6 research outputs found

    Optimizing inequality joins in Datalog with approximated constraint propagation

    Get PDF
    Datalog systems evaluate joins over arithmetic (in)equalities as a naive generate-and-test of Cartesian products. We exploit aggregates in a source-to-source transformation to reduce the size of Cartesian products and to improve performance. Our approach approximates the well-known propagation technique from Constraint Programming. Experimental evaluation shows good run time speed-ups on a range of non-recursive as well as recursive programs. Furthermore, our technique improves upon the previously reported in the literature constraint magic set transformation approach

    Optimizing Inequality Joins in Datalog with Approximated Constraint Propagation

    Full text link

    Approximating Constraint Propagation in Datalog

    Get PDF
    We present a technique exploiting Datalog with aggregates to improve the performance of programs with arithmetic (in)equalities. Our approach employs a source-to-source program transformation which approximates the propagation technique from Constraint Programming. The experimental evaluation of the approach shows good run time speed-ups on a range of non-recursive as well as recursive programs. Furthermore, our technique improves upon the previously reported in the literature constraint magic set transformation approach.Comment: Online Proceedings of the 11th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2011), Lexington, KY, U.S.A., July 10, 201

    Magic Sets for Disjunctive Datalog Programs

    Get PDF
    In this paper, a new technique for the optimization of (partially) bound queries over disjunctive Datalog programs with stratified negation is presented. The technique exploits the propagation of query bindings and extends the Magic Set (MS) optimization technique. An important feature of disjunctive Datalog is nonmonotonicity, which calls for nondeterministic implementations, such as backtracking search. A distinguishing characteristic of the new method is that the optimization can be exploited also during the nondeterministic phase. In particular, after some assumptions have been made during the computation, parts of the program may become irrelevant to a query under these assumptions. This allows for dynamic pruning of the search space. In contrast, the effect of the previously defined MS methods for disjunctive Datalog is limited to the deterministic portion of the process. In this way, the potential performance gain by using the proposed method can be exponential, as could be observed empirically. The correctness of MS is established thanks to a strong relationship between MS and unfounded sets that has not been studied in the literature before. This knowledge allows for extending the method also to programs with stratified negation in a natural way. The proposed method has been implemented in DLV and various experiments have been conducted. Experimental results on synthetic data confirm the utility of MS for disjunctive Datalog, and they highlight the computational gain that may be obtained by the new method w.r.t. the previously proposed MS methods for disjunctive Datalog programs. Further experiments on real-world data show the benefits of MS within an application scenario that has received considerable attention in recent years, the problem of answering user queries over possibly inconsistent databases originating from integration of autonomous sources of information.Comment: 67 pages, 19 figures, preprint submitted to Artificial Intelligenc
    corecore