. 

Taken together, the work reviewed in this chapter suggest that the processing functions 

which are disrupted in parkinsonian motor programming subserve both the selection and 

sequencing of actions. PD patients are more impaired when they have to rely on internal, 

predictive control processes than when their actions are cued by information available in the 

environment. In the next part of this chapter we draw on relevant aspects of biological work 

concerning the basal ganglia and its interaction with cortex in an attempt to gain a clearer 

picture of how the normal operation of this brain system is involved in the information 

processing functions which have been inferred from studying motor disorders. 
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In considering the neurobiology of the basal ganglia and other brain structures with which it 

is known to interact, our attention is focussed on the functional role of these systems in 

behaviour. In keeping with this aim we divide this review according to the three functional 

concerns addressed above: Internal representation and feedforward control of action; action 

selection and action sequencing. 

Review of Basal Ganglia Neuroscience Literature 

Most of the data that has been collected from motor disorders research, including that 

reviewed above, strongly indicates a primary role of the basal ganglia in the control of 

movement and that it is particularly important when the movement relies on feedforward or 

internal control mechanisms. However, it appears from the deficits of PD patients on 

cognitive tasks tapping functions such as working memory (St. Cyr & Taylor, 1992) that 

the basal ganglia is not simply a component of a dedicated movement control system. 

Because the basal ganglia is a deep central system of the brain with no direct connections to 

sensory or motor organs (Shepherd, 1988), specific and explicit hypotheses of its function 

have proved hard to formulate. Whilst this group of structures clearly does have a role in 

the control of action, it is probable that this role is more complex and at a more abstract 

level than the computation of movement parameters per se. 

Hypotheses that suggest that the basal ganglia are in some way involved in the 

process of 'motor programming' are legion (Alexander et al., 1992; Ito, 1989). Available 

neuroanatomical evidence demonstrates that the basal ganglia receive inputs from almost all 

cortical areas, thus supplying the striatum with motor, sensory, planning and motivational 

information. The outputs of the basal ganglia are directed via one pathway (nigro-collicular 

system) to brainstem nuclei implicated in the control of eye movements and by another 

pathway (the pallido-thalamic system) back to multiple cortical sites, in particular motor and 

premotor areas. Thus the basal ganglia are ideally placed, as noted by Parent, 1990 and 

Parent and Hazrati, 1993 to capture and integrate multiple sources of information which 

have an impact on action initiation and selection. The breakdown of such a mechanism may 

plausibly lead to the variety of dysfunctions observed in motor disorders. 
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2.4 Cortico-striatal interaction and the internal f eedforward control of 

action 

2.4.1 Cortico-striatal loop circuitry 

In the past the striatum, with its massive cortical input and restricted pallidal output has 

been viewed quite plausibly as an information 'funnel' for cortical inputs thus providing an 

anatomical basis for the idea that the striatum performs an integrative function. In this 

scheme the inputs from various cortical sites converge onto the same striatal cells. 

This view has been challenged following the realisation that the striatum is both 

neurochemically and anatomically heterogeneous, and that the pattern of cortico-striatal 

inputs respects the boundaries of striatal divisions. On a gross scale the striatum is 

composed of three distinct parts, the caudate nucleus; the putamen and the ventral striatum. 

Most of the striatal input from motor cortical areas, such as supplementary motor area 

(SMA), ventral premotor area (PMv) and primary motor cortex (Ml) is directed exclusively 

to the putamen (Alexander & Crutcher, 1990) whereas connections from prefrontal and 

other so-called associational areas of cortex project to the caudate. The ventral striatum 

appears not to receive inputs from neocortex but has selective links with 'the limbic system 

(Defrance, 1980, Graybiel, 1991). It is clear that the whole of the cortical inputs to the 

striatum are organised in a precise topographical manner such that all areas of the cerebral 

cortex project to the striatum, but any given striatal area receives an input from just a 

restricted number of cortical areas (Kunzie, 1975). Subsets of parietal, frontal and limbic 

cortical afferents are thus segregated into discrete longitudinal zones within the striatum, 

(Selemon & Goldman-Rakic, 1985). Within the category of sensorimotor projections, the 

longitudinal segregation is maintained according to a somatotopic organisation, in which 

leg, arm and face representations are segregated. 

Furthermore, there is electrophysiological evidence to suggest that these discrete 

projection zones are maintained in the projections from the striatum to the globus pallidus 

(Hedreen and Delong, 1991). These observations have led to a view, that contrasts with the 

notion of a 'funnel', that the basal ganglia form a series of parallel loops which run from 

the cortex to the striatum then to the globus pallidus, before returning to specific areas of 
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cortex via the thalamus. Five independent cortico-striato-thalamo-cortical loops have been 

described (Alexander, DeLong & Strick, 1986). It has been generally assumed in the 

'parallel processing' view that the loops remain segregated as they pass through the 

striatum to the globus pallidus and thalamus, and back to the cortex. 

Each loop is classified in terms of the cortical area to which it projects. In the 

present chapter we will primarily be concerned with just two of the loops - the 'motor' 

loop, which receives projections from frontal and midline motor areas, passes through the 

putamen, and outputs to cortical motor areas (SMA, PMv & MI); and the pre-frontal loop, 

which receives projections from dorsolateral prefrontal cortex (DLPFC), passes through the 

dorsal portion of the caudate, and outputs back to DLPFC. The flow structure through 

these loops, assuming full segregation, is shown in Figure 2.1. 

Motor Loop 

MOTOR AREAS 

Supplementary Motor Area 

Ventral Premotor Area 

Primary Motor Cortex -l 
I 

Putamen )>-

"'O r 
)>- )>-

r s: 
r () 
0 z 

DORSOLA TERAL C C 
Dorso-lateral s: () 

PRE FRONTAL r 
CORTEX caudate m 

Prefrontal Loop 

Figure 2.1. Two of the cortico-striatal loops through the basal ganglia (Alexander et al., 
1986). Top of figure: The 'motor' loop; bottom of figure: the 'prefrontal' loop. 

This basic loop architecture of basal ganglia / cortical circuits is interesting from a 

functional point of view for a number of reasons. The processing of the basal ganglia is 

entirely internal and there is no direct connection with &Ry direct output system of the brain. 

It is well established that the cortical areas which form part of the motor loop are involved 
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in the representation and advance preparation of movements at a number of levels (Requin, 

1992). The prefrontal cortex is also strongly implicated in the representation of action 

information, although at a higher level, and in the planning and control of actions 

(Goldman-Rakic, 1995). 

The loop circuitry of the system provides a form of internal feedback or recurrence 

which may allow the information represented by cortical neural ensembles to be modified or 

gated on the basis of the subcortical computations performed by the basal ganglia. This 

feature is closely associated with the ideas of efference copy or corollary discharge which 

underlies most theoretical notions of internal comparator or monitor mechanisms in biology 

(Gray et al. 1991). In the sections below we briefly consider the lower-level structure and 

functional contribution of each the loops. 

2.4.2 The motor loop 

The motor loop is the best studied of the five loops that have been identified and is also the 

system which is most directly relevant to the motor processing functions of the basal 

ganglia. The largest cortical projections originate in frontal motor areas cbrtsisting of SMA 

and PMv, however there are also projections from MI and SC. 

The organisation of motor representations in cortex follow some general principles 

which are outlined below. It is well established that the midline motor cortical areas (Ml and 

SC) form detailed somatotopic maps of individual body parts and that micro-stimulation of 

points on the cortical surface reliably cause activation of the corresponding body part. MI is 

the cortical motor area which is connected with spinal motoneurons and thus acts as the 

final stage in central motor output. MI neuronal populations have also been shown to 

encode low-level parameters of movements, in particular direction (Georgopoulos, 1991). 

Traditional models of the neural motor hierarchy suggest that the more anterior cortical 

motor areas such as PMv and SMA are involved in representing higher level features of 

movements which might be termed motor program fragments. Recent electrophysiological 

evidence supports this notion by showing that when some premotor neurons are stimulated 

in primates components of complex motor acts such as grasping or pointing are activated, 
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(Requin, Riehle & Seal, 1992). This finding points to a 'vocabulary' of motor acts 

represented in frontal areas of motor cortex. 

In summary the SMA contains a high proportion of preparatory or set-related 

neurons which are time-locked to the onset of behavioural actions and fire well in advance 

of movement initiation. Cells with similar properties have also been recorded in the 

putamen (Alexander & Crutcher, 1990). The existence of such large numbers of these cells 

in comparison with other motor areas supports the idea that the motor loop is involved in 

processes of motor preparation. Regional cerebral blood flow studies using PET 

technology have demonstrated activity in both SMA and striatum during preparation and 

execution of learned finger tapping sequences (Roland et al, 1980; Seitz et al,. 1990). 

Goldberg ( 1985) theorises that the SMA forms part of a medial frontal system in the 

control of action, which functionally contrasts with a lateral system involving premotor 

cortex. The medial system is concerned with internally driven actions, whereas the lateral 

system is more responsible for the control of stimulus driven behaviour. 

2.4.3 The contribution of prefrontal cortex 

The functions of the prefrontal cortex are complex, interrelated, and as yet incompletely 

understood. They possess Iich bilateral connections both to other areas of cortex and to the 

lower levels of the brain, hence their hypothesised regulatory function. The complexity and 

breadth of the frontal lobe connections no doubt contribute to the puzzling array of 

behavioural changes observed in people with lesions in this region. The nature of errors 

made by patients provide clues as to what is involved in frontal lobe processing. On the 

basis of frontal lobe lesion patients, it has generally been assumed that the frontal lobes are 

involved in sequencing intentional, goal-directed behaviour. In particular, they become 

involved in initiating, planning and guiding "non-routine" actions; those that require the 

default response to be overridden in some way. This view is captured in the Norman and 

Shallice ( 1986); Shallice ( 1988) model of control processes. 

This model includes a 'contention scheduling' system, which selects between 

possible actions simply on the basis of current stimuli and mutual inhibition processes. 
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However the contention-scheduling process can be influenced by another mechanism, the 

Supervisory Attentional System (SAS), which can allocate attentional resources to 

particular schemata on the basis of high-level goals and so on. Thus the SAS does not 

control behaviour directly. Instead, it is assumed to modulate the contention-scheduling 

system by inhibiting or exciting schemata within that system. Norman and Shallice assume 

that the SAS is defective in frontal patients, thus frontal patients have to rely on contention 

scheduling. As a consequence some frontal patients seem to lack "the will to act"; Shallice 

argues that this is exactly what would be expected if the SAS was disconnected from the 

contention-scheduling system. Frith ( 1992) ascribes the function of contention scheduling 

to the loops through the basal ganglia, and suggests that action-selection problems in frontal 

patients reflect dysfunction in the cortico-striatal loops. 

The dorsolateral prefrontal cortex, which projects to the striatum, is a portion of the 

frontal lobe which is traditionally linked more with motor control systems than sensory 

systems. Goldman-Rakic has proposed that this area of cortex is functionally specialised as 

a working memory system for the guidance and control of actions based on internal 

representations (Goldman-Rakic, 1988; 1995). Physiological recordings· demonstrate that 

prefrontal neurons exhibit an increase in firing rate not just during the delay period of 

delayed response trials, but selective firing in relation to a particular to-be-remembered 

target (Funahashi et al., 1989). As soon as a motor action is initiated the cells return to their 

baseline firing rate. This establishes that prefrontal cortex contains stimulus or context 

specific memory fields which are used in the control of action. Goldman-Rakic argues, in 

common with Frith, that this distinguishes the role of prefrontal cortex from those systems 

which control behaviour by association or sensory mechanisms, and that the prefrontal­

striatal loop only comes into play when a movement is initiated on the basis of internal 

representations. 

2.4.4 Recent evidence of convergence in striatwn 

The picture we have elaborated so far emphasises the parallel, segregated nature of cortico­

striato-pallidal throughput. If, as some research suggests, this information remains 
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compartmentalised through pallidal and thalamic stages of the circuitry as well, this raises 

the question of what processing is actually performed by the basal ganglia. In fact, recent 

evidence has shown that there is more convergence in the striatum than is assumed by the 

strict 'parallel loops' model discussed above (Parent and Hazrati, 1993). This convergence 

is, however, of a constrained and interesting nature. 

Flaherty and Graybiel, (1991) have shown that where projections from 

somatosensory cortex are concerned there is systematic somatosensory remapping of 

information at the striatum. Further information regarding the functional consequences of 

somatosensory remapping in the striatum is provided by Brown (1992) and Brown et al. 

(1994). This study used 2-deoxyglucose (2-DG) methods to measure glucose uptake in rat 

striatum. This is a high resolution technique for visualising neural activity in awake, 

behaving animals. They found that when a somatosensory stimulus was applied to the 

trunk/ hindlimb or forelimb of the animal a 2-DG map was produced that revealed different 

combinations of striatal unit activity and different arrangements of the body part features at 

different anteroposterior levels of the striatum. In further studies the authors report that the 

distribution and pattern of activation varies according to the context in which stimuli were 

applied. Brown refers to their finding as a combinatorial map in striatum in which different 

body parts are grouped together as a functional unit depending on both the nature and 

context of stimulation. 

2.4.5 Implications for action representation and control 

The evidence reviewed above suggests that both the prefrontal and motor circuits through 

the basal ganglia interact in the control of goal-directed actions. The prefrontal circuit acts in 

an executive role to provide planning and goal information which substitutes for the 

sensory information that is available when movements are driven by environmental events. 

In the motor circuit the striatum takes as input a variety of sensory and motor information 

which is integrated into a combinatorial map of the states of individual body parts that may 

be involved in an upcoming action. Brown et al. (1994) suggest that this map may form the 

basis for representing the complex interactions between body parts in skeletomuscular 
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movement. In the next section we discuss biological evidence that suggests that the intrinsic 

processing of the basal ganglia contributes to efficient action selection through the 

combined action of inhibitory and disinhibitory mechanisms. 

2.5 Basal ganglia output: action selection through disinhibition 

One of the notable features of basal ganglia motor disorders is that they fall into two broad 

categories: hypokinesias and hyperkinesias. In many ways these two categories of disorder 

are functional opposites. The hypokinesias, notably parkinsonism, are characterised by lack 

of movement, rigidity and a form of motor 'flattening' which is best described as the 

omission or severe reduction of important distinctive features of complex actions. 

Hyperkinesias, by contrast, are seen as wild or excessive movement in which apparently 

irrelevant or meaningless movement fragments are inserted into an otherwise meaningful 

train of action. 

An obvious way to make sense of this clinical picture at a systems level would be to 

suggest that in the normal control of movement it is not enough to simply activate the body 

parts involved in the movement but that it is also necessary to suppress unwanted 

movements which might conflict with the intended action. Hyperkinesias such as 

Huntingdon's disease may be caused by the failure to sufficiently suppress those unwanted 

movements. The symptoms of Parkinson's disease, on the other hand, may either result 

from over-inhibition of all movements leading to a lack of spontaneous movement or co­

activation of competing movements at a low level leading to rigidity and motor flattening. 

The scheme of striatal organisation outlined above suggests that different body parts remain 

segregated in order to selectively activate some representations and suppress others in a 

competitive framework as suggested by Wickens ( 1993). The striatal combinatorial map 

serves as a way to facilitate the parallel activation of several motor components necesssary 

for complex simutaneous movements or internal control of motor sequences. These 

represent potentially conflicting demands on striatal processing, which in an noisy system 

or in the presence of uncertainty about the goals of the action would require an extra 

filtering mechanism to establish an effective working parameter space.· In this section we 

,. 
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review evidence concerning the architecture and operation of the intrinsic circuitry of the 

basal ganglia motor circuit and a possible role of dopamine in facilitating the process of 

action selection. 

2.5.1 Intrinsic circuitry of basal ganglia 

The transmitter systems comprising the internal circuitry of the basal ganglia have been 

identified. Some pathways are inhibitory (GABAergic) and some are excitatory 

(glutamatergic). The resulting circuit diagram shows that there are two separate pathways 

from the striatum to the output nuclei, which are the internal segment of the globus pallidus 

(GPi) and the substantia nigra pars reticulata (SNr). According to Alexander and Crutcher 

(1990), the direct pathway is inhibitory containing GABA and substance P. Activation of 

this pathway disinhibits the thalamic stage of the circuit, and thus effectively provides 

positive feedback to frontal motor areas. Striatal disinhibition of nigrocollicular cells is a 

required stimulus for the activation of eye movements (Chevalier and Deniau, 1990). 

The indirect pathway projects initially to the external segments of the globus 

pallidus (GPe), and is inhibitory consisting of GABA and enkephalin; then it projects to the 

subthalamic nucleus (STN) via purely GABAergic projections. Finally it is linked to the 

output nuclei via an excitatory, probably glutamatergic projection from the STN. The GPe 

exerts a tonic inhibitory influence on the STN. Activation of the inhibitory GABN 

enkephalin projection from the striatum suppresses the activity of GPe neurons and thereby 

disinhibits the STN increasing excitatory drive to the output nuclei, increasing inhibition in 

the thalamus, thus providing negative feedback to the frontal motor areas . 

To summarise these results, in the model of Alexander and Crutcher (see figure 

2.2), the two pathways have opposite effects on the thalamic targets of the basal ganglia 

and consequently on the cortical regions to which they ultimately project. 
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Figure 2.2. Intrinsic circuitry of the basal ganglia. Black lines indicate inhibitory 
pathways, White lines indicate excitatory pathways. 

source: Alexander G.E. & Crutcher M.D.(1990) 

This arrangement yields an interesting picture in which balanced activity on the two 

pathways must be maintained for the system to operate optimally. If the net inhibitory 

'direct' pathway is overactive and the activity of the 'indirect' pathway is underactive the 

activity in cortical motor areas will be suppressed and vice versa. It is also known that 

nigro-striatal dopamine directly influences the activity of both pathways. However it has 

been shown that the transmission of dopamine to the striatum has opposite effects on the 

two pathways, (Gerfen et al., 1990). This is due in part to differential distribution of D1 

and D2 dopamine receptor subtypes on the two pathways, and also due to ·The co-release of 
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different neuropeptides with GABA on the two pathways. It is thus proposed that 

destruction of dopamine cells by administration of the neuro-toxin MPTP causes 

parkinsonian symptoms by suppressing the direct pathway and causing the indirect 

pathway to be overactive. By contrast, hyperkinesias can be explained by the same model if 

the STN or striatal neurons projecting to the GPe are destroyed, (Albin, Young and 

Penney, 1989) 

2.5.2 A possible role for the basal ganglia in the selective disinhibition of actions 

The above model of intrinsic processing in the basal ganglia contributes to the prevailing 

view that the output of the basal ganglia acts to modulate the activity of cortical circuits 

responsible for the initiation and execution of motor programs on the basis of input from 

various areas of cortex and the limbic system, (Graybiel, 1990). Furthermore it has been 

explicitly proposed that the mechanism of basal ganglia action is to 'disinhibit' its target 

structures, (Chevaler & Deniau,. 1990; Hikosaka, 1991). It is suggested that both the 

cortical and brainstem targets of basal ganglia output are held under tonic inhibition prior to 

the onset of movement and that innervation of these structures due to basal ganglia input 

causes them to be released from inhibition. The clearest evidence in support of this 

mechanism is derived from studies of the superior colliculus (the major brainstem target of 

SNr output) in the initiation of saccadic eye movements, (Hikosaka & Wurtz, 1985). It has 

subsequently been proposed that striato-thalamo-cortical circuits may operate in an 

analogous way in the initiation and execution of limb movements, i.e. to disinhibit 

selectively those limbs or muscle groups participating in an upcoming movement, 

(Graybiel, 1991; Graybiel & Kimura, 1995). Although this possibility remains speculative, 

the existence of GABA mediated inhibitory circuits, which are involved in voluntary 

movements, in primate premotor cortex, (Matsumura et al., 1991; 1992) provide support 

for this idea. 

An interesting arrangement has been observed in the synaptic connections to and 

from striatal projection neurons, (Smith & Bolam, 1990). It has been found that cortical 

afferents terminate in symmetrical synaptic connections on the heads of the dendritic spines. 
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Dopaminergic afferents tend to terminate on the same cells as cortical projections, but 

dopamine synapses are commonly made asymetrically on the spine neck and dendritic shaft 

closer to the soma than the cortical neurons. This arrangement puts dopamine input in an 

ideal computational position to modulate striatal output on the basis of cortical input. 

According to this model dopamine serves to modulate the activity of striatal output neurons 

to cause selective inhibition of pallidal cells in advance of movement inhibition. This 

selective, focussed inhibition in GPi is markedly reduced in monkeys with MPTP induced 

parkinsonism (Filion et al., 1989). 

2.5.3 A revised model of basal ganglia processing 

Recent additional evidence provided by double anterograde labelling studies adds an extra 

dimension of complexity to the intrinsic processing of the basal ganglia, above that 

provided by anatomical or physiological methods, (Parent & Hazrati, 1993; Mink & Thach, 

1993). It has been revealed that the projection from the STN to the pallidum is more 

important than previously thought and that there are substantial direct projections from 

motor cortex to the STN, avoiding the neostriatum altogether (Kita, 1992). In addition it 

has been shown that the STN provides widespread excitation to pallidal terminals, whilst 

the striatal efferents have a more focussed inhibitory effect. These observations serve to 

enhance the schema of basal ganglia information processing already outlined: that is the 

selective facilitation of desired motor programs via the focussed inhibition of pallidal 

neurons by striatal circuits and the inhibition of competing motor programs due to the 

widespread excitation from the STN. Thus specific populations of pallidal neurons which 

are tonically active during a maintained posture are turned off prior to the onset of a 

voluntary movement and the activity of other surrounding neurons is increased, (see Mink 

& Thach, 1993). This revised model can account for the apparently paradoxical finding that 

bradykinetic symptoms are reproduced in MPTP-induced parkinsonism where GPi 

inhibition of thalamic nuclei is increased and following GPi ablation (which necessarily 

yields a reduction in activity). The model suggests that in the former case overactivity in the 

projection from thalamus to motor cortex would lead to coactivation of motor programs as 
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suggested in the introduction to this section. In the latter case, there would be an unselective 

over-inhibition of all motor programs. 

The evidence reviewed above provides an account of how dopaminergic activity is 

involved in striatal processing, and how destruction of dopamine cells affects the output of 

the basal ganglia. However we have not yet considered the question of what causes an 

increase in dopaminergic activity in the substantia nigra in the first place. In the next section 

we consider some recent evidence which bears on this issue. 

2.5.4 Dopaminergic activity and responding to environmental context 

Theoretical insights into the computational role of dopamine have recently emerged as a 

result of a series of studies conducted by Wolfram Shultz and co-workers, (e.g. Shultz, 

Apicella & Ljungberg, 1993; Shultz & Romo, 1990; Romo & Shultz, 1990; Apicella, et al., 

1992). These investigators have identified a number of key features concerning the 

conditions under which single dopamine neurons in the SNc are activated during the 

acquisition of behavioural tasks in primates. 

One of their primary findings is that dopamine neurons do not show phasic changes 

in activity to movement parameters but to environmental stimuli which have behavioural 

significance; either primary stimuli such as food or water, or conditioned stimuli which 

trigger immediate behavioural reactions. In studies where a stimulus precedes a 

behavioural reaction, DA activity is time-locked to the stimulus rather than the onset of 

movement, (Shultz, 1992). Moreover dopamine cells apparently do not encode any 

physical properties of the stimulus itself, such as spatial location. Instead, the phasic 

activity merely indicates to postsynaptic structures that an event of interest has occurred. 

A second important result is that dopamine activity in relation to an environmental 

event is highly dependent on the behavioural context. Using a "go/ no-go" task Shultz and 

Romo, (1992) found that DA neurons initially fired in response to novel stimuli regardless 

of behavioural consequences, although the strength of response soon diminishes with 

repeated presentations. Orienting saccadic eye movements were also observed following the 

presentation of a novel stimulus. The authors conclude that this response occurs with a 
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novel stimulus because it has not yet been established whether it is neutral or not. DA 

neurons responded identically with phasic activation in the go and no-go task conditions. 

But if identical stimuli were used in a 'no-task' condition the dopaminergic response was 

absent. This suggests that activation of DA neurons is highly context-dependent. When the 

stimulus acts as a trigger for an immediate behavioural reaction, whether it be making a 

movement or withholding a movement, then DA activity occurs. If, however, the no-go 

condition is not associated with a reward, then the DA activity is extinguished. (Shultz et 

al., 1992; 1995). 

A third finding is that the extent of learning is a key factor in the propensity of an 

environmental stimulus to elicit DA activity, when that stimulus is not itself a primary 

reward, or novel in some respect (Ljungberg, Apicella & Shultz, 1992). In this study it was 

found that intrinsically neutral stimuli that had gained behavioural significance by 

association with a primary reward were effective in activating DA neurons. As task 

performance became more automated with overtraining, requiring reduced attentional 

control, the DA response became progressively reduced. This is interesting as some 

researchers have suggested that there is high basal ganglia activity only in ·the early stages 

of learning a finger tapping sequence (Seitz et al., 1990). 

This work suggests that dopamine plays a role in facilitating the preparation or 

selection of actions on the basis of contextual information available from the environment. 

2.6 The role of the basal ganglia in the control of sequential behaviour 

Whilst the evidence reviewed above serves to reduce the 'mystery' surrounding basal 

ganglia function in the control of movement (Marsden, 1982; Mink & Thach, 1993), it still 

does not make it clear why sequential movements are so much more profoundly affected in 

PD than simple movements which require internal control. In Huntingdon's disease (HD) 

too, performance on sequential tasks is more impaired. As one example St Cyr, Taylor and 

Lang ( 1988) report that one of the first common complaints of HD patients i_s that they have 

trouble in planning sequences of events. In both PD and HD cognitive deficits are most 

notable on tasks which require advance planning, working memory and some element of 
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sequential processing such as the Tower of London and Wisconsin Card Sorting tasks (St. 

Cyr and Taylor, 1992). There is not, at present, very much work available which bears 

directly on this question. A recent single-cell recording study by Kermadi et al. ( 1993) has 

provided evidence of context-dependent activity in caudate cells of monkeys who have been 

trained to learn a sequence of three targets which light up in order and then, after a delay 

period to push the target buttons in the same order in which they were lit. They found that 

many of the neurons selectively fired in response to a given button, but only if it was either 

preceded or followed by a specific other button. This context-sensitive activity could form 

the basis for striatal control of movement sequences. There is a suggestion in Mink and 

Thach (1993) that some of the work of Shultz and co-workers reviewed in the previous 

section and the Kermadi et al., study indicate that there may be a special role of frontal 

inputs to the anterior striatum in the control of movement sequences, although they state 

that it is not clear from the biological evidence how the information is used to control the 

final output of the basal ganglia. 

2. 7 Summary of reviews 

In this chapter we have reviewed evidence concerning the function of the basal ganglia in 

motor behaviour and the control of action. We have tailored this review around three main 

themes reflecting aspects of movement control in which the basal ganglia are involved: 

feedforward control / motor programming, action selection, and motor sequencing. 

In the first instance we reviewed experimental evidence from the motor disorders 

literature with an emphasis on Parkinson's disease. The neural control of feedforward 

movement involves not only the basal ganglia but also the various cortical motor and 

prefrontal areas with which it interacts via the pallido - thalamic circuits and importantly the 

cerebellar-thalamo-cortical system. These two major ascending systems are presumed to act 

co-operatively to control the eventual motor output (Houk, 1992) and consequently it has 

proved difficult to establish the link between any specific 'programming' function and the 

neural system which is responsible. 
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The evidence we have reviewed above suggests that the basal ganglia system is 

more involved in action selection and movement initiation. The emphasis on movement 

initiation is mainly supported by the evidence which shows prolonged reaction times in PD 

and the existence of a high number of preparatory or set related cells in SMA and striatum, 

(Alexander & Crutcher, 1990). In contrast Mink and Thach have recently challenged this 

assumption based on the finding of late timing of pallidal timing, (Mink & Thach, 1991 b). 

They suggest that the set related activity is used to inhibit competing motor programs and to 

concurrently release the desired motor program from inhibition. They use the analogy of the 

use of a handbrake when performing a hill-start. This suggestion is consistent with a 

primary role in action selection for the basal ganglia. Interestingly the PD data reviewed 

above revealed comparatively few examples of selection deficits and those that have been 

found use rather indirect measures. Conversely there are numerous examples of selective 

deficits in sequence control in PD. Sense may be made of this pattern if we assume that the 

processes involved in motor sequencing are in some way a generalisation or extension of 

the processes of action selection and initiation. However, a coherent computational level 

description of how this might occur in the context of basal ganglia motor processing has not 

yet been achieved. 

In the latter part of the chapter we reviewed evidence from neurobiological studies 

which suggest functional roles for the basal ganglia and cortical circuitry in the control of 

movement. The themes which emerge from this evidence are: 

1. The basal ganglia are closely linked to several regions of neocortex which are thought to 

play some role in feedforward movement control and motor planning. One area of particular 

significance is the prefrontal cortex. It has been suggested that this area plays a role in 

working memory and the internal representation of contextual information which is used for 

motor planning. 

2. The basal ganglia have been shown to play a functional role in disinhibition of eye 

movements. A similar role has been suggested in the selective disinhibition of limb 

movements. 
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3. Dopamine plays a complex role in maintaining the normal balance between direct and 

indirect outputs of the striatum. In addition recent evidence has shown that it may play a 

role in associating motor responses with environmental cues. 

In sum these threads of evidence suggest that the combined frontal / basal ganglia 

system plays at least two independent but interacting roles in the feedforward control of 

movement. The first is a predictive role which involves extracting contextual task-related 

information from the environment so that movement components can be prepared 

independently of or in anticipation of environmental cues. The second is a mechanism 

which controls the normal relationship between posture and movement. Normally during a 

held posture cortical action shemata are held under inhibition. When an event that predicts a 

response occurs this mechanism serves to provide selective facilitation or pre-activation to 

cortical schemata which are involved in an upcoming movement, whilst further inhibiting 

competing alternative actions. Dopamine is crucial to the operation of both systems. 

This simplified functional model can potentially account for a number of features of 

the Parkinson's disease literature. Failure of the first sub-system can account for the 

unusually high dependence on environmental information in PD and the inability or 

slowness to utilise predictive cues to speed response preparation. It would also explain why 

the disease most notably affects voluntary movements. Failure of the second sub-system 

may account for many of the clinical symptoms of bradykinesia and the co-activation of 

antagonistic muscle groups during motor execution. 

Importantly, this model also yields an account of why sequential movements are 

especially affected in PD. Sequential movements have a higher dependence on internal 

control than simple movements in the sense that environmental information may only be 

available to prepare the first sequence element. Thus if only poor quality predictive or 

contextual control is available to the system in preparing the later components of the 

sequence, there will be greater pressure on the mechanism for resolving competition 

between candidate actions. Since this mechanism too is dysfunctional in PD there may not 

be sufficient contrast to uniquely select and prepare a single action schema. 
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CHAPTER THREE 

Psychological and Computational Models of 

Movement Sequencing 

In chapters one and two we introduced the general motor programming model which has 

dominated psychological approaches to the control of movement for much of the last 25 

years. Furthermore we outlined a number of ways in which theorists have attributed the 

motor impairments in PD to a breakdown in the processes of preparing and executing 

feedforward motor programs. In this chapter we review the motor programming approach 

in more depth and also compare it with other psychological approaches to human motor 

control, notably the action systems approach. In an effort to make the inadequacies of these 

approaches clear we construct a computational formulation of the problem of sequential 

action control and then we review computational models which have been applied to 

problems of movement control and sequencing. 

3.1 Psychological approaches to movement 

3.1.1 Feedback andfeedforward control 

As a general distinction motor control processes can be divided into two types: feedback 

and feedforward. Feedback mechanisms are comparatively well understood and methods 

derived from engineering control systems theory serve sufficiently well to model the major 

characteristics of biological feedback control. Feedforward mechanisms, by contrast, have 

proved much harder to characterise. The fundamental problem with the notion of 

feedforward control is that a reasonably accurate internal model of the desired movement is 

required, before the movement is initiated. Unlike feedback control which can be achieved 
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via on-line error correction, feedforward control presupposes the internal representation of 

at least certain-high level motor primitives. 

Early theories of motor control were dominated by Sherrington's notions of the­

reflex and response chaining. It was considered that feedback signals generated by a reflex 

action provided the signals for the next action and so on until the task was completed. The 

alternate motion of legs when walking was considered to be a characteristic example of 

chained reflex control. 

The dominant view that these principles could explain all movement control was 

overthrown by two developments. The first was Lashley's demonstrations that many 

movements could be adequately controlled without peripheral feedback (Lashley, 1917) and 

his call for a motor theory which could account for an account of serial order in sequential 

behaviour without chaining (Lashley, 1951 ). The second was the finding that many motor 

patterns (e.g. locomotion) are generated by autonomous oscillating circuits in the spinal 

cord and are not affected by deafferentation (Von Holst, 1939 / 1973). These circuits 

became known as central pattern generators (CPG's). Many other elementary action units 

can be elicited by stimulation of spinal preparations, indicating that spinal circuits store hard 

wired 'programs for movement' (Giszter, 1992). 

These findings led naturally to the idea that higher order movement control may be 

accomplished by CNS storage of adaptive motor programs. These programs, unlike the 

fixed action patterns, would be constructed through practice and learning, would be goal­

directed, and would enable the motor system to organise and sequence elementary action­

units in such a way as to effect smooth, efficient movements which achieve the task goal 

without recourse to ongoing feedback as a source of input information. Any theory that 

involves the construction of motor programs necessarily invokes the concept of stored 

representation of actions, a system for the organisation of action representations, and a set 

of processes which manipulate representations in preparation for movement execution. 

These ideas are reviewed in the sections below. 
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3.1.2 Action representation 

The task of identifying the nature of the representations used by the brain for the 

feedf01ward control of movements and how they are learned is a persistent and ongoing 

problem for motor theorists (Georgopoulos, 1991; Requin, 1992; Rosenbaum, 1991). It is 

also the subject of much controversy. Some researchers claim that only abstract 

representations of the action goal are required and that only simple parameters such as 

muscle stiffness need to be computed, the rest being taken care of by the innate properties 

of the muscles and skeleton (Bizzi et al., 1991; Bizzi et al., 1992). At the other extreme the 

most explicit representational schemes are derived from robotics and engineering research 

in which movement planning requires the calculation of joint torques from estimates of 

position, velocity and acceleration. (Hollerbach & Atkeson, 1987; Kawato et al., 1987). 

At the centre of this debate lies the concept of the motor program. This term was 

coined at a time when computers were beginning to be used as models or at least metaphors 

for human information processing, (Keele, 1968). Whether or not Keele's original 

suggestion that movements are stored in memory as a sequence of instructions to the 

musculature that can be carried out uninfluenced by peripheral feedback was intended to be 

taken literally, the resulting program concept has pervaded almost every aspect of motor 

control research since. 

Part of the reason for the popularity of the idea of a dynamic program as opposed to 

a static memory representation for encoding movements, lies in the inherently sequential 

nature of movement itself. Even the simplest single-joint movement involves a sequence of 

muscle activations as recorded by electromyograph (EMG) (Jeannerod, 1988). Since 

Lashley noted the inability of S_R chaining theory to account for the preservation of serial 

order in movements under feedforward control, it seemed clear that serial order information 

must be held in memory, and the motor program offers an intuitive and appealing 

framework to accommodate this need. 

An early example of this type of notion was the memory drum proposed by Henry 

and Rodgers ( 1960). According to this model, programming a movement would involve 

organising an appropriate sequence of basic action units or sub-programs. How this may be 
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achieved is not made explicit by the model. A prediction of the model is that the time to 

prepare a movement will depend on the complexity of the motor task. This may refer to the 

length of a sequence or the number of sub-programs involved. 

Appealing as it is, the motor program concept has a number of drawbacks and has 

received substantial criticism over the years. Early criticisms were founded on the problems 

of storage and novelty. It was presumed that each different movement requires a different 

motor program and given that we have an almost unlimited· capacity for performing 

different movements, storage is a serious question. The generation of novel movements is a 

problem if it is presumed that the program defines all aspects of the movement. Schmidt 

(1975, 1982) attempted to meet these criticisms by proposing a generalised motor program 

based on schema theory. 

According to Schmidt one motor schema represents a rnovement category as defined 

by constant relative timing of the constituent sequence despite variation in the time for the 

whole movement to complete. At a lower level the parameters of the schema which define 

any instance of a movement, such as duration, amplitude, effector are computed just prior 

to execution (see Schmidt, 1988). This variation of program theory is undoubtedly more 

powerful than the original, and can account for a substantial amount of motor learning data, 

although some of Schmidt's more specific claims have been countered by contradictory 

evidence (Gentner, 1987 on proportional duration; Wright et al., 1990 on effector 

independence) 

Perhaps a more fundamental weakness in the motor program approach has been the 

lack of explicit and specific models of how the serial order of the instruction sequence is 

maintained in memory, particularly when complex movements involving more than one 

limb, or recruiting several motor programs simultaneously, must be performed. 

Another version of the schema hypothesis was presented by Arbib, (1990), who 

clearly recognised this problem. He suggests that the neural systems involved in motor 

control compute a coordinated control program which consists of perceptual and motor 

schemas. Arbib notes that objects may be grasped in a number of different ways, each of 

which may be regarded as a separate grasping schema. Perceptual schemas encode 
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information about the properties of an object to be grasped and then serve to gate the 

various motor· schemas, such that an appropriate one is selected. Arbib's contribution is 

important because he recognises the need to be explicit about the control system which 

operates over motor programs, moreover he attempts to be explicit both about the neural 

processes he is concerned with and the computational details of his proposal. 

3.1.3 Hierarchical systems of motor programming 

An underlying conceptual framework implicit in the motor program view is that the systems 

governing movement control are embedded in a hierarchy, which allows complex 

movements are built out of simple elementary units. This framework reflects the influence 

of language production models in which "word" level units are super-ordinate to 

component "letter" or "phoneme"- level units. It was seen in the previous section that motor 

programs can be described at several levels of complexity and the common notion is that 

higher-level or more abstract schemas exercise selective control over lower-level sub­

schemas (see Gallistel, 1980). 

This framework is commonly represented as a three layer hierarchy, (Requin, 1992; 

Shaffer, 1992) 

1. SEMANTIC / "WORD-LEVEL" The highest level of programming structure is 

also the most abstract. This is a representation of the goal of the action and is 

non-motoric. 

2. LEXICAL/ "LEITER-LEVEL" The intermediate 1evel involves sequencing and 

providing context-dependent parameters (e.g. serial order, timing) to basic action 

units. 

3. PHONEMIC I "PHONEME-LEVEL" The lowest level represents the pattern of 

neuromuscular activations which cause the desired movement to be executed. 

This scheme has been widely-adopted, but is it well founded? There is considerable 

evidence to suggest that in both speech and limb movements the kinematic structure of the 

movement and force and timing parameters are sensitive to the context in which the 

movement is performed. In speech the well known phenomenon of co-articulation 



3: Models of movement control 47 

demonstrates that the articulatory features for the production will achieve different 

configurations· depending on the phoneme which is to follow. A similar type of "look­

ahead" processing has been reported •in a study of the kinematics of typing (Flanders & 

Soechting, 1992). Marteniuk (1987) found that kinematic profiles differed for a grasping 

task when the subjects either had to subsequently throw· the grasped object into a large 

container or fit it into a small container. Furthermore, analysis of speech errors in which 

later elements of a sequence are incorrectly inserted too early in the sequence indicates that 

the sequence is planned as a whole prior to initiation of the first element (Shaffer, 1992). It 

has also been found in typing studies e.g. (Gentner, Grudm. and Conway, 1980) that the 

onset times for the keystrokes of later letters can precede the onset time for earlier letters. 

These studies indicate not only the existence of a hierarchy of action representations 

but also show that the preparatory organisation of lower level elements of a sequence 

occurs in parallel, rather than being stimulated one after another as would be predicted by a 

strict chaining model, of the type criticised by Lashley (1951). The inherent parallelism of 

sequential movements is one of the characteristic defining features of skilled actions and 

accounts for the fluidity of over-learned movements as well as the various serial order 

errors which can occur in their performance. These consist primarily of· insertions, 

omissions and transpositions or exchange errors. It is generally thought that any model of 

human sequential behaviour should be able to account for the existence of such errors 

during performance (Houghton, 1990). 

One of the basic assumptions of this hierarchical scheme is that the imposition of 

constraints is a purely top-down process, such that higher levels impose constraints on the 

lower levels. In contradiction of this assumption there is substantial evidence from the 

speech processing literature to show that lower level features can affect processing at the 

higher levels (e.g. Dell and Reich, 1981; Harley, 1984). This data suggests either that the 

apparent hierarchy is illusory and the characteristics of movement sequences emerge from a 

parallel system with multiple interacting constraints at and between all-levels, or, as 

suggested by Gallistel ( 1980) the hierarchy is flexible such that elementary units can exert 

an influence over high-level units. 
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3.1.4 Processes involved in motor preparation 

Motor prograinming refers not only to the representations which are used in the 

feedforward control of action but also to the processes that are involved in preparing an 

action in advance of movement initiation. It is a general feature of human motor control that 

any task-specific information that is available in the environment is used to speed the 

preparation of the movement For example, if all the information is available in a stimulus 

to uniquely specify a required response then preparation is shortened to a minimum. 

Expanding on this principle the Hick-Hyman law (H_ick, 1952) demonstrates that the 

amount of time used for preparation increases in a log-linear relationship with the number 

of choices available. In terms of information processing this ~eans that as there is less 

predictive information available from the environment the load on internal response 

selection and response preparation mechanisms is increased. · 

Motor response preparation is only part of a serial stage model developed by 

information processing theorists interested in what happens in the duration between a 

stimulus or environmental event and a response. 

stimulus stimulus stimulus response response response - - .... ... ... .... ~ 

~ ~ -
input identification encoding selection preparation output 

Figure 3.1. A discrete stage information processing model 

It has been classically assumed that processing is both serial and discrete (Donders, 1869; 

Sternberg, 1969). That means that processing of a response proceeds from stage to stage 

and that all processing of one stage must be complete before processing of the next stage 

begins (see Figure 3.1). These assumptions are strongly supported by Sternberg's additive 

factors method (AFM), which is consistent with a wide range of the available RT data given 

the above constraints. Recently, however, evidence has accumulated that processing may 
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be continuous and that there may be partial output from a stage before processing is 

complete, (see Mulder, et al., 1992). Moreover, connectionist simulations by McClelland 

(1979, 1992) showed that the results of applying the AFM is not incompatible with some 

forms of continuous processing. 

Thes~ questions are particularly relevant to the current focus on the processes involved in 

motor preparation and motor disorders of the basal ganglia. The emerging picture of the 

neural organisation of motor control is increasingly at odds with an ordered serial stage 

approach to processing and classical conceptions of a hierarchy (Requin, Riehle & Seal, 

1992; Requin, 1992). This picture instead reveals an organisation consists of multiple, 

parallel interconnecting networks operating at overlapping time scales. This has prompted 

increased enthusiasm for connectionist approaches to modelling motor control, and in 

particular a recent article (Alexander, Delong & · Crutcher, 1992) on basal ganglia 

involvement in motor programming that called for a rejection of serial models in favour of a 

parallel approach. Despite some apparent misconceptions over what is actually offered by 

connectionist approaches, the nature of the argument is clear. More crucially, perhaps, the 

increased RT's of PD patients in movement preparation warrant a close look at factors 

affecting the time course of response processing. Even if we accept that there are functional 

serial stages of information processing intervening between perception and action, it would 

be unwise in any theoretical account of action / response preparation to treat this stage in 

isolation from earlier stages. 

There is considerable evidence of direct associational links between representations 

of objects or events and representations of actions. This is sometimes known as 'object 

affordance'. Following Arbib's schema theory, we can postulate separate perceptual 

representations of a cup and a thimble. Both representations 'afford' motor schemas for 

grasping, but a cup would stimulate a different grasping schema from a thimble, ( one 

involving thumb and all fingers, the other thumb and forefinger only). The mere presence 

of an object does not usually result in execution of this motor schema. But damage to 

prefrontal cortex can result in utilisation behaviour, a failure to inhibit actions. This 
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indicates both the existence of associational links between objects and actions, and the 

existence of neural mechanisms to inhibit actions. 

Negative priming experiments have shown that selectively attending to one object, 

involves concurrent inhibition of other objects competing for attention. Specifically 

however, it is not the object or the location which is inhibited but the action associated with 

the object (Tipper, Lortie & Baylis, 1992). This research is important not only because it 

demonstrates that the processes of motor preparation involve competition between action 

representations and shows the importance of inhibitory mechanisms to suppress unwanted 

actions, but also because it suggests a close link between action selection and motor 

sequencing. 

3.1.5 Critique of motor program models 

The problem with the information processing paradigm and motor programming 

perspective that we have discussed above is not that it is clearly wrong. There is a wealth of 

data across the fields of skill acquisition, motor learning and control that can and has been 

usefully addressed using this approach. However, there is also an increasing quantity of 

anomalous data which cannot easily be accounted for by existing models. Abernethy and 

Sparrow, (1992) point to the failure of Schmidt's (1979) impulse variability model to 

account for complex multi-joint movements as one example. Another example is provided 

by Gentner's (1987) critique of the proportional duration hypothesis which is central to 

Schmidt's motor schema theory. The proportional duration hypothesis states that a single 

generalised motor program can be identified if the relative timing of its component 

movements remain constant despite variations in overall movement time. This suggests the 

existence of a multiplicative rate parameter which allows the motor program to be run off at 

different speeds. This hypothesis cannot account for phase transitions and other dynamical 

features of motor co-ordination, (Kelso & Ding, 1993; Mpsitos & Soinila, 1993). 

Another weakness of the motor programming approach is that it does not provide a 

satisfactory account of how the degrees of freedom problem is solved. A characteristic of 

biological, in particular human, effector systems is that they have excess degrees of 
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freedom available for the performance of any task which is not completely specified by 

environmental· constraints. For example, there are many possible limb configurations and 

trajectories which will allow an object in peripersonal space to be picked up. How is a 

feedforward control program constructed so that it can not only choose among the multiple 

possibilities, but takes advantage of the excess degrees of freedom to optimise the 

movement? To date, no satisfactory answer to this question has been forwarded within the 

motor programming framework. 

This last point indicates a strong link between the processes that are involved in the 

selection of a single action representation or motor program from amongst competing 

alternatives and the generation of a higher order sequential action in which a number of 

future actions must be selected, or at least facilitated in advance of initiation. Thus it would 

seem that the problem of action selection is subsumed within any serious attempt to deal 

with the problem of the generation of sequential. actions. 

Even if we are to assume as a simplification of the problem that there are identifiable 

basic action units represented in memory, independent of external environmental factors, 

theoretical accounts based on the motor programming perspective are, at present, able to 

say little about the constraints or rules of interaction which operate between representations. 

Progress in this area is essential for the development of a coherent account of the 

programming abnormalities that cause motor impairments in PD. 

As a further critical point it is far from clear that the assumption of independence 

from environmental factors is a sensible and valid simplification. A substantial and growing 

body of evidence suggests that the representation of actions ( and not just constraints on 

their activation) are tightly bound up with the structure and dynamics of the environment. In 

the next section we review an approach which is formulated on these principles and which 

is more concerned with the way that internal and external variables interact to influence the 

motor pattern that is produced. 
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3.2 Dynamical approaches to the control of action 

An. emerging ··paradigm which contrasts in many ways with the motor programming 

approach is the action systems approach (Kugler, Kelso & Turvey, 1982; Saltzman & 

Kelso, 1987). According to this view the characteristics of an action arise from . the 

collective behaviour of sets of dynamic control variables related to individual muscles or 

limbs. These have been termed coordinative structures (Turvey, 1977). 

A coordinative structure may be regarded as an internal control structure for the 

autonomous generation of motor acts in the same sense as the central motor programs 

discussed in the previous section (Cruse et al., 1990), although it is formulated on different 

fundamental principles. The roots of the approach lie in the ecological psychology of J .J. 

Gibson (Gibson, 1979) and the mathematics of dynamical systems. Modelling work using 

this approach commonly involves examining the behaviour of coupled systems of non­

linear differential equations describing the motion of limbs during the performance of a 

specific motor task. This approach places far less emphasis on the importance of central 

representations of motor actions and considerably more on the regulation of global 

dynamical parameters such as stiffness and damping. 

In the sections below we describe some of the main features of this approach as they 

are relevant to this thesis. 

3.2.1 The equilibrium point hypothesis 

The equilibrium point (EQ) hypothesis for the generation of goal-directed limb movements 

is consistent with the ideas of the action systems approach, and underpins much of the 

associated work. The EQ hypothesis arose from the use of the metaphor of a tunable spring 

to describe muscle properties, whereby the spring (muscle) has a resting equilibrium length 

which is a function of its stiffness. The stiffness parameter and thus the equilibrium length 

is altered by the neural input to the muscle (Feldman, 1966). 

Subsequent development of the hypothesis by Bizzi and co-workers (review in 

Bizzi et al., 1992) led to the suggestion that feedforward control of point-to-point limb 

trajectories may be achieved on the basis of a CNS specification of a temporal sequence of 
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'virtual' equilibrium points. This establishes a virtual trajectory from the current endpoint 

location to the'desired endpoint location. According to this view all that needs to be encoded 

to compute a trajectory is a final hand position, thus avoiding the need to perform complex 

inverse kinematic and dynamic computations as is required in other approaches (e.g. 

Hollerbach & Atkeson, 1987). This hypothesis both deals effectively with the degrees of 

freedom problem and reduces the computational burden of trajectory formation to the 

setting of a stiffness parameter. Considerable support for the EQ hypothesis has been 

derived from experiments on simple trajectories although the model has yet to be extended 

to account for complex movements involving the co-ordination of more than one limb. 

3.2.2 Oscillators and CPG's 

The co-ordinated behaviour of control variables in co-ordinative structures has been 

described and modelled as the interactions of weakly-coupled oscillators (Saltzman & 

Kelso, 1987). The first to suggest that coordinated action patterns arose from the coupled 

interaction of internal oscillators was Von Holst (1939 / 1973). Oscillatory mechanisms 

such as those postulated by Holst are now known to operate as spinal neural circuits and 

are known as central pattern generators. CPG's autonomously control the rhythmic outputs 

of the motor neurons during such activities as locomotion. CPG's are thus internal control 

structures that could equally be described as co-ordinative structures or central motor 

programs. 

3.2.3 Attractor dynamics in biological motor systems. 

A key concept of the action systems approach is the notion of an attractor. An attractor is a 

stable state of a dynamical system. There are broadly two types of attractor: Point attractors 

exist where the system moves towards a single point in the space of possible states, where 

it subsequently remains at equilibrium. Periodic attractors exist where the system moves 

towards a repeating sequence of states. The class of periodic attractors may further be 

subdivided into limit-cycle attractors in which the same sequence of states repeat exactly on 

each cycle and chaotic attractors which exhibit more complex dynamics. Saltzman and 
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Kelso (1987) suggest that point-attractors may provide a useful way to represent the desired 

endpoint location of a discrete movement, whereas periodic attractors may instead 

characterise rhythmic or repeating sequential actions. Furthermore Kelso and Ding ( 1993) 

argue that chaotic attractors possess the necessary properties to capture variability and 

flexibility in co-operative movement dynamics. Mpsitos and Soinila ( 1993) share this 

enthusiasm for using dynamical systems concepts to model motor behaviour in biological 

organisms, this time using sea slugs as a model neural system. These authors echo a point 

made by Thompson and Stewart ( 1986) - that a single dynamical system may contain 

multiple competing attractors. These concepts hold promise for exploring the effects on 

coherent motor patterns when competition between attractors is not resolved. 

3.2.4 Critique of the action systems approach 

One of the chief limitations of the action systems approach from a modelling point of view 

is that it is based on ecological principles which are, at root, anti-representational. It may 

consequently be argued that in taking this stance the proponents are not addressing a central 

problem: The need to specify the nature of control structures for feedforward control. Most 

modelling efforts to date which have been based on this approach have explored the 

behaviour of coupled dynamical equations of motion at a more abstract level than is 

applicable to the level of problems we are concerned with here. Also this approach has so 

far only been applied in detail to restricted classes of movement, notably repetitive or 

cyclical movements, and has not been extended to account for the control of heterogeneous 

sequences. Nevertheless the approach has many appealing features and the dynamical 

systems concepts employed by some researchers, in particular the notion of periodic 

attractors have recently begun to be employed in some neural network models. Thus 

elements of this approach provide important constraints for computational models of 

movement control. 

3.3 Connectionist models of movement and sequential behaviour 

Much of the appeal of connectionist models in psychology has been based on properties 

which simulate the mechanisms of human memory and perceptual organisation. In essence 
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these models associ~te a set of input patterns with a set of desired output patterns through 

the-·use of a learning algorithm. In most cases the learning algorithm causes adaptation of 

the weights on the connections between input and output units, such that eventually an 

approximation to the desired output for any input pattern is generated on a set of output 

units of the network. 

Most neural network architectures are inherently static with respect to time, both in 

terms of processing and output (Mozer, 1993). That is, for a given state of learning in the 

network the same single input pattern will always give rise to the same single output pattern 

regardless of what preceded that pattern, or what might follow. This is clearly a 

fundamental drawback when attempting to model any form of sequential or other dynamic 

behaviour. A number of schemes have been proposed which are capable of producing a 

sequence of outputs from a single input pattern. Some of these are specifically oriented 

towards the motor domain, whilst others deal with the serial order problem from a more 

abstract perspective. These models_wi_ll be discussed below in a critical examination of their 

properties with respect to human motor behaviour. First, however, we consider in more 

detail the computational problems associated with modelling human sequential behaviour. 

3.3.1 Computational models and the serial order problem 

Let us, for the moment, disregard the broader problem of movement and concentrate simply 

on the problem of producing a specified sequence of outputs from a single input pattern. 

In the sections above dealing with the motor programming approach, we highlighted 

the conceptual foundations of this approach. These are: 1. Representations of elementary 

movement units, be they keystrokes when typing, phonemes in speech, or straight-line 

segments in trajectory formation. 2. Some serial ordering mechanism which allows 

recombination of these basic units into different higher-level units which form temporally 

extended behaviour, e.g. a word, sentence or goal-directed action. 3. A hierarchical scheme 

of action representation in which the correct serial order of the lower level units of a learned 

action is recalled by accessing the higher level representation of the whole action. 
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The reason advanced by Houghton ( 1994) for the deficits of many psychological 

mo"dels based··on these premises is that hierarchically ordered sets containing copies of 

passive or inert symbols do not account for empirical evidence regarding human sequential 

behaviour from a variety of domains. These include speech (Dell, 1986) writing 

(Cararnazza et al., 1987) and typing (Rumelhart & Norman, 1982) (Houghton, 1994; 

p.126). Moreover it is clear from the material reviewed in chapter two that the nature of the 

breakdown of sequential action in motor disorders cannot be accounted for by a process 

model which simply manipulates hierarchical sets of ordered symbols. 

At a computational level some important gaps in the key assumptions of 

psychological theories of motor programming have been revealed by attempts to implement 

computer models of human serial behaviour using these conceptual primitives. Two main 

topics are discussed below: the representation of temporal information in connectionist 

networks, and mechanisms for producing serial behaviour. 

3.3.2 Representation of temporal information in networks 

Since the most popular neural network architectures, notably the multi-layer perceptron, 

perform a spatial discrimination operation on the input set, a simple and common approach 

to representing time in these models is to recast the temporal information as a spatial pattern 

across the input units. Thus, to represent n different states of the network, the input pattern 

vector is divided into n blocks, each representing the state of the network at a successive 

time slice. The entire pattern vector is then processed in parallel by the model. Examples of 

models using this approach are the verb tense learning model (Rumelhart & McClelland, 

1986) and the word recognition model (Seidenberg & McClelland, 1989). Other models 

which explicitly represent temporal information in this way cited by Elman ( 1990) are 

~ottrell, Munro & Zipser, 1987; Elman & Zipser, 1988; Hanson & Kegl, 1987} Elman 

points to three major drawbacks with representing time as a spatial pattern in this way: 

1. This system crucially presupposes a buffer mechanism which intervenes between the 

coded information and the world. If the system's task is to effect a simple response to 

sequentially structured information from the environment, then a buffer is required on 
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the input side such that all the information can be presented simultaneously. Similarly, 

·· if the system is to produce a sequential response as in motor control, then a motor 

output buffer is presumably required. Both psychological data and biological 

organisation argue against the existence of such buffer mechanisms. 

2. The number of sequence elements or past states is limited by the dimensionality of the 

input and output vectors. This again is hardwired by the programmer rather than learned 

by the network and is consequently not a flexible property of the system. 

3. This approach does not make _it easy for the system to distinguish the same sequential 

pattern at different temporal positions. In other words the system is sensitive only" to the 

absolute position of a sequence in a temporal stream of information but not relative 

position. 

An alternative approach is to use delay lines on the links between input and hidden units 

and/or the links between hidden and output units. Although this approach means that the 

dimensionality of the input vector does not directly code for the different states required at 

output, the number of delay lines must still be adjusted by external means to the length of 

the sequence to be produced. Both of these approaches have been found to . be 

unsatisfactory for modelling the properties of human sequential behaviour. 

3.3.3 Serial processing mechanisms in connectionist models 

The limitations of approaches in which temporal information is explicitly represented in the 

network have encouraged the development of models which have their own intrinsic 

dynamics. 

Simple Chaining Models 

A chaining model is one in which the activation of each consecutive element in the sequence 

is directly caused by the preceding one. The · idea of chaining is derived from early 

associationist theories of S - R chaining and Sherrington's reflex chaining of responses. 

The appeal of chaining is that it is the simplest computational scheme by which serial 

behaviour may be produced without resorting to biologically implausible notions of serial 

buffers which are assumed in those approaches discussed above. 
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There are unfortunately a number of serious problems with simple chaining 

accounts. First they have profound difficulty with repeated elements in a sequence. Talce, 

for example, the letter sequence "E, V, E, R, Y". Here the first instance of "E" is associated 

with "V", but the second instance of "E" is associated with "R". Thus upon activation of 

the letter "E", the system has no way to discriminate between the two possible subsequent 

responses. 

One approach that has been used to correct this problem is to introduce tokens for 

different occurrence& of identical types thus forming a context-sensitive chain. The most 

widely adopted example of this approach is the Wickelphone representation sys.tern 

(Wickelgren, 1965). A Wickelphone is a tripartite representation of each sequence element 

such that it is flanked by the preceding and subsequent elements on either side. The 

Wickelphone representation would then be: "_Ev, EVE, vER, ERY, RY_". Approaches based 

on tokens have been heavily criticised ( e.g. Houghton & Hartley, 1995) for failing to 

capture any similarity relationship between the different instances of the same type. Because 

of this defect they will also fail to reflect interesting behaviour resulting from the interaction 

and interference of similar sequences or sub-sequences represented in the same associative 

control structure. 

A further count on which chaining systems have been criticised is that they will not 

exhibit human patterns of error, (such as transitions between elements). As soon as one 

element is not produced or recalled correctly the system will effectively halt. This behaviour 

i\~nsistent with evidence that there is hierarchic control of motor sequences (Sternberg et 

al., 1990). 

Activation Gradient Models 

A different class of models which overcomes some of the problems with chaining models 

assumes at least a two-tier hierarchic coding of motor representations. A higher order 

representation or motor plan activates a set of elementary response units in parallel. 

Assuming that only one response can be executed at any one time, the system will execute 

the response with the highest activation value. The activated response units participate in a 

form of response competition at each time step to yield one response that has a higher 
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activation value than the others. Once a response has been executed, it inhibits itself and is 

eliminated fro·m the competition. This basic theoretical scheme owes much to the notion of 

"contention scheduling", proposed by Norman and Shanice (1986). Various computational 

schemes have been put forward for implementing this mechanism in which the competition 

effectively yields a gradient of activation across sequence elements such that they are 

activated in parallel but executed in the correct serial order (Burgess & Hitch, 1992; Estes, 

1972; Grossberg, 1978; Houghton, 1990; Rumelhart and Norman, 1982). Advantages of 

the activation gradient approach are that the parallel activation of sequence elements gives a 

natural account of co-articulatory effects, whilst noise in the system during the response 

competition produces a variety of errors which correspond to those produced in human 

serial performance in linguistic tasks. 

In the sections below, we discuss in detail three specific examples of current models 

of human sequence production, these are the Rumelhart and Norman (1982) model of 

typing; the Houghton (1990) competitive queueing architecture and the Jordan (1986a, 

1990) models of sequential control of movement. 

3.3.4 The Rumelhart and Nonnan (1982) Model of Typing 

Rumelhart and Norman (1982) (hereafter R&N) developed a model which was designed to 

account for a variety of data available from studies of typing control. This is an interesting 

task, since it is quite clear from the speeds achieved by expert typists that it is an example of 

a motor control task with a high component of feedforward control, and it is a prime 

example of sequential action control. 

In addition to accounting for the speed of expert typing the model is intended to 

account for the high degree of parallelism in typing, similar to co~articulation effects in 

speech. An example of this is that fingers will move towards the keys for later elements in a 

sequence before preceding keypresses have been executed (Flanders & Soechting, 1990). 

Contextual effects are also evident in the timing of individual keystrokes, whereby the 

stroke time depends on both preceding and succeeding letters. The model also seeks to 

model error data in typing, in particular transposition, doubling, and alternation reversal 
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errors. This model is one example of the activation gradient class of models discussed 

abo"ve. 

Word node 

Letter nodes 

Response System 

-----• Inhibitory connections 

---1►~ Excitatory connections 

Figure 3.2. Arch_itecture of the Rumelhart and Norman 11982) typing model 

The R&N model, a simplified illustration of which is shown in figure 3.2, assumes a 

hierarchical model of motor programming containing words and letter level representations. 

The letter representations are mapped onto a response system consisting of two­

dimensional coordinates for the movements of the hands and fingers in a configuration 

corresponding to the layout of a standard "QWERTY" keyboard. When a schema for a 

word to be typed is accessed, the letters which make up the word are all activated in 

parallel, by topdown excitatory connections from word to letter nodes. Lateral inhibitory 

connections between the letter nodes then ensure that each succ·essive letter in the word 

receives more inhibition than the one that precedes it. In this way an activation gradient is 

set up such that the first letter has the highest initial activation and the final letter has the 

lowest activation. Some noise is added to the activation values at this stage. 

The target positions are fed downwards from the letter nodes and the current 

locations of the fingers are fed back to the letter nodes. The model adjusts the position of 

the fingers to minimise the difference between these values in parallel with a force that is 
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proportional to the activation of the relevant letter node. Whenever the difference for the 

most highly activated letter node reaches a criterion value a keypress is launched. Following 

that the letter node corresponding to the keypress is deactivated thus releasing the 

succeeding letter nodes from inhibition. 

This model is a step forward from those reviewed above because it takes seriously 

the need to account for coarticulatory phenomena and parallel response competition in the 

production of sequential actions. The serial ordering mechanism forms part of the intrinsic 

dynamics of the model which also provides the time course of sequence production. 

In spite of this there are a number of problems and limitations with the R&N model. 

First the assumption that only types and not tokens for instances of the same letter are 

represented in the model means that a special doubling operator must be invoked in order to 

type words such as "book". This is not in itself a serious problem, but it means that the 

network has severe difficulties with words which contain two instances of the same letter 

that are separated by intervening letters e.g. "perception". They get around this problem by 

assuming that such a sequence would be broken by an unspecified parser into two sections, 

namely "perc" and "eption". However evidence exists to show that parallel activation 

effects occur across sequences containing more than one instance of the same letter (Shaffer 

1975). Another problem mentioned by Houghton (1994) is that the lateral inhibitory 

scheme for producing serial order means that words containing the same letters in different 

orders such as "rat", "tar" and "art" will interfere catastrophically with each other. 

A final limitation with the model is that several components involved in its o~ration 

are assumed rather than made explicit. For example, the interaction between the letter 

representations and the response system is unspecified except in general terms. Moreover 

no account of learning is provided since a learning algorithm is not included and the model 

must be hand-tuned. 

3.3.5 The Houghton ( 1990) CQ Network 

Houghton ( 1990) has produced a different mechanism known as competitive queuing (CQ) 

which shares some similarities with the Rumelhart and Norman model, whilst correcting a 
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number of its deficiencies. In particular the CQ approach incorporates a learning mechanism 

and is thus forced to be computationally explicit about how the activation gradient over 

letter / item nodes is achieved through learning. 

Start End 

Ll 

L2 

L3 

---• Inhibitory connection 

--►► Excitatory connection 

Figure 3.3. Basic structure of a competitive queuing architecture 

The overall model has a three layer architecture in which layers one and two (Ll and L2) 

correspond to the word and letter levels of the R&N model. The first major difference is 

that here the 'word' node is replaced by a pair of nodes denoted "start" and "end" nodes, 

these are connected via weighted links to a set of item nodes. Time varying activity over the 

node pair in Ll during learning and recall allows a serially ordered activation gradient to 

appear over the set of item nodes. The second difference is tpat although there are lateral 

inhibitory connections at L2, this is not the primary sequencing mechanism as it is in the 

R&N model. The lateral connections are bi-directional and in addition there are self 

excitatory connections on each of the units. This pattern of connections implements an "on­

centre, off-surround" field in which each unit feeds back positively onto itself and inhibits 

all the others. Typically only mild inhibition is used at L2, thus allowing several units to be 

active simultaneously. L3 is identical to L2. Feedforward connections from L2 to L3 are 

one to one and excitatory, thus if the weights are set to unity, L3 simply represents a copy 

of the activations at L2. At L3 however the competition is more selective due to stronger 
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inhibition in the lateral connections. This competition leads to only a single winner where 

one node is fully active and all the others are fully inhibited. The final important feature is 

that there are one to one inhibitory feedback connections from L3 to L2 which mean that 

when a unit has won the competition at L3 its corresponding unit at L2 is inhibited. 

Houghton refers to this function of L3 as a competitive filter. 

During initial learning of a sequence (a word for example), the start node is fully 

activated when a word is presented to the network, the activation then falls gradually to a 

minimum at the end of presentation at which point the end node is activated. Thus at each 

time step of presentation each phoneme in L2 is associated with a different state of 

activation of the start node. The activity of L2 nodes that have been active gradually decays 

away, and L2 nodes that have yet to be activated have an activation of 0. 

The weights from the start node to L2 are changed using a simple Hebbian rule 

which only allows increases in the weights. This means that by the end of presentation 

there is a gradient on the weights form the start node such that the first phoneme in the list 

has the strongest weight and the last phoneme the weakest. However, when the end node is 

turned on, the actual pattern of activation over L2 is the inverse activation gradient from the 

order of presentation (i.e. the last phoneme has the highest activation and the first one the 

lowest). The end node weights are clamped with a copy of this activation pattern. In sum at 

the end of a successful learning trial the weight vectors from each of the word nodes encode 

opposing gradients in the strength of connections across the complete phoneme list.2 

During recall the start node is fully activated at the start of the sequence and 

gradually decays as before. End node activity is defined to be the inverse of the activation 

of the start node for each time step~ This time varying control signal causes partial activation 

of several elements at L2 at each time step, in particular it causes anticipatory pre-activation 

of upcoming sequence elements. This forms the basis of coarticulation in the network. The 

competitive filter in L3 ensures that only the most highly activated L2 element is selected for 

output at any time step, and also suppresses the activity of that element following selection 

thus maintaining serial order of the output. 

2Houghton ( 1990) actually describes an additional supervised learning regime for learning more difficult 
sequences. For simplicity, this is not discussed here as the end result should be the same. 
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The network described above is the simplest version of a variety of recently 

proposed models which use these computational principles (Burgess & Hitch, 1992; 

Houghton, 1994 ). These models have been shown to provide good accounts of a variety of 

phenomena associated with human serial behaviour such as coarticulation (Houghton, 

1990); serial order errors in spelling (Houghton, Shallice & Glasspool, 1994); memory 

span, word length effects and similarity in serial short term memory (Burgess and Hitch, 

1992). 

The central features of the model which are of interest for present purposes is that 

sequencing is controlled by the joint action of two processes: a dynamical control signal 

provided by the paired sequence nodes, and inhibitory processing in the competitive filter. 

3.3.6 The Jordan (1986) Sequential Network 

Jordan (1986a) presented an alternative model of sequence production which, like the 

models reviewed above, relies on internal time-varying activity in the network to produce 

the sequential behaviour rather than an explicit representation of past events or hardwired 

delay connections. However, this model belongs to a class of recurrent architectures which 

use copies of the past states of the network to drive the sequential behaviour (see also, 

Elman, 1990). This model too is intended to account for the high degree of parallel 

activation in different motor components during sequencing, but ·is based on entirely 

different computational principles. 

The basic Jordan model is an adaptation of a standard three-layer backpropagation 

network to allow recurrent links from the output units to a set of 'state' or 'context' units 

which are fully connected to the hidden units and serve as additional inputs to the network 

at each time slice of the learned operation of the network. The input units are referred to as 

'plan' units and remain constant throughout presentation of the entire sequence to the 

network. The state units, on the other hand, change their value with each sequence element 

due to the recurrent connections from the output units. A variation of this network also 

intended to model aspects of sequential behaviour was presented by Elman (1990). In 
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Elman's model the recurrent connections to the context units originate from the hidden and 

not the output.layer. The oasic Jordan architecture is illustrated in figure 3.4 below: 

recurrent connections 

Hidden units 

Figure 3.4. The basic Jordan sequential network architecture (not allfeedforward connections shown). 

In terms of a motor programming model, the pattern of activation on the plan units may be 

thought of as a high-level motor plan which encodes a distributed representation of a 

sequence, such as a word, to be produced. The output pattern vector encodes each of the 

sequence elements (e.g. letters if a typing task is used) in tum as the network cycles 

through the sequence of states. The state units trace the different states of the network. 

Learning in the network is exactly the same as backpropagation learning in a 

standard feedforward network. For each epoch the model is presented with an input vector 

consisting of the plan+ state unit activations (at the first time slice the state unit activations 

will be zero) and targets for the desired output for each successive time slice in the 

sequence. At each time slice activation is passed forwards through the network and the 

output of the network is compared to the target output for that sequence element. Delta 

values are computed at each layer as the error at the output units is propagated back through 

the network. Finally the values of the output units are copied back onto the state units. The 

delta values are accumulated for each element of the sequence and the weights on the 

internal connections of the network are changed accordingly3• 

3 During training the target output activations arc copied back to the state units rather than the actual 
ouputs. This scheme is implemented by Jordan to speed training time. During testing of the learned 
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For the sake of clarity figure 3.5 below depicts output and state unit activations at each time 

step for a network that has learned a single sequence in which each of four output units is 

turned on in succession and all the others are turned off. Note that if only one sequence is 

learned, no plan units are required. 

Time step Output units State units 

1 1 0 0 0 (A) 0 0 0 0 (Start state) 

2 0 1 0 0 (B) 1 0 0 0 (A) 

3 0 0 1 0 (C) 0 1 0 0 (B) 

4 0 0 0 1 (D) 0 0 1 0 (C) 

Figure 3.5 Hypothetical output and state vectors for a learned simple Jordan network. The letters in 

brackets indicate the sequence element. 

In its most basic form as described above the processing of the sequential network strongly 

resembles the simple chaining models discussed in section 3.3.3. If we assume that only 

one sequence is being learned and no plan units are included, then the only input to the 

network comes from the state units. The associations learned by the network are as follows: 

A is associated with the initial state vector (0 0 0 0), B is associated with A, C is associated 

with B ... and so on. 

The network in this form also suffers from the same criticisms that were levelled at 

chaining models. Some researchers (e.g. Brown, Preece & Hulme, 1996; Houghton, 1990; 

Houghton & Hartley, 1995) have suggested that the Jordan model can indeed be viewed as 

a simple chaining model. This position has, however, never been explicitly tested. There 

are a number of appealing computational features of the Jordan model and these are 

discussed below: 

Parallel Distributed Processing 

A major difference between the Jordan approach to producing sequential behaviour and the 

activation gradient models we have considered is that it is that it is embedded in a parallel 

network, however, actual acti vations arc used. 
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processing system that uses distributed representations. The basic properties of PDP or 

connectionist systems were reviewed in chapter 1. These include the capability to allow 

generalisation and similarity amongst stored patterns because of the general property that 

similar inputs tend to lead to similar outputs. In his theory of serial order (Jordan, 1986a) 

Jordan assumes that actions are produced in a temporal context composed of actions nearby 

in time. Knowing the context makes it possible to specify the appropriate action to be 

produced. He further assumes that a continuity property holds in the evaluation of the next­

state function such that similar states are nearby in time. Thus the state vector will evolve 

continuously over time and is a natural way to represent temporal context in the model . By 

associating states with desired actions, the generalisations made by the network are to 

spread actions in time and as learning proceeds there is a tendency towards parallel 

execution of nearby actions. 

Storing the history of past states 

We now tum to the mechanism by which continuity in the state representation over time is 

achieved. In order that the state· vector provides a continuous temporal context, it is defined 

as a function of not just the previous output but a number of previous outputs. If it were 

merely defined as a function of the previous n outputs, this would cause problems with 

distinguishing repeated subsequences of length n. Jordan corrects this problem by defining 

the state as an exponential function of all past outputs, where the strength decreases with 

distance in time. This is achieved by providing each state unit with a recurrent connection 

back to itself with a weight determined by the parameter µ . The value of µ may vary 

between O and 1. With µ set to O the system behaves like a simple chaining model in which 

only the previous output is stored. If the value ofµ is large enough the state vector provides 

a strong temporal context which is potentially capable of allowing recall of a sequence 

element even if the previous element is recalled incorrectly. 

Constraints between output activations 

In most feedforward connectionist models a desired value is specified for each output unit. 

However, this is undesirable in the current model since only a subset of the output units are 
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likely to have targets at any time slice. For example, if we assume that in a typing task each 

ofthe output units represents a finger, only one finger is "active" at any one time. If values 

have to be specified for the other non-active fingers then the system will be strictly 

sequential and no overlap of activations will result. If, however, parallelism is an inherent 

property of the system we may simply allow non-active units to find their own values. 

Jordan achieves this by imposing constraints on the output units rather than by 

explicitly setting target values. If, during learning, an output unit meets the constraints 

imposed on it then no error score is back-propagated from that unit. Thus in the above 

example no error would be propagated from the inactive fingers. This simple approach 

effectively amounts to a 'don't care' constraint on the inactive fingers. Because nearby 

states in time are similar the non-active fingers will be partially activated to an extent which 

reflects their position within the sequence and will tend to move towards their target 

activations at future time slices. The action which immediately follows the current action 

will move fastest and the final action in the sequence will move most slowly. This means 

that each keypress is almost fully prepared at the time step preceding execution. In fact, this 

scheme may be viewed as an alternative way of setting up an activation gradient as seen in 

the R&N and CQ models, except based on different processing principles. More constraints 

may be added in to the learning procedure. In general, the tighter the constraints, the less 

parallelism is exhibited by the system and vice versa. 

Attractor dynamics 

The final property of Jordan networks that we discuss is the dynamics of learned behaviour 

in the network. In particular in his 1986a and 1986b papers Jordan shows how the output 

and next state equations of the network effectively yield a dynamical system in which 

learned sequences act as attractors in state space. That is, if the network is started in a 

region of state space near a learned sequence, the network will be drawn towards the 

learned sequence. Unlike other attractor networks, e.g. Hopfield networks (Hopfield 

1982), or Boltzmann machines, (Hinton and Sejnowski, 1986), which converge on a stable 

point in state space, the Jordan networks with recurrence converge on a stable cycle or 

limit-cycle corresponding to the learned sequence. This yields the interesting possibility that 
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is, if several sequences are encoded by the weight matrix of one network then complex 

patterns of generalisation and interference may occur between sequences. 

3.3.7 The Jordan ( 1990) Model of Motor Leaming and Control 

Jordan (1988, 1990) set out to address the problem of how a control system might learn the 

feedforward commands necessary to control a multi-jointed articulated limb with excess 

degrees of freedom through one or more sequences of goal-directed movements and exhibit 

desirable properties of human movement such as smoothness, economy of movement and 

so on. A representation of a two-dimensional task space and a two-jointed limb of the type 

modelled by Jordan is illustrated in figure 3.6 below. 

'Task Space' 

◊ 
Endpoint 

Target 

Shoulder 

X- coordinate 

Figure 3.6. A task space and simulated kinematic arm. 

His approach was to break the computational problem into two stages: 

1. Learning to provide appropriate control signals to the limb such that an externally 

defined movement goal may be achieved, for example touching a point in an 

extrinsically defined task space with the tip of the limb (note the target in figure 3.6). 
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2. Leaming to translate a higher-order motor plan into a set of control signals which 

·accomplish· the sequential task and optimise certain desirable quantities such as 

smoothness in task space. 

Much of the control structure needed to achieve the second phase is already available in the 

sequential network just described, assuming that the plan units encode a sequential motor 

plan and the output units encode the kinematic variables which control the movement of the 

limb. 

Solving the first problem is not straightforward because when the system is 

attempting to learn even a single goal-directed movement, the error information is provided 

in task space quantities, ( e.g. the distance of the tip of a finger from a target) but not in 

control space coordinates (such as changes in joint angles). Yet an error in control space 

coordinates is needed to change the weights in the sequential network appropriately. 

Moreover the problem is intensified by the fact that there are, in general, fewer 

degrees of freedom needed to specify a desired goal state, than there are available to control 

the limb. This means that there is a many-to-one mapping from control space to task space. 

In other words there are many possible limb configurations which may achieve the same 

task goal. The problem that arises is one of indeterminacy when the system is required to 

perform the corresponding inverse mapping from task space to control space which is one­

to-many. This problem is a constrained statement of the degrees of freedom problem first 

recognised by Bernstein (1967). 

As an example consider that the task is to reverse an articulated lorry into a loading 

bay. In this case, the task space error is the distance between the back of the lorry and the 

end of the loading bay. The control coordinates are the changes that need to be made to the 

steering wheel. The first problem to solve is to learn how to translate errors in the position 

of the back of the lorry, into small changes in the angle of the steering wheel. 

Jordan's solution to this problem is to augment the sequential controller with a 

structure he terms aforward model (see also Jordan and Rumelhart, 1992). The input to the 

forward model is provided by the control variables that are the output of the sequential 

controller and its output is an estimate of the task space location of the tip of the articulator. 
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The estimate supplied by the forward model may be compared with the desired location of 

the tip of the effector at that time step which provides a suitable error term which may be 

propagated back through the forward model thus providing an error term at the control 

variables which are the output of the sequential controller. 

The forward model is implemented as a standard three-layer backpropagation 

network with logistic hidden units intervening between the input and output layers. 

Learning of the forward model takes place in a separate initial phase which involves 

supplying the network with random values for the control variables, comparing the forward 

model estimate of endpoint location with the observed endpoint location and propagating 

the resulting error back through the network to change the weights accordingly. This phase 

of learning may be likened to a baby's developmental phase in which it waves its arms and 

legs about, apparently at random, in an effort to gauge the effects of its movements on the 

environment and thus establish a basis for future control. In the lorry example, a forward 

model may be learned by initially making random small changes to the steering wheel and 

examining the effect they have on the position of the back of the lorry. This knowledge 

may then be used to complete the task by running the forward model in reverse (i.e. using 

the desired and current location of the back of the lorry to determine accurately what 

changes need to be made to the steering wheel). 

u(n-1) 

s[n-1] 

Plant 

Forward 
Model 

Figure 3. 7 Leaming the fonvard model 

x[n] 

x"[n] 
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The process of learning a forward model is shown in the control flow diagram of figure 

3.i. The plant"i:epresents the system to be controlled (e.g. the lorry in the above example). 

The input to the plant at time n - 1 (u[n-1]) is copied to the forward model as is the current 

state of the plant (s[n -1]). The forward model prediction of the output (x"[n]) is compared 

with the actual output (x[n]) and the resulting error is used to adapt the forward model. 

Once the forward model has been, at least partially, learned the weights are held 

fixed and the network may be adjoined to the sequential controller network by identifying 

the output units of the controller with the inputs to the forward model. 

s[n-1] 

p[n-1 l 
Controller 

u[n-1] Forward 
Model 

*x[n] - x[n] 

x"{n] 

Figure 3.8. Learning the controller using the performance error ( *x[n] - x[n]) 

Goal-directed sequential actions may then be learned by forward propagation of activation 

through the composite network to arrive at an error at the task units. Although the predicted 

performance error ( *x[n] - x"[n]) could be used, if this were the case then the controller 

could only learn an inverse of the forward model. If the forward model is inaccurate, then 

the controller will also be inaccurate. The performance error is then propagated back 

through the fixed weights of the forward model to the articulatory units. The error in 

control space then flows backwards through the controller and the state units are updated. 

The state units which feed into the controller subnetwork may receive recurrent connections 

from either the articulatory units and the task units, or just the task units. At the end of each 

sequence the weights are changed. 
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The forward pass of activation through the forward model to provide a task space 

esti_~ate is ess~_ntial during the learning process in order to apply one of the many po~ble 

sets of control values to the articulatory units so that the inverse mapping can be performed 

during the backwards pass. 

The forward modelling approach provides a flexible and effective solution to the 

problematic inverse transformation when using supervised learning with excess degrees of 

freedom. It is superior to other previously tried approaches, notably direct inverse 

modelling (see Jordan and Rumelhart, 1992 for a fuller discussion). One of the major 

advantages of this approach is that the forward model does not need to be accurate across 

the whole task space in order for accurate · goal-directed movements to be learned. 

Additional constraints on the learning process which optimise desired quantities (such as 

smoothness in task space) can be incorporated into network processing as extra error terms 

at either the task units or the articulatory units. 

Jordan has extended this approach in the domain of movement control in a variety 

of ways to produce a number of more complex systems than the one presented here. These 

include: Co-ordination of more than one articulator (Jordan, 1990); forward modelling of 

limb dynamics which incorporates use of backpropagation through time (Jordan and 

Rumelhart, 1992); the inclusion of multiple task and internal constraints (Jordan, 1992); 

and combining feedforward and feedback control in a single system (Jordan, 1990). 

3.4 Chapter Summary 

In the first part of this chapter we reviewed theoretical approaches to feedforward 

movement control from psychology. This review focussed on the various motor 

programming theories and examined the conceptual foundations on which they are based. It 

was concluded that, whilst this approach has provided a coherent and structured description 

of the problems faced by an autonomous system in the internal generation and control of 

feedforward actions, it stops short of providing an explanation in the form of explicit 

models of processing mechanisms. Part of the problem is that several of the mechanisms 
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presumed by the approach are built on biologically implausible computer primitives - for 

example serial ·-buffer mechanisms with intrinsic ordering properties, or static symbolic 

representations of action. Various computational models have been built based on these 

properties and have been criticised for failing to reproduce the characteristics of human 

sequential behaviour. One major problem is that they cannot account for interaction and 

competition between movement representations, or the internal 'soft' constraints on motor 

output which affect the overall shape and form of movements in a system with excess 

degrees of freedom. 

A contrasting approach which grew out of a dissatisfaction with a profusion of 

'box-and-line' models and the apparent 'loan on intelligence' (Kelso, 1982) they entailed is 

the action systems approach. Alternatively known as the dynamical systems or task 

dynamics approach, this theoretical position encompasses ideas from ecological 

psychology, dynamical systems mathematics and biological considerations. The emphasis 

here is on the impact of task properties (i.e. the structure and dynamics of the environment) 

on the motor patterns produced by biological organisms. Few computational models have, 

to date, been constructed to test this theoretical position. Some models, like the activation 

gradient models reviewed above, are based on well established associative learning 

mechanisms and processes commonly found in biological systems ( e.g. lateral inhibition). 

However, a limitation of many of these models is that the representational primitives are 

overly simplified localist representations which are identified with a discrete unit of 

linguistic behaviour. Other recent models have employed dynamical systems concepts such 

as attractors, stability and bifurcations to explore the complex interactions which give rise to 

the output behaviour of movement control systems (e.g. Mpsitos & Soinila, 1993). 

The most diverse and comprehensive computational modelling approach reviewed 

above is the Jordan combined sequential network and forward model architecture. One of 

the major strengths of this model is that it combines elements of motor programming theory 

by addressing the need to specify adaptive internal control structures for feedforward 

control and taking seriously issues of the complexity of motor representations, with 

elements of task dynamics and concerns about system-environment interaction. Another 
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attractive feature of this model is that it has been developed to control the goal-directed 

movements o(a simulated kinematic limb within a simplified environment (or task space). 

Thus any changes in the processing of the model can be observed directly in qualitative 

changes in the output behaviour of the limb. This feature counteracts one of the criticisms 

of the model, which is that it is embedded within a complex and powerful general purpose 

connectionist architecture (the multi-layer perceptron with backpropagation learning 

algorithm). Systematic analysis of the state space of large networks of this type is 

notoriously difficult, thus the use of a simulated limb provides an intuitive way of 

visualising and evaluating the performance of the model. 
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In this chapter we develop a conceptual model which relates the cortical and subcortical 

mechanisms in motor processing to the selective impairments found in motor sequencing in 

Parkinson's disease. The framework incorporates elements of existing models of basal 

ganglia operation and computational models of sequencing. In constructing the model we 

first consider the motor control problems that biological organisms have to solve, and how 

the basal ganglia may have become adapted through evolution to fulfil the hypothesised 

function. The model is based on the combined evidence reviewed in the previous two 

chapters and its aim is to produce a constrained set of computational level hypotheses that 

act as a theoretical foundation for the modelling work in subsequent chapters. 

4.1 Motor control in a hypothetical 'simple' organism 

Let us for the moment consider a hypothetical 'simple' animal, for present purposes 

imagine a crayfish with much of the complexity removed. The animal is simple in the sense 

that it possesses the minimum brain mechanisms to control a few hardwired motor 

programs or fixed action patterns necessary for survival. Let us further suppose that the 

stimulating conditions for the initiation of one of these programs are provided by the · 

environment. We will restrict our discussion to only two programs: program A - a mating 

response and program B - an escape response. The simplified perceptual system of our 

imaginary crayfish, which can only detect either mates or predators, constantly scans the 

immediate environment for the presence of either. The presence of a mate provides the 'key 
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stimulus' for the activation of the mating program and similarly the presence of a predator 

in the locality stimulates the activation of the escape response program. 4 

This simplest possible scheme will not work even when we only consider the two 

motor programs described above. Let us assume, for instance, that the water is cloudy and 

that the perceptual input is somewhat degraded as a result. Also it is possible that the mate 

and predator are of similar size. In such a situation there is potential conflict between the 

two different responses and it is not clear how the competition would be resolved in the 

system as it has been described. Furthermore, the effects of activating the wrong program 

are potentially disastrous. 

A slightly more complex scheme would have both programs held under inhibitio_n in 

normal circumstances. One might then presuppose an intermediate mechanism between the 

perceptual and motor systems which serves to disinhibit the appropriate motor pattern only 

when sufficient information is available about the nature of the key stimulus. This 

alternative scheme confers a number of advantages on the behaviour of the organism. 

1. It reduces the likelihood of producing an inappropriate response because of the 

existence of general inhibitory control. 

2. On account of the mechanism for selective disinhibition, the system is less prone to 

'freeze up' due to parallel activation of conflicting response tendencies. 

3. Both programs can be maintained in a full state of readiness up until the moment when 

one or the other is ·released. 

Work reported by ethological and physiological psychologists has demonstrated that the 

principle of general inhibition - selective disinhibition is ubiquitous in the motor control of 

lower animals (see Gallistel, 1980; Lorenz, 1977). Lorenz states that: 

"In many lower animals the most important function of the highest centres of the 

nervous system is to exercise a permanent inhibiting effect on the various endogenous­

automatic behaviour patterns of the organism, and on the basis of external information to 

'set the pattern off' at the appropriate moment". (Lorenz, 1977 p.59) 

4 
This example draws on work reported by Lorenz (Lorenz, 1977). He provides an example of young Cichlid 

fish which react optically to both their mother which they have to follow and to that of a predator of the 
same size which they have to escape from. The observation was recorded by Kucnzer ( 1968). 
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He provides the examples of the earthworm which continues to crawl even when its 

supra-oesophageal ganglion has been removed and the crab which, when lesioned in a 

. similar way, continues to eat as long as food is available. An interesting.companson may be 

made with human patients suffering from prefrontal lesions in whom comparative 

perseveration and utilisation behaviours are common. 

The hypothesised conceptual link between the primitive inhibition and innate 

releasing mechanisms discussed above and basal ganglia function is clearly illustrated by 

the work of Hikosaka (Hikosaka, 1991) and Chevalier and Deniau ( 1990) on the role of the 

striato-nigro-collicular system of the basal ganglia in the control of saccadic eye movements 

which was discussed above. It has not been shown that the more recent striato-pallido­

thalamic system plays an analogous role in the control of limb movements, but in 

developing the conceptual model we shall postulate that this is the case. 

4.2 Motor control in higher animals 

The motor control problem for higher animals and humans differs in two main ways from 

the 'simple' scheme we have outlined above. First, rather than having a restricted set of 

innate genetically-coded motor patterns to select between, higher animals, especially man, 

have a vast repertoire of stored motor programs and motor program fragments from which 

flexible, adaptive motor synergies can be formed to accommodate a wide range of 

environmental conditions and task constraints. This puts a far greater computational burden 

on the disinhibition mechanism. 

Second, in complex motor tasks, commonly not all the information needed to 

perform the task is available from the environment. This means that action selection must 

take place at least in part on the basis of internally coded contextual information accrued 

from previous experience 'to fill in the gaps', thus allowing shortening of reaction times 

and anticipation of the appropriate response. In the most extreme case, human voluntary 

action, no information is either necessarily available from the environment nor utilised. 

Here the internal contextual representation provides a substitute for the key eliciting 

stimulus. It has been demonstrated that an arbitrary environmental event can become a 
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substitute for an eliciting stimulus through reinforcement learning. It is plausible that, 

assuming the brain machinery exists, the stimulus may also be associated with a substitute 

internal event. A strong candidate for such a role would be a dynamic pattern of activity in 

prefrontal cortex (see section 2.4.3). 

4.3 Developing the conceptual model for the selection and initiation of 

action 

We are now in a position to forge the links between the above features of higher order 

motor control and the function of the prefrontal and basal ganglia circuits. The descending 

nigro-collicular system which is involved in the disinhibition of eye movements is 

phylogenetically older than the complementary ascending system and it is reasonable to 

suppose that an analogous system would have played a similar role prior to the 

evolutionary development of the cortical mantle. In this case the input to the disinhibiting 

mechanism would be relayed directly from the perceptual apparatus. 

dsimiation 
mecharism 

perceptua 
a~ratus 

mctor 
a~ratus 

• inhitltcry prtj a::ti01 
---IE exdtacry prtj a::ti01 

Figure 4.1. A schematic illustration of a simple disi11hibiton mechanism analogous to the basal ganglia 

in the release of saccadic eye movements. 



4: A conceptual model of cortico-basal ganglia control 80 

A schematic illustration of this idea is presented in figure 4.1. In the simplified scheme 

depicted in figure 4.1 gaze is held at a static location by the double excitatory pathway from 

perceptual apparatus to the motor apparatus which holds the muscles controlling eye 

movement under tonic inhibition. However, when the perceptual apparatus detects a change 

in target location, the inhibitory pathway from the disinhibition mechanism is activated 

which releases the eye movement controller from tonic inhibition and thus allows the eye to 

move to the new location. 

However a major difference in the modem mammalian brain is that the striatum 

receives input not directly from perceptual systems but via multiple cortical stations 

including prefrontal cortex. Moreover its output is directed back to motor areas of cortex 

rather than spinal motor circuits. We suggest that these internal loops which interact with 

neocortex serves to handle much of the complexity that arises in higher order motor control 

(motor programming), but that the intrinsic circuitry of the basal ganglia still perform the 

same basic function of selective disinhibition. 

prefrontal cortex 
1---+--+----::c---=---=-

SMA / motor cortex 

To Effectors 

-0 
Strong excitation 

--el 
Weak excitation -Inhibition 

Figure 4.2. A schematic diagram of hypothesised basal ganglia I prefrontal control in the selection and 

i11itiation of "action 2 ", which is predicted by "eve11t A" in the environment 



4:.A conceptual model of cortico-basal ganglia comrol 81 

Figure 4.2 above provides a simplified schematic illustration of the main features of the 

coriceptual model we are proposing. To make the discussion more concrete we have 

assumed that event "A" is an event in the environment which predicts or is associated with 

desired action schema "2". For example, suppose that event "A" is the release of a ball 

thrown towards us and action schema "2" is a catching schema, (action "1" may be a 

throwing schema and action "3" a kicking schema). 

When event A occurs, a number of internal changes are presumed to co-occur. For 

simplicity we consider here only a few of them: 

• The occurrence of event A is detected by visual attention networks (Jackson et al., 

1994) and is relayed via cortico-cortical connections to dorsolateral prefrontal cortex 

where it is associated with an instantaneous state of the dynamic contextual signal 

represented by prefrontal cellular assemblies.5 

• The detection of event "A" also activates a set of cortically represented motor 

schemata associated with a ball throwing event. This is not in itself sufficient to prepare 

an appropriate response but may be thought of as orienting the system towards 

responding to a ball-throwing event. Simultaneously, information is transmitted via 

excitatory cortico-striatal projections to striatal medium spiny cells (Alexander et al., 

1992). 

• Projections from SMA and PMA ( not shown in figure 4.2 for simplicity) innervate 

motor program fragments associated with the stimulated schemas in these cortical areas 

in a motor analogue of the combinatorial map revealed by the studies by Brown et al. 

(1994) and Flaherty and Graybiel (1993). Consequently actions schemas 1, 2 and 3 are 

depicted at striatal level in the diagram. 

As a consequence we suggest that a pattern of activation is set up over the striatal schematic 

map which is associated with the state of the prefrontal context signal corresponding to the 

occurrence of event "A". This is the basic role of the internal context signal on motor 

output. Action schema "2" is shown as receiving stronger excitatory signal than either 

actions "1" or "3" at the striatal complex due to multiple sources of information which have 

5 The idea of a dynamic contextual signal can, in many ways, be thought of as a computational restatement 
of the idea of working memory - a role which has been assigned to DLPFC (Goldman-Rakic, 1995). 
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an impact on striatal neurons, including sensory or attentional information caused by the 

occurrence of event "A". 

Also impinging on the striatal combinatorial map are doparninergic projections 

originating in the SNc. These provide the basis for the selective disinhibition function of the 

basal ganglia. Shultz and colleagues have provided evidence that dopamine cells can 

become sensitive to events in the environment which predict behavioural responses, thus 

dopamine cells also fire when event "A" occurs (see chapter two). The complex action of 

dopamine on the indirect and direct output pathways of the striaturn is depicted crudely in 

the diagram as providing excitation to action "2" and inhibiting competing actions "1" and 

"3". Following Wickens (1993a) amongst others, this is intended to indicate a model of 

dopamine action in which there is competitive processing over the striatal combinatorial 

map. In this way dopamine performs the contrast enhancement function suggested by 

Servan-Shreiber et al. (1990) and yields a focussed disinhibition of the appropriate cortical 

motor schema. 

After a period of learning, however, we suggest that the contextual representation 

alone is sufficient to cause the correct pattern of activation over the striatal cell assemblies. 

We suggest that cortico-cortical associative networks also exist such that a given state of the 

context signal serves to provide a more discriminative facilitation of the appropriate cortical 

schema directly. The subcortical portion of the loop is still required, however. An 

excitatory projection from neocortex to STN maintains a tonic inhibitory influence over the 

cortical action schemata even though action "2" has attained a state of readiness. Release of 

action "2" is made possible by focussed dopaminergic controlled inhibition of thalamic 

targets pertaining to action "2". 

A key novel feature of the conceptual model is encapsulated in the notion that 

dopamine cells in the SNc may also be sensitive to the internal representation of the context 

of event "A" encoded by the dynamic signal in DLPFC. Shultz and co-workers have 

already found that dopamine cells come to respond to neutral contextual stimuli in the 

environment associated with a key stimulus through learning. This finding was in primates 

performing simple tasks. It is conceivable, then, that in higher primates and man a similar 
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link may exist with .the hypothesised contextual representation provided by DLPFC activity 

to subserve the· generation of voluntary, goal-directed movements when no external cues 

are provided. Even though the model is speculative, it can potentially account for a number 

of currently unresolved issues concerning basal ganglia motor processing and motor 

disorders. Dopamine is hypothesised to aid feedforward motor programming in the 

following ways: 

1. During early stages of learning it serves to improve the quality of the pattern of 

activation which is distributed over the striatal combinatorial map and thus the correct 

selection of cortical action schemata, due to its sensitivity to salient environmental 

events. It is possible that this function could also help to time the initiation of 

movements. 

2. popamine facilitates the transference of the initiation cue from an external source (the 

event) to an internal source (the contextual representatiou) as a result of its secondary 

association with the state of the context signal. 

So far we have only applied the model to the processes involved in the selection and 

mobilisation of a single action schema. In the section below we describe how the model 

suggests that the processes underlying motor sequencing are performed by precisely the 

same computational machinery that is already in place for action selection. 

4.4 Accounting for cortico-striatal involvement in sequence control 

According to the computational models reviewed in chapter three, sequences of movements 

can be adequately produced by either of two methods: competitive processing using 

inhibition, or a dynamic control signal which has a continuity property that maintains 

similarity relations between successive temporal contexts. 

In terms of the conceptual model we have described how both systems may be 

implemented by cortical - striatal loops and we view both as playing complementary roles in 

the control of sequential output. The contextual control signal is provided by dorso-lateral 

prefrontal cortex (DLPFC). This enables a desired sequence of movement outcomes to be 

encoded as different states of the contextual signal. After learning the sequence a pattern of 
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activation is set up over the combinatorial map in striatum for each successive state of the 

context signal: The intrinsic processing of the basal ganglia serves a complementary 

function of facilitating the desired sequence elements at each salient state of the context 

signal and inhibiting competing representations. 

4.5. Predictions of the conceptual model 

The model proposed above makes a number of predictions: 

The capacity for autonomous generation and control of voluntary movements bas 

developed out of a system which is adapted to provide fast and accurate action selection in 

response to salient environmental variables. This can account for the finding of Mink and 

Thach (1991a) that the basal ganglia do not show a preferential role in self-generated or 

externally-guided movements. Equally it suggests that the reason that voluntary movements 

are most profoundly affected in PD is due to the fact that action selection takes place solely 

based on the int~rnal contextual representation whicll more susceptible to disruption when 

available dopamine is reduced. 

Similarly sequential actions are dependent on the internal contextual signal for the 

generation of later elements of the sequence rather than external sources of information. 

Thus it makes sense that PD patients should show greater impairments in overtly sequential 

actions. 

The model predicts that changes take place in the system during learning of skilled 

movements. In the early stages of learning the internal context signal will inevitably be 

relatively impoverished, thus emphasis is placed on inhibitory competitive processing on 

the basis of external cues. This mode of control may be expected to yield the performance 

characteristics typical of early learning: high muscular stiffness, poor coarticulation and low 

anticipation. As learning progresses, and a better internal contextual representation is 

established there is a reduced dependence on external information and inhibitory 

processing. This in tum leads to reduced stiffness, greater smoothness in the transition 

between sequence elements and a higher degree of anticipatory movements. To provide an 
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-example, one may ·recall the changes in the performance of the clutch, gt:P,lfshift, accelarator 

sequence as on·e learns to drive a car. 

The model suggests that there is a complex inter-dependent relationship between the 

cortical and sub-cortical loop in the interaction of basal ganglia and prefrontal cortex. 

Efficient feedforward control of action sequences is equally dependent on a good quality 

internal contextual representation and the integrity of the nigro-striatal dopamine system. A 

reduction of the available dopamine in the system as occurs in Parkinson's disease may be 

expected to yield deficits at a number of different levels: Interference between sequence 

elements, interference between different sequences (motor plans), interference between 

different groups of effectors. 

4.6 Chapter summary 

We do not cl~ that the conceptual model put forward in this chapter is in any way a 

complete description of the function and operation of the frontal and motor loops through 

the basal ganglia. Much biological detail has been eliminated and other elements have been 

highly simplified. Rather, it represents an attempt to draw together some of the many 

disparate current hypotheses with evidence from neurobiology, movement control, and 

parkinsonian studies into a coherent framework within which computational level questions 

can be explored. The main hypotheses are reiterated below: 

1. Frontal cortical areas (projecting to the basal ganglia) can be viewed as providing a 

dynamic internal contextual signal that drives the sequential flow of action. This 

contextual signal effectively substitutes for direct environmental input to subcortical 

structures. 

2. The basal ganglia are involved in competitive action selection - inhibiting undesired 

responses and facilitating intended responses on the basis of the partial action 

specifications that are provided by the "frontal" contextual control signal. The action­

selection processes are similar to those that occur when the environment, rather than 

frontal cortex, provides the main input to the basal ganglia. 
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3. There is a two-way influence of action selection processes on contextual control 

processes and vice-versa which is encouraged by the loop structure of basal ganglia­

cortical interaction 

4. There is a trade-off between these processes: there is a greater need for efficient action 

selection when the dynamic contextual control signal is degraded or when an action 

sequence is only partially-learned 

5. Deficits in either frontal/contextual control and sub-cortical "action selection" can 

interact in unpredictable ways. 

In the remainder of this thesis we explicitly explore these hypotheses by computer 

simulation. 
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CHAPTER FIVE 

The Effects of Lesioning a Jordan 

Sequential Network 

87 

In the previous chapter we have applied the linked concepts of 'internal context' and 

'selective disinhibition' to the control of sequential motor actions and highlighted their 

potential importance in accounting for the motor deficits in diseases of basal ganglia 

dysfunction, notably Parkinson's disease. Also we have emphasised the need for a 

dynamical approach when developing models of the control of movement. 

In this chapter we explore the theoretical and computational issues that emerge from 

this conceptual foundation. These issues concern the role of the basal ganglia in normal 

movement control and, in particular, the effects of basal ganglia dysfunction on sequential 

motor behaviour. More specifically we examine the role of a dynamic internal 

representation of context and a predictive forward model in controlling the sequential 

. behaviour of a simulated robot arm. 

5.1 Modelling patterns of deficits in parkinsonian sequential actions 

A popular method within connectionism is to select or develop a model that reflects human 

performance and which is based on certain key theoretical and computational primitives. 

Connectionist lesioning techniques are then applied to the model and the pattern of 

breakdown of behaviour can be examined and compared with human data from 

neuropsychological studies. 

Numerous examples of this general approach are available in the literature. 

McClelland and Rumelhart ( 1986) modelled anterograde and retrograde memory deficits in 

amnesics by degrading the weights on connections during learning. Cohen and Servan-



5: lesioning a Jordan Network 88 

Shreiber ( 1989) modelled aspects of abnormal use of context in schizophrenics by altering 

the sensitivity of selected units in a way that related to the effect of abnormal levels of 

excitatory neurotransmitters on specific groups of neurons. Levine ( 1986) addressed the 

joint problems of perseveration and utilisation behaviour in frontal lobe patients by 

disrupting interactions between pools of sensory and reinforcement units in an ART 

network (see also: Bapi & Levine, 1990; Changeux & Dehaene, 1994).6 Finally 

considerable attention has been paid to investigating the behaviour of damaged 

connectionist networks in relation to the behaviour of patients with acquired dyslexia 

(Hinton & Shallice, 1991; Mozer & Behrmann, 1990; Plaut, 1991). Perhaps the most 

interesting of these approaches was that of Plaut (1991) who used networks that build 

attractors around representations in the network's state spac'!. He analysed the effects of 

damage on the behaviour of the network in terms of the distortion and interference created 

in the properties and layout of attractors. 

To construct a connectionist approach to motor disorders in a similar fashion to 

those described above, three preliminary decisions need to be made: 

1. What pattern of impairments are to be modelled. 

2. What model is to be used in simulating normal behaviour. 

3. What damage is to be incurred in the model. 

These issues are dealt with in the following sections. 

5.1.1 Parkinsonian impairments in sequential control 

In most of the connectionist approaches reviewed above, the performance of the model in 

question is assessed over a corpus of data which has been derived, and usually simplified, 

from empirical work. The performance of the model may then be directly compared with 

the human data gathered using the same task criteria. An indicator often used to evaluate the 

model in such simulation studies is the match produced between a graph of human 

performance and model performance. 

6 A descrirtion of ART networks may be found in Carrenter and Grossberg ( 1987). 
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Although this methodology is appealing on account of its apparent simplicity and 

objectivity, a few critical comments need to be made. First, the task of setting up the input · 

and output representations of a model to reflect the information content of the human dataset 

is usually not straightforward and the inevitable simplifications can lead to an inbuilt bias 

towards achieving the desired effect, not as a result of properties of the model, but due to 

properties of the system of representation. An example of this is the verb tense learning 

model of Rumelhart and McClelland ( 1986) which was subsequently criticised on account 

of the "T.R.I.C.S" (fhe Representations It Crucially Supposes) used in the Wickelphone 

system of input representation. Another potential problem is that many models have a 

number of system parameters unrelated to the particular modelling problem that may be 

'tuned' to provide a better match between the graphs. This form of atheoretical parameter 

tweaking is more easily avoided if some other performance criteria are used. 

There are several further reasons why this approach is inappropriate for modelling 

many movem½nt.control phenomena and, in particular, the movement deficits in PD. First, 

in motor experiments with PD patients there is no easily definable analogue of a corpus of 

input data that is commonly found in domains with a linguistic basis such as speech, 

reading, spelling etc. Similarly on the output side the results of experiments with patients 

are not analysed with respect to robust effects in normal behaviour such as, for example, 

the recency effects and serial position curves characteristic of human short-term memory 

performance. There is considerable variability in the designs and techniques used to 

investigate PD movements, not to mention variability in the results obtained which again 

makes it difficult to model an effect which has implications outside the particular 

experimental approach used as a basis for the model. Much of the present inconsistency in 

empirical research in PD is attributable to the complex and multi-faceted nature of the 

parkinsonian deficit. It also reflects the relative youth of the research field in comparison 

with other more easily accessible areas of cognitive science and the concomitant lack of a 

firm theoretical framework of normal motor control. 

In view of these problems, however, a necessary prelude to developing a modelling 

approach to PD impairments is to attempt to identify qualitative characteristics of 
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parkinsonian behaviour. A unique recent study by Brentari and Poizner (1994) offers some 

useful insight·s. They present an analysis of the sign language errors produced by a deaf 

parkinsonian signer. This approach has the methodological advantages of a linguistic-level 

analysis in that the information content of movements can be identified, whilst allowing 

physical observation the nature of the deficit in the movement of the limbs. 

They" categorise the errors of their patient (R.H.) into two main groups: spatial 

errors, which include a variety of sign distortions all commonly referred to as reductions 

and timing errors, which primarily consist of abnormalities in the timing of transition 

between handshape postures. Their findings are summarised below: 

Reductions 

This group of errors reflects the tendency of PD patients to produce abnormally small 

movements across a variety of domains: writing, ballistic movements, walking, speech, eye 

movements. A classic finding in the literature is that if patients are required to move to a 

spatial target,,their movement will consistently fall short of the target. In the current study 

R.H. exhibited several types of movement reduction, as follows: 

• Distalisation. Here the path of the movement is maintained but is transferred from a 

proximal joint such as the shoulder or elbow to a more distal joint such as the wrist or 

knuckle. This has the effect that the resulting movement is of diminished amplitud~ 

• Shadowing. This distortion occurs in gestures using two hands, where one hand 

remains static and acts as a base for the other active hand. In R.H. the base hand 

followed or shadowed the active handi movements. 

• Contact Deletion. Many signs require the contact of the signing hand with some part of 

the body or the other hand. In the PD signer the movement terminated, almost without 

exception, short of making contact. 

• Handshape Reductions. An important group of reductions refer to the formation of 

handshape postures themselves. For many signs there are a set of active fingers which 

are more active during sign execution and a set of passive fingers which remain 

relatively static during execution. The passive fingers can be either at full extension 

'open' or fully flexed 'closed'. Typically the passive (and active) fingers in the patient 
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signer would be neither open nor closed, but would assume an intermediate 'lax' 

posture bet.ween the two. 

An important point is that all of the above errors are imprecise executions of correct targets 

rather than crisp executions of incorrect targets. 

Timing disruptions 

Reports of timing abnonnalities abound in the experimental literature on PD. Unusually 

slow movements are characteristic of the disease as are abnormally long latencies between 

the components of compound movements such as reaching and grasping and extended 

movement sequences. Various other time estimation and reproduction disturbances have 

been reported during the performance of repetitive movements. The primary timing 

disturbance analysed in patient R.H. was a prolongation of handshape change during the 

transitional movement of compound signs (i.e. those that are composed of two or more 

separate handshapes). Typically the patient would used a much greater percentage of the 

transitional component to execute the handshape change than did normals. 

There are two notable features of all the errors exhibited by R.H. First, the errors all 

map onto known abnormalities in Parkinsonian movement generally, which sugges~ that 

the error classification scheme produced here reflects generalisable characteristics of 

parkinsonian motor deficits. Second, all of R.H. 's errors favour ease of articulation at the 

expense of distinctiveness. These disturbances provide a useful and systematic framework 

for analysing the performance of a computational model. 

5.1.2 Modelling normal sequential motor control 

The connectionist architecture that we use as a basis for the computational work contained 

in this chapter is the combined sequential / forward model network (Jordan, 1988, 1990) 

which was reviewed as a model of motor learning and control in chapter three. We have 

already briefly discussed the main properties of this type of recurrent connectionist network 

and the motivations for its use in modelling movement control. 

Our primary motivation for focusing on this model in connection with modelling 

motor disorders of basal ganglia dysfunction is the central importance of the recurrent links 
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to the state units in allowing the network to produce sequential behaviour. The state 

representation acts as a form of internal context signal which is closely related to our 

hypotheses of cortico-basal ganglia interaction, outlined in chapter four. Although there is 

no explicit inhibitory - disinhibitory mechanism in the model, the mapping from state 

representation to motor output is continuous, and consequently the values encoded on the 

state units have an influence on the level of competition or interference between the learned 

action and other possible actions. 

As we have pointed out above, one of the difficulties with attempting to model the 

abnormal characteristics of parkinsonian movement is that there is no corpus of data which 

can be directly compared with the output of a connectionist models as is often done with 

more strictly cognitive phenomena such as memory (McCloskey & Cohen, 1989) or 

dyslexia (Plaut, 1991). An alternative approach is to compare the qualitative behaviour of 

the model when it is damaged in different ways. 

One of the major advantages of using the Jordan scheme is that the output of the 

model controls the movement of a simulated robot arm in a two-dimensional space, by 

using a forward model that encodes the kinematic control variables in a separate phase of 

learning. This feature means that any computational disruption will be reflected in changes 

in the movement of the arm in the task space, and can be visualised using a representation 

of the changes in arm position over time. There are a number of characteristics of 

parkinsonian movement that can be assessed using this model following the categorisation 

scheme outlined above. 

5.1.3 Methods for damaging the model 

In the course of the work reported in this chapter we use connectionist lesioning techniques 

to examine how the sequential behaviour of the network is affected by disruptions to the 

state unit activations during learned performance. In psychological terms, this is intended to 

model the effects of disrupting the internal contextual representation. In order to produce 

computational disruptions that are consistent with our hypotheses of basal ganglia 

dysfunction caused by loss of nigro-striatal dopamine we use a method for simulating 
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dopamine depletio1_1 in connectionist networks derived from Servan-Schreiber, Printz and 

Cohen (1990)·; and Cohen and Servan-Schreiber ( 1992). This method and a detailed 

description of the network architecture and tasks are described in detail in a later section. 

In the section below, we outline the computational features of the Jordan model that 

we explore in this chapter and illustrate how these features relate to the conceptual model of 

basal ganglia motor processing described in chapter four. 

5.2 Overview of the modelling approach and hypotheses 

Figure 5.1 below provides a schematic illustration of the key components of the model 

architecture used in this chapter. 

Internally generated State representation 
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Figure 5.1. Global structure and key components of the combined Jordan architecture 

We have described the individual components of the model in some detail in chapter three. 

In the sections below we outline those aspects of the model that are of specific interest in 

this chapter and, we show how they relate to the ideas expressed in chapter four. 

The state units 

As we described in chapter three, the state units can be thought of as a representation of 

temporal context. In effect they act as a dynamical control signal of the type that (we have 

suggested in chapter four) relate to the role of fronto-striatal circuits in the internal control 

of sequential action. In this chapter we aim to explore the computational properties of the 
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state unit representation and examine the effects of damage which disrupts the dynamics of 

the control signal. 

Interacting subsystems 

The Jordan model has a complex architecture in that it is composed of two sep_arate but 

interacting subnetworks. the sequential controller and the forward model (FM). The two 

subnetworks have different functional roles in the operation of the whole system. This 

contrasts with simpler models in which there is no functional distinction between different 

parts of the network7• Issues of network complexity and functional modularity have been 

addressed in a number of other contexts (e.g. Jacobs et al .• 1991). This feature is of 

interest in relation to basal ganglia-thalamo-cortical circuitry since this loop circuit is 

complex (i.e. composed of several interacting subsystems). Moreover. it is possible that the 

complex nature of parkinsonian motor deficits can, in part, be attributed to the partial 

interaction of many different subsystems with the basal ganglia in the production of 

voluntary movement, ( e.g. frontal cortex, M 1, SMA. cerebellum). In the context of the 

model we can compare the case in which all of the input to the state units arises from one 

source (i.e. the output of the forward model, as depicted above), to the case in which it has 

a composite source (i.e. the output of both the controller and the forward model). 

Recurrence 

The sequential behaviour exhibited by the network is driven by recurrent connections from 

either the forward model as depicted in figure 5 .1, the articulatory ( output) units, or both. 

The use of recurrence in connectionist models is an interesting topic from a purely 

computational perspective. However, in the current model the fact that the system has 

access to the output of the forward model during sequence processing is of particular 

interest. 

The forward model. 

We have already discussed the motivation for a forward model (FM) during learning. This 

study is more concerned with the 'forward' role of the FM in a learned network via its 

provision of input to the state units, (see figure 5.1 ). In this sense the FM may be thought 

7 This docs not include the distinction hctwccn input/output and hidden units in conncct ion ist networks. 
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of as providing a predictive internal estimate of the expected sensory or environmental 

consequences of performing each individual sequence element. The notion of a predictive 

forward model which is acquired through learning has a number of links with the 

conceptual model outlined in chapter four, although at a slightly different level of 

interpretation. It amounts to a computational hypothesis of how the subsystem 

implementing the contextual control signal (cortico-striatal circuit) and the subsystem 

performing action selection (pallido-thalamic circuit) mutually influence each other during 

sequential processing. As illustrated in chapter two, a number of researchers have 

emphasised a predictive role for the basal ganglia similar to that implemented by the FM in 

the current model. In the simulations below we explore how disruptions to the .FM 

influence the sequential behaviour of the whole system. 

The hypothesis developed in this chapter is that the function of the basal ganglia 

loop circuitry encompassing the striato-pallidal complex, thalamic nuclei and multiple areas 

of cerebral cortex may be viewed as the disinhibition of cortical action schemata or motor 

programs on the basis of a high-level motor plan, and the dynamic context signal provided 

by the state units. In this case the input to the state units is provided by the output of the 

forward model which is an internal estimate of the outcome of performing that action. 

Thus, the system as a whole may be seen as selecting desirable actions and concurrently 

inhibiting competing responses, through the computation of a FM. Furthermore it is argued 

that disruption to an FM which provides input to the internal contextual signal could cause 

impairments of sequential movement control which are similar to those that are observed in 

PD. In the section below we describe in more detail the architecture and computational 

function of the combined controller and forward model networks. 
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5.3 Description of the connectionist architecture and tasks 

5.3.J The basic operation of the model 

96 

As was discussed in chapter three, the function of the connectionist architecture that forms 

the basis of the Jordan model is to learn to control a simulated two-joint kinematic arm with 

a movable shoulder in a two dimensional task space. The model simulates goal-directed 

motor behaviour by learning to touch a specified target in task space with the endpoint of 

the arm. Sequential motor tasks are simulated by requiring the endpoint to touch a sequence 

of different targets in a specified serial order. 

During the first stage of learning the forward model is supplied with random values 

for the control parameters and learns the forward mapping to the endpoint location, which 

is represented by a set of 'task units'. Following that the feedforward controller can be 

trained to guide the endpoint to a desired target location in task space by observing an error 

between the desired location of the endpoint and the actual endpoint location represented by 

the task units and then in effect running the forward model backwards to obtain a control 

space error which can be used to adapt the feedforward controller. If, as is the case here, 

the controller is a sequential network, then the system can learn to produce motor 

sequences. 

It should be noted that the FM output does not give the actual position of the 

endpoint of the arm, but a predictive estimate of the position of the endpoint. The actual 

endpoint position is encoded by the kinematic variables in control space and must be 

calculated separately in the computer simulations. It has been shown that the FM estimation 

will only be accurate if the FM can be learned to zero error for all locations in task space 

(Jordan & Rumelhart, 1992). This is clearly an unfeasible assumption in a noisy, complex 

system. However, accurate goal-directed movement does not require an accurate FM. In the 

system studied here it was found that the tolerance to inaccuracy in the FM under normal 

conditions was quite high. This has the benefit of making the system robust in the face of 

noise during the learning process, (Jordan, 1992). 

However, even after learning, the estimate provided by the FM should have an 

impact on sequential performance because it provides an internal contextual representation 
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of the subsequent action as input to the control system, via the recurrent links to the state 

repi-esentation:·This is the predictive role of the FM that we referred to above. Although, in 

the model learning and performance are two discrete and separate processes, we assume 

that in human motor systems these are continuous and concurrent processes, and that the 

FM participates in both the learning and prediction roles continuously. 

5.3.2 The task space and simulated ann 

The task space is a two dimensional space varying between 0 and 1 on both the X and Y 

coordinates. Targets may be expressed either as points or regions within this space. The 

arm has two segments, each of length 0.25 and two joints which can vary between 0 and 

180 degrees. The location of the shoulder is expressed in Cartesian coordinates. The 

control parameters of the arm thus have four degrees of freedom: two joint angles, (theta 

and phi) and two translational displacements of the shoulder, (X(s) and Y(s), and the task 

parameters hav~ two degrees of freedom, (the Cartesian coordinates of the target or 

endpoint of the arm in task space). The location of the endpoint is calculated as follows: 

X (end)= X(s) + sin(theta) + sin(phi) 

Y (end)= Y(s) + cos(theta) + cos(phi) 

5.3.3 Network architecture and training regime 

(5.1) 

The network architecture we used closely follows that used by Jordan (Jordan, 1990; 

Jordan and Rumelhart, 1992), which was described in chapter three. The network can be 

divided into two separate subnetworks: the sequential controller and the FM. The combined 

network architecture is illustrated in figure 5.2. 
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Figure 5.2. The network architecture 

The network has two sources of input: the plan units, and the state units. The plan units are 

initialised independently at the beginning of a sequence and there are no particular 

constraints on the representations except that they are different for different sequences. The 

state units receive recurrent connections from the output units of the FM and/or the 

sequential subnetwork. The recurrent connections are linear and have a constant weight of 

one. 

A layer of four hidden units intervenes between the input and output units of the 

sequential subnetwork to allow arbitrary, nonlinear associations to be formed. The number 

of hidden units is the same as reported by Jordan ( 1990). The effects of varying the number 

of hidden units was examined in pilot simulations but no differences were found on the 

tasks used. The four output units of the sequential subnetwork are the articulatory units. 

These encode the kinematic control variables of the arm indicated in the previous section. 

The articulatory units provide the input to the FM subnetwork, which simply constitutes a 

standard three layer network in which the two output units encode the Cartesian coordinates 

of the estimated endpoint location in task space. In order to explore issues of partial system 

interaction, in some simulations the only recurrent connections were from the FM output 

units and in others there were connections from the articulatory units as well. 
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Finally there are recurrent connections from the state units onto themselves, which 

wete included·by Jordan, (1986a) to allow the network to learn extended sequences with 

repeated elements. These connections have a variable weight governed by the parameterµ, 

which acts as a form of short term memory over the state units. 

All of the hidden and output units in the network are standard logistic units, 

(Rumelhart, Hinton & Williams, 1986a) with activations varying between O and 1. 

Supervised learning by gradient descent is implemented in the model using the 

backpropagation of error algorithm with generalised delta rule described in Rumelhart et al., 

(1986). 

We now tum to the first set of si,mulations. In section 5.4 we describe the 

preparatory work involved in learning the sequences which were subsequently used in the 

lesioning studies and in section 5.5 the lesioning studies are reported. 

5.4 Preliminary Simulations 

The aim of the first set of simulations reported here was simply to learn the sequences 

which will be subsequently used in the lesion studies and to replicate some of the basic 

properties of the architecture reported in previous accounts (Jordan, 1990; Jordan & 

Rumelhart, 1992). 

5.4.1 Leaming the forward model 

The FM was learned in a separate initial phase using gradient descent learning with the 

backpropagation algorithm. The learning rate was set to 0.1 and the momentum term to 0.9. 

The normal method for training a network of this type is to iterate through a restricted 

training set. In order to simulate the selection of random inputs, a different method was 

used here. On each learning trial, a configuration of the arm was generated by randomly 

selecting values for each of the kinematic variables on the input units. An error score was 

derived by comparing the network's estimate of the endpoint location in task space, 

represented by the values on the task units, with the actual endpoint location calculated 

independently. This error was backpropagated through the network using the generalised 
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delta rule, and the weights were changed after each iteration. Learning was terminated when 

the .. sum squared error averaged across fifty consecutive iterations was below a criterion 

value of 0.01. 

Jordan (1990) reports that the FM in that study was given approximately 2,000 

trials of learning. In the current implementation approximately 6,000 trials of learning were 

provided to ensure sufficient learning. Figure 5.3 below depicts the error reduction in the 

FM during learning. It is clear from the figure that this method of learning does not yield a 

smooth reduction in error as normally occurs when a standardised input set is used as 

training data. However, the method that was used is more in keeping with the notion of 

system identification through random exploration of the parameter space. Moreover, it does 

not matter if the results of learning are not completely reliable, since Jordan has shown that 

only a partially learned is sufficient for accurate goal directed performance after the second 

stage of learning (Jordan, 1988, 1990; Jordan & Rumelhart, 1992). 
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Figure 5.4 depicts the basic form of the task the network was required to learn for the 

following studies. The task is to perform a four element sequence touching each of the 

targets, in the labelled order, with the endpoint of the arm. In most cases the transition from 
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position 4 to position 1 is also learned, thus completing the cycle. This task is analogous to 

a common laboratory task in motor control studies in which a subject is seated at a table and 

directed to touch a sequence of targets displayed on the table in succession. The basic 

structure of the task was only varied minimally in all the simulations reported in this 

chapter. Our reasoning for this was to provide a standardised test for comparison of 

performance under different conditions. We investigate the effects obtained using variations 

of the basic sequence in later studies. 
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Figure 5.4. Task structure and initial configuratfon of the arm 

5.4.3 Simulation 5.1: Leaming a 4-element sequence 

The aim of simulation 5.1 was· simply to learn a four element sequence with the combined 

forward model and controller network. 

Method 

In simulation 5.1 the combined network was trained on the sequence depicted in figure 

5.4. The weights in the sequential controller were initialised to small random values 

between 0.3 and -0.3, the learning rate was 0.1 and momentum was 0 .9. The learned 

weights in the forward model were held constant during learning. After each forward pass 
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of activation through the sequential network and forward model the output of the task units 

was compared-with the target location and the resulting error score was backpropagated. 

Results 

The targets and final configurations of the arm are depicted in figure 5.5. 

1.00 

0.75- >> 
0.50-

>-
◊a ◊ target 

> > a FM estimate 

0.25-

0.00 I I I 
0 Vl 0 Vl 0 
~ N Vl r-- ~ 
0 0 0 0 -

X 

Figure 5.5. Learned performance of the combined network on a sequential task 

It can be seen from the figure that the network has adequately learned the sequential task, in 

that endpoint of the arm is, in each case, close to the location of the target. However, the 

network has clearly followed a rather 'non-biological' optimisation strategy. This involves 

keeping the arm in a static position allowing the weights in the controller subnetwork to 

encode only the translational displacements of the shoulder during sequential performance. 

Discussion 

Although the strategy adopted by the network in this simulation seems to follow an entirely 

reasonable optimisation principle from a computational point of view, the solution is very 

different to the changes in kinematic configuration depicted in the figures of Jordan ( 1990). 

In these all of the degrees of freedom of the arm are used equally. One reason for the 
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discrepancy may be that Jordan had implemented a variety of internal constraints on the 

behaviour of the network.8 

In the context of the current simulations it is plausible to impose a 'rest 

configuration' constraint of the type suggested in Jordan (1990) on the movement of the 

shoulder only. A rest constraint acts to penalise large changes in activation in a subset of 

units from their initial activation levels. This strategy would force the network to use the 

degrees of freedom available in the articulated arm itself. This is reasonable since, in the 

real system, the shoulder is attached to the body which has considerably greater mass than 

the arm segments which would make it extremely inefficient for humans to adopt the 

strategy used by the network. The rest configuration constraint effectively simulates this 

energy cost. Thus a further simulation was conducted in which a rest constraint was applied 

to the movement of the shoulder. 

Method . 

The rest constraint is simply computed as an extra error term at the articulatory units, which 

is defined as the square of the difference between the current shoulder location and the 

initial shoulder location. In order that this constraint does not compete with the task 

constraints it is multiplied by a weighted parameter (lambda) that is proportional to the total 

sum-squared error on the task units. This term is added to the unit delta value during 

computation of the error at the articulatory units. 

The previous simulation was rerun with this additional error term included. 

Results 

The results of imposing a medium strength rest configuration constraint (lambda = 0.6) on 

the movement of the shoulder are depicted in figure 5.6. It can be seen that the network 

now has found a solution in which the shoulder moves very little from its original location, 

and that most of the work is done by changing the joint angles. Although the results 

presented here are derived from a single case, they are typical of the results obtained across 

8 In fact, we later discovered that the most probable reason for this solution is that the network was given 
only a single task and thus is not subject to competing constraints on the articulators. Even without the 
imposition of internal constraints the network will produce more realistic solutions if more than one 
sequence is learned. Jordan, ( 1990) however does not indicate anywhere that more than the test sequence was 
learned in any task. 
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a number of cases in which the initial configuration of the weights was varied using 

different random seeds and learning variations on the test sequence. 

By comparing the FM estimates in figures 5.5 and 5.6, it can be seen that the 

imposition of the rest constraint alone causes an increase in the inaccuracy of the FM 

prediction, whilst not affecting the overall accuracy of the solution. This provides a useful 

indication of the tolerance of the network to FM inaccuracy. 
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Figure 5.6. Learned network performance using a rest constraint on shoulder movement 

Jordan (1992) states that the imposition of internal constraints in general makes sequences 

easier to learn, due to the reduced number of possible solutions to the inverse mapping 

problem. In contrast, in a number of pilot trials we found that in many cases the addition of 

rest constraints at the articulatory units actually hindered learning. Often the error score 

oscillates during learning and problems with local minima were experienced. There are 

many possible explanations for these differences which could be accounted for by 

variations in the setup of the network or the task, including task difficulty, the number of 

degrees of freedom in the arm or the range of mobility of the joint angles. 
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These iss~es were not fully explored as a number of sequences could be effectively 

learned using·· the set up used above. Consequently, the learned performance to the 

sequence as depicted in figure 5.6 was used as the prototype learned state of the system for 

the subsequent lesion studies in this chapter. 

5.5 Simulating the effects of basal ganglia damage by lesioning the learned 

network 

· The aim of the series of simulations reported in this section was to investigate the effects of 

disrupting the processing of those parts of the system assumed to reflect the functional role 

of the subcortical parts of the cortico-basal ganglia motor loop (i.e. the forward model and 

recurrent connections to the state units). The specific intention was to-examine whether 

disruptions which simulate the loss of striatal dopamine would cause motor deficits which 

are qualitatively similar to those which occur in either experimental or idiopathic 

parkinsonian ,motor disorders. 

The basic methodology we adopt in the following simulations is to test the network 

with the learned solution depicted in figure 5.6 following a variety of different types of 

damage. These are explained in the following section. 

5.5.1 Lesioning techniques and locus of disruption 

The fundamental comparisons we make in the lesioning studies are between, (a) a normal 

control condition represented by the performance of the intact network, (b) damage that 

simulates dopamine depletion, and (c) non-specific damage which is caused by techniques 

commonly used in standard lesioning studies. The methods used to inflict damage on the 

network are discussed below. 

This methodology is uncommonly strict in a connectionist lesioning study of this 

type. A more common approach is to simply add noise to the unit activations or the weights 

of the network and compare performance with the undamaged network. Our aim here, 

however, is to examine whether damage that simulates dopamine depletion has a 

qualitatively different effect on behaviour than other types of damage. 
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The method we used to simulate nigro-striatal dopamine loss is that developed by 

Servan-Schreiber, Printz and Cohen (1990) and subsequently used by Cohen and Servan­

Schreiber (1992). They draw upon a variety of neurobiological evidence to suggest that the 

modulatory action of dopamine is essentially to increase the signal - noise ratio in the 

response to an input to the system - thus enhancing the strength of output, should an input 

be detected (Chiodo & Berger, 1986; Foote, Freedman & Oliver, 1975; Bloom, Shulmann 

& Koob, 1989). This suggestion strongly parallels an emerging view based on recent basal 

ganglia work, namely the view that dopamine reacts to a contextual input in such a way as 

to enhance outputs which are consistent with the context and to suppress competing 

alternatives. This notion is also consistent with the finding that when striatal dopamine is 

depleted, the pallidal neurons which are targets of striatal projections show excessive and 

unselective activity (Filion et al., 1989). 

This model of dopamine action finds a natural interpretation in connectionist 

networks which incorporate units with a logistic activation function through modulating the 

gain of the logistic function. The standard logistic function with a variable parameter 

representing gain is shown below in equation 5.2: 

. . 1 
acllvat1on = < . • 1, l + e- gain net 

(5.2) 

In this equation 'net!' is the net input to a unit and 'gain' is a positive real number. The gain 

parameter alters the slope of the function, so that with a reduced value of gain the slope 

becomes flatter. Servan-Schreiber, Printz and Cohen ( 1990) demonstrated that across a 

chain of units the value of gain could have a significant impact on whether a response was 

correctly or incorrectly made. This method was subsequently used in a feedforward 

network to model schizophrenic performance on the stroop task (Cohen and Servan­

Shreiber, 1992). In this model potentiating effects of dopamine were simulated by 

increasing the value of gain in the relevant units in the model. Our rationale here is similar: 

to model a decrease in available dopamine, we reduce the value of gain in the FM. 
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Two different levels of damage were inflicted. A 40% reduction_.:>f gain was used to 

si~ulate mild parkinsonism, and 70% gain reduction to simulate advanced parkinsonism. 

The effects of damage were compared with a control condition using the undamaged 

performance of the network and, with two different forms of 'unmotivated' control 

damage. The first type of control damage was to add random, normally distributed noise to 

the FM weights. This provides a comparison with the hypothesised effects of gain 

reduction, whilst still affecting only the processing of the FM and associated state units. 

The other type of control damage was to add random noise ciirectly to the state units. This 

will affect sequencing but not the FM prediction. The level of disruption caused by each 

manipulation was matched on the basis of the increase in error it caused for each element of 

the learned sequence. The effects of gain reduction in the FM were compared with the 

effects of equal levels of gain reduction in the controller subnetwork. In the current version 

of the network there are only two state units and these are connected to the FM output units. 

This has the .consequence that reducing the gain in the controller will not preferentially 

damage the sequencing over individual responses. 

Figure 5 .7 illustrates the effects of both a 40% and 70% reduction of gain on the 

slope of the logistic activation function. 
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Figure 5. 7. The effects of reduced gain 011 the slope of the logistic activation f unction 
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In addition to a progressive decrease in the angle of the slope as gain is reduced, there is 

increasing linearity of the function such that when gain is severely reduced the function is 

almost linear. 

5.5.2 Assessment of deficits 

Since the current version of the model does not have a temporal competence (Morasso & 

Sanguineti, 1992) (i.e. each sequence element is performed at each discrete time slice) there 

is no satisfactory way of assessing response time or movement time in performance. This is 

quite a severe limitation of the model since much parkinsonian impairment in sequential 

performance is exhibited as prolonged inter-response times (see chapter 2 for review) . 

. However, deficits that may be investigated using the model correspond to those kinematic 

or spatial deficits discussed in section 5 .1: 

Reductions 

This classific<).tipn covers a number of the characteristic deficits associated with 

hypokinesia. Reductions would be exhibited by the model if movements undershoot to 

targets or there is a tendency to avoid extreme changes in joint angles/ shoulder movement. 

Deletions 

Any deficit in the model's performance that leads to the omission of a sequence element or 

failure to complete a sequence may be regarded as indicative of a parkinsonian impairment. 

In contrast serial order errors such as transposition errors, which are not a feature of PD, 

will be not be regarded as simulating basal ganglia dysfunction. 

Selective sequential deficits 

Any deficit that is indicative of a selective impairment to motor sequencing should increase 

in severity as the sequence progresses. If the impairment has equal severity across all 

sequence elements then a selective sequential deficit is not indicated. 

·Learning impairments 

Jordan ( 1992) has demonstrated that once a sequence has been learned, the network is able 

to generalise to a shifted version of the same sequence within only a few learning trials. 

This provides a useful task for examining learning impairments in the experimental 
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conditions tested. This is related to evi~nce demonstrating a failure in PD to encode high 

level structural" information in complex motor programming ( evidence reviewed in chapter 

2). Thus we might expect relearning to take considerably longer in the experimental 

condition on a time scale similar to learning a sequence from scratch. 

5.5.3 Simulation 5.2: A comparison of mild gain reduction in the forward model and 

controller subnetworks 

The aim of this simulation was to compare the effects of selectively damaging either the 

forward model subnetwork or the controller subnetwork using the gain reduction method to 

simulate the effects of reduced dopaminergic activity in that subsystem. The level of gain 

reduction in this simulation was set at the 'mild' 40% level. Damaging the forward model 

subnetwork is assumed to be analogous to damage to a subsystem that is involved in 

sequencing, but not directly involved in computing the parameters of motor programs. By 

contrast, damage to the controller subnetwork is included as a 'dissociation' control which 

reflects impaired computation of motor parameters, but not sequential information. 

Reducing the gain in the forward model is thus intended to simulate impaired basal ganglia 

operation in motor processing, whereas reduced gain in the controller may be regarded as 

damage to some other neural structures involved in motor computation. 

Method 

The weights of the learned network were held constant, and the network was run with 

learning turned off, for each of the conditions described above. In condition A the forward 

model was damaged and in condition B the control subnetwork was damaged. In each case 

the reduced gain was applied to both the hidden and output units of the appropriate 

subnetwork. 

Results 

The results of both manipulations are depicted in figures 5.8 (a) and (b) overleaf. 
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(a) Gairi reduced by 40% in the forward model subnetwork 
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Figure 5.8.The effects of 40% reduced gain in conditions A ( FM damage), and B ( controller damage) 

As before each figure depicts the state of the arm at each successive time slice and also the 

locations of each of the four targets, indicated by clear diamonds. The learned sequence is 

to touch each target in an anti-clockwise direction, starting at the lower right-hand location. 
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The endpoint location corresponding to each of the four timesteps/targets is indicated 

numerically ori the figure. 

In both conditions there are similar reductions in area covered by the sequential 

action as a whole. Other simulations which were conducted using different initial weight 

configurations led to similar results. The decrease in range of movement is primarily in the 

proximal joint which is the one that does most of the work in the normal performance 

depicted in figure 5.6. However the two manipulations do differ in important ways: 

1.. In condition A (FM dall).age), movement to the first target is unaffected, whereas in 

condition B ( controller damage) that too is reduced. 

2. The FM estimate is much more inaccurate when the FM has been damaged than when it 

is intact. 

3. When the FM is damaged there is an approximate increase in error across sequence 

length, but this property does not hold in condition B ( element 2 is as far from its target as 

element 4, and element 3 is the most accurate). 

Discussion 

Points 1 and 2 above are direct consequences of the nature of the manipulation. Due to the 

forward propagation of activation in the network, the first endpoint location is calculated 

without any dependence on the FM output, thus the first element will be unaffected by 

damage to the FM. This result indicates a potential flaw in the logic of the above 

comparison. If the first element of the sequence is taken to be the starting point of the 

network, which is reasonable because the initial values on the state units encode this 

position, then the disruption to the controller does not even allow the network to compute 

the start position. But if the initial position forms part of the feedforward motor program, 

and requires computation, then the FM will be involved in the computation. This problem 

does not however affect comparison of the remaining elements of the sequence. 

Point 3 is a consequence of the fact that the FM only is connected to the state units. 

As the distance between successive FM outputs is reduced by the decrease in gain, thus 

making each successive estimate of the state more similar to each other. This reflects the 

processing dysfunction which we have hypothesised leads to parkinsonian symptoms. 



5: Lesioning a Jordan Network 112 

In accordance with the hypothesis, it can be seen from figure 5.8(a) that there is a. re1uction 

in movement amplitude, such that the network makes transitions which are consistently too 

small and of approximately constant amplitude for elements 2, 3, and 4 of the sequence. 

Yet, at each time step the network is attempting to make the transition from one sequence 

element to the next. 

Superficially this deficit cannot be distinguished from the processing deficit ~ the 

controller. However, the deficit produced by damage to the controller does not 

preferentially affect sequential performance, since it does not affect the state unit 

representations. This point is illustrated by comparing the size of the error for each 

condition across sequence elements during task performance (figure 5.9). 
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Figure 5.9. Error scores across sequence elements (gain reduced by 40%) 

It should be noted that these error values are derived only from the simulation presented 

here as an illustration. If averaged scores were used, then the error for the impaired 
-- -..s~ ,i~'J, 

controller would be approximately the same for all sequence elements. 

In sum the results of this first simulation indicate that the effects of a 40% reduction 

in gain are to cause reductions in movement amplitude leading to undershoots to targets in 

both conditions. However, only damage to the FM caused selective sequential deficits 

indicative of a 'parkinsonian' disruption. 
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5.5.4 Simulation 5.3: A comparison of severe reduction in gain in the forward model and 

controller subnetworks. 

There is a well established difference in the motor disorders literature between 'mild' 

parkinsonian impairments, which are normally observed, either in younger patients or 

during 'ON' periods of dopamine-replacement medication and severe deficits which occur 

in older subjects and notably during 'OFF' periods. It is under these conditions that the 

akinetic disturbances, such as freezing, are most evident. 

Thus, we conducted a further simulation in which the gain reduction was increased 

to 70% to simulat~ the effects of severe dopamine reduction and consequently a much more 

severe disruption to processing. All other details were the same as in previous simulations. 

Results 

The effects on network behaviour resulting from this manipulation are depicted in figures 

5.10 (a) and (b) below. In both conditions the effects of the disruption are much more 

severe, as would be expected. In both cases it can be seen that the FM estimates are very 

tightly clustered and are shifted towards the initial position of the network. However, in 

condition A, the network makes the transition from sequence element 1 (the initial position 

in this condition), to element 2 in two time steps. Interestingly, this indicates that even 

though an undershoot has occurred on the first time step, the network still moves towards 

the target for that time step, rather than moving on to the next target. This interpretation is 

warranted since, in moving towards target 2 at the third time step, the endpoint is moving 

away from target 3. At time step 4 the network remains stuck at target 2 and fails to 

complete the rest of the sequence. 

In contrast, condition B (damage to the control subnetwork) merely exhibits the 

failure of the network to move away from its initial position, although the direction of the 

little movement there is indicates that the endpoint is being drawn towards the nearest target 

to its initial position. 
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(a) Ga"in reduced by 70% in the forward model subnEetwork 
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(b) Gain reduced by 70% in the controller subnetwork 
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Figure 5.10. The effects of reducing the gain by 70% in condition A ( top panel) and condition B 

(bottom panel) 

Discussion 

The performance impairments induced by severe gain reduction in both conditions are more 

pronounced than those caused in the previous simulation, leading not only to reductions in 
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the size of movement indicative of parkinsonian hypokinesia, but also failure to complete 

the sequence. This can be related to work reported by Berridge ( 1989) and Berridge and 

Whishaw ( 1992) in which mice with striatal lesions fail to complete innate grooming 

sequences. It can also be related to the profound rigidity and freezing that occurs in PD . 

patients when they are 'OFF' medication. 

There are again substantial differences between the effects of the disruption in the 

controller subnetwork and the forward model subnetwork, which support the functional 

hypothesis that the basal ganglia are involved in a separate function to the direct 

computation of movement parameters, which has more to do with sequencing control at a 

higher level and in particular the potentiation or selective disinhibition of each individual 

action in the sequence based on an internal temporal context signal (the state vector). 

The qualitative nature of the deficits produced in this simulation have their roots in 

an interaction between the manipulation (gain reduction) and both the nature of the 

representations learned by the network and the computational basis of sequential processing 

in the Jordan network. A discussion of the implications of these computational features for 

modelling motor disorders is provided in section 5.6. 

5.5.5 Simulation 5.4: Damaging the forward model with lesions not motivated by 

hypotheses of dopamine depletion 

The previous simulation reproduced some of the basic parkinsonian deficits that would be 

expected if the nature of the disruption reflects striatal dopaminergic reduction. The aim of 

this simulation is simply to examine the deficits that are produced in control conditions 

where the damage is 'unmotivated' and where the effects of damage would not be expected 

to yield parkinsonian symptoms. The nature of the control disruptions has been described 

in the general methodology above. Both disruptions involve the addition of random noise to 

those parts of the network affected by the disruption in condition A in the previous 

simulation. The first of these involves adding noise to the state unit activations themselves, 

the second to the weights of the FM. In both cases the noise has a gaussian distribution 

and the power of the noise is calculated as a percentage of the normal value of the weight or 
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unit activation. In. both cases the noise is rather large and is approximately matched to the 

total error produced by a 70% reduction in gain on the FM. The primary difference between 

the two disruptions is that noise applied directly to the state units would be expected to 

produce more severe deficits in output behaviour, since the previous states have already 

been incorporated. Alternatively, when the FM is disrupted in this way, the effects will 

likely be dampened by the subsequent computation of state unit history. 

Results 

The effects of the two control disruptions are depicted in figures 5.11 and 5.12 below. 
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Figure 5.11. The effects of random noise on the state units, ( overall error matched to 70% gain reduction) 
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Figure 5.12. The effects of random noise applied to the FM weights, (power= 50%) 
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It can be seen.that in neither case are parkinsonian effects produced. In the first case (figure 

5 .11) the transitions between elements three and four are excessive and there is a 

breakdown of serial order, (elements three and four are transposed). This is because there 

is excessive and errorful difference between successive state representations and the 

property of temporal similarity is destroyed. This is not a feature observed in PD and is not 

consistent with theoretical ideas about dopamine reduction. 

In the second case the serial order of the original sequence is maintained. Whilst the 

intact temporal averaging process is likely to ensure this fo! lower values of noise, it is 

unlikely, due to the random element, that it will hold in all cases, especially with very large 

amounts of noise. As would be expected the close clustering of FM estimates exhibited 

when the gain was reduced is not produced. 

Discussion 

These results indicate that it was the experimental manipulation that produced the 

parkinsonian nature of the deficits in the previous simulations, and not some more general 

property of the learned task. These deficits are not reproduced by the addition of random 

noise. 
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5.6 Interpreting_ the behaviour of the model in terms of motor control and 

movement disorders 

118 

In the learned network each of the target locations corresponds to the output of the network 

when an individual 'motor program' represented by the current articulatory configuration is 

instantiated. Which of the four learned motor programs is produced at any one time step is 

determined by the pattern of activity on the state units. The state units encode a decaying 

activation trace of past outputs of the FM, the depth of which is determined by the value of 

the parameterµ. The pattern that exists on the state units may be thought of as a temporal 

context that facilitates or potentiates the production of one of the learned motor programs 

over the other three alternatives. 

In order to develop an account of the disrupted behaviour of the model in relation to 

motor disorders, it is first necessary to discuss explicitly two fundamental properties of the 

model. The first is the nature of the representations formed in the learned network, and the 

second concerns the effect of the disruptions on the movement of the state vector over time. , ,. 

5.6.1 Attractor dynamics and sequence representation in Jordan networks 

In considering the representations formed by the network, it is useful to separate the notion 

of representing each target state (sequence element) individually, from the representation of 

the sequence as a whole. During learning the network effectively builds a higher order unit 

of representation, which encodes the sequence that is learned. Jordan (1986b) has shown 

that the learned sequence acts as a limit-cycle attractor, such that if the network is started 

near the learned sequence it will move towards the trajectory encoded as the sequence. Each 

target location can also be thought of as an attractor, although in this case it is a point­

attractor represented by the location of the target. 

An easy, although strictly-speaking inaccurate, way to imagine the state space of the 

learned network for this sequence is to imagine a three-dimensional surface much like an 

egg tray for four eggs, where the target locations lie at the bottom of each of the four egg 

cups. Each egg cup represents a basin of attraction for each sequence element. Now one 

may imagine a shallow groove that cuts a path through the ridges separating each basin. 
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This groove represents the 'virtual' trajectory encoded by the network. The qualitative 

properties of attractors, such as the depth and layout of basins have important consequences 

for the behaviour of the network when it is damaged. 

5.6.2 The effects of reduced gain in the forward model vs. the controller subnetworks 

The four learned states of the network are not simply discrete alternatives. Jordan (1992) 

has shown that there is continuity in the mapping between states and outputs. This property 

means that when the state unit representation is degraded, the level of implicit competition 

and potential interference from those alternative actions, which are partially facilitated by the 

degraded contextual representation, is increased. 

The simulations conducted here demonstrate an interaction of this 'continuity' 

property with the reduction in gain, such that, (in both conditions), when gain is severely 

reduced the network will move slowly towards the cyclic attractor9. However the 

differences be~~en condition A (FM damage) and condition B ( controller damage) suggest 

that this behaviour also interacts with the recurrent connections to the state units, when· the 

gain reduction affects the sequence information encoded by the state units. 

Jordan ascribes the attractor dynamics properties in his simulations, in part, to the 

µ parameter which allows the state units to encode the recent past history of state unit 

activations to an arbitrary length (the length depending on the value of µ). In brief, the 

existence of the recurrent connections of the state units onto themselves means that nearby 

states in time are more similar to each other, .and since the state units encode the position of 

the endpoint in task space this confers the useful property of smoothness in task space on 

network performance. The size ofµ dictates how much sequential structure is embedded in 

the state unit representations. Thus ifµ = 0 the state units encode only the activation on the 

output units at the previous time slice, but if µ = 0.5, for example, then the state units 

encode an exponentially weighted average of half each previous activation into the 

arbitrarily distant past. This means that if the distance between each successive movement is 

reasonably large, with µ greater than 0, each successive state is more distinct from the 

9T his assumes that the network has been started near the attracting sequence. 
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previous state, than it wou~d be ifµ was 0, but if the movement amplitude is small then µ > 

0 aets to make-.each successive state, and consequently, each successive movement, more 

similar to the previous one. 

This interpretation can provide an explanation for the difference between conditions 

A and B in this simulation. In condition A, the network correctly computes the articulatory 

unit activations at time step 1. Due to the disruptive manipulation, the FM estimate is 

inaccurate but nevertheless constitutes a sizeable difference in the state unit activations, 

when it is fed back, since they were previously 0. Now, at time step 2, even though the FM 

estimate hardly changes at all due to the gain reduction, there is enough 'energy' in the 

system on account of the previous large change in state unit activations to propel the system 

into the basin of attraction for target 2. Now, at time step 3, the initial large change in state 

unit activation bas far less weight than the more recent change which was minimal, 

although it is sufficient to move the endpoint very close to target 2 .10 However, there is 

now, very little 'energy' in the system due to the unchanged FM estimate, and the network 

is trapped at that point. 

In contrast, in condition B, in which the controller is damaged, the network fails to 

compute the articulatory activations correctly at the first time step due to the intervention, 

and consequently the network is started at an unvisited initial position. However, the FM 

estimate is quite consistent with the actual endpoint position, since the FM is undamaged. 

Although the difference in the state unit activations is as large as in condition A at this first 

time step, the actual distance travelled by the arm at the following time step is reduced due 

to the gain intervention in calculating endpoint position, and so on throughout the sequence. 

The existence of attractors at the target locations make a critical difference to the 

behaviour of the network as gain is reduced in the Frvf By comparing figures 5.8 (a) and 

5.10 (a), it can be seen that, although the endpoint location at time 2 is similar in both 

cases, when the gain reduction is mild, the system is driven on towards target 3, because 

there is less interference from element 2 in the state unit representation, than when the 

damage is more severe. However, it then appears to fail to make the transition to element 4, 

10Note that the existence of an attractor exerts its influence at this time step, such that the endpoint 
continues towards target 2, rather than moving towards clement 3. 
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although there is insufficient information to tell whether it would make this transition given 

sufficient time .. It is important to note that target attractors are not a property of the 

environment itself, but of the combined environment/ task representation encoded by the 

weights in the control subnetwork. This has considerable bearing on the application of 

computational principles to fundamental theoretical issues in motor control. 

5.6.3 How does the model bear on issues of motor program representation and sequential 

control? 

Condition A damages only the internal aspects of processing which affect FM estimation 

and consequently the internal contextual representation which would lead to a particular 

deficit in sequential behaviour. It does not directly affect the computation of movement 

p~ameters or the actual endpoint of the arm. This is consistent with the hypothesis that the 

basal ganglia are involved in action selection, rather than motor computation. Condition B , 

on the other hand, does affect parameter computation and does not have any impact on 
, 

sequential processing. This is more consistent with what might be expected in the case of 

primary motor cortex or cerebellar damage. 

Both conditions exhibit parkinsonian-like reductions and deletions in output 

behaviour, but only those in condition A can be accounted for in terms of a failure to shift 

between successive actions, due to a dysfunction in the internal representation of context. 

The model demonstrates some interesting properties regarding the nature of the 

representation of internal context, and the interaction with damage. However, there are also 

some fundamental limitations of the model which give way to concerns about the 

'predictive' role of FM estimation and its effect on behaviour. 

5.7 Generalisation impairments following damage 

A variety of evidence indicates that the cortico-striatal loop involving prefrontal cortex plays 

some role in sequence learning (evidence reviewed in Curran, 1995). In particular there 

have been a number of recent suggestions that implicit sequence learning is impaired in 

Parkinson's disease. Precise claims regarding the root of the reported deficits vary. 
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Suggestions include attentional dysfunction, a failure of procedural learning mechanisms, 

and difficulty with learning higher-order sequential representations. However, conclusive 

evidence that pinpoints the nature of basal ganglia contribution to motor sequence learning 

is still lacking (Curran, 1995). 

According to the conceptual model outlined in chapter four, impaired sequence 

learning in PD could be attributed to a failure to acquire a ·strong internal contextual control 

signal, through a breakdown of interaction between prefrontal cortex and striatum. This 

dysfunction may be hypothesised to lead to increased interference from established motor 

patterns with similar contextual cues. 

This hypothesis is consistent with behavioural data indicating a failure in PD to 

adapt old or well-learned procedures to accommodate new task constraints (St. Cyr et al., 

1988; St-Cyr and Taylor, 1992). It also makes sense ofreports that PD's have difficulty in 

switching motor set, Robertson and Flowers ( 1990) and that they have trouble 

superimposing ~wo different motor plans, (Benecke et al., 1987; Flash et al., 1992). 

Although only some of the available studies have found that primary sources of error are 

intrusions from other learned sequences, it is reasonable to assume that few have explicitly 

tested the possibility. 

Jordan (1992, p. 420) reports a simulation in which he demonstrates that a network 

of the type used here can generalise to a shifted version of the original sequence in only a 

small number of learning trials (he reports that the network is close to a solution on the 

second sequence after only five trials, compared with several hundred or thousands of trials 

for initial learning). This task provides a more interesting case for examination of the 

learning impairments after lesions than merely giving the network a new sequence to learn 

from scratch, since it is possible to explore the extent to which previous learning interferes 

with generalisation after lesions of different types and at different locations in the network. 

5. 7.1 Simulation 5.5: The effects of lesions on generalisation performance 

In this simulation we therefore examine the learning impairments caused by the various 

disruptions employed in the previous simulations. In the context of the model and task, a 
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moderate learning impairment would be indicated by an increased number of iterations to 

reach a stable solution, and increased error in the final solution. A severe learning deficit 

would be indicated by failure to reach a stable solution, or failure to decrease error below 

that achieved on the first trial. 

Method 

The task in this simulation required the network, initialised with the learned weights used in 

the previous simulations, to learn an identical sequence in which all targets were shifted 

downwards in task space. The lesions that were used to damage the network were identical 

to those in the previous section. 

Results 

In the analysis of results it was assumed that generalisation is only evident if the error 

reduces to a satisfactory level over a relatively short period (e.g. tens of iterations). Error 

reduction over a long period (thousands of iterations) indicates that the network is 

undertaking a major reorganisation of the weights, and thus losing the solution to the . ,.. 

original sequence. Therefore, in the graphs below we only consider changes over the first 

50 trials to represent generalisation. The learning criterion was set at 0.1 error for the 

sequence. 

The first two figures below, 5.13 and 5.14 depict the error reduction and final 

configuration of the ann respectively, after 90 trials of learning on the new sequence. 
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Figure 5.13.Generalisation performance irz the undamaged network 
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It can be seen from the above figure that the network achieves a stable error score below 

criterion, ( <0. l), after the first 30 trials. Although this is more than the five trials reported 

by Jordan, this is of an order comparable to that reported in Jordan (1992). However, it can 

be seen from figure 5 .14 that most of this error is accounted for by the first element which 

has failed to generalise from its learned position in the original sequence. Overall it is clear 

that generalisation is better on those sequence elements where the targets lie within_the_ 

boundaries of the original sequence. 
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Figure 5.14. Solution to the shifted version of the sequence after 30 learning trials in the undamaged 

network 

Further learning trials following the achievement of this stable state led, after approx. 1000 

trials, to accurate performance on all elements. However, this solution was preceded by a 

substantial period of increase and oscillation in the error score, which indicates that the 

original solution was lost in the process. The apparent difficulty in achieving accurate 

generalisation even in the undamaged network may be attributed to a number of factors. 

Jordan ( 1992) states that generalisation performance in particular cases will depend on the 

relationship between sequences, but also the target degrees of freedom and the degrees of 

freedom in the output representation. In this case there is evidence of interference between 
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the two sequences and this factor must be considered when assessing the •effects of 

disruptions. 
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The effects of disruptions on error reduction are depicted in figures 5.15 (a - e) beiow. 

Only the mild. form of gain reduction ( 40%) was used to compare differences between 

damage to the controller and FM subnetworks (a & b). An even milder (20%) reduction in 

FM gain was used to examine any more subtle effects that might arise in this condition, (c). 

Finally this may be compared with the effects of the two control disruptions used in the 

previous simulation, (d & e). 

In all of the above cases except figure 5.15 (d), learning asymptotes at a similar 

error score (between 0.13 and 0.18). The more severe damage caused by 40% gain 

reduction in figures 5.15 (a) and (b) result in the slightly higher value. However, the profile 

caused by damage to the controller, (a) differs from the other three, (b, c and e). In the 

latter three cases there is evidence of some generalisation in the reduction of error below the 

final asymptotic value in the first fifty trials. The subsequent rebound indicates convergence 

towards a local minimum caused by interference between sequences. When the controller is 

damaged (a), the network shows no indication of generalisation and simply converges 

slowly toward the local minimum state. 

The effects of adding noise to the state units ( d) clearly prevent the network from 

learning. Due to the use of gradient descent learning, it i~ not surprising that this 

manipulation prevented the algorithm from working. However it would be expected that 

noise of this magnitude applied at each learning trial would have a similar effect regardless 

of the learning method. 

The existence of a local minimum at the asymptotic error score of (approx. 0.15) is 

further revealed by the similarity in arm configurations when the effects of gain reduction 

are compared with the effects of noise on the FM weights in figures 5.16 ( a & b) below. 
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(a) Gain in the forward model reduced by 20% 
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Figure 5.16. The effects of gain reduction versus noise in the FM weights on network performance (the 

trajectory of the previously learned sequence is shown by the dashed line) 

Discussion 

It is clear that the results of this simulation were heavily influenced by the difficulty in 

achieving an accurate generalisation even in normal conditions. Nevertheless some of the 

features of the damaged conditions are worthy of comment. Generalisation performance in 
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the model is a function of both task difficulty and the extent and site of damage caused by 

gain reductiol}_. Under more favourable conditions bothlevels of gain reduction modelled 

here may be expected to allow generalisation to occur, although in approximately double the 

time taken under normal conditions. A more severe level of FM damage (70%) was also 

examined, although not reported above. This condition exhibited behaviour very similar to 

the controller damage reported. In the case of damage to the controller, no evidence of 

generalisation was found. This suggests that damaging the controller in this way, rather 

than the FM, is less likely to lead to generalisation under any conditions. 

The extreme similarity between the 'solutions' in task space when gain was reduced 

as opposed to adding noise to the FM (see figures 5.16 (a) and (b)) is interesting because, 

in the previous simulation, these manipulations had quite different effects on the output 

behaviour of the network. It will be noticed that in both cases the distribution of endpoint 

locations lie within a region of task space where the two sequences intersect. This finding 

yields the interesting possibility that the local minimum which impeded generalisation (even 

in the unlesioned network) is, in fact, a spurious attractor state in the network's task 

representation caused by the previously learned task. Re-examination of figure 5 .14 (b) 

reveals that this behaviour is also evident in the generalised solution arrived at by the 

undamaged network. 

The wider distribution of endpoint locations and greater accuracy in the unlesioned 

condition suggest either that the damage in the other conditions caused the attractor to 

assume a different size and/or shape, or that the reduction in system 'energy', which we 

referred to earlier, makes the system less able to resist or avoid the spurious attractor state 

formed at the intersection. The effect of the attractor state is powerful and appears to 

outweigh the previous differences in network behaviour caused by the different types of 

damage. To see this, reconsider figure 4.21 (d). It can be seen that the mean error score, 

despite large fluctuations, lies in approximately the range (0.15 - 0 .2) which indicates the 

attractor state. 

The interaction between attractor states and measures of system energy art wdi 

known and have been extensively studied in other types of recurrent network, in particular 
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Hopfield nets (Hopfield, 1982) and the Boltzmann machine (Hinton and Sejnowski, 

1986)''· Thus; it is not unduly surprising to find similar general properties apply in this 

network. However, the attractors produced by these networks are static (point attractors), 

whereas the attractors formed here are dynamic (cyclic attractors). 'Notice that the endpoint 

locations in the above diagrams do not converge to a point in either case. But the cycle of 

states is reduced in amplitude in the damaged condition. 

These findings are of considerable interest both in analysing the response of these 

networks to damage and in the computational study of dynamical action representation and 

motor disorders. 

5.8 Chapter Summary and Discussion 

At the start of this chapter we presented a computationally motivated hypothesis that _the . 
function of the cortical - basal ganglia loops can be characterised as computing a FM. The 

general form of the hypothesis is consistent with both neurobiological and behavioural data 

concerning the basal ganglia and motor disorders. It is also consistent with a number of 

previous theoretical suggestions regarding the role of basal ganglia motor circuits and with 

our own theoretical approach. The computational model we used to explore the hypothesis 

draws on two previous sources of computational work: the sequential network of Jordan, 

(1986a, 1990) for modelling the control of movement, and the disruption of a gain 

parameter applied to the logistic activation function for simulating dopaminergic reduction 

(Cohen and Servan-Schreiber, 1992). The effects of damaging the network indicate a 

number of limitations in the model, but also a number of interesting properties which 

require further investigation. Both of these are briefly discussed below. 

5.8.1 Simulating PD motor deficits 

The gain reduction disruption of the FM reproduces a variety of postural, kinematic and 
.::,. 

sequential deficits observed in PD. These impairments are not reproduced by the other 

11 T he Boltzmann machine utilises a globa l parame te r called Temperature, which re flects system energy ·­
during the learning process. It is inte resting to note that the te mperature parame ter is applied to the logistic 
ac ti vatio n function and acts , in that ne twork. in an analogous way to the gain parameter in this ne twork. 
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types or sites of disruption that were examined. One of the major limitations of the model in 

its present form is that there is no way to investigate temporal disturbances in network 

behaviour. This is due to the discrete representation of time in the network, and the 

identification of each successive action with each successive time step in the operation of 

the model. Temporal disruptions such as prolonged onset / reaction times and increased 

inter-response intervals in sequential behaviour are cardinal features of the parkinsonian 

disorder and account for much of the available behavioural data. Moreover, they provide a 

great deal of information about the underlying processing deficit. In the next chapter we 

consider one method of introducing a temporal dimension to network processing, and 

examine how it affects both processing and output behaviour of the network. 

5.8.2 A predictive forward model in basal ganglia motor processing? 

Although the disruptions to the FM produced deficits that were qualitatively different from 

those arising from damage to the controller subnetwork, it would be unwarranted to ascribe 

those differences simply to a 'predictive' role of the FM estimate of endpoint position. This 

is easily demonstrated by consideration of the time course of events in network processing. 

At time step 1 the values of the state units are set to zero, and activation is passed forward 

through the controller subnetwork. The associated pattern of activity emerges on the 

articulatory units, which specifies the computed position of the endpoint of the arm. 

Activation is then passed forwards through the FM subnetwork and the estimate of 

endpoint location is obtained. The values on the FM output units are then transferred to the 

state units and time step 1 ends. Thus, it can be seen that the FM estimate is functionally 

inert in processes affecting the behaviour·of the network at time step 1. The FM does have 

an impact on the behaviour of the network at time step 2, due to the recurrent connections, 

but this is not a predictive role since the values that are imposed on the state units are 

estimates of current events, not future events. A number of points concerning the role of the 

FM in the learned network can be made: 

• The forward model is essential for learning in the current framework using 

supervised learning (Jordan & Rumelhart, 1992). During learning the action of the forward 
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model is predictive, although for this feature to become apparent back-propagation-through­

time would be-required (see Jordan & Jacobs, 1990). 

• However, the FM does not exert its influence on the sequential behaviour of the 

network in the current model through prediction. The nature of the behavioural impairments 

produced when it is disrupted are due to the fact that it is a separate, but interacting 

subsystem which is not involved in the computation of control parameters directly, but . 

influences the relationship between sequential actions due to the recurrent connections to the 

state units. 

• Thus the forward modelling role is less crucial to the behaviour of the model than 

the fact that the damage occurs in a subsystem which is involved in computing information 

about the relationships between actions, rather than in computing the parameters of the 

actions themselves. It is this functional role which best reflects the theoretical approach put 

forward in chapter four. 

• Any ~isp1ption to the FM in this model exerts its effect on the structure of the 

information encoded by the state units. For example, the effects of gain reduction could 

potentially be reproduced by any manipulation which makes successive state vectors more 

similar to each other. Thus a more principled and systematic approach to exploring the 

properties of the model could be achieved by manipulating the state representation itself, 

rather than invoking an otherwise redundant system to manipulate it indirectly. 

5.8.3 Attractor dynamics and impairments in sequential processing 

One of the most interesting features of the simulations reported in this chapter is the 

formation of dynamical attractors in task space. The interaction of dynamical task 

representations with disruptions to the representation of internal context provides a useful 

tool for analysing network behaviour following damage, and, in combination with the 

introduction of temporal processing, a potentially fruitful way to characterise the 

computational dysfunction in motor disorders. These issues provide the focus for the next 

chapter. 
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CHAPTER SIX 

System Dynamics and Temporal 

Variability: Implications for Models of 

Motor Dysfunction 

132 

The primary goal of the work reported in this chapter is to address two computational 

issues that were raised in the previous chapter. 

• The nature of the dynamic attractors that characterise the model's representation of 

sequential tasks. 

• The temporal limitations of the model in the simulation of motor disorders. 

Not only are both of the above issues central to the function of the connectionist network 

which forms the basis of the current model, but they both have important implications for 

theories of motor control generally, and for models of basal ganglia dysfunction in 

particular. Our approach in this chapter is to offer a dynamical systems interpretation of the 

motor deficits in Parkinson's disease. We examine the properties of the attractors built in a 

modified, fully-recurrent version of the neural network used in the previous chapter which 

permits greater temporal variability in performance. Finally we examine the response of the 

system to damage. 

The notion of tas~ dynamics is a central theme of the action systems approach to 

motor control (e.g. Kugler, Kelso & Turvey, 1982; Saltzman & Kelso, 1987; Schmidt, 

Shaw & Turvey, 1993) that is challenging traditional motor programming approaches. 

Temporal variability is a characteristic feature of normal motor control in biological 

organisms and is considered by many to be essential for the development of adaptive, 

skilled motor behaviour (e.g. Wing, 1992). Moreover, researchers in neurobiology are 
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becoming increasingly aware of the importance of temporal dynamics in the modulation of 

responses in neural systems (Hounsgaard & Mitgaard, 1989). 

A number of lower level computational and mathematical approaches have focussed 

on dynamical analyses, e.g. dopamine transmission (King et al., 1981, Wickens, 

Alexander, & Miller, 1991) and tremor in PD (Beuter et al., 1991). In chapter one we 

introduced theoretical ideas which stress the importance of both dynamical representations 

and temporal aspects of processing at a systems / functional level. 

The work presented in this chapter also addresses a number of sub-goals. First, it 

demonstrates a close inter-relationship between the two themes, outlined above, in the 

computational model and shows how sharpening the temporal resolution of processing in 

this type of network can help understand both the network's behaviour and the layout of 

dynamical attractors in a complex system. Second, it provides a deeper analysis of the role 

of the contextual signal encoded by the state vector in the sequential control of the system. 

The effects of directly manipulating the content of the state vector are explored as a means 

of studying the relationship between the dynamics of a contextual control signal and the 

motor representations encoded by the weights. Third, the effects of disrupting the timing 

relations between the two sub-systems of the network are examined as a follow up to the 

limitations discussed in the previous chapter. 

In the first part of this chapter, we describe the computational mechanism used to 

introduce temporal processing to the model and apply it to the basic sequential control task 

studied in the previous chapter. We will refer to this as the cascade mechanism 

(McClelland, 1979). 

6.1 The cascade mechanism 

The cascade mechanism was originally developed by McClelland ( 1979) to model the time 

course of processing in connectionist networks. The basic principle of cascade processing 

is that it allows activation to build up gradually on units in each layer of the network, before 

eventually reaching a stable, asymptotic activation state. This contrasts with the usual 

procedure for updating unit activations in feedforward networks, whereby the complete 
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activation update for each unit in each successive layer of the netwo:..~ is computed in a 

single discrete.time step. 

6.1.1 Description of the cascade equations 

The computational basis of the cascade is encapsulated in the following equation which is 

substituted for the normal equation governing the calculation of unit activations. 

ai (t) = tau L Wij aj (t) + (1 - tau) ai (t - 1) (6.1) 

The above equation essentially computes the new activation a unit based on a running 

average of the net input to that unit. The parameter tau is a rate constant that governs the 

speed of processing. Speed of processing is indicated by the number of cascade cycles 

required for a unit to reach its asymptotic level of activation. 

The original cascade model in which the above equation was used, comprised only 

linear units. This equation is therefore not suitable for use in models utilising a nonlinear 

activation function. However a variation of the above scheme which is compatible with 

nonlinear units has since been suggested, (McClelland & Rumelhart, 1988). In this case, 

equation 6.1 is modified to calculate the net input to a unit, as in equation 6.2 below. 

neti (t) = tau L Wij aj (t) + (1 - tau) neti (t - 1) (6.2) 

The unit activation is then computed in the normal way, in this case using the logistic 

function. 

It has been reported that a feedforward system incorporating the cascade mechanism 

exhibits interesting temporal properties during the course of processing (McClelland & 

Rumelhart, 1988). Most often, cascade models have been used to account for a variety of 

reaction time data (Cohen, Dunbar & McClelland, 1990; McClelland, 1979). Indeed, one of 

the most appealing aspects of the cascade mechanism is that it introduces a temporal 

capability to models of those psychological processes for which time is a critical component 
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of the experimental analysis. The processing involved in movement preparation or motor 

programming is a prime example. Reaction time (RT) paradigms have formed the basis for 

much of the standard research on normal motor programming and have also provided a 

considerable quantity of the available information on abnormal motor processing in PD 

(e.g. Jennings, 1995). 

6.1.2 Using the cascade in a model of motor processing 

A basic feature of human motor processing is the temporal variability in the organisation of 

both simple and sequential actions under different environmental or internal conditions, and 

it has been argued that this provi~es an important tool in the investigation of movement 

processing (Wing, 1992). Consequently, it may also be argued that a temporal competence 

is a requisite feature of any computational model of movement control and in particular 

those seeking to model processes affecting the internal control of complex / sequential 

actions. 

A fundamental criticism of the type of system we studied in chapter four is that it 

lacks a temporal competence of this nature. Morasso and Sanguineti (1992) point out that in 

these networks the problem of learning timing structure is not addressed because the 

learned structure is embedded in the training data. In the previous chapter we saw how this 

limitation imposes an artificial restriction on our ability to observe the behaviour of the 

network between target states and to examine the effects of task space attractors on 

behaviour at a finer time-scale. 

A number of variations on the current scheme have been put forward which do 

address the problems of learning the temporal dynamics of goal-directed movements, 

(Flash, Jordan & Amon, 1994; Kawato, Furukawa & Susuki, 1987). These approaches 

have had some success in modelling force control and trajectory formation in motor 

planning problems. Both of these approaches use variations of backpropagation-through­

time (BPTT) (Rumelhart, Hinton et al., 1986b). This has the advantage that the resulting 

temporal structure of the output is an emergent property of the network computation. 

Although BPTT is a sophisticated and powerful learning process, the downside is that it is 
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complicated and is not neurobiologically plausible. This, as we have already discussed, can 

actually make ·understanding the relationship between network computation and biological 

processing function harder rather than easier. 

The use of the cascade equations provides a model with the capacity to demonstrate 

temporal variability in the processing of different input patterns, or under different 

conditions, without any real increase in the complexity of network processing. Leaming is 

carrried out in the normal way and the cascade is only introduced during testing of the 

network.1 Thus the introduction of the cascade mechanism does not have any impact on 

temporal structure or biases inherent in the training data. What it does allow, however, is a 

window onto temporal properties of network processing during the production of learned 

responses, which would not otherwise be possible. 

This facility is particularly useful in analysing the disturbances of sequential 

processing caused by disruptions in the current model and the interaction between network 

lesions and the task space attractors identified in the previous chapter. 

6.1.3 Using the cascade in recurrent networks 

A novel feature of the use of the cascade mechanism in the current model is its 

incorporation into a recurrent network. This is potentially interesting in the following 

respects: 

If the cascade mechanism is used, as it has often been to date, in · a purely 

feedforward network the effects of introducing temporal dynamics are limited to the single 

network response to a particular input pattern. In a recurrent network, however, the effects 

of altering the temporal flow of information through the network may have extended 

consequences across the set of responses which define the sequence to be produced. 

Part of the problem in Jordan sequential networks implicated by the criticisms of 

Morasso and Sanguineti is not just that the temporal structure of the sequence is embodied 

in the training data, but that the processing of each subsequent response in a sequence is 

1 It has been shown that the network will produce the same asymptotic unit activations over a number of 
cycles with the cascade as it will in one pass through the network without the cascade (Cohen, Dunbar & 
McClelland, 1990) 
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initiated externally as part of the computer program that implements the model. Thus the 

decision about- when to transfer from element l to element 2 of a sequence does not form 

part of the function of the model. The cascade mechanism can allow independent transfer 

between sequence elements to occur, simply by letting processing on a subsequent element 

to begin once the state units have reached asymptote. Progression through a given sequence 

then occurs autonomously as a function of the temporal dynamics of network processing. 

One of the interesting features of the current model discussed in chapter five is that 

the complete network is composed of two semi-independent subsystems. Using the cascade 

mechanism, the flow of information between systems can be simulated with greater 

resolution and the effects of altering the timing relations between interacting subsystems can 

be investigated. This is of particular relevance in connection with modulatory 

neurotransmission mechanisms such as the dopamine system since the effects of damage 

are unlikely to affect merely the instantaneous enervation of target structures but also the 

time course of activation gradients. It has been suggested that the time course of the action 

of striatal dopamine is an integral part of the function of the system (Graybiel & Kimura, 

1995). 

In sum, two primary benefits of using the cascade mechanism in computational 

models of sequential motor programming can be identified: 

• The introduction of temporal variability in the initiation of successive sequence elements 

and simulation of the time course of processing of the sequence, in both normal and 

lesioned conditions. 

• A visualisation tool to assist in the analysis of system properties caused by • the 

interaction of task-space attractors and disruptive manipulations to network processing. 

6.1.4 Two modes of cascade processing sequential networks 

It will become apparent in the sections that follow that there are two qualitatively different 

methods for incorporating the cascade mechanism into a recurrent network of the type 

considered here, which give rise to fundamentally different interpretations of its function. 

The network, before introduction of the cascade, is only partially recurrent since processing 
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of each sequence element stops at the state units. The first option with the cascade is to 

rei:froduce this··assumption, with the exception that processing on the next sequence element 

only starts when the state units have reached asymptote. The asymptotic values on the state 

units are then held constant during processing of the subsequent sequence element. The 

second option is to use the cascade mechanism to simulate a fully recurrent network. To 

achieve this, it is necessary to allow activation to cycle continuously round the network. 

This is made possible by cascading activation through the state units as well. 

In preliminary simulations it was demonstrated that in both cases, when the cascade 

rate (tau) is set to 1, the network behaves precisely as it would without the cascade. That is 

to say, when the network is presented with an appropriate pattern of activity on the plan 

units, the response of the network is to retrieve the associated sequence whereby each target 

location is retrieved at each successive time step. In the first case, when tau is then set to an 

intermediate value (between 1 and 0), activation builds up gradually on the articulatory units 

until eventually they reach an asymptotic level which corresponds to the learned activation 

values. The state units are then clamped with those values and processing on the next 

sequence element begins. This procedure yields an activation gradient for each of the 

articulatory units during processing of that pattern, and consequently can be used to 

calculate a 'virtual' trajectory for the endpoint of the arm during processing of that sequence 

element. Clearly, the optimal path of this virtual trajectory between two spatial points in 

task space, in the absence of any other influences, is a straight line. The behaviour of the 

network indicated by the path traced by the endpoint of the arm during activation build-up, 

in particular deviations from an optimal straight-line path, provide a means of visualising 

the influence of competing attractor states on the network under various conditions. 

The use of the term 'virtual trajectory' above is deliberately intended to coincide 

with the same term developed in the context of the equilibrium point (EQ) hypothesis of 

trajectory formation and motor planning (Bizzi et al., 1992; Feldman, 1966) which is 

gaining increasing empirical support. Although the current model does not adhere precisely 

to the claims of the EQ hypothesis there are a number of points of contact between the 

underlying theoretical perspective which has motivated the EQ hypothesis and those which 
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control the operation of the model. In brief, the EQ hypothesis suggests that the motor 

system does not need to compute kinematic or dynamic derivatives in planning a trajectory 

as robotic controllers do (see Hollerbach & Atkeson, 1987; Kawato et al., 1987), but 

instead utilises a representation of the desired task space location of the. endpoint of the 

active limb which in combination with the natural elastic properties of muscles acting about 

a joint establishes a virtual equilibrium point which causes the endpoint to be at rest at the 

desired location. Multiple such equilibrium points may be defined between the initial and 

final locations of the endpoint thus establishing a neurally encoded virtual trajectory. 1be 

activations of the muscles controlling the limb are then altered so that the endpoint traces a 

path following the virtual trajectory. Masson and Pailhous (1992) have suggested that the 

basal ganglia may perform the function of stiffness regulation using an EQ- based model. 

The relationship between this theoretical position and the current model lies in the 

fact that the attractor states at target locations, in dynamical systems terms, are equilibrium 

points. The gradual change in activation of the articulatory units corresponds to the 

synergistic pattern of change in activity required in the muscles controlling the limb to trace 

the virtual trajectory to the desired endpoint location. 

It is not clear in advance what effects will result from reducing tau below 1 in the 

case where the state units are cascaded as well. However, this manipulation is more likely 

to be interpreted as a model of dysfunctional processing in th,e network. This is due to the 

changing state representation at each cascade cycle. These issues are examined in the 

following section. 

6.2 Using cascade processing in the analysis of attractor dynamics and 

trajectory formation 

In the series of simulations presented in this section, the cascade mechanism was applied to 

the network used in the previous chapter. The aim of the studies was to examine the effects 

of both methods of using the cascade in a sequential network which have been discussed 

above. In particular we were interested in whether the addition of the cascade could provide 
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useful information in the visualisation and analysis of attractor dynamics in the behaviour of 

the ·network in.both normal and lesioned conditions. 

6.2.1 Simulation 6.1: Cascade processing in a sequential network 

Method 

In this first simulation we reproduced the task described in simulation 5.1. The network 

was initialised with the learned weights obtained in the condition with the rest configuration 

constraint depicted in figure 5.6. It will be recalled that in this network there are two state 

units which receive connections from the task units only. The cascade equations are only 

applied to the hidden and output units of the controller and forward model subnetworks. In 

this case the value on the state units remains static during the processing of each sequence 

element. Processing of each sequence element terminates when the forward model output 

units (i.e. the task units) reach asymptote. The cascade rate was arbitrarily set to an 

intermediate value of 0.5. 

Results 

The results of this manipulation are depicted in figure 6.1 below. 

1.00 

◊ ,-oo 
0 0 

0 ◊ Endpoint locations calculated 

0.75- .~ during cascade processing 

.. .. C target I • .. D • target 2 .. 
0.50- & C 

>< ~◊ "'la(> 0 target 3 

.. target 4 

0.25 -

0.00 
I I I 

0 .,., 0 .,., 0 
0 ~ 

.,., t- ~ 0 0 0 0 

X 

Figure 6.1. Cascade processing in a Learned 4-element sequence 
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For simplicity, the representation of the kinematic configuration of the arm has been omitted 

in this, and all ·subsequent figures in this chapter. The data points represent the endpoint of 

the arm after each cascade cycle, calculated from the activations of the articulatory units. 

The forward model estimates of endpoint location are also omitted. 

It can be seen that each sequence element transition takes approximately eight 

cascade cycles to complete. Comparison of figure 6.1 with figure 5.6 shows that the 

asymptotic activations of the units are approximately equivalent to those achieved without 

using the cascade. It is apparent that the gradual build-up of activation on the articulatory 

units caused by the cascade process forms a trajectory towards the target location. For 

transitions 1, 3 and 4 of the sequence, this trajectory does approximately follow the optimal 

straight-line path between the start and target locations. Transition 2, on the other hand, 

follows a curved path. 

Discussion 

This simulation demonstrates that the cascade process causes a change of activation over 

time which establishes a virtual trajectory of the limb endpoint from initial to final locations. 

This implies that the movement representations learned by the network are not confined to 

the target locations but are dynamic representations of the trajectories between locations. 

This feature of network behaviour is consistent with the basic ideas behind the equilibrium 

point hypothesis. 

The reason for the curved path that occurs in transition 2 is not entirely clear, 

although the nature of the curve suggests that the activation profile is influenced by the 

initial position of the endpoint, which is the square data point at approximately 0.48, 0.58. 

6.2.2 Simulation 6.2: Cascaded activations passed on to the state units 

Method 

In this simulation the network and task remained the same as in the previous simulation, 

except that activation at each cascade cycle was passed on to the state units. This method of 

processing means that the activation on the state units also cr.anges at every cascade cycle. 
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In this regime a pattern of activity is si!Ilply clamped onto the plan units and activation is 

passed around the network until the output units reach an asymptotic level of activation. 

When the cascade rate is set to 1, there is no change from the normal behaviour of 

the network, with activation at the output units eventually stabilising at the final pos_ition of 

the sequence. The aim of this simulation is to examine the effects of reducing tau below 1, 

in this condition. The network was thus run with four different cascade rates 1, 0.8, 0.4 

and 0.1. 

Results 

The results are shown in figures 6.2(a - d). 
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Figure 6.2. Reducing tau when using cascade processing with dynamic state units 
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Figure 6.2(a) illustrates the resulting endpoint trajectory when tau = 1. Because the state 

units receive their full activation values at the end of each cascade cycle, the endpoint is 

driven round the full sequence in four cycles, terminating at the final location. In figure 

6.2(b), however, it can be seen that even a small reduction in the cascade rate causes 

disruption to the learned sequence. Intuitively, it may be expected that the disruption would 

be cumulative, causing increasing spatial errors as the sequence progresses. The general 

form of the trajectory, however, is consistent with the learned sequence and the location of 

the arm at the termination of processing is at the correct final location. The disruption is 

more severe when tau is reduced to 0.4, as depicted in figure 6.2(c). One feature of cascade 

processing is that the activations of the articulatory units do not move as far from their 

initial activations at each cycle, as the cascade rate is reduced. This means that after the first 

time slice in figure 6.2( c) the endpoint location is closest to the part of the learned trajectory 

between sequence elements 2 and 3. It is a consequence of the fact that the learned sequence 

acts as an attractor, that the network moves towards the closest point of the learned 

trajectory and then completes the sequence from there, completely omitting the first two 

elements. In each of the conditions above, the amount of time (no. of cycles) that the 

network is engaged in processing increases as tau is reduced, and the general form of ·the 

sequential trajectory is maintained to the final location. When tau is reduced below some 

critical value as shown in figure 6.2( d) with tau = 0.1, performance is catastrophically 

affected. In this case, processing terminates after only a few cycles.· The reason for this is 

probably that at such a low cascade rate, the unit activations only change very slightly and 

artificially asymptote at some arbitrary point in the cycle. It will also be noticed that in this 

case the network is traversing a portion of the learned trajectory in reverse, (left to right). 

Discussion 

The results of this simulation indicate that when the cascade mechanism is used in 

conjunction with a recurrent network as described in this section a different interpretation is 

required. When the cascade rate (tau) is set to any value below 1, abnormal or incomplete 

production of the learned sequence results. In the previous chapter it was argued that a 

more global, systems level, manipulation was required to simulate dysfunction of the basal 
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ganglia in this computational model, in particular those which affect the processing function 

of the state units. A reduced cascade rate is a potential candidate for this role. 

The cascade rate is a single global parameter which is usually assumed to reflect the 

time course of processing a response. In a purely feedforward network the cascade process 

does not directly affect the input-output relations of the model. In this model, however, 

each intermediate activation state at the task units causes a change in part of the input to the 

network at the following time slice. The pattern of activity on the plan and state units is then 

passed forwards to compute a new endpoint location. If the network is functioning 

normally this new position should match the target location in task space at that time slice. 

In the introduction to this section we argued that this process is akin to establishing a 

neurally specified equilibrium position for the endpoint of th~ arm. In this simulation it was 

shown that when tau = 1 the equilibrium positions lie at the target locations, but when tau is 

reduced the equilibrium positions fall short of target locations leading to multiple step 

movements of decreasing amplitude as tau is decreased. Multiple step movements and 

reduction of amplitude are symptoms of parkinsonian bradykinesia that were outlined as 

modelling criteria in chapter five. 

Other features of the network behaviour when tau is reduced are a reduction in the 

overall shape of the trajectory (see figure 6.2(b)), and the omission of effortful sequence 

elements. This is seen in figure 6.2(c) where the network preferentially moves to the part of 

the learned trajectory closest to its initial position. These aspects of network behaviour are 

due to the interaction of impaired state unit function with the attractor dynamics of the 

learned trajectory. The presentation of a reduced cascade rate as a suitable model of motor 

dysfunction in PD remains only a tentative suggestion at this stage, but it does give rise to 

further motivations for studying the interaction of attractors formed by these networks and 

how they interact with state unit encoding of context. 

6.2.3 Attractor states and cascade processing in recurrent networks 

In the simulations described in this section, we examined two methods of incorporating the 

cascade mechanism into Jordan sequential networks. In the first method the state unit 
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representation remains static during processing of each sequence element. In the other 

method the state units vary at each cascade cycle as a function of the build up of activation 

on the task units. In either case, regardless of the method of updating the state units, an 

attractor state is regarded as one towards which the network will converge and at which the 

network will eventually asymptote. 

In ~e first case where the input is constant, each target element of the sequence is 

an attracting equilibrium state at which the network asymptotes, after describing a trajectory 

towards that point in task space. In the introduction to this section we pointed to the close 

relationship between this form of processing and the equilibrium point hypothesis in motor 

control theory. In the second case, there is only one fixed-point attractor which lies at the 

termination point of the sequence, this being the point at which the articulatory unit activity 

asymptotes. Yet the learned trajecto~ towards this point is also attracting since the network 

will preferentially converge on the final endpoint location via the learned path, even when 

processing is disrupted by reduction of the cascade rate. 

The · differences between these two methods of processing hold important 

implications for the internal representation and control of action sequences. In the first case 

each individual state is explicitly represented as an equilibrium point, and a separate process 

is required to inhibit or reset the state representation to a new value which will drive the 

network on to the next state. In the second case, each intermediate target location is 

represented implicitly only as part of the learned attracting trajectory towards the final 

location, at which the network naturally terminates without the need for extra processes. 

In the next section we consider a different task, which is an interesting special case 

both in terms of network dynamics and in motor control theory. This is the case in which 

. the learned sequence forms a closed cycle of states. 

6.3 Attractor dynamics and motor representation in connectionist networks 

Jordan has highlighted the property that when a learned sequence is a cycle in task space, 

the resulting attractor is a Limit cycle attractor (Jordan, 1986b; Jordan, 1990). This means 

that, instead of converging on a fixed point in task space as in the previous sequence we 
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studied, the network will continue to move round the learned sequence of states until 

te~ated by _an external condition. Strictly speaking, if a limit cycle attractor is present, 

the system will move towards the learned trajectory and then cycle, repeating each of the 

attracting states exactly on each cycle. If the system is subsequently perturbed slightly, it 

will return to the learned trajectory and continue as before. 

Whereas the concept of fixed-point attractors has become important in 

computational theories of memory and representation (Hinton & Shallice, 1991; Plaut, 

1991) the notion of periodic attractors and dynamical representations holds a special place 

in motor control theory (Kelso & Ding, 1993; Mpsitos, 1993; Saltzman & Kelso, 1987). In 

this section we report a series of simulations that further examine the nature of attractors in 

the current model. The results of these simulations show that the dynamics exhibited by this 

network have more complex properties than have previously been reported. 

Until now we have given only an intuitive treatment of the concept of attractors in a 

dynamical system. To fully appreciate the results reported in this section, it is necessary 

first to underline in more detail some basic elements of dynamical systems theory. In the 

following sections we discuss both how it is relevant to the network under consideration, 

and how it is applied in both motor control theory and neurobiology. 

6.3.1 Dynamical systems and recurrent neural networks 

A dynamical system is a mathematical model which characterises how the output of a given 

sy~tem changes over time. In theory any process in which change is observed can be 

modelled as a dynamical system, although clearly some processes are more difficult to 

model than others. A useful representation of a dynamical system is a state-space model, 

which consists of a set of input variables, a set of state variables and a set of output 

variables. A dynamical system allows the modeller to determine how the output of the 

system changes over time as a function of the previous states of the system and the input to 

the system. 
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In general, any dynamical system can be described by a pair of equations which 

express how the state changes as a function of the current state s[n] and the input p[n], 

where the index n refers to a discrete time slice: 

s[n+l] = f(s[n], p[n]) 

and an output equation: 

x[n] = g(s[n]) 

(6.3) 

(6.4) 

which shows that the output of the system is a function of the current state of the system. 

Furthermore, by combining these two equations a composite equation may be obtained 

which maps the state and input onto the output at the next time step: 

x[n+ 1) = h(s[n], p[n]) 

where h is the composition off and g. 

(6.5) 

In order to develop a dynamical system, it is clear that the functions f and g must 

exist, that is to say that the state of the system at time [n +1] must not be completely 

independent of the state at time[n]. If it is possible to derive expressions for f, g and h, then 

it may be said that a solution to the dynamical system has been found. As in most 

mathematical modelling, the resulting dynamical system is much easier to analyse if the 

relationship between state, input and output is linear than if it is nonlinear. The state-space 

representation is useful, particularly in nonlinear dynamical systems where a general 

solution cannot be found, because it allows the modeller to plot the behaviour of the system 

over time as a trajectory in state space. 

The sequential neural network which fonns the basis of the model studied here can 

be characterised as a dynamical system. Unlike a purely feedforward network in which 

each state of the network is only related to the pattern of activity on the input units and is 

independent of any previous state of the network; the current state, and consequently the 

output of the sequential network is a function of previous states, due to the recurrent 

connections to the state (context) units2• Because all the hidden and output units have 

nonlinear activation functions, the dynamical system as a whole is nonlinear. 

2 Although it is easy to see why Jordan has used the tenn state units to describe the function of these units, 
it may at this point become a source of some confusion. The state unit activations do not constitute the 
state of the network. The state of the network is encoded by the pattern of activity of all units in the 
network at any time slice. We henceforth follow Elman (1990) who uses the term context units, which in 
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The order of the dynamical system depends on the value of the parameterµ which is 

the .. weighting __ parameter on the recurrent connectiens from the context units onto 

themselves. Ifµ= 0, then the state at time [n] is a function of the state at only the previous 

time slice [n - l] and the dynamical system is first order. If, however, µ > 0 then the 

current state is a function of the n previous states and the dynamical system is of order n. A 

number of interesting properties arise from using the system with µ > 0 and these are 

discussed in more detail in connection with the simulations reported below. 

The state space model constructed here to describe the behaviour model uses the 

task space i.e. the space of possible endpoint locations of the ann to represent the space, 

and the calculated endpoint location of the ann at any time slice to represent the state. 

A final point which is worth noting here relates to the introduction of the cascade 

mechanism. When the cascade is used each individual hidden and output unit can also be 

characterised as a dynamical system, since its activation state at each cascade cycle is 

dependent on its net input and its previous state. It would thus be possible, if so desired, to 

construct a state space representation of the activation trajectory of each of the hidden units 

in the network. This approach may yield interesting information about the dynamics of 

individual units, but has not been pursued here. A similar approach has recently been used 

in conjunction with extremely simple recurrent networks (Wiles & Elman, 1995). 

6.3.2 Stability and bifurcation in a dynamical system 

One of the goals of dynamical systems modelling is to determine the long term behaviour of 

systems, under various conditions. Two topics that are central to the study of this problem 

are stability and bifurcation theory. It is not our intention to discuss in depth the 

mathematics supporting these concepts. An excellent introduction to these subjects is 

provided by Sandefur, ( 1990). Our aim is merely to give sufficient information to enable us 

to discuss the behaviour of the network in the subsequent simulation studies. 

The study of stability is an integral part of determining how the dynamics of a 

system unfolds over time. The state space of a linear dynamical system may contain one or 

this model better describes their function and psychological interpretation. 
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more equilibrium positions or fixed points. Fixed points may be attracting or repelling. If 

the system is ~tarted close to an attracting fixed point it will move progressively closer to 

the equilibrium position and stabilise there. In contrast a repelling fixed point will push the 

system further away from the equilibrium position and the solution is said to be unstable. 

A different form of• behaviour often found in nonlinear systems, is when the 

solution goes, not to a fixed point in state space, but cycles repeatedly round a sequence of 

states. This type of solution is what we mean by a limit cycle attractor. Figure 6.3 

reproduces graphs from Jordan (1986b) which demonstrates stable limit cycle behaviour in 

a basic sequential network. 

In figure 6.3 the square represents the learned trajectory. When the network is 

started at a point either inside the learned trajectory (left panel) or outside (right panel), the 

network spirals towards the square, eventually reaching a limit at the square where it cycles 

repeatedly round the four points of the original sequence. It should be noted that in a simple 

limit-cycle such as this the system repeats the same four states with each cycle. 
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Figure 6.3. A learned cyclic sequence acts as a limit-cycle attractor in the state space of the two output 

units of the network 

Nonlinear systems of several equations are capable of exhibiting more complex behaviour 

than that discussed so far. Complex behaviour may result from the existence of multiple 

limit-cycle and fixed point attractors in a system's state space or it may be governed by the 
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presence of another class of attractor - that is so-called chaotic attractors. The study of 

chaotic attractors is a-rapidly expanding field and they are still not well understood. Here 

we restrict ourselves to discussing the behaviour of systems governed by an attracting set, 

(Sandefur, 1990). In short, the existence of an attracting set means that although we do 

know that the system will move towards the state-space trajectory defining the attracting 

set, unlike the simple limit-cycle attractor, it is not possible to predict which points on the 

trajectory will be intercepted at any particular time step. This depends on system variables 

including where in state space the system starts (dependence on initial conditions). The 

notion of an attracting set is best illustrated by an example. The same example will also 

allow us to introduce the idea of bifurcation in dynamical systems. 

Let us assume a nonlinear dynamical system with the two dependent variables: a(n) 

and b(n). Let us further assume that the qualitative behaviour of this system for successive 

values of n is as depicted in figure 6.4(a) 

b 
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Figure 6.4(a). Behaviour of a dy11amical system for which the u11it circle is an attracting set. The system 

is started at the repelli11g fixed point 0,0.(Adaptedfrom Sa11defur, 1990. p.400) 

Figure 6.4(a) shows the behaviour of the dynamical system for the first 17 time steps. The 

data points at each time step have been joined by straight lines. The system spirals away 

from its initial location (0,0) and approaches the unit circle given by: a2 + b2 = 1. Once it 
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intercepts the circle, the system stabilises and all subsequent points lie on the circle. This 

behaviour incli~ates that the unit circle is an attractor for the dynamical system. 

In figure 6.4(b), the same system is shown after it has been left to cycle for many 

time steps and the line representing the unit circle has been removed. Because the system 

never repeats the same set of states exactly on different cycles, the data points after many 

cycles round the attracting set provides a trajectory map which characterises the underlying 

shape of the attracting set, (in this case the unit circle shown in figure 6.4(a)). 

The properties exhibited by this nonlinear system are clearly different from stable 

limit cycle behaviour, in which the same point would be repeated on each cycle once the 

circle has been attained, and indicate a more complex form of attractor. 

However, they also provide a potentially valuable technique for visualising the 

characteristics of attractors in complex systems whose behaviour would be difficult or 

impossible to analyse by formal methods. A method for examining the properties of 

attractors in the sequential neural network model is developed in the simulations presented 

later in this chapter. 
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Figure 6.4(b ). Stable behaviour of the system in the limit. ( Adapted from Sandefur, 1990. p.401) 

Let us now assume that the dynamical system involves an unknown parameter - x. A 

bifurcation occurs if, when the value of xis changed beyond a certain point, the qualitative 

behaviour of the system changes. There are many different types of bifurcation which can 
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occur, but we shall concentrate on the Hopf bifurcation which is common in nonlinear 

systems of several equations and is of particular interest here. The mechanics of the Hopf 

bifurcation may be briefly described thus: In the hypothetical system of figure 6.4 there is a 

constant c such that for x < c, the fixed point at (0,0) is attracting, but for x > c the fixed 

point is repelling and an attracting set ( the circle) bifurcates from the fixed point, and the 

qualitative behaviour described above is observed. However, the closer x is to c the smaller 

the radius of the circle and as x decreases to c, the radiu3 goes to zero. A schematic 

depiction of the Hopf bifurcation is illustrated in figure 6.5 below: 

-2 

Figure 6.5.The Hopf bifurcation. As xis increased above 0, the system spirals to solutions on a plane of 

the parabolic cone. (Adapted from Sandefur, 1990. p. 406. The parabolic cone is approximated in the figure) 

A full analysis of a nonlinear dynamical system would require that we observe · the 

qualitative behaviour of the system for all values of x (within a definable range) and for all 

possible initial positions in state space. A more practical alternative in the first instance is to 

discover the behaviour for sampled values of x across the defined range, for a selected 

initial condition. This is the approach pursued in the following simulations. 

A constant set of initial conditions are naturally provided by configuration of the 

simulated arm at the first position of the learned sequence. In the model there are two 

independent parameters which it is of interest to manipulate in place of the dummy variable 
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x: the cascade rate - tau, and µ which is the weight on the recurrent connections of the state 

units to themselves. Our reasons for examining the effects of varying these parameters on 

the overall qualitative behaviour of the network are that both are directly involved in the 

sequential processing function of the network and thus reflect our basic hypotheses 

concerning the processing deficit underlying motor disorders in basal ganglia dysfunction. 

6.3.3 Dynamical systems and the neural control of movement 

To date, few researchers have explicitly considered the application of dynamical systems to 

the study of biological movement control. There is, however, a growing body of research 

literature in this area which is closely in accord with the cor.cepts involved. This includes 

the action systems approach to human movement control and, as mentioned previously, the 

equilibrium point hypothesis. Here, we aim to indicate the potential afforded by dynamical 

systems concepts in redefining current views of motor programming and in drawing 

together these various different approaches. 

Jordan's work, which we have reviewed extensively, has linked the basic 

dynamical systems equations to the function of the connectionist networks he has 

developed in the feedforward control of movement. Mpsitos and co-workers, on the other 

hand have focussed on the possible development of chaotic attractors in the neural systems 

of simple invertebrates, which serve as the basis for representation of motor patterns. 

Saltzmann and Kelso (1987) have pointed to the development of limit-cycle behaviour in 

ensembles of oscillators in providing a representation of repetitive movements. 

There are various issues raised in the work of these authors which lend interesting 

interpretations to the formation of attractors in the current model. Firstly, whilst a fixed 

· point attractor may be useful for representing a static item of information such as an object 

name (see Plaut, 1991 ), dynamic attractors may be more useful for encoding movement 

information·, which necessarily implies a trajectory through different states. 

Moreover, it seems reasonable to suggest that the nature of the representation, 

reflects properties of the motor pattern to be produced or the state of the motor system. 

Thus, an attracting fixed point may represent a static state of the motor system, such as a 
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held posture or desired end point state of a movement. This is consistent with the basic 

ideas behind the equilibrium point hypothesis, and also makes sense of the observed motor 

equivalence in many goal oriented limb movements, i.e. it is irrelevant how the limb 

approaches its final state, the representation merely encodes the final state. 

A stable limit-cycle attractor is suited to represent repetitive movements or sustained 

motor patterns. Repetitive movements are the type most often studied using the action 

systems approach, leading to suggestions that motor pattens may be encoded as limit-cycles 

(e.g. Kugler, Kelso & Turvey, 1982). In order to model the flexible, inherently variable 

adaptive motor programs characteristic of skilled human behaviour, it may be argued that a 

more complex and variable form of representation is required. In fact Mpsitos (1993) 

argues that this may even be a requirement of modelling the motor patterns of simple 

organisms. In this context, we may consider the formation of attracting sets as discussed in 

the previous section as a basic requirement of the system. The attracting set in this 

interpretation bears considerable resemblance to the psychological notion of a motor schema 

or generalised motor program (Schmidt, 1975; 1988). The general form of the pattern is 

retained, but the values of the dependent variables are variable. These sorts of attractors are 

intrinsically less stable and more variable than either fixed-point or limit-cycle attractors. 

This may have certain advantages in a behavioural sense, such as making it easier to blend 

two or more existing motor representations to achieve a new pattern of behaviour if a novel 

environmental situation or context is encountered. 

The existence and behaviour of complex attractors in connectionist networks that 

produce movements or pseudo-movement sequences is consequently extremely interesting. 

A further line of support for the approach concerns bifurcations and the modelling of both 

normal and abnormal motor behaviour. There has been a long standing debate which has 

polarised motor researchers and is as yet unresolved over how motor programs deal with 

changes in independent variables such as the required speed of a movement. Schmidt, 

( 1982) has argued that all components of a motor program change according to a 

proportional duration constant such that the relative timing amongst all components is 

maintained at different speeds. This argument is under many conditions well supported. 
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There is, however, a variety of contradictory evidence, reviewed by Gentner (1987) which 

demonstratesv~iation in the relative timing of components which is not consistent with a 

simple multiplicative rate parameter. Moreover many studies (e.g. Tuller & Kelso, 1990) 

have shown that motor patterns exhibit phase transitions or qualitative shifts in the overall 

pattern with changes in an independent variable. This has been shown in limb and speech 

movements. Both of these lines of evidence are consistent with the idea of a Hopf 

bifurcation in the attractor states which occurs when the independent parameter is 

sufficiently changed. The evidence cited by Schmidt would neyertheless agree with results 

over the range in which the motor pattern is structurally stable and no bifurcation occurs. 

We therefore argue that the Hopf bifurcation is a model which can account for the empirical 

findings supporting both positions in this controversy, and in particular can account for the 

phase transitions which occur in normal movements. 

The same line of reasoning can be used in modelling the abnormal movements 

exhibited in PD and other basal ganglia motor disorders. In chapter five we have already 

argued in favour of modelling dopamine reduction in PD as a change in a system parameter 

which makes it more difficult for the system to select between actions, by reducing the 

contextual cues favouring one action over an alternative action. We have suggested that 

abnormal behaviour may be modelled as a bifurcation in the attractor states of the system, 

leading to production of an inappropriate response. For example, a number of parkinsonian 

deficits such as postural rigidity, lack of spontaneous movement and the failure to sustain 

motor activity in repetitive or sequential movement may be the result of the system 

collapsing to a fixed point stable state. 

Figure 6.6 provides an illustration of how normal and park.insonian motor activity 

may be modelled using the dynamical system depicted in figure 6.5. To make this example 

more concrete, we assume that the motor pattern is a cyclic motion of a limb which involves 

alternating patterns of activity amongst the agonist and antagonist muscles controlling the 

limb. The dependent variables a and b have been denoted as the agonist and antagonist 

respectively. The independent variable - x has been replaced ty a global measure of system 

'energy' or 'activation'. 
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In the top panel, normal motor activity is represented as sustained cyclic patterns of 

activity in the plane of the parabola of figure 6.5. The shape of the pattern is determined by 

the dynamical interaction of the opposing muscle groups. The size of the movement is 

determined by the value of the 'activation' parameter. Reduction of activation below zero 

(the intersection) yields a static posture. 

agonist 

agonist 

Abnormal 'frozen' 
posture 

Normal motor 
patterns 

Parkinsonian motor 
pattern 

"activa ion" 

"activation" 

Figure 6.6. Dynamical systems interpretation of normal and parkinsonian motor behaviour 

In the bottom panel a parkinsonian motor pattern is depicted. Here the system is started near 

the attracting set representing the large amplitude movement at the right of the top panel. 

Here, however, due to insufficient 'activation' the motor activity is not sustained and 

rapidly dwindles to the fixed point at the intersection. Here there is co-activation of the 

muscles which causes a rigid abnormal posture at this point. The use of agonist and 

antagonist should not be taken too literally here as the dependent variables could easily 

reflect some internal system variable such as reverberating circuits or coupled oscillators for 

coding motor variables. Similarly the uni-dimensional 'activatjon' parameter is 
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oversimplistic in terms of modelling basal ganglia dysfunction. The main aim here is to 

convey the mai,n points of the general approach. The same framework has the potential to 

account for other abnormal movement states in a similar fashion, for example under 

different circumstances the behaviour of the system may include additional inappropriate 

elements, or may reduce to a stereotyped limit-cycle. 

6.3.4 Aims and hypotheses of the simulations 

The theoretical basis for the simulations presented in the remainder of this chapter is that the 

attractor built by the network over the learned sequential trajectory corresponds to a neural 

representation of the global properties of the sequential action, similar to a motor schema. 

As such it builds on conceptual ideas already in circulation (Borrett et al., 1992; Mpsitos, 

1993; Wickens, 1993b). We assume that the properties of the attractor are linked to certain 

overall characteristics of the movement or state of the effector system. For example it makes 

intuitive sense that a fixed point attractor should reflect a held posture, or static end-state of 

the effector, whereas a dynamic attractor is required to reflect sustained activity of the 

effector, as in a sequential action. 

Furthermore, we suggest that alterations of the properties of the attractor would be 

reflected in altered properties of the motor output. For example reduction in the size of an 

attracting set, may cause a reduction in the overall amplitude, force of each component of a 

complex action. In this way dynamic attractors provide a compact encoding of higher level 

properties of an action, but their nonlinearity means that the suggestion is not as simplistic 

as, say, a linear scalar such as multiplicative rate parameter, (Schmidt, 1982). Such 

schemes have been criticised (Gentner, 1987) because they do not account for nonlinearities 

in motor output such as phase transitions which are characteristic features of biological 

movement. Phase transitions (bifurcations) are, however, a natural feature of attractors in 

non-linear dynamical systems. 

Lastly, we suggest that critical changes in the properties of an attractor may take 

place when key system variables are manipulated. In a complex representational space 

containing a number of attractors, changes in system parameters may lead to interference 
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which could cause severe and unpredictable effects on the i>ehaviour of the system. We 

relate these computational ideas to the disorders of movement in basal ganglia dysfunction. 

In accord with the conceptual model of basal ganglia operation in chapter four, key 

parameters in the sequential neural network are those which affect the contextual 

representation encoded on the state units. We examine the behaviour of the system when 

these parameters are manipulated. 

6.4 Examining the properties of attractors in cyclic sequences 

In this section we report a series of simulations in which cyclic sequences are learned by 

the network. 

6.4.1 Tasks and architecture 

For consistency the same basic task is used when testing the network in all the simulations 

below. This task will be referred to from now on as "sequence l". 
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Figure 6.7. Sequence I ( condition A) 
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This task is essentially the same as that used in the previous simulations, except that the 

transition from the final sequence element back to the first element is also learned, thus 

forming a closed cycle in task space. Figure 6.7 illustrates the location of targets and the 

desired trajectory of the limb endpoint for sequence 1. 



6: System dynamics and temporal variability 159 

In order to examine the properties of the attractor built by the network on this 

sequence and··to test the hypotheses presented in the section above, three conditions were 

devised: 

Condition A. In this condition only sequence 1 was learned by the network before testing. 

This condition is illustrated by figure 6.7 

Condition B . In this condition two sequences are learned; one of which is sequence 1, the 

test sequence. The other sequence is qualitatively similar to sequence 1, but covers a 

different area of the task space. We refer to this sequence as the 'dummy' sequence because 

it serves as an exemplar of a class of other motor patterns which may affect performance of 

the test sequence - 'sequence 1'. In this condition, there is no point of intersection between 

sequence 1 and the dummy sequence. Figure 6.8 illustrates the layout of sequences in 

condition B. 

1.00 

0.75 - 1-,1 
0.50-

b] >-

0.25 -

0.00 I b I 
0 "' "' 0 
~ ~ "' t-; ~ 
0 0 0 0 -

X 

Figure 6.8. Condition B 

Condition C. This condition is the same as condition B, except that the dummy sequence is 

shifted in task space so that there is considerable overlap between the two sequences. This 

condition is illustrated in figure 6.9 overleaf. 
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Figure 6.9. Condition C 

The rationale behind this design is that it allows us to examine both the properties of the 

attractor built on sequence 1 and, later, the effects of network lesions on performance in 

three different test cases. Each test case reflects a different level of task complexity, with the 

level of potential interference depending on the existence and location of the dummy 

sequence. 

In all cases the task was learned by a version of the network architecture in which 

there are recurrent connections from both the task units and the articulatory units to the state 

units. There are thus six state units instead of two. In all other respects the network remains 

the same as in previous simulations. 

6.4.2 Methodology and interpretation of simulations 

Our focus in this chapter is on the representation of sequential movements as whole actions. 

In chapter five we were primarily interested in the step by step transitions in performing one 

complete sequence. Here, our interest is at a more abstract level, and is concerned with 

global nature of the sequential action as indicated by the properties of the attractor which 

forms the network's representation of the action. 

For these reasons the basic methodology in all of the simulation conditions reported 

below conforms to the following steps: 
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1. Learning. The task is presented to the combined controller and forward model network. 

The forward model weights have already been learned and are held fixed. Each sequence to 

be learned is identified by a unique pattern of activity across the three plan units of the 

controller subnetwork. Sequence 1 is, in each condition, denoted by the pattern 0, 1, 0; the 

dummy sequence is denoted by the orthogonal plan 1, 0, 1. Each learning epoch consists of 

presenting the network first with the plan for sequence 1, then, if appropriate the plan for 

the dummy sequence. Error derivatives and weight changes are calculated for each element 

of each sequence. As_ before, the network parameters during learning are: learning rate = 

0.1 µ = 0.5 and momentum= 0.9. 

2. Testing. The weights in both the controller and the forward model subnetworks are held 

fixed while testing takes place. In order to test the network, recurrent cascade processing is 

switched on with tau = 1. The asymptote criterion for the cascade process is defined to be 

when the largest change in activation of any of the articulatory units is less than 0.01. 

The use of the cascade in this way means that the network autonomously moves 

towards the attracting set thus defining the nature of the attractor without any external 

intervention. If the network moves towards a single equilibrium point, processing in the 

network will self-terminate as the cascade process asymptotes. This indicates a fixed point 

attractor. If the attractor is a limit cycle processing will not terminate as the network 

continues to cycle. endlessly round the sequence of states defining the limit cycle. 

Furthermore, by plotting the location of the endpoint of the arm at each cascade cycle a 

trajectory map indicating the shape and location of the attractor can be produced. 

6.4.3 Simulation 6.3: Cyclic sequences exhibit complex dynamics 

In this first simulation using the above methodology we tested the network behaviour in 

condition A, in which only sequence 1 was learned. 

Results 

Figure 6.10 depicts the trajectory map of the network after 12 cascade cycles, that is three 

complete cycles round the four element sequence. Each point represents the location of the 
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endpoint of the limb and successive endpoint locations have been joined by a line to indicate 

the· progression of network behaviour. 
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Figure 6.10. State of the network after three complete cycles of the sequence 

Figure 6.10 shows that the network continues to cycle round the sequence, but that the 

behaviour is more complex than a simple limit-cycle on the learned sequence. The sequence 

as a whole rotates in a clockwise direction and reduce in size as the network continues to 

cycle. This behaviour can be seen more clearly in figure 6.11 which shows the progression 

over 36 cascade cycles, although only the first six cycles are joined up for the sake of 

clarity. 
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Figure 6.11. Behaviour of the system over nine complete cycles of the sequence 

Figure 6.12 below illustrates the behaviour of the network in the limit. This figure indicates 

the attracting set formed by the learned network representation. Targets are not shown. 
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Figure 6.12. The attracting set for sequence I 

Figure 6.13 depicts the activations of the context units during testing of the network. 
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Figure 6.13. Context unit activations in condition A 

Discussion 

Although the behaviour of the network is clearly cyclic, the network in this instance did not 

follow the simple limit cycle trajectory reported by Jordan. The reason for this lies in the 

value of the parameterµ. In Jordan's ·simulation the value ofµ was zero (Jordan, 1986b) 

presumably to provide the simplest possible demonstration of limit-cycle dynamics in the 

network, whereas in the current simulationµ was set to 0.5. This explains the rotational 

behaviour because the context vector does not merely represent the output vector, but 

encodes a more holistic representation of the whole sequence. Thus residual activation on 

the context units causes the activations of the articulatory units to be altered slightly each 

time a specific target location is revisited. 

Close inspection of figure 6.13 reveals that although each individual context unit 

exhibits a four-cycle sequence of states, which corresponds to the learned trajectory, if any 

two cycles are compared for the same unit it can be seen that the corresponding elements 

have a slightly shifted relationship. Moreover, each of the units has a characteristic 

amplitude and phase. 
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These results hold some important implications for the analysis of the network 

behaviour as it allows visualisation of the entire attractor rather than a few selected points at 

the target locations. Examination of the context unit activations allows visualisation of the 

effect of manipulations to the contextual representation on the output behaviour of the 

network. 

6.4.4 Simulation 6.4 Network behaviour when two sequences have been learned 

In this simulation we tested the network in conditions B and C. In both conditions an 

additional sequence has been learned. The aim of this simulation was first to ex-amine 

whether the existence of an additional 'action' affects the shape of the attractor formed over 

sequence 1. Secondly, it was to test whether proximity of the second sequence is a factor in 

determining the shape of the attractor for sequence 1. 

The procedure followed in simulation 6.3 was repeated using the learned weights 

for condition B and then for condition C. 

Results 

Cyclic behaviour similar to that reported in the previous simulation for condition A was 

observed in both of the conditions tested. There were, however, differences in both the 

shape and size of the attractor for sequence 1 caused by the introduction and most notably 

the proximity of a second sequence. These effects are illustrated in figure 6.14 below. 
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Figure 6.14. Proximity effects of a second learned sequence 
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In the representation of the endpoint trajectory for condition B, it can be seen that the 

presence of a second sequence in the weight space of the network causes some noise in the 

shape of the attractor for sequence 1. The previously square shaped trajectory, with 

distinctive comers at the locations of the targets and straight lines in-between, has been 

'squashed' at the comers into less distinct circular form. The size of the attractor is much 

smaller in condition C where the two sequences overlap. These results demonstrate a clear 

proximity effect when a second similar sequence is also represented by the network. 

Discussion 

It must be assumed that in biological systems, several motor patterns are encoded 

simultaneously by the same representational system (modelled here as the learned weights 

in the control subnetwork). On the one hand this leads to useful generalisation properties, 

but at the same time can cause interference which is detrimental to performance. In many 

areas of cognitive performance including perception, memory and action, it has been shown 

that greater similarity leads to greater interference. Here, we have modelled this basic 

property using proximity as our measure of similarity. 

Jordan, (1986b) showed that when one cyclic sequence was learned withµ= 0, the 

network formed an attractor which corresponded precisely to the learned sequence. We 

have shown here that with µ = 0.5, this result holds and that the endpoint trajectory 

between target states is a straight line, which is consistent with behavioural data showing 

that the optimal straight line endpoint path between two points is used in human limb 

movements (Flash & Henis, 1991). However, when a second sequence is also represented, 

the properties of the attractor for the test sequence (sequence 1) are altered, degrading the 

representation. The interference is increased as the similarity between the two sequences is 

increased. 

6.4.5 Simulation 6.5: The effects of degrading the plan representation 

In the previous simulation we examined interference in the output of the network, when the 

input unambiguously specified the target sequence. The input, in this model, is provided by 

the plan vector, where the name reflects the intuition that it represents an internally 
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generated motor plan. In this simulation we investigate the behaviour of the network when 

the· plan is ambiguous. 

Method 

The network was again initialised first with the weights from condition B (non-overlapping 

sequences) and then the weights from condition C (overlapping sequences). This time, 

however, the plan units were initialised with values equidistant between the plans for each 

of the two learned sequences, (the plan vectors were orthogonal). Thus each of the plan 

units was initialised with a value of 0.5. 

Results 

The results are illustrated in figure 6.15 below. 

Condition B 
1.00-r--------------, 

0.75 -
a 

a 
g 

• 

0 .00-1----.-------.---""' 
0 
0 
0 

"' 0 "' N V> r-
0 ci ci 

X 

ConditionC 
1.00 -r--------------, 

0.75 - • 
0 .50 -

• 
0 .25 -

0.00 I 
0 "' 0 N 
ci ci 

a a•• 
lb aa a a 

• ,r -■ a 
a aa 
dJ a a ...,,.a la ■ 
a ■ 

• a 

I 
0 

"' ci 

X 

I 

"' .... 
ci 

• 

0 
~ 

a 

• • 

a 

• -

Endpoint location 

Sequencel 

Dummy sequence 

Endpoint location 

Sequence 1 

Dummy sequence 

Figure 6.15. Network behaviour with a plan vector which is equidistant between the two learned plans 
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In the trajectory map for condition B, at the top of the figure, the rim of the attracting set 

has expanded·· to accommodate approximately equal portions of the two sequences. In 

condition C, by contrast, the attractor is restricted to the area defined by the intersection of 

the two sequences. 

Discussion · 

The results presented above demonstrate two important properties of the network, by 

analysis of the attractor topology. Firstly, they show that there is continuity in the mapping 

between input or plan states and the output states for whole actions. in both cases the 

network generalises to produce an attracting set which covers an area, which is in some 

sense, midway between the two learned sequences. Secondly, there is a qualitative 

difference between the overlapping sequence (condition C) and the non-overlapping 

sequence (condition B). In condition C, the attractor does not include half the area of each 

of the learned sequences, but covers the intersection area instead. 

6.4.6 Implications for motor representation and action selection 

In terms of motor planning and the selection of action, both of the above results give good 

computational grounds for proposing that an extra mechanism exists to suppress competing 

representations and enhance the desired representation during response preparation. 

The proposed basal ganglia inhibitory / disinhibitory mechanism does not form an 

explicit component of the model, as discussed in chapter five, but forms an integral part of 

the operation of the network due to the use of the logistic activation function in the 

processing of each uni_t in the network. A limitation of this network model in terms of the 

conceptual model of chapter four is that the notion of contextual control cannot be treated 

separately from the mechanisms of inhibition and competition that we are assuming are 

implemented by the basal ganglia. The only meaningful disruption that can be explored in 

this model is disruption to the control signal itself. These problems are addressed in chapter 

nine. 

When the model is functioning normally as in simulation 6.4, the effect of a second 

sequence on the form of the attractor does not affect reasonably accurate retrieval of the 
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target sequence, when only one cycle round the sequence is considered, but does affect the 

overall robustness of the representation. Simulation 6.5 shows that the network exhibits 

useful generalisation properties in the structure of the plan to output mapping, which 

suggests that features of already learned actions can be readily extracted and combined in 

the context of a novel plan. However, it also suggests that if the plan is degraded in some 

way, spurious attractors may develop, leading to abnormal production of the intended 

action. 

In total these results suggest that if there is a system level dysfunction which affects 

the topology of the attractor for a given sequence, the existence of nearby attractors will 

yield unpredictable interference effects which impair the sequential behaviour of the 

network. This issue is considered in the next section. 

6.5 Examining the effects of system disruptions on network behaviour and 

attractor dynamics 

In chapter five we considered various methods of simulating the effects of dopamine 

depletion on the output behaviour of the model. In particular we examined a gain reduction 

model derived from the work of Cohen and Servan-Schreiber. Reducing the gain of the 

output function of a single unit impairs the ability of the unit to discriminate between 

different patterns. Following those simulations we concluded, for various reasons, that this 

manipulation is at too low a level to be meaningful in the current model and that a more 

global systems level parameter, which directly affects the contextual encoding, on the state / 

context units should be considered. Our reasons for this are twofold and are rooted in the 

relationship between the connectionist model used here and the conceptual model of basal 

ganglia operation discussed in chapter four. First, the intact operation of the context vector 

is crucial to the normal sequential operation of the network, and any disruption of the 

forward model only has an effect on network behaviour in so far as the context vector is 

disrupted. Second, that the internal representation of context is precisely what we have 

suggested is disrupted in fronto-striatal interaction. 
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In this chapter we have highlighted two system parameters which directly affect the 

processing of internal context in the model: the decaying activation trace - µ, and the rate 

parameter - tau. We consider each of these parameters in turn. 

The parameter µ establishes a form of short-term memory of past states of the 

network, which is what allows us to think of the state units as encoding a contextual 

representation (see also Elman, 1990). The size ofµ affects the "depth" of context that is 

encoded. Ifµ = 0 the system is sensitive only to the previous state of the network. As µ is 

increased the system becomes more sensitive to temporally remote contexts. This ability is 

important for learning extended sequences, especially those containing repeated elements 

(Jordan, 1986a). 

Tau, as we have previously stated, is a rate parameter which in a sequential network 

of this type has two different interpretations. If · the context units are not cascaded, it 

determines the speed of unit update in the network. This version has no direct impact on the 

context unit activations. Alternatively, if the context units are cascaded, as in the 

simulations above, then a reduction in tau, does affect the context representation. In this 

case, a reduction in tau below 1 reflects a reduction in system "energy" which causes 

successive states of the context vector to become closer to each other. This as we saw in 

earlier simulations can impair sequential performance in the network. 

In the following series of simulations we investigate the effects of changing both µ and tau 

under a variety of different conditions. 

6.5.1 Simulation 6.6: The effects of altering the value ofµ 

Method 

The parameter µ, which controls the depth of sequential information encoded by the context 

units has a range of meaningful values between O and 1. If it is set to O only the output at 

the previous time slice is encoded. Alternatively if it is set to 1 then the whole of the 

activation at each time slice is included. In this simulation we examined the effects both of 

altering the value of µ through the full range of values within its natural range. This 

operation was first performed for condition A only in the first instance. 
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Results 

Figure 6.16 shows trajectory maps of the endpoint locations after 27 cascade cycles and in 

the limit respectively. 
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Figure 6.16. Network behaviour with µ = 0 in condition A 

The change in network behaviour can clearly be seen in both figures. The rotation is 

predictably now not in evidence, because there is no residual activation on the state units. It 

can also be seen that, in the limit, the system collapses to a fixed point attractor at the centre 

of the region, previously occupied by the cyclic attractor. This indicates a bifurcation which 

occurs at some point as µ is reduced to zero, such that a fixed point at the centre of the 

target sequence becomes attracting. Interestingly, there is also a phase shift from the four 

element pattern of the original sequence, to a three element pattern in which the second 

element is interposed between the original third and fourth elements. 
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Figure 6.17. Endpoint locations after 6 cycles with µ = 1 

Figure 6.17 illustrates the behaviour that results when µ is increased to one. 
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Figure 6.18. Network behaviour in the limit withµ = 1. 
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In figure 6.17 successive endpoints are linked to show the first six cycles around the 

learned sequence. The qualitative behaviour of the network iS the same as in the original 

case, i.e. a cyclic sequence of states. Here, however, the sequence is a seven-cycle in task 

space, as opposed to a four cycle, and the size of the rotation has increased. 

Figure 6.18 shows that in the limit the network converges on an attracting set 

indicated by the circular pattern formed by the endpoint locations after the first few cycles. 

This attracting set is similar to the original set depicted in figure 6.11, although it has a 
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greater area and its centre is shifted on the x-axis. The greater area of this attractor than that 

produced with·µ= 0.5 is indicative of a roughly cone shaped attracting set which increases 

in diameter with an increase in µ. This progression is confirmed when we examine the 

changes in attractor shape across a range of values of µ. These changes are illustrated in 

figure 6.19. 
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Figure 6.19. Varying µ throughout its range in condition A 
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The series of trajectory maps depicted in figure 6.19 reveals a number of features of the 

change in system behaviour as µ is altered throughout its range of values~These are 

enumerated below: 

1. Bifurcation of the attractor from a fixed-point to a cycle at some critical point between µ 

= 0.4 and µ = 0. 

2. Increase in diameter of the rim of the attractor as µ increases. 

3. Discrete phase transitions in the number of cycles to perform one complete sequence for 

different values ofµ. Compareµ= 0 andµ= 0.5, for example. 

4. Reversal in direction of rotation (clockwise / anti-clockwise) as the system passes 

through critical phases. To see this compareµ= 0.1, µ = 0.4 andµ= 0.5. 

5. This last point entails that some value, or range of values exist between the values for 

which a change in direction is observed, at which stable behaviour of the attractor is 

evident. For example between µ = 0.4 and µ = 0.5 · there should exist a value at which 

the attractor is a stable 4-cycle. Further simulation showed that µ = 0.48 is such a 

value. This is illustrated in figure 6.20 below: 
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Figure 6.20. Stable limit cycle behaviour with µ = 0.48. 
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Discussion 

These results do not constitute an exhaustive analysis of the system, but they do indicate 

that the Hopf bifurcation presented above describes the behaviour of this system as the µ 

parameter is reduced to zero sufficiently well to warrant its use as a working model. 

Whether or not this is entirely accurate, there is a strong indication that when a cyclic 

sequence is learned with µ greater than zero, the attractor for the system is a more complex 

attracting set based on the trajectory of the sequence rather than a simple limit-cycle. This 

property considerably extends the potential of this type of sequential network in modelling 

action representations. 

The finding of phase transitions in the period of the cycle is also interesting in terms 

of dynamical approaches to motor control generally (Tuller & Kelso, 1990), although it is 

not clear how to interpret this finding in the current model. The rotational component of 

each cycle round the sequence which increases in size as µ increases is a direct consequence 

of the value of the parameter. Thus we do not attempt to offer any parallel interpretation in 

terms of biological systems, although it is a system characteristic which should be noted 

and accounted for when considering the properties of this type of contextual representation. 

In sum the results of this simulation suggest that when only one cyclic sequence is 

encoded by the network weights, and· µ is altered through the range of its values the 

behaviour of the attractor formed by the system appears to conform to the basic Hopf 

bifurcation model presented earlier in this chapter. The implica~ons of this behaviour for 

motor control and motor disorders have been discussed in an earlier section. Thus it is 

possible to regard µ as a system parameter which can be varied to modulate the output 

characteristics of a learned motor pattern. At some critical value ofµ between 0.3 and 0.4 

the system bifurcates to a fixed point attractor which is assumed to represent a fixed 

posture. In the next simulation we examine how the behaviour of the network changes as µ 

is altered in the more realistic situation that multiple motor patterns are co-represented in the 

state space of the system. In particular we are interested in the patterns of interference that 

occur when a second sequence is non-overlapping (condition B), and when it is 

overlapping (condition C). 
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6.5.2 Simulation 6. 7 The effects of altering µ when more than one sequence has bl-Een 

learned 

Method 

Here the previous simulation was replicated for conditions B and C. 

Results 

177 

Figure 6.21, on the following two pages, depicts trajectory maps for varying values ofµ in 

conditions Band C respectively. The figure depicts condition B in the left hand p;anels and 

condition C in the right hand panels. The appropriate value of µ heads each pair mf panels. 

The black circles in the figure indicate the location of targets for the dummy SetIJuence in 

each condition. In some cases lines have been included to clarify the trajectmry of the 

endpoint. 

In both conditions B and C depicted in figure 6.21, the change of the topagµ-aphy of 

the attractor for sequence 1 as µ is varied exhibits differences from conditiom A. The 

information gained from this series of trajectory maps regarding the interference errfects of a 

second attractor in the state space could not have been gained from looking at tine learned 

value ofµ (0.5) alone. In particular, qualitative differences between conditions B ..nnd C can 

clearly be seen. In condition B, with values ofµ less than 0.5 the system is dc:iven very 

quickly to a fixed point at approxim~tely 0.75, 0.75. In condition C, by contrast, at low 

values of µ ( <0.5), a cyclic tendency is evident even at µ = 0, and at µ = 0.3 :a sizeable 

attracting set has developed. However, at values of 0.5 and above an invel:$e pattern 

emerges, whereby the attractor condition B expands dramatically, whereas in comdition C, 

the system is driven to a fixed point near 0 .8, 0.5. 
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Figure 6.21. Varyi11g ~L in co11ditions B and C 
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Discussion 

A dynamical systems interpretation of these results suggests that there is an inforaction 

between the value ofµ relative to the learned value of 0.5 and the relationship between the 

attractors for the dummy and test sequences. Withµ below 0.5, the overlapping sequence 

has an attracting effect ·on the attractor for sequence 1, whereas the non-overlapping 

sequence has a repelling effect With µ greater than 0.5 the inverse true. In other words, the 

non overlapping sequence has an attracting effect, indicated by the fact that the attractor 

expands to integrate elements of the dummy sequence in the set as µ is. increased to 0. 9. 

The overlapping sequence, however, has a repelling effect, driving the system away from 

the elements of that sequence and towards a fixed point near the lower right hand side of the 

task space. 

These simulations indicate that the attractor dynamics in Jordan sequential networks 

are more complex than has previously been reported aDd indicates that interference 

problems may be significant in these networks if many sequences are learned. A broader 

discussion of the role of the parameter µ in a learned network is deferred to the end of the 

chapter. Here it is sufficient to note that the manipulation of this parameter in the sequential 

network holds a variety of computational implications for the use of attractors to represent 

patterns of movement in a distributed system. These simulations do not, however, find a 

clear interpretation in the modelling of movement disorders. We now tum to an 

investigation of a system level disruption which is motivated by the hypothesised effects of 

basal ganglia damage due to dopamine depletion. 

6.5.3 Simulation 6.8: The effects of reducing the cascade rate 

In the introduction to this section, we hypothesised that reducing the value of tau in the 

fully recurrent version of the network is a systems level manipulation which is sufficient to 

model the notion that dopamine performs a sort of contrast enhancement operation by 

increasing the signal to noise ratio in activating selected populations of pallidal neurons. In 

chapter five we attempted to model this function using reduced gain on the forward model 

units, following Cohen and Servan-Schreiber, ( 1992). The systems level effect of this 
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manipulation was to cause successive states of the context vector to be closer to each other, 

thus reducing 'the discrimination capability of the network. Here we suggest that reducing 

tau shoul~ have a similar effect on the processing of the network as a whole, but that it is a 

more principled manipulation, because it is designed to affect only this aspect of network 

processing, whereas there are several IX)tentially confounding factors associated with 

altering the unit gain in a complex network. 

A reduction in the value of tau in the current model should make it more difficult for 

the network to move on to the next element of the sequence because each subsequent state 

of the context vector is more similar to the previous one thus failing to drive the sys_tem 

forwards, thus leading to a slowing of performance measured in cascade cycles. However 

it is also predicted that there will be further abnormalities in the behaviour of the network 

due to the fact that the sequence representation is a complex dynamical attractor in task 

space, as shown in the previous section. These may be visualised using the same 

techniques as in previous simulations. Furthermore, it is possible to examine the 

interference effects of other task space attractors reported in the previous section on 

network behaviour when tau is reduced. 

In order to assess the effects of this disruption under different conditions in terms of 

motor disorders the behaviour of the network is interpreted with reference to the 

categorisation of parkinsonian deficits outlined in chapter five. 

Method 

The general methodology of the simulations is similar to that described in the previous 

section. The same conditions A (test sequence only), B (test sequence and a non­

overlapping 'dummy' sequence), and C (test sequence and an overlapping 'dummy' 

sequence) were evaluated at different values for tau. In each case the location of the 

endpoint of the arm was calculated at each cascade cycle. To confirm that the manipulation 

does, in fact, affect the states of the context vector as described above, each of the context 

unit activations were recorded at each cascade cycle. 
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Results 

Figure 6.22 below depicts the activations of the individual context units over cascade cycles 

for two values of tau in condition A. The top graph is a slightly reduced value of tau (0.8) 

and the bottom graph is a much reduced value of tau (0.2). 
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Figure 6.22. Comparison of context unit activations for two different values of tau 

By comparing the upper and lower graphs of figure 6 .22, it can be seen that two main 

changes are associated with a decrease in tau. Firstly, as predicted there is a reduced change 

in activation with each cascade cycle. Because this is true for every context unit, 

consecutive states of the context vector are more similar to each other, than with a higher 
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value of tau. The second difference is that the amplitude of each oscillation of each unit, 

where one oscillation corresponds to one complete cycle of the endpoint round the 

sequence, is substantially increased. It can also be seen that as a result of these two factors, 

· the period of oscillation is also increased. 

Condition A (test sequence only) 

Trajectory maps of the endpoint for decreasing values of tau in condition A, in which only 

the test sequence was learned, are presented in figure 6.23 overleaf. 'There are two basic 

changes in the behaviour of the system when tau is reduced in condition A. First, the step 

size accomplished with each cascade cycle reduces and the time to complete one cycle of the 

sequence increases. Second, the diameter of the cyclical trajectory of the endpoint is 

increased. 

There is, however, a critical point at which the change in activation between cascade 

cycles is so small that the asymptote condition on cascade processing causes the system to 

halt. This can be seen when tau is reduced to 0.1. The point at which this occurs is 

dependent on the setting of the asymptote condition and does not reflect any emergent 

behaviour in the network. The increase in size of the attracting set appears to reach a limit at 

tau= 0.3, further reduction of tau does not cause any further increase. It can also be seen 

that as tau is ~educed, the network starts ever further away from the first point of the 

sequence, this is merely due to the fact that in cascade processing the activations of all units 

start at zero, and increase as activation is cascaded through the network. Z.ero activation on 

all the articulatory units presumably encodes an endpoint location near the top left hand 

corner of task space, and since the change in activation is reduced as tau is reduced, so the 

activations after one cascade cycle encode a location nearer that point. 
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Figure 6.22. Decreasi11g values of tau in co11ditio11 A 
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Conditions B and C (second sequence also learned) 

Figure 6.24 below depicts the results oTreciucing tau in conditions B (non-overlapping) and 

C ( overlapping). Two values of tau are shown for each condition: 0.9 and 0.5. 
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Figure 6.24. Reduction of tau in conditions B and C 

The pattern of behaviour produced in both conditions B and C is qualitatively different from 

that produced in condition A. Instead of cycling outwards in task space when there is a 

second sequence, the network cycles inwards to a fixed point. This behaviour is produced 

with even the very small reduction in tau seen in the top pair of panels, (tau = 0.9). When 

tau is reduced to 0.5, the same behaviour is evident, but as in condition A, the amplitude of 

each movement is decreased, so it takes much longer to reach the fixed point. There is a 

small quantitative effect of the greater interference caused by the overlapping sequence in 
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condition C, in that the network moves towards the fixed point more quickly at both values 

of tau, than in condition B. 

Discussion 

In summary, the pattern of behaviour produced by this manipulation fails to fulfil the 

criteria we put forward for modelling sequential motor deficits in Parkinson's disease with 

this network, in chapters two and five, but is partially consistent with the hypotheses 

presented at the beginning of this chapter. To recap briefly, in order to model parkinsonian 

impairments the network should produce, at least, the following qualitative deficits: 

1. A reduction in the amplitude of each movement to model the general property of 

hypokinesia. 

2. A progressive reduction in amplitude as the sequence progresses to model a special 

deficit in sequential behaviour. 

3. Bifurcation of the attracting set to a fixed point in the presence of competing actions. 

4. 'Omissions' of target locations caused by smoothing of the sequential trajectory. 

In all conditions A, B, and C there is a reduction in movement amplitude as tau is reduced, 

but in none of the conditions does the impairment worsen as the sequence progresses. Thus 

there is no special deficit in sequential behaviour. 

In condition A, the system does not bifurcate to a fixed point attractor, instead the 

system expands to cycle over a greater area. There are two possible computational 

explanations for this behaviour. Either, using the Hopf bifurcation model, reduction in tau 

causes the attracting set to shift to a plane further away from the point of bifurcation. Or 

alternatively, reduction in tau causes a weakening of the attractor on the learned sequence 

thus allowing the system to drift farther away from the learned sequence. This makes sense 

because the strength of the attractor may be linked to the size of the activation change at 

each time step. When the system energy is reduced, so the attractor is weakened. In the 

absence of any other influences in the state space, the outward movement of the. endpoint is 

not constrained. 

However, in conditions B and C, the system does b,furcate to a fixed point with 

even a very slight reduction in tau. This supports the notion that in the presence of more 
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than one attractor the pressure on the selection mechanism is increased, and the outcome is 

a qualitative change in the behaviour of the system. In this respect, the behaviour of the 

system was consistent with the Hopf bifurcation model of motor disorders, put forward in 

section 6.3.2. 

6.5.4 Simulation 6.9: Selective reduction of tau in the forward model 

One reason why the network may have failed to produce a selective sequential deficit in the 

previous simulation is that tau was reduced in both the controller and forward model 

· subnetworks. In chapter five, we put forward several independent motivations for 

selectively disrupting the forward model subnetwork, including the fact that it is not directly 

involved in the computation of movement parameters. Several of the simulations in chapter 

five showed that selective disruption of the forward model subnetwork provides a much 

better characterisation of parkinsonian deficits. In this simulation we selectively reduce tau 

in the forward model subnetwork. This allows us not only to view the effects of reducing 

the cascade rate in the forward model alone, but also to investigate what happens when the 

relative timing between the two subsystems is disrupted. We have previously suggested 

that this may be one feature of the computational dysfunction in communication between 

cortical and subcortic~ areas (Brown, Britain, Elvevag & Mitchell, 1994). 

Method 

In order to reduce selectively tau in the forward model subnetwork, the program was 

simply rewritten with two variables coding for tau, one for the control subnetwork, the 

other for the forward model. When both variables were set to 1, the network behaved 

normally as before. However, the variable for tau in the FM could be selectively 

manipulated. Again this manipulation was performed in conditions A, B and C. 

Results 

Condition A: (test sequence only). The results of reducing forward model tau in condition 

A are displayed in figure 6.25. 
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Figure 6.25.Reducing the forward model cascade rate in condition A 

When the discrepancy is relatively small, as in the top pair of panels a similar pattern of 

results to those when tau is reduced in both subnetworks is seen. The step size is 

diminished but there is no qualitative change to the shape of the attractor. However, the 

more extreme discrepancies shown in the bottom two panels depict progressive squashing 

of the attractor into an elliptical shape as the difference in relative cascade rates between ¢.e 

two subsystems is increased. Although it is not clearly visible in the figure, there is no 

selective sequential deficit in this condition. 

Figures 6.26 and 6.27 below display the results for conditions B and C 

respectively. 
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Figure 6.26. Reducing the forward model cascade rate in condition B 
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Figure 6.27. Reducing the fotward model cascade rate in condition C 

It can be seen from both of the above series of trajectory plots, that when there is an 

additional sequence encoded by the weights, regardless of location, there is a qualitative 

difference in the behaviour of the system from condition A, where the target sequence alone 

is encoded. Specifically, in both conditions, for all reduced values of tau in the forward 

model, the cyclic attractor bifurcates to a fixed point at approximately 0.6, 0.6. In all cases, 

the system moves towards the fixed point in fewer cascade cycles as tau is reduced and the 

trajectory describes a smaller arc in task space, indicating a 'reduction' in the shape of the 
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whole action. At more severe levels of disruption (tau = 0.3 in condition B) there are 

'omissions' caused by smoothing of the trajectory and failure to complete the sequence 

before converging on the fixed point. In all cases there is decreasing amplitude in the 

movement of the endpoint as the sequence progresses, indicating a sequential deficit which 

was not evident in condition A. Finally, at all levels of tau, the system converges on the 

fixed point more rapidly in condition C, where there is greater interference, than in 

condition B. 

Discussion 

The results produced in this simulation for conditions B and C provide the best model of 

parkinsonian motor deficits, according to the set of criteria set out in chapter five, achieved 

with any of the disruptive manipulations performed so far. The deficits are in many ways 

comparable with the effects of reduced forward model gain produced in chapter 4. The 

advantage here is that the computational. basis for the deficits is clear and is consistent with 

the biological notions put forward in the conceptual framework of interference in 

parkinsonian action selection and initiation. Moreover the visualisation and analysis in 

terms of the attractor topology and dynamics developed throughout this chapter provides 

the basis for a deeper level of computational explanation of the behaviour of the network 

under disruption than would otherwise have been possible. The key computational features 

underlying the impaired behaviour of the network in modelling parkinsonian deficits are 

summarised below: 

1. Disruption of a subsystem, not explicitly concerned with the computation of movement 

parameters (the forward model). 

2. Disruption of the forward model by reducing the cascade rate (tau) causes successive 

states of the context vector to be more similar to each other. 

3. When this occurs there is interference from other nearby attractors in state space. 

4. This interference leads to progressive reductions of movement amplitude and slowness, 

eventually leading to 'freezing' of the system at a fixe~ point. 

5. The more the cascade rate is reduced, the more pronounced the deficits, and the sooner 

freezing occurs. 
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This pattern of behaviour is consistent with the failure of Parkinson's patients to sustain 

motor activity __ and efU1 be attributed to over-inhibition of action representations due to the 

breakdown of a selective disinhibition mechanism. In the final section of this chapter, we 

turn to a broader discussion of the issues addressed in this chapter, and we highlight some 

of the limitations and shortcomings of this modelling approach. 

6.6 Chapter summary and discussion 

6.6.1 Chapter summary 

In the first part of this chapter we set out three main computational aims. These were: 1. To 

introduce an independent temporal component to processing in the combined sequential 

network. 2. To analyse in greater depth the nature and dynamics of the attractors formed by 

the network following learning. 3. Investigate the response of the learned network to 

disruptions which are motivated by the conceptual model of basal ganglia damage presented 

in chapter four. 

These computational aims were linked to a set of hypotheses which relate network 

processing viewed as a nonlinear dynamical system to motor processing in biological 

systems. The main theoretical and computational contributions resulting from the work in 

this chapter are set out below. 

1. A distributed global action representation or motor schema may be learned on the basis 

of a 'high-level' motor plan and a set of internal contextual variables, which drive 

sequential responses. 

2. The action representation may be characterised as an attractor in a multi-dimensional 

neural state space. 

3. This representation maps onto a virtual location of the endpoint of a limb in task space. 

4. A fixed-point attractor in state space or virtual equilibrium point in task space may serve 

to represent a stable state of the endpoint of a limb. This may encode a held posture if it 

is the same as the current location of the endpoint, or a desired final endpoint location 

of a simple goal directed movement during motor planning. 



6: System dynamics and temporal 1·ariabilir:y 193 

5. If the neurally encoded equilibrium point moves through task space over time, a virtual 

·-trajectory is established, which provides the control parameters for the effector system, 

according to the principles of the EQ hypothesis. The loc2.tion of the equilibrium points 

establishes the path of the endpoint, where the path between two points is a straight 

line. The distance between equilibrium points reflects the required force of the 

movement. Thus if they are close together, only a small force is required to cover the 

distance in one time slice, but if they are further apart a greater force is required to cover 

the distance in the same time period. 

6. The same principles allow the representation of more complex repetitive or sequential 

movements as a more complex attracting set, the simplest case of which is a limit cycle. 

7. Nearby attractors in state space interact with one another. This is a computational 

feature of representation in a distributed system, and is desirable in potentially allowing 

adaptation through integration of existing motor patterns. However, there is also 

potential for debilitating interference between motor patterns. 

8. Normal feedforward control of sequential motor behaviour requires an intact internal 

contextual control signal. Disruption of the context signal either by changing the depth 

of information encoded or increasing the similarity between successive states, causes 

interference from nearby attractors to profoundly affect motor behaviour. 

9. Motor disorders and the disinhibitory function of the basal ganglia may be understood 

in a dynamical systems framework, using the concepts of stability and bifurcations in 

the behaviour of the system. If the Hopf bifurcation is used as a model of system 

behaviour, reduction of a parameter reflecting dopamine function causes a reduction in 

the size of the attracting set representing the desired motor pattern, and at a critical point 

causes a fixed point to become attracting, leading to freezing of the system at that point. 

However, in normal behaviour the ideal state in which the system should be maintained 

is reasonably close to the critical point, such that selective · inhibition / disinhibition 

requires only small changes in the key parameters. Maintenance of this balance may 

reflect the role of dopamine in the normal operation of the basal ganglia, although this 

function is not illustrated by the model. 
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10. Other problems may be associated with meta-stability in the system and points far from 

the bifurcati,on point. Meta-stable solutions such as simple limit-cycles in which each 

state is repeated exactly. may reflect stereotyped behaviours, in which a cycle of actions 

is continually repeated without modulation according to contextual influences. 

Stereotyped behaviour patterns has been linked to abnormalities of basal ganglia 

function, for example in Tourettes syndrome. Furthermore stereotypy can be thought of 

as the opposite of PD in terms of system dysfunction (Ian Mitchell, personal 

communication). This suggests that the approach put forward here has the potential to 

account for other abnormal states caused by basal ganglia dysfunction. 

11. The model presented in this chapter combines the notions of attractor representation of 

motor patterns in a distributed dynamical system, internal contextual control of 

sequential behaviour and bifurcations with changes in key parameters to simulate 

features of normal and disordered control of limb movements in a two-dimensional 

space. 

6.6.2 Review of the modelling approach 

The modelling approach developed in this chapter using the modified 'cascaded' Jordan 

network represents a considerable improvement on the work presented in chapter five. The 

use of the cascade mechanism permits a more comprehensive analysis of the behaviour of 

the network than was achieved in chapter five. The inclusion of a second learned sequence 

and the examination of the effects on performance of the target sequence when the system is 

disrupted provides insights into the problems of cross-talk in a parallel distributed system. 

This issue holds important implications for striatal processing as discussed above. In 

chapter four we suggested that one of the multiple sources of information provided to the 

striatum is a contextual control signal that facilitates internal control of sequential actions. In 

this model recurrent connections drive the control signal and we have examined the effects 

of disrupting the control signal. This manipulation produced deficits which are analogous to 

some aspects of parkinsonism. We have argued in this chapter that by making successive 
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states of the control signal more similar to each other, competition between motor patterns 

impairs output behaviour. 

However, in chapter four we also proposed that the basal ganglia implement a 

supplementary mechanism for resolving competition via general inhibition and selective 

disinhibition. This has not received explicit treatment in the modelling work so far. We 

have simply assumed that there is inherent competition to the distributed nature of the 

network and have concentrated primarily on the properties of the control signal. The 

question of inhibitory mechanisms and their role in processing still needs to be addressed. 

Another limitation of the current model is that movements of only a single limb have 

been considered. The explicit role of inhibitory mechanisms for maintaining a held posture 

in a subset of limbs whilst selectively disinhbiting another set may become apparent if more 

than one limb is modelled. In addition problems of bi-manual coordination and 

simultaneous movement in different effectors can only be examined if additional effectors 

are included. In the next chapter we address these and other limitations of the current 

framework. 
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Despite a number of interesting results obtained with the model in the previous chapter, 

there are various problems and limitations that remain to be addressed. In this chapter we 

outline the potential shortcomings and present extra simulations which were performed to 

illustrate our arguments. We also address here some theoretical issues related to design 

aspects of the sequential connectionist network itself. The primary issues discussed below 

are: 

1. The role of inhibitory mechanisms in a multi-effector system. 

2. The role of the parameter µ in the learned network:. 

3. Contextual representation without dependence on recurrent connections. 

7.1 Coarticulation and the need for inhibitory mechanisms in a multi­

effector system 

A limitation of the current model is that only one effector is represented, and is used to 

perform all of the tasks. One of the central arguments in favour of the basal ganglia 

performing a selective disinhibition function in facilitating programmed limb movements is 

. that-some limbs (e.g. the prime mover) wiil need to be disinhibited, whilst others will need 

to be concurrently inhibited. 

We have argued throughout that either unselective overinhibition of all body parts or 

partial co-activation of conflicting body parts rs what gives rise to the motor symptoms in 

PD. Although we have addressed this issue by modelling one multi-jointed effector, it may 

be argued that a much fuller range of deficits would be observed if the model were 

• . ' 
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expanded to include two or more effectors. For example, failure to suffic~ntly inhibit the 

'unselected' hand during a one handed signing movement may lead to the shadowing effect 

observed in the deaf parkinsonian signer, studied by Brentari and Poizner (1994). 

Generalisation to a multi-effector system is possible within the current framework. 

Jordan (1990) reported a number of simulations in which the network encoded two 

effectors, similar to the one encoded in our simulations. In this scheme, targets were only 

assigned to one of the effectors at any one time slice, and the units coding for the other 

effector were free to take on any activation values at all. Jordan showed that when an 

additional internal 'smoothness' constraint is applied to network processing, the network 

exhibits coarticulatory behaviour in the unselected effector which effectively smooths the 

transition between sequence elements, thus simulating a form of motor 'synergy' which is 

typical of skilled human movements. If such synergy formation is a natural part of the 

motor learning process, then this argues in favour of the need for additional inhibitory 

mechanisms for preventing synergetic movement of two limbs when it conflicts with task 

demands. This point is illustrated by a simple simulation below. 

7.1.1 Simulation 7.1: The need for inhibitory mechanisms in a dual-effector system 

This simulation and all further simulations carried out in this chapter were performed using 

a simplified version of the network used in the previous simulations, in which the forward 

model is collapsed and the activation values of the endpoint locations for each effector are 

computed directly by the controller subnetwork. An architectural diagram of the system is 

presented in figure 7 .1. 

The activations of output units 1 and 2 code directly for the X and Y coordinates of 

the left hand endpoint in task space and similarly output units 3 and 4 code for the right 

hand endpoint location. This simplification reduces to an assumption that the kinematic 

configuration of the effectors is unconstrained at this level of motor computation, and all 

that is required is a specification of endpoint location in task space. Although this may be 

psychologically naive, it is a reasonable assumption for the purpose of the current 

simulations. In particular it allows us to examine properties of the model that are due solely 
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to the properties of the sequential control network, without the added complexity of t!!,e 

forward model. 

I .. ~ ..... 0 0] o, ® 
State units Q ~ ~ 
r.:-Q .J O @ Output to effectors 

~l•~o' o ©j . 
Figure 7.1. Network architecture. Connection pattern has been schematised and plan units are not shown 

In this simulation we examine the effects of 'don't care' constraints on the movement of an 

unselected effector in two task conditions. In one there is no action encoded on the 

unselected effector, whilst in the other condition a·· sequence has been encoded for the right 

hand effector . 

Method 

The basic task given to the network was to learn a cyclic four element sequence in a -two 

dimensional task space, similar to those used in chapter six. The basic task was divided into 

two different conditions. In the first condition (condition 1) the network learned to perform 

the sequence with the left effector with 'don't care' constraints on the right effector. The 

don't care constraint is implemented by simply not backpropagating an error from the 

output units coding for the unselected effector, during learning. This allows those units to 

take on any values within the range 0,1. In the second condition, (condition 2), the 

sequence is learned with the left effector as in condition l, but a mirror version of the 

sequence is also learned with the right effector (in the context of an orthogonal plan vector). .·, , 

In both cases learning was accomplished with a learning rate of 0.1, momentum = 0.9 and 

µ = 0.5. 
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The network was then tested by assuming a task in which the learned sequence is to 

be performed by the left hand effector only. Thus the left effector is referred to as the 

selected effector. Testing took place by presenting the network in each condition with the 

plan vector which was associated with the sequence learned by the left hand. The 

movement of each of the effector endpoints was plotted in the familiar way. 

Results 

The results are depicted in figure 7 .2 below. 
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Figure 7.2. The effects of don't care constraints 011 the behaviour of an unselected effector when either I 
or 2 actions are encoded 

It can be seen in the top pair of panels in figure 7 .2 that when only the target action is 

encoded by the network, the unselected effector remains static throughout the movement. 

., . 
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However, when a similar action is encoded for the right hand (RH) effector also, the effect 

of the 'don't care' constraints on the unselected effector is to cause it to trace out a 

degraded form of its learned 'mirror' version of the target sequence (see the bottom right 

panel of figure 7.2). 

Discussion 

This simulation provides a simple demonstration of both the value and the limitations of the 

Jordan approach from the current perspective. The introduction of don't care constraints on 

the clusters of output units representing each effector causes a form of motor synergy to 

emerge, which is in keeping with current knowledge about the o~ganisation of motor 

behaviour1• Yet, it is also clear that if this synergetic behaviour is to be suppressed, extra 

inhibitory mechanisms, which do not form part of the current architecture, would need to 

be employed. 

Naturally, it could be argued that this 'toy' simulation with only two mirror actions 

is too simplistic, and that if many actions were encoded the multiple constraints on the 

unselected effector would abolish the 'synergetic' behaviour. The stronger counter­

argument, however, is that on scaling up, the variable multiple constraints (i.e. interacting 

attractors as shown in chapter five) on the unselected effector would be likely to result in 

unpredictable and noisy activations in the control of that effector. This would, indeed, 

abolish the apparent synergy, but would argue even more strongly in favour of a 

supplementary inhibitory system to suppress the unwanted movements. 

The need for extra inhibitory control demonstrated in this simulation is an important 

consideration from the point of view of the computational architecture. In the previous 

chapter we suggested that explicit inhibitory mechanisms are not required because gradient 

descent learning itself prevents competition between similar actions occuring (unless the 

network is disrupted). However, when don't care constraints are incorporated, as they 

must be to achieve co-articulation in the multi-effector system, the discrimination achieved 

1 This behaviour only occurs in the presence of some internal constraint which promotes coarticulatory 
smoothness. This is provided here by the parameterµ . The role ofµ in this context is discussed further in 
the followin g section. 
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by learning alone is not sufficient to prevent undesirable co-activation of the unselected 

effectors. Thus, 'in this case, extra mechanisms must be assumed to exist. 

7 .2 The Role of µ in sequential behaviour and encoding contextual 

information 

Throughout this and the previous two chapters we have conducted the simulations with 

recurrent connections of the context units onto themselves and with an intennediate value of 

the parameter µ, (µ = 0.5). There are a number of psychological and system level 

motivations for including the self-recurrent connections on the state units, including the 

notion that they allow the state representation to be thought of as a representation of 

temporal context. This notion is central to our use of the Jordan sequential network in 

modelling motor disorders. In order to explicitly examine the properties of the state 

representation when set up in this way, we include here a further discussion of the role of 

µ, supported by simulation results using the architecture presented above. 

Jordan's primary motivation for including µ · in the network operation is that it 

makes sequences with repeated elements easier to learn. This is the case because the state 

units will hold different representations for the repeated element depending on its position 

in the sequence, which is what allows us to think of them as encoding sequential context, 

and thus refer to them here as context units. 

There are, however, additional motivations underlying this property. If the auto­

recurrent connections are omitted, orµ is set to 0, then the Jordan network implements a 

simple chaining architecture, in which the network is only sensitive to the output at the 

previous time slice in determining the subsequent action. Arguments in favour of chaining 

architectures in human control of serial order and motor programming are notoriously 

difficult to maintain in the face of the weight of contradictory arguments originated by 

Lashley (1951 ). 

Indeed, the obvious similarity between the Jordan network and a chaining 

architecture is so striking that it has caused some current critics to oppose its use as a model 

of human sequential behaviour regardless of the properties of a state representation which 
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encodes extended context (Houghton, 1990; Houghton & Hartley, 1995). Consequently 

some care is required in evaluating whether or not these criticisms are valid. One of the 

main arguments used by these critics against chaining architectures is that they cannot show 

true co-articulatory behaviour in the sense that upcoming sequence elements are facilitated 

ahead of ~me, such that a discrete series of movements are performed as one fluid action. 

We have already discussed at length why this must be a fundamental property of human 

sequential motor programming and why also it must be regarded as central to the 

breakdown of sequential movements in motor disorders. Furthermore, we have, at length 

considered the contribution of the contextual representation encoded on the state or context 

units (with µ) in the current network to the behaviour of the system in that respect. 

However, we have not as yet explicitly demonstrated this property. 

Jordan has used an independent internal 'smoothness' constraint to promote co­

articulation in the network, (e.g. Jordan, 1990; Jordan, 1992). This is simply an extra error 

term which serves to minimise the difference between the activation of a unit at the current 

time slice and its activation at the previous time slice. Thus the network with excess degrees 

of freedom in the articulators finds a solution in· which the transition between targets is 

smooth in task space. However, Jordan ( 1986a) suggests that the parameter µ exhibits 

similar properties. This we showed to be the case in chapter six using the cascade 

mechanism to visualise the behaviour of the network between target locations (see figure 

6.1). Here the system, with no additional smoothness constraint, preferably exhibits a 

virtual trajectory which approximates a straight line in task space. This is consistent with 

data on human movement planning and provided additional psychological motivation for 

usingµ> 0. 

Here we report simulations that explicitly compare the properties of µ and the 

smoothness constraint used by Jordan in facilitating upcoming movements and also 

compare system behaviour with and without µ. The general form of the task on which the 

network is tested is illustrated in figure 7 .3 belo~v. The sequence of targets to be touched is -· • 

numbered 1-4 in the figure . However, the task is divided between the two effectors such 

that the left hand effector is assigned only to targets in the left hand half of the task space ( I 
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and 3) and the right hand effector is similarly assigned to the right hand targets 2 and 4 . 

There is considerable scope for anticipatory behaviour in the structure of the task. For 

example, at time step 2, the RH effector should be touching target 2, but the extent of 

anticipatory behaviour may be seen in the position of the unselected LH effector at that time 

step. If it remains near target 1, then there is little anticipation, but if it is nearer target 3, 

then the network is anticipating the required location of the LH effector at time step 3. 
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0.00 I I I 
0 V') 0 Vl 0 
~ N Vl r-: ~ 
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■ left hand (LH) effector 

Iii] right hand (RH) effector 

Figure 7.3. The dual effector sequence task. 

7.2.1 Simulation 7.2: Comparing the effects ofµ and a smoothness constraint on 

anticipatory behaviour in sequential processing 

Method 

The task described above was presented to a sequential network with an architecture and 

processing parameters identical to those described in the previous section. Two versions of 

the network were used in the simulation. In the first version the network was implemented 

as before, with a value of 0.5 for µ . In the second version an additional smoothness 

constraint was implemented on the output units of the network during calculation of the 

backpropagated error term. Thus instead of computing the error at each output unit i 

simply as: 
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error[i] = target[t] - activation[i]; (7.1) 

the following term was added: 

smoothness[i] = gamma(activation[i] - prev_activation[i]); (7.2) 

where prev_activation is the stored value of the units activation at the previous time slice, 

and gamma is a weighting parameter which is proportional to the size of the sum squared 

error. This is included to prevent the smoothness constraint ultimately competing with the 

task demands. This smoothness constraint was constructed from information provided in 

Jordan (1990). Thus the final form of the error term for each output unit is: 

error[i] = (target[t] - activation[i]) + smoothness[i]; (7.3) 

In the first version of the network, without .the smoothness constraint, no error is 

backpropagated for the unselected effector in any one time step. When the smoothness 

constraint is in.corporated, the smoothness-term only provides the error signal. 

Results 

The results of comparing the two versions of the network are illustrated below in figure 

7.4. It can be seen that whenµ alone is used (black squares), the network exhibits good 

anticipatory behaviour in the unselected effector. At time step 2 the LH effector is very 

close to its next target, (target 3) and at time step 3 the RH effector is midway between its 

previous target, (target 2), and the subsequent target (target 4). 

By comparison with the condition in which the smoothness constraint is applied 

(stippled squares), it can be seen that there is very little difference between the two systems. 
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Figure 7.4. Performance of the network with smoothness constraint (stippled squares) and without 

smoothness constraint (black squares) 

Discussion 

This simulation shows that in this task there is very little extra anticipatory behaviour to be 

gained by deliberately incorporating an additional internal constraint. By increasing the 

range of contextual information encoded on the state / context units, the µ parameter alone 

is sufficient to allow anticipatory behaviour. 
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7.2.2 Simulation 7.3: Comparing the effects ofµ = 0.5 andµ = 0 on anticipatory behaviour 

in sequential processing 

Method 

In this simulation a further condition is tested in which the network is learned with µ = O 

for comparison with the anticipatory behaviour produced with µ = 0.5 
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Figure 7.5. Comparison of network performance withµ= 0 (stippled squares) andµ= 0.5 (black squares) 
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Results 

The results are depicted in figure 7.5. Here the black squares indicate effector locations at 

each time step with µ = 0.5 and the stippled squares indicate effector locations with µ = 0. 

The figure shows that although some anticipation is evident at time step 2 in the LH effector 

with µ = 0, this behaviour is abolished at time steps 3 and 4, where the unselected effector 

remains at the previous target location. 

Discussion 

In sum the two simulations presented in this section demonstrate the importance of the 

contextual properties invested in the state vector by using µ with a value greater than zero in 

providing suitable activations for an unselected effector during sequential performance. 

This behaviour is not enhanced, in this case, by incorporating additional internal 

constraints. 

For completeness, we tested a further condition in which the smoothness 

constraints are used, but µ is set to zero, in order to test the contribution of the smoothness 

constraint alone. This test produced a somewhat surprising result in which the network 

failed to learn and the effectors converged on the·Tl.Xed points shown below in figure 7 .6, 

for all time steps. 
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Figure 7.6. 'Frozen' state of the system when the smoothness constraint is combined withµ= 0 
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The static state of the network depicted in figure 7 .6 occured, presumably as a result of the 

smoothness constraint conflicting with the task demands. Since the value of gamma was 

identical to simulation 7 .3 , it may be concluded that without the remote contextual 

encoding afforded by µ, each effector y.'as forced to settle at a stable intermediate state. 

This finding further supports the conclusions reached in chapter six· about the 

importance of internal contextual information in preventing freezing of the system due to 

multiple conflicting internal constraints, as well as in promoting fluid sequential behaviour. 

7.3 Contextual representation without recurrent connections 

One of the central arguments underlying the criticisms of the Jordan architecture as a 

chaining system lies in the recurrent connections from the output units to the state units, 

thus providing the input at the next time step. It is this assumption that makes the apparent 

similarity between the sequential network and a chaining system so great. 

However, if the state units were to encode an independent moving context vector, 

and it could be shown that similar behavioural properties still hold, the chaining criticisms 

would need to be questioned . . 

Jordan (1992) reports a version of the network in which the state units have internal 

oscillatory behaviour entirely independent of the recurrent input from the output units. In 

the following simulation we implement a similar idea in which the state units -act as simple 

oscillators and the recurrent connections from the output units are removed. The recurrent 

connections of the state units onto themselves are left intact with µ > 0. This yields a 

system in which the sequential behaviour is entirely determined by an independent 

dynamical context vector. 



7: Limitations of the model 209 

7.3.1 Simulation 7.4: Examining the dependence of the network on recurrent connections 

in pr~ducing anticipatory behaviour 

Method 

The only difference between the oscillator version of the sequential network used here and 

the normal architecture lies in the set up of the state unit interconnections. The scheme we 

have used is illustrated in the diagram of figure 7.7 below: 

1 -1 

Figure 7.7. Interconnections between one pair of oscillatory state units. 

The four state units are divided into two pairs. As shown in the diagram, each pair has 

interconnections between the units with weights of 1 and -1. At each time step the state unit 

activations are updated according to the following· scheme: 

activation[i] = (activationU] x weight[i,j]) + µ(activation[i]) (7.4) 

In each pair, one unit is initialised with an activation of 1 and the other with an activation of 

0, to start the oscillatory behaviour. The value ofµ in this simulation was 0.5. 

Results 

The results of this simulation are compared with previous results on this task with recurrent 

connections and µ = 0.5. The comparable effects on the behaviour of the network are 

illustrated in figure 7 .8. The figure shows that although the performance of the network 

with independent state units is quite acceptable on this task, the behaviour of the unselected 

effector is not as smooth as in the condition with recurrent connections. 

In an effort to improve the performance of the network we conducted a second 

simulation with the value ofµ increased to 0.9. The results of this simulation are depicted 
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in figure 7 .9. The results indicate that in this case reliable anticipatory behaviour in the 

unsefected limb is produced. 
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Figure 7.8. Comparison of network performance with the state units functioning as independent 

oscillators (stippled squares) and using recurrent connections (black squares) 
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Figure 7.9. Comparison of network perfomuince using oscillatory state units withµ= 0.5 andµ = 0.9 

In a final comparison between the two versions of the sequential architecture implemented 

here, we recorded the learning profiles of both versions for the different values ofµ u~ed in 

the simulations. These data are illustrated in .figure 7. l 0. Comparison of the two graphs 

with µ = 0.5 reveals that learning is faster with recurrent connections ( 1000 iterations as 

opposed to 2000), although the learning curve is smoother with oscillators. When µ is 

' · ' 
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increased to 0.9 in the second case, however, the learning time is reduced dramatically, 

indicating a further benefit of a higher degree of contextual encoding. 
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Figure 7.10. Leaming in the network with and withollt recurrent connections for different values ofµ 

Finally, it is notable that with µ = 0 in the case where the state units are oscillators, the 

network fails to learn and the error score asymptotes at approximately 0.4. The likely 

reason for this is that with µ = 0 each state unit pair operates as a simple symmetric anti­

phase oscillat<:>r, which repeats itself every second time step, and as a consequence valuable 

discriminating information is reduced. This suggests that if ~scillators are to be used for 

encoding contextual information, it is essential that repetition is avoided and that a more 

.. ·; : 
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complex vector will have better discrimination properties over long time periods. The points 

raised by this and the previous simulations are discussed next. 

7 .4 Chapter summary and discussion 

The work reported in this chapter was conducted primarily to supplement and clarify the 

results reported in chapters five and six, regarding the operation of Jordan sequential 

networks and their use as a basis for modelling an action control system. A number of 

simulations were conducted using two sets of output units to represent the 'virtual' 

endpoints of two effectors in a simplified sequential network architecture in which the 

forward model was omitted. This simplification was justified on the grounds that the points 

of interest related to the sequential subnetwork and were not dependent on the forward 

model. 

7.4. 1 Dual effector interference: The need for inhibitory mechanisms 

In simulation 7 .1 'don't care' constraints were applied to the unselected effector in two 

versions of a sequential positioning task. In one task the only sequence was learned by the 

selected effector during testing, but in the other the unselected effector had learned a similar 

sequence. The effects of the don't care constraint, which is central to Jordan's account of 

dual effector coarticulation in this network, was to trace its target sequence during testing. 

This result suggests that extra inhibitory mechanisms would need to be included in the 

model to prevent unwanted synergetic movement of limbs during task performance. Several 

features of the breakdown of motor behaviour in basal ganglia function are indicative of a 

failure of inhibitory / disinhibitory mechanisms (see chapter 2). 

The results of this simulation suggest that the tasks to which this model has been 

applied, both in Jordan's own papers and in the simulations of chapters four and five, do 

not adequately capture the need for inhibitory mechanisms in hl;lman serial processing. 

Furthermore the style of processing in the Jordan model is not suited to addressing this 

issue. Various other architectures, notably the CQ class of models discussed in chapter 

three take the problem of parallel response competition as a theoretical primitive built into 
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the design of the model and would be better equipped to address this problem in the context 

of basal ganglia·control. One advantage of the Jordan architecture over the computationally 

much simpler CQ models is that it does serve to demonstrate, as we showed in chapter five, 

the sort of interference problems that can arise in a fully connected massively parallel and 

distributed architecture. 

7.4.2 The state units and representation of temporal context 

In previous simulation chapters we have explored the role of the state units as a contextual 

control signal in both the original Jordan network and the cascaded version presented in 

chapter five. In doing so we have examined the response of the network to various types of 

disruption which affect the sequential control afforded by the state units. The key properties 

of the state vector in these simulations were shown to be related to the use of the parameter 

µ. It was argued, after Jordan ( 1986a) that µ could promote coarticulation in the model in a 

similar fashion to an explicit smoothness constraint applied during learning. 

In simulation 7 .2 we compared the coarticulatory effects produced by using µ alone 

and µ with an additional smoothness constraint in.-the dual effector model. It was found that 

the smoothness constraint added very little to the performance of the network. In contrast, . 

if µ is reduced to O as in simulation 7.3 the coarticulatory effects are banished. Furthermore 

when the smoothness constraint alone was used, the network failed .to learn the sequence 

due to a failure to resolve conflicting task and smoothness criteria and the network lapsed 

into a stable intermediate state between the two sets of spatial targets. These results support 

our view that the use ofµ to represent extended contextual information over the state units 

is an essential part of the psychologically interesting behaviour of the network. 

Throughout the course of this thesis we have considered that an important 

component of a theory of basal ganglia control of action selection and sequencing is the 

internal representation of temporal context as a means of linking internal control processes 

to the structure and dynamics of the envininment when the information is either not 

available from the environment or when the movement must be prepared in advance. 

Furthermore we have put forward the suggestion that portions of the 'frontal' loop through 



7: Limitations of the model 215 

the basal ganglia may be involved in constructing and maintaining a contextual 

representation. The simulations performed in this and previous chapters suggest that the 

theme of internal representation of temporal context is worth pursuing in further modelling 

studies. 

7.4.3 The use of recurrent links and chaining criticisms 

A central feature of the Jordan network are the recurrent links from· the output units to the 

state units. Recent critics have argued that the use of recurrent links to produce serial 

behaviour in the model render it susceptible to the limitations of a chaining system (Brown, 

Preece & Hulme, 1996; Houghton & Hartley, 1995). Jordan (1985) suggested an 

alternative to using recurrent links which involved independent oscillatory dynamics over 

the state units. Jordan (1992) used both oscillatory dynamics and recurrent links to improve 

the learning performance of the network. 

In simulation 7.4 we set up an alternative version of the network used in the 

previous simulations which has no recurrent links and in which the state units are driven by 

independent oscillatory dynamics. We compared the performance of the two versions of the 

network to investigate whether the coarticulatory effects in the unselected effector were still 

present without recurrent connections. The simulation demonstrated that the same effects 

were present, although to a reduced degree. In a further simulation we increased the value 

of µ to examine whether stronger contextual input could improve performance. This was 

shown to be the case (see figure 7 .9). Finally we examined learning performance in both 

versions of the network and found that, with comparable values of µ (µ = 0.5), the 

network with recurrent connections learned faster. However, learning performance could 

be improved in both versions by increasing the value of µ. 

This simulation does not address the criticisms directed at the model on the basis 

that it is unlikely to produce the sorts of errors that are found in human linguistic serial 

behaviour. It does, however demonstrate fuat the production of sequences showing 

coarticulatory effects are not dependent on the existence of recurrent connections, thus 

weakening the chaining argument against the architecture. The source of dissatisfaction 
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with Jordan networks extend beyond the use of recurrent links alone. These limitations are 

discussed in the.following section. 

7.4.4 Further limitations of the Jordan architecture 

The criticisms to which we refer are rooted in the use of the multi-layer perceptron 

architecture to implement the Jordan model and the backpropagation learning algorithm for 

forming associations. Together these two components form an extremely powerful and 

complex computational system which is in part why it has been used so extensively to 

model different aspects of cognitive function. There are various ways in which using this 

system to model sequential behaviour and motor control are unsatisfactory. 

First, many simple sequences, such as keypresses or pointing to targets, can be 

learned in a single trial. It is impossible to mimic this sort of learning using gradient descent 

methods, which typically take several hundred or thousands of iterations before a 

satisfactory error score is achieved. Furthermore if additional sequences are to be learned 

performance on the already learned sequences is disrupted as the knowledge encoded in the 

weights of the network has to be reorganised to accommodate the new sequence. This 

difference suggests that the way the model encodes and stores information about the 

sequences it learns is fundamentally different from the way simple sequences are encoded 

and stored in human performance of serial tasks. Whereas Jordan has expanded on the 

basic architecture in subsequent papers to produce yet more complex systems with the aim 

of accounting for more aspects of motor behaviour, the implication of the above criticism is 

that a simpler associative mechanism, which can form associations in a single trial, may 

yield more information because the system as a whole is easier to analyse. We develop an 

alternative approach to meet this criticism in the following chapters. 

7.4.5 Summary 

In summary, we have demonstrated the crucial importance of the contextual representation 

over the state units in controlling sequential behaviour in different versions of the Jordan 

network. Also we have shown that disruptive manipulations that weaken the contextual 
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representation produce a variety of interference effects both amongst sequence elements and 

amongst different stored sequences. In this chapter we have additionally demonstrated 

impairments in dual effector performance. The impairments which are produced in the 

behaviour of the model simulate a number of features associated with parkinsonism such as 

reductions, deletions and de-coupling of sequence elements. 

There are a number of desirable features of a model of cortico-basal ganglia 

interaction which are not present in the networks explored thus far. These are: 

1. An internal representation of temporal context which is independent of previous outputs 

of the network and which has sufficiently extended endogenous dynamics to represent 

context into the arbitrarily distant past to avoid problems with repetitions. 

2 . Inhibitory/ disinhibitory mechanisms which resolve response competition whilst 

maintaining coarticulatory behaviour. 

3. A simple associative mechanism that is capable of single-trial learning. 

These issues are addressed in the following chapters. 
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CHAPTER EIGHT 

Endogenous Contextual Control of 

Sequential Behaviour 

8.1 Introduction 

218 

In the material presented in this chapter our aim is to capture and illustrate some high-level 

computational principles involved in the generation of sequential action using a complex 

contextual signal with endogenous dynamics, and to show how these computational 

considerations support the notion of complementary roles for an interacting frontal system 

and basal ganglia complex presented in chapter 4 . 
The generic architecture which we use as a basis for the work reported in this 

chapter is the OSCAR (Oscillator based associative recall) model which has been developed 

by Brown, Preece and Hulme (1996) to simulate various aspects of serial sho1t term 

memory. This architecture belongs to the class of item-to-context models reviewed in 

chapter three and bears certain similarities to the CQ architecture which was described in 

some detail. The model provides a suitable contrast to the Jordan model we have explored 

in previous chapters. In particular, the model uses simple Hebbian association to perform 

the association between sequence elements and states of the context signal. This strips 

away the in-built complexity introduced by using hidden units and gradient descent 

learning. A second advantage of this approach is that the interaction between contextual 

control of sequencing and competitive inhibitory processes may be explicitly explored. 

Although the basic OSCAR architecture does not implement a competitive component, it is 

a relatively simple task to introduce competitive processing to the model. 

The use of OSCAR has advantages over CQ approaches which are entirely 

dependent on inhibitory processing due to the simple nature of the control signal used in 
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these models. This means that the trade-off between inhibitory and contextual modes of 

control cannot be effectively explored using a CQ architecture. Finally, the OSCAR model 

makes use of distributed representations both of "action" schemata and states of the 

dynamic signal. This has the potential to yield more interesting behaviour of the model in 

response to disruption than the use of simple local representations as in the CQ models. 

In the first part of this chapter, we use ecological considerations to motivate the 

construction of an appropriate endogenous dynamic contextual signal. It is shown that a 

more complex, multi-dimensional dynamic context signal can be constructed from a range 

of oscillators that cover a wide range of frequencies, and such a signal receives independent 

motivation from studies of timing behaviour in humans and animals. 

8.1.1 Oscillators and representation of temporal context 

In this section we consider the question of how an independent internal, contextual signal to 

control internally generated sequential behaviour could plausibly be constructed. In doing 

so we shall briefly reiterate some of the points that have emerged in the course of this 

thesis. 

In chapter four we developed an argument that the behaviour of simple organisms 

and higher order motor control differ in important respects. It is easy to see how an 

organism can achieve sequential behaviour if it is merely responding and selecting actions 

in response to events in the external world. The dynamic structure of event sequences in the 

world will drive the sequential behaviour of the organism directly - the organism needs only 

a disinhibition mechanism of the type discussed in chapter four and in Lorenz ( 1977) in 

order to respond sequentially to a succession of perceived events, without the need for any 

internal dynamic representation. 

However if the internal generation of sequential action is to be achieved~ the 

organism must have access to some form of internal dynamics that can be used to drive 

internally generated sequential action. As we nave suggested, it is likely that the form of 

such an internal dynamics will have evolved to serve the ability of the organism to become 
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attuned to temporal regularities in the environment (such as, for example, the periodic 

availability of food sources). 

There is thus a crucial connection between the ability to generate sequential 

behaviour, and the internal contextual control of action. This aspect of internal control is 

not satisfactorily explained by motor programming models as discussed in chapter 3. Yet, if 

we are to specify the nature of internal control structures within the framework of 

alternative dynamical approaches to movement control this is an important step. To make 

use of the ecological principles of the dynamical systems approach we need to explain how 

temporal regularities in the world can be represented internally. Our next aim, therefore, is 

to consider how an appropriate internal dynamic contextual representation could be 

provided. 

An alternative approach to the recurrent networks that we considered in previous 

chapters is to generate an endogenous dynamic signal using oscillators. We illustrate the 

intuitions underlying this approach with an example. Many simple organisms, such as 

wasps, are able to arrive at the same time of day at a known food location, and the 

distribution of arrival times has a peak at the actual time of availability of a food source (see 

e.g. Gallistel, 1990). One obvious way to build a system which is capable of this behaviour 

would be based on an internal oscillator, which repeated its output every 24-hours. Thus, 

the time of food availability at a particular location can be associated with a unique state of 

the internal oscillator, which subsequently acts as a representation that ·can guide the wasps 

foraging behaviour ( cf. Gallistel, 1990). 

Sequential behaviour could emerge from an oscillator controlled system of this type 

by assuming that successive actions in a sequence are associated with successive states of 

the oscillator. Suppose for example that another energy source is readily available at a 

different location at say midday, and a third food source is available elsewhere in the early 

evening. If appropriate associations are formed between representations of the food 

locations and corresponding states of the int~mal oscillator, the wasp will display basic 

sequential behaviour as it flies from one location to the next, cued by the internal oscillator. 
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8.1.2 Oscillators and the control of sequential behaviour 

The above example shows how an internal oscillator could provide a basis for the control 

of sequential action. With regard to the internal generation of motor behaviour in particular, 

oscillators can be seen as an 'evolutionary primitive', in that the most primitive forms of 

swimming and locomotion rely on simple oscillatory control (e.g. Kopell & Ermentrout, 

1990). Von Holst (1939 / 1973) suggested that co-ordinated action patterns arise from the 

coupled interaction of internal oscillators. The oscillatory mechanisms Holst postulated are 

now known to operate as spinal neural circuits and are known as central pattern generators 

(CPGs). These control the rhythmic outputs of the motor neurons. The CPGs themselves 

are under the influence of descending projections from higher motor centres. Activity at the 

level of the CPG is further modulated by sensory inputs from proprioceptors or the 

environment. 

Since the work of von Holst oscillatory mechanisms have been discovered at higher 

levels of the motor system and applied to many motor functions. Weakly coupled 

oscillators form a central part of Bernstein's (1967) concept of motor synergies which he 

puts forward as the prime way the motor system is constrained so that disparate limbs act in 

concert to achieve an external goal, thus reducing the excess degrees of freedom. Building 

on Bernsteins ideas, proponents of the action systems approach have proposed that 

complex motor patterns may be represented by systems of interacting oscillators, (see 

chapters 3 and 6). Our work in this chapter is related to these ideas but our interest is not 

directed so much at the representations of the motor patterns themselves. Rather we are 

concerned with the method used by the brain for extracting and coding the salient 

information from the environment to which the motor patterns are bound. 

8.1. 3 Computational considerations for oscillator based control of sequencing 

We have discussed at an intuitive level ways in which a single internal oscillator might 

provide the basis for the learning and production of simple sequential behaviour. We now 

discuss limitations of computational systems based on a simple oscillator and describe how 

a more complex model, which is based on an array of many oscillators, can be constructed. 
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An obvious limitation of a system based on a single oscillator such as the one we 

described earlier is that the time scale over which the oscillator is able to represent event 

sequences is limited by the period of the oscillator. In the example of the wasp described 

above, if the wasp possesses only an oscillator of frequency 24 hours, then it will not be 

able to represent sequences that span a longer period. It could not, for example, represent 

the fact that a source of food was available at the same time every second or third day. The 

constraint here is known as the "non-repetition requirement" (Brown, Preece & Hulme, 

1996). This states that the oscillator-based internal dynamic contextual signal, to which 

external event sequences may become associated, must not repeat itself within the time 

period over which regularities may need to be represented. It is clear that such limitations 

are found in nature - Wahl (1932), for example, found that bees could not adjust to a 48-

hour schedule of sugar water availability, in that the bees flew to the site just as frequently 

on test days one and three, as on test days two and four. 

A further limitation is that while a single oscillator will in one sense provide too 

"fast-changing" a context signal, and hence will repeat itself as described above, a single 

oscillator system will also be too slow-moving, in that successive states of it will be too 

similar to one another to allow events that occur nearby in time to be adequately 

discriminated. For example, the state of the oscillator at 8.30 am will be very similar to its 

state at 8.45 am, because the oscillator will have only moved through a small fraction qf its 

total cycle in the intervening time period. A further complication, if the output of the 

oscillator is assumed to be sinusoidal in nature, is that the output of the oscillator will 

change at varying rates at different points in the oscillator's cycle. This leads to a second 

requirement, which is the "temporal discrimination requirement" .. This constraint states that 

nearby points in time must be able to be represented by states of the internal oscillator-based 

system that are sufficiently distinct from one another to enable different action 

representations to be associated with different states of the dynamic internal context. We 

have already become familiar with the need f 6r adequate discrimination between states of 

the context signal in our simulations with the Jordan networks in previous chapters. We 
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have examined in detail the effects of poor temporal discrimination on the behaviour of 

models which used recurrent connections to form the context signal. 

In the Jordan network with oscillator based state units used in chapter seven a 

scheme was adopted using two identical oscillators starting at opposite positions in phase 

space. Houghton's competitive queuing model is very similar, and again uses a two­

dimensional control signal which is composed of so-called start .and end nodes, which was 

discussed in chapter three. At the start of a sequence the start node starts to decay from a 

maximum value (e.g. 1) towards zero, meanwhile the end node increases its value at a rate 

identical to the decrease in activation of the start node. 

Both of the above examples are instantiations of the simplest functionally useful 

dynamic control signal. As such, there are considerable limitations on the ability of a 

network driven by a simple signal to correctly discriminate the serial order of sequence 

elements. The Jordan network requires addition of self -recurrent connections on the state 

units to add higher dimensionality to the control signal; the CQ model requires additional 

competitive processing to effectively control serial behaviour. In both cases the action of the 

oscillators alone is not sufficient to meet both requirements. 

Intuitively, one solution to this problem would be to adopt a system which 

incorporates both fast and slow oscillators. The fast-moving (or high frequency) oscillators 

will change their state substantially over short periods of time, and so the overall state of the 

system will change sufficiently quickly for the temporal discrimination requi.rement. The 

slow-moving (or low frequency) oscillators can be assigned a sufficiently low frequency 

such that they do not repeat themselves over any arbitrary time interval. This will then 

satisfy the non-repetition requirement. 

A recent modelling approach which uses this method was produced by Church and 

Broadbent ( 1990). Although there is not space to review this model in detail here, it is 

sufficient to note that the model has been criticised on at least two counts which are relevant 

to the current discussion. First, as Brown, Preece & Hulme ( 1996) have commented, the 

model does not meet the 'continuity' requirement to which we have previously referred 

when discussing the Jordan model. This is the basic requirement that states close together 
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in time are more similar than states far apart in time. This flaw provides part of the 

motivation for ·oscAR in which it is possible to correct this problem by adopting a 

distributed approach, in which each element of a vector representing the internal state of the 

organism is determined by many different oscillators. A second criticism forwarded by 

Weardon, (1994) is that each oscillator is crucial to the performance of the whole model, 

thus the model is fragile in the face of damage or disruptions to individual oscillators. 

8.2 A description of OSCAR 

A central assumption of OSCAR is that an array of oscillators, running at different 

frequencies and phases, combine to make up the dynamic contextual signal to which items 

in a sequence become attached. It is assumed that oscillators are neurally implemented by 

means of time varying activity either at the level of synaptic circuits within individual 

neurons or neural circuits consisting of ensembles of neurons. 

8.2.1 Composition of the context vector 

Each element of the context vector is made up of the output of several different oscillators, 

with different periodicities. 

Sbwest 
oscillator 

Fastest 
oscillator 

Context 
Vector 
Elerrents 

Figure 8.1. Connections between an array of oscillators a11d elements of a context vector 
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A simplifying assumption of the model is that the output of each oscillator can be 

represented in terms of a sinusoidally time-varying output. In the version of the model that 

we describe here there are 15 different oscillators which combine to make up a 16-element 

context signal. An array of such oscillators, connected up to elements of a context vector, is 

illustrated on the left-hand side of Figure 8.1. One of the criticisms of the Church and 

Broadbent ( 1990) model is that all the oscillators are assigned equal weight in constructing 

the control signal. This is undesirable because the high frequency oscillators tend to repeat 

themselves. If they are assigned equal weight to the slow oscillators then repeating patterns 

have too much influence in the construction of the signal as a whole. This can lead to bias 

in the behaviour of the model. 

element(l) = cos(th(l)) * cos(th(2)) * cos(th(3)) * cos(th(4)); 

element(2) = cos(th(l)) * cos(th(2)) * cos(th(3)) * sin(th(4)); 

element(3) = cos(th(l)) * cos(th(2)) * sin(th(3)) * cos(th(5)); 

element(l4) = sin(th(l)) * sin(th(9)) * cos(th(l3)) * sin(th(l4)); 

element(l5) = sin(th(l)) * sin(th(9)) * sin(th(l3)) * cos(th(l5)); 

element( 16) = sin(th(l)) * sin(th(9)) * sin(th(l3)) * sin(th(15)); 

Figure 8.2. The construction of some of the context signal elements. from combinations of different 

oscillators 

The approach used in OSCAR avoids this problem by assuming that slow moving 

oscillators can contribute to many context vector elements, whilst the faster oscillators 

contribute to fewer elements. To illustrate this point, Figure 8.2 depicts the construction of 
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the first 3 and last 3 elements of a l~lement control vector. The various "thetas" are 

assumed to reflect the outputs of different contributing oscillators; these rotate through 

different angles in each time slice. They are initialised to different random angles in each 

replication of a simulation. 

It carr be seen that th( 1) contributes to every element of the context signal, whereas 

th(15) contributes only to elements 15 and 16. th(2) would contribute to half of the 16 

elements, and so on. Thus the oscillator whose output is represented by th(15) therefore 

contributes much less to the overall value of the signal than the oscillator whose output is 

represented by th(l). 

An important feature of the construction of the signal is that the distribution of sine 

and cosine components of the signal is chosen so that the resulting control signal is always 

normalised (i.e the dot product of the context vector with itself is always one).2 This means 

that the context signal remains cons~t in overall "magnitude" but has both slow-moving 

and fast-moving underlying components. This is exactly what is required to meet the 

constraints identified above. The fast-moving underlying components serve to ensure 

adequate separation between states of the signal ~at occur nearby in time. If these were the 

only_ components, then states of the overall control signal would repeat themselves over 

short time intervals, and the non-repetition requirement not be met. However the use of a 

sufficient number of low-frequency oscillators, leading to tile presence o~ slow-moving • 

underlying components, means that states of the context signal never repeat themselves 

provided that the slowest moving oscillators have sufficiently long periods, and contribute 

sufficiently to the overall context vector. 

8.2.2 Similarity relations in the contextual control signal 

The similarity relations of such a control signal are illustrated in Figure 8.3. Figure 8.3(a) 

shows the 3-dimensional surface representing the cosine of each of the 32 states of the 

context signal that is made up of the outputs of different oscillators with the same frequency 

but different phases, and Figure 8.4(b) shows an end-on view of the same surface. (Note 

2This scheme is used so lhal the cosine of the angle between vectors can be used as a single measure of 
similarity because all vectors are constrained to he of the same length. 
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that the dot-product and cosine between pairs of vectors are equivalent measures when 

dealing with normalised vectors). Figure 8.4 shows that vectors have a dot product of 1.0 

with themselves, a dot product nearly as high with context vectors that occur near to them 

in time, but are unrelated to context vectors more than about 28 states, or time-steps, away. 

This satisfies the "similarity requirement" outlined above, although this particular signal 

would repeat itself when plotted over a wider range3• It can also be seen that the function 

plotted on the graph is continuous thus satisfying the "continuity requirement". 

Figure 8.3(a) Figure 8.3(b) 

Figure 8.3. Similarity relations between 32 successive states of a simple oscillator-based context vector 

A crucial parameter of the context signal is the "sharpness" at the top of the surface, 

because this represents the distinctiveness of neighbouring context signals. The sharper the 

peak of the surface, the more distinctive are context signals near to each other in time, and 

hence the more distinct will be the context-to-action associati0ns for successive items. The 

sharpness of this part of the surface can be incr.eased by increasing the importance of high­

frequency oscillators to low-frequency oscillators in determining the context signal vector. 

J Brown, Preece and Hulme, ( 1996) have demonstrated sets of contexts that do not repeat themselves. 
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We illustrate this in Figure 8 5 .. which shows the equivalent similarity relations for a 

context signal generated in this way. It will be remembered that the 16-D control signal is 

made up of the outputs of 15 different oscillators, with oscillator 1 contributing to most 

elements of the context vector, and oscillator 15 contributing to fewest. In order to capture a 

reasonable range of periodicities, we now assume that if the peaod of oscillator 1 is Tau 

then the period of oscillator n is sqrt(n)it:'fau, and that thus the periodicity of oscillator 12 is 

sqrt(12) * Tau = 3.46*Tau, etc. Here Tau represents the angle through which the 

sinusoidal output of each oscillator progresses within each time cycle. Thus, for example, 

oscillator 1 might progress through 2 degrees in each time cycle, in which case oscillator 12 

would progress though 6.9 degrees in each time cycle. 

Figure 8.4(a) Figure 8.4(b) 

Figure 8.4. Similarity relations between 32 successive states of a complex oscillator-based context vector 

A context signal generated in the way we have described above has a number of 

independent motivations. First of all, the use of oscillators as a fundamental mechanism for 

-· 
driving the sequential behaviour can be motivated by a consideration of the behaviour of 

relatively simple organisms. There is a vast range of evidence that many different animal 

behaviours are governed by endogenous oscillators and that the oscillator that becomes 
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entrained to dynamic aspects of the environment (e.g. circadian rhythms) is particularly 

important. Secondly, there is considerable evidence for the use of oscillators in the control 

of a variety of motor patterns in a number of species. In addition some action systems 

models of motor control are based on systems of coupled oscillators for the formation of 

motor synergies (e.g. Saltzman and Kelso, 1987). 

Thirdly, the fact that each oscillator used in construction of the dynamic control 

signal has a frequency twice as high as that of its next slowest neighbour can be seen as 

independently motivated, in the sense that a similar scheme was developed independently to 

a_ccount for the completely different task of interval estimation (Church & Broadbent, 

1990). However, it is interesting to note that some studies have found that time estimation 

and reproduction is abnormal in PD (Pastor, Artieda, Jahanshahi & Obeso, 1992). 

Although this link is not explored in the current study, it lends indirect support to the central 

notion that a dynamic signal composed of oscillators may contribute to the role of basal 

ganglia in motor control and suggests that the framework may be extended to account for a 

suggested role in timing the onset of movement. This will be the focus of a future study. 

We now turn to a more detailed discussion of how this dynamic internal 

representation can be used to l~am tp reproduce sequential behaviour. 

8.2.3 Sequence learning and production using OSCAR 

The basic principle underlying the architecture is that initial sequence learning involves the 

formation of associations between successive sequence elements and successive states of 

the time varying context signal. It can be assumed that the dynamic signal effectively 

represents the context of learning for each sequence element. In other words, each sequence 

element becomes associated to the state of the context signal that exists when that sequence 

element is encountered. 

For retrieval to take place it is assumed that the time varying context signal can be 

reproduced. Each successive state of the context signal can be used as a probe to recall 

successive elements of the learned sequence. These can be thought of as potentially 

representing either actions in a movement sequence; letters in a word to be spelled or typed, 

\ 
.. •; I 
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or phonemes in speech production. The basic methodology involves associating successive 

items in a sequence with successive states of the control signal. This is illustrated in Figure 

8.5 overleaf. In the present model we use simple Hebbian association.4 Although it is 

equally possible to use some other method for single-trial learning such as convolution, 

Hebbian association is the simplest method available. This reduces complications such as 

those encountered with the Jordan architecture, whereby the behaviour generated by the 

model could be attributed, at least in part, to properties of the learning procedure. 

cl c2 c3 c4 c5 c6 c7 c8 c9 c 10 c 11 

el e2 e3 e4 e5 e6 

Figure 8.5. Associations formed between successive items in a six-element sequence and every second 

state of the context signal 

The contextual separation between each action:-eontext association may be altered by 

varying the number of time steps (i.e. the number of steps through the temporally-changing 

context signal). Thus while Figure 8.5 illustrates the formation of associations between 

action vectors and every second context state, this interval can be varied at will. The size of 

the interval between contextual states that are used in the association can be thought of as a 

distinctiveness parameter. Following Brown, Preece and Hulme ( 1996) we henceforth 

denote this parameter as D. The value of D determines the distinctiveness or 'quality' of the 

context signal . 

8.3 Contextual Control of Sequential behaviour 

In the remainder of this chapter we present a series of simulations which demonstrate the 

basic properties of OSCAR in the control of sequential behaviour. In the first simulation we 

aim to show how an appropriately constructed context vector can effectively control a 

4 The weight ch;inge matrix is calculated as the outer produc t of the vector e leme nts to be associated. 
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sequence of action schemata using only simple Hebbian learning to perform the 

associations. In the second simulation we examine the effects of reducing the quality of the 

context signal on the ability of the system to discriminate between sequence elements. 

Finally we examine the effects of introducing a small amount of noise into the processing 

of the system. 

8.3.1 Simulation 8.1: Sequential behaviour in the model 

Introduction 

The aim of this first simulation is simply to illustrate the ability of the dynamic, time­

varying contextual control signal to allow the activations of different candidate actions to 

vary over time. Here, therefore, we adopt a simple approach, in which the model is 

required to learn one sequence of six uncorrelated actions, and in which it is assumed that 

the system is noiseless such that the context of learning can be perfectly reinstated after 

learning. Although these assumptions undoubtedly represent simplifications, a 

straightforward example provides the best method of understanding the basic behaviour of 

the model. 

Method 
The version of OSCAR described above, in Section 8.2, was used, with a 'medium speed' 

context with D set to 4. Each state of the dynamic context signal becomes associated, via 

simple Hebbian association, to successive actions in a six-element sequence. Each "action" 

is represented as a normalised vector of 16 elements. For simplicity, the action vector has 

the same number of elements as the context vector. 

Thus the simulation proceeds through the following phases. First, six successive 

states of the contextual control signal are generated, each being a 16-element vector. 

Because of the D value of 4 successive states of the context signal with have an 

intermediate level of similarity to each other. The six "action vectors" will on average be 

uncorrelated with one another. Importantly a context signal such as that illustrated in figure 

8.5 exhibits the desired continuity property that states of the context signal that are nearby 

. in time are more similar to each other to each other than states further apart in time. This 
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has the consequence that successive context vectors represent states of a complex dynamic 

sigrfal which evolves continuously through time. 

When the context vectors and action vectors have been generated, they are 

associated with one another using simple Hebbian association. The result of this is a matrix 

in which are stored associations between Action -I and Context State 1, through Action n 

and Context State n, to Action 6 and Context State 6. During learned performance of the 

sequence, it is assumed that successive states of the context can be reproduced accurately, 

given the first one. Thus to retrieve the first action vector in the sequence, Context State 1 is 

used as a probe; to retrieve the second action vector, Context State 2 is used as a probe, and 

so on. 

Simulations were run using this procedure, with a different, randomly generated set 

of action vectors and also a different, newly-generated set of context vectors for each 

simulation. Because Context State 1 is similar to Context State 2, the action vector that is 

retrieved when Context State 1 is used as a probe will (if the model is functioning as 

expected) be highly similar to Action 1 (the first target) but also somewhat similar to Action 

2, this property leads to the desired··-propelfy of parallelism in learned sequence 

performance. 

We examined these relations by computing the similarity (dot product) between the 

action vector that is retrieved at each step of the sequence retrieval process, and comparing 

it with the target (i.e. correct) action vector and also with the other 5 action vectors in the 

six-action sequence. 

Results 

The results are illustrated in Figure 8.6, overleaf. Each of the six panels in the figure 

represents a successive time step during sequence production, with one panel for each 

action-retrieval. 
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Figure 8.6. Retrieval of a sequence of actions using a medium quality comext sjgnal 
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Thus, for example, the top panel (labelled "Target l ") indicates that the first retrieved action 

vector was most similar to the target, i.e. Action 1, having a dot product of 1. It was next 

most similar to the neighbouring Action 2 (about 0.55). It was less similar to Actions 3 and 

4 (about 0.25 and 0.15 respectively) and almost uncorrelated with the most distant Actions 

5 and 6. In psychological terms, this may be considered as a state of the dynamic contextual 

control signal leading to the partial activation of several competing actions - with Action 1 

being the most highly activated, Action 2 the next most highly activated, and so on. 

The second panel shows the similarity relations of the second retrieved target 

vector. Here we see that the retrieved vector is most similar to Action 2 (the "correct'' 

output), and next most similar to neighbouring Actions 1 and 3. Thus again in this case 

several potential actions have become activated, with Action 2 being the most highly 

activated. 

An examination of the remaining panels indicates that for all six states of the context 

signal, the "correct" action is most highly activated with a dot product of l, although there 

is a general tendency for actions that are associated with similar states of the dynamic 

contextual control signal to become partially activa.ted. also. 

Discussion 

This simulation illustrates a fundamental property of the model: that if a sequence of action 

representations are associated to successive states of a time-varying, oscillator-based 

contextual signal, it is possible to reproduce the sequence by "replaying" the dynamic 

context of learning. As each successive state of the context signal is replayed during 

retrieval, several action representations will be partially activated, with actions that are 

nearby .in the temporal sequence being more highly activated. In general, of course, this is 

a desirable property: similar actions are likely to be appropriate for similar contexts, and 

appropriate generalisation is much more likely to be achieved in a system with this kind of 

property. 

This type of architecture also complies· with two of the fundamental requirements 

for modelling sequential motor preparation originally put forward by Lashley, ( 1951) and 

since supported by a number of studies (see Houghton & Hartley, 1995 for review): 
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1. parallel pre-activation of sequence elements. 

2. potential competition between similar actions. 

In the next simulation we examine the effects of varying the distinctiveness or 'quality' of 

the dynamic contextual signal. 

8.3.2 Simulation 8.2: Varying the quality of the context signal 

Introduction 

The purpose of simulation 8.2 was to examine the effects of varying the quality of the 

contextual control signal. More specifically, we wished to illustrate the property that a 

contextual control signal that changes more quickly over time, and successive states of 

which are therefore more distinct from one another, will lead to reduced activation of 

competing actions. In other words, a faster moving context signal should lead to the target 

action having a high activation relative to its competitors, whilst a slower-moving signal 

will be less distinct and may lead to a high activation of the competitors relative to the target 

action. In relation to the conceptual model of chapter four, this manipulation is analogous to 

varying the value of tau in the cascaded Jordan network studied in the previous chapter. 

As illustrated above, it is a simple matter to increase the frequency of all the 

oscillators whose output combines to make up the dynamic contextual control signal. This 

results in a reduced level of similarity between successive states of the control signal, and _ 

therefore each can serve as a more discriminatory cue fo~ a particular element of the 

sequence. 

Method 

We examined the success of the model in reproducing just the third element of the sequence 

that was examined in simulation 1. Perfonnance was examined as a function of the size of 

the jump between contextual states that are associated with each successive sequence 

element. Thus, if D = 1, then each successive contextual state is used in the association. If 

D = 2, every other contextual state is used, .and so on. In order to examine the effect of 

varying distinctiven~ on the performance of the model in reproducing the third element of 

the sequence examined in simulation l above, we simply repeated simulation l for different 
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values of D. All other details were as reported in simulation l (in which the value of D was 

4). 
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Figure 8.7. The effects of increasing the distinctiveness of the contextual signal 
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Results 

Toe results are illustrated in figure 8.7. Each of the panels in figure 8.7 represents the 

activation of six possible actions, when the third state of the control signal is used as a 

probe with which to retrieve the third element of the sequence. Thus it can be seen that the 

third panel of figure 8.7 is identical to the third panel of figure 8.6 because in both cases the 

model is attempting to reproduce the third element of the sequence with D = 4. 

Toe effects of varying the rate of change of the control signal are clear. For 

example,·in the top panel of figure 8.7, where D =1 and therefore successive states of the 

context signal are highly similar to one another there is a high degree of activation of 

elements close in the sequence to the target More specifically the target element (action 3) is 

most highly activated (again with a dot product of 1), but elements nearby in the sequence 

are also very highly activated. In fact all sequence elements have activations above 0.75. In 

psychological terms, the separation between the target action and competing actions is 

relatively small and the potential for erroneous responses or lengthened reaction times 

(RT's) due to contextual interference is very high. 

Compare this with the lowest panel in figure 8.7 where D = 8. This results in a 

much greater separation between the target and competing actions, and indeed the two 

nearest competitors actions 2 and 4 each have an activation value less than 0.25. 

Discussion 

This simulation serves to illustrate the point that by associating sequence elements with a 

highly distinct control signal, the level of similarity between nearby actions and the state of 

the context vector associated with the target action is reduced. By contrast, a less distinct 

signal increases the similarity relations between actions and the state of the context vector. 

This property of the model has the following psychological and computational 

interpretations: 

The amount of inherent parallelism in the model during sequence production is 

variable on a continuum and is determined by the overall speed of the control signal. When 

the signal is slow the amount of parallelism is increased which will lead to greater fluency 

and speed during sequence production, but also a greater probability of errors and / or 



8: Endogenous contextual control of sequential behaviour 238 

conflict between ~uccessive actions. As the speed of the control signal is increased output 

becomes more strictly sequential but temporal discrimination is improved. 

A comparison may be made at this point with the Jordan networks which were 

studied in previous chapters. In that system, a similar continuum from high to low 

parallelism is achieved by the particular combinations of task and internal constraints 

applied to the network. This scheme is, however, somewhat complicated and artificial since 

a decision has to be made in advance to what extent individual output units 'care' or 'don't 

care' about their targets at a particular time step. Moreover, these constraints are, unrelated 

to the control signal provided by the state units. In the current scheme this property is 

simply achieved by varying a single parameter - the speed or distinctiveness of the control 

signal. 

One unrealistic feature of the model made evident by this simulation is that there is 

no cost attached to always using a very slow control signal. There is high parallelism 

indicating a tendency towards speed and fluency of output, yet none of the risk of the 

associated disadvantages to which we have referred. This is caused by the assumption that 

there is no noise during processing and that the control signal can be reinstated perfectly. In 

the next simulation we examine the effects of introducing some noise into processing. 

8.3.3 Simulation 8.3: The effects of noise during learning 

Introduction 

In the previous two simulations a simplifying assumption was made that learning occurs in 

a noiseless environment. This assumption is rather unrealistic since biological systems are 

noisy. Also, from a modelling point of view, it has been well established that the presence 

of some random noise during processing can have a significant impact on the results 

produced by the model. 

Furthermore, in the simulations above, there are two unrealistic features which are 
-

consistently present in all the results and which may be due to the 'no-noise' assumption. 

First of all, there was always 100% similarity between the retrieved action and the target 

action. Second, there was a perfect monotonically decreasing relationship between distance 
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from the target element and activation. In this simulation the effects of introducing noise 

during the association process are examined. 

Method 

To examine this issue we ran a modified version of the previous simulation in which D 

values of 2, 6 and 10 were selected. In each of these conditions the task was to retrieve the 

target action (action 3) as before. This time, however, we introduced a varying level of 

normally distributed random n~ise in each condition. The amount of noise was calculated as 

a proportion of the size of the weight change during learning. Thus a noise level of 1 

represented a large amount of noise, whereas a noise level of 0.2 represented a small 

amount of noise. 

Results 

The results for D: 2, 6 and 10 are depicted in figures 8.8, 8.9 and 8.10 respectively. 

.,'; I 
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In each condition tested the effects of introducing noise, even at low levels was to disrupt 

the monotonic distance-activation relationship observed in the previous simulations. 

Moreover, as the level of noise is increased there is a progressive reduction in the similarity 

between the target and the retrieved action. In all conditions, when the noise has a power of 

one the activation has reduced to between 0.4 and 0.6. 

It is important to note, however, that in all cases the presence of noise has not 

affected the fundamental retrieval properties of the network, i.e. the pattern retrieved in the 

third position is consistently more similar to the target than any of the other patterns 

retrieved. 

Discussion 

The introduction of noise successfully corrected the unrealistic features of network 

performance reported in the introduction to this simulation and is consequently incorporated 

in all subsequent simulations reported in the following chapter. Although the basic retrieval 

properties of the network are not affected by noise in the processing, it does mean that there 

is a high potential cost to using a slower speed control signal indiscriminately. In general a 

fast-moving control signal will produce most accurate ret:ieval of sequence elements, 

although it is assumed that optimisation of performance of the system would require some 

situation-dependent modulation of the speed of the control signal. 

For the purposes of characterising contextual control in fronto-striatal circuits in -the 

current model we assume that medium to fast speeds of the control signal (i.e. D values of 

4 to 10) represent the normal range of "efficient" internal contextual control. Slower speeds 

(D less than 4) represent a degraded control signal that would result from damage to the 

system. 

8.4. Chapter Summary and Discussion 

8.4.1 Summary 

This first series of simulations with the OSCAR model has shown that a dynamic 

contextual cue can be used to drive the sequential flow of action. Furthermore, it is possible 

to construct an appropriate time varying context signal from simple oscillators of the type 

which we argued above may be responsible for driving the simplest forms of sequential 
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behaviour in primitive organisms. This lends initial support to the hypothesis that a 

multidimensional oscillatory signal alone could lead to sequential action. 

In terms of the hypotheses outlined in chapter four we suggest that the model 

provides a dynamic notion of context which can be used to extend existing hypotheses that 

frontal areas of cortex are in some way involved in the contextual control of internally 

generated action. More specifically, we suggest that time-varying context signals which 

have different rates of change can be seen as computationally analogous to varying 

strengths of contextual control of action provided by fronto-striatal circuitry. In other 

words, it is possible to characterise "strong" frontal contextual control of action as a high 

dimensionality fast moving dynamic contextual control. Such control leads to highly 

specific and selective activations of candidate actions for output. The idea that frontal 

control of action is sometimes weaker can at a computational level be captured as the idea 

that alternative action candidates are more activated by a slower moving, less distinct, 

context. In the next chapter we explore the idea that "action . selection" will be harder or 

easier as a function of the level of "frontal" contextual control that is provided. 

8.4.2 Introducing inhibitory processing to the model 

Real biological systems are noisy, and a central task facing the organism at any given point 

in time is to select one and only one action for output from the variety of competing actions 

that are likely to be activated to a greater or lesser extent simultaneously. It is plausible that 

some criteria! degree of separation between the levels of activation of different actions must 

be achieved before just one unique action can be selected for output. Many of the 

behavioural disorders that we have considered can, we have suggested in a number of 

places, be viewed as an inability to achieve this selection for action efficiently. 

Here we assume, in common with e.g. Houghton, ( 1990) that some competitive 

process is necessary amongst competing action representations if one and only one action is 

to achieve a level of activation that is sufficiently high relative to its competitors to enable it 

to be output. In other words, the competitive action selection process must enable the 

choice of one action from the variety of competing, partially activated, action 
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representations. We tentatively attribute this function to the basal ganglia (pallido-thalamic 

system). It is assumed that action representations are generally held under tonic inhibition, 

and that the function of activation provided by the dynamic contextual control signal is to 

allow disinhibition of a contextually appropriate action. These issues are pursued in the next 

chapter. 

-. . 
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CHAPTER NINE 

The Role of Competition and Context in 

Basal Ganglia Control of Action Sequences 

In this chapter we return to the central themes of this thesis which are embodied in the 

conceptual model presented in chapter four. Our first aim is to provide a computational 

account of the internal control sequential actions. The account is based on two interacting 

subsystems: a dynamical contextual signal and an action selection system which performs 

competitive processing amongst candidate action schemata. The second aim is to show by 

simulation how the interaction between these two subsystems can account for the pattern of 

impairments seen in motor disorders of basal ganglia dysfunction when damage is incurred. 

We examine the effects of two different forms o.f damage in the network: degrading the 

control signal and altering the parameters of excitation and inhibition in the action selection 

subsystem. The control signal is provided by the multidimensional array of oscillators 

introduced in the previous chapter. In the next section we describe the simple competitive 

network that forms the basis of action selection in the model. 

9.1 Inhibitory processes: The selection of action 

This series of simulations describes our implementation of a simple competitive action 

selection mechanism, and will be used to illustrate the suggestion that there is a trade-off 

between the quality of contextual control that is available and the need for competitive 

processing. In other words we examined the hypothesis that there will be a reduced need 

-
for competitive inhibitory processing when there is efficient 'frontal' dynamic contextual 

control. 

v 9.1. J Simulation 9. 1: An 'action selection' mechanism 
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Introduction 

The purpose of simulation 9.1 is to illustrate how a simple competitive network can enable 

efficient action selection on the basis of an activation gradient across a range of candidate 

actions for output There are many different ways of implementing a simple winner-take-all 

network of the type required for this task and their properties are well understood. For 

present purposes the precise choice of implementation is not . crucial; many different 

architectures could be used to illustrate the trade off between quality of contextual control of 

action and the amount of competitive processing necessary. In this first simulation we 

simply show that a simple winner-take-all network can lead to the eventual activation of one 

and only one action representation. 

Method 

As in simulation 8.2 in the previous chapter we focused on the ability of the network to 

output the third element of the action sequence described in simulation 8.1. The task of the 

competitive network was to take as input the pattern of action activations produced by a 

version of the model that used a context signal with medium distinctiveness (D = 4, as in 

simulation 8.1). As its output, the competitive-n.etwork was required to produce a set of 

activations in which one and only one action representation was maximally activated, and 

all other action representations were completely inhibited. 

We adopted a simple mechanism in which the value of each action activation was 

constrained between a maximum value of + 1 and a minimum value of -1. The network 

incorporates both an inhibitory mechanism and an excitatory mechanism. In each simulated 

time cycle each action representation inhibits every other action representation by an arp.ount 

proportional to the positive activation of the inhibiting unit. Furthermore each action 

representation acts to increase its absolute level of activation; i.e. each unit has an intrinsic 

tendency to drive itself away from an activation level of zero, and towards an activation 

level of either + 1 or - 1. Each representation's activation is updated by a small amount in 

each of many simulated time cycles until every representation has an activation either greater 

than +0.9 or less than -0.9. In other words the competitive process terminates when every 

representation has approached either complete excitation or complete inhibition. 
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Here it is only necessary to remember that each representation tends to inhibit every 

other representation and to drive itself away from zero. There are only two parameters in 

the model: one that detennines the strength with which each action representation inhibits 

every other ( parameter I), and a parameter that governs the strength with which every unit 

tries to drive its own level of activation away from zero ( this is the excitation parameter E). 

For this first simulation intermediate values of I and E were chosen with each being set to 

0.4. 

Results 

The results of running this simple competitive process are illustrated in figure 9.1. The first 

panel of figure 9.1 shows the activations provided as input to the competitive network. This 

is the pattern of activations that is produced by the dynamic contextual control signal for 

action 3 with a medium rate context signal (D = 4) and a medium level noise (noise= 0.6). 

The second panel of figure 9 .1 illustrates the changed levels of activation after 1 time cycle 

of competitive processing in the network. It can be seen that while the activation level of the 

target activation - action 3 remains roughly the same, the competing actions now have 

reduced levels of activity, with actions 5 and 6 now having negative levels of activation. 

The third and fourth panels show the levels of activation after 3 and 5 time cycles 

respectively and the bottom panel shows the level of activities when the process terminates 

after 7. cycles. At this stage action 3 has won the competition with an activation level of 

close to 1.0 and the representations of all the competing actions are completely inhibited, 

with levels of activity close to -1. 



9: Competition and context in control of action sequences 249 

0 .5 
0 
0 

0 0 
>-u 

-0.5 

-1 

0.5 

0 
0 0 

>-u 
-0.5 

- 1 

0.5 
M 

0 
0 0 

>-u 
-0.5 

-1 --'------------=='------' 

0.5 -.,.. 
0 

0 0 
>-u 

-0.5 -

-1 

0.5 -
r--
0 

0 0 
>-u 

-0.5 -

- I 

Figure 9.1. Selectio11 of "actio11 3" usi11g competi•ive processi11g 



9: Competition and context in conlrol of action sequences 250 

Discussion 

The results of simulation 9.1 simply illustrate that a basic competitive network, relying 

primarily o.n lateral inhibitory connections can act as an efficient winner-take-all system, 

effectively performing contrast enhancement in such a way that the outcome is that just one 

action representation is fully activated and all competing action representations are 

completely inhibited. This result was achieved with a choice of intermediate values for the 

excitation and inhibition parameters. However it is important to note that in a network of 

this type successful winner-take-all behaviour will not necessarily emerge with any choice 

of values of the parameters that govern the strengths of the excitatory and inhibitory 

processing. 

9.1.2 Simulation 9.2 : The effects of altering the relative strength of excitatory and 

inhibitory parameters on effective action selection 

Introduction 

The purpose of simulation 9.2 was to examine the effects of varying the choice of values 

for inhibition (I) and excitation (E) on the outcome of the competitive action selection 

process. First we report two simulations to illustrate the results of choosing extreme values 

for I and E and then we report a more systematic exploration of the parameter space, with a 

view to determining the sensitivity of final outcome to initial parameter values. 

Method 

All simulations were identical to simulation 9 .1, except that the values of I and-E were 

systematically varied. First of all we carried out an "over-excitation" simulation in which 

the value of the excitation parameter E was set to a value that was high (at 0.5) relative to 

the value of the inhibition parameter I (which was set at 0 .1). Next, we carried out an 

"over-inhibition" simulation in which these values were reversed (I was set to 0.5 and E 

was set to 0.1). 
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Results 

Figure 9.2 shows initial, intermediate and final levels of activation, reached after 9 cycles, 

for the condition in which the level of excitation was high relative to the level of inhibition. 

It can be seen that, in contrast to the results of simulation 9.1, a stable state was reached 

after 9 cycles in which "coactivation" is evident The final levels of activation for actions 2 

through 5 were all at the maximum level of 1.0, while the activation levels of actions 1 and 

6 were completely inhibited. 

Figure 9.3, in contrast, shows the corresponding levels of activation in the 

condition in which the level of excitation was low relative to inhibition. In this case, the 

high level of inhibition eventually led to a situation in which every action representation was 

completely inhibited. 

Discussion 

These additional results illustrate that the choice of excitation and inhibition parameters is 

not arbitrary: only some intermediate combinations of parameter values will lead to a 

successful outcome in which one and only one action representation becomes completely 

activated. 

This simulation serves to illustrate the need for modulatory processes to maintain a 

balance between the excitatory and inhibitory parameters which control the 'focus' of 

selection mechanisms in a competitive network. If the focus is too broad, several competing 

action representations are facilitated which will lead to overload of the final common 

pathway to the muscles. A number of deficits may potentially occur in this situation, such 

as increased response or initiation times, co-activation amongst competing muscle groups 

leading to increased rigidity and dysmetric movements, or it may cause the inclusion of 

inappropriate movements in the action which is performed. Alternatively, if the focus is too 

narrow all actions are inhibited and no movement will occur. Both of these conditions 

reflect the symptoms of motor disorders of basal ganglia dysfunction. Moreover, the notion 

that dopamine participates in the modulation process is consistent, at a computational · level, 

with the theoretical ideas presented throughout this thesis and in particular the 'on-centre/ 
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off-surround' model of dopaminergic participation in the action selection process put 

forward by Mink and Thach (1993) (see chapter 2). 

The model also provides a computational basis for differentiating between basal 

ganglia type deficits in motor sequencing and normal serial order errors or 'action slips\ In 

this model serial order errors would be indicated if the wrong action is selected. This, as 

can be seen above, is not a feature of failure of the modulatory process, and it is not a 

characteristic of basal ganglia disorders. In the next section we pursue this theme more 

systematically. 

9.2. General inhibition and selective disinhibition 

Figure 9.4 overleaf illustrates the results of a more systematic exploration of the parameter 

space. Each cell in the figure represents the outcome produced by the competitive network 

with a particular choice of parameters. The top line of each cell represents the final level of 

activation of each action representation with a 1 representing a final activation level of + 1.0 

and 0 representing a final activation level of -1 .0. Asterisks on this line indicate that the 

network failed to reach a stable state within the criterion of 50 time cycles. The second line 

of each cell represents the number of cycles required to achieve this stable state with a 

maximum of 50. Thus for example the top right hand cell gives the results of running the 

network with E = 1.0 and I= 0.0. The 111100 indicates that at the end of the competitive 

process the first four action representations will be maximally activated, while the 6 on the 

second line of the cell indicates that this state was reached after 6 cycles of competitive 

processing. Thus any cell in which the top line contains the pattern 001000 represents a 

correct response in which the third and only the third action in the sequence is activated at 

the end of processing. 
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It can be seen that correct outcomes are more likely to be obtained with intermediate values 

of both I and E ( i.e. in the centre of the parameter space represented by the figure). The 

light shaded area of the parameter space ( essentially the top right hand corner), encloses all 

points where coactivation of action representations has occured owing to the use of a value 

for the excitation parameter that is too large relative to the value of the inhibition parameter. 

The dark shaded area (essentially the lower left hand triangle), indicates the area of 

the parameter space which led to an outcome in which all action representations were 

completely inhibited owing to the use of a value for the inhibition parameter that was too 

large relative to the excitation parameter value. Note that these results represent just one 

simulation with each combination of parameter values and so the precise shape of the 

enclosed areas must be regarded as approximate. 

Inspection of the number of cycles required to reach a stable state indicates that 

values are generally high in the top left hand corner of the parameter space where both 

excitation and inhibition parameters were small. In the lower right hand corner of the 

parameter space, which corresponds to high values of both parameter values, stable states 

are typically achieved after much smaller numbers of processing cycles. In the absence of 

other considerations, therefore, it would be in an organism's interest always to adopt high 

values for both excitation and inhibition parameters. In the limiting case this would simply 

amount to a strategy of choosing the action with the highest activation initially for 

immediate output However, because there is noise in the process such a system would be 

extremely unreliable. This is illustrated by the cells enclosed in the light shaded area (lower 

right comer of parameter space), corresponding to high values of both E and I. In this 

region we see that incorrect outcomes are achieved in which actions other than the target 

action may become fully active at the end of processing. 

This clearly illustrates the fact that, in a noisy system, there is a cost to attempting to 

achieve the action selection too quickly. Th.is is because in the early stages of the 

competitive process, when all action representations have similar levels of activation to one 

another, random noise added to the excitation and inhibition that spreads from one 

.. •• I 
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representation to another can cause action representations to momentarily reverse their 

relative order of activation. This can lead to spurious additional winners in the winner-take­

all competition. 

It will also be noticed that whenever some set of activations are activated, the correct 

action is always included, this leads to a situation where there is co-activation of additional 

action representations with the correct one, not activation of an incorrect action alone. 

Discussion 

The results of these simulations illustrate several important points. First of all, it is clear that 

the right choice of inhibition and excitation parameters must be made if the correct outcome 

is to be produced by the competitive process. If excitation is too high relative to inhibition 

then coactivation will result in which the system effectively selects two or more competing 

actions for simultaneous output. If on the other hand inhibition is too high relative to 

excitation, the opposite outcome ensues in which all action representations become 

inhibited, and the system is effectively paralysed in that no action is selected for output. A 

further important point is that the competitive selection for action network exhibits a trade­

off between accuracy-of-action selection and sp~d of reaching a stable state. If too-high 

values are chosen for both excitation and inhibition the system converges very rapidly but 

on an incorrect answer. 

We discuss the psychological interpretation of these results in more detail at th~ end 

of this chapter. Here we simply note that any noisy biological system in which competitive 

inhibitory action selection plays a part must incorporate some mechanism for modulating 

the excitation and inhibition parameters to maintain the system in the appropriate region of 

parameter space. 

The simulations we have just described have explored that parameter space of the 

competitive network when it is provided with input from a dynamic contextual control 

vector of intermediate distinctiveness (the parameter D was set at 4, indicating that 

temporally adjacent states of the control signaf\vere neither very similar nor very dissimilar 

to one another). In the next set of simulations we explore the possibility that the correct 

choice of parameters will be less crucial when higher quality contextual control is provided. 
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9.3 Interactions between context and competition 

9.3.1 Simulation 9.3: Examining the parameter space of ·effective action selection as a 

function of contextual quality 

Introduction 

The purpose of this simulation is to examine how the usable region of the parameter 

space of the action selection network will vary as a function of the quality of contextual 

control that is available to selectively activate different action representations. It might be 

expected that the choice of excitation and inhibition parameters will be less crucial if a high 

distinctiveness (fast moving) context signal is used to activate action representations. We 

were also interested in the possibility that the action specification provided by the dynamic 

contextual control could degrade to a point where there is no choice of the parameter values 

for the competitive network that will lead to the reliable selection of an appropriate action. 

In general terms, then, simulation 9.3 explores the reciprocal relationship between 

contextual action specifications and competitive action selection, with a view to 

demonstrating that there is less need for accurate parameter selection in action selection if a 

good quality contextual control is available. 

Method 

In this simulation we again examined the ability of the competitive network to correctly 

select action number 3 in the sequence initially investigated in simulation 8.1. However in 

this case separate simulations examined the parameter space as a function of the quality of 

contextual specification. We therefore took the six different activation gradients for action 3 

as target that were produced using versions of the context signal that used different values 

ofD. 

The competitive network worked in the same way as described in simulation 9 .1, 

however in this case we ran 100 simulations using each combination of excitation and 

inhibition parameter values between 0.0 and 1.0 with a step size of 0.1. The dependent 

measure in this case was the percentage of these 100 simulations in which a "correct" action 

selection was achieved (i.e. in which the representation for action 3 was fully active when 

competitive processing tenninated and every other action representation was completely 
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inhibited. If a stable state was not achieved within 50 processing cycles, this was classified 

as a °railure. 

Results 

The results with an intermediate value of D (D = 4) can be seen in figure 9.5. Each panel of 

figure 9.5 shows the percentage of correct responses achieved with a different combination 

of excitatory (x-axis) and inhibitory (y-axis) parameters. The shaded area in the middle of 

the parameter space indicates that part of the space in which a correct outcome was achieved 

by the action selection network at least 90% of the time. 

0 .0 0.1 0.2 0.3 0.4 0.5 0 .6 0.7 0.8 0.9 1.0 

0.0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0 0 0 0 0 0 0 0 0 0 0 

0 .2 0 0 0 0 0 0 0 

0.3 0 0 20 0 0 0 

0.4 0 0 25 25 5 

0.5 0 0 50 45 40 15 

0.6 0 0 5 80 35 

0.7 0 0 5 45 80 80 75 

0.8 0 0 0 25 75 75 80 

0.9 0 0 0 5 50 75 75 

1.0 0 0 0 0 35 30 65 85 85 

Figure 9.5. Parameter space of effective action selection with D = 4 

These results confirm the conclusions of the previous section in that most reliable 

performance is achieved with a roughly equal balance between excitation and inhibition, in 

the middle range of their values. 
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Figure 9.6 illustrates the results of this simulation when the contextual distinctiveness is is 

increased. For clarity, these results are as contour maps in which the shaded region again 

represents 90% correct selection or above. For values of D below 4, i.e. with a poor quality 

context signal there are no combinations of excitatory or inhibitory parameters which 

produce performance of greater than 60% correct and consequently these cases are not 

represented below. The first panel of figure 9.6 above is the contour map equivalent of 

figure 9.5. Each subsequent panel shows an increase in the area of the parameter space 

which will reliably produce accurate selection performance. 
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Figure 9.6. Contour maps of the region of efficient action selection as the distinctiveness of the context 
signal increases 



9: Competition and context in conrrol of action sequences 261 

Discussion 

Theresults of this simulation provide a clear illustration of the hypothesis introduced in the 

introduction. This was that the choice of parameter settings in a competitive action selection 

network becomes increasingly critical as the ability of the high level contextual control 

signal to activate a target action selectively reduces. Indeed if contextual control is 

inadequate it becomes impossible to reliably select a correct action. Thus there is a clear 

trade off between the quality of contextual control and the need for sophisticated and precise 

action selection mechanisms to operate subsequently. 

9.4 Response time as a function of contextual quality 

In this section we consider the effects of the interaction between the quality of contextual 

representations and response competition during preparation of a motor action on the output 

behaviour of the system. 

Information processing studies which provide empirical data on this point use 

reaction time (RT) as a standard measure of the time to prepare and execute a response. 

Simple reaction times (SRT's) in which there is <;mly a single response for which all 

information is available in advance, i.e. it is fully precued externally, fall in a very limited 

range of around 150 - 200 ms. Choice reaction time studies measure the extra processing 

time required when there are a number of possible responses, and the choice is determined 

by properties of the stimulus. In this condition RT's typically lengthen as a linear function 

of the number of choices, according to the Hick-Hyman Law (Hick, 1952). This 

relationship is altered, however, if there is partial precueing of the correct response in 

advance of initiation. In other words, if contextual information is available which predicts 

the correct response, the level of competition is reduced because the correct response is 

selectively facilitated and RT is shortened as a consequence. For example, if the 
environmental stimuli always follow a predetermined sequence, the subject is provided with 

contextual information which facilitates each successive response. Studies have found that 

the quality of contextual information, determines the extent of precueing and thus crucially 

affects the extent to which RT's are shortened below uncued levels. 
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Now let us translate this information into the framework of the current model. We 

have hypothesised that frontal cortex provides internal contextual information which, 

through learning, substitutes for external cues when they are unavailable or inappropriate. 

Moreover we have suggested that a highly distinct contextual control signal is a key 

processing feature in the smooth feedforward control of rapid sequential actions. We have 

already shown that _a highly distinct contextual signal facilitates accurate action selection by 

placing reduced demands on the competitive selection process. In figure 9.7 below we also 

show how a good quality contextual signal leads to reduced response times in the output of 

the system. 

To produce figure 9.7, we simply collected selected data from the previous 

simulation, in which the parameters of the competitive network are in the optimal range. 

The parameter values used were - E = 0.5, I= 0.5. Average values were then computed 

over 20 trials for the number of correct selections and the number of processing cycles 

taken to reach a stable state. The number of processing cycles is assumed to represent a 

simple measure of response time. These data were recorded across the range of values for 

the discrimination parameter (D) examined in the .previous simulation. 

Figure 9. 7 shows a general reduction in response time measured in processing 

cycles, (left hand scale), as the quality of the contextual signal improves. This is paralleled 

by_ a concomitant increase in consistency with which the correct action is selected, (right . 

hand scale). 
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On both measures the greatest difference in performance occurs between D values of 2 and 

4. It will be recalled from simulation 9.3 that when the distinctiveness is less than four there 

is no region of the parameter space in which satisfactory (90% correct) performance is 

achieved. This is confirmed here, with a mean value of approx. 45% correct when D = 2. 

The substantial increase in response competition leads to the prolonged response times 

produced by the network when Dis less than four. 

Here we have assumed that contextual information provided directly by the 

environment is absent. If the system is unable to maintain a balance between excitation and 

inhibition, then an even higher quality of contextual input would be required to produce 

normal performance. If this is not possible, then greater reliance would be placed on 

external sources of contextual information to· compensate for the deficient feedforward 

system and prevent performance decrements, such as those produced in the model. 



9: Competition and context in control of action sequences 264 

9.5 Discussion 

The · simulations presented in this chapter serve to illustrate a number features of basal 

ganglia involvement in motor control and motor disorders in the context of the conceptual 

framework of this thesis. 

9.5.1 The computational role of cortical and sub-cortical structures 

The role of frontal and premotor cortico-striatal circuits through the basal ganglia in the 

internal. generation of movement can usefully be subdivided into two interdependent 

computational processes: 

1. An internal representation of context which substitutes for environmental stimuli in 

controlling the internal generation of action and which plays a special role in sequential 

behaviour. We suggest that this function is subserved by frontal cortex and is relayed to 

the basal ganglia via excitatory projections to striatum and subthalamic nucleus. 

2. A system for selectively facilitating appropriate actions or sequence elements and 

inhibiting competing alternatives which are contextually inappropriate. We suggest that 

this mechanism is subserved by basal gaµglia internal processing modulated by 

dopaminergic inputs from the substantia nigra pars compacta (SNc). 

The computational interdependence between the two systems has an anatomical substrate in 

the recurreJ?-t loops from basal ganglia output stations (GPi) through thalamic nuclei to 

cortical areas, (Alexander and Crutcher, 1990). 

9.5.2 A 'frontal' oscillatory context sigrzal 

The "frontal" contextual signal may be constructed from a multidimensional array of simple 

oscillator elements, and under controlled conditions is sufficient by itself to control 

sequential behaviour, ( simulation 8.1 ). The contextual signal constructed in this way has 

the necessary properties of parallel activation of several sequence elements, which are 

required for modelling coarticulation, smoothness and serial reaction time data in human 

movement sequencing, (Houghton, 1990; Rumelhart and Norman, 1982). The downside 

of this property is that if the quality of the contextual signal is degraded, (simulation 8.2) 
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and/or noise is present in the system, (simulation 8.3), increased competition between 

responses is likely to lead to error prone recall and performance. Also, it should be noted 

that the internal contextual signal cannot be assumed to exist a priori, and must be learned 

by exposure to cues and regularities in the environment, thus a poor quality (indistinct) 

contextual signal will exist in early stages of learning. This provides an additional argument 

for the need to supplement the contextual signal with the additional disinhibitory 

mechanisms provided by the basal ganglia (simulations 9.1 and 9.2). 

9.5.3 Basal ganglia disinhibition 

In chapter 2 we reviewed neurobiological evidence that the basal ganglia play a 

disinhibitory role in eye movements (e.g. Hikosaka, 1991) and considered previous 

suggestions that this system plays a similar role in the generation of limb movements 

(Graybiel & Kimura, 1995). The difference between the two cases is that in eye movements 

a unitary disinhibitory signal will suffice, whereas in the case of limb movements, selective 

disinhibition is required. We have reviewed a variety of evidence which suggests that limbs 

tend to act together, either due to mechanics or representational variables (Kornblum, 1965; 

Bernstein, 1967), and that inhibitory mechanisms are required to prevent cocontractions in 

disparate effectors when it conflicts with task requirements. We have implemented a 

disinhibitory subsystem here as a simple competitive network, in which the competition 

process is modulated by a combination of excitatory and inhibitory parameters. This 

implementation is intended to model the "dual-pathway" action on the basal ganglia outputs, 

in which one pathway, (indirect) has a net excitatory effect and the other 'direct' pathway 

has a net inhibitory effect. 

9.5.4 The computational role of dopamine 

A range of neurobiological evidence, (see chapter 2) combines to suggest that 

dopaminergic inputs to the striatum have a m6dulatory effect on the two pathways, which 

acts to maintain a balance between them at rest. such that GPi neurons are held under tonic 

inhibition. Just prior to movement initiation, however, the balance is briefly altered, thus 
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releasing selected populations of GPi neurons from inhibition. We suggest, as do Mink and 

Thach, ( 1993), ··that this process facilitates the activation of. the desired motor program or 

action representation at a cortical level, whilst concurrently inhibiting competing motor 

programs. 

In the conceptual framework of chapter four, we assume that the desired motor 

program is specified to the disinhibition subsystem by either environmental variables, via 

sensory systems or the internal contextual signal provided by cortex. We further assume, 

on the basis of recent neurobiological evidence (Brown, 1992; Graybiel & Kimura, 1995), 

that there is a topographic mapping from striatum to pallidum, which represents either body 

parts or motor synergies, that allows the right selection of pallidal neurons to be targeted. In 

feedforward sequential control we assume that the primary source of input is provided by 

the internal contextual signal representing the whole sequence. 

In the model, we let the retrieved activation gradient across the action vector 

representing the sequence provide input to the competitive network. Under normal 

conditions the competitive network acts to increase the activation of the target action, whilst 

suppressing the activations of competitors, thus _enhancing the contrast between the two, 

(simulation 9.1). 

9.5.5 Modelling motor disorders 

According to the data presented by Delong ( 1990) amongst others, in Parkinson's disease 

or MPTP-induced dyskinesia, the loss of dopamine causes an imbalance in the two 

pathways. Specifically, the 'direct' pathway becomes over-active. This causes excessive 

and, importantly, unselective activity in the globus pallidus (GPi), (Alexander, Filion and 

Tremblay, 1986). A direct neurophysiological effect of this ,;hange at the level of cortical 

targets is difficult to determine due to the multiple and diffuse efferent projections from 

thalarnic nuclei, which are the targets of GPi neurons, to cortex. However, Delong 

suggests that there is a net 'over-inhibition' of all motor programs including the desired 

action. This situation was modelled in simulation 9.2 by increasing the level of inhibition, 
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relative to the level of excitation. The manipulation caused all action representations to 

become inhibited. 

Although, Delong's argument, appears at first glance to be the most logical 

suggestion in accounting for akinesia in PD, it singularly fails to account for the rigidity 

and muscular co-activation associated with the condition. An alternative suggestion, 

therefore, is that the selection process fails to select out a single action only. This causes 

several competing cortical motor programs to become activated, thus putting conflicting . 

demands on the motor output system. This situation was also modelled in simulation 9 .2 by 

increasing the excitatory parameter, relative to inhibition. These properties of the model are 

consistent with the revised model of basal ganglia control of action selection put forward by 

Mink and Thach, (1993). This model was intended to account for the apparently 

contradictory finding that both an increase and a reduction of activity in the primate GPi 

gives rise to park.insonian motor deficits. As a result of the modelling work performed here, 

we suggest that increased activity in the GPi corresponds to increased inhibition in the 

competitive process leading to over-inhibition of action schemata (it will be recalled that 

pallido-thalamic connections are inhibitory medil:lted· by GABA). Decreased GPi activity 

corresponds to increased excitation in the competitive network leading to co-activation of 

several schemata. 

9.5.6 Basal ganglia involvement in motor learning 

A number of studies have implicated the basal ganglia in motor learning. Notably, Seitz et 

al. ( 1990) using PET imaging techniques found evidence of basal ganglia activity during 

early stages of learning a finger tapping sequence. A number of other studies have 

implicated the basal ganglia in sequence learning (see Curran, 1995 for a review). This 

finding can be accounted for in the framework of the current model if it is assumed that the 

competitive action selection process plays an active role in the association of target actions 

with states of the context vector. This suggestion is speculative as it has not actually been 

modelled here. It is, however, consistent with the known loop circuitry of neuroanatomical 

links between frontal cortex and the basal ganglia, i.e. the basal ganglia outputs send return 
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projections back to frontal areas via the thalamus. It is also merely an extension of current 

ideas that the basal ganglia are involved in reinforcement learning of external cues which 

. predict motor responses, to suggest that they are involved in learning internal cues for 

sequential control of skilled actions. 

9.5. 7 The nature of fronto-striatal interaction 

The results of the simulations in this chapter have implications for models of fronto-striatal 

action, as well as for the operation of each system separately. We have suggested that 

frontal cortical areas provide a dynamic contextual cue that acts as input to the action­

selection mechanism represented by the basal ganglia As is illustrated by the results of 

simulation 9.3, there is a clear trade-off between these processes. The better the dynamic 

contextual specification of action representations, the less need for accurate parameter­

setting in the action-selection mechanism. Thus either system may compensate for 

limitations in the other system, up to a point. In neuro-psychological terms, for example, 

impaired basal ganglia function may be compensated for by enhanced frontal contextual 

control. Furthermore, deficiencies in either fronatl control or basal ganglia action-selection 

may be overcome by the provision of external stimuli · that afford the target action. 

Furthermore, deficits in either system may lead to slowness in action selection as shown in 

figure 9.7. 

9.5.8 Relationship with other models of sequential motor control 

The OSCAR model1 adapted here for use in the current framework was originally designed 

to model serial recall in human memory (Brown, Preece & Hulme, 1996). Its use here has 

shown that it has wider appeal in modelling sequential behaviour generally. In this context, 

OSCAR shares some features with existing models of sequencing, although there are also 

important differences. Existing models fall into two broad categories, defined by the 

mechanism used to produce sequential behaviour. 

In the first category are models such as those developed by Jordan ( 1986a, 1990), 

which were used in chapters five and six. These models employ a context vector of 
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arbitrary dimensionality to do the sequencing, which is usually driven by recurrent 

connections from within the network itself. In the second category are models which 

primarily use inhibitory mechanisms to produce sequential behaviour. Models in this 

category include the Rumelhart and Norman (1982) model of typing control and 

Houghton's competitive queuing (CQ) approach. 

In contrast, the approach developed here using OSCAR employs both a high 

dimensional contextual signal and inhibitory mechanisms to model the role of frontal - basal 

ganglia circuitry in the control of sequential movement. A potential criticism of this 

approach lies in whether the added complexity of postulating two systems can be justified 

when it has previously been shown that either of the two systems alone can produce 

sequences. This criticism can be answered on a number of grounds. 

In the course of this chapter we have shown how one system can compensate for 

another under different conditions. On this point, we argue that the use of inhibitory 

processes alone is computationally slow. For example in the CQ model, the competitive 

process has to be run for each individual element in a sequence. Since this takes several 

processing cycles each time it is run, this appro~ch · has difficulty accounting_for the fast 

production of 'overleamed' short sequences. 

Using OSCAR, however, we would argue that an overlearned sequence would be 

represented by a high quality context signal, and thus the reliance on inhibitory mechanisms 

may be minimised or even eliminated entirely. This clearly reflects a property of 

'·'automatised" skilled movements, in which there is commonly highly parallel activation of 

limbs, which may even be involved in different tasks, without conflict or a tendency for 

serial order errors. This feature of the model also makes sense of the counterintuitive recent 

finding that the globus pallidus can be bilaterally ablated in patients with severe Parkinson's 

disease to dramatically liberate their movement. We have proposed in the model that the 

basal ganglia subserves the inhibitory subsystem. Thus it seems that having no inhibitory 

subsystem at all is substantially better than having one which is operating in an extreme 

region of the parameter space, (see simulation 9.3). On the other hand, as we have argued 

above there are many situations including during learning or in the presence of contextual 
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interference in which the influence of inhibitory processing is either desirable or even 

essential. Indee4 in chapter four we presented a number of ecological arguments which 

suggest that an inhibitory mechanism must be regarded as a primitive building block of 

action control in biological systems. 

In conclusion, we argue that the combined use of both inhibitory and contextual 

subsystems is justified on computational and biological grounds and that it provides a 

useful contribution towards future theoretical and computational accounts of action control 

and motor sequencing. 
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CHAPTER 10 

General Discussion 

In this chapter we discuss the work reported in this thesis in relation to the aims set out at 

the beginning and the issues that have arisen during the course of its development We start 

with a summary of the work and its motivations in modelling aspects of basal ganglia 

function and motor disorders. Following that we tum to a more general discussion of the 

contribution of this work to theories of basal ganglia function in motor control. Finally the 

limitations of the current approach are discussed and suggestions are made for the future 

role of computational models in the development of theories of biological movement 

control. 

10.1 Summary 

The primary aim of the thesis was to develop a computational approach which could 

account for the finding that sequential movements are more disrupted in Parkinson's 

disease than simple movements. Furthermore we sought to develop an account of the 

underlying nature of the disruption to cortical and basal ganglia circuits in the control of 

sequential movements that is constrained by existing biological data. 

10.1.1 The conceptual model 

In chapter four we set out a conceptual model in which it is argued that the cooperative 

action of basal ganglia and frontal cortex subserve the internal control of sequential action 

using two principle mechanisms: A subsystem for the selective disinhibition of distributed 

cortical representations of sequence elements (motor schemata), and a subsystem for 

encoding contextual cueing information that is available in the environment. The dynamic -·, , 

contextual signal is assumed to be implemented by frontal cortex and it transmits 

information to the striatum via downward projections and to frontal motor areas via cortico-
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cortical connections. The information encoded in the contextual signal helps to determine 

which action components are activated and when. This information-ts assumed to be most 

heavily relied upon when the information is not available from the environment as in self­

initiated actions or sequential actions when only the first element is cued externally. The 

selective disinhibition mechanism is implemented by intrinsic i:>rocessing in the basal 

ganglia and exerts an influence on cortical motor processing via the pallido-thalamo-cortical 

circuit which terminates in MI and SMA. 

Biological evidence for the role of the basal ganglia in responding to environmental 

events which are relevant to behavioural actions comes primarily from the work of Shultz 

and colleagues which was reviewed in chapter 2. The notion of an internal context signal 

which extracts information from the environment is introduced to account for the 

Parkinson's disease data that voluntary or 'memory' guided movements are more 

profoundly affected than stimulus elicited movements and that sequential movements 

(which inherently have a high programming load) are more affected than simple 

movements. These features of the disorder cannot be accounted for if the system is adapted 

for responding only to external events. Although biological evidence which directly 

supports the notion of a 'frontal' contextual signal is not available there have been a number 

of similar suggestions regarding the role of frontal cortex in behaviour (Goldman-Rakic, 

1995; Shallice, 1988). 

One of the properties of a temporal context signal for the control of sequential action 

is that states of the signal that are nearby in time should be similar to each other, thus in a 

system with inherent parallelism future sequence elements should be partially pre-activated 

in order to account for co-articulation effects in human sequential behaviour. This property 

gives rise to the need for the selective disinhibition mechanism which effects a form of 

response competition to prevent conflict between similar action representations at output. In 

the conceptual model we suggest that there is a ' trade-off between the two systems such 

that when a good quality context signal is available the need for an efficient action selection 

mechanism is reduced because there is less potential conflict between action 
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representations. However, if the context signal is degraded or of poor quality, there 1s a 

heavier dependency on the action selection mechanism. 

In the conceptual model we suggested in common with previous hypotheses that 

dopamine performs a contrast enhancement function and that reduction of dopamine in PD 

acts to either over-inhibit all action representations or to_ allow undesirable 'co-activation' of 

more than one action representation. These computational level dysfunctions may account 

for a variety of the deficits exhibited in that disorder. 

10.1.2 Developing a computational approach 

The aim of the modelling work in the thesis was to implement a system capable of 

controlling sequential behaviour which is based on the computational principles put forward 

in the conceptual model. The response of the system to damage could then be assessed. 

There are two distinct approaches to modelling sequential behaviour using a contextual 

control signal of the type proposed above: recurrent . networks in which the state 

representation acts as a context signal, and networks using endogenous oscillators to form a 

dynamic context vector. In the course of the work presented in the thesis we explored the 

properties of both types of network architecture and interpreted their behaviour in relation to 

the hypotheses embedded in the conceptual model. The main findings and limitations 

revealed in the simulation studies conducted with both types of network are summarised in 

the sections below. 

10.1.3 Damaging the forward model in a Jordan sequential network 

The architecture we used to implement the recurrent network approach was the Jordan 

( 1990) architecture which utilises a forward model to learn to control a simulated articulated 

limb. After learning a sequence the forward model outputs an estimate of the task space 

location of the endpoint of the arm. This is fed back to the state (context) units via recurrent 

connections. 

One of the main features of the Jordan model which first attracted our interest, in 

addition to the capacity to produce sequential behaviour, was the forward model. The 
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notion of a subsystem which provides a predictive internal estimate of movement outcomes 

appeared to be dosely allied to our hypotheses of the role of frontal cortex in the internal 

control of action. By virtue of the recurrent connections from forward model output to the 

state representation of the controller subnetwork, the output of the forward model is central 

to the control of sequential actions, whilst not being directly involved in the computation of 

limb movements. 

The aim of the first set of simulations conducted in chapter five was to investigate 

the effects of damaging the forward model by reducing the contrast enhancement properties 

of its hidden units. This is simply achieved by reducing the gain on the activation function. 

The effects of damaging the processing of the network in this way were compared to other 

forms of damage which were not motivated by hypotheses of dopamine depletion. The 

criteria for modelling parkinsonian deficits were that the model should exhibit reductions in 

the form of undershoots to targets rather than increased variability about target locations and 

secondly that the deficits should get worse as the sequence progresses. Although the model 

did comply to both of these criteria only when the gain was reduced in the forward model 

(thus providing intial-support for the hypothesis)., there were a number of problems with 

both the architecture and the modelling framework which render these simulations rather 

unsatisfactory. 

First any attempt to model aspects of dynamic behaviour with this model are 

hampered by the lack of a temporal competence. The time course of processing in the model 

consists of only the discrete time steps that are identified with the desired location of the 

endpoint for each target in the sequence. Not only is the behaviour of the limb at 

intermediate time steps impossible to access, but the transition of the system from one 

sequence element to the next is imposed on the network by the structure of the training data 

rather than being a property of the intrinsic dynamics in the processing of the system. Thus, 

whatever damage is inflicted on the system there will never be any temporal variability in 

sequential performance. 

Another problem with the simulations reported in this chapter was that when only 

one sequence was learned examination of the kinematic configuration of the limb revealed 



JO: General discussion 275 

that the network opted for a solution in which the joint angles remained static. This problem 

was partially solved by using a rest constraint on the motion of the shoulder, but 

comparatively ·poor learning was achieved as a result. This reduces the generalisability of 

the results produced. Other investigators who have used the Jordan architecture have 

reported difficulties in learning certain sequences (Vousden, 1996) and this appears to be a 

general limitation of the architecture. 

10.1.4 Attractor dynamics in a cascaded Jordan architecture 

In chapter 6 we introduced a modification to the standard Jordan model, by incorporating 

the cascade equations developed by McClelland (1979). The primary motivation for this 

modification was to introduce some temporal aspect to network processing and to allow 

network dynamics alone to determine when the transition between sequence elements 

occurs. This could be achieved allowing activation to cascade through the system 

terminating at the state units. Only when the state units have reached an asymptotic level of 

activation can processing of the next sequence element begin. Using this method with a 

sufficiently small value for the cascade rate (tau) causes the network to trace the trajectory 

of the limb endpoint between each target state in the sequence (figure 6.1). This scheme is 

interesting because the network encodes a virtual trajectory between equilibrium points at 

the target locations. We discuss an interpretation of this behaviour in terms of the 

equilibrium point hypothesis of motor control. 

The bulk of the work in this chapter, however, is inspired by the finding reported 

by Jordan (1986a, 1986b) that sequential networks encode sequences as limit cycle 

attractors. The notion that movement control can be characterised as a dynamical system is a 

growing theme in motor control theory. We introduce a dynamical systems model of 

normal and parkinsonian motor control which is based on the Hopf bifurcation in a 

nonlinear dynamical system. In the subsequent simulations we implement an alternative 

version of the cascaded network in which acnvation is cascaded through the state units, 

thus allowing activation to cycle round the entire network. This produced the surprising and 

interesting result that the shape of the entire attractor for a given sequence is displayed. 
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These results also showed that the attractor is more complex than a simple limit cycle. 

Slight alterations of the control parameter µ can yield a stable limit cycle attractor. A study 

of the systematic variation of µ through a range of values demonstrated that the behaviour 

of this system, when a single sequence has been learned, approximates the behaviour of the 

hopf bifurcation moqel. As µ is reduced towards zero the attractor collapses to a fixed 

point. 

This system provides the basis for a series of simulations in which the effects of a 

second learned sequence on the qualitative characteristics of the attractor encodiilg the test 

sequence are examined. The main finding is that the task-space proximity of a second 

attractor is an important factor in determining both the extent and nature of its influence on 

the test attractor. In particular, an overlapping second attractor produces qualitatively 

different effects to a non-overlapping attractor. These findings provide explicit 

computational demonstrations of a number of appealing ideas in motor control. The first of 

these is that patterns of movement may be represented as dynamic attractors. However, 

whilst it may turn out to be a useful property that attractors have the potential to interact 

with each other - for example in the generation.-of novel movement patterns, it is also 

possible that the influence of proximal attractors may cause undesirable interference effects 

particularly if the system is disrupted, as in motor disorders. 

In a final series of simulations we investigated the effects of selectively reducing the 

cascade rate in the forward model as a means of simulating a degraded contextual signal 

provided by the state units, thus increasing the inherent level of competition between · 

attractors. The results of this manipulation were quite striking. When only one sequence 

had been learned, reducing the cascade rate slightly had minimal effect on the qualitative 

behaviour of the system. However in both conditions where a second sequence had been 

learned the system spirals to a fixed point attractor near the centre of the test sequence. 

These results demonstrate the 'parkinsonian' behaviour that is characterised in the Hopf 

bifurcation model presented in this chapter. 
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10.1.5 The use of recurrent networks in modelling motor disorders 

Whilst these simulation results exhibit general properties which are appealing in the context 

of the dynamical systems interpretation presented here, a limitation of this approach is that 

the characterisation of parkinsonian symptoms is postulated at a rather abstract level. The 

deficits that we have modelled here are more relevant to high-level features of PD such as 

the failure to sustain motor activity during repetitive tasks, thus leading to progressive 

reductions in movement amplitude. A typical example of this is the 'festination' exhibited in 

parkinsonian locomotion. These simulations are not directed towards the sorts of deficits 

that have been found in sequencing tasks wit,h PD's. 

One of the problems with computational modelling of movement control data as 

opposed to purely cognitive phenomena is that extreme simplifying assumptions have to be 

made about the elements of the effector system that are included in the model. This is 

problematic if the aim is to model data produced in behavioural studies. For example, the 

characterisation we have used here is an articulated kinematic limb. This makes it 

impossible to appeal to data that has been collected using dynamical measures or EMG 

profiles. Even if an attempt were made to construct a simplified representation of muscle 

contractions, it is hard to see how it would be sufficiently similar to allow comparison with 

real data. 

In chapter 7 we adopted an alternative approach which was to dispense with .the 

model of the articulated limb encoded in the forward model. Instead we used a simple 

Jordan architecture in which the output representations encoded the endpoints of two 

"virtual" limbs, in which no kinematic constraints are assumed. Using this dual-effector 

system we showed that in the absence of explicit inhibitory mechanisms there is undesirable 

'shadowing' exhibited by the unselected effector in a model of selective single effector 

performance. This is a feature of Parkinson's disease reported by Brentari and Poizner 

( 1994) in their study of a deaf parkinsonian signer. This simulation is used to argue that 

deficiency in an action selection subsystem may produce disrupted performance that could 

not be achieved by degrading the quality of the context signal alone. 
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A further unsatisfactory feature of the Jordan sequential network is the use of 

recurrent connections. It has been argued on · a number of grounds that this architecture 

implements a chaining system. We tested an alternative version of the Jordan architecture 

which uses endogenous oscillators to implement the state representation and found that it 

exhibited similar properties to those exhibited when recurrent connections were used. This 

indicates that a context signal for driving sequential behaviour that is not subject to 

criticisms of chaining can be used instead without loss of the desirable properties 

demonstrated in the Jordan network. These two final criticisms in addition to other 

limitations of the Jordan architecture already mentioned provide part of the motivation for 

the second architecture we examined - the OSCAR model. 

10.1.6 Endogenous oscillators and the control of sequential behaviour 

There is a wide range of evidence to suggest that ensembles of oscillators are applicable to 

. dynamical processes associated with perception and action (Turvey & Carello, 1995). In 

particular, there are biological and computational motivations for the suggestion that they 

form an integral part of processes controlling sequential 'action (Saltzman, 1995). One 

problem with the use of oscillatory dynamics to provide a context signal in the Jordan 

model presented in chapter 7, and other approaches such as the Houghton (1990) 

competitive queuing model is the low dimensionality of the control signal produced by - · 

simple oscillators. A different approach which is used in the OSCAR model is to construct 

a high dimensional fast moving context signal from multiple oscillators operating at 

different frequencies. OSCAR has already been used to account for evidence in serial short 

term memory (Brown, Preece & Hulme, 1996) and speech production (Vousden, 1996). 

We use it here as a basis for modelling the control of sequential action. In a series of 

simulations we show how the context signal permits parallel pre-activation of several 

sequence elements where those that are associated with similar contextual states are most 

highly activated. A further advantage of OSCAR over other models based on similar ,: , 

computational principles (e.g. Burgess & Hitch, 1992) is that both the context signal 

representation and the action representations are distributed. This is an important 
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characteristic if the model is to appeal to the notion of "brain-style" processing which i~-one 

of the most widely cited advantages of modelling with connectionist networks. 

10.1.7 Modelling basal ganglia dysfunction in PD with OSCAR 

In the final simulation chapter of this thesis we apply the OSCAR model to the conceptual 

model of cortico-basal ganglia interaction put forward in chapter four. The oscillator based 

context vector is used to simulate the 'frontal' control signal and a simple competitive 

process using lateral excitatory and inhibitory connections between action representations is 

used to simulate the selective disinhibition mechanism. By plotting the parameter space of 

effective action selection with a medium-speed context vector, it is shown that a balance is 

required in the excitatory and inhibitory parameters controlling action selection such that 

only one action is selected. This simulation relates to the biologically inspired notion ·that 

dopamine acts to maintain a balance between the direct and indirect pathways during the 

control of posture and voluntary movement. If there is a high relative level of inhibition 

then a static posture is maintained and no action is selected. In contrast high relative 

excitation can cause several actions to become· concurrently active. Both cases can be 

interpreted as system disruptions underlying motor deficits in PD. Over-inhibition could 

account for the lack of spontaneous movement that is characteristic of hypokinesia, whereas 

co-activation of competing action representations could be the basis of hypometric -

movements, and co-activation of antagonistic muscle groups. Low absolute values of both 

excitation and inhibition could, in addition, provide an account of prolonged movement 

onset times in PD. These deficits interact with the quality of the context signal. A degraded 

contextual signal yields a reduction in the available parameter space in which effective 

action selection can be achieved and also causes an increase in the number of cycles 

required to select an action. The simulations in this chapter provide an explicit 

computational demonstration of the ideas expressed in chapter four. 
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10.2 Implications for theories of basal ganglia function 

At the beginning of this thesis we criticised hypotheses of basal ganglia function that are 

grounded in traditional approaches to motor programming for failing to meet the demands 

of current knowledge about the organisation and processing capabilities of real nervous 

systems. We also criticised those 'black-box' models in which the hypothesised control 

flow between control structures is labelled, but the nature of processing assumed within 

structures is left unspecified. In this thesis we have attempted to improve on these methods 

of theorising, first by making our computational assumptions explicit and second by 

examining their properties in computer simulation studies'. 

The main thrust of our theoretical approach is based on the linked concepts of a 

dynamic internal representation of temporal context for the coiltrol of movement sequencing 

and the principle of general inhibition and selective disinhibition in the control of action 

selection. These theoretical primitives are motivated by both biological and computational 

considerations as was indicated in review chapters two and three. These two mechanisms 

have been combined in the current approach in an attempt to enhance current understanding 

of the role of basal ganglia and frontal cortex in motor programming processes and to 

provide an account of why sequential actions are especially affected in Parkinson's disease. 

This issue was most coherently addressed in the simulations using the OSCAR architecture 

in chapter nine and represents a considerable advance over hypotheses which have not been 

implemented. 

Of course, the biological picture of basal ganglia and cortical interaction that we 

have presented here has been considerably simplified. For example, there are substantial 

projections from limbic cortex and the amygdala to portions of the ventral striatum 

(Graybiel & Kimura, 1995). These areas are thought to play an important role in 

motivation. This is a facet of basal ganglia function which has potentially significant 

consequences for hypotheses of its role in the ~nitiation and control of action which has, of 

necessity, been omitted from the current approach. In addition there are numerous features 

of striatal organisation such as the functional distinction between patch and matrix 

compartments (Graybiel, 1990) which have not been considered here and would more 
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properly be treated by a modelling approach aimed-~t lower level computational features. 
·. 

Probably the most significant simplifying assumption that we have made in the current 

approach concerns the systems level action of dopamine. The notion that it serves to 

increase the contrast between competing response alternatives is founded on several sources 

of information reviewed in chapter two and the computational approaches of Cohen and 

Servan-Shreiber (1992) and Wickens, Alexander and Miller (1991). It is likely, however, 

that this assumption may need to be re-examined as better models of dopaminergic action 

are developed. 

10.3 The future of computational models in motor control theory 

A second theoretical strand which was addressed here using the cascaded Jordan 

architecture is the nature of representation of motor patterns and the patterns of interaction 

and interference which might occur in a complex distributed system. A number of recent 

theoretical approaches have advocated the idea that movements may be represented as 

attractors in a dynamical system. Our simulations ~ chapter six illustrate the potential for 

catastrophic interference if multiple dynamic attractors are present in a single system. The 

simulations produced here provide a platform for further research on this issue, although 

given the various problems associated with the Jordan architecture it is likely that other 

computational architectures may prove to be more useful in this respect. 

One suggestion that arises directly from the work presented in this thesis is the use 

of interacting systems of oscillators. Here we have used oscillators to implement the 

contextual representation which provides input to action representations for internal control. 

An ecologically conservative extension of this idea is to use oscillators as a basis for 

representing action patterns as well. The notion of using coupled sets of oscillators to 

model the nonlinear dynamics of movement patterns is already well established within the 

perception-action approach (Schaner & Kelso. 1988). There are a number of potent issues 

in neural computation which remain to be addressed in systems with dynamical 

representations of actions, including how such a system might learn to control sequences. 

In such a framework, dynamical systems analysis of the behaviour of networks using the 
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associated concepts of stability and bifurcations are likely to become increasingly important 

in motor control theory. A clear application of this approach in the domain of Parkinson's 

disease lies in modelling abnormalities in the performance of repetitive movements and time 

estimation. 

10.4 Concluding Remarks 

In this thesis we have developed a computationally explicit model of how disruption of the 

basal ganglia affects the control of voluntary movements in Parkinson's disease. The model 

makes specific and concrete assumptions about the function of cortical and basal ganglia . 

structures in the control of sequential actions, and about the processes that are involved in 

'motor programming' of such actions. Two different computational architectures have been 

tested with the same underlying computational intuitions. Both architectures showed 

performance deficits which are consistent with features of Parkinson's disease when 

control processes assumed to be implemented by cortico-striatal circuitry were damaged. 

Furthermore some general insights into the properties of these processes in the control of 

motor behaviour have been obtained. 

One of the current overriding goals of motor control research, and of cognitive 

neuroscience more generally, is to reconcile the need to explicitly characterise the nature of 

internal control structures and processes used in the control of voluntary movements with 

the principles governing the operation of biological systems. The theoretical and modelling 

work presented in this thesis has been pursued with that goal in mind. In so doing it forms 

part of a broader research enterprise in which constraints from biology, psychology and 

computational theory are brought together to develop a coherent approach towards fulfilling 

this objective. 
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